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Abstract

Collaborative Multi-Agent Planning (MAP) under uncertainty with partial observability is a
notoriously difficult problem. Such MAP problems are often modeled as Dec-POMDPs, or
its qualitative variant, QDec-POMDPs, which is essentially a MAP version of contingent
planning. The QDec-POMDP model was introduced with the hope that its simpler, non-
probabilistic structure will allow for better scalability. Indeed, at least with deterministic
actions, the recent Iterative MAP algorithm (IMAP) scales much better than comparable
Dec-POMDP algorithms.

In this work, we describe two new approaches for solving Deterministic QDec-POMDPs,
which share a common factored framework that is motivated by the main ideas behind
factored algorithms for classical planning, in that a problem factoring is achieved by defining
the planning problem as the MAP problem.

In our first approach, we start by finding a solution to a MAP problem where the results of
observation are available to all agents. This is essentially a single-agent planning problem for
the entire team, called the team-problem. Then, we project its solution tree into sub-trees, one
per agent, and let each agent transform its projected tree into a local tree executable online.
If all agents succeed, we combine the trees into a valid joint-plan. Otherwise, we continue to
explore the space of team solutions. We call it the QDec-FP approach. In the second approach,
we describe a planner that uses richer information about agents’ knowledge to improve the
team planning process to generate more “informed” single-agent plans for the entire team.
Modeling individual agent’s knowledge also supports modeling communication between
agents and planning using it. In particular, we discuss the idea of Signaling, where agents
share knowledge by changing the state of the world, and we named this algorothm QDec-FPS
(for Signaling). We also discuss the soundness, completeness, and other theoretical properties
of the two approaches.

To test the properties of our approaches, we model and describe a number of new MAP
domains, and we empirically show that the QDec-FP planner performs and scales much better
than the IMAP planner on both old and new MAP domains. We note that previously, IMAP
was the best QDec-POMDP solver, scaling much better than recent Dec-POMDP planners.
Consequently, QDec-FP scales to even larger problems, much beyond that attainable by state-
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of-the-art Dec-POMDP solvers. Then, we test the scalability of QDec-FPS by comparing it
with QDec-FP and show that QDec-FPS performance is overall much better and has better
applicability. Moreover, we show that this new approach solves MAP problems that cannot
be practically solved by QDec-FP, as they require the use of signaling.

One core property of the MAP domains used above for evaluating the QDec-POMDP
frameworks is that they often model loosely-coupled agents. These MA domains assume that
the single-agent actions do not interact with each other when performed concurrently. Or, that
if two or more single-agent actions interact, this is modeled using an explicit, collaborative
action that comprises these interacting actions. In some sense, such multi-agent planning
domains model useful concurrency if required to achieve useful things but do not care about
efficient planning.

To better investigate efficient description of domains in which actions interact more
strongly, the next part of this work studies interacting actions – actions whose joint-effect
differs from the union of their individual effects. Such actions are challenging both to
represent and plan with due to their combinatorial nature. We study the representation of
these actions in the simpler MAP settings with full observability and with no uncertainty. So
far, there have been few attempts to provide a succinct language for representing them that
can also support efficient centralized planning and distributed privacy-preserving planning.
We suggest an approach for representing interacting actions succinctly and show how such
a domain model can be compiled into a standard single-agent planning problem as well as
privacy-preserving multi-agent planning. We test the performance of our method on several
novel domains involving interacting actions and privacy.
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Chapter 1

Introduction

Our world has become much more “interconnected” in the last twenty years. Even if
we see things historically, this interconnectedness has been part of our life. This implies
that there are multiple types of interactions possible among different aspects of our lives,
especially when we see each human being as an independent “entity”. For example, we fight
a war together, are involved in politics, play games like Chess, etc. The realization of the
central role of multi-agent interaction has led to the formalization of Game Theory [100].
Over sixty years ago, (computer) scientists took this idea of real “entity” (or “agent”) into
Artificial Intelligence (AI). They thought of an artificial entity acting in an environment
while interacting with it simultaneously over a sequence of (time-)steps. Moreover, they also
considered multiple entities interacting with each other in some sense, passing information
to each other, assisting each other to achieve “joint-goals” collaboratively, etc. Later, it was
realized that even while working as a team, agents may want to secure some information that
they do not want to share with other team members, exactly as we humans do. Even in a
cooperative setup in which entities have a joint utility, they remain distinct entities and often
have privacy concerns. So, in principle, we reach a view of multiple entities working in an
environment interact with each other and the environment, and if needed, they aspire to keep
their secrets unrevealed [27, 35, 94]. These entities are “intelligent”, in the sense that they
have computational capabilities and multiple smart sensors onboard, using which they make
decisions on how to act in the environment.

Today, we observe the interconnectedness of multiple entities like routers, robots, com-
puters, people in our surroundings, whether we talk about our physical surroundings or a
virtual surrounding. This gives rise to abundant examples of real and virtual multi-agent
systems around us. And with the increasing penetration of the Internet of Things (IoT)
and advances in robotic technologies, in the future, their number will increase. In many of
these systems, the entities – be they smartphones, autonomous cars, intelligent robots, smart
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home-appliances (part of IoT) – work together to achieve joint goals. We expect them to
solve a variety of real-world problems in the future, and to cooperate and coordinate with
each other to achieve our goals.

With the increasing number and sophistication of current agents/devices, it is critical to
properly control their behavior, i.e., so that they act, communicate, and coordinate effectively.
This task becomes much more challenging when the environment is partially observable
and unpredictable and when the entities have noisy sensors. The reason is that each entity
can typically sense only its immediate surrounding. Because the entities often differ in
their location and capabilities, each entity learns a different aspect of the environment. This
situation leads to entities with partial and different knowledge of the state of the world.
Therefore, making sure that their overall, combined behavior is effective is a non-trivial task.
We note that from now onwards we will use the terms “entity” and “agent” interchangeably.

Given the complexity of the problem, alluded to above, it is clear that manually construct-
ing good controllers for operating a multi-agent system with even a small number of entities
in a partially observable and uncertain environment is a non-trivial task. Instead, the area
of automated multi-agent planning seeks to automatically generate such controllers given a
suitable specification of the domain and the problem. The goal of this thesis is to address the
problem of planning for a cooperative multi-agent system. Such cooperative systems form
a major part of the MA systems alluded to earlier. Our primary focus is on collaborative
multi-agent planning with partial observability and collaborative multi-agent planning with
interacting actions and privacy. We briefly describe our contributions in later sections of this
chapter and more thoroughly in the upcoming chapters.

But first, let us review the idea of automated planning. Ghallab, Nau, and Traverso (2004)
define planning [13] as follows: Planning is an abstract, explicit deliberation process that
chooses and organizes actions by anticipating their expected outcomes. This deliberation
aims at achieving as best as possible some prestated objectives. Planning is considered a
centralized process traditionally, in which a “single entity” participates in building a plan
that achieves defined objectives of a planning task.

Classical planning is the simplest form of planning, which models a centralized process
in which a planner plans in a fully observable environment and assumes that it also controls
this environment. Moreover, actions have deterministic outcomes, and the planner always
starts from a fully known initial state. But even in its simplest form, planning is known to be
PSPACE hard [21]. Therefore, planning researchers often aim at understanding the nature of
planning problems [2, 14]. They exploit their understanding for designing new algorithms
that expand our horizon of practically solvable problems. Most work in this area has focused
on devising domain-independent approaches, i.e., approaches that can be applied to solve
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any planning problems whose description contains a domain model. Such a model comprises
a finite set of variables (boolean or multi-valued) and actions, and each action is describe
by its preconditions and effects. In general, much work in automated planning is centered
on devising domain-independent technology [33] in varieties of real-world applications like
space-exploration, military operations, routing, rescue missions, logistics, etc.

Multi-Agent Planning (MAP) is the problem of planning in the presence of multiple
entities who plan and act together in a shared environment [59]. Some real-world examples
that can be viewed as MAP problems are multi-agent logistics problems, multi-agent search
and rescue operations, etc. The presence of several entities, and therefore the requirement
to keep in mind the number of different actions they could perform and how their goals are
aligned with each other, makes such problems more complex than the classical planning
problem. Assuming, e.g., that the agents are cooperative, can make the MAP problem
somewhat simpler.

Agents are known as non-strategic or cooperative agents if they do not have any private
objectives to fulfill and work in a cooperative manner towards solving a planning problem
with a common goal. Agents are known as competitive or self-interested or strategic if they
participate in planning with an “intention” to maximize their individual-profits and being
motivated towards accomplishing their own goals. Often, a framework (like in [57]) that
models the MAP problem, at a high level, is an extension of single-agent distributed planning
(or problem-solving) framework [14, 101]. Once the framework is formalized, we use this
very framework for planning and decision-making purposes for each agent in the team.

One may ask why one cannot simply solve the MAP problem as a single-agent problem
in which the agents are simple entities, like other objects. The single-agent solver would
solve the MAP problem on a centralized system. Later, a post-processing step would split the
obtained centralized solution to generate an individual plan for each agent. This idea is not
feasible for many systems. First and foremost, strategic agents – i.e., agents that pursue their
own interests – are unlikely to agree to share their information and accept a policy from a
third party (but secure computation schemes can make this possible in some scenarios). For
example, taxi drivers might not share information that breaches their privacy or affects their
profits. Similarly, cooperative agents with privacy concerns are not likely to agree to such
a centralized approach. But more fundamentally, the planning process must take account
of the potentially multiple, different states of information of the agents at execution time.
These can be due to different initial information states, and in distributed systems with partial
observability, naturally arise due to the fact that different agents receive different signals
from the environment. This situation is quite different from that of single-agent planning, in
which we must reason about a single belief state only.
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But while naively solving MAP centrally as if it is a single-agent planning problem
is often not possible, planning independently for each agent, while carrying potential ad-
vantages, is also often problematic because the agents’ actions might be interacting [81].
Hence independent planning can produce plans that are conflicting during execution. In
these circumstances, we need centralized planning to produce a complete, non-conflicting
executable plan for the agents that takes the nature and structure of the MAP problem into
account.

Much work has been done under the general topic of multi-agent planning. Following
Durfee (2001), here are a few possible options for automated multi-agent planning for
multiple agents [26]. First, distributed planning for distributed plans where both the planning
process and the obtained resulting plans for the agents are distributed. In that case, an entity
does not need to know the complete problem specification, and entities could have only
partial information about the environment. Second, distributed planning for centralized plans
where to solve a single-agent problem, we use multiple computational devices, which helps
parallelize the planning process and makes the overall process faster. Later, the generated
individual solution plans are combined to form one complete solution plan for the original
problem. Third, centralized planning for distributed plans where a centralized solver solves
a MA problem such that the obtained solution is distributed among the acting agents.

This third option is often the most natural to follow, as it ensures suitable coordination
between the plans executed by different agents. Such coordination may call for maintaining
some ordering constraints among the actions of different agents, and in particular, executing
certain interacting actions concurrently to achieve their desired effect. Indeed, because the
main reason for centralize planning is to enforce proper coordination, it may suffice to achieve
such coordination by solving an abstract (relaxed) version of the MAP problem centrally in
order to generate a skeleton that guides agent-level planning, making the overall planning
process a lot easier and efficient. Here, centralized planning is used only for coordinating the
agents’ action interaction points. Based on these points, some commitments are generated
for each agent, and these commitments need to be met and, hence, they carefully direct the
agent while it plans for itself.

The thesis primarily focuses on this third option, centralized planning for distributed
online execution, which we believe to be the best strategy among the three for the class
of cooperative MA problems this work targets. We focus on problems in which agents
have only partial information about the state of the world. However, towards the end, while
dealing with agents’ privacy when the actions of the agents are interacting, we also discuss
privacy-preserving planning [13, 52, 57, 79, 95] with interacting actions [12, 82].
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The most widely used model for the class of cooperative MAP problems under partial
observability we wish to deal with is the Decentralized POMDPs (Dec-POMDPs) model.
Dec-POMDPs offer a rich stochastic model to capture multi-agent planning under uncertainty
with partial observability [7, 8, 59, 78]. They are an extension, a generalization, of POMDPs
for the case of multiple entities with possibly different states of information. Dec-POMDPs
solutions consist of (different) policies for different agents. Dec-POMDP algorithms seek to
generate such policies with the aim that when the agents execute their policies online, the
expected cumulative discounted future reward for the team is maximized. The complexity
of finding optimal policies for Dec-POMDPs is NEXP hard, making it difficult to solve
instances of real life problems from this class.

A key requirement from each agent’s policy in this framework is that the agent’s choice
of action depends on only its state of information [8]. An important realization is that part of
one agent’s policy could be to change the state of information of the another agent. This is
essentially what communication does. But communication is just one explicit example of
how agents can influence the state of information of other agents. A more general perspective
is that agents can change the state of the world not only to farther their goals, but also to
affect the information state of another agent. For example, one agent may place the house
key under the doormat to signal to a second agent that it is not at home. Later, the choice of
action of the second agent may depend on this new information. Indeed, viewed this way,
communication is simply an act of changing the state of some communication channel.

As an alternative to the Dec-POMDP framework, we study a conceptually simpler,
non-stochastic framework for MAP under uncertainty with partial observability, called
Qualitative Dec-POMDP (QDec-POMDP), which is a generalization of the single-agent
contingent planning model [1, 42, 49, 54]. In contingent planning, a single-agent with
sensing actions, starts in an initially unknown state and seeks to achieve its goal regardless
of its true initial state while using its sensing actions to learn useful information about its
environment [1, 65, 67]. The solution to a contingent planning problem can be represented as
a tree (or a graph). The non-leaf nodes of this tree represent actions, and the edges represent
the observation made by the agent, while each leaf node denotes a state that satisfies the
goal condition [42]. The contingent planning problem is the most general problem in the
planning field but is considered one of the hardest [73]. In QDec-POMDPs, we replace the
quantitative probability distributions over possible states with qualitative sets of states. This
model is less expressive since it specifies the possible outcome states without their likelihood.
This can potentially help us solve qualitative versions of problems where it is difficult to
obtain an accurate quantitative model, or when such a model is too complex to solve.
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In terms of the worst-case complexity, Qualitative Dec-POMDPs is known to be no
easier than Dec-POMDPs [18]. Nevertheless, a multi-agent contingent planning formalism
offers two main advantages. First, it uses a propositional (a.k.a. factored) state model that
is much more convenient model to specify and more succinct than flat state models that
characterize much of the work on Dec-POMDPs. Second, much like contingent planning,
QDec-POMDPs is more amenable to the use of current classical planning methods, which are
quite powerful. This is especially true for deterministic QDec-POMDPs. Indeed, the authors
of the QDec-POMDP model introduced this framework with the hope that thanks to these
advantages, it would scale up better. Initially, in Deterministic MAP problem with partial
observability, QDec-POMDP algorithms scaled only somewhat better than contemporary
Dec-POMDP algorithms. But more recent algorithms, like the Iterative MAP algorithm [5],
scale much better than contemporary Dec-POMDP solvers. The majority of this thesis
focuses on scaling to even larger deterministic QDec-POMDP models.

Following the solution structure of the contingent plan [42], the solution of QDec-
POMDPs can be represented as a joint-policy tree (or a graph). The nodes of this tree are
labeled by agents’ joint-actions, while the edges are labeled by their joint observations. The
leaf nodes of this joint-policy tree correspond to goal states. The high branching factor of
such a joint-policy tree limits the scalability of this representation. However, one can obtain
local policy trees, one for each agent, from this joint-policy tree, which has an exponentially
smaller branching factor.

Figure 1.1 shows a joint-plan tree for a problem in the Box-Pushing domain, taken
from [18]. It shows a joint-solution to a simple QDec-POMDP problem in the Box-Pushing
domain. There is a grid-like structure having three cells marked as 1, 2, and 3. Two agents
ϕ1 and ϕ2 start from cells 1 and 3, respectively. In each cell, there could be a box. The boxes
in the left and right cells are light, and the one in the center is heavy. A light box needs only
one agent to be pushed, while the heavy box requires two agents to push at the same time to
move it out of the grid. Agents can sense whether a box is in a cell. The goal is to move all
boxes out of the grid.

In many practical problems, in the cooperative settings, such as the MA Logistics problem
or the above box-pushing domain, the total number of action interactions is limited. Although
some actions must be executed concurrently to succeed (e.g., as the case of two agents
pushing the heavy box), an agent can achieve parts of the joint goal through its own actions.
Moreover, it can also assist other agents, making it possible for them to execute actions that
serve the common objective. In such cases, we might want to try to solve as much of the
problem locally, provided that the overhead of ensuring that the local policies are properly
coordinated is not too large.
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Fig. 1.1 This figure shows a joint-plan tree for the box pushing domain with 2 agents and
a possible joint policy tree with nodes labeled by joint actions. Possible agent actions
are sensing a box at the current agent location (denoted SB), moving (denoted by arrows),
pushing a box up (denoted P), and noop (denoted N). On the second level of the tree, nodes
marked 1 and 2 must have the same action for ϕ1 (push up in this case), because ϕ1 cannot
distinguish between these two nodes. Likewise for nodes 2 and 4 with respect to ϕ2 that
cannot distinguish between them.

Having this intuition in mind, in this thesis, we focus on solving deterministic QDec-
POMDPs, too. In Chapter 3, we present an approach that, solves multiple single-agent
planning problems in order to solve this MA model. This approach is motivated by the
main ideas behind factored algorithms for classical planning in which problem factoring is
accomplished by defining the problem as a MAP problem [14]. At a high-level, the approach
works as follows: It starts by treating the entire MAP problem as a single-agent problem. We
refer to this simplified problem as the team problem, and to its solution as the team plan. Our
approach then projects the team solution into multiple parts, one for each agent. Each agent
then fixes their part carefully. Finally, the solver centrally aligns the individual solutions to
create an online executable joint policy tree.

The team planning process relaxes the need to maintain different information states for
different agents and manages just one belief state for all the agents. This often leads to
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solutions in which some agents cannot fix their projected part of the team solution. As a
result, the planner must backtrack and start again with a new team problem.

To address this issue, we propose in Chapter 4 a modified algorithm for solving QDec-
POMDPs, which makes team problems less abstract by reducing the overgeneralization they
perform. The new approach models “agent-specific knowledge” at the team level, which
helps generate informed team solutions. Modeling knowledge also helps model and plan
using communication – either implicit or explicit. We use this ability to model implicit
communication in this approach, where agents share information by changing the state of the
world. That is, one agent, can communicate certain information to another agent by acting in
the world and changing its state in a prespecified way, which eventually acts to change the
other agent’s knowledge about the world.

The empirical evaluation, covered in detail in Chapters 3 and 4, shows that both our
approaches scale well beyond contemporary (Qualitative) Dec-POMDP solvers.

If one considers the nature and structure of the class of MAP problems modeled for
evaluating our approaches, one can see that a “core” property appears in all of them. That
is that the agents modeled in these domains are loosely-coupled, and as a result, the agents’
policies obtained are often loosely-coupled. We alluded to this property, earlier. Moreover,
we plan with these domains such that, at a time instant, only a single action can be executed,
either by one agent or by a set of collaborating agents. We refer to those latter actions
involving multiple agents as collaborative actions [5, 81].

But what happens if we want to parallelize a sequential plan as much as possible; or if
there is a rich set of interacting actions that we wish to describe; or, if there are time, resource
or other constraints that render the problem unsolvable unless actions are appropriately
scheduled together. In such cases, we may need to try to schedule as many actions as possible
concurrently. But how do we model the effect of diverse combinations of single agent
actions?

In the worst case, we need to specify one collaborative action (better known in this case
as joint-action) for every combination of actions executed by the agents. With enough agents,
it is practically impossible to obtain an explicit specification due to its exponential size; let
alone plan with it efficiently. For that reason, when possible, we would like to have a succinct,
implicit specification of the set of joint-actions, and to design algorithms that can effectively
use such a specification.

To see the complications that can arise when specifying joint actions, consider what
happens if a planning domain model contains a single-agent action, lift(table), and a two-
agent collaborative action joint-lift(table). In that case, the planner can concurrently schedule
two single-agent lift(table) actions by two agents, which should be illegal as there exists
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an explicit two-agent joint-lift(table) action. Also, suppose that there exists a collaborative
action, joint-lift(table), comprising three agents. Now, the planner must be forbidden to
apply three single-agent lift(table) actions together, or a two-agent joint-lift(table) and a
single-agent lift(table) actions together. And what if an agent places an object on the table
once other agents lift it?

To better investigate an efficient description of domains in which actions interact more
strongly, the next part of this work studies interacting actions – those actions whose joint-
effect differs from the union of their individual effects. Interacting actions are challenging
both to represent and plan with due to their combinatorial nature. To be succinct, a represen-
tation for joint actions must be compositional. That is, there must be some way of deducing
the effect of the concurrent execution of actions ⟨a1, . . . ,an⟩, in which some components
might be interacting, from the effects of smaller combinations.

Since representation and planning with interacting actions is non-trivial, most work
on multi-agent planning algorithms ignores this issue and considers sequential actions or
concurrent non-interacting actions. In the former case, joint-actions are not an issue, and
sequential plans containing actions by different agents are generated. In the latter case,
only actions that impact different variables or have the same effect on shared variables are
considered. In that case, the effect of a joint-action is the union of effects of its component
actions.

So far, there have been few attempts to provide a succinct language for representing
them that can also support efficient centralized planning and distributed privacy preserving
planning. In Chapter 5, we suggest an approach for representing interacting actions succinctly
and show how such a domain model can be compiled into a standard single-agent planning
problem as well as to privacy preserving multi-agent planning.

1.1 Main Contributions

This thesis describes two main contributions: the development of the state-of-the-art QDec-FP
and QDec-FPS algorithms for solving QDec-POMDPs, and the development of a language
for specifying interacting actions and a planning algorithm that can take this input as a
representation, supporting a certain level of privacy, as well.

Chapter 3 (based on [83]), proposes a factored planning approach to solve QDec-
POMDPs. The approach works as follows: First, we solve a relaxed MAP problem in
which we assume that communication is free and immediate. That means an observation
made by one agent is available to all agents immediately. This is a single-agent planning
problem and we call it a team problem, and its solution is called a team solution. From a team
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solution, we extract a sub-tree for each agent. We refer to this as the agent’s projection of the
policy tree. These agent-specific projected sub-trees are not likely to be executable. Thus, the
next step in the algorithm is to let each agent fix its projected policy. If the agent succeeds,
generates a policy that the agent can execute online (provided the other agents execute their
actions in the team policy). Of course, the single-agent problems may not be all fixable, in
which case we must backtrack and seek a new team solution. But if they are all solvable,
then we can get a sound joint policy tree for the original problem by taking the solutions of
all the projected problems and properly aligning their actions. Overall, the factored approach
has performed much better than IMAP on existing and new benchmark domains.

