[bookmark: _Hlk38271235]Continuouses Software Engineering and Unit testingTesting
from theory Theory to practicesPractices

	Chassidim Hadas
Department of software Software engineeringEngineering
Shamoon collage College of engineeringEngineering
hadasch@sce.ac.il

	Almog Dani
Department of software Software engineeringEngineering
Shamoon Ccolleage of Eengineering
Almog.dani@gmail.com

	Mark Shlomo
Department of sSoftware Eengineering
Shamoon Ccolleage of Eengineering
marks@sce.ac.il
	

Abstract: Recently, tThe software industry has recently moveds to a more flexability flexible and continuouues Software Life Cycle Development (SDLC) with the Agile development approach, with which continues practices including the stages of Integrationintegrates the stages of development, Ddelivery, and Ddeployment . It This trend has reveal exposed the tendencies tendency of to increasingly rely reliance on unit testing as well as test automation for the fundamental as a fundamental quality assurance of activity of the code development process. These continues trends raise questions regarding the actual definition and the role of unit tests in the Continuous Software Engineering (CSE) world. In which organizations, apply unit testing on the local codebase done i.e. isolated and independently from the production repository, when iTon order to implement CSE, it is vital to assure that unit testing activities are an integral and well-defined part of the pipeline processand to well define its role and owners. In this paper, we review the academic definition of unit testing in from the CSE world and introduce a survey case study that examines the implementation of unit testing in at three software Real-Life case studiescompanies , who that have recently moved to CSE methodology. The results do corroborate the argument that unit testing perceived isas a cornerstone for development and an as an indicator for of software quality. However, the definition of the owner and the distinction between different testing levels are still vague. 	Comment by Elizabeth Caplan: This paper reports on a single case study. The study involves three (participating) companies and a total of 15 cases (15 individual participants).
Key words: Unit testing, Continious continuous practices, Continuous continuous testing, integration test , CICD

[bookmark: _Toc31279874][bookmark: _Toc34672421]Introduction

Continuous software engineering (CSE), is also known as continiouscontinuous practices, has became become widely- spread in many software development organizations [1]. This trend enables developers to provide an earlier and continiouscontinuous delivery of adaptations and changes to the software product [1, 2]. However, it inroduces presents athe need to understand the impact on quality and testing procedures, with respect to all the dimensions of the organization and the development processes. In Ssoftware development, proces unit testing is one of the primary and basic activities of the development process, and is executed by the programmers themselves;, and therefore, it is essential to ensure a common language among team members, who using use the term "unit testing" [3] is essential.
[bookmark: _Toc491676987]In order tTo learn aboutexamine the implementatiotation of unit testing in the continious continuous practices of different software industries, it is needed to conduct a casefield study of real-life implementations of unit testing must be conducted. Unit testing is considered a crucial link in the chain of quality activities, which aim to improve an organization’s outcomes, by focusing their quality goals and recruitment needs already inas early as the initial programming stage, and unit testing is the term that describes the action of the programmer. This study aims to identify the effects benefits of the continiouscontinuous approach on the waytoward unit testing and related activities are being applied. The second sSection 2, elaborates and explains the CSE revolution from the fundamental point of view of unit testing, its role, and the common definition in the new development environment from the view of unit testing. Section three 3 reports about on a survey case study of three case studies participating software companies and theirabout real-world applications of unit testing in CSE. The paper concludes by with a generalizing generalization of the results of all the case studiess reported, drawing and a presentation of our guidelines and recommendations for the software industry.

[bookmark: _Toc31279875][bookmark: _Toc34672422]Backgoround

[bookmark: _Toc34672423][bookmark: _Toc491676985]Software quality
ISO 8042 [4] defines quality as ‘‘“the totality of characteristics of an entity that bear on its ability to satisfy stated and implied needs.”’’. This may be considered too wide broad a definition, as it related relates to quality in general. One may relate toIn software, quality should be more specifically defined by constracting constructing measurements which that indicate and or contain properties to be considered, for example the widely adopted in industry ISO/IEC 25010 standard [5], which determines the which quality aspects to be taken into account when evaluating the properties quality of a software product.
A more recent software qulity quality standard,ts ISO/IEC/IEEE 29119 [6], addresses the software testing aspects, and devide the standarts intoaccording to five categories: Concepts and Definitions , Test Processes, Test Documentation, Test Techniques, and Keyword-Driven Testing [6].
Software quality aspects and measurements become even more essitial essential in the context of modern software development processes, such as Agile Software Development (ASD). An attemptening to investegate investigate the agile Agile critical quality factors and measurements [7] fails to identify one common internotional international standarts standard adapted adopted by the industry. Nevertheless, these standards are not directly correlated with continuous integration/continuous delivery (CICD), and the incremental nature of these processes, produces continuous sources of data (e.g., continuous integration system and customer feedback).	Comment by Elizabeth Caplan: “Agile” should be capitalized throughout the paper. It is consistently used as a proper noun naming the development process rather than as an adjective.
QuoteingAccording to the fForrester report [8], that companies are have shown interested in connecting “‘‘an organization’s business to its software delivery capability”’’ by getting gaining “‘‘a view into planning, health indicators , and analytics, helping them collaborate more effectively to reduce waste and focus on work that delivers value to the customer and the business.”’’ . Adderesing Addressing the full scale of Software software quality in ASD, should represents a holistic approach to providing tight connections among all software development activities, including not only integration but also aspects such as business and development (BizDev) and development and operations (DevOps). as well as integration.
[image:]From Agile development to continuous deployment, companies evolve their software development practices over time. Typically, there is a pattern that most companies follow a particular pattern as their evolution path [9], often. They referring to this evolution path as the “stairway to heaven.”

