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Abstract

The recent detection of nontrivial azimuthal correlation in high-multiplicity proton-

proton (pp) collisions at the Large Hadron Collider (the so-called ridge phenomenon)

has aroused considerable interest because similar correlations were detected previ-

ously in heavy-ion collisions at the Large Hadron Collider and the BNL Relativistic

Heavy Ion Collier, where they were considered a crucial indicator of the creation of a

quark gluon plasma. Although these correlations occur naturally in the quark gluon

plasma framework due to the large interactions between the particles emitted in the

collisions (final-state interactions), they are absent in pp collisions. This leads to

the search for new possible mechanisms for the ridge phenomenon. In particular, a

new approach based on quantum interference and the multi-parton interaction was

developed. This formalism was recently successfully applied to symmetric correla-

tors.

In this thesis we study how quantum interference and colour flow affect three-

point correlations described by asymmetric cumulants in high-multiplicity events

in pp collisions. We use the model previously developed to study collectivity in

symmetric cumulants to show that the resulting three-point asymmetric cumulant

is qualitatively consistent with the experimental data for the same parameters as

used in the model to describe the symmetric cumulants. The results show that

the initial-state correlations must play a major role and may even dominate the

explanation of correlations in high-multiplicity pp events.

We formulate the goals for our research in the introduction, following which

Chap. 2 reviews the basic ideas of the approach for high-multiplicity pp collisions

based on quantum interference and multi-parton interactions. Chapter 3 computes

the three-point cumulant, studies the dependence of the momentum and number of

emitted particles and compares the results to experimental data.
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Chapter 1

Introduction

Recent studies of high-multiplicity proton-proton (pp) collisions at the Large Hadron

Collider (LHC) [1, 2, 3, 4, 5] detected collective behavior (the so-called ridge phe-

nomenon) that was considered indicative of the creation of a quark-gluon plasma

(QGP) when previously detected in heavy-ion (AA) collisions [5, 6, 7, 8, 9].

The ridge phenomenon occurs naturally in heavy-ion collisions, where it is ex-

plained by strong final-state interactions between emitted particles. However, in pp

collisions we expect much smaller transverse size and density in the collision, and

these collisions are generally well described by Monte Carlo generators that assume

independent emitted particles. Consequently, we need a new approach to the ridge

phenomenon that is not based on strong final-state interactions.

Such an approach, based on quantum interference and multi-parton interactions

(MPIs), was proposed in Refs. [10, 11] to explain this collective behavior. Using

this model, we can calculate the azimuthal correlations in pp collisions and explain

the ridge phenomenon. Although the studies reported in Refs. [10, 11] were devoted

to symmetric cumulants, the ATLAS Collaboration recently measured a new type

of correlation in high-multiplicity pp collisions: the three-point asymmetric cumu-

lant [12]. This thesis uses the approach of Refs. [10, 11] to calculate the three-point

asymmetric cumulant. We study how emitted particles depend on the momentum

and multiplicity, and the results are consistent with the experimental data.

The thesis is organised as follows: Chapter 2 reviews the basic formalism de-

veloped in Refs. [10, 11] to study the collective behavior in high-multiplicity pp

collisions. In particular, Sec. 2.1 explains the geometry of high-multiplicity pp col-

lisions and the basic experimental and mathematical tools used to describe these

correlations (the so-called flow analysis). Section 2.2 reviews the basic ideas of

multi-parton interactions, and Sec. 2.3 discusses the model of Refs. [10, 11] used to

study correlations in pp collisions.

2
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Chapter 3 calculates the three-point asymmetric cumulant. In particular, Sec.

3.1 establishes the physical problem to be solved, Sec. 3.2 summarises the formalism

to be used, Sec. 3.3 finds the three-point asymmetric cumulant for the case of three

partonic interactions and three emitted particles and derives the momentum depen-

dence and Sec. 3.4 extends the result to the case of an arbitrary number of partonic

interactions and emitted particles and compares the multiplicity dependence with

the experimental results.

Finally, Chapt. 4 presents the conclusions.



Chapter 2

Review of Quantum Interference

Approach

2.1 Ridge and Cumulants

2.1.1 Heavy-Ion Collisions

Experimentalists have been using heavy-ion (AA) collisions to create and study the

QGP since it was discovered in the beginning of the millennium [13]. One way

to study the emergence of the QGP in AA collisions is to look at multi-particle-

production events and quantify the distribution of the rapidity and azimuthal di-

rections of the emitted particles with respect to reaction-plane angle.1

Figure 2.1 shows a simplified diagram taken from Ref. [14] of the geometry

of a collision projected onto the plane transverse to the beam axis. To compare

measurements of the azimuthal distribution for single particles from different events

we need to know the reaction-plane angle for each event and shift the measurements

accordingly. One way avoid this is to consider the correlations between particles

instead of the distribution of a single particle relative to the reaction plane.

Consider measurements like those shown in Fig. 2.2 (taken from Refs. [6, 7]),

where several trends are clear [6, 7]. In particular, we see that, regardless of the

azimuthal difference between the particles, the correlation is essentially independent

of the pseudorapidity difference, where the pseudorapidity η and rapidity y are

defined as follows:

η = − ln

[
tan

(
θ

2

)]
,

1The reaction plane is the plane that contains the centers of the colliding particles and is parallel

to the beam axis.

4



5

Figure 2.1: Diagram of coordinate system used in flow analysis. The Z axis is the

beam axis coming out of the page, the XY plane is the transverse plane, where

the X axis, or the azimuthal zero, is chosen arbitrarily. The X ′Y ′ plane is the XY

plane rotated by the reaction-plane angle ΨR, where the reaction plane is the plane

containing the beam axis and the centers of the two nuclei so that both centers are

on the X ′ axis. The impact parameter b is given by the projection of the distance

between the centers of the nuclei, and ϕ is the azimuthal angle of an emitted particle.

The diagram is taken from Ref. [14].

y =
1

2
ln

(
E + pz
E − pz

)
,

were θ is the angle between the particle momentum and the beam axis, E is the

particle energy and pz is the particle momentum along the beam axis. Recall that,

for massless or ultrarelativistic particles, this is the same as the pseudorapidity that

is used in measurements, so y ≈ η.

The phenomenon whereby azimuthal correlations are almost independent of the

pseudorapidity difference is called the ridge phenomenon. This correlation between

particles very distant in rapidity is indicative of collective behavior that reflects the

existence of a medium that allows information to be shared between the emitted

particles. The existence of such a medium is somewhat expected in AA collisions

where we expect the creation of a QGP. As stated at the beginning of the chapter,

one of the many topics studied via AA collisions is the existence and properties of

the QGP. The collective behavior in Pb-Pb collisions was also reported in Refs. [5,

8, 9, 15, 16].
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Figure 2.2: Three-dimensional plots of two-particle correlations C(∆η,∆ϕ) in AA

collisions as a function of ∆ϕ, which is the azimuthal difference between the parti-

cles, and ∆η, which is the pseudorapidity difference between the particles, Pb + Pb

on top [6] and Xe + Xe on the bottom [7], for different centrality intervals, 0%–5%

(left), 30%–40% (center) and 60%–70% (right). Both experiments considered parti-

cles with transverse momentum in the range 2 GeV < pt < 3 GeV and pseudorapidity

in the range |η| < 2.5 (
√
sNN is the center-of-mass energy of the collisions in each

experiment). Several clear trends appear from these measurements; the most im-

portant for us is the apparent independence of the correlation on the pseudorapidity

difference. This phenomenon is called the ridge phenomenon. The correlations peak

around ∆ϕ = ∆η = 0 is partly a non-flow contribution that comes from considering

particles that originate from the same jet.
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2.1.2 High-Multiplicity Proton-Proton Collisions

In high-multiplicity pp collisions, the transverse size of the collision is very small

compared with that of AA collisions. For example, for ultrarelativistic Pb + Pb

collisions, the ratio of gluon density is much greater than it is for pp collisions, so

we do not expect a QGP to be created in such systems (sometimes called small

systems as opposed to large systems created in AA collisions). Therefore, we cannot

explain the correlations between large-rapidity-difference particles by the emergence

of a new medium. The particles emitted from a pp collision should act almost as

free particles with no sign of collective behavior; in other words, we do not expect

the ridge phenomenon in pp collisions.

The CMS Collaboration first observed the ridge phenomenon in pp collisions in

2010 [1], and more measurements have come out since (see, e.g., Refs [2, 3, 4, 5]),

as shown in Figs. 2.3 and 2.4. This leads us to ask how particles that are almost

completely free embody this collective behavior. We thus need to find an origin

other than final-state interactions for correlations in pp collisions.
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Figure 2.3: Correlations for two particles in a pp collision as a function of ∆ϕ, the

azimuthal difference, and ∆η, the pseudorapidity difference, from Ref. [2]. The plots

are for different selection parameters; the figure shows only charged particles (top

row), events with kion particles (middle row), and events with lambda (or anti-

lambda) particles (bottom row). Low-multiplicity events appear in the left column

and high-multiplicity events in the right column. As seen for correlations in AA

collisions, the correlations peak in two regions: near ∆ϕ = ∆η = 0 a mostly non-

flow contribution is due to particles originating from the same jet, as in Fig. 2.2. The

peak near ∆ϕ ≈ π is very similar to the analogous peak for AA collisions, including

the very weak dependence on the pseudorapidity difference.
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Figure 2.4: Correlations for two protons in a pp collision after applying the zero

yield at minimum procedure (which consists of shifting the measurements so that

they are zero at the minimum) as a function of ∆ϕ, the azimuthal difference (from

Ref. [2]). The top row shows long-range correlations for particle pairs with high

∆η. The bottom rows show short-range correlations for particles pairs with low

∆η; solid symbols are for multiplicities between 105 and 150, open symbols are for

multiplicities between 10 and 20. The different colours represent different types of

events: only charged particles (black), events with kion particles (blue) and events

with lambda (or anti-lambda) particles (red). The black line is a Fourier fit.

2.1.3 Cumulants

When we study correlations between s particles we want to be sure that what we

calculate comes from the correlations of all particles. To do this we need to define

the cumulants. Assume as valid the one-particle momentum distribution function

defined in Ref. [17]:

f (p) ≡ dN

d3p
, (2.1)

where dN is the differential multiplicity, or the number of particles within a small

momentum space d3p. To calculate the properties of the emitted particles, we can

imagine taking the average with respect to the momentum distribution function; for

example, we can take the average of a function F (p) over the azimuthal component

of the particle momentum, resulting in a function of the transverse momentum and
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rapidity:

⟨F (p)⟩ (pt, y) =
∫
F (p) f (p) dϕ∫
f (p) d3p

, (2.2)

where ⟨ ⟩ indicates an average. The correlation between two different particles is

then defined by the two-particle distribution function,

f (p1,p2) ≡
d2N

d3p1d3p2
, (2.3)

where p1 and p2 are the three-momenta of the two different particles. If the two par-

ticles are not correlated, the distribution function factorizes, f(p1,p2) = f(p1)f(p2).

However, in general we have

f (p1,p2) ≡ f (p1) f (p2) + fc (p1,p2) , (2.4)

where fc(p1,p2) denotes the correlated part of the distribution. For a single particle

fc (p) ≡ f (p) because we cannot break it down into smaller pieces.

This approach can be generalised to any number of particle correlations; for

example, the three-particle distribution is given by

f (p1,p2,p3) ≡ d3N

d3p1d3p2d3p3
(2.5)

= fc (p1) fc (p2) fc (p3) +
3∑

j=1

fc (pj) fc
(
{pk}k ̸=j

)
+ fc (p1,p2,p3) ,

where the first term on the right-hand side is the product of the one-particle distri-

butions, the second term comes from the pair correlations within the three particles

and the last term is the three-particle true correlation. In general, to decompose the

s-particle distribution function we first take all possible partitions of {p1,p2, . . . ,ps}.
For each subset {pj1 ,pj2 , . . . ,pjm}, we find the corresponding correlated function,

fc(pj1 ,pj2 , . . . ,pjm). The contribution of a given partition is the product of the con-

tributions of each subset. Finally, f(p1,p2, . . . ,ps) is the sum of the contributions

of all partitions.

By using these relations, we can express the true correlated distributions in terms

of the full correlation functions. For example, for one, two and three particles,

fc (p) = f (p) ,

fc (p1,p2) = f (p1,p2)− f (p1) f (p2) ,

fc (p1,p2,p3) = f (p1,p2,p3)− f (p1,p2) f (p3)− f (p1,p3) f (p2)− f (p2,p3) f (p1)

+2f (p1) f (p2) f (p3) . (2.6)

The true correlations fc are called cumulants.
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2.1.4 Flow Analysis

Studying the azimuthal distributions and correlations of particles gave rise to the

subject of flow analysis, which studies the anisotropic behavior in the azimuthal

direction by decomposing the distribution of emitted particles into a Fourier expan-

sion [14]. For example,

f (p) =
1

2πE

dN

ptdptdy

{
1 + 2

∞∑
n=1

vn (pt, y) cos [n (ϕ−ΨR)]

}
, (2.7)

where f(p) is the one-particle momentum distribution function defined in Eq. (2.1),

y is the rapidity of the particle, E is the energy of the particle, pt is the transverse

momentum of the particle, ϕ is the azimuthal coordinate of the particle momentum,

ΨR is the azimuthal angle between the arbitrarily chosen X axis and the projection

of the vector connecting the two centers of the nuclei onto the XY plane (also known

as the reaction-plane angle) and vn are the Fourier coefficients, also known as flow

harmonics.

In general, vn are functions of the transverse momentum and pseudorapidity of

the emitted particles, but since we are looking at a ridge case we can neglect the

pseudorapidity. The coefficients vn can be defined by the following average over the

azimuthal angle ϕ:

vn (pt) ≡
〈
ein(ϕ−ΨR)

〉
= ⟨cos [n (ϕ−ΨR)]⟩ =

∫
ein(ϕ−ΨR)f (p) dϕ∫

f (p) d3p
. (2.8)

In a similar way we can decompose the correlations into a Fourier expansion;

for example, the two-particle correlation can be found by using the two-particle

distribution function by taking the average over both azimuthal components:

〈
ein(ϕ1−ΨR)e−in(ϕ2−ΨR)

〉
=
〈
ein(ϕ1−ϕ2)

〉
=

∫
ein(ϕ1−ϕ2)f (p1,p2) dϕ1dϕ2∫

f (p1,p2) d3p1d3p2
. (2.9)

In this way, we get rid of the explicit dependence on the position of the reaction

plane.

Flow analysis is the study of the flow harmonics, and v1 and v2 are commonly

known as the direct flow and the elliptic flow, respectively. v1 corresponds to a

preference for a single direction, and v2 represents a symmetry by a 180◦ rotation

around the Z axis. This symmetry is expected in a AA-collision system. In general,

vn depend on the collision geometry, which is why higher-order flow harmonics

(n > 2) are also important in studying the collision structure.

By using the approach of the previous section, the correlations between many

particles can be reduced to sums of correlations between fewer particles, like the
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s-particle distribution functions. In other words, the two-particle correlation can be

reduced to 〈
ein(ϕ1−ϕ2)

〉
=
〈
einϕ1

〉 〈
e−inϕ2

〉
+
〈
ein(ϕ1−ϕ2)

〉
c
, (2.10)

were ⟨ein(ϕ1−ϕ2)⟩c is just the two-particle cumulant defined in the previous section.

If we assume a perfect detector, ⟨einϕj⟩ vanishes due to the axial symmetry of the

system for any n ̸= 0 because it implies an average over the reaction-plane angle.

Therefore, it is not the same as vn. In the same way, all the correlations of the form

⟨exp(i∑s
j=1 njϕj)⟩ where

∑s
j=1 nj ̸= 0 also vanish.