Chapter 4 (based on [85]), describes a planner that uses richer information about agents’
knowledge to improve upon our current factored planning approach. While investigating our
factored approach deeper, we realized that team planning problems exceedingly abstracts the
underlying problem. That is, many of the solutions of the team problem cannot be extended
into real, distributed policies. The new algorithm uses enhanced reasoning about individual
agents’ knowledge in the team problem. Reasoning about individual agents’ knowledge
during team plan execution has two main advantages. First, it will lead to the generation
of more informed team plans that are easier to extend to sound solutions because the team
planner adds an action only if the agent that executes it knows that its preconditions hold.
This, in turn, forces the team planner to add additional, needed, sensing actions. Second, it
allows us to model, within the team plan, the process of explicit and implicit communication,
which we refer to as signaling. Note that to support signaling, the planner must model the
knowledge of each agent within the team plan. Otherwise, the planner has no reason to
insert signals into the plan because signaling does not enhance the overall knowledge of the
team. Our new approach is able to use signaling, and can solve problems that cannot be
solved without it. Overall, this approach is shown to perform better than the original factored
approach on the MAP domain with partial observability.

We also discuss the soundness and completeness properties of the two planners. In
principle, both the planners are sound, but they are incomplete because they are implemented
on top of an incomplete algorithm for single-agent contingent planning. However, one
could ask whether they would be complete if the underlying single-agent solver is complete.
Unfortunately, it turns out that in some cases, the mechanism used in QDec-FPS to reason
about agent’s knowledge is too weak for this to be true. We explain and illustrate this problem
in Section 4.4.3.

The last part of the thesis (in Chapter 5) thoroughly studies efficient specifications of
MA planning domains and planning using them, in which actions interact more strongly.
Due to the combinatorial nature of interacting actions, they are non-trivial to represent and
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plan with. There have been only a few attempts made to provide a succinct language for
representing interacting actions, which can also support efficient centralized planning and
distributed privacy-preserving planning. We suggest a method for representing interacting
actions succinctly and show how a domain model, specifying strong action interactions,
can be compiled into a standard single-agent planning problem and a privacy-preserving
multi-agent planning problem. We evaluate the performance of our method on several novel
domains involving interacting actions and privacy. This work was published in 2018 [81],
and its extension got published in 2020 [82].

1.2 Thesis Structure

Following this brief overview of the context, motivation, and main contributions of this thesis,
the rest of this thesis is structured as follows:

• Chapter 2: This chapter provides a detailed background required to understand this
thesis and an overview of related work.

• Chapter 3: This chapter describes an approach for solving deterministic QDec-
POMDPs, based on factored planning approach [83]. We discuss its theoretical
properties and empirically show that it scales much better than IMAP and discuss the
results.

• Chapter 4: This chapter describes an improvement over the factored planning ap-
proach presented in Chapter 3. First, we discuss the shortcomings of the previous
method, which work as a motivation for the improved approach. Then, we explain
how we can address them by introducing and explaining them via an example. We
introduce agent-specific knowledge modeling at the level of team planning. Next, we
demonstrate that knowledge modeling enables the approach to model and use commu-
nication between agents during team planning. We discuss its theoretical properties
and show that it scales overall much better than the former method, and show that it
has better applicability, too.

• Chapter 5: This chapter provides a thorough study of an approach for representing and
planning with interacting actions in deterministic, fully-observable MAP problems [81,
82]. It puts forth an intuitive formalism for specifying joint-actions in a compositional
way. To test our approach, we introduce a number of new domains and present the
empirical results. This chapter also highlights and discusses subtle issues that arise
when attempting to model and plan with interacting actions.
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• Chapter 6: This chapter concludes with a summary of the main contributions, and
presents some of the challenges for future work.



Chapter 2

Background and Related Work

Multi-agent planning exists at the intersection of automated planning and multi-agent systems
and relates to each of these sub-fields of artificial intelligence to a certain extent [89]. In
Chapter 1, we briefly discussed that many MAP configurations are possible depending
on the varieties of the problems. Different frameworks exist for different aspects of the
problems, like when the agents are cooperative, strategic, or self-interested, and whether
the environment is stochastic or static, and when agents have different capabilities and their
abilities to achieve something in the world is stochastic or non-stochastic. Table 2.1 shows a
taxonomy of planning models based on different such settings available. For more details,
we refer readers to [86, 87, 89, 91–93].

Variants of the class of MAP problems targeted in this work are often represented using
models like Dec-POMDPs [59], Qualitative Dec-POMDPs [18], MA-STRIPS [14], MA-
PDDL [43, 44], etc. MAP researchers generally focus on devising domain-independent
automated multi-agent planning algorithms to solve these models efficiently. In this work,
we formalize a representation for planning for multiple agents with interacting actions; and
to support efficient planning using this formalism, develop domain-independent, efficient
methods in centralized and distributed settings.

This chapter provides the background required for the thesis in detail; and we survey
related work relevant for multi-agent planning in the desired settings. One primary motivation
behind developing this work and the general study of MASs [39, 92, 99] is to provide speed-
up (via problem decomposition and distributed computation), scalability, and flexibility
(via adding additional agents, changing their capabilities, or making problems harder),
representation, and privacy. Hence we describe appropriate work from the literature of both
automated planning and MAS areas up to an extent. A more in-depth look into the work
closely related to the new algorithms, formalisms, and results presented here is discussed in
Chapters 3, 4 and 5.
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Table 2.1 (Following [89]) Different planning models depending on particular settings:
Abbreviations used in this table are: Det. - Deterministic; NonDet. - Non-Deterministic;
MDP - Markov Decision Process; POMDP - Partially Observable MDP; STRIPS - Stanford
Research Institute Problem Solver; MA-STRIPS - Multi-Agent STRIPS; POSG - Partially
Observable Stochastic Games; MA-PPP - MA Privacy-Preserving Planning

2.1 Background

We describe each building block used to build this work (following Table 2.1), independently.
We also present the problem models that this work uses or extends. Since automated planning
is our main objective, we informally define it as the problem of sequencing a number of
actions performed in an environment so that it is transformed from its current state to a state
that satisfies some prestated goal conditions.

2.1.1 Single-Agent Frameworks

Before we delve into the details of multi-agent planning and decision-making frameworks,
we first discuss relevant approaches and frameworks for the single-agent planning problems
succinctly. However, we assume that readers are familiar with these topics, and hence the
upcoming definitions and formalisms would be just a refresher and are there to introduce
notations. For more details, we refer readers to [34, 76]. In our work, we use different
generalizations of these single-agent frameworks for taking into account multiple agents.
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STRIPS Planning

The Stanford Research Institute Problem Solver, or in short STRIPS, is an automated planner
developed by Fikes and Nilsson (1971) at SRI International [32]. Later, STRIPS also became
the name for a formal language representing the classical planning problem, which works as
an input to an automated planner.

Definition 1 (Planning Task [32]). It is also called the STRIPS task or planning in short, is
a 4-tuple ⟨P,A, I,G⟩ such that its components are:

• P is a set of conditions (i.e., propositional variables or atoms). An element s ⊆ P is
considered a state of the system. The initial state, I ⊆ P, encodes a state that has a set
of conditions true initially, and G ⊆ P encodes the goal conditions that must hold for a
state to be considered a goal state.

• A is the set of actions such that each action a ∈ A has syntax and semantics based on
the standard STRIPS formalism, that is, a = ⟨pre(a),eff+(a),eff−(a)⟩. Here, pre(a) is
the precondition of the action such that the action a being applicable in a state s ⊆ P,
its precondition should be true in the state, i.e., pre(a)⊆ s. And, eff+(a) and eff−(a)
are the positive effect and negative effect of this action, respectively.

a(s) = (s− eff−(a))∪ eff+(a) (2.1)

If an action a is applicable in s, we denote the resulting state as a(s), while the resulting
state is undefined if the action is not applicable in s (i.e., pre(a)⊈ s).

Based on Definition 1, a solution to a STRIPS task is a plan (comprising a sequence of
actions), π = (a1,a2, ...,an), such that G ⊆ an(...a2(a1(I))...). That means, the plan π

transforms the initial state in to a state satisfying the goal conditions.

Contingent Planning

We now define the standard contingent planning problem and its solution structure below,
followed by some contingent offline and online solvers extensively used in this thesis.

Definition 2 (Contingent Planning Task [1]). It is also known as a planning problem with
partial observability and sensing actions (PPOS). It is described as a quadruple ⟨P,A,ϕI,G⟩,
where P is a set of propositions, A is a set of actions, ϕI is a propositional formula that
describes the set of possible initial states, G ⊆ P denotes the goal propositions.
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For an atom p ∈ P, its corresponding positive and negative literals are p and ¬p, respectively.
A set of literals is considered a conjunction of the literals as well as the assignments to the
atoms in the set. For example, the set of literals {p,q,¬r}, is treated both as the formula
p∧q∧¬r, and as an assignment of true to p, true to q, and false to r.

• A state s is the truth assignments to propositions p ∈ P. A belief-state is a set of
states such that each state could potentially be the true state. The initial belief-state
is, bI = {s : s ⊨ ϕI}, or in other words, bI represents a set of all states that satisfy the
formula ϕI , initially.

• An action a ∈ A is represented as 3-tuple, ⟨pre(a),eff(a),obs(a)⟩ such that,

1. The set pre(a) encodes a set of literals, represents the precondition of the action.

2. The set eff(a) denotes a set of pairs of the form (ci,ei), represents a set of
conditional effects. Here, ci is a conjunction of multiple literals, while ei is a
single literal. Suppose that the action a is executed in the state s, then ei ∈ a(s)
if ci ⊆ s. For more details, see [3]. We assume that each action is well-defined,
which implies the following: (a) When both (ci,ei) and (c j,e j) belong to the
effect of an action and s ⊨ ci ∧ c j, then the domain modeler would make sure
that ei ∧ e j is consistent. (b) If (ci,ei) belongs to the effect of this action, then
pre(a)∧ ci is consistent. For simplicity, we assume that all the actions are
deterministic in nature, although these approaches can be adopted to handles
non-determinism, too. A non-deterministic action models multiple effects that
are possible post its execution, and one particular effect cannot be determined
prior the execution.

3. The propositions in the set obs(a) denote those propositions whose values will be
observed once this action is executed. We assume that all the observations are
deterministic, accurate, and immediate. They reflect the state of the world before
the action a is executed.

In the benchmark problems, unless we specify explicitly, each action a ∈ A, is either a
sensing action, (i.e., eff(a) = /0, hence truly a sensing action that does not change the state
of the world), or a non-sensing action, (i.e., obs(a) = /0, hence only changes the state of the
world). However, this is just an assumption to make things simple and not a limitation of the
formalism.

If an agent ϕi executes an action a and a proposition p ∈ obs(a), then following its
execution, ϕi will observe p if in the current state p holds, otherwise ϕi will observe ¬p.
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Fig. 2.1 The 4 × 4 Wumpus domain.

Therefore, for a given true state of the world s and the current belief state b, the resulting
belief state once a is executed corresponds to progressions through this action a of the
states in b that assign atoms in obs(a) the same values as the state s does. That means,
ba,s = {a(s′)|s′ ∈ b, and s and s′ agree on obs(a)}.

Contingent Solution: The solution of a contingent planning task is represented by a tree
(or graph) τ = (N,E). The nodes of the plan tree N, are labeled with actions a ∈ A, while
the edges E represent the observations. The actions with no observations (i.e., obs(a) = /0),
each possesses a single child, are used to label nodes. An edge leading from any such node
represents a null observation. Otherwise, nodes in the plan tree has an edge corresponding
to each observation value. This edge is labeled by the value of the corresponding variable
observed.

The initial belief state (bI) is associated with the root node of a solution tree, and is
represented as nbI . Suppose that n.b represents the belief state associated with the node n ∈ N
in the plan tree, and n is labeled by the action a. If n′ represents the child node of n such
that the directed edge from n to n′ is labeled by an observation p, then the belief state n′b
associated with n′ is, {a(s) : s ∈ b,s ⊨ p}.

In Figure 2.1, we illustrate a contingent planning problem using a 4× 4 Wumpus do-
main [1]. For describing the terminologies, we discuss this example and show its one possible
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Fig. 2.2 A possible solution tree for 4×4 Wumpus domain. Each arrow shows the direction
in which the agent takes a move. Each of the decision nodes represents a sensing action (i.e,
smell(stench)).

solution tree or contingent plan tree. The contingent planning problem is described as follows:
An agent needs to navigate from the bottom-left corner (i.e., location [1,1]) to the top-right
corner (i.e., the cell [4,4]). It is allowed to move in any of the four primary directions. There
could be a monster called Wumpus either in the cell [2,3] or [3,2]. There could be another
Wumpus either in the cell [4,3] or [3,4]. Wumpus has a specific property that it emits a stench
that drifts to all adjacent cells. Hence, an agent can smell the stench if it is currently at a
square adjacent to the current location of a Wumpus. Although, the agent cannot determine
that in which adjacent cell the Wumpus is hiding. Therefore, smelling at more than one
location might be required to know the precise position of the Wumpus. An agent can only
move to a square if it is safe. Therefore, there are no dead-ends in the domain. One possible
solution for this contingent problem is shown in Figure 2.2.

In general a contingent plan may have a different branch, depending on every possible start
state. Therefore, the total number of branches in a contingent plan tree can be exponential in
the number of hidden state variables specified initially in the contingent problem. Reasoning
directly about all these potential paths is practically very difficult. However, if we know
the true initial state, we can often find a solution quickly using a classical planner. And in
practice, this solution is often effective for many other initial states. The CPOR planner
exploits this idea, assumes a single state in the belief state is the “true” current state, and
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focuses on building one branch at a time for generating a complete contingent plan tree
offline (described in [42]). By using an efficient classical solver to generate each path, and
because many such path work for multiple initial states, CPOR is able to solve contingent
problems of significant size.

The CPOR planner – which uses the SDR planner [80], is used as an underlying single-
agent contingent planner in Chapters 3 and 4 for solving MAP problems with partial observ-
ability. Therefore, in this sub-section, the discussion is based on the following order: We will
first describe the SDR planner – an online contingent replanner. SDR is used as a subroutine
by the CPOR planner that calls SDR iteratively to build a full contingent plan tree. Then, we
describe CPOR.

The SDR Planner

Sample, Determinize, and Replan (SDR) is an online contingent planner that uses replanning
[16, 80]. The authors adapted popular approaches used in online MDPs to classical, non-
stochastic domains that model sensing actions with partial observability. At a high level,
SDR works as follows: Based on the original contingent problem, it induces a classical
planning problem that is solved using a classical planner. Each action in this sequential plan
is executed one by one, by the “agent” while it is safe, i.e., all its preconditions hold in every
possible world. If an action is not safe to execute the algorithm replans.

Similar strategies have been used in other online planning models [104] and were ex-
tended by state sampling techniques, too [41, 105]. In SDR, the authors adapted this idea to
domains that model partial observability and uncertainty about the initial state.

In principle, one could select a state from the given initial belief state and consider it the
“true” initial state and plan using an off-the-shelf classical planner. However, while solving
this induced classical problem, we note that the classical planner will have no incentive
to insert sensing actions. There is no reason for it to take such a costlier path that applies
a pure sensing action that has no effect on the state of the world. Therefore, SDR uses
a knowledge-based translation approach that translated contingent planning to classical
planning [64]. The translation models and reasons about the agent’s knowledge of the world,
implicitly, rather than the real state of the world. The goal now becomes that the agent must
know that the goal is accomplished. SDR also uses a state sampling technique to overcome
the shortcomings associated with the Palacios and Geffner’s translation (that has scalability
issues as the classical planning problems become too complex to solve for the state of the art
classical planner).

The SDR approach works as follows. An initial state si is sampled from bI . The planner
uses this initial state to determinize the effect of sensing actions (required for the problem to
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be translated into a classical planning problem). It then uses the knowledge-based translation
to generate a plan and follows this plan online. It follows this plan until either an unexpected
observation is made (i.e., one that would not be possible if si was the true initial state), or
until the planner cannot prove (using regression) that the preconditions of the next action
must hold. At this point, the planner replans from the current belief state.

Contingent Planning using Online Replanning (CPOR)

We already mentioned that the solution to the contingent planning problem is represented
as a plan-tree, which branches on different possible observations as shown in Figure 2.2.
Recent offline contingent planners like PO-PRP [54] use a translation based approach that
translates the original contingent planning problem into a fully observable, non-deterministic
planning problem. Then they use non-deterministic planning [10]. Although this approach
is successful, the translation may become very large, making the translated problem very
difficult for a non-deterministic planner to be solved. In the past, the planners generating
complete contingent plan tree met with the scaling-up issues, too [1, 20].

Orthogonal to these algorithms, is the state-of-the-art offline contingent planner CPOR.
CPOR uses SDR repeatedly, offline, to generate a full contingent plan tree for online
execution [42]. The advantage of using an online planner is that it plans just for the next
action (or, more accurately, until the next sensing action). When it makes an observation, it
replans based on the information obtained. This approach can be used to generate a single
branch of a complete plan tree, from its root node to one leaf node, corresponding to a
particular set of initial states that yield identical observations. That is, the offline planner
selects an initial state s, and simulates the online planning process, when s is the true initial
state. CPOR starts simulating the planning process in the environment such that for each
observation possible using the next sensing action in the plan, the process calls the SDR
solver. Note that this whole thing repeats itself until all branches end into goal leaves.

The CPOR algorithm works as follows (at a high-level): It starts with an empty stack S.
The root node (n0) of the plan tree corresponds to the initial belief state b. Such that, initially,
S contains the root node n0. In each iteration, a node n is popped from S. An online replanner
is called for n, considering the belief state associated with n as the current belief state. SDR
returns a sequence of actions that either reach the goal or until the next sensing action. For
each action, a, in the sequence, first, its applicability in the current belief state is verified, and
later, the next node, n′, of the plan tree is generated both in a principled way. If the sequence
ends up with a sensing action, then the children of this sensing action will be pushed back to
S. This process repeats until S = /0 and returns the plan tree.
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We note that CPOR does not backtrack. Also, since it uses an online solver to generate an
offline solution, it is prone to get into a dead-end during execution. Therefore, it is incomplete.
But, for a given sound and complete online replanner, and if we restrict ourselves to only
deterministic domains with no dead-ends, the CPOR planner produces sound and complete
contingent plans. For more details and to understand several optimizations used in the paper
to improve its efficiency, we refer readers to [42].

2.1.2 Multi-Agent Frameworks

We review relevant multi-agent frameworks, some of which are direct extensions (or a
generalization to the MA setting) of the single-agent frameworks reviewed in the previous
section upon which this work is developed.

Multi-Agent STRIPS

The MA-STRIPS framework is a minimalistic extension of STRIPS, in which the actions
modeled in the STRIPS domain get distributed into subsets that correspond to multiple
agents [14].

Definition 3 A Multi-Agent STRIPS planning task that is also known as multi-agent planning
task or MA-STRIPS, for a planning system consisting of multiple decision makers Φ =

{ϕi}n
i=1, is represented by a 4-tuple Π = ⟨P,{Ai}n

i=1, I,G⟩, where

• P, I, and G are, respectively, the set of propositions, the initial state, and the goal
conditions (they are the same as in STRIPS (Definition 1))

• The variable i represents the index of agent ϕi. There are n agents, while each subset
Ai contains the actions that the agent ϕi can perform. Each action a ∈ Ai follows the
standard STRIPS syntax and semantics.

Its Solution: A solution for the MA-STRIPS task is a sound plan if and only if; when the
identities of the agents in this plan are masked, this plan is a solution plan for the original
underlying STRIPS problem, too. It is trivial to see that for n = 1, MA-STRIPS will reduce
to STRIPS. However, the assumption in this simplistic extension is that action sets Ai, for
i = 1 to n, are disjoint, and

⋃i=n
i=1 Ai equals to the complete set of actions.

The original work by Brafman and Domshlak (2008) that introduced MA-STRIPS [14]
ignited a lot of interest in MAP, in general. They showed that the complexity of MAP
based on the MA-STRIPS formalism is not exponential in the number of agents present, but
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proportional to the tree-width of their action interaction graph and the minimal number of
interactions required to solve the MAP problem. They showed that this approach works quite
well for loosely-coupled planning domains, e.g., the Logistics domain.

We briefly describe some relevant planners that used MA-STRIPS formalism or its
generalizations. Their detailed description is out of the scope. Planning First [58] and
MAD-A∗ [56] were the earliest planners based on this formalism. They dealt with state-space
planning. Another approach was proposed based on plan-space planning extending the
MA-STRIPS formalism, called MAP-POP [77], which later evolved into MAPF [96]. These
planners used a generalization of MA-STRIPS.

In the following years several state-space based coordination planners were introduced
like MAPlan (appeared in CoDMAP 2015 planning workshop at ICAPS), MADLA Plan-
ner [90], and the Macro-MAFS planner [50]. Several plan-space planning based coordination
planners like PSM-VRD (based on Planning State Machines (PSMs)) [97], and hybrid
coordination planners that combine elements of state-space and plan-state planners, like
GPPP [52] and PP-LAMA [51] were also introduced. Some of these planners also deal with
privacy-preserving planning in which, during planning, agents do not reveal their private
information and often plan in a distributed manner.

Privacy in Multi-Agent Planning

Privacy guarantees in multi-agent planning are provided in the form of private variables,
private values, and private actions [13]. For an agent, if only this agent is aware of a variable
or the existence of some value, then they are known to be private to the agent. While, if
some action is private to an agent, (ideally) only this agent is aware of the existence of this
action, its form, and its cost, etc.

A variable (or proposition) is said to be private to an agent ϕi, if this variable appears in
the preconditions or effects of the actions of ϕi only. We consider a variable private only if
all its values are private to an agent ϕi, or else, it is public. An action is private to this agent iff
both preconditions and effects of this action are private. Actions not falling in this category
are public. Note that a public action of an agent may also contain private precondition and
effects in the schema.