Figure 1 The “Stairway to Heaven” evolution model [9]
The pattern suggesting suggests dependency between the stairs development stages by presenting each stair one as a building foundation for the next one (appears in Figure 1). Several studies have discussed the role and responsibilities of unit testing in traditional developmennt methods [3,11],]. however However, there is room for further research in the continuous CSE world. This paper focuses on the very first step of the actual testing – the viewing unit testing seeing it as a quality indicator during the new development life cycle.
[bookmark: _Toc491670435]
[bookmark: _Toc31279880][bookmark: _Ref31705049][bookmark: _Toc34672424]The vague definition of unit test
In our previues Previous work [3] provided, a detailed discussion on of the term, “unit test,”, terminology and usage could be found at study that argueing that there are basically two different ways to define the term “unit test:”:
· The classic way – About two- thirds of the papers existing literature related refers to the a unit test as the smallest, isolated, atomic, and code-related testing that is mainly performed mainly by the software developers.
· The component way (24%) – The focus is on a unit of functionality, not necessarily on the perception of the unit test as the smallest, indivisible portion of the program; here, the unit testing is administered mainly by testers.	Comment by Elizabeth Caplan: Perhaps the “classic way” should also show a statistic.
One could fail to assign a clear definition to specific usage terminologies, apart from the very obvious code attribute and the intended testers and intended candidates (i.e., the developers). However, once a the test is defiened by an external tester, it might be detached from the code.
This The work in [3] also differentiates the term, unit, from a component and sees an important distinction between the unit testing, which refers to the use of xUnit testing, and component testing, which is more general and means the testing of only a portion of the program. Another distinction might derive stem from the abstraction level, in which case, the unit test will usually be affiliated to with the code itself, and the component test may be expressed in functional or business terminology.
It may be wise to defrentiate differentiate between the term, “unit test,” – i.e. an action which presents the content of the item to be tested, and the actual application of unit the “unit testing,” – i.e. the process- as an execution effort.
The uUnit testing may form the basis for component testing that can be considered a higher level of testing. Component testing is sometimes known as module and or program testing. Component testing is mostly done by mostly by the testera test engineer. ItComponent testing may be done in isolation from the rest of the system depending on the model of development life cycle development model chosen for that application. In such cases, the any missing software is replaced by stubs and drivers that simulate the interface between the software components in a simple manner.
Unit testing should test individual behaviors. However, most methods have many behaviors. Therefore, a serioushe greatest pitfall might be encountered when developers test too large a unit or when they consider a method within the software to be a unit. This is particularly true in the case ofif you do not understand inversion of control, in which case yourwhere unit testing will alwaystypically turns into end-to-end integration testing. Unit testing should test individual behaviors – and most methods have many behaviors.

[bookmark: _Toc31279881][bookmark: _Toc34672425]Unit testing in CSE context
A successfully passed test must continue to be administrated and pass as long as the codebase remains constant. Fulfilling ideal code conditions for unit testing includesing isolation and atomic code [3] that improves the a programmers' programmer’s understanding of system requirements. A properly written test can be executed on an isolated section of the code and can pass although even if the developer did not understand the requirements correctly. As a result, all the tests will pass although even when many of them did not actually validate the intended functionality of the code.
However, tests that rely on an external API (application protocol interface (API), network connections, user input, threading, or and other external dependencies dependencies, must be mocked. Mocking has shown itself to be a proven and effective technique and is a widely adopted practice [3]. For example, iIf the network connection suddenly becomes disconnected, the code will subsequently fail. A well- established solution is to implement a mock in place of the actual network connection, such so that the tests can continue passing. Mocking has shown itself to be a proven and effective technique and is a widely adopted practice [3].
ApperntlyApparently, the definition of the term “unit test” is neither clear nor precise. Most of the literature considers the structural aspect of the term – e.g., atomic, isolationisolated, and connecting the action to an X-unit testing infrastructure. About a quarter of the sources defines “unit testing”the term more loosely and display a higher level of abstraction that does not restrict the definition and which allows an integrative portion of the program to be included in the unit being tested.
In a viewlight of the growing importance of the role of the level of unit testing level, Chassidim et al., [3] recommend that the two levels of testing should be destinguished distinguished in the early stages of software development:
· Unit testing – This is the process of testing an the isolated, atomic, and code-related portion of the software (a unit). It is obTvious that the right best candidates to perform this activity are the developers themselves.
· Component testing – This is the testing of a functional and larger portion of the program (a component). Aclaiming that another set of skills and another kind of knowledge are needed to perform this portion of the work.
It is vital to seperate separate between the two aspects and to allocate the best resources for each assignment, or, alternatively, to train the developers to distinguish between a classical definition of unit testing and a mixed one and to provide them with new skills and knowledge, so that they can perform these two categories of testing separately. As recommended for the two aspects of testing be separated in the early stages of software development [3], to destingwish between a clasical definition of unit testing and a mixed one. The current study aims to explore common definitions, processes, and unsolved issues related to unit testing and its related activities in continiouscontinuous real-world environments .