2.1.5 Calculating Cumulants from Data

The s-particle cumulant is determined from measurements in a few steps. First,

we calculate the single-event multi-particle correlations; for example, the two- and

four-particle single-event correlations are given by

⟨2⟩n ≡
〈
ein(ϕ1−ϕ2)

〉
=

1

Pm,2

∑
i,j

′
ein(ϕi−ϕj),

⟨4⟩n ≡
〈
ein(ϕ1+ϕ2−ϕ3−ϕ4)

〉
=

1

Pm,4

∑
i,j,k,l

′
ein(ϕi+ϕj−ϕk−ϕl), (2.11)

where ⟨s⟩n is the s-particle correlation of single event n, m is the multiplicity or

number of particles emitted in the event, Pm,s ≡ m!/(m−s)! and the sum
∑′ means

all the indices are different. We then average over all events:

⟨⟨s⟩⟩n ≡
∑

events

(
W⟨s⟩

)
i
⟨s⟩n∑

events

(
W⟨s⟩

)
i

, (2.12)

where ⟨⟨s⟩⟩n denotes the averaged nth s-particle correlation, where the average is

first over all particles and then over all events. (W⟨s⟩)i is the weight of event i

and is used to account for variations in multiplicity between different events. We

can use (W⟨s⟩)i = δmi,M to consider only events with a fixed multiplicity M , or

(W⟨s⟩)i = Pmi,s for general multiplicity. Picking this option leads to ⟨⟨s⟩⟩n, which is

independent of multiplicity, or to many other functions.

The connection between the double-bracketed correlations and the cumulants is

discussed in detail in Ref. [18]. Here, we write only the cumulants for s = 2, 4, 6,

denoted cn{s}, which are functions of the transverse momentum and pseudorapidity

of all s particles being correlated. Examples are helpful to see the patterns:

cn {2} = ⟨⟨2⟩⟩n ,

cn {4} = ⟨⟨4⟩⟩n − 2 (⟨⟨2⟩⟩n)
2 ,
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cn {6} = ⟨⟨6⟩⟩n − 9 ⟨⟨4⟩⟩n ⟨⟨2⟩⟩n + 12 (⟨⟨2⟩⟩n)
3 . (2.13)

These examples assume both large average multiplicity and a detector with uniform

acceptance (more general definitions can be found in Refs. [14, 18]). The cumulants

are defined in such a away that, for all cn{2k} for k > 1, they vanish unless there is a

sizable s = 2k correlation. For example, if we assume that there are no four-particle

correlations we could expand as follows ⟨⟨4⟩⟩n into a product of a pair two-particle

correlations:

⟨⟨4⟩⟩n =
〈〈
ein(ϕ1+ϕ2−ϕ3−ϕ4)

〉〉
≈ 2

〈〈
ein(ϕ1−ϕ3)

〉〉 〈〈
ein(ϕ2−ϕ4)

〉〉
= 2 (⟨⟨2⟩⟩n)

2 .

(2.14)

Plugging this result back into cn{4} in Eq. (2.13), we see that it vanishes identically.

The same occurs for cn{6} and any other cn{s} for s > 2.

By using the cumulants, we can approximate the flow harmonics, with cn{s}
giving us better approximation for higher values of s. The results of Ref. [18] allow

us to write the approximations

(vn {2})2 ≈ cn {2} ,

(vn {4})4 ≈ −cn {4} ,

(vn {6})6 ≈ cn {6} /4. (2.15)

The fact that vn{2k} ∝ (−1)k+1cn{2k} is called collectivity.

2.1.6 Three-Particle Cumulant

So far we have only talked about symmetric cumulants, for which all particles have

the same flow harmonic index, but this forces us to only consider an even number

of particles so that the dependence on the reaction-plane angle cancels out. We can

extend the notion of the cumulant to odd numbers of particles by allowing correla-

tions between flow harmonics with different indices. For three-particle correlations

it is common to define them in a way similar to four-particle correlations, where the

two particles with a negative weight are chosen to be the same:

〈
ein(ϕ1+ϕ2−2ϕ3)

〉
≡
∫
ein(ϕ1+ϕ2−2ϕ3) d3N

d3p1d3p2d3p3
dϕ1dϕ2dϕ3∫ d3N

d3p1d3p2d3p3
d3p1d3p2d3p3

. (2.16)

To calculate Eq. (2.16) from data we define the single-event average by

⟨3⟩n,n|2n ≡
〈
ein(ϕ1+ϕ2−2ϕ3)

〉
=

1

Pm,3

∑
i,j,k

′
ein(ϕi+ϕj−2ϕk). (2.17)
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We can also consider taking the harmonic indices with the opposite sign, but if we

assume a perfect detector we find that correlation is just the complex conjugate of the

one we defined, ⟨3⟩n,n|2n = (⟨3⟩−n,−n|−2n)∗ = (⟨3⟩2n|n,n)∗, and since the correlations

are real, from the symmetry between the particles, they are the same. Taking

this correlation and averaging over many events gives us the average correlation,

⟨⟨3⟩⟩n,n|2n, from which we get the three-particle cumulant, which is also known as

the three-particle asymmetric cumulant:

acn,n|2n {3} = ⟨⟨3⟩⟩n,n|2n . (2.18)

Like the two-particle cumulant, the asymmetric three-particle cumulant is the

same as the three-particle average correlation because it is impossible to break the

correlations down into pairs without separating the angle with greater weight from

itself. The three-particle cumulant is called an asymmetric cumulant because it

breaks the symmetry between the flow harmonic indices, but this property is not

limited to three-particle correlations—we can define cumulants with different flow

indices for any number of particles. For example, Ref. [12] studies four-particle

correlations defined as ⟨⟨4⟩⟩n,m|n,m. Provided the sums of the positive and negative

indices are equal, the correlation and associated cumulants are well defined. But

even then it is common to call the cumulant for an even (odd) number of particles

the symmetric (asymmetric) cumulant. For the sake of brevity and to follow naming

conventions, it is common to write acn,n|2n{3} as acn{3}.
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Figure 2.5: The second asymmetric cumulant for three particles, ac2{3}, or the

azimuthal correlations ⟨ei2(ϕ1+ϕ2−2ϕ3)⟩ as a function of ⟨Nch⟩, the number of charged

particles detected, in (top) pp, (middle) p + Pb and (bottom) collisions for different

ranges of transverse momentum of emitted particles, 0.3 GeV < pT < 3 GeV (left)

and 0.5 GeV < pT < 5 GeV (right), as measured by Ref. [12]. The 2 (3) sub-

event methods refer to dividing the detector into 2 (3) equal parts in the range

|η| < ηmax = 2.5 and taking the particles from the different parts. This gives us

more confidence that the correlations are due to the ridge phenomenon as opposed

to taking particles out of the same jet (see Figs. 2.2 and 2.3).
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Figure 2.6: The second asymmetric cumulant for three particles ac2{3}, or the

azimuthal correlations ⟨ei2(ϕ1+ϕ2−2ϕ3)⟩ as a function of the number ⟨Nch⟩ of charged
particles detected in pp collisions for emitted particles with transverse momentum

in the range 0.3 GeV < pT < 3 GeV with the non-flow contributions reduced. The

reduction of the non-flow contribution was done by Ref. [19].
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2.2 Multi-Parton Interactions

The processes in which several partons from one nucleon collide with several partons

from another nucleon are called multi-parton interactions (MPIs). Figure 2.7 (right)

shows a diagram of a MPI with an arbitrary number of partonic interactions. Each

partonic interaction involves one parton from hadron ha and one parton from hadron

hb and results in a hard event, producing two or more hard out-going partons. In

each collision there can be any number of MPIs. Figure 2.7 (left) shows an example

of a collision with only two hard processes, which is usually called double-parton

scattering (DPS) and is discussed in detail later in this chapter.

Figure 2.7: Two diagrams of amplitudes for a two-hadron collision. The horizontal

lines represent the hadrons ha and hb, the vertical arrows represent the hard partons,

the circles represent different hard events, and the diagonal lines represent out-going

particles. The cross section of the process is the square of the diagrams. On the left

is an event with only two partonic interactions and on the right is an event with an

arbitrary number of partonic interactions, where the points indicate the possibility

of many more partonic interactions not shown on the diagram.

2.2.1 Hard Process in Quantum Chromodynamics

This section discusses the example of a collision with a single partonic interaction

and defines tools that will help us work with partonic interactions. An important

parameter in a hadronic interaction is the hard scale Q2, which characterises the

transverse scale of the hard event.

The behavior of a parton inside a hadron is only defined in a quasi-probabilistic

manner. For each parton we define the parameter x, called the longitudinal fraction,

or the light-cone hadron’s momentum fraction of the parton. Given a hadron with
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four-momentum P µ and a parton with initial four-momentum pµ, we define

x ≡ p0 + pz
P0 + Pz

. (2.19)

This parameter was first defined by Bjorken and is often denoted xB, where the

index z indicates the momentum component along the beam axis, and x goes from

zero to one. Assuming the parton is massless, its momentum is defined by x and its

transverse momentum.

As seen in Fig. 2.8, the two hadrons are a bundle of many partons. In this exam-

ple, a parton from ha with momentum x, k⃗ and a parton from hb with momentum of

x′, k⃗′ interact and two new particles with momentum qi and qj are emitted. Here we

must separate the two types of cross sections: The first is the hadronic cross section,

which is the cross section for the two hadrons to produce the particles qi and qj,

or any other products. This is the cross section of the entire diagram and can be

measured. The grey dashed rectangle contains a diagram of two partons interacting

with no connection to the hadrons, this is the partonic cross section that can be

calculated via QCD with fundamental particles but never measured directly.

Figure 2.8: A diagram of the hadronic cross section of two hadrons colliding via a

single partonic interaction. Each parton contributes a parton that interacts with the

other parton, and the black circles represent the QCD processes that originate from

the two partons and emit two new particles. The grey dashed rectangle encloses the

diagram of a partonic cross section.

To find the hadronic cross section of this process we must know the probability

to find a parton with momentum fraction x inside a hadron and use it to reduce the

problem to the diagram of a partonic cross section. Such probabilities depend on

the hard scale Q2 of the process and on the QCD processes inside the hadron. When
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we consider an event of hard scale Q2, we say that the quasi-probability to find a

parton of type j with momentum fraction x inside a hadron is given by fj(x,Q
2),

where f is the standard parton distribution function (PDF).

PDFs satisfy the following two sum rules: The first is the valence rule, which

states that, for every hadron, the integral over x for the valence partons must give

the number of partons in the given hadron. For example, in a proton there are two

valence up quarks and one valence down quark, so we write∫ 1

0
dx
[
fu
(
x,Q2

)
− fu

(
x,Q2

)]
= 2,

∫ 1

0
dx
[
fd
(
x,Q2

)
− fd

(
x,Q2

)]
= 1. (2.20)

For all other flavors of quarks (i.e. f ̸= u, d), we write fj(x,Q
2) = fj(x,Q

2). This

implies that, for every hadron, we need a different set of PDFs, but we only work

with protons so we need not index the hadron type.

The other sum rule is the condition that the total momentum fraction is unity,

∫ 1

0
dx x

fg (x,Q2
)
+
∑
f

[
ff
(
x,Q2

)
+ ff

(
x,Q2

)] = 1. (2.21)

To define how the PDF varies as a function of hard scale, we define the splitting

functions Pj←i(z), which are proportional to the quasi-probability of a parton of

type i with momentum fraction x/z to split into two partons, with one being a real

particle of type j with momentum fraction z. QCD proposes three diagrams that

contribute to finding the splitting functions: q → q + g, g → q + q̄ and g → g + g.

To calculate the splitting functions, we must avoid the pole at z = 1, so we define

the function

1

(1− z)+
= lim

ε→0

[
1

1− z
Θ(1− ε− z)− δ (1− z)

∫ 1−ε

0

dz′

1− z′

]
, (2.22)

where Θ is the step function [Θ(x < 0) = 0 and Θ(x ≥ 0) = 1].

Leveraging Θ, we define the splitting functions as follows:

Pq←q (z) =
4

3

[
1 + z2

(1− z)+
+

3

2
δ (1− z)

]
,

Pg←q (z) =
4

3

[
1 + (1− z)2

z

]
,

Pq←g (z) =
1

2

[
z2 + (1− z)2

]
,

Pg←g (z) = 6

[
1− z

z
+

z

(1− z)+
+ z (1− z) +

(
11

12
− nf

18

)
δ (1− z)

]
, (2.23)

where nf is the number of light quarks with mass less than the hard scale Q.
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The diagrams that define the splitting functions also include a factor αs(Q
2)/π,

where αs(Q
2) is the QCD running coupling, which in the one-loop approximation is

expressed as

αs

(
Q2
)
=

4π(
11
3
Nc − 2

3
nf

)
ln (Q2/ΛQCD)

. (2.24)

where Nc is the number of colours (for QCD, Nc = 3), nf is the number of light

quarks, and ΛQCD ≈ 0.3 GeV is the QCD scale parameter.

Exploiting the splitting functions allows us to write the Dokshitzer–Gribov–

Lipatov–Altarelli–Parisi (DGLAP) equations that describe perturbative QCD in the

leading logarithmic approximation:

d

d logQ
fg
(
x,Q2

)
=

αs (Q
2)

π

∫ 1

x

dz

z

{
Pg←q (z)

∑
f

[
ff

(
x

z
,Q2

)
+ ff

(
x

z
,Q2

)]

+Pg←g (z) fg

(
x

z
,Q2

)}
,

d

d logQ
ff
(
x,Q2

)
=

αs (Q
2)

π

∫ 1

x

dz

z

{
Pq←q (z) ff

(
x

z
,Q2

)
+ Pq←g (z) fg

(
x

z
,Q2

)}
,

d

d logQ
ff

(
x,Q2

)
=

αs (Q
2)

π

∫ 1

x

dz

z

{
Pq←q (z) ff

(
x

z
,Q2

)
+ Pq←g (z) fg

(
x

z
,Q2

)}
.

(2.25)

Because the derivation of the DGLAP equations respects the conservation laws of

QCD (namely, conservation of flavor and longitudinal momentum), they obey the

summation rules in Figs. 2.20 and 2.21.

We now give the connection between the hadronic and partonic cross sections.

To produce two particles i and j with momenta qi and qj, the inclusive hadronic

cross section σh for colliding hadrons ha with momentum P and hb with momentum

P ′ is given by

σh (ha (P ) + hb (P
′) → i+ j +X) =

∫ 1

0
dx
∫ 1

0
dx′

∑
α,β

fα
(
x,Q2

)
fβ
(
x′, Q2

)

×σp(α (x) + β (x′) → i+ j), (2.26)

where σp is the hard partonic cross section of the process α(x) + β(x′) → i+ j and

the indices α and β span all types of partons (i.e. quarks and anti-quarks for each

flavor, or gluons).

Hereinafter, we do not write the type index for the PDF because, at high hard

scales, such as at the LHC, gluons dominate the proton structure [20], which means

that we assume that all partons are gluons.
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Recall that the PDFs do not give real probabilities, which instead are defined via

the parton wave function. However, we can define many other quasi-distributions

that can be useful.

A natural framework for visualising the MPI is the impact-parameter representa-

tion of the collision (see Fig. 2.1). In the high-energy limit, conservation of angular

momentum implies that the impact parameter b is a constant for the collision. In

addition, hard collisions have the hard scale that localise them in a transverse area

1/Q2.

To describe the transverse geometry of pp collisions it is convenient to consider

the quasi-probability to find a parton with a given x and transverse distance r⃗ from

the hadron transverse center of mass, in hard scale Q2: ρ(x, r⃗ |Q2). This quantity

is called the diagonal generalised parton distribution (GPD) and is related to the

PDF by

f
(
x,Q2

)
=
∫
d2rρ

(
x, r⃗ |Q2

)
. (2.27)

The inclusive cross section does not depend on the transverse structure of the col-

liding hadrons in the leading twist perturbative-QCD regime. The cross section is

expressed through the convolution of parton densities. In fact, we can write the

connection between the hadronic and partonic cross sections as

σh (ha + hb → Y +X) ∝
∫
d2bd2rd2r′δ(2)

(
r⃗ − r⃗ ′ − b⃗

)
ρ
(
x, r⃗|Q2

)
ρ
(
x′, r⃗ ′|Q2

)
×σp(α (x) + β (x′) → Y )

= f
(
x,Q2

)
f
(
x′, Q2

)
σp(α (x) + β (x′) → Y ), (2.28)

which is equivalent to Eq. (2.26).

2.2.2 Double-Parton Scattering

This section considers the example of DPS and uses it to define the tools used for

the general MPI.

In DPS, each of the two colliding hadrons contribute two partons that collide

and create two independent hard processes. DPS is normally parameterised as

σ(DPS) =
σ1σ2
σeff

, (2.29)

were σ(DPS) is the total hadronic cross section of the process of two partons with

each hadron coming in and making two hard processes. The quantities σ1 and σ2 are

the hadronic cross sections of a process with only one partonic interaction. Finally,

σeff characterises the geometry of the DPS process.
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Note that σ(DPS) and σeff are functions of the hard scale Q2
i and of xi and x

′
i, the

light-cone hadron’s momentum fractions for both hard processes (i = 1, 2), whereas

σi is a function only of variables with the same index, meaning that they are assumed

to be independent.