Let us describe the privacy guarantees associated with an algorithm. We say that an
algorithm is weakly private if no agent communicates a private value of a variable, anywhere
throughout in the initial state, the goal, or an intermediate state, to an agent for which this
value is not private during a run of the algorithm, and if the only description of its actions it
needs to communicate to another agent, ϕ j is their public view.
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In Secure Multi-Party Computation [103] is a sub-field of Cryptography, stronger privacy
guarantees are sought from multi-party algorithms. Assume that we are in an ideal world.
Further, considering a secure network, a trusted third-party may receive inputs from different
parties, such that it performs required calculations and returns the solutions to the respective
parties. Secure MPC studies how we can achieve this even if things are not ideal. Or in
other words, the goal of methods for Secure MPC is to enable multiple agents to compute a
function over their inputs while keeping these inputs private.

An algorithm is strongly private if no agent can deduce information like the existence of
a value or a variable that is private to another agent, ϕi, or its private actions’ models, which
is beyond the information that can be deduced from the description of ϕi’s actions, the public
view of other agents’ actions, and the public view of the solution plan [57]. More specifically,
we will say that a variable (or some specific value of a variable) is strongly private if the
other agents cannot deduce its existence from the information available to them [13]. It can
also be rephrased as: “If by execution of an algorithm, the agents do not obtain and cannot
deduce any private information additional to what can be deduced only from the public input
and public output of the algorithm, the algorithm is strong privacy-preserving.”

A formal approach to multi-agent privacy using MA-STRIPS is proposed in [57], and
later extended in [13], loosely based on the standard concepts of Secure MPC. First, the
authors specify private information the agents are attempting to hide, and later, present two
degrees of privacy preservation, weak and strong privacy.

Greedy Privacy-Preserving Planner: Maliah, Shani, and Stern (2017) devised an algo-
rithm for privacy-preserving planning called Greedy Privacy-Preserving Planner (GPPP) [52].
It generates an abstract and approximate global plan collaboratively for coordinating agents’
actions, and later, this global plan is extended by the agents individually to make it executable.

At a high level, GPPP works as follows: The algorithm considers a relaxed version
of the original MA planning problem, solved by all the agents collaboratively, and whose
solution contains the coordination scheme. This global plan is then extended by each agent,
independently, to an executable plan such that each agent focuses on their private information
only. First, the algorithm builds a global plan for proper coordination among the agents.
Then, each agent extends this global plan to an executable plan, by adding the missing private
actions.

On the one hand, GPPP follows “coordination and planning”, which can be seen as an
algorithm similar to the algorithms like “CSP+Planning” [15] and “Planning First” [58].
While on the other hand, GPPP also plans first to generate the global plan and coordinate
things when needed, which can relate to “planning and coordination” like in [57].
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To enhance its overall performance, GPPP uses two privacy-preserving heuristics based on
two well-known classical planning heuristics: Pattern Databases (PDBs [28]) and Landmarks
(LMs [72]). The new heuristics are called privacy-preserving PDBs and privacy-preserving
Landmarks, respectively, which are agnostic to this algorithm and can be used by other
privacy-preserving algorithms. They show the benefits of using these heuristics and the
advantage of GPPP over contemporary privacy-preserving planners for the multi-agent
STRIPS formalism.

The ADP Planner

Crosby, Jonsson, and Rovatsos (2014) proposed a different method to solve the Multi-Agent
STRIPS problem [23]. Their approach handles the MA planning problem based on explicitly
specified constraints on an object set in a multi-agent domain. This constraint on the object
set allows or restricts a concurrent execution of the actions of the entities such that these
actions can manipulate this set in a certain way. In other words, CJR’s object cardinality
constraints constrain the set of legal joint actions. An example of such a constraint could be
the independent move actions of two robots, where the robots can move concurrently but
cannot occupy the same location, simultaneously. Another example is that a minimum of two
agents is needed to sail a boat in the river.

For planning, CJR suggest a compilation based approach that compiles MA problems,
which explicitly specifies cardinality constraints to allow or to restrict specific types of
actions and their numbers to manipulate an object set, to classical planning problems that
can be solved using an off-the-shelf classical planner. Their method post-processes the
resulting plan and compresses it by allowing actions that do not conflict with each other to be
executed concurrently. The resulting planner is called the ADP planner, which is also a non
privacy-preserving planner. In another compilation based approach, similar to CJR’s, Crosby
and Petrick (2014) propose to encode affordances (they represent object-action tuples) and
determine the conditions under which an object can (or must) be manipulated concurrently.
This approach solves a planning domain with such encoding by translating it to a temporal
planning domain [24]. In our work, we describe a planning formalism that handles planning
with interacting actions in Chapter 5, a generalization of CJR’s approach. It solves some
problems that cannot be solved by their formalism.

Qualitative Decentralized POMDPs

Contingent planning deals with a single agent in an environment under uncertainty with
partial observability. But as it considers only a single-agent, it does not model the effect
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of uncertainties caused by to the presence of multiple acting entities in this environment.
This is handled by its multi-agent extension, known as a Qualitative Decentralized POMDP
(QDec-POMDP. The QDec-POMDP framework is a conceptually simpler version of the
famous Dec-POMDP framework (which we discuss in greater detail in the Related Work
Section (Section 2.2). Dec-POMDPs provide a rich, attractive model for MA planning
under uncertainty with partial observability in cooperative settings with a growing body
of research [7, 78]. The NEXP hard complexity of solving Dec-POMDPs has limited its
scalability to larger problems and its applicability, too.

The QDec-POMDP framework is a qualitative propositional model for MAP under
uncertainty with partial observability. It has a non-probabilistic structure and is introduced
as an alternative model to Dec-POMDPs. Although, the two frameworks share a similar
worst-case complexity, the QDec-POMDPs model has several advantages, e.g., being geared
to propositional state model, its specifications is easier compared to a flat representation
typically used for Dec-POMDPs. QDec-POMDP planning is also more classical in nature,
hence easier to describe and it also eases the adaptation of recent advancements of classical
planning frameworks and heuristics. This is especially true when its deterministic variant is
used. Therefore, it allows us to solve much larger problems than the current Dec-POMDP
algorithms can handle.

Model Definition: We start with the basic definition of a flat-space Qualitative Decentral-
ized POMDP, followed by a factored formalism motivated by contingent planning model
definitions [11, 17], which we will be using in our work.

Definition 4 A qualitative decentralized partially observable Markov decision process
(QDec-POMDP) is a tuple Q = ⟨I,S,b0,{Ai|i ∈ I},δ ,{Ωi},O,G⟩, where

• I is a finite set of agents indexed 1, ...,m. We often refer to the ith agent as ϕi (i
represents its index).

• S is a finite set of states.

• b0 ⊂ S is the set of states initially possible.

• Ai is a finite set of actions available to agent ϕi, and A⃗ = ⊗i∈IAi is the set of joint
actions, where a⃗ = ⟨a1, ...,am⟩ denotes a particular joint action. (It is assumed that
A⃗ =⊗i∈IAi, where each Ai is the set of actions of agent ϕi. One can also identify the
action ai ∈ Ai with the joint action ⟨noop1, . . .noopi−1,ai,noopi+1, . . . ,noopm⟩.)

• δ : S× A⃗ → 2S is a non-deterministic Markovian transition function. δ (s, a⃗) denotes
the set of states the can be reached when taking joint action a⃗ in state s.
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• Ωi is a finite set of observations available to agent ϕi and Ω⃗ = ⊗i∈IΩi is the set of
joint observation, where o⃗ = o1, ...,om denotes a particular joint observation.

• ω : A⃗×S → 2Ω⃗ is a non-deterministic observation function. ω (⃗a,s) denotes the set of
possible joint observations o⃗ given that joint action a⃗ was taken and led to outcome
state s. Here s ∈ S, a⃗ ∈ A⃗, o⃗ ∈ Ω⃗.

• G ⊂ S is a set of goal states.

For this formalism, we do not assume a finite horizon for limiting the maximal number of
actions in each execution. We focus, however, on deterministic outcomes and deterministic
observations. In such cases, a successful solution is acyclic, and hence there is no need to
bound the number of steps. Extension to domains with non-deterministic outcomes with a
bounded horizon is left for future work. In this work, we assume a shared initial belief, like
most Dec-POMDP models, which is most natural for an off-line centralized algorithm (again,
like most Dec-POMDP algorithms).

We will work with a factored representation of QDec-POMDP, which is specified using
the following components: ⟨I,P,{Ai|i ∈ I},Pre,Eff ,Obs,b0,G′⟩ where I is a set of agents, P
is a set of primitive propositions, A⃗ is a vector of individual action sets, Pre is the precondition
function, Obs is an observation function, Eff is the effects function, b0 is the initial state
formula, and G is a set (conjunction) of goal propositions.

We now explain the QDec-POMDP induced by such a factored QDec-POMDP specifica-
tions. First, its state space, S, consists of all truth assignments to P, and each state can be
viewed as a set of literals. Its initial states and goals are all states that satisfy the initial state
formula and the goal conjunction, respectively.

The transition function δ of the QDec-POMDP model is defined using the Pre and Eff
functions, described in the following paragraphs.

The precondition function Pre maps each individual action ai ∈ Ai to its set of precondi-
tions, i.e., a set of literals that must hold whenever agent ϕ executes ai. Preconditions are
local, i.e., defined over ai rather than a⃗, because each agent must ensure that the relevant
preconditions hold prior to executing its part of the joint action. We extend Pre to be defined
over joint actions {⃗a = ⟨a1, ..,am⟩ : ai ∈ Ai} (where m = |I|): Pre(⟨a1, ..,am⟩) = ∪iPre(ai).

Brafman, Shani, and Zilberstein (2013) define an effects function Eff mapping joint
actions into a set of pairs (c,e) of conditional effects, where c is a conjunction of literals and
e is a single literal, such that if c holds before the execution of the action, e holds after its
execution. The effects are a function of the joint action rather than the agents’ local actions,
as can be expected, due to possible interactions between the agents’ local actions.
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We assume that single-agent actions are executed concurrently do not interact, unless
specified explicitly. Such interactions are then modeled by collaborative actions. Collabora-
tive actions have the same form as single-agent actions, except that they have multiple agent
parameters. Thus, an agent may have a single-agent move action, as well as participate in a
collaborative, two-agent action, joint-lift, for lifting a table. One can think of joint-lift as two
concurrent single-agent lift actions (e.g., as modeled in [81]). If a collaborative action such
as joint-lift exists, and a single-agent lift exists, too, then it is forbidden for the planner to
schedule two separate single-agent lift actions at the same time. If it wishes to perform the
two lift actions concurrently, it must use the joint-lift action. For a deeper discussion of the
issue of defining joint actions, see [81, 82]. We remark here that, when one does not allow
concurrent actions that delete one another’s preconditions or object capacity constraints [23],
then one can consider only joint actions that consist of a single (possibly collaborative) action
at each step with all other agents performing no-ops, greatly simplifying the process. Later,
the plan can be made more compact in post-processing, e.g., using the technique of Crosby,
Jonsson, and Rovatsos (2014).

For every joint action a⃗ and agent ϕi, the observation function Obs(⃗a,ϕi) = {p1, . . . , pk},
where p1, ..., pk are the propositions whose value agent ϕi observes after the joint execution
of a⃗. The observation is private, i.e., each agent may observe different aspects of the world.
We assume that the observed value is correct and corresponds to the post-action variable
value. In our domains, we will separate actions into observation and non-observation actions.
The former do not affect the world state, and the latter have an empty set of observations.
Every action can be separated into a non-observation and an observation action by adding
suitable propositions forcing the two to appear consecutively in every plan.

While QDec-POMDPs allow for non-deterministic action effects as well as non-deterministic
observations, we focus in this work only on deterministic effects and observations, and leave
discussion of an extension of our methods to non-determinism to future research.

Joint Policy (QDec’s solution): We can represent the local plan of an agent ϕi using a
policy tree τi, which is a tree with branching factor ≤ |Ω|. The nodes of this tree are labeled
by actions. The edges that follow a sensing action are labeled by observations – one edge
for each. To execute the plan, each agent performs the action at the root of the tree and then
uses the subtree labeled with the observation it obtained for future action selection. If τi is
a policy tree for agent ϕi and oi is a possible observation for agent ϕi, then τioi

denotes the
subtree that is rooted by the child of the root of τi that is reached via a branch labeled by oi

(Figure 2.2 can be considered as a reference to τi).
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Let τ⃗ = ⟨τ1,τ2, · · · ,τm⟩ be a vector of policy trees, also called a joint policy. We denote
the joint action at the root of τ⃗ by a⃗⃗τ , and for an observation vector o⃗ = o1, . . . ,om, containing
each agent’s observation, we define τ⃗⃗o = ⟨τ1o1

, . . . ,τmom
⟩.

Since in QDec-POMDPs (unlike in Dec-POMDPs), an actions may have preconditions,
a joint policy tree is executable only if the preconditions of each action hold prior to its
execution. To check this, we must maintain the sets of states possible at each point in time
during the execution of the joint policy. This is usually referred to as the belief state. Notice
that this is the belief state of the entire system, not of a single agent. Online, each agent will
have less information, because it cannot distinguish between all branches of the joint-policy.
However, here we are taking the point of view of the off-line planner. To follow policy
τ⃗ , we first consider the action a⃗⃗τ given the current belief state b. It must be the case that
b |= pre(aτ). In that case, we say that a⃗⃗τ is executable in b. After the agents execute aτ and
observe o⃗, their new belief state is tr(b, o⃗, a⃗τ) = {aτ(s)|s ∈ b,aτ(s) |= o⃗}.

We say that a joint policy τ⃗ is executable given the initial belief state b if (1) a⃗⃗τ is
executable in b⃗; (2) aτi is a part of a collaborative action and ϕ j is another agent participating
in that collaborative action, then aτ j contains ϕ j’s part of that action; and (3) For every
possible joint observation o⃗, τ⃗⃗o is executable given tr(b, o⃗, a⃗⃗τ).

A joint policy is called a solution if it is executable, and for all leaf nodes in the tree⋂
i bi |= G, i.e., the set of possible states given the joint local beliefs of the agents satisfy

the goal. Note that unlike Dec-POMDPs, for QDec-POMDPs there is no obvious notion of
optimal policy, or optimization criterion, although one could strive to find trees with smaller
depth, or trees that minimize the maximal branch cost.

In Chapter 1, we used an example in Figure 1.1 to shows a solution, a joint-plan tree for
a problem in the Box-Pushing domain. We now illustrate the factored QDec-POMDP model
using the same problem, in Example 1, while its solution comprising individual plan trees
for each agent is depicted in Figure 2.3.

Example 1 In this example there is a 1D grid of size 3, with cells marked 1-3, and two
agents, starting in cells 1 and 3. In each cell there may be a box, which needs to be pushed
upwards. The left and right boxes are light, and a single agent may push them alone. The
middle box is heavy, and requires that the two agents push it together.

We can hence define I = {1,2} and P = {AgentAti,pos,BoxAt j,pos,Heavy j} where pos ∈
{1,2,3} is a possible position in the grid, i ∈ {1,2} is the agent index, and j ∈ {1,2,3} is a
box index. In the initial belief state each box may or may not be in its corresponding cell —
b0 = AgentAt1,1 ∧AgentAt2,3 ∧ (BoxAt j, j ∨¬BoxAt j, j), for j = 1,2,3. There are therefore 8
possible initial states.
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Fig. 2.3 Illustration of Example 1 showing the box pushing domain with 2 agents and a
possible set of local plan trees that produce a solution. Possible agent actions are sensing a
box at the current agent location (denoted SB), moving (denoted by arrows), pushing a light
box up alone (denoted P), jointly pushing a heavy box (denoted JP), and no-op.

The allowed actions for the agents are to move left and right, to push a light box
up, or jointly push a heavy box up with the assistance of the other agent. There are no
preconditions for moving left and right, i.e. Pre(Left) = Pre(Right) = φ . For agent ϕ to push
up a light box j, agent ϕ must be in the same place as the box. That is, Pre(PushUpi,j) =

{AgentAt′i, j¬Heavy j,BoxAt j}. For the collaborative joint push action the precondition is
Pre(JointPushj) = {AgentAt1, j,AgentAt2, j,Heavy j,BoxAt j}.

The moving actions transition the agent from one position to the other, and are in-
dependent of the effects of other agent actions, e.g., Righti = {(AgentAti,1,¬AgentAti,1 ∧
AgentAti,2),(AgentAti,2,¬AgentAti,2 ∧AgentAti,3)}. The only joint effect is for the JointPush
action — Eff (PushUp1,2,a2) where a2 is some other action, are identical to the independent
effects of action a2, while Eff (PushUp1,2,PushUp2,2) = {(φ ,¬BoxAt2,2)}, that is, if and only
if the two agents push the heavy box jointly, it (unconditionally) gets moved out of the grid.

We define sensing actions for boxes — SenseBoxi,j, with precondition Pre(SenseBoxi,j) =

AgentAti, j, no effects, and Obs(SenseBoxi,j) = BoxAt j, j. The goal is to move all boxes out of
the grid, i.e.,

∧
j¬BoxAt j, j.
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2.2 Related Work

This section presents a review of related work, highlighting where our research resides on a
big chart depicting complete multi-agent planning research. For a reference see Table 2.1. We
give an overview of relevant frameworks applicable for MAP in an environment that is par-
tially observable and, unlike in Qualitative Dec-POMDPs, stochastic, too. The Dec-POMDP
framework offers a rich model for capturing MAP problems in the cooperative setting, ex-
tends the single-agent POMDP model [22, 40] to accommodate multiple agents with possibly
different information states. The POMDP framework is rich enough to model many realistic
centralized problems with uncertainty and partial observability, except that it cannot handle
multiple agents and uncertainty caused due to their presence in the environment.

2.2.1 Single-Agent Decision Frameworks

Before we dive into the core concepts of multi-agent planning and decision-making, we
give concise descriptions of the single-agent models which the relevant multi-agent models
extend.

Markov Decision Processes (MDPs)

A Markov decision process is a decision-theoretic, discrete-time stochastic control process
that provides a probabilistic mathematical framework to model planning problems [6, 68,
69]. It models an agent interacting with an environment where the outcomes of an action
performed are only partly controlled by the entity, and the rest is probabilistic. Formally, a
Markov decision process is defined as follows.

Definition 5 A Markov decision process is a 4-tuple ⟨S,A,Tr,R⟩, where

• S is a set of states, also known as state-space,

• A is a set of actions available to the entity,

• Tr represents the transition model of an stochastic system. Usually, it is provided
as a table with entries of the form: Tra(s,s′) = Tr(st+1 = s′|st = s,at = a). Here, t
represents a time-step explicitly. The Markovian property lets only the current state
influence the transition function, i.e., Tr(st+1|s0,a0,s1,a1, ...,st ,at) = Tr(st+1|st ,at).

• R models the immediate reward (or maybe expected immediate reward). It is also
represented as a table with entries of the form Ra(s,s′), which represents the reward
received immediately for taking the action a in the state s and reaching the state s′.
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A solution of an MDP is a policy that is optimal according to some optimality criterion.
We often differentiate between finite and infinite-horizon policies. Optimal finite-horizon
policies are non-stationary and are described e.g., using a sequence of decision rules, δt , one
for each stage, such that 0 ≤ t ≤ (h− 1), where h is the horizon. Each decision rule is a
mapping from state to action. Infinite-horizon policies can be restricted to have a stationary
form π = (δ ) that is indifferent to the stage [76].

Partially Observable MDPs

A partially observable Markov decision process (or POMDPs [22, 40]) is a mathematical
framework that models partial observability, allowing the entity to have a set of observations
and adding an observation probability table to the MDP (see Definition 5). The entity cannot
sense its environment (for that matter, its current state) perfectly. Hence, the model must
maintain a probability distribution over a set of possible true states based on that allowed set
of observations and the probabilities from the provided table and the underlying MDP. THe
POMDP model is general enough to model many real-world scenarios like robot navigation
problems, planning under uncertainty, etc. Formally, the POMDP model is defined as follows.

Definition 6 A discrete-time Partially Observable MDP models the relationship, mathemat-
ically, between an entity and its environment. Formally, the POMDPs model is a 7-tuple
⟨S,A,Tr,R,Ω,O,γ⟩, where

• S = {s1,s2, ...,sn} is a set of possible states.

• A = {a1,a2, ...,am} is a set of actions available to the entity. An action can change the
state of the world or (and) provide some unknown information about the world.

• Tr is the transition function (set of transition probability of the form Pr(s′|s,a))

• R is the immediate reward function

• Ω = {o1,o2, ...,ok} is a set of observations available to the entity

• O is an observation function describing the likelihood of sensing a specific observation
o following an action a (i.e., O(o|a,s′) – o is sensed after reaching s′).

• γ is the discount factor

In the basic setting, at each decision epoch, the entity takes an action a that changes the
current state s (suppose that the environment is in state s currently) to the next state s′ with a
probability Tr(s′|s,a). The entity immediately receives a reward R(s,a) for executing a in s.
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Later, after arriving in s′, it also receives an observation o ∈ Ω with a probability O(o|a,s′).
This observation might change the current belief of the entity about the environment. This
whole process repeats several times.

Like in MDPs, here, too, the objective is to find a policy that maximizes its expected total
reward over the horizon.

A solution to a POMDP problem is a policy that assigns the next action to execute to each
actions-observations history, or to each belief state. The former policy is usually represented
as a tree or a policy-graph (i.e., also known as a finite state controller).

2.2.2 Multi-Agent Decision Frameworks

Even though the single-agent decision-making frameworks described above treat state uncer-
tainty (and partial observability in POMDP) in a principled manner, they provide stochastic
frameworks limited to the single-agent settings. Hence, they do not capture caused due to the
presence of other decision makers in the world.

Decentralised POMDPs

The Dec-POMDP framework is a generalization of POMDPs, which is equivalent to Pynadath
and Tambe’s MTDP (Multi-agent Team Decision Problem [70]) framework. MTDP models
a team of non-strategic agents, who intend to do some joint task, studies possible policies
of their behavior. Its underlying component has been taken from the initial decision model
for the team [37], which is extended to handle decision making in a dynamic environment.
Likewise, Dec-POMDPs allow for modeling a team of multiple cooperative agents situated
in a stochastic environment that is partially observable, too. Let us first formally define the
standard Dec-POMDP framework.

Definition 7 A Dec-POMDP with n agents is represented as a tuple ⟨I,S,A,T,R,Ω,O,b0,h⟩,
where

• I = {1,2,3, ...,n} is the set of agents (s.t., each i ∈ I represents the index of an agent)

• S is a finite set of states

• A = ×i∈IAi is the set of joint actions, while Ai is the set of actions available to the
agent i. At each time step, agents together execute a joint action a⃗ = ⟨a1,a2, ...,an⟩ but
they do not sense each others’ actions.