[bookmark: _Toc34672426]Continuous Integration (CI) and test automation

Continuous Integration (CI) is a practice where members of a team collaborate blend and orchestrate and integrate their work frequently;, each developer integrates at least daily - leading to multiple integrations per day [10]. Each integration is verified by an an automated build, which including includes testing to detect integration errors as quickly as possible. Many teams find that this approach leads to significantly reduced integration problems and allows a team to develop cohesive software more rapidly [10]. In continuous integrationCI development environments, software engineers frequently integrate new or changed revised code with into the mainline codebase [12]. This approach can reduce the amount of code rework that is needed in later phases of development, and can speed up the overall development time, by using automated processes. Test automation is considered a critical enabler prerequisite for continiouscontinuous developemetdevelopment., Hhowever, its applicability is still limited and its adaptation to testing are still limited.g contains practical difficulties in usability [13-15]. Continuous Integration (CI) is emerging as one of the success stories in automated software engineering [16,17], including compilation, building, and testing of software. However, it has received a very limited attention from the research community. For example, how widely is CI used in practice, and what are the costs and benefits associated with CI? Without answering such questions, developers, tool builders, and researchers make decisions based on feeling instead of solid empirical data. Integration has become a continuous process, as part of this is thetesting activities [12]. Therefore	
T-testing is cannot be a timely -focused operation but a continuous activity. Integration and testing are increasingly intertwined as software moves closer to deployment. Therefore, to be cost-effective, regression testing techniques must operate effectively within continuous integrationCI development environments [12]. Although, it has received very limited attention from the research community, CI, including compilation, building, and testing of software, is emerging as one of the success stories in automated software engineering [16,17].

[bookmark: _Toc34672427]Testing levels in CSE

The Agile software devleopment development life cycle (SDLC) demands that all testing be done within the a small development cycle., thus Thus, it is difficult to differentiate the testing activities within the agile Agile cycle, since it they areis done internally as part of the development routine and by the same people, who are not necessarily testers. It This might be the reason for the unclear division between testing levels [18]. AnoOther testing levels that are presentedinclude as User Acceptance Testing)UAT) and as Non -Faunctionoanal Testing (NFT), conducted on production and in a more user-oriented environments. Figure 2 presents such a separation, – portraying UAT and NFT as a separate testing stages prior to the package delivarydelivery.
[image:]Figure 2. pPossible testing levels in agile Agile SDLC
Prechelt et al., [19] dealt with the question of who is performing the agile Agile testing and evaluating the outcomes, by performing a case study. They found that the developers manage to fulfill the responsibilities of the conventional tester role by identifying which aspects that are tocan be covered by efficient automated testing and others thator are evaluated implicitly by the end-users. The risk of the latter is minimized by the developers being able to react independently and quickly in case of problems, such that the benefits of having realistic and direct end-user feedback would prevail. In addition, they revealed that a prominent disadvantage of a “quality experience work mode” [19] appears to be that integration testing beyond the team level becomes harder.
Another question raised by Prechelt et al., [19] dealt with the advantages/disadvantages ofdefined the “Quality quality experience work mode” that refers toas the quality assurance and deployment within the a team (i.e., without dedicated testers). They argued that integration testing beyond the team level becomes harderis more difficult, once it is performed by external testers that who might hamper the feedback loop more than they contribute to quality. Quality experience and dedicated testers can probably be combined if friction can be avoided in the process manages to avoid frictions from hand-overs. A limitation is that the above constraints cannot always be fulfilled. If development is too closely coupled with that of other teams or if deployment takes too long, a strong quality experience will not occur, and it may be difficult to change this. Company or team culture might also be affected. If teams are highly motivated and focused, development efforts may decrease due to less coordination overhead, and the higher degree of automation, that can could compensate on for the above disadvanteagaes.