Figure 2.9: Geometry of a DPS process in the transverse plane. The two big circles

represent the hadrons ha and hb, the two small circles are their centers and b⃗ is the

impact parameter vector. The vectors r⃗1, r⃗
′
1, r⃗2 and r⃗

′
2 are the transverse positions

of the four partons that interact.

Figure 2.9 shows the geometry of this process in the transverse plane. In the

transverse plane, the two hadrons are almost circles, and the vector connecting their

centers is the impact parameter b⃗, as seen in Fig. 2.1. To simplify our calculations, we

use the single-parton transverse position distribution functions to treat the partons

as point-like particles that can only interact with partons from other hadrons if they

are in the same transverse position.

Denoting the transverse position of a parton from ha as r⃗ with respect to the

center of ha, and the transverse position of a parton from hb as r⃗
′ with respect to

the center of hb, then for both of them to be in the same transverse position the

vectors need to satisfy the condition b⃗ = r⃗ − r⃗ ′.

The diagonal GPD allows us to write σeff by averaging over all possible hard-

process positions for all possible impact parameters:

(σeff)
−1 =

∫
d2b

[
2∏

i=1

d2rid
2r′iρ

(
xi, r⃗i|Q2

i

)
ρ
(
x′i, r⃗

′
i|Q2

i

)
δ(2)

(
r⃗i − r⃗ ′i − b⃗

)]
. (2.30)

2.2.3 Generalised Parton Distribution

To find the cross section of a hard process with N parton interactions, we introduce

a new physical quantity, the N -particle generalised parton distribution, normally

denoted NGPD.
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The NGPD can be defined by using the light-cone wave function of the hadron:

Dh

({
xi, Q

2
i , ∆⃗i

}N
i=1

)
≡

∞∑
p=N+1

∫ (
N∏
l=1

d2kl

(2π)2
Θ
(
Q2

l − k2l
)) p∏

l=N+1

d2kl

(2π)2
dxl



× (2π)3 δ

(( p∑
m=1

xm

)
− 1

)
δ(2)

( p∑
m=1

k⃗m

)
δ(2)

( p∑
m=1

∆⃗m

)

×ψp

({
xl, k⃗l

}p
l=1

)
ψ†p

({
xl, k⃗l + ∆⃗l

}N
l=1

,
{
xl, k⃗l

}p
l=N+1

)
,

(2.31)

where h is an index for the hadron, xi is the light-cone hadron momentum fraction

of parton i, the integral over xl for l > N goes from zero to one, Q2
i is the hard scale

of partonic interaction i, ∆⃗i is the Fourier conjugate to the transverse positions of

parton i, p is the number of partons in the hadron, k⃗l is the transverse momentum of

parton l and Θ(Q2
l −k2l ) is the step function (one for Q2

l ≥ k2l and zero for Q2
l < k2l ).

In the second line, the first delta function enforces the condition that the sum over

the light-cone fraction of all partons is one, the second delta function enforces the

condition that the sum over the transverse momentum is zero and ψp is the wave

function of parton p normalised to one.

Unlike the diagonal GPD that we defined in Sec. 2.1 in coordinate space, we

define NGPD here in transverse-momentum space. The definitions may be shown

to be equivalent via a Fourier transform. This connection is shown in Sec. 2.4.

For a MPI with N partonic interactions, we can generalise the parameterisation

of the cross section from Eq. (2.29) to

σ
(MPI)
N =

∏N
i=1 σi (xi, x

′
i, Q

2
i )

KN

(
{xi, x′i, Q2

i }
N
i=1

) , (2.32)

where σ
(MPI)
N is the total hadronic MPI cross section, i is an index spanning all

N partonic interactions in the process, σi is the hadronic cross section of a single

independent hard process and KN is a dimensionful function, KN ∝ (area)N−1 with

the parameters xi and x
′
i, which are the light-cone hadron momentum fractions of

the partons, the unprimed index comes from hadron ha and the primed index comes

from hadron hb and Q2
i is the hard scale of hard process i. For N = 2 we get

K2 = σeff .

Using the NGPD, we can see that the total cross section for N partonic interac-

tions is

σ
(MPI)
N ∝

∫
Da

({
xi, Q

2
i , ∆⃗i

}N
i=1

)
Db

({
x′i, Q

2
i ,−∆⃗i

}N
i=1

)
δ(2)

(
N∑
i=1

∆⃗i

)
N∏
i=1

d2∆i

(2π)2
.

(2.33)
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To compare this to our example of DPS, we take N = 2 and use the delta

function δ(2)(
∑2

i=1 ∆⃗i) to write

Dh

(
x1, x2, Q

2
1, Q

2
2, ∆⃗

)
≡

∞∑
p=3

∫ ( p∏
l=1

d2kl

(2π)2

)( p∏
l=3

dxl

)
Θ
(
Q2

1 − k21
)
Θ
(
Q2

2 − k22
)

× (2π)3 δ

(( p∑
m=1

xm

)
− 1

)
δ(2)

( p∑
m=1

k⃗m

)

×ψ
({
xl, k⃗l

}p
l=1

)
ψ†
(
x1, k⃗1 + ∆⃗, x2, k⃗2 − ∆⃗,

{
xl, k⃗l

}p
l=3

)
.

(2.34)

The DPS cross section is then given by

σ
(MPI)
2 =

∫ d2∆

(2π)2
dΩ1dΩ2Da

(
x1, x2, Q

2
1, Q

2
2, ∆⃗

)
Db

(
x′1, x

′
2, Q

2
1, Q

2
2,−∆⃗

)

×dσ (x1, x
′
1, Q

2
1)

dΩ1

dσ (x2, x
′
2, Q

2
2)

dΩ2

. (2.35)

From this we find that σeff is given by

(σeff)
−1 =

∫ d2∆

(2π)2
Da

(
x1, x2, Q

2
1, Q

2
2, ∆⃗

)
Db

(
x′1, x

′
2, Q

2
1, Q

2
2,−∆⃗

)
f (x1, Q2

1) f (x2, Q
2
2) f (x

′
1, Q2

1) f (x
′
2, Q2

2)
, (2.36)

where f (x,Q2) is the standard PDF. For general N we can write

1

KN

=
∫  N∏

j=1

d2∆j

(2π)2

 Da

({
xj, Q

2
j , ∆⃗j

}N
j=1

)
Db

({
x′j, Q

2
j ,−∆⃗j

}N
j=1

)
δ(2)

(∑N
j=1 ∆⃗j

)
∏N

j=1

[
f
(
xj, Q2

j

)
f
(
x′j, Q2

j

)] .

(2.37)

Note that a hard parton can split perturbatively and the resulting partons inter-

act with the partons from the other hadrons, producing a different dependence on

the transverse momentum. Such a process is represented in Fig. 2.10 on the right

and is denoted a 1⊗ 2 process.

When we calculate the GPD we need to take into account the possibility of the

splitting process, which is done by summing over all possible splitting combinations.

For example, for the two-parton GPD we can write

Dh

(
x1, x2, Q

2
1, Q

2
2, ∆⃗1, ∆⃗2

)
= [2]Dh

(
x1, x2, Q

2
1, Q

2
2, ∆⃗1, ∆⃗2

)
+[1]Dh

(
x1, x2, Q

2
1, Q

2
2, ∆⃗1, ∆⃗2

)
, (2.38)

where the index [2] indicates the non-perturbative part of the production of two hard

partons from the wave function, as in the diagram on the left in Fig. 2.10, and the

index [1] indicates the perturbation-theory part of the production of one hard parton

from the wave function that then splits into two, as in the diagram on the right in

Fig. 2.10.
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Figure 2.10: Two diagrams representing collisions between two hadrons ha and hb

with two partonic interactions. On the left, each of interacting partons originates

in the hadron’s wave function. On the right is an example of a 1⊗ 2 process, where

the parton from ha splits into two partons that each undergo their own partonic

interaction with a parton from hb. The diagrams are taken from Ref. [21].

2.2.4 Single-Parton Distribution

We now define the generalised single-parton distribution and the two-gluon form fac-

tor and use them to parameterise the diagonal GPD in coordinate space, ρ(x, r⃗ |Q2).

The generalised single-parton distribution is denoted G1 and is the non-forward

parton correlator. It is defined by using the light-cone wave function of the hadron:

G1

(
x,Q2, ∆⃗

)
≡

∞∑
p=2

∫ ( p∏
l=1

d2kl

(2π)2

)( p∏
l=2

dxl

)
Θ
(
Q2

1 − k21
)

× (2π)3 δ

(( p∑
m=1

xm

)
− 1

)
δ(2)

( p∑
m=1

k⃗m

)

×ψ
({
xl, k⃗l

}p
l=1

)
ψ†
(
x1, k⃗1 + ∆⃗,

{
xl, k⃗l

}p
l=2

)
. (2.39)

This function can be parametrised by using processes similar to those shown

in Fig. 2.11, where a parton with momentum x1, k⃗1 inside a proton interacts with

a virtual photon γ∗, emitting a vector meson V 0. A new parton with momentum

x1, k⃗1 + ∆⃗ is absorbed into the proton.

This function is related to the diagonal GPD in coordinate space via a Fourier

transform over the transverse position:

G1

(
x,Q2, ∆⃗

)
=
∫
d2re−i∆⃗·r⃗ρ

(
x, r⃗ |Q2

)
. (2.40)

For ∆⃗ = 0⃗, the use of Eq. (2.27) gives

G1

(
x,Q2, 0⃗

)
=
∫
d2rρ

(
x, r⃗ |Q2

)
= f

(
x,Q2

)
. (2.41)
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Figure 2.11: A diagram of the process measured by HERA [22] of a proton in-

teracting with a virtual photon γ∗ and emitting a vector meson V 0. The particles

connected to the protons are partons, and we see one parton with parameters x1, k⃗1

participate in the interaction. A parton with x1, k⃗1 + ∆⃗ is absorbed back into the

proton.

It is common to parametrise G1 as a product of two functions:

G1

(
x,Q2, ∆⃗

)
= f

(
x,Q2

)
F2g

(
x,Q2, ∆⃗

)
, (2.42)

were f(x,Q2) is the standard PDF and F2g(x,Q
2, ∆⃗) is the two-gluon form factor.

Two common parameterisations exist for the two-gluon form factor and are re-

ferred to as ‘exponential’ and ‘dipole’ parameterisations. They are written as

F2g

(
x,∆|Q2

)
=

 e
−B(x,Q2)∆2

2[
1 + ∆2/m2

g (x,Q
2)
]−2

,
(2.43)

where the first is the exponential parameterisation and the second is the dipole

parameterisation. B and mg are functions of x and Q2. The two parameterisations

give very similar results for the right choices of B and mg and both can be fitted to

the data, as seen in Ref. [23], which uses the relation B = 3.24/m2
g.

For our calculations it is much easier to work with the exponential parameteri-

sation, so we consider only this parameterisation herein.

We also find the diagonal GPD in coordinate space ρ(x, r⃗ |Q2):

ρ
(
x, r|Q2

)
=
∫ d2∆

(2π)2
ei(∆·r)G1

(
x,Q2, ∆⃗

)
= f

(
x,Q2

) ∫ d2∆

(2π)2
ei(∆·r)F2g

(
x,Q2, ∆⃗

)
.

(2.44)
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Taking the exponential parameterisation F2g(x,Q
2, ∆⃗) = exp[−1

2
B(x,Q2)∆2] gives

F2g

(
x, r|Q2

)
=

1

2πB (x,Q2)
e
− r2

2B(x,Q2) , ρ
(
x, r|Q2

)
= f

(
x,Q2

)
F2g

(
x, r|Q2

)
.

(2.45)

Note that both the spatial and momentum forms of F2g depend on x and Q2 only

via B. Analysis of the HERA data gives us a parameterisation for B [21] of the

form

B (x) = B0 + 2α′ ln (x0/x) , (2.46)

where, for Q2 ≈ 3 GeV2 fitting to the HERA data, the parameters take the values

B0 = 4 ± 0.4 GeV−2, α′ = 0.14 ± 0.08 GeV−2 and x0 = 0.0012. For fixed x we can

use DGLAP evolution [Eq. (2.25)] to see that B(x,Q2) varies slowly with Q2, so we

can take B to be constant and write F2g as a function of ∆ or r only, neglecting its

x and Q2 dependence.

2.2.5 Mean-Field Approximation

In the mean-field approximation we consider partons as independent particles. The

light-cone wave function then factorises to

ψ
({
xl, k⃗l

}p
l=1

)
=

p∏
l=1

ψ
(
xl, k⃗l

)
. (2.47)

Assuming this, we express the NGPD functions as

Dh

({
xi, Q

2
i , ∆⃗i

}N
i=1

)
≃

N∏
i=1

G1

(
xi, Q

2
i ,∆i

)
≃

N∏
i=1

f
(
xi, Q

2
i

)
F2g (∆i) , (2.48)

where G1(xi, Q
2
i ,∆i) is the generalised single-parton distribution as defined by Eq.

(2.39), f(xi, Q
2
i ) is the standard PDF and F2g(∆i) is the two-gluon form factor.

This approximation is not perfect; for starters, it loses the property of the GPD:

Dh(
∑N

i=1 xi > 1) = 0, meaning that we cannot work in regions where xi are too big.

Conversely, if xi are too small we start to look at the region where the 1⊗ 2 process

is non-perturbative. Reference [10] states that this approximation should hold for

10−1 > xi > 10−3.

For DPS we write 2GPD and σeff as

Dh

(
x1, x2, Q

2
1, Q

2
2, ∆⃗

)
= G1

(
x1, Q

2
1, ∆⃗

)
G1

(
x2, Q

2
2, ∆⃗

)
≃ f

(
x1, Q

2
1

)
f
(
x2, Q

2
2

)
F 2
2g (∆)

⇒ σeff =

(∫ d2∆

(2π)2
F 4
2g (∆)

)−1
= 8πB. (2.49)
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For general N we get

KN ≃

∫  N∏
j=1

d2∆j

(2π)2
F 2
2g (∆j)

 δ(2)
 N∑

j=1

∆⃗j

−1 = N (4πB)N−1 . (2.50)

2.2.6 Soft-Gluon Emission

In addition to hard out-going particles (jets), partons in the hard process can also

emit soft gluons. Since these gluons are important we note that, for a collision with

N partonic interactions, the cross section to emitm gluons with transverse momenta

{ki}mi=1 using the approximations above is given by

dmσN ({kj} , {∆i})
d2k1 · · · d2km

∼ |M ({kj} , {∆i})|2
(

N∏
i=1

F 2
2g (∆i)σi

)
δ(2)

(
N∑
i=1

∆⃗i

)
, (2.51)

where M({kj}, {∆i}) is the amplitude for the production of m gluons by N partons

in the hadron wave function, and σi is the cross section for partonic interaction i.

The corresponding m-particle spectrum is obtained by normalising this expression

with the cross section

σN =
∫ (

N∏
i=1

d2∆iF
2
2g (∆i)σi

)
δ(2)

(
N∑
i=1

∆⃗i

)
. (2.52)

The m-particle spectrum can now be written in coordinate space representation

as

dmσN ({kj})
σNd2k1 · · · d2km

=

∫ (∏N
i=1 d

2ri
)
d2b |M ({kj} , {ri})|2 ρ ({ri} , b)∫ (∏N
i=1 d

2ri
)
d2bρ ({ri} , b)

, (2.53)

where ρ({ri}, b) is a quasi-probability distribution of the impact parameter b and

the hard partons’ transverse positions {ri}, as seen in Fig. 2.9. ρ({ri}, b) is given

by

ρ ({ri} , b) =
N∏
i=1

∫ (
d2∆id

2r′i

(2π)2
F 2
2g (∆i) e

i∆⃗i·(ri+r′
i)δ(2) (b− ri + r′i)

)
. (2.54)

For the exponential parameterisation we have chosen for F2g (∆i), we get

ρ ({ri} , b) =
1

(4πB)N

N∏
i=1

e−
r2
i

4B e−
(ri−b)2

4B . (2.55)

2.2.7 Effective Cross Section

By using the mean-field approach, the clear connection between σeff and B in Eq.

(2.49) allows us to use experimental data to find the values of B that we should

consider.