• T represents the transition function specifying transition probability, i.e, P(s′|s, a⃗)
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• Ω =×i∈IΩi is the set of joint observations, while Ωi is the set of observations available
to the agent i. At every stage the agents receive the joint observation o⃗ = ⟨o1,o2, ...,on⟩.
Here, each agent i observes only its own component oi of o⃗.

• O is the observation function that specifies the joint-observation probability P(⃗o|⃗a,s′)

• R is the reward function. Itmaps states and joint actions to real numbers: R(s, a⃗) ∈ R.

• b0 represents the initial belief state, (generally) common to all the n agents. It is a
probability distribution over a finite set of states, i.e., b0 ∈ P(S) at t = 0, s.t., P(S) is
the infinite set of probability distribution over a finite set S.

• h is the horizon

At each stage t = 0,1,2, ...,h−1, all agents together take a joint-action and receive a joint-
observation.

The task is to find a joint-policy π⃗ = ⟨π1,π2, ...,πn⟩, consists of individual policies, πi,
for each agent i. At each step t, following its individual policy πi, each agent chooses an
action ai as prescribed by πi : ×t−1(Ai ×Oi)→ Ai, or in other words, its own actions taken
and observations received until time t. The joint goal of the agents is to maximize the future

discounted reward, i.e, V π⃗ = Eπ⃗ [
h

∑
t=0

γ
tR], where γ is the discount factor.

Unfortunately, computing an optimal joint policy π⃗∗ for POMDPs is NEXP complete [7].
For a detailed review of Dec-POMDPs, see [7, 60].

It is common to solve Dec-POMDPs centrally, but the agents must execute their policies in
a decentralized manner. That means that agents act independently based on the observations
received in the environment, and assuming no explicit communication channels through
which agents share information during execution. However, Dec-POMDPs can be modeled
to support communication – which is often achieved implicitly through actions, observations,
and states.

2.2.3 Decentralized Tiger Problem

To illustrate the Dec-POMDP model, we describe a surprising difficult toy example called
the Dec-Tiger problem – a generalization of a well known toy domain for single-agent
POMDPs [40]. This domain is often used as a Dec-POMDP benchmark [55].

The Dec-Tiger example comprises two agents standing in a hallway, two doors such
that behind one, there is a tiger, while behind the other, there is a treasure. The states are
represented by sl (for left) and sr (for right), that means, S = {sl,sr}, indicating behind which
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a⃗ sl sr
⟨aLi,aLi⟩ -2 -2
⟨aLi,aOL⟩ -101 +9
⟨aLi,aOR⟩ +9 -101
⟨aOL,aLi⟩ -101 +9
⟨aOL,aOL⟩ -50 +20
⟨aOL,aOR⟩ -100 -100
⟨aOR,aLi⟩ +9 -101
⟨aOR,aOL⟩ -100 -100
⟨aOR,aOR⟩ +20 -50

Table 2.2 Reward for the decentralized tiger problem.

door the tiger is hiding. The initial state distribution is uniform. Each agent can perform
three actions: aOL – open the left door, aOR – open the right door, and aLi – listen. If both
agents open a door with the treasure behind it, at the same time, they get the highest joint
reward (+20). An agent opening the door behind which there is a treasure, the individual
return it receives is (+10), and opening the door behind which the tiger is hiding, the reward
is (−100). Opening the door jointly with the tiger behind it is less severe, and the negative
joint reward associated with this is (−50). A good strategy is to listen first, but then that
would have a cost (or a negative reward) of (−1) for each agent. A full reward model is
given in Table 2.2.

a⃗/transition sl → sl sl → sr sr → sr sr → sl
⟨aOR,anything⟩ 0.5 0.5 0.5 0.5
⟨aOL,anything⟩ 0.5 0.5 0.5 0.5
⟨anything,aOL⟩ 0.5 0.5 0.5 0.5
⟨anything,aOR⟩ 0.5 0.5 0.5 0.5
⟨aLi,aLi⟩ 1.0 0.0 1.0 0.0

Table 2.3 State transition function.

a⃗
sl sr

oHL oHR oHL oHR
⟨aLi,aLi⟩ 0.85 0.15 0.15 0.85
otherwise 0.5 0.5 0.5 0.5

Table 2.4 Individual observation probabilities.

Each agent can hear the tiger (oHL) – showing the tiger is behind the left door, or in the
right (oHR) – showing the tiger is behind the right door. Moreover, the observation received is
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only 85% accurate. That means, with the probability of only 0.85×0.85= 0.7225, the agents
simultaneously receive the correct observation. The received observation is informative only
if both agents listen together. Otherwise, the environment gets reset to sl or sr with an
equal probability, and the agents receive an uninformative observation probability drawn
uniformly. We note that there is no way an agent can observe or know that the problem has
been reset. From here on, the problem continues while the hope is that agents open the door
with the treasure multiple times. The transition function and observation function are shown
in Table 2.3 and Table 2.4, respectively.

2.2.4 Relevant Algorithms for Decentralized Frameworks

Dealing with a problem that models multiple agents together is much harder to handle
than breaking the problem down into several smaller problems and solving each one at a
time, giving us the flexibility to understand each component in detail and their cohesiveness.
In general, problem factoring/decomposition is a key element of the MAP research [29].
Many algorithms are proposed for solving Dec-POMDPs [45, 61, 63, 102], and many
others [88, 98]. This involves breaking down a complex problem (e.g., Dec-POMDP [7]
is shown to be NEXP hard) into multiple smaller (possibly independent) portions that are
manageable and understandable easily. Later, individually, each is handled, yielding a
distributed algorithm.

For the Qualitative Framework

In the Background section, we defined the Qualitative Dec-POMDP model formally and
discussed the factored model and a representation of the joint-policy that is also the solution
to QDec-POMDPs. Next, we briefly discuss the approaches that appear in the literature to
solve the QDec-POMDP model and are related to our work.

Approach 1: A Compilation-Based Approach Brafman, Shani, and Zilberstein (2013)
presented a compilation based approach, inspired by the MPSR’s translation method [16],
for solving the QDec-POMDP problem. Their proposed method compiles QDec-POMDP
planning to classical planning. The solution obtained for the compiled problem corresponds
to an executable global plan tree, branching on agents’ observations (as shown in Figure 1.1).
In achieving that, their approach relies on an approximate, sound but incomplete notion of
belief state [18].
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The authors demonstrated overall the advantage of this compilation method over Dec-
POMDP solvers using several examples. Their approach solved small problems much faster,
and it scales to larger problems compared to existing Dec-POMDP solvers.

However, this compilation based method is designed to solve deterministic QDec-
POMDPs, i.e., the ones in which the actions have deterministic effects. Their idea could, in
principle, get expanded to handle non-determinism. We can achieve this by embedding the
uncertainty of the action effects into the uncertainty of the initial belief [105], but this will
affect the solution size and time it takes to solve a problem.

Approach 2: Iterative MAP A major drawback of the compilation based approach is that
the compiled problem becomes too large for an off-the-shelf classical planner; as a result, its
scalability is limited. As we know, one key difficulty in distributed execution is the need to
construct a joint policy. The problem with this compilation approach was that it performed
branching on the combinations of joint observations.

Bazinin and Shani (2018) proposed an interactive process, called Iterative MAP (IMAP [5]),
which exploited the fact that interactions between the agents in cooperative settings are often
limited in real-world scenarios. They proposed to solve as much of the problem locally
as possible, provided that the overhead of ensuring that the local policies of the agents are
properly coordinated is not too large, which can be expected in such MAP problems. At
least abstractly, IMAP is reminiscent of the iterated best-response method used by the JESP
algorithm for Dec-POMDPs [55]. (JESP is discussed next.)

At a very high-level, Iterative MAP works as follows: It focuses on one agent at a time.
An agent solves some part of the MAP problem and generates constraints for other agents.
The “next” agent will try to augment its solution such that the constraints imposed on it are
satisfied. Moreover, this agent also generates constraints for other agents. If the constraints
imposed on it are not satisfied, the process backtracks, and the first agent replans. Thus,
the IMAP algorithm solves multiple single-agent problems until all agents’ plan trees are
coordinated.

For deterministic QDec-POMDPs, IMAP showed better performance than the compilation-
based approach used in [18] and much better results than the Dec-POMDP solvers [5]. IMAP
showed a great promise in scaling up to larger QDec-POMDPs.

For the Quantitative Framework

Since solving the Dec-POMDPs model to find exact solutions is hard, compact representa-
tions [61, 102] are proposed for solving these models efficiently. The main idea is to consider
an explicit form for representing transitions, rewards, states, and observations, all comprising
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several factors [63]. Moreover, to have an explicit model that carefully expresses how these
components interact with and affect each other [62].

Joint Equilibrium based Search for Policies The best response is roughly defined as
finding the best policy for an agent and keeping the policies of other agents fixed. A large
subset of games like congestion games [75], potential game [53], where computing the
iterated best response leads to equilibrium. Researchers have used dynamic programming for
computing the best response for solving Dec-POMDPs [55], too.

Nair et al. (2003) addressed a method to reduce the complexity of generating a joint-
policy by focusing on one agent at a time instead of building a joint policy while considering
all agents at once. Joint equilibrium based search for policies (JESP) iterates over all the
agents, one at a time, and finds an optimal policy while keeping the other agents’ policies
fixed. It generates the best response for this agent based on dynamic programming. However,
it continues iterating over the agents until no improvements in the joint reward are received.
As a result, the idea achieves local optimal Nash Equilibrium, called JESP. However, one can
easily extend the results to stochastic games like POSGs [63].

JESP scales up the Dec-POMDP model by an order [55], but overall it has shown only
limited scalability as the complexity associated with considering the requirement of joint-
observations does not reduce, as also pointed out by Bazinin and Shani (2018) in [5]. Perhaps
in a general sense, the IMAP algorithm is an implicative form of the iterative best response
approach used in the JESP [55].





Chapter 3

A Factored Approach to Multi-Agent
Planning with Partial Observability

Publication(s)

1. Shashank Shekhar and Ronen I. Brafman, and Guy Shani, A Factored Approach
to Deterministic Contingent Multi-Agent Planning, in Proceedings of the Twenty-
Ninth International Conference on Automated Planning and Scheduling, ICAPS 2019,
Berkeley, CA, USA, July 11-15, 2019, pages 419-427.



40 A Factored Approach to Multi-Agent Planning with Partial Observability

3.1 Motivation and Overview

Many automated planners proposed to use the loose interactions between the components of
a planning problem to solve it efficiently. For example, hierarchical planning approaches de-
compose a planning domain into loosely interacting parts (sub-domains). It helps decompose
the goal into multiple sub-goals that are high-level operators. The planning approach works
level by level, independently, such that the obtained sub-plans are combined carefully to
build the final plan. The idea of domain decomposition is not limited to hierarchical planning,
as planners like in [46] also use this idea. Perhaps they do not need an explicit hierarchical
structure, but they often need to backtrack over sub-domains and end up replanning for the
sub-goals they have already achieved. In general, this approach is inefficient as the need
to backtrack increases the overall complexity, and it often dominates the forward search
complexity.

Amir and Engelhardt [2] proposed to exploit the structure of a planning problem by
an approach that dynamically factors the planning problem. They give a generic planning
method that exploits it to generate a plan faster, which is sound and complete. They show that
their idea that is composed of “factoring” and “planning”, scales well to large domains. Later,
researchers also proposed to utilize the domain structure to make the centralized search faster
(e.g., see [14, 30, 31]). Further, Brafman and Domshlak (2008) showed that their approach
can also exploit the “multi-agent” (“distributed”) part of MA-STRIPS problems [14]. Note
that, in these methods, a centralized entity would have complete access to the planning
problem.

Therefore, it is quite natural to seek a problem factoring approach for non-classical plan-
ning. To be precise, we are interested in the MA planning problem that models uncertainty
and partial observability. Their nature is different from the nature of a classical planning
domain, and for such MAP problems, non-linear solutions are generated. We present a new
approach for solving deterministic qualitative Dec-POMDPs, mainly motivated by the ideas
behind factored algorithms for classical planning, in which factoring is achieved by defining
the problem as a MAP problem [14]. Our contributions in this chapter are as follows. Based
on [83], we first describe a problem factoring approach along with its theoretical guarantees.
In the empirical evaluation section, we introduce a new MAP domain, called heavy-structural
damage (HSD). In total, we perform experiments in three domains (including HSD). The
experiments show that the approach scales to large problems compared to the contemporary
QDec-POMDP and Dec-POMDP solvers.
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3.2 Introduction

This chapter describes an approach, called QDec-FP, motivated by problem factoring for
solving QDec-POMDPs in which single-agent problems are solved repeatedly. Not only does
this approach show superior empirical performance, but it is also cleaner algorithmically
and hence comes with simple theoretical guarantees. This approach has great potential for
concurrency – allowing for truly distributed computation by a group of agents, and is likely
to be extendable to offer privacy-preserving properties, as well.

At a high-level, the QDec-FP approach works as follows: First, we solve a MAP problem
in which we assume that communication is free and immediate. Hence, all agents “see”
each others’ observations. This is a single-agent planning problem in which the actions
available are the union of all agents’ actions, and the observations are the union of all agent’s
observation actions. Thus, while this problem is not as simple as that of generating a policy
for a single agent, because we have a larger action and observation space, it is not a MA
planning problem: we need to track only a single belief state, and we do not need to reason
about multiple concurrent belief states and to coordinate between agents with different states
of information.1 We refer to this as the team planning problem.

From the policy tree obtained by solving the team problem, we extract for each agent a
sub-tree that contains only the actions of that agent that impact other agents. These could be
collaborative actions (i.e., actions that require joint concurrent execution by multiple agents,
such as lifting a table or pushing a heavy box [81]), or actions that supply preconditions to
other agents’ actions. We refer to this as the agent’s projection of the policy tree.

Agent ϕi’s projection is not likely to be executable by it for two possible reasons. First,
it may require ϕi to perform action a only when p holds, where p was observed before in
the original team policy by another agent ϕ j. In the team problem, ϕi learns the results of
such observations immediately and for free, but in the real domain, ϕi must somehow obtain
this information. Second, the projected solution removes all ϕi’s action that are not needed
by other agents. Some of these removed actions may have supplied some precondition to
one of the remaining actions. Thus, the next step in the algorithm is to let each agent turn
its projected policy into an executable policy. To do this, each agent solves a local planning
problem in which its goal is to perform all the actions in its projection under the same
conditions. Thus, its solution would be a policy that the agent can execute (provided the
other agents execute their actions in the team policy).

Of course, the single-agent problems may not be all solvable, in which case we must
backtrack and seek a new team solution. But if they are all solvable, then we can get a

1For flat models, single-agent contingent planning is in PSPACE [48] and MA contingent planning is
NEXP-TIME hard [7].
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legal joint policy for the original problem by taking the solutions of each projected problem
and aligning its actions properly so that collaborative actions are executed at the same time,
and preconditions are supplied before their consuming actions. Thus, if the underlying
single-agent contingent planner is able to generate all solutions (e.g., by using AO∗ as the
underlying search algorithm), then our method is complete.

We implemented and tested this approach using a single-agent, an off-the-shelf contingent
solver, CPOR [42], which generates a policy tree by repeatedly calling the online contingent
planner SDR [80]. SDR generates a single execution branch that corresponds to the true
initial state. CPOR simply calls it multiple times with different "true" initial states. We
compare our factored planning based with IMAP on the two domains described in that paper,
and on a new disaster support domain. Our factored planning algorithm scales better both
as the number of objects in the domain increase and as the number of agents increases. In
addition, it typically generated smaller, and more balanced policy trees.

3.3 A Factored Approach to Solving QDec-POMDPs

We now present a very general scheme for factored planning in QDec-POMDPs. In fact, in
principle, with suitable modifications and a suitable single-agent contingent planner, this
approach works for non-deterministic domains, as well.

In Chapter 2, we gave the basic definition of a flat-space QDec-POMDP [18], its solution
(i.e., a set of individual policy trees, one for each agent or a joint-policy tree), and a factored
definition motivated by contingent planning model definitions [11]. Definition 4 represents a
flat-space Qualitative decentralized Markov decision process.

The high-level structure of the QDec-FP algorithm is described in Algorithm 1. First, we
generate the single-agent team problem. This is simply obtained by taking the original MAP
problem, treating all actions as if they are executed by a single agent and all observations are
observed by a single, “combined” agent. This results in a team solution tree denoted τteam.
Next, τteam is projected to each agent, obtaining τi for i = 1, . . .m. Now, each agent solves a
planning problem whose goal is to generate an executable local policy that contains τi as a
projected sub-tree. That is, each action in τi is executed in this local policy under the same
conditions and in the same order. If all problems are solvable then we align the actions in
their solution and return a solution. If one of the agents cannot solve its local problem, we
generate a new team solution and repeat the process. If no new team solution remains, we
fail.
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Algorithm 1 Factored Planning for QDec-POMDP

1: procedure QDEC-FP(⟨I,P, A⃗,Pre,Eff,Obs,b0,G⟩, output {τi}|I|i=1)
2: Set Pteam = ⟨P, ∪m

i=1 Ai, b0, G⟩
3: while (unexplored solutions to Pteam exist) do
4: τteam = Contingent-Solve-Next(Pteam)
5: foreach agent ϕi do
6: τi = Project(τteam,ϕi)
7: Pi = Generate-Contingent(τi)
8: τ ′i = Contingent-Solve(Pi)
9: if unsolvable Pi then

10: GOTO 4
11: end if
12: end foreach
13: (τ ′′1 , . . . ,τ

′′
m) = Align(τ ′1, . . . ,τ

′
m)

14: return (τ ′′1 , . . . ,τ
′′
m)

15: end while
16: return failure
17: end procedure

3.3.1 The Team Problem

Generating the team problem is easy. We take the original QDec-POMDP and simply treat
all agents as objects under the control of some super-agent. This super-agent also receives all
the observations. This team problem is now a single-agent contingent planning domain.

3.3.2 The Single-Agent Problems

Once we have a solution τteam to the team problem, we generate one projection τi of it for
every agent. The projection is obtained by removing from the tree all non-observation actions
except those executed by agent ϕi. Among the actions of agent ϕi, we leave only actions
that impact other agents directly. An action impacts another agent directly if either (1) it
is a collaborative action; (2) it supplies a precondition to an action of another agent; or (3)
it achieves a goal proposition. In factored planning such actions are often referred to as
public actions, while the remaining actions are called private [14]. Similarly, a proposition
that appears in the description of multiple agents is called public, and a proposition that
appears in the description of only a single agent’s actions is called private. For example,
ignoring collaborative actions for the moment, in the Box Pushing example, the push actions
of different agents are public, assuming multiple agents can push the same box. The move
actions, however are private. Similarly the location of a box, which can be influenced by
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multiple agents is public, while the location of an agent, that can be influenced only by its
move actions, is private.

Collaborative actions are a bit more subtle. A joint-push action is performed by multiple-
agents. We treat it as a public action. However, when considering whether a proposition is
private or not, we consider only its part of the action. Thus, joint-push requires both agents
to be located in the same position, making an agent’s location appear public. However, since
we will ensure that joint-actions are respected by all participating agents, the other agents
need not be concerned with the preconditions of these actions that are otherwise private to
other agents. Thus, one agent need not know or care about the location of the other agent –
this is the latter agent’s problem – as long as that agent executed the collaborative action at
the same time.

Thus, each projection τi is a tree containing observation actions, possibly by other agents,
and the public actions of agent ϕi. Furthermore, if a is an action in τi, we remove from it any
public precondition, that is, one supplied by another agent in τteam.

Next, we must ensure that all observations are necessary. Consider, for example, a case
in which τi includes sensing the value of p, but the agent acts identically whether p is true or
false. The reason the observation for p exists in the original team solution τteam is probably
because some other agent needs to differentiate between these two cases. If we leave this
distinction in place, we risk losing completeness if our agent is unable to observe p.

To remove redundant observations, we apply standard graph algorithms: Moving bottom-
up, whenever the two sub-trees below an observation node are identical, we remove the
observation and retain just one of the sub-trees. When comparing sub-trees, two sensing
actions by different agents that sense the same proposition are treated as identical, and
only the “single-agent” element of the collaborative actions is considered – i.e., we do not
distinguish between two lift-table actions in which the other agents collaborating with ϕi are
different, because the action ϕi executes in this collaboration is the same. An example of a
team solution, its projection, and the compacted projection is given in Figure 3.1.

The projected tree is typically not executable by the agent. It contains observation actions
that are not its own, and some actions are not supplied with their preconditions by previous
actions. Our goal is to extend this tree, by replacing the observation actions of other agents
by the agent’s observation actions, when relevant, and adding private actions that supply
missing preconditions. Note that only private actions are added – if an agent adds a public
action that requires that another agent will supply it with a precondition, or one that changes
the value of a public proposition, this might impact the other agents, either requiring them to
modify their plan, or destroying a precondition they need.
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Fig. 3.1 The details of this figure are as follows. (A) A team solution plan for a problem
with two agents, ϕ1 and ϕ2, a light box and a heavy box that need to be outside the grid in
the goal state. (B) Its projection to ϕ2. Notice that observations include those ofϕ1, too. (C)
Compacted projection – no sensing is required by ϕ1.

Under the assumptions that all other agents execute their public actions in their projection,
this tree is executable because all actions have the preconditions supplied either by other
agents or by the agent. The resulting policy tree, τsol

i , should have the property that, when
projected to contain only observations and public actions of ϕi, it is identical to τi, with the
exception that observations of other agents are replaced by those of ϕi.

Thus, the next step is to take the compact policy tree obtained (which is also denoted τi)
and generate a single-agent contingent planning problem. The goal of solving this problem is
to generate an executable policy tree that contains all the actions in the projected tree, where
these actions are executed under the same conditions and in the same order.

The single-agent planning domain is generated as follows:

1. The set of actions contains all grounded actions appearing in τi and all private actions
of ϕi.

2. The preconditions that other agents achieved in τteam are removed

3. Each action in a leaf node has the added effect done; in case of a branch in which
execution terminates after an observation, a dummy action that achieves done is
appended.
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4. Each non-leaf action a has a special added effect pa

5. Each non-root action a has an added precondition pa′ , where a′ is the parent of a in the
tree

6. The first action in a branch following an observation has the appropriate value of the
observation as an added precondition. If there are multiple consecutive observations
without intermediate actions, then the value of all of them in this branch have to be in
its preconditions.