[bookmark: _Toc34672428]Continuous Deployment (CD)

Continuous Deployment takes CI practice one step further by automatically deploying software changes to production [9]. Continuous deployment emphasizes build and test automation together with a much-reduced scope for each release. Interviews with 15 information and communications technology companies revealed the benefits and obstacles to continuous deployment [9]. Despite understanding the benefits, none of the companies. had adopted a fully automatic deployment pipeline. The study also reviles reveals that adopting continuous deployment practices involves coordination and work from teams throughout the organization and the domain in which a company operated operatesaffected the flow of continuous deployment. Current SDLC presents the continuous nature of the cycle, whereas where, after connecting the development into the release process, for example the DevOps approach [20,21], the monitoring action should provide a feedback which that initiating initiates a new planning actions for the continuous of development. An important aspect of testing within the agile Agile cycle is the necessity of test automation implementation as part as of product testing products. These automation artifacts will be used ion a later regression package and will accompany the software ion other usage contexts.

[bookmark: _Toc34672429]Implementation of continiouscontinuous software engineering

In an attempt to model a benchmark for continuous integration implementation, [9] claims concluded that there is was currently no consensus on continuous integrationCI as a single, homogeneous practice. Simply stating that they a study uses continuous integrationCI is insufficient informationsince it fails to define. As they suggested to convey instead, is what kind of continuous integrationCI is used.? It also means that, cConsidering the dramatic differences in experienced continuous integration effects [9]experienced [9], it is needed necessary to ask whichdetermine the advantages and disadvantages of the various aspects or variants of continuous integrationCI, proposed benefits or disadvantage. For this purpose, based on the findings in their study, they have proposed a descriptive model for better documentation of continuous integration variants. In previus previous work, [21] provided a systematic literature review of approaches, tools, challenges, and practices methods identified in empirical studies on continuous practices aimed to provide an evidential body of knowledge about the state of the art of continuous practices and the potential areas of research [21]. . Sixty- nine papers were selected from 2004 to 2016 for data extraction, of which, whereas 56.5% of them have beenwere published in the last three years, and only 4 four of them addressed software testing improvement. However, 39% of the studies mentioned thatthat that testing effort and time are critical factors. Not even a single research study dealt with the effect of the transitioning to CI transition and the corresponding implications of the quality and the testing processes. [22] focused on the questions of “How can one visualize visualizing end-to-end testing activities in order to support the transformation towards continuous integrationCI?. With end-to-end testing, they refer to all code, from code written by individual engineers to product release. The aim of this research was to gain insights into how to support the transition towards continuous deployment in the software development industry. Their case studies proved some disturbing findings about the change processes witnessed: significant duplicate testing efforts, slow feedback loops, late testing of quality attributes, and No no end-to-end overview of testing in commercial companies, , significant duplicate testing efforts, slow feedback loops, late testing of quality attributes, and Ad-hoc testing, or, tactical improvement efforts. These findings indicate the a lack of a holistic, end -to -end understanding of the testing activities and their periodicity., t The center product of this research was the creation of a the Continuous Integration Visualization Technique (CIViT) and the attempted to implement it in the for case studies study companies.
Recently, many organizations are have adapting adapted the Scaled Agile Framework (SAFe) and Disciplined Agile Delivery (DAD) in order to address the needs of larger projects [23]. Besides the development of code, the purpose of both frameworks is to take also the architecture, project funding, and governance of the processes and roles required by management into account. At this level, the very same lean and agile principles that have worked well at the team level are applied. SAFe is scalinges up the agile Agile method, Scrum. It is focusinges on the enterprise level, for example, with an organization-al wide release planning sessions. Some research was done on the different various roles within the Scale Agile Methods to Large Distributed Enterprises [24,25], but we didn’t find work done on the quality aspects of the process have been largely ignored. Our work looks at this issue from a the deeper perspective of the testing activities themselves, and examines the impact made on the basic layer, namely, the unit test and related testing related activities. 	Comment by Elizabeth Caplan: “agile” is an adjective here, so it is lower case.