For pp collisions at the LHC [24, 25, 26], σeff was found to be about 15± 5 mb,

which means that we should look at B = 1.5 ± 0.5 GeV−2, so in this thesis we use

the two values B = 1 and 2 GeV−2.
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2.3 Quantum Interference model

This section reviews the basic ideas of the quantum interference model [10, 11] and

explains how to find the azimuthal cumulant in the corresponding framework.

First, we define the normalisation that we work with:

〈
e
i

(∑s

j=1
njϕj

)〉 (
{kj, yj}sj=1

)
=Ms

∫
ρ

∫ (∏s
j=1 dϕj

)
e
i

(∑s

j=1
njϕj

)
f
(
{kj}sj=1

)
(2π)s

∏s
j=1

∫
ρ f (kj)

,

(2.56)

whereMs = ms/
(
m
s

)
is a normalisation factor, the integral

∫
ρ means

∫
ρ ≡

∫
(
∏N

i=1 d
2ri)

ρ({ri}), f(kj) is the one-particle momentum distribution function defined in Eq.

(2.1) and f({kj}sj=1) is the s-particle momentum distribution function defined as

f({kj}sj=1) ≡ dsN
d3k1···d3ks , and nj is the flow harmonic index of particle j, where we

only consider the case where
∑s

j=1 nj = 0. All that we need to to find then is the

one- and three-particle differential multiplicity. This is a generalised form of the

normalisation used by Ref. [11], which only considers even s.

2.3.1 Defining the Model

We model multi-particle production in pp collisions as events of N partonic inter-

actions at transverse positions {ri}Ni=1. Each partonic process is represented by a

line source with initial SU(Nc) adjoint representation index {bi}Ni=1 at the rapidity

of one of the colliding hadrons, emitting gluons with SU(Nc) adjoint representation

index {aj}mj=1 and transverse momentum of {kj}mj=1 in the intermediate rapidity

window and ending at the rapidity of the other hadron with final SU(Nc) adjoint

representation index {ci}Ni=1. Each multi-particle production amplitude is therefore

of the type given in Fig. 2.12, where we account for any selection of sources emitting

any of the gluons.
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Figure 2.12: Example diagrams for N sources emitting m gluons. The vertical lines

are the N sources with initial conditions of {ri, bi}Ni=1 and final colour index of ci.

The horizontal waves are the m emitted gluons with colour index and transverse

momenta of {aj,kj}mj=1. Each diagram in the sum represents a different choice of

which gluons are emitted from which source, and to find the total amplitude we

must sum over all of these choices.

The emission vertex for a soft gluon is given by an eikonal vertex. If the source

is positioned at ri with a colour index of b′i before emission and b′′i after emission,

and the emitted gluon has transverse momentum of kj and colour index aj, then

the eikonal vertex is given by

T
aj
b′i,b”i

f⃗ (kj) e
iri·kj , (2.57)

where T a is the adjoint representation of the SU(Nc) generator, and f⃗(k) is the

vertex form function. f⃗(k) is a two-dimensional vector in the transverse plane, which

in the cross sections is dotted into another vertex function of the same momentum.

We do not assume a specific functional shape of the vertex function because it

does not impact the results in any meaningful way, but we do assume two of its

properties: First, we normalise it to so that
∫
d2k|f⃗(k)|2 = 1, and, second, we

assume that |f⃗(k)|2 is independent of the momentum azimuthal angle. An example

of a function that fits what we need is Coulombic radiation: f⃗ (k) ∝ 1
k2
k.

When calculating cross sections of event samples we use the quasi-probability

distribution of the impact parameter b and the transverse position of the hard par-

tons, {ri}Ni=1, given in Eq. (2.55). Denoting coordinates as the complex-conjugate

amplitude with primes, this means that initial and final data {ri, bi, ci}Ni=1 and

{r’i, b′i, c′i}Ni=1 are averaged with the weight

ρ ({ri} , b) δ(2) (ri − r′i) δbib′iδcic′i . (2.58)

To find the emission spectrum of m soft gluons from a collision with N partonic

interactions for general N and m, we use the following simplifications:

• Neglect longitudinal phase factors.

We only account for transverse momenta and transverse coordinates. We sup-

plement the model with longitudinal phase factors in the definition of the ver-

tex function in Eq. (2.57) by the replacement f⃗(k)eir·k → f⃗(k)eir·ke−i(k
+r−+k−r+),

where the indices ± denote components of light-cone coordinates and mo-

menta. For high collision energy, when both the emitting sources and the

emitted gluons propagate close to the light-cone, we get k− ≈ 0. Identify-

ing the particle-emitting source with an energetic parton of light-cone mo-

mentum fraction p+, it follows from the uncertainty relation that r− 1/p+,
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in the soft-gluon limit k+ ≪ p+, gives a negligible total longitudinal phase:

k+r− + k−r+ ≈ k+/p+ ≈ 0.

• Emitted gluons do not cross.

We assume that multi-gluon radiation is dominated by ladder-type diagrams,

in which the emitted gluons do not cross each other, and that the emitted

gluons are ordered the same way in rapidity. The model is made to retain

relevant features of QCD but that are simple enough to allow for the explicit

calculation of soft multi-gluon interference for large m and N .

• Symmetrization in the m emitted particles.

We find that interference contributions to multi-particle-emission cross sections

are not always symmetric under interchange of final-state momentum kj. This

arises from different colour constraints on the gluons that we identify with a

low index (j ≪ m or j ≈ m) and those near the center. Although these

differences are small and unimportant for our discussion, they lead to much

longer expressions for higher-order cumulants, so we often randomize the final

results by averaging over all permutations of the m outgoing momenta.

• No modelling of hadronization.

This model only allows us to calculate partonic spectra and momentum cor-

relations. We assume that hadronization satisfies local parton-hadron duality

(LPHD) and use it to compare our results with measured hadron spectra and

correlations. However, the simple LPHD prescription may not be phenomeno-

logically viable for multi-particle correlations at soft transverse momentum,

which may constitute an unaccounted-for source of error.

Using these assumptions allows us to find the spectrum given by Eq. (2.53), the

connection between this spectrum and the s-particle differential multiplicity is

dsN

dΓ1 · · · dΓs

=
dsσN

(
{kj}sj=1

)
σNdΓ1 · · · dΓs

, (2.59)

where dΓj = d2kj = kjdkjdϕj is the transverse phase space of particle j. Note that

the differential multiplicity is independent of rapidity under the first simplification

(i.e. neglecting the longitudinal phase factor).

2.3.2 Dipole Interference Term

This section considers an example of a pp collision with N = 2 sources and m = 2

emitted gluons and finds the two-particle spectrum. We use this example to define

terminology that will help us understand the more general cases.
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Sixteen diagrams contribute to the N = m = 2 cross section (see Fig. 2.13). In

each diagram the gluons are emitted from the sources on the left side of the diagram

and are absorbed by the sources on the right side of the diagram.

We define two types of gluons: the first consists of diagonal gluons, which are

absorbed by the same source that emitted them, and the second consists of off-

diagonal gluons, which are absorbed by a source other than the one that emitted

them. We divide the diagrams shown in Fig. 2.13 into three groups depending

on how many off-diagonal gluons are in them. The four diagrams on the top line

have no off-diagonal gluons, the four diagrams on the second line from the top have

two off-diagonal gluons, and the two bottom lines have one diagonal gluon and one

off-diagonal gluon. Each diagram makes a different contribution to the cross section.

Each diagram contributes to the cross section in a manner proportional to the

trace of the product of the SU(Nc) adjoint representation of the gluon colour indices

connected to each source. This factor is called the colour factor and, for the top-left

diagram, it is given by

Tr
[
T bT aT aT b

]
Tr [I] = N2

c

(
N2

c − 1
)2
, (2.60)

where I is the (N2
c − 1)× (N2

c − 1) identity matrix, summing over repeating indices

is implied and we use the identities T aT a = NcI and Tr[I] = N2
c − 1. The colour

factors for all diagrams in the top row are the same, which can be shown by using

the latter identity. The identity Tr
[
T aT b

]
= Ncδ

ab allows us to obtain the colour

factor for the diagrams on the second row from the top, which is

Tr
[
T bT a

]
Tr
[
T aT b

]
= N2

c

(
N2

c − 1
)
. (2.61)

This result means that a couple of off-diagonal gluons gives us a factor of (N2
c −

1)−1. The colour factor for the bottom two rows is proportional to the trace of a

single generator, ∝Tr[T a] = 0, meaning that the diagrams with only one off-diagonal

gluon do not contribute to the cross section.

The other factor that changes between diagrams is the phases that come from

the vertices, e∓ikj ·ri , where the positive (negative) phase come from the complex

conjugate amplitude. These phases cancel for a diagonal gluon, leaving us with

phases only for off-diagonal gluons.

To find the spectrum forN = m = 2, we need the amplitude squared, |M({kj}, {ri})|2,
and the quasi-probability distribution of the impact parameter and the source posi-

tions [the latter is given in Eq. (2.55)]. The amplitude squared is the sum over all

16 diagrams discussed, so all together we can write

|M ({kj} , {ri})|2 ∝
∣∣∣f⃗ (k1)

∣∣∣2 ∣∣∣f⃗ (k2)
∣∣∣2N2

c

(
N2

c − 1
)2
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Figure 2.13: Sixteen diagrams for the cross section of N = m = 2. The horizontal

arrows are the two sources, the two arrows pointing down are the conjugation of

the two arrows pointing up, where the outermost arrows are from the same source

and the inner arrows are from other sources, as indicated by the dashed arrows

on the top, leftmost diagram. The two emitted gluons connect the sources to the

conjugated sources. The upper gluon has colour index a and the lower gluon has

colour index b. We say that they are emitted from the sources on the left side of the

diagram and are absorbed by the sources on the right side. This diagram is taken

from Ref. [10].
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×
{
4 +

1

N2
c − 1

(
ei(k1+k2)·(r1−r2) + ei(k1−k2)·(r1−r2) + c.c.

)}
,

(2.62)

where the four are the phase factors of the two diagonal gluon diagrams, the phases

shown are from the two leftmost diagrams of the second row from the top and c.c.

stands for ‘complex conjugate’. The two rightmost diagrams on the second row from

the top are the complex conjugate of the leftmost diagrams.

To simplify the quasi-probability distribution in Eq. (2.55) we can take the

impact parameter to be b⃗ = 0 and normalise it to integrate to unity by making the

following replacement:∫
d2bρ ({ri} , b) → ρ ({ri}) =

∫
d2b2Nρ ({ri} , b) δ(2) (b) , (2.63)

which also allows us to write ρ({ri}) =
∏N

i=1 ρ(ri) =
∏N

i=1
1

2πB
e

−r2
i

2B , so as to separate

the dependence on the sources.

The spectrum can now be found by using Eq. (2.53). The resulting spectrum is

first order in powers of (N2
c − 1)−1, so

d2σ2 (k1,k2)

σ2dΓ1dΓ2

≈
∣∣∣f⃗ (k1)

∣∣∣2 ∣∣∣f⃗ (k2)
∣∣∣2
1 + e−B(k1+k2)

2

+ e−B(k1−k2)
2

2 (N2
c − 1)

 . (2.64)

This spectrum characterises QCD dipole radiation because interference effects

decrease, as for larger B or a larger distance between the sources.

Recall that we assumed that |f⃗(k)|2 is independent of the azimuthal angle of

the momentum, which leaves completely isotropic the first term of the diagrams

for only-diagonal gluons, which means that this term does not contribute to the

azimuthal correlation. The correlations thus arise from interference between different

amplitudes, where the gluons are emitted from different sources. However, recall

that this does not imply interference between the gluons.

In addition, this spectrum is symmetric upon replacing any of the momenta by

k → −k, which means that correlations of the form ⟨ein(ϕ1−ϕ2)⟩ vanish identically

for odd n.

2.3.3 Diagonal Gluon Corrections to the Dipole

This section investigates what happens when we consider processes with more sources

(N > 2) and more emitted gluons (m > 2). We discuss how diagonal gluons affect

the spectrum and the two point cumulants.
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To leading order in powers of (N2
c − 1)−1 we have two types of diagrams: those

with m diagonal gluons, and those with m− 2 diagonal gluons.

The diagrams with only diagonal gluons do not change drastically. Each of their

contributions to the spectrum is proportional to a colour factor (N2
c − 1)NNm

c and

to the product of the squares of the vertex functions for all the emitted gluons,∏m
j=1 |f⃗(kj)|2. Since by definition diagonal gluons connect each source to its conju-

gate each gluon can be emitted by any of the sources; however, this also determines

which source absorbs the gluon. Thus, in total, we have Nm choices for diagonal

diagrams. The result is that the contribution to the spectrum of diagonal diagrams

is given by

dmσ
(diagonal)
N

dΓ1 · · · dΓm

∝ Nm
(
N2

c − 1
)N

Nm
c

m∏
j=1

∣∣∣f⃗ (kj)
∣∣∣2 . (2.65)

The diagrams with two off-diagonal gluons do not vanish if the gluons are shared

between a pair of sources, as in Fig. 2.14. This diagram reveals three types of

relationships between the diagonal and off-diagonal gluons, which we now use as an

example for how each type of relationship affects the colour factor of the diagram.

Figure 2.14: Example diagram for single-dipole term for the general N and m case.

The curly lines a and b are the two off-diagonal gluons that create the dipole, and

the wavy lines c1, . . . , cj, d and e, are diagonal gluons with different relationships to

the dipoles. The colour factor for this diagram shows that gluon e does not share

a source with the off-diagonal gluons, gluons c1 and cj are sandwiched between the

off-diagonal gluons in the trace, and gluon d gives a trivial factor of T dT d = NcI.

This diagram is taken from Ref. [10].

The total colour factor of the diagram, assuming no other sources or gluons, is

given by

Tr [T eT e] Tr
[
T cjT bT cjT a

]
Tr
[
T c1T aT dT dT c1T b

]
(Tr [I])2 . (2.66)

We can sum over d and e by using the identity T aT a = NcI when e does not share

a source with the dipole pair, and d appears next to itself (so they are both trivial).
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The gluons c1 and cj differ, but we use the identity T
bT aT b = Nc

2
T a to compute this

trace. Each of them then gives a factor of 1
2
that we did not have before. A diagonal

gluon that shares its source with off-diagonal gluons and is between them on the

diagram is sandwiched by the off-diagonal gluons. These types of gluons contribute

a factor of 1
2
to the diagram and to the colour factor.

It will be useful to sum over all diagrams with a single pair of off-diagonal gluons,

since they all have the same source position and gluon-momentum dependence.

Thus, by summing over all such diagrams we define a factor that accounts for the

factors of 1
2
. This factor is denoted F (2)

corr(N,m). The total contribution to the

spectrum of diagrams with single pairs of off-diagonal gluons is proportional to this

correction factor.

To find F (2)
corr(N,m), we use the method established in Ref. [10]. For an or-

dered list of m gluons with one off-diagonal pair, m − 1 − j ways exist to have

j = 1, 2, . . . ,m − 2 diagonal gluons between the two off-diagonal gluons. For

each configuration with j diagonal gluons between the two off-diagonal gluons,(
j
l

)
2l(N − 2)j−l ways exist to have l of them share a source with the off-diagonal

gluons, making them sandwiched. Each such contribution is then suppressed by a

correction factor of (1
2
)l.

Ignoring the factor (1
2
)l would be like assuming that all m−2 diagonal gluons are

incoherently superimposed to form the interference pattern of the two off-diagonal

gluons. The number of such incoherent superpositions is

Nincoh =
m−2∑
j=0

Nm−2−j (m− 1− j)
j∑

l=0

(
j

l

)
2l (N − 2)j−l =

m (m− 1)

2
Nm−2. (2.67)

When we account for the factor (1
2
)l, we get the real colour factor, but we want

to average it over all the diagrams that we are counting, so the colour correction

factor is given by

F (2)
corr (N,m) =

1

Nincoh

m−2∑
j=0

Nm−2−j (m− 1− j)
j∑

l=0

(
j

l

)
2l (N − 2)j−l

1

2l

=
2

m (m− 1)
N1−m

[
N (N − 1)m +mNm −N1+m

]
. (2.68)

We now note few properties of F (2)
corr(N,m) that can be useful to us. First,

F (2)
corr(N,m) ≤ 1 where full equality occurs only for m = 2. Three interesting limits

are considered:

• The limit of m = const. and N → ∞.
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Increasing the number of sources at fixed multiplicity m favors incoherent

particle production, so we find

lim
N→∞

F (2)
corr (N,m)

∣∣∣
m=const.