7. Initially, all added propositions are false

8. The goal of the planning problem is done.

Example 2 Consider the projected tree in Figure 3.1(C). For this tree, we generate a
planning domain for ϕ2 with the following actions:

• The original description of ϕ2’s private actions – in this domain these are the various
movements of the agent.

• The action SenseBox2,ϕ2 (i.e., SBϕ2) with an added effect: observedbox2,ϕ2

• The action Dummy-Out with preconditions SensedBox2,ϕ2 and ¬BoxAt2 (the observed
value). Its only effect is done.

• The action JointPush2 (i.e., JP). Its preconditions contain ϕ2’s private preconditions,
i.e., AgentAtϕ2,2 and the observation value for this branch: BoxAt2. Its effects are the
original effects and done.

The added propositions: SensedBox2,ϕ2 and done are initially false.

3.3.3 Alignment

If all projected problems are solvable, we still need to align them to ensure that the joint-
policy is executable online. This is done by concurrently going over all trees level by level
and ensuring that all actions are executable and that all collaborative actions are executed
at the same step. If an action is not executable at the current step, or if only one part of a
collaborative action is scheduled to a time-step, a no-op is added to the relevant branch so
that the execution of the action is delayed to the next step.
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3.4 Soundness and Completeness

Theorem 1 The QDec-FP algorithm is sound if the underlying single-agent contingent
planner is sound.

Proof First, we observe that the joint policy contains all public actions that appear in the
team solution. If some action is missing then we cannot achieve done in the branches that
contain it. Because we add branch conditions as preconditions, only execution of branch
actions in sequence can make it true.

Next, we observe that the solution plan is executable. All preconditions supplied originally
by other agents are supplied by them by the observation above. All other preconditions
have to be supplied by the agent itself to obtain a valid plan, and soundness of the single-
agent planner implies its validity. Of course, other agents’ actions that supply an agent’s
preconditions must be scheduled before and cannot be destroyed. Let k be the maximal
number of actions inserted between any two public actions of any branch in any agent’s plan.
Consider the original team plan, but now with k no-ops inserted between any two consecutive
actions. This plan remains a valid team plan. Now, we have enough time steps to insert all
the additional private plans in between these actions without impacting the relative order
of public actions. Note that this also ensures that collaborative actions are executed at the
same time. Since no new public actions can be added when solving the projected problems,
one agent’s solution cannot introduce actions that might delete a precondition. Hence the
solution is executable.

Finally, since all goal achieving actions are public, then by the above they will be executed
and the goal will be achieved in all branches, hence this policy is a solution.

Theorem 2 The QDec-FP algorithm is complete provided the single-agent contingent plan-
ning algorithm can exhaustively generate all possible team policies.

Proof Suppose that the multi-agent planning algorithm has a solution. It is also a solution to
the single-agent algorithm, and hence it will be generated by it at some point. Its projection
will contain all the public actions and observations that the agent executes in the solution.
Since there is a solution, the local projections are solvable, and their solution contains all
needed additional private actions. As explained in the soundness proof, there is a simple, less
efficient variant of the alignment algorithm that is guaranteed to succeed if there is a team
solution.
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3.5 Trade-offs for Efficiency

A top level that exhaustively searches the space of team policies is unlikely to work in
practice. To make the QDec-FP algorithm more efficient, we have made a few compromises.
We explain them and their implications for completeness.

3.5.1 Backtracking

Algorithm 1 requires that solutions be generated one after another. In principle, this is
easy to do with a systematic tree-generation algorithm such as AO∗. However, currently
CPOR [42] does not support AO∗-based search, and we suspect that a AO∗ planner for
contingent planning is likely to be inefficient due to the lack of good heuristics for such
problems. An alternative is to augment the planning domain to reflect learned no-goods
so that previously generated solutions are no longer solutions for the new domain. As this
only causes us to prune inappropriate team solutions, this does not affect the algorithm’s
completeness.

The fundamental problem is to change the domain of a single-agent contingent planner
so that a previous solution will not be generated again. Consider team solution τ which was
not extendable to a joint plan. We want to make sure that no future solution will be τ , or τ

with some of its branches extended with new actions.
This requires that at least one branch of τ will not appear as a branch prefix in a following

solution. Given a specific branch, we can ensure that it is not part of future solutions by
adding suitable preconditions and effects to the actions in this branch, so that if they are
executed in sequence, we reach a dead-end. We can then force the planner to select a specific
branch of τ by requiring the first action in the plan to be one of a set of actions, each of which
essentially selects one branch. However, this approach is not scalable, as this modification is
required following each backtrack.

For efficiency, we actually add a weaker, but simpler constraints (albeit, ones that are
still not very scalable). The main source of failure on the projected problem is the need to
branch on some condition p that is not observable by the agent, followed by sub-trees that are
different depending on the reason for failure. Hence, our first step is to traverse the projected
sub-tree and find such branch points.

Suppose we have an asymmetric sub-tree rooted in an observation of p. Suppose that a is
an action that appears on one branch following the observation, but not on the other branch.
We would like to add a constraint that forces a to appear on both branches, or not to appear at
all. We add a special action commit-p that can only appear before the observation of p. This
action has a special effect that is add as a precondition to a. Thus, if p was observed, a cannot
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be executed unless, earlier, we executed commit-p. This action commits to performing a on
all branches following the observation: it has an effect that negates a goal proposition, and
this effect can be negated by a only.

3.5.2 Signalling

Consider a problem in which agent ϕ1 can observe p and agent ϕ2 can observe q, but not
p, and that the solution requires that agent ϕ2 will act differently depending on p’s value.
In general, the problem is unsolvable. However, suppose that ϕ1 can control the value of q.
It can then signal to ϕ2 the value of p by manipulating q. In theory, if we generate every
possibly team policy, we can generate such a policy as well. There is a caveat, though. The
team solution will branch on p, ϕ1 will align the value of p with q and then it will branch
on q. For our algorithm to remove branching on p in ϕ2’s projection, the two sub-trees
that correspond to the two possible values of p must be identical. A decent single-agent
contingent planner will not insert a redundant observation – and since observing q adds no
value in this case, it is redundant. Furthermore, even if it does, the branches given p∧¬q
and ¬p∧q will be left empty, as they never occur.

One ad-hoc way of addressing this is using signalling procedures to replace observations.
That is, if the projected problem for ϕ2 requires sensing p, we can try to replace it in the
plan by some signalling sub-routine/macro followed by an observation of the signal. This
undermines the separation between the team solution and local solutions, since signalling
involves two agents. However, it is likely to be practical. Another option is to try to keep
track of the belief states of agents during the team planning. To some extent, this can be
done syntactically, and was done in earlier work on compiling conformant and contingent
planning into classical planning [64]. However, this approach does not scale too well. We
return to this issue of signaling in the next Chapter.

3.6 Empirical Evaluation

In this section, we provide an empirical analysis that shows that our QDec-FP approach
scales much better than IMAP. The IMAP paper considers two domains: Box-Pushing (BP)
and Rovers, and we add a novel domain called Heavy-Structural-Damage (HSD) domain.

3.6.1 MAP Domains

We briefly describe all three domains below.
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Box-Pushing (BP)

There are boxes situated in a grid-like structure. Each box is supposed to moved to its
destination location, in this case at the edge of the grid, i.e., at the end of the column the
box appears in. Each box is either at some location in the grid or at the goal location. An
agent needs to be in the same grid cell where a box exists to observe it and to push it. Boxes
are either heavy or light. Two agents are required to successfully push a heavy box, while
a single agent can push a light box. Agents can also move between two adjacent locations
in the four primary directions. In this domain, we model uncertainty in terms of the initial
locations of the boxes. The agents are non-homogenous — different agents can observe and
push different boxes.

Heavy-Structural-Damage (HSD)

This domain captures a scenario where in a grid like locality, due to an earthquake, several
buildings have been collapsed. Debris is scattered all around and there is the possibility that
underneath some pillar/beam of a collapsed building there is a victim. Agents need to search
the victims and rescue them. An agent can sense a patient. If the patient is underneath a pillar
or a roof beam, the patient will be rescued to a safe location. If the patient is an adult a joint
rescue operation will be performed by more than one agent. Agents can move to connected
locations in the maze. The goal is to rescue all the victims.

Rovers

Multiple rovers navigate a planet surface, finding samples and communicating them back to
a lander [5]. Two rovers must simultaneously collect the rock sample, while a single agent
can sample soil as well as take images of certain objectives on its own. Coordination points
include locations (waypoints) which are accessible to multiple rovers. Rovers communicate
sampled soil/image/rock data to the lander that exists at a certain waypoint. A rover navigates
between two waypoints and must be present at the corresponding to sample. Availability
of data to sample at a waypoint is unknown to the rovers initially. In this modified domain,
our schema requires two rovers working jointly to collect rock samples. After taking
measurements, the rovers must broadcast them back to the lander. In this domain in general,
a rover has fewer public actions (approx. 46% on average), but a relatively complex internal
planning problem, including navigation, soil and rock sampling, and image capturing.
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3.6.2 Experiments

We compare our algorithm called the QDec-FP planner (based on factored planning) with
the Iterative MAP (IMAP). Both planners were run on a Windows 10, 64-bit machine with
i7 processor, 2.8GHz CPU, and 16Gb RAM. Both QDec-FP and IMAP are implemented in
C#. For IMAP, we used the code by Bazinin and Shani (2018) [5].

The results are shown in Table 3.1. We describe the running time, and size of the resulting
plan tree which is measured in terms of the number of branches and the height. The number
of branches is also indicative of the number of sensing actions performed, as branching
occurs following an observation. We depict only the maximum values of width and height of
individual plan trees obtained for all the agents. Table 3.1 shows that the factored planning
approach scales better than IMAP. Specifically, the increase in the number of objects had
minor impact on running time, as opposed to IMAP. Even more markedly, increasing the
number of agents had a much smaller influence on the running time of the factored planning
algorithm. Thus, except for the smallest problem, the factored planning algorithm is faster
than IMAP and scales to much larger problems. And, except for only a few problems, the
policy trees generated by the factored planning algorithm are smaller. In fact, upon examining
the policies generated, we observe that the factored planning approach often generates more
balanced trees for different agents, while IMAP generates trees with significantly different
sizes. Finally, in the HSD domain, we can also see that increasing the number of agents does
not have a major impact on run-time of the factored planning approach.

In most of the tested domains, the agents are homogenous – they have the same actions.
In these domains, backtracking is not needed. The instances P02 and P05 in the Box-Pushing
domain, and the instances P02 and P03 in the HSD domain contain non-homogenous agents.
This causes backtracking to occur in all of these problems because when an agent is asked to
act differently following a sensing action’s results, and the agent cannot perform this sensing
action, then agent roles must be changed. We can see that in Box-Pushing P05, the need to
backtrack caused the planner to take more time than a slightly larger problem that does not
require backtracking (P06). Similarly, in HSD, P03 takes more time than the slightly larger
P04. Nevertheless, the running times were still quite reasonable and in all these instances,
the factored planner did much better than IMAP.

As we mentioned earlier, the IMAP approach was compared to Dec-POMDP algorithms
on the BP domain, and scaled much better. Thus, one can reasonably conclude that, for
the special class of deterministic Dec-POMDPs where the uncertainty is only w.r.t. the
initial state, our factored approach is able to handle much larger instances than Dec-POMDP
algorithms.
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Domain Ins (#agt) Size QDec-FP vs IMAP
Max Width Max Height Time (sec)

B
ox

-P
us

hi
ng

P01 (3) 12 8 8 10 11 1.7 8.7
P02 (3) 15 16 16 26 15 4.6 18.8
P03 (4) 16 4 8 5 17 1.4 44.6
P04 (5) 19 4 32 4 15 1.6 97.5
P05 (5) 21 38 - 20 - 13.6 -
P06 (6) 25 4 128 9 31 2.7 130.2
P07 (9) 36 64 - 24 - 25.3 -
P08 (10) 37 90 - 29 - 41.1 -
P09 (12) 46 64 - 23 - 33.9 -
P10 (12) 46 128 - 24 - 43.8 -
P11 (12) 48 128 - 26 - 60.2 -

HSD

P01 (3) 14 8 8 11 9 1.2 7.1
P02 (3) 14 6 8 15 12 2.4 8.6
P03 (4) 20 8 20 9 14 5.1 70.7
P04 (6) 32 4 64 7 29 3.2 208.9
P05 (7) 36 4 128 7 33 3.8 402.8
P06 (7) 36 112 - 31 - 35.6 -
P07 (8) 40 110 - 29 - 53.8 -
P08 (8) 42 148 - 36 - 81.5 -
P09 (9) 47 128 - 31 - 88.3 -
P10 (9) 47 127 - 34 - 129.5 -

R
ov

er
s

P01 (1) 12 2 2 9 9 0.5 0.4
P02 (2) 14 2 2 8 8 0.7 0.8
P03 (1) 12 4 4 15 15 0.8 1.5
P04 (2) 17 11 12 21 43 3.1 20.8
P05 (2) 17 12 - 24 - 3.5 -
P06 (2) 17 27 27 43 52 7.2 267.6
P07 (2) 28 35 - 35 - 8.5 -
P08 (2) 28 31 - 37 - 7.6 -

Table 3.1 Performance comparison of our QDec-FP planner and the IMAP approach. Ins is
instance number with the number of acting agents in the brackets. Size denotes the number
of objects considered in each problem. Maximum Width and Maximum Height respectively
show the values of maximum number of branches and maximum height of all individual
solution trees obtained for the agents. Time is in seconds.
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3.7 QDec-FP: A Brief Summary

This chapter described a factored approach for solving multi-agent contingent planning
problems. The MA problems were modeled using the qualitative Dec-POMDP model, and
the solution approach works by taking a team solution – i.e., one in which all agents have
immediate access to every other agent’s observations – and fixing it so that it becomes
executable online by all agents. In our experimental evaluation, we compared the factored
planning algorithm with IMAP, a recent algorithm that, at least on deterministic problems,
scales to much larger domains than current algorithms for Dec-POMDPs. The factored
planning algorithm is almost always faster, and often much faster than IMAP, scales better
with increased agent numbers, and typically generates smaller policy trees.

Problem factoring is a key element in MAP in general (e.g., see [29]) and in many
algorithms for Dec-POMDPs (e.g., [45, 61, 63, 102]. It is particularly natural to factor the
problem among the different agents, yielding a distributed algorithm. In particular, we believe
it is natural to study algorithms in which the information exchanged by agents centers on
their commitments to other agents. This is essentially what our algorithm does – each agent
tries to plan to fulfill its commitments in the team plan. While commitments bring to mind
the idea of influences, studied in the Dec-POMDP literature [63, 102], they are different.
Influences are used to separate the belief state of one agent from all other information – they
capture the variables that directly influence the agent. Distributions representing variables
external to the agent can be marginalized to these influences, reducing the state space that
an agent needs to consider, e.g., when computing the best response. Commitments can be
viewed as an analogous concept at the level of the policy – they refer to the actions that an
agent performs to facilitate the actions of another agent.

The factored planning approach has a number of advantages: it is conceptually simple, and
hence easy to analyze theoretically; the second stage of the algorithm generates independent
sub-problems for all the agents and can be parallelized; and since each agent solves a local
planning problem, a privacy-preserving variant is likely to be formulated. Moreover, efficient
backtracking and signaling are still quite challenging, and we also did not test our methods
on non-deterministic domains. On the other hand, a method that tries to generate a MA
policy directly, instead of first committing to a team plan, may lead to better solutions.
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4.1 Motivation and Overview

The QDec-FP approach described in Chapter 3 suffers from a few shortcomings that stem
related to the way team planning works. Team planning considers the MAP problem as a
single-agent contingent problem, models all agents together as if they are one agent with
access to all observations. As a result, team planning may generate a team solution that is
less likely to get extended to a sound joint-plan, as all the agents may not be able to fix their
projected parts, causing QDec-FP to backtrack.

In Chapter 3, we briefly discussed signaling, where an agent ϕi can sense variable p and
agent ϕ j cannot, but it can sense another variable q. ϕi can control q, in this case ϕi can
signal p to ϕ j by carefully setting (e.g., by changing the state of the world in a predefined
way) p ≡ q. However, currently, there is no reason for the solver to introduce signaling at the
level of team planning since once ϕi senses p, ϕ j would know its value immediately as if
ϕ j had sensed its value. That is, the different knowledge each agent has is not captured by
the team problem. Therefore, the QDec-FP planner cannot handle MAP problems that need
signaling to be solved.

Our contributions in this chapter are as follows. In the next section, we give a detailed
explanation of the drawbacks associated with the QDec-FP approach. We then describe a
new planner that uses richer information (to overcome the effects of those drawbacks) about
agents’ knowledge. It also enables us to model signaling, which is covered next, and then we
discuss the planner’s theoretical properties. In the empirical evaluation section, we introduce
a new MAP domain with components to capture partial observability. In the experiments
performed on three MAP domains (including two existing and a new one), we compare our
new planner, called QDec-FPS, and the QDec-FP planner. We then discuss the applicability
of the new approach. This approach got published in 2021 [85], while a partially complete
work got accepted in 2020 [84].

4.2 Drawbacks of QDec-FP’s Team planning

An example of a team solution, its projection, and the compacted version is shown in
Figure 4.1. Although a similar example is given in Chapter 3, here we use this example
specifically for pointing out the drawbacks of team planning.

In Figure 4.1(A), we can see the team solution, containing both private and public actions
of the two agents. The team plan assumes shared knowledge. We can see that in the left (or
right) branch, only agent ϕ1 senses the heavy box, and both the agents immediately know
about the box, and then they jointly push it if needed. Figure 4.1(B) shows the projected tree
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Fig. 4.1 (A) Team plan tree τteam for a problem with two agents, a light box and a heavy box
that need to be outside at the edge of the grid in the goal state. (B) The projection of τteam to
ϕ1 for which all the sensing actions of τteam are non-redundant and remain. (C) A compacted
projection for ϕ2 in which no sensing action by ϕ1 is required.

of ϕ1. All the private actions were removed, while all the sensing actions remain since no
one was redundant. Figure 4.1(C) shows the projected tree of ϕ2. Here, too, the public push
action executed by ϕ1 in the team plan is removed. Furthermore, as ϕ2 operates identically
in both subtrees of the team plan, we remove the sensing action at the root of the team plan.

Team planning often builds a team solution like the one shown in Figure 4.1(A), which
is not executable by the agents independently, and hence QDec-FP is bound to backtrack.
Such team solutions schedule an agent ϕ j to act differently based on the value of some
proposition p observed by agent ϕi, even if ϕ j cannot sense p. This is possible as QDec-FP
treats all agents as part of one agent, having access to all the observations. For example, in
Figure 4.1(A), even if ϕ2 cannot sense the heavy box, the results of ϕ1 sensing the heavy
box are available to ϕ2. This means when the agent ϕi senses p, then K p holds immediately
for all other agents, ϕ j, too. Then, ϕ j is viewed as knowing that a precondition p of its
action(s) hold because of the sensing action of ϕi. In this example, ϕ2 pushes the heavy box
jointly with ϕ1. Therefore, in a nutshell, team planning relaxes the need to maintain different
information states for each agent. Instead, it manages just one belief state for all the agents.

However, there are many scenarios where agents may require to act under the conditions
they cannot observe. In such scenarios, one agent should be able communicate certain
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information to another agent. Consider an example in which an agent keeps the room key
underneath the doormat to share the information with another agent that the room is locked,
which the second agent cannot sense. Similarly, the second example is when an agent moves
the flowerpot inside the meeting room to share the knowledge with another agent that it is too
sunny outside. In these examples, agents aim to share information by changing the state of
the world. However, currently, it is practically not possible to support communication (either
in an implicit form or in an explicit form) between agents since team planning considers that
if “something” is known to one agent, it is known to all.

4.3 QDec-FPS – Approach Overview

We will describe a new algorithm, QDec-FPS, that uses enhanced reasoning about the
knowledge of individual agents in the team problem. Reasoning about individual agents’
knowledge during team plan execution has two important advantages: First, it will lead to the
generation of more informed team plans that are easier to extend to true solutions, because
the team planner adds an action only if the agent that executes it knows that its preconditions
hold. Second, it allows us to model, within the team plan, the process of explicit and implicit
communication, which we refer to here as signaling.

As we stated in the previous section, signaling refers to a case where agent ϕi can sense
p but agent ϕ j cannot. ϕi communicates this information to ϕ j by setting the value of some
variable q that agent ϕ j can sense, to be correlated with the value of p. For example, ϕ j

cannot sense whether a door is open, but it can sense whether the light is on, while agent ϕi

can sense both. If ϕi can also turn the light on and off, it can signal the door state to ϕ j by
turning on the light if and only if the door is open.

Technically, signaling consists of the following steps: (1) Agent ϕi senses p. (2) Agent
ϕi sets the value of q to the value of p. (3) Agent ϕ j senses q. To be sound, this behavior
must be consistent between the two execution branches that follow the sensing of p: if p is
true, we must ensure q is true. If p is false, we must ensure q is false. Note that, to support
signaling, the planner must model the knowledge of each agent within the team plan. For
otherwise, the planner has no reason to insert signals into the plan because signaling does
not enhance the knowledge of the team. Moreover, some problems cannot be solved without
signaling.
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4.4 The QDec-FPS Planner

As we described in Chapter 3, to implement QDec-FP, one needs a single-agent off-line
contingent planner. QDec-FP uses CPOR [42], which generates a policy tree by repeatedly
calling the online contingent planner SDR [80]. SDR generates a single execution branch
that corresponds to the true initial state. CPOR simply calls it multiple times with different
"true" initial states.

While CPOR is the most scalable offline contingent planner currently, it has a major
weakness: it does not backtrack. To overcome this, QDec-FP introduced a backtracking
mechanism on top of CPOR. It modifies the planning problem with an additional, sound,
constraint, that invalidates previous solutions. However, this limits the number of backtracks
that are practically possible.

QDec-FPS has the same high-level structure as QDec-FP, but modifies the way the
team problem is solved, and adds a mechanism for generating macros that enable signaling.
The use of these macros is needed to overcome the limitations of the underlying CPOR
single-agent solver.