[bookmark: _Toc31279882][bookmark: _Toc34672430]Research methodology

Participants
Interviews were conducted using qualitative semi -structured interviews with open questions at the sites of three leading software development companies in Israel and the USA (n=15). The interviewees were distribution distributed per company, is as shown in Table 1.
 [image:]
Table 1 Interviewees distribution
The companies had previously reported that they are were already working in a continuous environment. The following are general descriptions of the companies:
Company #1-, is a large-size company, (5k+ developers) provides financial crime, risk, and compliance software solutions for international financial institutions and government regulators internationally.
Company #2,- is a private ownership mid-size company (100+ developers), provides test and lab automation software solutions. The company serves network equipment manufacturers, service providers, data center operators, micro-electronics, and storage and electronics device manufacturers worldwide.
Company #3,- is an international large-size company (10k+ employees), that provides infrastructure and maintainance maintenance services.
Interviews

To explore the actual practices of continuous software engineeringCSE, we took a general interview guide approach [26] in order to ensure that the same general areas of information are were collected from each interviewee. However, in practice additional information was collected when interviewees raised other relevant topics based on their personal experiences and appeoach approaches right after answering the originally structured question. Figure 3 presents the process of preparation and implementation of the interviews.
Firstly, we approached executive managers who are in charge of implementing the CI approach to confirm their participation of the company’s participation in the study and to asked for referring referrals to the relevant role holders that could beto interviewed. Questions were sent to the managers for internal review and feedback (Fig 3. A). We then updated the questionnaire based on their inputs to improve the quality of the interviews. After consulting consultation and approvals from the top management of each company, we conducted the interviews with the relevant role holders (Fig 3. B). Before approval for publication, theT top management, before approving for publication, applied an internal audit to the answers and provided supplemental materials to support portraying to “fill the picture”the portrayal (Fig 3. C-D). To maintain the authenticity, the original terminologies and phrases were recorded and analyzed. The data were approved before publication (Fig 3. E).
 [image:]
Figure 3. preparations Preparations for conducting the interview and information collection process

The following are the questions that were presented to the participants:
Q1: Prior to the implementation of continiouscontinuous practices, what was the company approach regarding to unit testing?
Insights from this question may shed light on the path taken by the company and the role of the starting point on the specific solution the organization adaptedadopted.
Q2: Following the CSE implementation
[bookmark: _Toc31279884]Q2.1 What is the current approach towards unit testing?
Answers to this question may bringU an understanding of their initial policy and methodology that may point to future difficulties and challenges with respect to the continiouscontinuous practices.
Q2.2 What tools and technologies are they usingused for Uunit testing?
Q2.3 What tools are they usingused for unit testing automation?
Since test automation is a key enabler of CI, the selection of a certain test automation technology may foresee the complexity of creation creating of the specific solutions and future maintenance efforts.
Q2.4 What are the other testing levels they performeding?
This Iidentifyies the organization testing scope.
Q2.5 What are the measurements and KPIs used in the organization and for unit testing and quality validation?
Q3: How does the organization viewsees unit testing action activities at in the full context of quality of the process and product quality?
By looking at the full quality context, we may foresee the importance and the impact of unit testing activities. This may open the other research venues regarding other implications of CSE projects to quality assurance.
In addition to these questions, the respondents described more issues and challenges they encountered in their company companies and arethat were relevant to the context of this study.
Data analysis
Data were analyzed by compilinge the datait into sections or groups of information, also known also as themes ot or codes, in order to collect consistent phrases, expressions, or and ideas that were common among research participants [27]. In order toTo minimize biases, this evaluation was applied seperately separately by two researchers of the study and also by a representative of each comapnycompany.
[bookmark: _Toc31279889][bookmark: _Toc34672432]Case studies study findings
[bookmark: _Toc491677023]The This section generalizes summarizes the replies responses and intorduces introduces insights derived from all the three cases studies. All the three companies participating in this survey have had already adapted adopted unit testing as a vital part of their development scheme. Moreover , the unit testing role is intensifing intensified and the CICD project positions the unit testing activities as central to all activities related to quality related activities.
Generally, companies are adapting unit testing automation as their main automation engine, and defined it as using the classical definition (see section Section 2.3) using X-unit as their main unit testing tool and environment. Test automation is an important factor when addressing testing during the CICD project. Companies are selecting their testing tools with by understanding their need for automation. They will would not allow use an X-unit tool that cannot provide a test automation infrastructure. But However, since most of them are aware to of the need of for component and integration testing, they may look for additional testing infrastructure to provide withfulfill testing automation requires requirements for the Full full CICD activityactivities.
Two companies (#1 and , #2) have maintained additional testing levels internal and external to the agile Agile development cycle, although there is a general tendency to assure their testing level coverage within the aAgile development cycle. – tThis by itself dictate illustrates the preservation of expertise within the development team.
All the companies identified the measurements and the quality goals as their soft spots. They all feel felt the lack of well- established criteria for evaluating and planning their activities. The leading request complaint addresses the coverage issue – mostly what percentage of the code should be covered during the unit testing.
Unit testing has become the central quality assurance tool. In addition to the easiness ease and availability to directly employ changes and enhancement, (CI/CD) unit testing was has been described as the almost nearly the only way to produce validation and quality assurance of quality.
Issues raised following the interviews	Comment by Shlomo Mark: הפיסקה הזו דורשת עריכה לשונית מדוקדקת צריך לבקש מהעורך שיקפיד וידקדק כי ישנן פה לא מעט דקויות
החלטתי לוותר על התיקונים שלי והחזרתי למצב הרגיל
Outcomes reveal a relatively mature well- managed processes among the three casescompanies. Regardless of the different solutions and implementation of CSE projects, we may generalize our impressions as follows; .
- The transition to CI Project is a large organizational project which requires management support.
- Automation is a must; - without it, there is no way to perform continuous development.
- Unit testing is playings also an important part for in achieving the desired quality, and is becoming an activity done on a daily basis by the programmers.
- Although the desired formation of the desired infrastructure could be specified, hardly any single tool provides a full solution. Each company assembles its own tool selection and integrates all of them.
- Another aspect became evident in our study; Tthe responsibility for quality is transferred to development teams. However, we did not find t
- Thhe measurements, tools, and standards are to benot mature at this pointd. Moreover,
- T the economic benefits of the different testing levels is have yet to be formalized.
- It seems that Tthe software industry is galloping forward without an enough academic preliminary research. Whaereas iIt is hard to see a theoretical justification and support for the new trends in the academic relevant literature.
The distinction between unit testing and component testing (as appears in section Section 2.3) is supported by our findings. Different people are assigned to design and execute unit testing and component testing. The first former is developed and executed by developers, and the last latter is developed and executed by testing experts. A possible explenation explanation for this is that component testing is partially manual work – and requires different test automation tools.
[bookmark: _Toc491677025]
[bookmark: _Toc31279899][bookmark: _Toc491677027][bookmark: _Toc34672433]Discussion and conclusions