= 1. (2.69)

• The limit of m→ ∞ for fixed average multiplicity per source m̄ = m/N .

This limit is consistent with analyses of LHC pp data that indicate that the

multiplicity of hard processes is proportional to the soft multiplicity [27]. For

any finite value of m̄ = m/N , the limit is also finite:

lim
m→∞

F (2)
corr (m/m,m)

∣∣∣
m=const.

=
2m+ 2e−m − 2

m2
. (2.70)

• The limit of N = const. and m→ ∞.

For a fixed number of sources, the colour correction factor behaves asymptot-

ically like

lim
m→∞

F (2)
corr (N,m)

∣∣∣
N=const.

≈ 2N

m
+O

(
N2

m2

)
. (2.71)

Therefore, increasing the multiplicity for a fixed number of sources decreases

the correlation.

We cannot write the total contribution to the spectrum of the diagrams with

single pairs of off-diagonal gluons:

dmσ
(dipole)
N

dΓ1 · · · dΓm

∝ Nm
(
N2

c − 1
)N

Nm
c

 m∏
j=1

∣∣∣f⃗ (kj)
∣∣∣2


× F (2)
corr (N,m)

N2 (N2
c − 1)

∑
(ab)

∑
(ij)

22 cos [ka (ri − rj)] cos [kb (ri − rj)] .

(2.72)

Here the factor of N−2 comes from having two fewer diagonal gluons, the factor

of (N2
c −1)−1 comes from the difference between the colour factors of an all-diagonal

diagram and two off-diagonal diagrams, the sum over (ab) sums over all possible

ordered pair of choices of which m gluons are the two off-diagonal ones, the sum

over (ij) is the sum over unordered pairs of sources, and the factor 22 cos[ka(ri −
rj)] cos[kb(ri − rj)] is the same sum over phases we had for the case N = m = 2.

Since we end up randomizing the gluons and the sources are interchangeable, we

can use these symmetries to transform the sums into a factor that only depends on

N and m, the sum over the gluons give us a factor of
∑

(ab) → 2!
(
m
2

)
, and the sum
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over the sources gives us a factor of the form
∑

(ij) →
(
N
2

)
. We can now rewrite the

two-particle spectrum as

dmσN
σNdΓ1 · · · dΓm

=

 m∏
j=1

∣∣∣f⃗ (kj)
∣∣∣2


×
[
1 +

22F (2)
corr (N,m)

N2 (N2
c − 1)

(
m

2

)
2!

(
N

2

)
cos (k1 · r12) cos (k2 · r12)

]
,

(2.73)

where r12 ≡ r1 − r2 is the displacement between the two sources.

The leading order in powers of (N2
c − 1)−1 of the single-particle differential mul-

tiplicity comes from the diagonal term of the cross section:

dN

dΓj

= m
∣∣∣f⃗ (kj)

∣∣∣2 . (2.74)

To find the azimuthal correlations, we integrate over a phase, so we can ignore the

diagonal contribution to the two-particle differential multiplicity and write it as

d2N

dΓ1dΓ2

=

 2∏
j=1

∣∣∣f⃗ (kj)
∣∣∣2


×23F (2)
corr (N,m)

N2 (N2
c − 1)

(
m

2

)(
N

2

)
cos (k1 · r12) cos (k2 · r12) , (2.75)

where, again, this is only the non-isotropic part to leading order in powers of (N2
c −

1)−1. We can now use Eq. (2.56) to find the two-particle azimuthal correlations,

remembering that, for two particles, the two-particle azimuthal correlation is the

same as the two-particle symmetric cumulant [Eq. (2.13)]. We can thus write

scn {2} =
2F (2)

corr (N,m)
(
N
2

)
N2 (N2

c − 1)
(−1)n [1 + (−1)n]

2
∫
ρ
Jn (k1r12) Jn (k2r12) , (2.76)

where Jn(z) are Bessel functions of the first kind that we get from the integral over

the phases: ∫ 2π

0
dϕeinϕ cos (z cos [ϕ− α)] = πineinα [1 + (−1)n] Jn (z) . (2.77)

Here, α is a general phase shift, but for us it is the azimuthal angle of the vector

∆r12, where the final phase cancels, giving einαei(−n)α = 1.

Equation (2.76) shows that, for any odd n, the cumulant vanishes due to the

factor of [1 + (−1)n]2, which agrees with Eq. (2.64) that the dipole symmetry for

k → −k means that all odd harmonics vanish.
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In addition, the two-particle cumulant is not separable for general momenta. For

small momenta k ≪ B−1/2, also called the hydrodynamic approximation, we can

write Jn(kj∆r12) ≈ (kj∆r12)n

2nn!
, resulting in an integral that can be solved analytically.

For even n we obtain

scn {2} ≈
23F (2)

corr (N,m)
(
N
2

)
N2 (N2

c − 1)n!

(√
Bk1

)n (√
Bk2

)n
. (2.78)

The cumulant dependence onN andm is fully expressed in the factor
F

(2)
corr(N,m)(N2 )

N2 ,

meaning that it behaves very similarly to what we saw in the three limits we dis-

cussed for F (2)
corr (N,m).

2.3.4 General Cross Section

This section determines the cross section for any number N of sources and m of

emitted gluons.

Before we can find the general cross section, we discuss diagrams with more

then two off-diagonal gluons. For a diagram with off-diagonal gluons to have a non-

vanishing colour factor, each source cannot emit only a single off-diagonal gluon,

which means that the off-diagonal gluons must come in sets of two or more that

create close source loops. The case of a dipole is the two-loop, 1 → 2 → 1, but more

off-diagonal gluons can create loops of as many sources as the number of off-diagonal

gluons, although not necessarily as equal. A dipole is a two-source loop, a tripole

is a three source loop, 1 → 2 → 3 → 1, and a loop of a sources is called an a-pole.

A diagram of a tripole appears in Fig. 2.15 on the left; going from top to bottom,

the source pairs of each gluon are (12) → (23) → (31), where ‘1’ stands for the

innermost source and ‘3’ sands for the outermost source.

Loops smaller then the number of off-diagonal gluons exist for two reasons: The

first reason is that, given four or more off-diagonal gluons, they can group up in

smaller chains (i.e. four off-diagonal gluons can form a four-pole or two dipoles,

but not a tripole and a single off-diagonal gluon on its own). The second reason is

that any part in the loop can be connected by any number of off-diagonal gluons

(i.e. three off-diagonal gluons can create a dipole with an extra off-diagonal gluon).

Figure 2.15 (right) shows a diagram of a three-gluon dipole with three sources.

Going from top to bottom, the source pair for each gluon is (12) → (21) → (12),

where ‘1’ stands for the innermost source and ‘3’ stands for the outermost source.

This is a dipole: only two sources are connected, with an additional gluon.

Each type of diagram has different arrangements of off-diagonal gluons and will

produce different colour factors and correction factors, but in the limit of m → ∞
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Figure 2.15: Two of the diagrams that contribute to the three-point asymmetric

cumulant for the case of N = m = 3. On the left is the diagram of a tripole, where

each of the three gluons is connected to a different pair of sources. On the right is a

three-gluon dipole, where only two of the sources are connected by three off-diagonal

gluons.

for fixed average multiplicity per source (m̄ = m/N), we can find the different

contributions and sum them. Each off-diagonal gluon gives a factor of N−1, so

off-diagonal loops with more gluons than sources will be suppressed compared with

loops with the sources but no extra gluons. In addition, each off-diagonal gluon with

momentum k that connects the sources one and two gives as a factor of 2 cos(k ·r12),
where r12 ≡ r1 − r2.

Each a-pole comes with a colour factor of Nm
c (N2

c − 1)N−(a−1) regardless of the

number of gluons in it (this is true in general only in the limit of m → ∞ for fixed

average multiplicity per source m̄ = m/N), so higher poles will be suppressed by

powers of (N2
c − 1).

Two factors must be considered to compute the cross section: N and (N2
c − 1).

In addition, each diagram type with a different number of loops of different lengths

and containing different numbers of gluons will produce a different correction factor.

The first few terms of the total cross section are

dmσN
dΓ1 · · · dΓm

∝ Nm
(
N2

c − 1
)N

Nm
c

 m∏
j=1

∣∣∣f⃗ (kj)
∣∣∣2


×

1 + F (2)
corr (N,m)

N2 (N2
c − 1)

∑
(ab)

∑
(lm)

22 cos (ka · rlm) cos (kb · rlm)

+
F (3,2)
corr (N,m)

4N3 (N2
c − 1)

∑
(abc)

∑
(lm)

23 cos (ka · rlm) cos (kb · rlm) cos (kc · rlm)
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+
F (3)
corr (N,m)

N3 (N2
c − 1)2

∑
(abc)

∑
(lm)(mn)(ln)

23 cos (ka · rlm) cos (kb · rmn) cos (kc · rln)

+ O

(
1

N4 (N2
c − 1)2

)}
. (2.79)

The sums
∑

(ab) and
∑

(abc) over the gluons are over ordered sets of gluons. In

diagrams with moff off-diagonal gluons there are
(

m
moff

)
moff ! terms in the sum. In the

terms shown, the sums
∑

(lm) and
∑

(lm)(mn)(ln) over the sources go over non-ordered

sets of sources: for an a-pole the sum has
(
N
a

)
terms, for diagrams with l loops the

loop lengths are denoted {ai}li=1 and we find(
N

a1

)(
N − a1
a2

)
· · ·

(
N −∑l−1

i=1 ai
al

)
=

N !∏l
i=1 (ai!)

(
N −∑l

i=1 ai
)
!

terms in the sum.

The first line in Eq. (2.79) contains the factors of the fully diagonal diagrams,

the terms in the second line are the fully diagonal gluon diagrams and diagrams

with a single two-gluon dipole, the terms in the third line are the diagrams with

only a three-gluon dipole, the terms in the fourth line are the three-gluon tripole

diagrams, and the last line indicates that we are neglecting terms of higher orders

in powers of N−1 and (N2
c − 1)−1, such as double-dipole diagrams and four-gluon

tripoles.

The factor of 4−1 from the three-gluon diagram comes from the colour factor.

The correction factors F (3,2)
corr (N,m) and F (3)

corr(N,m) can be obtained in the same way

as we got F (2)
corr(N,m). The details of the calculation are in Appendix B; the result

is F (3,2)
corr (N,m) = F (3)

corr(N,m), with

F (3)
corr (N,m) =

(m− 3)!

m!

[
6 (m− 2N)N2 + 6 (N − 1)m−1N3−m (m+ 2N − 2)

]
.

(2.80)

This correction factor is very similar to F (2)
corr(N,m) in the three limits discussed

above. For the limit m → ∞ for fixed average multiplicity per source (m̄ = m/N),

we get

lim
m→∞

F (2)
corr (m/m,m)

∣∣∣
m=const.

= 6
e−m (m+ 2)

m3
+ 6

m− 2

m3
. (2.81)

2.3.5 The Real Expansion Parameter

The way we express the cross section in Eq. (2.79) is somewhat misleading. The

diagrams with more off-diagonal loops with more gluons than sources are suppressed

by a factor of N−1 for each additional gluon. Reference [11] shows that we need to

add a factor ma

(N2
c−1)a−1 for each a-pole, which implies that the expansion is only valid
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for small m. Because m is finite, this parameter series can be explicitly summed,

giving a genuine 1
Nc

and 1
N
.



Chapter 3

Three-Point Asymmetric

Cumulant

3.1 Introduction

Sizeable nth harmonic coefficients vn for azimuthal momentum asymmetries have

been observed at the LHC in nucleus-nucleus (AA), proton-nucleus (pA) and proton-

proton (pp) collisions [8, 9, 28, 5, 29, 30]. These asymmetries reflect a collective

mechanism that relates all particles produced in a given collision. The dynamic

origin of these collectivity phenomena continues to be sought in competing and

potentially contradicting pictures.

There are two basic approaches to explain this collective behaviour. The first

approach is based on the final-state interactions, like viscous fluid dynamics simu-

lations [31] or kinetic transport models of heavy-ion collisions [32, 33, 34, 35, 36].

In AA collisions, the jet-quenching phenomenon provides an alternative confirma-

tion for such a approach. However, jet quenching is absent in smaller pp and pA

collision systems. Moreover, in marked contrast with any final-state explanation of

flow anisotropies vn in pp collisions, the phenomenologically successful modelling of

soft multi-particle production in modern multi-purpose pp event generators [37] are

based on free-streaming partonic final-state distributions supplemented by indepen-

dent fragmentation into hadrons. Efforts to go beyond this picture are relatively

recent (see, e.g., Refs. [38, 39]). Therefore, two contradictory pictures to describe

the multi-particle dynamics in small systems currently exist: one based on the final-

state interactions, and the another that does not involve final-state interactions.

One approach in the second direction corresponds to the recent works within the

framework of colour glass condensates [40, 41, 42] (see Ref. [43] for a recent review),

which is based on the parton-saturation hypothesis and recently made significant

43
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progress towards a phenomenological description of correlations in small systems.

Recently, a simple QCD model based on theory of MPIs in pp collisions [44, 45,

46, 47, 48, 49, 50, 51, 52, 53] and not involving saturation effects was proposed in

Refs. [10, 11] to study the effects of quantum interference and colour flow in high-

multiplicity pp events. The strong simplification of the model involves neglecting

a dynamically explicit formulation of the scattering process: all gluons in the in-

coming wave function are assumed to be freed in the scattering process with the

same (possibly small) probability. The model pictures the incoming hadronic wave

function as a collection of N colour sources in an adjoint representation distributed

in transverse space according to a classical density ρ(r⃗i). On the amplitude level,

emission of a gluon is taken into account in the soft-gluon eikonal approximation.

Reference [11] calculates the flow coefficients vn{2s} determined by 2s point

symmetric cumulants:

scn {2s} ≡
〈〈

exp

in
i=s∑

i=1

ϕi −
i=2s∑
i=s+1

ϕi


〉〉

, (3.1)

where ⟨⟨· · ·⟩⟩ indicates averaging over the multi-particle final states and taking the

cumulant. The phases ϕi are the azimuthal angles of measured soft hadrons.

The model from Refs. [10, 11] predicts both the collectivity phenomenon and

the qualitatively correct scale of correlations as well as their behaviour as functions

of transverse momentum. Consequently, it makes sense to study the other recently

measured flow phenomenon in high-multiplicity pp collisions within the framework

of this model.

One group of potentially interesting cumulants are the three-point asymmetric

cumulants. The corresponding cumulants are often denoted acn{3}, where

acn {3} ≡
〈〈
ein(ϕ1−ϕ3)ein(ϕ2−ϕ3)

〉〉
=
〈〈
ein(ϕ1+ϕ2−2ϕ3)

〉〉
. (3.2)

These cumulants were recently studied experimentally [12]. Since we consider

herein only acn{3} cumulants, we simply denote them as acn below.

The purpose of the chapter is to calculate the three-point correlations [Eq. (3.2)]

and to compare these correlators with experimental data [12]. The results are qual-

itatively consistent with the experimental data, although insufficient experimental

data are available for a detailed comparison.

We make detailed predictions of the transverse-momentum dependence and of

the scale (characteristic magnitude) of the three-point cumulant, and we also discuss

how this cumulant depends on multiplicity.

Recall that the model from Refs. [10, 11] is based on large Nc and N expansion,

following which the results are extrapolated to Nc = 3.
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3.2 Basic Formalism

3.2.1 The Model [10, 11]

Each pp collision is considered as an event consisting of N emitting sources char-

acterized by two-dimensional transverse positions rj and the initial colours in the

adjoint representation bj. Physically, these sources correspond to MPIs. In other

words, each source is a collision of two partons—one from each of the colliding

nucleons.

The emission amplitude of the gluon with colour a and transverse momentum k⃗

from a source at transverse position r⃗j is given by an eikonal vertex

T a
bjcj

−→
f (k) eik·rj , (3.3)

where T a
bjcj

are the adjoint generators of SU(Nc) and
−→
f (k) is a vertex function.