4.4.1 Agent Specific Knowledge

QDec-FP uses the SDR translation from contingent planning to classical planning. This
translation maintains, for each proposition p, two propositions: K p and K¬p, denoting
knowing that p is true or false, respectively. SDR then transforms each precondition p of
an action to K p. The translation ensures that K p holds in a belief state only if p holds in all
possible worlds. This is done by reasoning about all the specific possible worlds explicitly.

The state description in the classical translation contains the current state of the world
given every possible initial state, in the form of K p|s, where p is a proposition, and s is a
possible state. It also contains actions that allow deducing new knowledge facts, called merge
and refutation actions [64]. Thus, the agent can also obtain K p if for every currently possible
state s, K p|s holds.

As QDec-FP solves the team problem as a single-agent planning problem, the planner
treats all agents as part of a single centralized agent, and the knowledge of this agent
reflects the combined knowledge of all agents. Thus, when one agent observes that p holds,
other agents can use this knowledge, without observing the value of p themselves. This is
inconsistent with the real plan tree, where each agent must independently ensure that p holds,
before executing an action that requires p as precondition.

QDec-FPS changes the translation used by SDR to be agent aware. Instead of the K p
propositions that denote combined knowledge, it uses propositions of the form Kϕ p, denoting
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that agent ϕ knows that p holds. The precondition p of an action executed by agent ϕ is
replaced with Kϕ p. The effect of a sensing action executed by ϕ is that only the sensing
agent ϕ knows the value of p, i.e., either Kϕ p or Kϕ¬p. The same holds for the merge
and refutation actions, which now provide agent-specific inference. However, the effects
of non-sensing actions are still made known to all agents. We can understand this as a
consequence of the fact that the agents know the policies of all other agents (or equivalently,
they know the team plan).

This modification forces the underlying planner to insert sensing actions by different
agents to ensure they have the knowledge required to perform their actions, whereas in
QDec-FP, because all agents are treated as one, it was enough if some other agent performed
this sensing action. If an agent has an action with a precondition p, the team plan will ensure
that the agent first senses or learns the value of p. If the agent cannot sense or learn the value
of p, such an action will not be part of a generated team plan.

This leads to the generation of team plans that better account for agent abilities. Like
team plans in QDec-FP, these plans may not be extendable because they can require agents
to act differently depending on information they do not have. Yet, they are much better
informed, and are therefore less likely to lead to failure when agents extend the team plan.
Hence, they often lead to fewer backtracks.

The new translation also allows us to solve problems that QDec-FP cannot solve. For
example, imagine that Agent ϕ1 can observe only p, and agent ϕ2 can only observe q, but
must execute an action with precondition p. QDec-FP’s team plan will most likely let ϕ1

sense p, and will make ϕ2 execute the action afterwards. This team plan cannot be later
extended by ϕ2 to a valid local plan because it cannot sense p. QDec-FPS will avoid this
team plan because it will know that ϕ2 does not know p. Furthermore, as we discuss below,
if ϕ1 can set the value of q to be correlated with p, it will be able to exploit this implicit form
of communication.

The new translation is more demanding and generates classical planning problems that are
harder to solve. Because of this, it is able to detect unsolvable problems faster. However, in
the special case of agents with identical capabilities, some problems are solved by QDec-FP
while QDec-FPS times-out. In these problems, QDec-FP generates a simple team solution
that lacks many sensing actions. However, since all agents have identical capabilities, it
is easy to add these additional sensing actions into the projected single-agent planning
problems. This simple team solution of QDec-FP is not a legal solution to the more complex
team problem QDec-FPS generates. Solving this more complex problem requires numerous
backtracks, making it unsolvable in the given time. In a sense, QDec-FP solves a more
abstract, and hence a simpler problem. When most abstract solutions are extendable to full
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Fig. 4.2 Signaling in the QDec-FPS planner. (A) A team plan with the signaling macro action.
(B) The team plan following the macro expansion. (C) Projected trees for ϕ1 (top) and ϕ2
(bottom).

solutions, as in the case of homogeneous agents, this is more efficient for large problems.
When the problem’s structure is more complicated, as in the case of heterogeneous agents,
many solutions to the more abstract problem cannot be extended to a full solution.

4.4.2 Signaling

If agent ϕi can sense p but agent ϕ j cannot, ϕi might be able to communicate p’s value to ϕ j.
It could do this directly, if an explicit communication action exists, or indirectly, by setting
the value of some variable q that agent ϕ j can sense, to be correlated with p’s value. In fact,
explicit communication can be viewed as correlating the value of a channel variable with
p. Signaling consists of the following steps (1) ϕi senses p. (2) ϕi sets the value of q to the
value of p. (3) ϕ j senses q. (4) ϕ j reasons about the value of p.

Notice that (2) is not a restriction on a single branch of the plan, but a restriction on a
sub-tree. ϕi must ensure that p ↔ q, which means that it needs to act differently in the branch
where p is true and in the branch where p is false.

To operationalize this idea, we suggest to model the signaling process as a macro. In our
context, macros are not simply a sequence of actions, but rather a part of a sub-tree.

To construct such macros, we must first discover the possible signaling options. We
preprocess the domain seeking quadruples (ϕi, p,ϕ j,q) such that (1) ϕi can sense p but ϕ j
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cannot. (2) ϕ j can sense q. (3) ϕi can modify the value of q. For simplicity, we consider only
propositions q that can be affected by a single action that does not change the value of any
other public proposition. This can be extended to more complex sub-plans for modifying
the value of q. For each such quadruple, we add the macro-action signal(ϕi, p,ϕ j,q). Notice
that this process is problem-instance independent and can be done in linear time.

The macro signal(ϕi, p,ϕ j,q) is treated by the planner as a sensing action that has two
possible outcomes: in one of them p∧q holds, and in the other ¬p∧¬q holds. Unlike the
pure sensing actions we use, this action changes the state of the world, as well, ensuring that
this correspondence between the values of p and q will hold.

Given a team plan with a signaling macro, we first expand the macro as indicated above:
First, ϕi senses the value of p. For each of the two resulting branches, it must ensure that q’s
value is appropriately correlated, by applying actions that affect q’s value appropriately. Then,
we add in each branch a sensing action aq where ϕ j senses the value q. While regular sensing
actions have two possible children, aq has only a single child in the team plan because, at the
team level, its outcome is known. When projected to ϕ j’s local plan, however, aq appears
like a regular sensing action. This macro expansion is described in Figure 4.2.

In the next step, the projection of the team plan containing the macro expansion is solved
by each agent. This requires, in particular, that agent ϕi will change the value of q as needed
in each branch, and that both agents perform their sensing actions — ϕi over p and ϕ j over q.

Figure 4.2 shows an example of this process. Two agents, ϕ1 and ϕ2 must jointly push a
heavy box. ϕ1 can sense the box, but ϕ2 can only sense whether a light is on. ϕ1 can signal
to ϕ2 about the box by turning on the light, which is originally off. Figure 4.2A shows a team
plan with a macro. Figure 4.2B shows the team plan after macro expansion: ϕ1 senses the
box, then turns on the light, if needed, and then ϕ2 senses the light. Finally, both jointly push
the box. Figure 4.2C shows the projected single agent plan trees for ϕ1 and ϕ2.

In practice, adding this macro on top of an online contingent solver that focuses on a
single branch at a time, such as SDR, is not straightforward. To address this, we do the
following: We add an action by ϕi that can be viewed as a commitment to ensure that p ↔ q
holds. This action is constrained to be followed immediately by the action of sensing p by ϕi.
At this point, in the team plan, if agent ϕ j needs to know the value of p, it can use the fact
that p ↔ q to deduce it from the value q. To ensure that it learns the value of p, we force the
action of sensing q in both branches. As above, the team plan is post-processed to ensure
that ϕi does indeed ensure the validity of p ↔ q following the sensing action.
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4.4.3 QDec-FPS Properties

We discuss the soundness and completeness of the QDec-FPS algorithm. But, when dis-
cussing soundness and completeness, we should first distinguish between the abstract ap-
proach used by QDec-FP/S, which reduces multi-agent contingent planning to single-agent
contingent planning, and the practical implementation of the planner which uses a specific
single-agent contingent planner, CPOR [42].

Theorem 3 The QDec-FPS algorithm is sound if the underlying single-agent contingent
planner is sound.

Proof First, consider the abstract formulation and assume a sound and complete underlying
single-agent contingent planner. The soundness of QDec-FPS without signaling follows
from that of QDec-FP: Every team solution of QDec-FPS is also a possible team-solution for
QDec-FP and all the other steps are identical. This remains true in the implementation due to
the soundness of CPOR.

With signaling, the abstract version of the macro is a sensing action with effects. It
remains sound if the action used by the signaling agent to ensure that p ↔ q holds does
not affect any other proposition. The implementation using CPOR is more complex, but it
ensures that following the commitment to the signaling macro, the team solution implements
a correct version of the macro, and hence it is sound, too. □

Next we explain why the QDec-FPS algorithm is incomplete even if the underlying
single-agent contingent planner is complete.

For QDec-FPS, one cannot separate between an abstract and implemented case because
the core contribution of QDec-FPS is at the level of the implementation of the classical
encoding used by CPOR and SDR. At this level, QDec-FPS is incomplete for two reasons:
First, CPOR is an incomplete solver: it lacks an internal backtracking mechanism. 1

Second, the planner’s ability to reason about the knowledge of separate agents, the way it
is implemented, at present, is incomplete. That is, it can underestimate the knowledge of an
agent. Thus, it might not be able to deduce that the preconditions of some actions are known
to the acting agent, even though they are. An example of such a problem is provided next.

In Example 3, we illustrate a case where the team planning of QDec-FPS is unable
to deduce that a precondition of an action is known to the acting agent, even though this
precondition is known.

1For that reason, the implementation of QDec-FP is also incomplete, although the abstract formulation is
complete. Note that team plans containing signaling are legal team plans for QDec-FP and thus, in theory, do
not impact its completeness. In practice, however, such plans are extremely unlikely to be generated.
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Fig. 4.3 A legal team plan for the team comprising ϕ1 and ϕ2 is shown in Sub-Figure (A).
The individual policies: for ϕ1, it is shown in Sub-Figure (B), and for ϕ2, it is shown in
Sub-Figure (C). Here, SwO refers to the action switchOn, SL is senseLight, NOP shows the
noop action, and AG is achieveGoal.

Example 3 Consider a domain that models two agents ϕ1 and ϕ2, and light such that only
ϕ1 can sense light, and only if the light is off, it can switchOn it, i.e., it has an action
switchOn whose only precondition is ¬light and effect is light. While ϕ2 needs only light as
a precondition to execute its only action achieveGoal, whose effect is goal. The initial state
uncertainty is (light ∨¬light) and initially ¬goal holds, while the goal condition is goal.

For Example 3, we can generate a legal team plan and the individual policies based on
that team plan (following the notations used in Chapter 2), which are shown in Figure 4.3,
for the agents ϕ1 and ϕ2.

First, let us discuss how the QDec-FP solver would handle this example problem. The
relaxation made about the agents’ knowledge of the world during team planning helps deduce
that the precondition of achieveGoal is known to ϕ2, which eventually achieves the goal, as
shown in Figure 4.3(A). At the second stage of the QDec-FP approach: the new contingent
problem based on the projection obtained for ϕ1, schedules ϕ1 to apply switchOn when
¬light holds, while in the other branch, but when light is true, NOOP (for a reference, see
Figure 4.3(B)). Similarly, the new contingent problem obtained for ϕ2 forces it to apply
the action achieveGoal only, as the sensing action at the root of the team plan is redundant
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(Algorithm 1). For aligning the solutions, a couple of NOOPs are added (for a reference, see
Figure 4.3(C)).

A legal team plan is shown in Figure 4.3(A). In this team plan, ϕ1 senses light and when
it holds, ϕ2 applies achieveGoal that achieves the goal. One can see that, in the case of
QDec-FPS, the agent ϕ2 cannot deduce the required knowledge to apply the achieveGoal
action when there is light, even though ϕ2 has this knowledge. The reason is that ϕ2 can
deduce that light holds in this particular branch, but it is possible only when this agent
considers the entire plan tree (i.e., both these branches). However, this deduction cannot be
carried out by ϕ2 considering only this particular branch alone, and which is what is done by
the SDR solver. Hence, SDR underestimates the knowledge of ϕ2 in this branch, and as a
result, the team planner would fail to find a legal team solution, which implies that QDec-FPS
returns a failure.

4.5 Empirical Evaluation

We now examine the applicability and scalability of QDec-FPS by comparing it with QDec-
FP on three multi-agent planning domains. Some problems in each domain were modified to
require signaling. Both QDec-FP and QDec-FPS are implemented in C#, and were run on a
Windows 10, 64 bit machine with i7 processor, 2.8GHz CPU, and 16Gb RAM. IMAP was
not considered, as QDec-FP was shown to scale better than IMAP [5].

4.5.1 MAP Domains

We experiment with the following three domains.

Box-Pushing (BP)

We described this domain in Chapter 3, Section 3.6.1.

Table-Mover (TM)

This domain consists of several tables, rooms, and agents that can move between connected
rooms (for a detailed explanation of TM under a more classical setting, see [82], Section 6.1.2,
or Chapter 5, Section 5.7.1). The locations of the tables are uncertain, initially. The agents
must move each table to its dedicated goal locations. Like in the Box-Pushing domain,
agents in the Table-Mover domain are non-homogeneous, too. Different agents can sense the
presence of different tables. We model TM such that each table has some fragile items on
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top of it, and these objects must remain intact when the tables appear at their destinations. To
achieve this, agent must perform collaborative actions to manipulate the table, for example,
collaborative actions like 2move-table, 2lift-table, 2drop-table. The actions 2lift-table and
2drop-table, indicate that two agents, respectively, lift and drop a table simultaneously,
keeping the objects on the table intact in the process.

Rovers

We described this domain in Chapter 3, Section 3.6.1.

4.5.2 Experimental Results

Table 4.1 compares QDec-FPS and QDec-FP based on policy quality (max-width, max-
height), runtime (time), and the number of backtracks required. max-width and max-height
refer to maximum number of branches and the maximum height of all individual solution
trees obtained for the agents. The number of branches is also indicative of the number
of sensing actions performed, as branching occurs following an observation. The planner
backtracks when at least one of the single-agent problems, obtained by decomposing τteam,
is unsolved by CPOR. Within each domain in the table, dashed lines separate three problem
classes: homogeneous agents, non-homogeneous agents, and non-homogeneous agents that
require signaling. To handle signaling, QDec-FPS adds macros, which may have a significant
overhead. Therefore, these macros were only added in problems that require signaling. The
decision whether to add macros was done manually. In the future, we will automatically
detect whether signaling is needed.

In BP, QDec-FPS scales much better than QDec-FP in problems with three to five agents.
Increasing the number of objects had minor impact on QDec-FPS running time, as opposed
to QDec-FP. For many problems, QDec-FPS needs to backtrack fewer times than QDec-FP,
and as a result, it finds solutions faster. On the other hand, increasing the number of agents
has an adverse effect on QDec-FPS. In fact, instance B3 in the BP domain with nine identical
agents, was quite rapidly solved by QDec-FP, while QDec-FPS times out. This is because
the new translation makes the team problem much harder to solve. Thus, QDec-FP finds a
team plan quickly, and when agents are identical, it is usually easy to fix the team problem
by adding any needed sensing action and no or few backtracks are needed. On the other
hand, problems B11 and B12 were solved by the QDec-FPS planner but were unsolved
by QDec-FP. This is most likely due to the high number of required backtracks. We can
conclude that for simpler problems with identical agents, QDec-FP scales better with the
number of agents, but for more complex problems, QDec-FPS is required.
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Domain Ins (#agt) Objects Max-width Max-height Time (sec) BT
fp fps fp fps fp fps fp fps

BP

B1 (3) 16 8 5 23 18 3.59 2.91 0 0
B2 (4) 16 12 10 19 19 5.3 6.1 0 0
B3 (9) 36 64 * 24 * 25.3 * 0 *
B4 (3) 11 4 4 14 11 16.39 1.17 9 0
B5 (3) 12 6 8 16 15 13.65 2.9 4 0
B6 (3) 12 - 6 - 12 - 13.58 47+ 4
B7 (3) 12 8 8 18 19 158.89 3.87 41 0
B8 (3) 12 8 8 17 21 111.6 4.05 26 0
B9 (3) 13 16 14 21 19 121.42 5.6 19 0
B10 (3) 16 16 15 26 29 155.83 9.69 33 0
B11 (5) 20 * 24 * 32 * 75.21 * 1
B12 (5) 20 * 24 * 37 * 365.9 * 6
B13 (2) 10 na 2 na 6 na 1.06 na 0
B14 (2) 12 na 2 na 2 na 1.20 na 1
B15 (3) 12 na 4 na 12 na 2.49 na 0
B16 (3) 13 na 4 na 7 na 5.5 na 1
B17 (3) 13 na 4 na 6 na 8.9 na 2
B18 (3) 14 na 7 na 14 na 4.04 na 0
B19 (4) 15 na 8 na 14 na 17.6 na 2

TM

T1 (3) 10 8 7 20 16 2.68 2.78 0 0
T2 (4) 12 16 13 21 17 7.84 8.26 0 0
T3 (4) 15 12 16 34 26 8.74 12.39 0 0
T4 (5) 14 19 22 22 24 20.5 43.58 0 0
T5 (5) 16 12 14 32 25 9.7 11.2 0 0
T6 (3) 8 2 2 8 8 11.01 0.61 7 0
T7 (3) 10 8 7 20 16 34.5 41.8 8 8
T8 (3) 10 8 8 24 22 37.87 22.45 9 4
T9 (3) 10 - - - - 140.32 29.73 31 6
T10 (4) 12 16 16 23 22 6.68 152.18 0 14
T11 (5) 16 16 16 30 35 274.5 56.15 27 3
T12 (2) 10 na 2 na 9 na 1.7 na 0
T13 (2) 12 na 4 na 17 na 6.81 na 0
T14 (3) 12 2 2 16 11 17.59 2.32 9 0
T15 (3) 13 na 4 na 14 na 7.80 na 0
T16 (3) 14 na 4 na 19 na 11.68 na 1

Rovers

R1 (1) 12 2 2 8 8 3.8 3.8 0 0
R2 (2) 14 2 2 9 8 5.4 5.3 0 0
R3 (2) 13 4 4 15 15 9.3 8.9 0 0
R4 (2) 17 12 12 34 23 35.8 38.6 0 0
R5 (3) 18 12 12 28 32 51.5 54.1 0 0
R6 (3) 21 30 30 36 29 136.6 111.9 0 0
R7 (3) 23 98 81 50 45 567.9 233.2 0 0
R8 (3) 13 2 2 7 6 57.9 5.9 3 0
R9 (3) 14 4 4 12 12 113.8 10.2 4 0
R10 (3) 14 4 4 11 11 314.5 89.3 11 3
R11 (3) 19 - 12 - 12 325.1 41.1 6+ 0
R12 (4) 15 4 4 12 11 47.2 16.0 1 0
R13 (4) 20 12 12 25 19 241.8 49.1 3 0
R14 (2) 16 na 2 na 9 na 3.6 na 0
R15 (2) 18 na 2 na 10 na 5.89 na 0
R16 (2) 16 na 4 na 13 na 34.17 na 0
R17 (2) 20 na 4 na 14 na 17.68 na 0
R18 (3) 17 na 2 na 7 na 10.17 na 0
R19 (3) 18 na 4 na 13 na 12.93 na 0
R19 (3) 14 na 2 na 7 na 6.62 na 0
R20 (3) 19 na 8 na 16 na 36.74 na 0
R21 (4) 20 na 6 na 11 na 67.79 na 0
R22 (4) 22 na 6 na 12 na 68.21 na 0

Table 4.1 Comparison of QDec-FP and QDec-FPS planners. Ins (#agt): instance number
and number of acting agents. Object: the number of objects in each problem. BT: number of
planner backtracks. *: time out. ’-’: planner could not solve or breaks down. na: problem
not applicable to a solver. fp: QDec-FP. fps: QDec-FPS. The best approach, based on time
only, is shown in bold.
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Unlike BP, in TM each public action is a collaborative action. Similar to the BP domain,
when backtracking is not required to solve an instance, for example, the simpler instances T1
to T5, the QDec-FP solver takes less time to solve it than that of QDec-FPS. When problems
are more complex and backtracking is required, e.g., for the instances T6 and T11, QDec-FPS
is faster.

In Rovers, we see a similar trend as BP and TM. For the simple instances like R1 to
R7, the performance of the planners is mixed. When backtracking maybe required since the
rovers are non-homogeneous (instances R8 to R13), QDec-FPS outperforms QDec-FP on all
instances. Instances with more objects are solved relatively easily by QDec-FPS.

Problem T9 is interesting because it is unsolvable. This requires the planner to rule out
all possible solutions. Because there are fewer solutions to the team problem QDec-FPS
generates, it was able to conclude that no solution exists much faster than QDec-FP using six
backtracks, compared to 31 for QDec-FP.

The table clearly shows that QDec-FPS generates smaller trees across all domains. A
closer inspection of the policies also shows that the number of noops in its solution is smaller.

To test signaling, we added new instances to all domains that cannot be solved without
signaling (B13-B19, T12-T16, R14-R22). These instances cannot be solved by QDec-FP
(shown as na). In the BP instances, moving from 2-3 agents to 4 increased runtime by an
order of magnitude. This is likely due to the number of optional pairwise signaling added
with each agent. However, adding objects did not much impact runtime.

In the TM domain, we see a more mixed picture. Both adding agents and objects can
increase run-time, although not always (e.g. T14 vs. T12 and T13). Problem instance T14 is
particularly interesting because it can be solved without signaling (hence QDec-FP solves
it with 9 backtracks), but it is solved even faster with signaling. For this instance there are
three agents, ϕ1, ϕ2, and ϕ3 such that ϕ1 and ϕ3 together are capable of solving this problem
without signaling. As we purposely placed ϕ3 farther from the table’s location, QDec-FPS
generated a plan where ϕ1 signaled to ϕ2 the table’s location and they achieved the goal
together, without ϕ3. This solution was generated much quicker and with no backtracks.

Signaling in Rovers is similar to BP. Adding more agents makes the problem harder,
especially when we move to 4 agents, whereas the effect of objects is less clear.