Looking at CSE trends throughu these case studies magnify illustrates the importance of unit testing activities and outcomes for the modern software development , calling calling for explicit measurements and standards. The participating organizations companies we witness associate the unit testing activity with the image of quality. They all see it as a corner stone and foundation for assuring the quality of their product. Nevertheless, they are still missing appropriate measurements and standards are still missing.
CICD trends affect the testing levels and eliminate the boundaries between different levels and forcinge a single unit to perform all the related activities. Therefore, it becomes vital to train and enrich the Agile team’s participants with unit testing proficiency and techniques. However, it is important to clearly distinguishct between the different testing activities. Unit testing by itself is considered as one of thea milestones for achieving a better quality but does not deal with all the complexity of integration and functionally testing.
Agile development teams are required to perform new activities that were done by dedicated teams in the past. For example, one of thea key success factors is the ability to automate all previously manual activities. In addition, new testing considerations should be addressed by the teams, including such as – performance, security, deploy ability, and regression.
We have not seen the a deep understanding for of the long term planning, training, and organizational support for the change. It is possible that some of the testing and quality expertise might evaporate with the tendency of to reducing reduce the professionally- oriented groups within the organization. Let us hope these organizations won’t dispense their previous knowledge and expertise before realizing the need. Thise aforementioned reported case studies study might represent subjective opinions, and therefore, we suggest to approaching a wider papulation greater number of software projects around the globe to vlaidate validate and deepen strengthen our findings.
We believe that the accelerating move trend toward agile Agile software development will dramatically change the way unit testing is practiced. One of the main trends of agile development is that testers are embedded in the Aagile development teams along with the programmers. The statement in our summary of the practices in Case StudyCompany 2, that unit testing “is done by the developers with the assistance of testing experts within the agile development teams” isshows, we believe, that the model that will increasingly be followed by the vast majority of organizations moving towards agile Agile software development. There are several key advantages of this practice:; Historicallyhistorically, unit testing has been practiced by developers in isolation with widely varying consistency and effect. In agile Agile development teams, testers paired with programmers or at least advising programmers, raise the level of consistency of unit testing and clearly improve the quality of the code produced. Since it is well-known that the earlier a defect is found in code, the exponentially less it will cost to fix the defect, we believe this is a very significant improvement in both software quality and software development cost control.
Traditionally, testers find defects in code and record as much information as they can in defect management systems. That information is then passed back to the programmers who then try to locate the source of the defects in the code. This can be a difficult and time-consuming task for the programmers. Clearly, testers working together with programmers in agile Agile teams can assist in finding the source of code defects. This is especially true if the testers involved have some level of familiarity with programming and with the programming language in use.

Another aspect, although not previously discussed, is the “exploratory testing,” that known to improve the qulaityquality, but might not be considered in the new development cycles. Programmers working in isolation often do not have the expertise to practice this form of exploratory testing or to use the technique to maximum effect. However, an experienced tester working with a programmer in an agile Agile team can make very effective use of this technique to the benefit of the quality of the code produced.