The concrete form of f⃗ does not influence the results (see below). For example, for

Coulombic radiation we have f⃗ = k⃗/k2. However, since the relevant momenta are

small the function f must be taken to be non-perturbative. In the cross section,

the emitted gluon can be absorbed by the same source in the complex-conjugated

amplitude (‘diagonal gluons’) or by different sources (‘off-diagonal gluons’), leading

to multi-particle correlations. The simplest diagrams contributing to the multi-

particle cross section and to correlations are presented in Fig. 3.1. The left image

in the figure shows a diagram with two sources and two diagonal gluons, and the

right image shows two sources but with off-diagonal gluons that are emitted by one

source and absorbed by another, leading to azimuthal correlations.

After calculating cross sections for given source positions we average over the

source positions with a classical probability distribution ρ({rj}) corresponding to

the distribution of MPIs in the pp collision [45]:

dσ̂

d2k⃗1 · · · d2k⃗m
=

N∏
i=1

∫
d2riρ(ri)σ̂(k⃗i, ri), (3.4)

where σ(ki, ri) is the cross section for producing m gluons from sources at fixed

transverse positions ri. Herein we neglect the so-called 1 → 2 mechanism for

MPIs [45, 48, 50] and do all calculations in the mean-field approximation. In this

case, the source or MPI distribution in the pp system has a Gaussian form:

ρ ({rj}) =
i=N∏
i=1

1

2πB
e

−r2
i

2B , (3.5)

where the parameter B is determined by analysing the one-particle GPD data from

HERA [54]. As noted in Ref. [10], the mean-field approach to MPIs corresponds
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to B = 4 GeV−2, which is the actual experimental data reparameterised in the

mean-field form; that is, assuming that the factorization of MPI cross sections cor-

responds to B = 2 GeV−2, and the best fit to the experimental data for symmetric

correlators scn considered in Refs. [10, 11] corresponds to B = 1 GeV−2, which was

justified (although not proven) in Ref. [10] based on arguments leveraging the pos-

sible contribution of very small dipoles formed by the so-called 1 → 2 mechanism in

MPIs [45, 48, 50]. Herein, the value of B influences only the transverse-momentum

dependence, and the value B = 1 GeV−2 seems to be the most consistent with the

experimental data.

We work in the limit of a large numberN of sources withm finite, N → ∞ [10, 11]

and Nc → ∞ and with all diagrams classified in powers of 1/Nc and 1/N .

Figure 3.1: The simplest diagrams contributing to the total cross section and to

correlations. The left diagram shows two diagonal gluons, the right diagram shows

interference corresponding to two off-diagonal gluons forming a dipole.

The Correlation Functions

The correlation functions we are interested in have the general form

K(n)(k1, . . . , ks) =Ms

∫
ρ dϕ1 · · · dϕs exp [i(

∑i=s
i=1 niϕi)]

dsN
dΓ1···dΓs

(2π)s
∏i=s

i=1

∫
ρ

dN
dΓi

, (3.6)

where
∑

i ni = 0, and
∫
ρ =

∫ ∏
i d

2yiρ(y⃗i) is the average over the position of the

sources. The standard s-particle spectrum has the form

dsN

dΓ1 · · ·Γs

=

(
m

s

)
dsσ̂

σ̂dΓ1 · · · dΓs

, (3.7)

where σ̂ is the cross section for the production of s gluons, and the normalisation

factor M is

Ms = ms

/(
m

s

)
, (3.8)
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where m is the total multiplicity, and s is the number of measured gluons. We as-

sume LPHD [54], so radiated-gluon correlations and multiplicities coincide with cor-

relations and multiplicities in the soft-hadronic spectrum. The number of radiated

gluons is in one-to-one correspondence with the number of radiated soft hadrons.

Herein we are interested in the case s = 3, n1 = n, n2 = n, n3 = −2n. In other

words,

K(n)(k1, k2, k3) =M3

∫
ρ dϕ1dϕ3 exp [in(ϕ1 + ϕ2 − 2ϕ3)]

d3N
dΓ1···Γ3

(2π)s
∏i=3

i=1

∫
ρ

dN
dΓi

. (3.9)

3.2.2 The Differential Cross Section

The relevant differential cross section was calculated in Ref. [10], so we can now

write σ̂ explicitly in the limit N → ∞, that is, omitting terms that go to zero as

N → ∞:

σ̂ ∝ Nm
c (N2

c − 1)NNm
m∏
i=1

∣∣∣−→f (ki)
∣∣∣2

×
[
1 +

F (2)
corr(N,m)

N2(N2
c − 1)

∑
ab

∑
lm

22 cos (ka ·∆rlm) cos (kb ·∆rml)

+
F (3)
corr (N,m)

4N3 (N2
c − 1)

∑
(abc)

∑
(lm)

23 cos (ka ·∆rlm) cos (kb ·∆rlm) cos (kc ·∆rlm)

+
F (3)
corr (N,m)

N3 (N2
c − 1)2

∑
(abc)

∑
(lm)(mn)

23 cos (ka ·∆rlm) cos (kb ·∆rmn) cos (kc ·∆rnl)

+O
(
N−4

) ]
. (3.10)

The sums span over all ordered combinations of off-diagonal gluons and non-ordered

combinations of sources. By using Eq. (3.10), we can find any correlation function

for any number of particles.

The first term in Eq. (3.10) corresponds to diagonal gluons, and the second is

a dipole term, which is a leading contribution to symmetric cumulants [11]. The

leading contribution to the asymmetric correlator [Eq. (3.2)] comes from the third

and fourth terms in the expansion [Eq. (3.10)], which corresponds to a three-gluon

dipole (which is actually 1/N -suppressed relative to the second term) and a tripole

diagram, as depicted in Fig. 3.2. Note that the tripole diagram has a finite value in

the limit N → ∞.

The factors F (2)
corr(N,m) and F (3)

corr(N,m) correspond to the contribution of diag-

onal gluons to the interference diagrams. As shown in Ref. [10], the diagonal gluons
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lead to multiplicative renormalisation of the correlators, as given by the correspond-

ing coefficients Fcorr.

3.2.3 1/Nc Expansion

Recall the structure of the expansion discussed in Refs. [10, 11] for even harmonics

for symmetric cumulants. The expansion is in two parameters: 1/(N2
c − 1) and

1/N . The leading contribution comes from the dipole diagram, which is of order

1/(N2
c − 1), and the leading approximation in 1/(N2

c − 1), 1/N is considered so that

we may discard all 1/N -suppressed diagrams. Note, however, that odd harmonics

appear only due to 1/N -suppressed terms in the differential-cross-section expansion.

Reference [10] shows that the real parameters of the expansion for a given multiplic-

ity are m2/[(N2
c −1)N ], where N is the number of sources and m is the multiplicity.

However, the leading terms in this expansion can be resummed as done in Ref. [11].

The corresponding diagrams are built from up to [N/2]1 sources and correspond to

non-intersecting dipoles.

For three-point cumulants the situation is more complicated. For symmetric cu-

mulants we have shown that the 1/N -suppressed diagrams can be neglected. Con-

versely, for a three-point cumulant, the leading diagram in the limit N → ∞ is

a tripole (see Fig. 3.3). However, this diagram is suppressed by 1/(N2
c − 1)2 in

the large-Nc limit. In contrast, the diagram corresponding to the dipole with three

off-diagonal gluons (Fig. 3.3) has zero limit for large N ; in other words, it is 1/N -

suppressed, whereas it is only 1/(N2
c − 1)-suppressed in the large-Nc limit. We thus

expect that 1/N corrections will play a significant role in the three-point correlator

if we extrapolate to finite 1/Nc.

In fact, we see below that the dipole with three gluons dominates numerically up

to a rather large number of sources, so we consider both the tripole and the dipole

with three off-diagonal gluons. We also consider the leading terms in the expansion

in m2/(N2
c − 1) for both leading and subleading (1/N , i.e. a dipole with three

off-diagonal gluons) terms in the expansion. This is in analogy with the symmetric

case [11] in which such an expansion corresponds to the inclusion of up to [N/2] non-

intersecting integrated-out dipoles with two off-diagonal gluons.2 All other diagrams

are subleading, namely, suppressed by higher powers of 1/(N2
c − 1) or 1/N (i.e. as

1/(N2
c − 1)a1/N b, a+ b ≥ 3).

For numerical calculations we extrapolate the results to finite Nc = 3 and to

1[ ] means the integer part.
2By ‘integrated out’ we mean that we integrate over momenta of the corresponding non-

observable off-diagonal gluons.
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finite N , actually fixing m̄ = m/N in the limit m,N → ∞ as the parameter of

the model. We use the same values of m̄ as was done for symmetric cumulants in

Ref. [11].

3.3 Tripole and Three-Gluon Dipole

Figure 3.2: (left) Tripole diagram for N = m = 3. (right) Three-gluon dipole

diagram for N = m = 3.

This section considers the simplest case of N = m = 3, for which there are two

contributions: one from the tripole diagram and one from the dipole with three

gluons. Note that each diagram is a building block for the case of arbitrary m, N .

We start by analysing the single-tripole term, which corresponds to the case

N = m = 3. The corresponding diagram is depicted in Fig. 3.2 (left). In this

case there are 3! = 6 ordered combinations of gluons and there are three ways to

assign the phases to the three available gluons. By using Eq. (3.10), we obtain the

multiplier 144:

ac(3,3)n ≡ Tn
(N2

c − 1)2

=
144

(N2
c − 1)233

∫
ρ

∫
dϕ1dϕ2dϕ3e

in(ϕ1+ϕ2−2ϕ3) cos (k1 ·∆r12) cos (k2 ·∆r23) cos (k3 ·∆r31) ,

(3.11)

where ac3,3 is the contribution of the tripole diagram to the total ac.

Consider now the contribution of the three-gluon dipole to the asymmetric three-

point cumulant. Figure 3.2 (right) shows the corresponding diagram. For the three-

gluon dipole, only two of the three sources are involved, so the multiplier gains a
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factor of  3

2


and a factor of 4−1 from the colour trace, and the multiplier becomes 108:

ac(3,2)n ≡ T̃n
N2

c − 1

=
144

(
3
2

)
/4

(N2
c − 1)33

∫
ρ

∫
dϕ1dϕ2dϕ3e

in(ϕ1+ϕ2−2ϕ3) cos (k1 ·∆r12) cos (k2 ·∆r12) cos (k3 ·∆r12)

=
108

(N2
c − 1)33

∫
ρ

∫
dϕ1dϕ2dϕ3e

in(ϕ1+ϕ2−2ϕ3) cos (k1 ·∆r12) cos (k2 ·∆r12) cos (k3 ·∆r12) ,

(3.12)

where ac3,2 is the dipole contribution to the cumulant. Below we denote the asym-

metric cumulant for a tripole as Tn and the asymmetric cumulant for a three-gluon

dipole as T̃n, while reserving the notation acn for total asymmetric three-point cu-

mulant for general N,m. The total value of the three-point cumulant is

acn = ac3,2n + ac3,3n . (3.13)

3.3.1 Tripole Momentum Dependence

We start by defining αij to be the azimuthal phase of −→r ij ≡ −→r i −−→r j. We can now

take the integral over the three azimuthal angles of vectors k⃗1, k⃗2, k⃗3 by using∫ 2π

0
dϕ1e

inϕ1 cos [k1∆r12 cos (ϕ1 − α12)] = πineinα12 [1 + (−1)n] Jn (k1∆r12) , (3.14)

where Jn (z) is the nth Bessel function of the first kind. By using Eq. (3.14), we

obtain

Tn(k1, k2, k3) =
24π32 [1 + (−1)n]

2

3 (2π)3

∫
ρ
ein(α12+α23−2α31)Jn (k1 |r12|) Jn (k2 |r23|) J2n (k3 |r31|) .

(3.15)

Due to the antisymmetry k⃗ → −k⃗, all correlation functions with odd n vanish.

Consider now the integral over the sources:

(
−→r 1

−→r 2
−→r 3

)
→
(
−→r 12

−→r 23
−→r 3

)
=
(
−→r 1 −−→r 2

−→r 2 −−→r 3
−→r 3

)
.

(3.16)
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We can simplify the latter expression since the integral over d2r3 is a simple Gaussian

integral:

∫
d2r3

e−
r21+r22+r23

2B

(2πB)3
=
∫
d2r3

e−

(−→r 12+
−→r 23+

−→r 3

)2

+

(−→r 23+
−→r 3

)2

+r23

2B

(2πB)3
=
e−

r212+
−→r 12·

−→r 23+r223
3B

3 (2πB)2
.

(3.17)

By using Eq. (3.17), we obtain the final expression for Tn:

Tn ≡ 24

32 (2πB)2

∫
dr12dr23dα12dα23r12r23

× exp

[
−r

2
12 + r12r23 cos (α12 − α23) + r223

3B
+ in (α12 + α23)

]

×

r12 cos (α12) + r23 cos (α23)− i [r12 sin (α12) + r23 sin (α23)]√
r212 + 2r12r23 cos (α12 − α23) + r223

2n

×Jn (k1r12) Jn (k2r23) J2n
(
k3
√
r212 + 2r12r23 cos (α12 − α23) + r223

)
,

(3.18)

where we use einα = [(x+ iy)/|−→r |]n to find α31 in terms of α12, α23 [here, r⃗ = (x, y),

so x+ iy = reiα].

For very small momenta (i.e. all ki ≪ 1/B1/2), we obtain

Tn ≃ 24−2n [B2Sym(k1k2k
2
3)]

n

3 (n!)2
, (3.19)

where ‘Sym’ means symmetrization over three gluons (and division by 1/3). The

details of calculation are given in Appendix A.

3.3.2 Dependence on Three-Gluon Dipole Momentum

In the same way as we did with Tn, we can get a simplified form of T̃n. Taking the

integral over the phases gives

T̃n(k1, k2, k3) =
22 × [1 + (−1)n]

2

(2π)3

∫
ρ
ein(α12+α12−2α12)Jn (k1r12) Jn (k2r12) J2n (k3r12)

=
24 × [1 + (−1)n]

2

(2π)3

∫
ρ
Jn (k1r12) Jn (k2r12) J2n (k3r12) . (3.20)

Again due to the antisymmetry k⃗ → −k⃗, all correlation functions with odd n vanish.

The integral over the source positions is now a Gaussian with two vector variables.

By using the transformation(
−→r 1

−→r 2

)
→
(
−→r 12

−→r 2

)
=
(
−→r 1 −−→r 2

−→r 2

)
, (3.21)
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we can take the integral over d2r2 and over the azimuthal part of −→r 12:

∫
d2r2dα12

e−
r21+r22
2B

(2πB)2
=
∫
d2r2dα12

e−

(−→r 12+
−→r 2

)2

+r22

2B

(2πB)2
=
e−

r212
4B

2B
. (3.22)

By using Eq. (3.22), we obtain the final expression for T̃n:

T̃n ≡ 2

B

∫
dr12r12e

−
r212
4B Jn (k1r12) Jn (k2r12) J2n (k3r12) . (3.23)

For very small momenta (i.e. all ki ≪ 1/B1/2), we obtain

T̃n ≃ 22 [B2Sym (k1k2k
2
3)]

n

(n!)2
. (3.24)

The details of calculation are given in Appendix A.

3.3.3 Numerical Results

The value of three-point cumulant is

acn = Tn/(N
2
c − 1)2 + T̃n/(N

2
c − 1), (3.25)

where n is the harmonic number (we depict the cases n = 2, 4). We cannot calculate

the integrals Tn and T̃n analytically, so we instead depict several types of behaviour

of T2, T4, T̃2 and T̃4 as functions of momentum. Conversely, the correlators have a

nontrivial structure as functions of k1, k2 and k3, namely, they depend on the polar

coordinates in a nontrivial way:

k3 = kr cos(θ),

k1 = kr sin(θ) cos(ϕ),

k2 = kr sin(θ) sin(ϕ),

kr =
√
k21 + k22 + k23. (3.26)

The value of the cumulant depends not only on kr but also on θ and ϕ. Indeed,

already for very small k1, k2, k3 → 0,

ac32 ∼ k21k
2
2k

2
3(k

2
1 + k22 + k23) ∼ k8r sin(2θ)

2 sin(2ϕ)2 sin(θ)2. (3.27)

To better understand the structure of the cumulant we consider three cases:

Case I: All momenta are equal to each other: k1 = k2 = k3 = k.

Case II: θ, ϕ = const., and we consider the cumulant and its parts as functions of kr.
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Case III: We consider the cumulant as a function of θ, ϕ for several values of kr.

Figure 3.3: (top) Integrals T2 and T̃2 when all momenta are equal, k1 = k2 = k3 = k

for different values of the parameter B = 1(2, 4) GeV−2 in full (dashed, dotted) line.