4.6 Summary

The new planner, QDec-FPS, uses a factored approach, introduced in QDec-FP, to solve
MAP problems by solving a set of single-agent planning problems. By reasoning about the
knowledge of individual agents, QDec-FPS can generate more informed team plans, which
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provide better skeletons for the final solution plan, and lead to fewer backtracks. QDec-FPS
shows better applicability and scalability than its counterpart. Moreover, the ability to reason
about individual agents’ knowledge allows it to support model communication and planning
using that. In this work, we supported, Signaling — a form of implicit communication, which
takes place through the state of the world. Signaling allows agents to share information and
thus enables solving planning problems that were not practically solvable by QDec-FP.

Although QDec-FPS scales overall better than QDec-FP on deterministic QDec-POMDP
problems, extra work is required to make QDec-FPS applicable to complex domains like
non-deterministic MAP domains.
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5.1 Motivation and Overview

In Chapters 3 and 4, we evaluated our approaches for efficiently solving QDec-POMDPs on
several MAP benchmark domains. Consider the nature and structure of the MA problems that
the QDec-POMDP approaches managed to solve. One main property of these problems is
that agents’ policies are only loosely-coupled. Moreover, we modeled them such that, at one
time instant, only one public action can be executed that is by either a single agent or a set of
agents. The actions applied by multiple agents together, i.e., the collaborative actions [5],
which are always public, and a single-agent action is public if its execution affects or gets
affected by another agent’s actions, or if it achieves some goal (for more details on this,
see [14]). In post-processing phase, as in [23], one could parallelize a generated plan tree by
the QDec solvers as much as possible to make the plan tree more compact.

But in order to be able to generate a more compact solution, we must understand what
happens when multiple single-agent actions are executed concurrently. Note that being able
to compress a plan and schedule more actions together is not necessarily needed just for
efficiency purpose. In problems where there are deadlines, or in problem where there may be
limited resources (e.g., a boat can only be used once), it may be necessary to combine many
actions together to meet the deadlines, or to optimally exploit the resource. In general, we
may need to try to schedule as many actions as possible concurrently. But how do we model
the effect of diverse combinations of single-agent actions?

Of course, we could explicitly specify the effect of every combination of actions in a
brute-force manner. But this is unrealistic with a large number of agents, as the number of
single-agent combinations, i.e., joint-actions, is exponential in the number of agents. For this
reason, we ask: can we somehow deduce the effect of concurrent execution of actions from
the description of single-agent actions and some useful collaborative actions?

To see this, consider a planning domain that models a single-agent action, lift(table), and
a two agents collaborative joint-lift(table). In that case, the planner can schedule two single-
agent lift(table) actions by two agents, which should be illegal as there exists a joint-lift(table)
action. Also, suppose that there exists a collaborative action, joint-lift(table), comprising
three different agents. Now, the planner must be forbidden to apply three single-agent
lift(table) actions together, or a two-agent joint-lift(table) and a single-agent lift(table) actions
together.

The primary contributions of this chapter is an intuitive formalism for specifying joint-
actions in a compositional way and the definition and empirical evaluation of a compilation-
based approach to planning by teams of agents with interacting actions, as well as privacy
preserving versions of this model, for which we introduce a number of new domains. Besides,
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this chapter highlights and discusses subtle issues that arise when attempting to model and
plan with interacting actions

5.2 Introduction

What happens when multiple agents perform actions concurrently? In principle, every
combination of actions performed concurrently by a group of agents – a joint action – may
define a different state-transition function. But as the number of joint-actions is exponential
in the number of agents, specifying an explicit model for each combination of single-agent
actions is impractical except for very simple cases.

To be succinct, a representation for joint actions must be compositional. That is, there
must be some way of deducing the effect of the concurrent execution of actions a1, . . . ,an

from the effects of smaller combinations. One option is to use a logical language and
describe the effects of such combinations via formulas in this language. But for this, classical
logic does not suffice. If we want each set of formulas to yield a unique model (that is, to
specify a unique transition function), we must use some sort of non-monotonic logic, such
as [4, 47, 66]. While this might yield a satisfying representation scheme, it makes planning
exceedingly difficult – indeed, most planners have difficulty even handling classical logic
deductions.

Thus, the primary challenge for planning for multi-agent systems with interacting actions
is finding a model for joint actions involving large sets of agents and large sets of single-agent
actions, that is both succinct in “natural” settings and supports efficient planning. We believe
that a key requirement for the latter is monotonic behavior – as the planner gradually inserts
additional components to a joint-action, the effects of added components should not undo the
effects of components inserted previously. To achieve this, we will construct joint-actions
from a richer set of components, and will also restrict the components that can be added to it
at each point in time. This will be made clearer later.

Due to the difficulty of representing and planning with interacting actions, most work
on multi-agent planning algorithms ignores this issue, and considers sequential actions or
concurrent non-interacting actions. In the former case, joint-actions are not an issue, and
sequential plans containing actions by different agents are generated. In the latter case,
only actions that impact different variables, or have the same effect on shared variables are
considered. In that case, the effect of a joint-action is the union of effects of its single-agent
components. We will follow a similar approach, except that in our case, a joint-action will be
composed from a set of components that is richer than single-agent actions, allowing us to
model the full spectrum of possibilities.
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While much can be achieved without considering joint interacting actions, there are many
settings where agents must coordinate their actions carefully to obtain desirable effects: a
single-agent may be unable to lift or push heavy items, whereas this is possible for multiple
agents acting together; if a table is not lifted from both sides concurrently, objects on it will
fall; in robot soccer, more advanced teams perform coordinated maneuvers, such as one agent
passing the ball to a free region while the intended receiver moves to this area at the same
time; and in more complex manipulation tasks, coordinated activities of two or more arms
are needed. In these examples, the effect of each move on its own is quite different from the
effect of the combined actions.

To define the effect of joint-actions, we introduce collaborative actions. A collaborative
action is a minimal combination of single-agent actions that cannot be defined as the union
of its components. A joint action is defined using a well-formed set of non-interacting
single-agent and collaborative actions. Roughly speaking, a joint-action is well formed if its
components (single-agent and collaborative actions), or parts of its components, cannot be
combined to yield more complex components. For example, consider box-pushing agents. A
single-agent push action is effective when the box is light. A two-agent collaborative action
2push – composed of two concurrent single-agent push actions – is effective when the box is
heavy, as well. Given this, a joint action consisting of two single-agent push actions is not
well-formed because these actions can be combined to form the collaborative 2push action.

The difficulty of planning with joint actions depends on what interactions are allowed,
and whether a distributed and privacy preserving algorithm is required. In the simplest case,
only non-interacting concurrent actions are allowed in order to reduce make-span. A slightly
more interesting case is when concurrent actions can destroy each other’s preconditions. For
example, suppose that a building becomes locked once an agent is detected entering it. Here,
sequential execution allows a single-agent to enter the building, but parallel execution allows
more agents to enter the building. In both cases, the effect of concurrent execution is the
union of effects of the single-agent actions. Thus, there is no representational issue. But while
sequential planning with post-processing works in the first case, a sequential planner cannot
insert two enter-building actions. More complicated is the case where the effects of actions
performed together differ from the union of their effects. Finally, on top of each of these cases,
one can introduce the goal of preserving privacy. We will describe compilation methods
that support all cases, as well as, the notion of object cardinality constraints, introduced by
Crosby, Jonsson, and Rovatsos (2014).

The source code and the domains we used are all available. 1

1GitHub: https://github.com/shekharsai/bgu-upf-map/. This code builds on the software of Furelos-
Blanco, Frances, and Jonsson (2019) which implements and extends the techniques of Crosby, Jon-
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5.3 Related Work

Most work in classical planning allows for concurrent non-interacting actions in order to
reduce the plan make-span and, in some cases, the depth of the search tree (see e.g., [9]).
Actions can occur concurrently if they do not interact with each other. However, there is
no real notion of multiple agents, and the accepted semantics of this “concurrency” is that
actions can be executed in any order with the same effect. A sufficient condition for this is
that the union of effects and preconditions of concurrent actions is consistent. An alternative,
called the ∃ semantics [25, 74] was studied in the context of planning as satisfiability. It
allows for interacting actions, provided they can be ordered in some sequentially legal way.
But this semantics does not address true parallelism. Rather, it is a means of generating plans
with fewer steps, for search efficiency reasons. It can be ambiguous, when multiple orderings
are possible, and moreover, some natural examples described later do not have even a single
legal sequential ordering.

Recently, Crosby, Jonsson, and Rovatsos (2014) (henceforth, CJR) introduced an ap-
proach for centralized planning for multi-agent systems. In their formalism a joint-action
is executed in each time step. The joint-action contains one single-agent action per agent,
where that action can be a no-op. The preconditions and effects of a joint-action are the
union of the preconditions (and resp. the effects) of its single-agent actions. In addition, they
introduce a limited form of interaction among actions through object cardinality constraints.
Every action is associated with a set of objects, and every set of objects may have constraints
limiting the number of agents that can manipulate these objects concurrently. For example, a
ship can sail if at least two agents sail it concurrently, or a bridge can be crossed by at most
three agents concurrently. A joint-action is applicable in a state s if (1) its preconditions hold
in s; (2) its effects are consistent; and (3) it satisfies the cardinality constraints on objects that
appear in it. This formalism captures a limited form of interaction via cardinality constraints
in a natural manner, but still assumes that the effect of a set of concurrent actions is the
combined effect of the single-agent actions in this set.

Boutilier and Brafman (1997) (henceforth, BB), were the first to extend STRIPS-like
languages to address interacting actions and to propose an extension of a standard planning
algorithm to handle such domains. This technique was later formalized in an extension of
PDDL3.1 to multi-agent planning [44].

BB’s extension to STRIPS is conceptually simple: in addition to a list of preconditions,
an action a has a concurrency condition that specifies which actions must or must not be
executed concurrently with a for a’s effects to hold. Effects can also be conditional on which

sson, and Rovatsos (2014) for compiling multi-agent planning with limited interactions, available at
https://doi.org/10.5281/zenodo.2593129.
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actions are executed concurrently. For example, consider an action for lifting the side of
the table. If performed by two agents on both sides, objects on the table will remain. But
if performed by a single agent, the objects will fall. Thus, the action of lifting the left side
of a table will have, beyond its regular preconditions and effects, a conditional effect with
concurrent effect condition that states that when the action of lifting the right side is not
performed concurrently, objects on the table will no longer remain on the table. Similarly, a
table can be moved only if both agents holding its side move in the same direction. Thus, the
action of moving the table north by one agent will have a concurrency condition that requires
a move-north action by another agent. Naturally, that action will have a precondition that
that agent is actually holding the table. Another example is box pushing – if the box is heavy
and one agent pushes it, it remains in place. If two agents push it then it will move. Thus, the
box movement is a conditional effect with a concurrency condition requiring another push
action. Such an action can be modeled using the BB’s extension of STRIPSas shown below.

PushHeavyBox(agent, box, location)

precondition: at(agent, location) & at(box, location) & heavy(box)

concurrency: PushHeavyBox(agent’, box, location) & agent’!= agent

effect: NOT at(box,location)

To deduce the effect of a joint action, one must take the union of the effects of the
individual actions (assuming they are consistent), where the effect of each individual action
takes into account the other actions performed.

BB’s method is clean and clear semantically, but it has some potential shortcomings: 1.
It introduces the additional, non-standard, concurrency condition. 2. The list of conditional
effects when interactions are more involved – especially if the effects are non-monotonic in
the number of agents – can be quite complex, and its consistency must be ensured (as when
complicated conditional effects are used). 3. Action schema generally require existential
quantifiers in their specification. If the effect of action a changes when a′ is concurrently
executed, this usually holds for multiple instantiations of parameters of a′. These must
be existentially quantified in the concurrency condition. For example, all actions have an
agent parameters whose identity usually does not impact the interaction. 4. Their planning
algorithm is based on partial order planning, a method not competitive with the state of the
art. 5. An action’s effects change once additional concurrent actions are introduced into the
plan. This makes its behavior non-monotonic.

Brafman and Zoran (2014) consider an alternative formulation in which actions involving
multiple agents (which we call collaborative actions here) are specified [19]. That work
was preliminary, did not carefully consider the issue of subsumed actions (discussed later
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in this chapter) nor did it support concurrent actions that affect each other’s preconditions.
To support this new input language, the authors modified the MAFS algorithm [57] by
introducing new messages types. In this chapter we provide a more careful and general
definition and treatment of joint actions. Our compilation approach makes it easy to use
off-the-shelf, state-of-the-art privacy-preserving planners, such as [52], which is appealing
from the engineering point of view. In addition, we support object cardinality constraints
and interacting actions that modify each others’ preconditions, and provide a more complete
experimental evaluation.

Earlier work in knowledge representation considered the issue of concurrent actions, too,
e.g., [4, 47, 66]. These work focus on the representational issue only, and use non-monotonic
formalisms, often within a rich first-order language such as the situation calculus [71].
As noted earlier, such formalism are hard to integrate efficiently within modern planning
algorithms. Of these formalisms, it is worth noting the action language Ac [4] which we
find the simplest and most intuitive. It is also closest semantically to our approach and uses
propositional logic. In this language, the basic statements are of the form: ”p is an effect of
A if c". That is, if the actions in set A are executed concurrently in a state satisfying c then p
will hold. This implies that p is also an effect of every B ⊇ A given c, as long as there is no
other set of actions D such that B ⊇ D ⊇ A and ¬p is an effect of D given c. This formalism,
too, is non-monotonic – as when one adds actions to a set, effects that held for the subset
may no longer be true. Our approach can be viewed as a monotonic variant of this semantics
that forces the planner to be more explicit about the desired effects and restricts the extension
of sets that might invalidate them.

5.4 Modeling Joint Actions

In this section, we first give an informal overview, which is followed by the formal definitions.

5.4.1 An Informal Description

We make the standard distinction between the language used to specify joint actions and the
semantic notion of a joint-action. To illustrate the key ideas, we will use a running example
of a domain with three agents on a one dimensional grid with boxes, where each agent can
either move, push a box out of the grid, or do nothing, and boxes can be light or heavy. When
an agent pushes a heavy box, it does not move out of the grid, but when two agents push it, it
does move.
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The basic assumption in most multi-agent planning models is that, at each clock tick,
each agent makes some choice, and the world changes in accordance to the set of choices
made by all acting agents. This leads to the two key semantic concepts: single-agent signals
and joint actions.

• The set of single-agent signals describes the basic control signals each agent can select
from at each time point. We will use Ai to denote the set of control signals available to
agent ϕi, which will always contain the distinguished no-op signal. In our example
domain, the single-agent signals are move-left, move-right, push, no-op.

• The set of joints-actions, denoted by A, corresponds to the possible combinations of
choices made by the agents, i.e., to the Cartesian product A1×·· ·×An, where n is the
number of agents. Each element of A is a vector of size n containing one signal for
every agent. In our example, the set of joint actions correspond to three-tuples, such as
(move-left,push,push). In this latter tuple, agent ϕ1 provides the signal move-left, ϕ2

provides the signal push, and ϕ3 provides the signal push.

• Each joint-action a ∈ A is an action in the classical-planning sense: it is a (typically
partial) mapping from the state before the action is applied, to the state following
its application. We refer to this mapping as the transition function for a. As in
classical planning, we focus on transition functions that are specified compactly using
precondition and effect lists. For example, the joint action that corresponds to the tuple
of signals (move-left,push,push) has a transition function in which the position of ϕ1

changes one cell to the left, as long as it is not on the left side. If ϕ2 and ϕ3 are in the
same cell, and that cell contains a box, it will move out of the grid. If they are located
in different cells, and any of these cells contains a light box, the box will also move
out of the grid. Otherwise, no box changes its position.

In multi-agent planning, the world changes following the application of a joint-action, exactly
as in classical single-agent planning the world changes following the application of an action.
But while in single-agent planning the actions are given as a primitive set, in multi-agent
planning the joint-actions correspond to vectors of primitive choices available to each agent,
which we referred to above as its possible signals.

The signals available to each agent are more commonly referred to as the single-agent
actions, and we adapt this terminology. Technically, they are not really actions – they do
not define a transition, but we can treat them as such if we map every single-agent action ai

of agent ϕi to the joint-action in which ϕi’s signal is ai, and the signal of all other agents is
no-op.
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The size of A is exponential in the number of agents. Explicitly enumerating the set of
transition functions for each element of A is not realistic. Instead, we seek a language that
can compactly and implicitly define all elements of A. One simple extreme case is when
a joint action can be described as a simple combination of its single-agent actions, i.e., by
taking the union of their preconditions and effects. Then, we need to only specify ∑

n
i=1 |Ai|

actions. The other extreme case is when the interactions are so complex and irregular, and
we have no choice but to explicitly describe the transition function for each element of A.

In this chapter of the thesis we formally describe a language (next subsection) that
gracefully increases in complexity depending on the level of interaction between single-agent
actions. It specifies, using preconditions and effects, two types of actions:

• Single-agent actions. Each single-agent action is described under the assumption that
no other single-agent action is executed concurrently. The description of the single-
agent assumes no other single-agent action is executed concurrently. For example,
push(a1,b) in which agent a1 pushes a box b will include the precondition and effects
of executing this action assuming no other action is executed concurrently.

• Collaborative actions. They describe the effect of a set of (more than one) single-agent
actions executed concurrently. They, too, assume that no additional action is executed
concurrently.

• Roughly speaking, the language should contain a description of a collaborative action
only if the effect of this collaborative action is different from the union of the effects
of the single-agent actions it contains. For example, the effect of two push actions
is not the union of the effects of these actions because a single push action does
not move a heavy box, while two concurrent push actions do. This requires us to
add a collaborative action 2push for every pair of agents that consists of a pair of
single agent push actions and captures this interaction. When b is heavy, the effect
of 2push(a1,a2,b) is different from the union of the effects of the push(a1,b) and
push(a2,b) actions it consists of.

To relate between this language and the semantic concept of joint-actions, we must define
the notion of multi-actions. Multi-actions are not part of the language – the specification of a
domain does not contain them – but they are immediately derived from this specification and
they will be used to define the semantics of joint-actions.

• A multi-action is a set of single-agent actions and collaborative actions with consistent
preconditions and consistent effects, such that no agent participates in more than one
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of the actions in this set. Examples of a multi-action would be {move-left(a1),move-
right(a2)} or {move-left(a1),2push(a2,a3,b)}.

• We call the actions – single or collaborative – comprising a multi-action, its components.
For example, the components of {move-left(a1),2push(a2,a3,b)} are move-left(a1) and
2push(a2,a3,b).

• The primitive elements of the multi-action are its single-agent action components and
all single-agent actions that make up any of its collaborative action components. For
example, the primitive elements of {move-left(a1),2push(a2,a3,b)} are move-left(a1),
push(a2,b), and push(a3,b).

There is one last step. Not all multi-actions are well-formed. A well-formed multi-action
is one in which interactions have been correctly captured by the collaborative actions in it.
Roughly speaking, this means that none of the components of a multi-action can be combined
together to form a different collaborative action. That is, if a and a′ are single-agent actions
in a multi-action, (e.g., two push actions by different agents applied to the same object) they
can occur in a multi-action only if no collaborative action consisting of a and a′ (e.g., a
2push action), exists. For example, {move-left(a1),push(a2,b),push(a3,b)} is a multi-action,
but it is not well-formed because some of its components form a collaborative action, i.e.,
{push(a2,b),push(a3,b)} form the collaborative action 2push(a2,a3,b). We emphasize that
the discussion of well-formedness is intended only to provide a rough intuition, and it will be
made precise later on.

We can now specify the semantics of our language: every well-formed multi-action
am induced by the language is mapped to the joint-action that consists of all the primitive
elements of am together with a no-op for every agent that does not contribute a primitive
element to am.

Going back to our running example, from the semantics of the multi-action {move-
left(a1),2push(a2,a3,b)}, we can obtain the transition function for the joint action that
corresponds to (move-left(a1),push(a2,b),push(a3,b)), and from the semantics of the multi-
action {move-left(a1),move-right(a2)}, we can obtain the transition function for (move-
left(a1),move-right(a2),no-op3).

Summarizing, the essential idea behind our specification is as follows: Multi-actions
provide the semantics for joint-actions. Each multi-action is composed of single-agent and
collaborative actions that do not interact with each other, i.e., the execution of one does not
modify the effects of the other.2 Therefore, the description of a multi-action can be derived

2They may delete each other’s preconditions, but we do not care, as we assume true concurrency. This is
very much like a classical action deleting one of its preconditions.



5.4 Modeling Joint Actions 81

from the description of the single and collaborative actions that make it up, and it need not be
specified explicitly. Thus, the modeler specifies single and collaborative actions only, where
all action interactions are captured by suitable collaborative actions.

5.4.2 Language

A multi-agent planning problem consists of ⟨P, I,g,Φ,{A1, . . .An},Ac⟩, where P is a set of
ground primitive propositions, I ⊂ P is the initial state, g ⊂ P is the goal condition, Φ is a set
of agent names, Ai is a set of single-agent actions, and Ac is a set of collaborative actions.

A literal l is a, possibly negated, proposition from P, i.e. l = p or l = ¬p for some p ∈ P.
Given a set of literals L, let L+ = {p ∈ P|p ∈ L} (the positive propositions in L), and let
L− = {p ∈ P|¬p ∈ L} (the negative propositions in L). L is well-defined if L−∩L+ = /0.

Definition 8 A single-agent action is a tuple a = ⟨symbol,pre(a),eff (a)⟩, where symbol is
the action name, and pre(a) and eff(a) are well-defined sets of literals. pre(a)+ is the set of
positive pre-conditions, pre(a)− is the set of negative pre-conditions, eff(a)+ is the set of add
effects, and eff(a)− is the set of delete effects.

Definition 9 A collaborative action is a tuple ac = ⟨symbol,pre(ac),eff (ac),e= {a1, . . . ,ak}⟩,
where symbol, pre(ac) and eff(ac) are as above, and e is a set of single-agent action symbols,
such that no two action symbols in e belong to the same agent in Φ. We refer to e(ac) as the
primitive elements of ac.

To simplify the description we use the generic name action to refer to either a single-agent
action or a collaborative action whenever possible; we will drop the distinction between
an action and its symbol; and we write e(a) to denote the primitive elements of an action
a. When a is a single-agent action, e(a) = {a}, and when a is collaborative, e(a) is simply
e, the set of single-agent actions in a’s definition. We also write Agt(a) to denote the set
of agents acting in a: Agt(a) = {φi|∃ai ∈ e(a),ai ∈ Ai}, i.e., agents for whom a contains an
element from their action set.