[bookmark: _Toc34672436]References
[1]	M. Shahin, M. Ali Babar, and L. Zhu, “Continuous Integration, Delivery and Deployment: A Systematic Review on Approaches, Tools, Challenges and Practices,” IEEE Access, vol. 5, no. Ci, pp. 3909–3943, 2017.
[2]	D. Ståhl, J. B.-J. of S. and Software, and undefined 2014, “Modeling continuous integration practice differences in industry software development,” Elsevier.
[3]	Chassidim, H., Almog, D., Sohacheski, D. B., Gillenson, M. L., Poston, R.& Mark, S.(2018). The Unit Test: Facing CICD- Are They Elusive Definitions? Journal of Information Technology Management, 29(2), 40.
 [4]	“ISO - ISO 8402:1994 - Quality management and quality assurance — Vocabulary.” [Online]. Available: https://www.iso.org/standard/20115.html. [Accessed: 10-Mar-2020].
 [5]	“ISO - ISO/IEC 25010:2011 - Systems and software engineering — Systems and software Quality Requirements and Evaluation (SQuaRE) — System and software quality models.” [Online]. Available: https://www.iso.org/standard/35733.html. [Accessed: 10-Mar-2020].
[6] 	H. Alaqail and S.Ahmed, “Overview of Software Testing Standard ISO/IEC/IEEE 29119,” IJCSNS Int. J. Comput. Sci. Netw. Secur., vol. 18, no. 2, pp. 112–116, 2018.
 [7]	G. Arcos-Medina and D. Mauricio, “Aspects of software quality applied to the process of agile software development: a systematic literature review,” International Journal of Systems Assurance Engineering and Management, vol. 10, no. 5. Springer, pp. 867–897, 01-Oct-2019
[8]	C. Condo and B. Seguin “The Forrester New WaveTM: Value Stream Management Tools, Q3 2018.” [Online]. Available: https://www.forrester.com/report/The+Forrester+New+Wave+ Value+Stream+Management+Tools+Q3+2018/-/E-RES141538. [Accessed: 09-Mar-2020].
[9]	Olsson, H. H. and J. Bosch (2014). Climbing the “Stairway to Heaven”: evolving from agile development to continuous deployment of software. Continuous software engineering, Springer: 15-27.
[10]	M. Fowler, M. F.- 16, 2018 from http://www. martinfowler. com/.... html], and undefined 2006, “Continuous integration. Thought-Works.”
[11] Naik, K., & Tripathy, P. (2011). Software testing and quality assurance: theory and practice. John Wiley & Sons
[12]	S. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving regression testing in continuous integration development environments,” in Proceedings of the ACM SIGSOFT Symposium on the Foundations of Software Engineering, 2014, vol. 16-21-November-2014, pp. 235–245.
[13]	J. Kasurinen, O. Taipale, and K. Smolander, “Software Test Automation in Practice: Empirical Observations,” Adv. Softw. Eng., vol. 2010, 2010.
[14]	D. Kumar, K. M.-P. C. Science, and undefined 2016, “The Impacts of Test Automation on Software’s Cost, Quality and Time to Market,” Elsevier.
[15]	K. Wiklund, S. Eldh, D. Sundmark, and K. Lundqvist, “Impediments for software test automation: A systematic literature review: Impediments for Software Test Automation,” Softw. Testing, Verif. Reliab., vol. 27, no. 8, p. e1639, 2017.
[16]	M. Hilton, “Understanding and improving continuous integration,” in Proceedings of the ACM SIGSOFT Symposium on the Foundations of Software Engineering, 2016, vol. 13-18-November-2016, pp. 1066–1067.
[17]	M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig, “Trade-offs in continuous integration: Assurance, security, and flexibility,” in Proceedings of the ACM SIGSOFT Symposium on the Foundations of Software Engineering, 2017, vol. Part F130154, pp. 197–207.
[18]	R. Black, “Certified Tester Foundation Level Extension Syllabus Agile Tester,” 2014.
[19]	L. Prechelt, H. Schmeisky, and F. Zieris, “Quality experience: A grounded theory of successful agile projects without dedicated testers,” Proc. - Int. Conf. Softw. Eng., vol. 14-22-May-, no. May, pp. 1017–1027, 2016.
[20] R. Pietrantuono, A. Bertolino, G. De Angelis, B. Miranda, and S. Russo, “Towards continuous software reliability testing in DevOPs,” in Proceedings - 2019 IEEE/ACM 14th International Workshop on Automation of Software Test, AST 2019, 2019, pp. 21–27
[21] M. Shahin, M. Ali Babar, and L. Zhu, “Continuous Integration, Delivery and Deployment: A Systematic Review on Approaches, Tools, Challenges and Practices,” IEEE Access, vol. 5, no. Ci, pp. 3909–3943, 2017.
[22] A. Nilsson, J. Bosch, and C. Berger, “Visualizing testing activities to support continuous integration: A multiple case study,” in Lecture Notes in Business Information Processing, 2014, vol. 179, pp. 171–186.
[23] S. W. Ambler and M. Lines, “The disciplined agile process decision framework,” in Lecture Notes in Business Information Processing, 2016, vol. 238, pp. 3–14.
[24] J. M. Bass, “How Product Owner Teams Scale Agile Methods to Large Distributed Enterprises.”
[25]	 T. Dingsøyr, N. B. Moe, T. E. Fægri, and E. A. Seim, “Exploring software development at the very large-scale: a revelatory case study and research agenda for agile method adaptation,” Empir. Softw. Eng., vol. 23, no. 1, pp. 490–520, Feb. 2018.
[26] D. W. Turner, “Qualitative interview design: A practical guide for novice investigators,” Qual. Rep., vol. 15, no. 3, pp. 754–760, 2010.
[27] S. Kvale, “Interview Quality,” in Doing Interviews, SAGE Publications, Ltd, 2011, pp. 79–91.
[bookmark: _Toc34672437]
image2.png