(bottom) Integrals T4 and T̃4 when all momenta are equal, k1 = k2 = k3 = k for

different values of the parameter B = 1(2) GeV−2 in full (dashed) line.
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Figure 3.4: Cumulant ac2 for N = m = 3, Nc = 3, k1 = k2 = k3.

Figure 3.5: Cumulant ac4 for N = m = 3, Nc = 3, k1 = k2 = k3.

Figure 3.3 shows how T2 and T̃2 depend on k. For a given k, the integral increases

up to k of order 1/
√
B and then slowly decreases, with maximum values of T2 ≈ 0.04

and T̃2 ≈ 0.07 that depend weakly on B. The maximum is located at approximately

the same place where the maximum occurs for the similar graph for the symmetric

cumulant (second harmonic), and they depend similarly on k.

Both integrals vanish at k = 0, and as k → ∞ we get slowly T2 → 0 and T̃2 → 0.

Both T2 and T̃2 peak at the same point, and they depend similarly on k.

Very similar behaviour occurs as a function of k for T4 and T̃4 in Fig. 3.3, except

that the fourth harmonic is four to five times smaller and the maximum is shifted

to larger k.

Figure 3.4 shows the corresponding full three-point cumulant ac2 (i.e. the de-

pendence on k of the second harmonic) for the model case N = m = 3. In this case,

even for Nc = 3 the diagram with three gluons in a dipole dominates, accounting

for 90% of the cumulant. Similarly, we depict ac4 in Fig. 3.5.

An interesting feature of the momentum dependence of the cumulant is that the

direction in (ϕ, θ) along which the cumulant is maximal is the direction correspond-

ing to k1 = k2 = k3. We illustrate this in Figs. 3.6 and 3.7 by considering the

dependence of ac2 and of tripole and dipole diagrams on the direction in k space.
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Figure 3.6: Integrals T2 and T̃2 for different directions, θ, ϕ = const., kr varying.

Figure 3.7: The full cumulant ac2 for different directions, θ, ϕ = const., kr varying.

B = 1 GeV−2.

Figures 3.6 and 3.7 show that the direction k1 = k2 = k3 [i.e. cos(θ) = 1/
√
3, ϕ =

π/4] corresponds to an absolute maximum. Conversely, a common structure appears

in each direction (i.e. increase up to a maximum value and then a slow decent

depending on the direction). Figures 3.6 and 3.7 are for B = 1 GeV−2; the behaviour

is qualitatively similar for other values of B.

To better understand the two-dimensional structure, we also consider the be-

haviour of the cumulant as a function of θ, ϕ for kr = 2, 4, 6 GeV. This is depicted

in Figs. 3.8 and 3.9.
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Figure 3.8: Cumulant ac2 for N = m = 3, Nc = 3 when kr = 2, 4, 6 GeV (for top

left, top right and bottom, respectively) and B = 1 GeV−2.

Figure 3.9: Cumulant ac2 for N = m = 3, Nc = 3 when kr = 2, 4, 6 GeV (for top

left, top right and bottom, respectively) and B = 4 GeV−2.
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Recall that the case B = 1 GeV−2 corresponds to the best fit for even symmetric

cumulants in Ref. [10], while B = 4 GeV−2 corresponds to the mean-field approach

with the effective cross section for MPIs being twice as big as the experimental cross

section. We limit ourselves by depicting the second harmonic. The structure of the

cumulant for B = 2, 3 GeV−2 is very similar to the structure for B = 1 GeV−2, so

we do not show it here. The structure starts to change only for larger B, which

corresponds to the effective DPS cross section being larger than the experimental

cross section.

Given the very similar form of the k dependence of Tn and T̃n (except for their

scale), the similar dependence on k will continue for arbitrary m, N (with different

overall coefficients depending on N, m).

We also compare the numerical results for small momentum with the analytic

expressions (3.19) and (3.24) and find that they coincide.

3.4 High Multiplicity

3.4.1 Higher-Order Diagrams

We now consider the general case of N, m > 3. We noted above that the leading

behaviour in powers of 1/(N2
c − 1) [and a re-summation of the series in terms of

m2/(N2
c − 1)] corresponds to diagrams with one tripole and an arbitrary number

of non-intersecting dipoles. However, in this case, the term contributing to the

cumulant is suppressed by 1/N but is of first order in 1/(N2
c −1). The corresponding

re-summation, which is analogous to the re-summation for a tripole, includes the

series corresponding to diagrams with one dipole with three off-diagonal gluons and

up to [N/2− 1] non-intersecting dipoles, such that each of the sources has only two

(or zero) gluons coming out. Numerically for Nc = 3 the term with three gluon

dipoles is a dominant one up to very large multiplicities of order 100.

Consequently, there are three types of diagrams to consider:

Type (a): Diagrams with arbitrary number (up to N/2) of dipoles with two off-diagonal

gluons. These diagrams were considered in detail in Ref. [11]. Such diagrams

contribute to the total cross section σ̂.

Type (b): One tripole and d < N/2 non-intersecting dipoles with two off-diagonal gluons.

Type (c): One dipole with three off-diagonal gluons and d non-intersecting dipoles with

two off-diagonal gluons each.
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Recall the calculation of the combinatorial coefficients for Type (a). We first

select two gluons and two sources for each two-gluon dipole. From the gluons selected

we get a factor of
(
1
2

)
:(

m

2

)(
m− 2

2

)
· · ·

(
m− 2d+ 2

2

)
1

d!
=

(m)!

2dd! (m− 2d)!
. (3.28)

The sources give us a similar factor of(
N

2

)(
N − 2

2

)
· · ·

(
N − 2d+ 2

2

)
=

(N)!

2d (N − 2d)!
. (3.29)

For Type (b) diagrams, an additional multiplier comes from the number of choices

of the three-gluon dipole and is given by

3

(
m

3

)
3!

(
N

2

)
. (3.30)

For Type (c) the number of choices for the tripole produces a factor

3

(
m

3

)
3!

(
N

3

)
. (3.31)

Only diagrams of Types (b) and (c) contribute to harmonics of n > 0, so we can

write

d3σ̂∏i=3
i=1 dΓi

∝ Nm
c (N2

c − 1)NNm
i=3∏
i=1

∣∣∣−→f (ki)
∣∣∣2

×
{ ⌊(N−2)/2⌋∑

d=0

(
D̂0F

(2)
corr (N,m)

N2(N2
c − 1)

)d
233!F (3)

corr(N,m)

N34(N2
c − 1)

× m!N !

d!3!2!(m− 2d− 3)!(N − 2d− 2)!

×
∫
ρ
cos (k1 · r12) cos (k2 · r12) cos (k3 · r12)

+
⌊(N−3)/2⌋∑

d=0

(
D̂0F

(2)
corr (N,m)

N2(N2
c − 1)

)d
233!F (3)

corr(N,m)

N3(N2
c − 1)2

× m!N !

d!(3!)2(m− 2d− 3)!(N − 2d− 3)!

×
∫
ρ
cos (k1 · r12) cos (k2 · r23) cos (k3 · r31)

}
.

(3.32)

Here we defined the integral D̂0 corresponding to the off-diagonal dipole component

of the wave function of the nucleon fully integrated out (i.e. integrated over both
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the source positions and the momenta of the gluons):

D̂0 ≡
∫

(r12dr12)

 ∏
j=1,2

kjdkj
(∣∣∣−→f (kj)

)∣∣∣2
 e−

r212
4B

2B
J0 (k1r12) J0 (k2r12) . (3.33)

This integral is determined by a normalised radiation amplitude f⃗ and, as in

Ref. [11], can be considered as a free parameter (coinciding with the free parameter

in Ref. [11]). This integral is expected to be between zero and one [11].

As mentioned above, Ref. [10] shows that the diagonal gluons contribute to the

interference diagrams by renormalising them [i.e. multiplying by factors F (m,N)

that are easily calculated]. For renormalisation factors F (2) and F (3) connected with

diagonal gluons for dipole and tripole diagrams relevant to our discussion, we have

the explicit expression

F (3)(N,m) =
(m− 3)!

m!
[6(m− 2N)N2 + 6(N − 1)m−1N3−m(−2 +m+ 2N)]. (3.34)

In the limit N → ∞, m→ ∞, m/N = m̄ = const., we have

F (3)(N,m) → F (3)(m̄) = 6
e−m̄(2 + m̄)

m̄3
+ 6

m̄− 2

m̄3
. (3.35)

In the same way, Ref. [10] obtained

F (2)(N,m) =
2N1−m[N(N − 1)m +mNm −N1+m]

m(m− 1)
, (3.36)

and in the limit N → ∞, m→ ∞, m/N = m̄ = const., we have

F (2)(N,m) → F (2)(m̄) =
2m̄+ 2e−m̄ − 2

m̄2
. (3.37)

For the three-gluon dipole we get a correction factor that is the same as F (3)(N,m),

as calculated in Appendix B. For non-intersecting dipoles and tripoles, we can prove

that the corresponding renormalisation factors factorize.

To find the differential multiplicity, we must find the total cross section σ̂ to the

same approximation. This cross section is

σ̂ ∝ Nm
c (N2

c − 1)NNm

×
{ ⌊N/2⌋∑

d=0

(
D̂0F

(2)
corr (N,m)

N2 (N2
c − 1)

)d
m!N !

d! (m− 2d)! (N − 2d)!

+
33F (3)

corr (N,m) ˆ̃T 0

N3 (N2
c − 1)

⌊(N−2)/2⌋∑
d=0

(
D̂0F

(2)
corr (N,m)

N2 (N2
c − 1)

)d
m!N !

d!2!3! (m− 2d− 3)! (N − 2d− 2)!

+
33F (3)

corr (N,m) T̂0

N3 (N2
c − 1)2

⌊(N−3)/2⌋∑
d=0

(
D̂0F

(2)
corr (N,m)

N2 (N2
c − 1)

)d
m!N !

d!(3!)2 (m− 2d− 3)! (N − 2d− 3)!

}
,

(3.38)
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where we define the integrals

ˆ̃T 0 ≡ 2

33

∫
(r12dr12)

3∏
j=1

kjdkj
∣∣∣−→f (kj)

∣∣∣2 e− r212
4B

B
J0 (k1r12) J0 (k2r12) J0 (k3r12) ,

(3.39)

T̂0 ≡ 22

35

∫ (
d2r12d

2r23
) j=3∏
j=1

kjdkj
∣∣∣−→f (kj)

∣∣∣2 e− r212+
−→r 12·

−→r 23+r223
3B

(2πB)2

×J0 (k1r12) J0 (k2r23) J0 (k3 |−→r 12 +−→r 23|) , (3.40)

corresponding to the integrated-out tripole and dipole with three off-diagonal gluons.

The radiation amplitude f⃗ determines the values of T̂0 and
ˆ̃T 0 (i.e. they are no longer

free parameters of the model). The values of T̂0 and
ˆ̃T 0 are correlated with the value

of D̂0.

For the differential multiplicity, we obtain

d3N

dΓ1dΓ2dΓ3

=
d3σ

σdΓ1dΓ2dΓ3

≈
(
i=3∏
i=1

∣∣∣−→f (ki)
∣∣∣2) σ̂−1

×
[
2F (3)

corr (N,m)

N3 (N2
c − 1)

⌊(N−2)/2⌋∑
d=0

(
D̂0F

(2)
corr (N,m)

N2 (N2
c − 1)

)d
m!N !

d!2!3! (m− 2d− 3)! (N − 2d− 2)!

×
∫
ρ
cos (k1 · r12) cos (k2 · r12) cos (k3 · r12)

+
23F (3)

corr (N,m)

N3 (N2
c − 1)2

⌊(N−3)/2⌋∑
d=0

(
D̂0F

(2)
corr (N,m)

N2 (N2
c − 1)

)d
m!N !

d!(3!)2 (m− 2d− 3)! (N − 2d− 3)!

×
∫
ρ
cos (k1 · r12) cos (k2 · r23) cos (k3 · r31)

]
, (3.41)

where

σ̂ ≡
⌊N/2⌋∑
d=0

(
D̂0F

(2)
corr (N,m)

N2 (N2
c − 1)

)d
m!N !

d! (m− 2d)! (N − 2d)!
(3.42)

is the total cross section. We have shown by direct numerical calculation that the

contribution to the total cross section of the integrated-out three-gluon dipole and of

the integrated-out tripole are negligible compered with the two-gluon dipole terms,

so we can ignore the dependence on T̂0 and ˆ̃T 0.

For the differential one-gluon distribution, we have, in this approximation,

dN

dΓ
= m

∣∣∣−→f (k)
∣∣∣2 . (3.43)
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Figure 3.10: The maximum value of ac2 (as a function of momentum) as a function

of multiplicity m for different values of m̄, where D̂0 = 0.1 and Nc = 3.

We can now write the parts corresponding to the three-gluon dipole and the

tripole contribution:

ac3,2n {3} =
33F (3)

corr (N,m)(
m
3

)
σ̂N3(N2

c − 1)
T̃n/3

×
⌊(N−2)/2⌋∑

d=0

(
D̂0F

(2)
corr(N,m)

N2 (N2
c − 1)

)d
m!N !

d!2!3!(m− 2d− 3)!(N − 2d− 2)!
,

ac3,3n {3} =
33F (3)

corr (N,m)(
m
3

)
σ̂N3(N2

c − 1)2
Tn

×
⌊(N−3)/2⌋∑

d=0

(
D̂0F

(2)
corr(N,m)

N2 (N2
c − 1)

)d
m!N !

d!(3!)2(m− 2d− 3)!(N − 2d− 3)!
,

acn = ac3,2n {3}+ ac3,3n {3} . (3.44)

Note that by taking D̂0 = 0, or equivalently, only the d = 0 term in the expansion

for Σ̂ is return to the result [Eq. (3.11)] for N = m = 3 of the previous section.

3.4.2 Numerical Results

We now look at ac as a function of the multiplicity for different values of m̄ ≡ m/N .

We first look at ac2 as a function of m for fixed values of m̄ = 4, 10. Figure 3.10

shows, as a function of m, the maximum value of ac2 as function of transverse mo-

mentum. The value of ac2 decreases slowly with multiplicity, and the characteristic

scale of ac2 for moderate m ≈ 50 is of the order 2× 10−4.
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Figure 3.11: The maximum value of ac4 (as a function of momentum) as a function

of multiplicity m for different values of m̄, where D̂0 = 0.1 and Nc = 3.

Figure 3.12: Form of ac2 for k1 = k2 = k3 and for different values of multiplicity m,

with D̂0 = 0.1, B = 1 GeV−2, Nc = 3.
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The scale of two-point correlator v22 ≡ sc2{2}, calculated in Ref. [11], was ≈4–

5× 10−3 [i.e. a decrease of order 2(N2
c − 1) occurs upon going from v22 to ac2], and

the ratio between the two depends weakly on multiplicity.

Figure 3.11 shows the analogous dependence of ac4, and Fig. 3.12 shows how

ac2 depends on k for various multiplicities m. The k dependence is practically

independent of multiplicity (up to an overall scaling factor) and is the same as for

the case N = m = 3.

3.4.3 Comparison with Experimental Results

Here we compare our results with recent experimental data [12]. In Ref. [12], the

second harmonic was averaged over the experimental data with momentum varying

in two different kinematic regions: k ∈ [0.3, 3] GeV and k ∈ [0.5, 5] GeV.

Recall that, in the form of T̃n and Tn, we can completely separate the depen-

dence of the momentum and n and the dependence on all other parameters such as

multiplicity, number of sources, Nc and the model constant D̂0. It is convenient to

define

R3,2
(
N,m,Nc, D̂0

)
≡ ac3,2n {3}

T̃n
,

R3,3
(
N,m,Nc, D̂0

)
≡ ac3,3n {3}

Tn
. (3.45)

Since all of the dependence on the momentum in our model is contained in the k-

dependent functions Tn(k1, k2, k3) and T̃n(k1, k2, k3), we can calculate the averages:

B = 1 GeV−2 B = 2 GeV−2 B = 4 GeV−2

⟨T2⟩0.3−3GeV =

∫ 3

0.3
dk1dk2dk3T2

(3−0.3)3 9.4× 10−3 6.5× 10−3 2.7× 10−3〈
T̃2
〉
0.3−3GeV

=

∫ 3

0.3
dk1dk2dk3T2

(3−0.3)3 2.1× 10−2 1.6× 10−2 1.1× 10−2

⟨T2⟩0.5−5GeV =

∫ 5

0.5
dk1dk2dk3T2

(5−0.5)3 4.1× 10−3 1.4× 10−3 1.5× 10−3〈
T̃2
〉
0.5−5GeV

=

∫ 5

0.5
dk1dk2dk3T2

(5−0.5)3 1.4× 10−2 8.7× 10−3 5.0× 10−3

Table 3.1: Averages of the integrals for different ranges of k1, k2, k3 and values of

B.