image3.png

image4.png

image5.png

Continu

ous

Software Engineering

and

Unit

T

esting

from

T

heory

to

P

ractices

Chas

s

idim Hadas

Department of

S

oftware

E

ngineering

Shamoon

C

oll

e

ge

of

E

ngineering

hadasch@sce.ac.il

Almog Dani

Department of

S

oftware

E

ngineering

Shamoon

C

oll

e

ge of

E

ngineering

Almog.dani@gmail.com

Mark Shlomo

Department of

S

oftware

E

ngineering

Shamoon

C

oll

e

ge of

E

ngineering

marks@sce.ac.il

Abstract

:

T

he software industry

has recently

move

d

to

a

more

flex

i

b

le

and

contin

uo

u

s

Software Life Cycle

Development (

SDLC)

with

the

Agile

development

ap

p

roach

,

which

integrates the stages of development

,

d

elivery

,

and

d

eployment

.

This

trend

has

exposed

the

tendenc

y of

increasing

rel

iance

on

unit testing as well as

test

automation

for

the

fundamental

quality

assurance of

the code development process

.

To

implement CSE

,

it

is vital to assure

that

unit

testing

activities

are

an

integral

and well

-

defined

part of the

process

.

In this paper

,

we review the academic definition of

unit testing

from the

CSE

world and

introduce a

case study

that

examin

es

the implementation of

unit testing

at

three

software

companies

that

have recently moved to

CSE

methodology

.

The results

corroborate the argument

that

unit testing

is

a cornerstone

for development

and

an

indicator

of

software quality.

Key

words

: Unit testing,

c

o

ntinuous

practices

,

c

ontinuous

testing

,

integration test

, CICD

1

Introduction

Continuous

software engineering

(CSE)

,

also

known as

continuous

practice

, ha

s

become

wide

-

spread in many software development

organizations

[1]

.

This

trend

enables

developers

to

provide

earlier and

continuous

delivery of adaptation

s

and changes to the

software

product

[1,

2]

.

However, it

presents a

need to understand the impact on quality

and testing procedures

with respect to

all

dimensions of the organization and

the

development process

.

In

s

oftware development

,

unit

testing

is one of the primary and

basic activities of the development process

and

is executed

by

the programmers

themselves

;

therefore

,

a common language among team members

, who

use

the term "unit

test

ing

"

[3

]

is essential

.

Continuous Software Engineering and Unit Testing

from Theory to Practices

Chassidim Hadas

Department of Software Engineering

Shamoon College of Engineering

hadasch@sce.ac.il

Almog Dani

Department of Software Engineering

Shamoon College of Engineering

Almog.dani@gmail.com

Mark Shlomo

Department of Software Engineering

Shamoon College of Engineering

marks@sce.ac.il

Abstract: The software industry has recently moved to a more flexible and continuous

Software Life Cycle Development (SDLC) with the Agile development approach, which

integrates the stages of development, delivery, and deployment. This trend has exposed

the tendency of increasing reliance on unit testing as well as test automation for the

fundamental quality assurance of the code development process. To implement CSE, it

is vital to assure that unit testing activities are an integral and well-defined part of the

process. In this paper, we review the academic definition of unit testing from the CSE

world and introduce a case study that examines the implementation of unit testing at three

software companies that have recently moved to CSE methodology. The results

corroborate the argument that unit testing is a cornerstone for development and an

indicator of software quality.

Keywords: Unit testing, continuous practices, continuous testing, integration test, CICD

1 Introduction

Continuous software engineering (CSE), also known as continuous practice, has become

wide-spread in many software development organizations [1]. This trend enables

developers to provide earlier and continuous delivery of adaptations and changes to the

software product [1, 2]. However, it presents a need to understand the impact on quality

and testing procedures with respect to all dimensions of the organization and the

development process. In software development, unit testing is one of the primary and

basic activities of the development process and is executed by the programmers

themselves; therefore, a common language among team members, who use the term "unit

testing" [3] is essential.