The value of the cumulant is obtained by calculating

⟨ac2 {3}⟩ = R3,2
〈
T̃2
〉
+R3,3 ⟨T2⟩ , (3.46)

and the results are shown in Fig. 3.13.
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Figure 3.13: Three-point cumulant ac3 averaged over 0.5 < ki < 3 and 0.5 < ki < 5

(i = 1, 2, 3).

Figure 3.14 shows the theoretical value of the second harmonic (integrated over

the region 0.5 ≤ k ≤ 3 together with experimental data, namely, the ATLAS result

after additional analysis to eliminate non-flow effects; see Ref. [56]). Note that the

values of m that are obtained here by using the LPHD concept correspond to a total

number of soft hadrons of m ≈ 1.5Ncharged, where Ncharged is a number of charged

particles measured in the ATLAS experiment. The high-multiplicity sample used

by ATLAS is dominated by π mesons [57], the factor 3
2
then comes from isotopic

invariance since π mesons form a triplet in the isotopic space. The two different

types of data are depicted, with or without gap, which means that the gap of 0.5

units between subevents to limit non-flow is taken or not are depicted. Please refer

to Ref. [12, 56] for the details of the experimental analysis.

Figure 3.14: Three-point cumulant ac2 averaged over 0.5 < ki < 3 and 0.5 < ki < 3

(i = 1, 2, 3) and compared with experimental data. The experimental data have
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been additionally analysed [56] by the ATLAS Collaboration to minimize non-flow

effects, where the two types of experimental points correspond to analysis with and

without the 0.5-unit gap between subevents.

The results for m ≤ 120(Ncharged ≤ 80) are consistent with the experimental

data if we average over region 0.5 ≤ k ≤ 3 GeV. However, for higher multiplicities,

the theoretical result decreases with total multiplicity m rather rapidly, contrary

to the experimental data, for which ac is independent of multiplicity for large m.

In addition, the ATLAS data for average ac2 over the region 0.5 ≤ k ≤ 5 GeV

tend to increase relative to the average over 0.5 ≤ k ≤ 3 GeV, whereas Fig. 3.13

shows the opposite trend. However, these averages are very sensitive to explicit

k dependence, so even a small inaccuracy in the k dependence leads to a rather

large inaccuracy in the average. Moreover, our results may be less accurate for large

transverse momentum, where the soft-gluon approximation is less accurate.



Chapter 4

Conclusions

We have studied how colour interference and colour flow affect the three-point asym-

metric cumulants by using the model of Refs. [10, 11].

The results for our asymmetric correlator are qualitatively consistent with the

scale of available experimental data [12], at least for moderate multiplicities m ≈
100. Note that only integrated experimental data are available, which hinders a

detailed comparison with the experimental results. These data seem to be very

sensitive to precise transverse momentum dependence, so a detailed comparison

between theoretical and experimental results must await further measurements, in

particular a detailed study of transverse momentum dependence, as done already

for symmetric correlators.

We provide herein a detailed study of the transverse momentum dependence and

characteristic scale of the correlator.

A discrepancy with the experimental data takes the form of a decrease of the ac

cumulant with multiplicity m at high multiplicities, and analogous behaviour also

occurs for symmetric cumulants [11]. The experimental data indicate that cumu-

lants are virtually independent of multiplicity. Conversely, significant uncertainties

related to the separation of the flow and non-flow effects may exist in the experi-

mental data [56]. We expect that further study of the model, in particular inclusion

of higher suppressed diagrams (such as quadrupole-like diagrams), will improve the

dependence on multiplicity both for symmetric and asymmetric correlators [58].
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Appendix A

Small-Momentum Limit

Consider the case of very small transverse momentum for a tripole. Looking at very

small momentum, kj ≪ B−1/2 for all three momenta, we Taylor expand the Bessel

functions

Jn (z) ≃
zn

n!2n
(A.1)

to find

Tn ≃ 24(1−n) (k1k2k
2
3)

n

32 (n!)2 (2n)! (2πB)2

∫
dr12dr23dα12dα23r

1+n
12 r1+n

23 exp

(
−r

2
12 +

−→r 12 · −→r 23 + r223
3B

)

× [cos (α12) + sin (α12)]
n [cos (α23) + sin (α23)]

n

×{r12 cos (α12) + r23 cos (α23)− i [r12 sin (α12) + r23 sin (α23)]}2n . (A.2)

From dimensional analysis for small momentum,

acn ∝
(
B2k1k2k

2
3

)n
. (A.3)

Simplifying the integral [Eq. (A.2)] we obtain in the limit of small ki:

Tn ≃ (3B)2 24(1−n) (32B2k1k2k
2
3)

n

32 (n!)2 (2n)! (2πB)2

∫
R4
dx1dx2dy1dy2

× ∂n

∂αn

∂n

∂βn

∂2n

∂γ2n
e−(x

2
1+x1x2+x2

2+y21+y1y2+y22)+α(x1+iy1)+β(x2+iy2)+γ[x1+x2−i(y1+y2)]

∣∣∣∣∣
α=β=γ=0

=
24(1−n) (32B2k1k2k

2
3)

n

(n!)2 (2n)! (2π)2
∂n

∂αn

∂n

∂βn

∂2n

∂γ2n
4π2

3
e

2
3
γ(α+β)

∣∣∣∣∣
α=β=γ=0

=
24(1−n) (32B2k1k2k

2
3)

n

3 (n!)2 (2n)!
(2n)!

(
2

3

)2n

=
24+2n (B2k1k2k

2
3)

n

3 (n!)2
. (A.4)

All expressions above are understood to be symmetrized over gluons 1, 2, 3 (i.e.

equal to 1
3

∑
1,2,3).
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We can also use the same approximation to obtain

T̃n ≃ 21−4n [Sym (k1k2k
2
3)]

n

B (n!)2 (2n)!

∫
dr12r

1+4n
12 e−

r212
4B . (A.5)

This leaves us with an integral that may be solved by using u =
r212
4B

, which gives

T̃n ≃ 22 (B2k1k2k
2
3)

n

(n!)2
. (A.6)



Appendix B

Three-Gluon Dipole Correction

We obtain the correction factor for the three-gluon dipole in the same way as was

done in Ref. [10]. To make an ordered list of emitted gluons with only three off-

diagonal gluons to make a three-gluon dipole, we can divide the diagonal gluons into

four types. If the off-diagonal gluons are 1, 2, 3, then the diagonal gluons can be

before 1, between 1 and 2, between 2 and 3 and after 3. The ones between 1 and 2

and between 2 and 3 will produce a factor of 1
2
if they are from the same sources as

the off-diagonal gluons; otherwise they produce a factor of one. We first need the

number of incoherent diagrams, which is

Nincoh =
m−3∑
j12=0

m−3−j12∑
j23=0

Nm−3−j12−j23(m− 2− j12 − j23)

×
j12∑

l12=0

 j12

l12

 2l12(N − 2)j12−l12

×
j23∑

l23=0

 j23

l23

 2l23(N − 2)j23−l23

=
m!

3!(m− 3)!
Nm−3, (B.1)

where jab counts the number of diagonal gluons between a and b and lab counts how

many of them are on the same gluons as the three-gluon dipole.

The correction coefficient is then calculated by taking into account the factor of

(1
2
)l that comes from the identity T aT bT a = T b/2:

F (3,2)(N,m) =
1

Nincoh

m−3∑
j12=0

m−3−j12∑
j23=0

Nm−3−j12−j23(m− 2− j12 − j23)

×
j12∑

l12=0

 j12

l12

 2l12(N − 2)j12−l122−l12
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×
j23∑

l23=0

 j23

l23

 2l23(N − 2)j23−l232−l23

=
(m− 3)!

m!
[6(m− 2N)N2 + 6(N − 1)m−1N3−m(−2 +m+ 2N)].

(B.2)

This is exactly F (3)(N,m), as we can see from Ref. [10].
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ii 

בור מספר  ע, המונמט המרכזי של מספר זוגי של חלקיקים נקרה המומנט הסמטרימתאים. המרכזי ה

  שנסתכל על הרמוניות שונותחלקיקים המומנט המרכזי נקרה אסימטרי מכיוון שהוא מחייב גי של  זו-אי

 ים. החלקיקים השונעבור 

 :המסודרת בצורה הבא הזו התזה

 של המחקר שלנו. במבוא אנחנו מסבירים את המטרות

אירועים  הבסיסיים של הדרך חשיבה החדשה עבור ל הרעניונות בפרק השני אנחנו נותנים סיקור ש

ינטרקציה  וא בהתבסס על התאבכות קוונטית  פרוטון- בעלי מספר תוצרים גבוהה בהתנגשויות פרוטון

ת הכלים  וא תוצריםמרובת  חנו מסבירים את הגאומטריה של התנגשותספציפית אנ .מרובת פרטונים

יקים, אז אנחנו  קית בין החלקם  כדי לתאר את התלות האופתמטיים שנשתמש בהמניסיניים והמ

של המודל  , ואז מפרטים את הפרטים ינטרקציה מרובת פרטוניםא מסכמים את הרעיונות הבסיסיים של 

 בו נשתמש כדי לחשב את המומנט האסימטרי של שלושה חלקיקים.

ת  המומנט האסימטרי המתקבל עבור שלושה חלקיקיםת החישוב של  בפרק שלוש אנחנו מבצעים א

את  ים , ולבסוף משוו ם את התלות של מומנט זה בתנע של החלקיקים ומספר החלקיקים הנפלטיםוחוקרי

הבעיה המרכזית  דש את  נחנו מתחילים מלבסס מחא  ציפיתספ . LHC-החישוב לתוצאות אשר נמדדו ב

ם איתו, ואז אנחנו מסכמים את הכלים של המודל  שאנחנו עובדיולהזיג אותה בתור הכלים של המודל 

מחשבים    נושאנחנו צריכים בשביל לחשב את המונמט האסימטרי של שלושה חלקיקים, לאחר מכן אנח 

את המומנט האסימטרי של שלושה חלקיקים כתלות בתנע של החלקיקים עבור המקרה הפשוט של שלוש  

שנפלטו, ולבסוף אנחנו מוצאים את התלות של המומנט  חלקיקים  ניות ושלושהאינטרקציות פרטו

 דידות הקיימות. למעבור שלושה חלקיקים במספר החלקיקים שנפלטו ומשווים את התוצאות האסימטרי 

 . קנות המחקרציג את מסרבע מפרק א

  



 

 i 

 תקציר 
 

)החלקיקים  פרוטון -בהתנגשויות פרוטון ריוויאלית טתלות אופקית לא מראות  התצפיות האחרונות 

מספר  בעלות  ר ההתנגשות( ר המאונך לציקשר בכיוונים שלהם במישומההתנגשות מראים הנפלטים 

  . תצפיות אלו העלורכס תופעת , תלות זו מכונה גם(LHCתוצרים גבוהה במאיץ ההדרונים הגדול )

ויות של יונים  מה נצפה לפני כן בהתנגשתה מכיוון שתלות דוהתעניינות משמעותית. התעניינות זו על 

ופעת הרכס  ם כבדים תעבור יוני, כאשר (RHICכבדים היחסותיים )היונים ה  איץובמ  LHC-כבדים ב

נראת טבעית במסגרת   תופעת הרכס. (QGPגלואונים )-סימן חשוב ליצירה של פלזמת קווארק ל  נחשבה

, אבל בהתנגשויות  במצב הסופי שלהם קה בין החלקיקים הנוצרים, בגלל האינטרציה החזQGPשל 

  , בנוסףQGP סבר על ידיווים קושי עבור הך הקטן יותר והצפיפיות הנמוכה מהחתפרוטון שטח ה -פרוטון

ים הנפלטים  קרלו שמניחים כי החלקיק -פרוטון מתאימות לתוצאות של יוצרי מונטה - תנגשויות פרוטוןה

  פותחם של מודלים חדשים שיסבירו את תופעת הרכס, ספציפית זה הוביל למחקרי לא תלויים אחד בשני.

  הפורמליזם הזהעד כו . (MPIינטרקציה מרובת פרטונים )תאבכות קוונטית וא שמבוסס על ה חדש מודל

 . סימטריתהתלות ה ישוב בהצלחה לח שומש 

תלות בין שלושה  זרימת צבע על הוכות קוונטית השפעה של התאבבחיבור זה אנחנו חוקרים את ה

המומנט האסימטרי באירועים בעלי מספר תוצרים גבוהה בהתנגשויות    חלקיקים שמתוארת על ידי

ים  חקירת ההתנהגות הקולקטיבית במומנט. אנחנו משתמשים במודל שפותח לאחרונה לפרוטון-פרוטון

המומנט האסימטרי המתקבל עבור שלושה חלקיקים מתאים איכותית  . אנחנו מראים שהסימטריים

כדי לחשב את המומנטים  בהם השתמשו כאשר מתשמשים באותם פרמטרים  לתוצאות שנמדדו

של החלקיקים הסופיים חייבת להיות  ההתחלתי ב  תלות במצהסימטריים. התוצאות שלנו מראות שה

אירועים בעלי מספר תוצרים גבוהה  , ואולי אפילו שולטת בהסבר של התלות עבור משמעותית

 . פרוטון- בהתנגשויות פרוטון

צפיפות החלקיקים  על מנת לחקור את התלות האופקית בין החלקיקים ביותר פרטים, נהוג לפתח 

הזו נקראים הרמוניות    עבור הזווית האופקית, כאשר המקדמים של הסדרה פורייה   סדרתכ במרחב התנע

ופקית נהיה מדוייק  הקשר בין ההרמוניות זרימה והתלות הא  אנליזת זרימה. טכניקה זו נקרתזרימה, 

אשר מסתכלים על תלות בין כמה שיותר חלקיקים, אבל כאשר מסתכלים על מספר חלקיקים  כיותר 

 , הגודל שנותן לנו את הרמוניית הזרימה הוא המומנט  גבוהה צריך להפחית את התלות של תתי הקבוצות
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 פיזיקה.ל בפקולטה  בלוק בוריספרופסור בהנחיית נעשה  המחקר

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 י. תעל התמיכה הכספית הנדיבה בהשתלמו   טכניוןאני מודה ל
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 פיזיקה לשם מילוי חלקי של הדרישות לקבלת התואר מגיסטר למדעים ב 

 

 

 

 

 רן שגב

 

 

 

 

 

 

 מכון טכנולוגי לישראל - הוגש לסנט הטכניון  

 2022פברואר , חיפה, ב "פאדר א' ה'תש

  



 

  

 

  



 

  

אסימטרי עבור שלושה חלקיקים  חישוב מומנט  

- פרוטון מרובות תוצרים ב - פרוטון בהתנגשויות  

LHC 
 

 

 

 

 

 

 

 

 רן שגב

 


	List of symbols and abbreviations
	Introduction
	Review of Quantum Interference Approach
	Ridge and Cumulants
	Heavy-Ion Collisions
	High-Multiplicity Proton-Proton Collisions
	Cumulants
	Flow Analysis
	Calculating Cumulants from Data
	Three-Particle Cumulant

	Multi-Parton Interactions
	Hard Process in Quantum Chromodynamics
	Double-Parton Scattering
	Generalised Parton Distribution
	Single-Parton Distribution
	Mean-Field Approximation
	Soft-Gluon Emission
	Effective Cross Section

	Quantum Interference model
	Defining the Model
	Dipole Interference Term
	Diagonal Gluon Corrections to the Dipole
	General Cross Section
	The Real Expansion Parameter


	Three-Point Asymmetric Cumulant
	Introduction
	Basic Formalism
	The Model longpaper,shortpaper
	The Differential Cross Section
	1/Nc Expansion

	Tripole and Three-Gluon Dipole
	Tripole Momentum Dependence
	Dependence on Three-Gluon Dipole Momentum
	Numerical Results

	High Multiplicity
	Higher-Order Diagrams
	Numerical Results
	Comparison with Experimental Results


	Conclusions
	Small-Momentum Limit
	Three-Gluon Dipole Correction