Finally, we note that the input language is not really based on ground actions, but we take
a PDDL-like view of planning in which actions are instantiated from action templates by
replacing parameters with suitable objects. An example of the 2push action template would
be:

2push(?agt1,?agt2,?box,?loc1,?loc2)

precondition: (and at(?agt1,?loc1),at(?agt2,?loc1),

at(?box,?loc1),heavy(?box))
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effect: (and (NOT at(?agt1,?loc1)),at(?agt1,?loc2),

(NOT at(?agt2,?loc1)),at(?agt2,?loc2),

(NOT at(?box,?loc1)),at(?box,?loc2))

elements: Push(?agt1,?box,?loc1,?loc2),

Push(?agt2,?box,?loc1,?loc2)

Acting agent(s) typically appear as parameters, as shown above, but nothing prevents the
parameters from including other agents as well. Sometimes these agents will be actors, as in
a collaborative action, and sometimes they can be passive objects.

For semantic clarity, in what follows we mostly consider the grounded version of the
input language.

5.4.3 Model

Our formal semantic model is essentially a transition system with one transition function
associated with every joint action, where every joint-action is associated with an n-tuple of
single-agent actions. Formally: a multi-agent planning problem model ⟨S,A,s0,G,ϕ,{Ai :
1 ≤ i ≤ n}⟩ is defined as follows: S is a set of states; A is a set of joint actions; s0 ∈ S is the
initial state, G ⊆ S is the set of goal states, ϕ is the set of agents, where |ϕ|= n by convention;
and Ai are the single-agent action symbols for agent ϕi ∈ ϕ , where Ai will always contain
no-opi. Every action a ∈ A is a pair: a partial function from S to S and a tuple (a1, . . . ,an)

of single-agent action symbols, such that ai ∈ Ai. As with collaborative actions, e(a) will
denote the single-agent action symbols associated with a. We write a(s) to denote the state
obtained when applying a in state s. A plan π = a1,a2, . . . ,ak is a sequence of joint actions
such that ak(· · ·(a1(s0))) ∈ G.

5.4.4 Interpretation

The correspondence between the domain specification and the model is defined as follows:
The set of states S corresponds to all possible truth assignments to P. We often equate a state
with the list of propositions satisfied in it. Thus, s0 is the state associated with I. G consists
of all states satisfying g. So far, this is identical to classical single-agent planning.

To define the set of joint-actions in the model, we first define the notion of a multi-action,
and then associate a joint-action with every well-formed multi-action.

Definition 10 A multi-action is a set of actions am ⊆ Ac ∪ (∪n
i=1Ai) such that (1) for every

a,a′ ∈ am : Agt(a)∩Agt(a′) = /0; and (2) pre(am) =∪a∈am pre(a) and eff(am) =∪a∈ameff (a)
are both well defined.
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Condition (1) ensures that no agent will be an actor in more than one action in am. Condition
(2) ensures that the effects of actions in am do not conflict with each other, and that the
preconditions of actions do not conflict with each other. This is why we can define: pre(am) =

∪a∈ampre(a) and eff(am) = ∪a∈ameff(a).

Definition 11 The components of a multi-action am = {a1, . . . ,ak} (where {a1, . . . ,ak} ⊆
Ac ∪ (∪n

i=1Ai)) are simply a1, . . . ,ak. We extend the notation e and Agt to multi-actions in
the natural manner: e(am) = ∪a∈ame(a); Agt(am) = ∪a∈amAgt(a). We refer to members of
e(am), which are all single-agent actions, as the primitive elements of am.

Technically, the definition above is fine. However, this definition allows for the formation
of “unintuitive” multi-actions. As an example, consider our box-pushing domain with three
agents, and assume that in addition to push and 2push, we also have a three-agent push,
3push, whose primitive elements are three push actions, one for each agent. The multi-
action {push(a1,b),push(a2,b),push(a3,b)} has three primitive elements, which are also its
components. Its preconditions and its effects are consistent, and each agent executes a single
action only. However, it does not capture the intuition behind the definition of 2push and
3push. The latter were defined because the effect of push is different if other agents are
pushing the same box. In that case, we would expect that the only multi-action that contains
three push primitive elements would be {3push}. Similarly, imagine that 3push was not
defined, and only push and 2push were defined. Again, {push(a1,b),push(a2,b),push(a3,b)}
seems inappropriate, as it contains two single push primitive elements, that can be combined
into a larger component: 2push. In fact, for that reason, both {2push(a1,a2,b),push(a3,b)}
and {push(a1,b),2push(a2,a3,b)} are problematic. For example, imagine that when only a
single agent pushes the box, the box will be pushed, but the agent will become tired. But if
two agents push it, the agents are not tired. In that case, although agent a1 (in the first case)
or agent a2 (in the second case) are not really pushing the box alone, the effect of this multi-
action would be that they are tired. Indeed, in this setting, we would want to allow only the
actions in which either a single agent performs push, such as {push(a1,b),noop(a2),noop(a3)}
or where two agents are pushing, such as {2push(a1,a2,b),noop(a3)}.

To address this issue we require multi-actions to be well-formed.

Definition 12 A multi-action am is well-formed if no subset of its primitive elements {
ai1,ai2, . . . , aik} ⊆ e(am) satisfies the following two conditions: (1) {ai1,ai2, . . . ,aik} contains
primitive elements from at least two actions in am. (2) There exists a collaborative action
ac ∈ Ac such that e(ac) = {ai1 ,ai2 , . . . ,aik}.

Going back to our example above: if we have the actions push and 2push then the
multi-action: am = {2push(a1,a2,b),push(a3,b)} is not well-formed because there is a subset
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of its primitive elements: {push(a2,b), push(a3,b)} that are not part of the same collaborative
action in am, yet there is a collaborative action 2push(a2,a3,b) whose primitive elements
are exactly {push(a2,b), push(a3,b)}. This implies that if we want to allow three agents to
push a box concurrently, we must define an explicit 3push action. Given a multi-action a,
the result of applying a in s, a(s), is well defined if pre+(a)⊆ s and pre−(a)∩ s = /0. In that
case, a(s) = (s\ eff−(a))∪ eff+(a).

We can now complete the definition of the interpretation. The set of agent symbols
ϕ = Φ. The sets Ai contain one action symbol for every ai ∈ Ai, and A contains one joint-
action a for every well-formed multi-action am. The result of applying joint-action a that
corresponds to am in s, a(s), is well defined if pre+(am)⊆ s and pre−(am)∩ s = /0. In that
case, a(s) = (s\eff−(am))∪eff+(am). This, again, is the classical interpretation of an action
based on its preconditions and effects. The vector of single-agent symbols associated with
a is e(am)∪{noopi : e(am)∩Ai = /0}. That is, the multi-action is associated with the joint
action in which each agent either executes its single-agent primitive element of am (and there
is at most one such action), and otherwise, does a noop.

Note that there does not necessarily exist a joint-action for every n single-agent action
symbols. Intuitively, some combinations of single-agent actions are not well-defined. 3 In a
sense, this is similar to the fact that actions in classical planning are not defined on all states,
but only on states satisfying their preconditions. However, the following holds and ensures
that the joint-actions are well-defined:

Lemma 1 Let {a1, . . . ,an} be a joint action. Then, there exists at most one well-formed
multi-action am such that e(am) = {a1, . . . ,an}.

Proof Suppose to the contrary that there are two different well-formed multi-actions: am,a′m
such that e(am) = e(a′m) = {a1, . . . ,an}. Suppose that ac is some action in am that is not
in a′m. If the primitive elements of ac are a subset of some action a′c in a′m then am is not
well-formed because we can combine e(ac) with a few other elements to get e(a′c). Otherwise,
the primitive elements of ac are a counter-example to the well-formedness of a′m. □

5.4.5 Object Cardinality Constraints

CJR’s object cardinality constraints constrain the set of legal joint actions. Their intuition is
very appealing – actions typically interact through joint objects, and the number of agents
that can manipulate a set of objects concurrently is often constrained. For example, there is a
maximal number of agents that can cross a bridge at one time, or there is a minimal number

3Alternatively, define all joint-actions for which no well-formed multi-action exists to have false as their
preconditions.



5.5 Planning With Multi-Actions 85

of agents that can use a boat at the same time – e.g., because at least two are required to sail
the boat. According to the semantics of CJR, a legal joint action is any combination of single-
agent actions that satisfies the cardinality constraints, and the union of the preconditions and
the union of the effects of its contained actions is well defined. In the service of simplicity,
we do not discuss these constraints formally. It is not hard to use CJR’s ideas to extend our
description to support them, and our implementation, which builds on their code, does this.
See [23] for more details. Perhaps, we also briefly discuss their approach and the resulting
planner in Chapter 2, in Section 2.1.2.

5.5 Planning With Multi-Actions

We now consider planning with multi-actions, separating the treatment into two cases: multi
actions whose member actions do non-interfere, i.e., no action adds or deletes a precondition
of another action (recall – by definition, the effects themselves must be consistent), and the
more general case, referred to as multi-actions with pre/eff interactions.

5.5.1 Non-Interfering Actions

If multi-actions containing interfering actions are not allowed, then all allowed interactions
are already captured by the use of collaborative actions. Hence, the only benefit of performing
them jointly is make-span reduction. That is, the set of states reachable with multi-actions and
with (single-agent and collaborative) actions is identical. To see this, consider a multi-action
consisting of actions a1, . . . ,ak. As no action deletes the precondition of the other, assuming
the preconditions of all actions hold initially, they remains true following the execution of
any subset of these actions. Hence, they can be executed in sequence. Since no action deletes
the effects of another action, the effect of executing them in sequence is identical to that of
executing them concurrently. Thus, we can use any single-agent classical planning algorithm
to solve the problem by combining single-agent and collaborative actions together to obtain
a single-agent planning algorithm in which the agents are simply objects. Once a plan is
obtained, a parallelization algorithm, such as CJR’s, can be used to reduce make-span by
concurrently executing non-interfering components.

Object cardinality constraints can be supported similarly. Maximum constraints can be
enforced directly by the parallelization algorithm without modifying the domain model or
the planning algorithm. Minimum cardinality constraint can be compiled away as follows:
replace the single-agent actions with a collaborative action (or multiple collaborative actions
in some cases) involving the minimal number of agents. For example, if exactly two
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people are required to cross a bridge, we remove the cross action, replacing it with a 2cross
collaborative action consisting of two cross actions. If two or more people can cross the
bridge, we remove cross and add a both 2cross and 3cross actions: any number of agents
> 2 can cross the bridge by sequencing multiple 2cross and 3cross actions without losing
completeness, because if the actions do not interfere, there is no difference between executing
k cross actions followed by m cross actions versus doing all k+m actions at the same time.

To summarize, we can address the multi-agent model of CJR by introducing collaborative
actions that capture minimality constraints, and use the original domain with these added
actions + post-processing. At most two action schema with an arity of 3 are required –
leading to a number of ground actions cubic in the number of agents.

5.5.2 Multi-Actions with Pre/Eff Interactions

The above compilation scheme may become both unsound and incomplete when we allow
multi-actions that contain actions that delete or add preconditions of other actions. Such
action interactions seem natural when we consider true concurrency. For example, there is no
reason we would want to exclude two agents from concurrently pushing a box, even though
each push action deletes the preconditions of the other by changing the location of the box.
Note that this is an issue regardless of collaborative actions. For example, if sailing a boat
changes its location, then multiple agents cannot sail the boat if we do not allow multi-actions
that destroy each others’ preconditions. In some cases, the goal may be reachable only if
we allow multi-actions of this kind, and unreachable without them. For example, due to
limited resources, the boat might be able to sail in one direction only, in which case, we must
ensure all agents that need to take it sail at the same time. In that case, post-processing action
sequences will not suffice, and we need to actively generate well-defined multi-actions. This
requires a non-trivial compilation scheme.

Before we present this compilation, we discuss two issues. The first issue is the impact
of allowing interfering action and minimality constraints on the definition of well-formed
multi-actions. To see this, consider the example of the sail action, and suppose that we
require at least two agents to sail the boat. To handle the minimality constraint, we added
2sail and 3sail. If these actions do not interfere with each other, we can execute them
in sequence. If they interfere, then we need to allow multi-actions that contain multiple
instances of that action. For example, to allow four agents to sail on the same boat, we could
insert two 2sail actions by different agents: 2sail(a1,a2,b,o,d) and 2sail(a3,a4,b,o,d). This,
however, would make the action not well-formed because from its elements sail(a1,b,o,d)
and sail(a3,b,o,d) we can create the collaborative action 2sail(a1,a3,b,o,d), which is not part
of the multi-actions.
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Note that this issue arises specifically from our approach for handling minimality con-
straints. If we do not add the 2sail and 3sail actions, and remain with just sail, then the
multi-action {sail(a1,b,o,d), sail(a2,b,o,d), sail(a3,b,o,d), sail(a4,b,o,d)} is well-formed. A
simple way to address it is to simply support minimality constraints directly.4

A second issue to consider if we allow actions that delete preconditions of each other,
is the subtle semantic (rather than syntactic) issue of when do two actions interfere, or
even conflict. If we allow a multi-action containing sail(a1, boat, origin, destination) and
sail(a2, boat, origin, destination), why should we not allow a multi-action containing sail(a1,
boat, origin, destination1) and sail(a2, boat, origin, destination2)? Intuitively, we view
the effects: at(boat, destination1) and at(boat, destination2) as inconsistent. While this
would be clear with a multi-valued formulation of the problem, it is not obvious in the
boolean case, as the two propositions are logically consistent. In single-agent planning such
situations (e.g., on(a,b), on(a,c)) do not arise when the initial state is consistent and actions
are formulated properly. But as evident, this is no longer true in the multi-agent case. Thus,
for this work we assume that additional declarative information about when actions conflict
is provided. We will use this information to rule out actions with inconsistent effects. In our
implementation, we handle this by adding additional cardinality constraints on concurrent
actions. For example, we constrain the number of possible destinations of sail actions for the
same object to 1.

5.5.3 The compilation scheme

We now explain how to compile multi-agent planning problems with collaborative actions
into single-agent planning problems. This part can be viewed as extending the compilation
of CJR to (1) Properly address pre/eff conflicts; (2) Support collaborative actions; and (3)
Ensure that multi-actions are well-formed. Their basic idea was to represent a joint-action
using a sequence of actions, demarcated by a special start and end actions, that has the
same effects as the joint-action. As noted, when actions in a multi-action do not interfere,
this is relatively straightforward. Our compilation alters the action description so that such
serialization can still work in the more general case.

The description below strives for simplicity, rather than economy, and ignores the han-
dling of cardinality constraints, which is identical to CJR. Furthermore, CJR assume that
every multi-agent action manipulates a particular set of objects. This has practical benefits,
and we exploit this idea in our implementation, but to simplify the presentation, we ignore it,
here.

4It is also possible to slightly modify the definition of well-formed actions to allow for more flexibility as
long as Lemma 1 remains true. This can be done when the elements are non-interacting.
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( define (domain box−pushing)
(: requirements : typing )
(: types agent box bridge location )
(: predicates

(box−at ?b − box ?loc − location )
( intact ?b − box)
( at ?a − agent ?loc − location )
(has−bridge ?b − bridge ?loc1 − location ?loc2 − location )
( tired ?a − agent) )

(: action cross
: parameters (?a1 − agent ?b − bridge ?loc1 − location ?loc2 − location )
: precondition (and ( at ?a1 ?loc1) (has−bridge ?b ?loc1 ?loc2) )
: effect (and ( at ?a1 ?loc2) (not (has−bridge ?b ?loc1 ?loc2) )

(not (has−bridge ?b ?loc2 ?loc1) ) (not ( at ?a1 ?loc1) ) ) )
(: action push

: parameters (?a1 − agent ?b − box ?loc1 − location ?loc2 − location )
: precondition (and ( at ?a1 ?loc1) (not ( tired ?a1)) (box−at ?b ?loc1) )
: effect (and ( tired ?a1) (not ( intact ?b)) ) )

(: action 2push
: parameters (?a1 − agent ?a2 − agent ?b − box ?loc1 − location ?loc2 − location )
: precondition (and ( at ?a1 ?loc1) ( at ?a2 ?loc1) (box−at ?b ?loc1)

(not ( tired ?a1)) (not ( tired ?a2)) )
: effect (and ( at ?a1 ?loc2) ( at ?a2 ?loc2) (not ( at ?a1 ?loc1) )

(not ( at ?a2 ?loc1) ) (box−at ?b ?loc2) ( intact ?b)
(not (box−at ?b ?loc1) ) )

:element (and (push ?a1 ?b ?loc1 ?loc2) (push ?a2 ?b ?loc1 ?loc2) ) ) )

Listing 5.1 The Box-Pushing example domain

To help clarify the steps, we will be using a very simple running example. The domain
consists of agents, boxes, bridges, and locations. In this domain, boxes need to be pushed to
their goal locations, an agent can move between connected locations by crossing bridge, but
a bridge collapses after it is crossed once, so it cannot be reused. The domain has agent, box,
bridge and location as the object types. The single-agent actions are: cross and push, and
there is one collaborative action: 2push. Their description appears in Listing 5.1.

Given a specification of a multi-agent planning problem ⟨P, I,g,Φ,{A1, . . .An},Ac⟩, we
generate the classical planning problem ⟨PCl,ACl, ICl,gCl⟩. In what follows let A = A1 ∪·· ·∪
An ∪Ac.

• PCl =P∪Pact ∪Pneg∪Ppos∪Ptaken∪{in}, where Pact = {pa : a∈A};Pneg = {Neg-p|p∈
P};Ppos = {Pos-p|p ∈ P}; and Ptaken = {takeni|φi ∈ Φ}. Intuitively, pa ∈ Pact tells us
that the current multi-action contains a; Pneg and Ppos keep track of changes caused by
components of the multi-action; Ptaken keeps track of which agents are involved in the
current multi-action; and in tells us that the current multi-action has not ended yet.

For our running example, the original propositions are grounded instances of (box-at
?b - box ?loc - location), (intact ?b - box), (at ?a - agent ?loc - location), (has-bridge
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?b - bridge ?loc1 - location ?loc2 - location),(tired ?a - agent). The compiled domain
will contain, in addition: Pact , which contains the ground instances of (p-cross ?a1
- agent ?br - bridge ?loc1 - location ?loc2 - location) (p-push ?a1 - agent ?b - box
?loc1 - location ?loc2 - location) (p-2push ?a1 ?a2 - agent ?b - box ?loc1 - location
?loc2 - location); Ppos, which contains grounded instances of (pos-box-at ?b - box ?loc
- location) (pos-intact ?box - box) (pos-at ?agt - agent ?loc - location) (pos-has-bridge
?br - bridge ?loc1 - location ?loc2 - location) (pos-tired ?agt - agent), and analogously
for Pneg; And finally, Ptaken, which contains the ground instances of (taken ?agt - agent).

• ACl = {a′|a ∈ A}∪{astart ,aend}, where each a′ ∈ ACl is a modification of some a ∈ A,
astart makes in true, and aend marks the end of a multi-action and does some book
keeping and updates.

• ICl = I

• gCl = g∧¬in

We explain the role of the additional variables and the changes in the actions below.

1. astart : pre(astart) = {¬in}, eff(astart) = {in}. Together with aend (defined below) it
marks the start and end of multi-action. Thus, the multi-actions {a1,a2,a3} will appear
in the compiled plan as astart ,a′1,a

′
2,a

′
3,aend .

For example, the solution plan to our running example with two agents that must
push a box on the other side of the bridge while keeping it intact, consists of two
multi-actions: In the first, both agent cross the bridge, i,e., they perform cross(a1, br1,
loc1, loc2), cross(a2, br1, loc1, loc2), and in the second, they perform the collaborative
2push(a1, a2, box1, loc2, loc3). The solution to the compiled problem is a standard
sequential plan that encodes this plan and takes the form: ⟨astart , cross(a1, br1, loc1,
loc2), cross(a2, br1, loc1, loc2), aend⟩, ⟨astart , 2push(a1, a2, box1, loc2, loc3), aend⟩.

2. Every action a ∈ A is modified as follows:

(a) Every effect p and ¬p is replaced by Pos-p and Neg-p, respectively. This is used
to allow actions in a multi-action that destroy each other’s preconditions. In the
compiled problem, instead of destroying p, we add Neg-p.

For example, in the cross schema we replace the original effects (at ?a1 ?loc2)
by (pos-at ?a1 ?loc2), (not (has-bridge ?b ?loc1 ?loc2)) by (neg-has-bridge ?b
?loc1 ?loc2), etc.

As we will see, aend will update the value of P at the end of the multi-action
based on the value of these propositions.
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(b) We add pa to its effects. In addition, if a is a single-agent action, we add pa to
the effect of every collaborative action ac such that a ∈ e(ac).

In our running example, we add (p-push ?a1 ?box ?l1 ?l2) as an effect of push.
This same effect is also added to the action 2push because push ∈ e(2push).

(c) For every action a′, if the effects of a and a′ are inconsistent, we add ¬pa′ as a
precondition to a. Recall our earlier discussion of inconsistent effect – the user
may need to explicitly express the fact that certain effects are inconsistent.

In the example domain, push and 2push have conflicting effects on the object box,
i.e., (intact ?box). Therefore, those two actions cannot appear simultaneously in
a multi-action. The compilation scheme adds (not (p-push ?a1 ?box ?l1 ?l2))
in the preconditions of 2push and (not (p-2push ?a1 ?a2 ?box ?l1 ?l2)) in the
preconditions of push.5

(d) To ensure well-formedness, we add the following precondition to action a:

∧
{ac∈Ac:e(a)∩e(ac)̸= /0,a̸=ac}

¬(
∧

ai∈e(ac)\e(a)

pai)

This condition prevents adding a new action to the multi-action such that some
of the primitive elements of this new action, together with the primitive ele-
ments of previously added actions, are precisely the primitive elements of some
collaborative action.

Consider our running example with three agents: a1,a2,a3. The multi-action
⟨push(a1, box, loc1, loc2), 2push(a2, a3, box, loc1, loc2)⟩ has the following
elements: ⟨push(a1, box, loc1, loc2), push(a2, box, loc1, loc2), push(a3, box,
loc1, loc2)⟩. Combining the first two elements of this joint-action forms another
multi-action, i.e., ⟨2push(a1, a2, box, loc1, loc2), push(a3, box, loc1, loc2)⟩.
Therefore this multi-action is not well-formed. The compilation approach must
restrict such combination of actions explicitly. The updated schemas of push and
2push in the compiled example problem tackle this issue explicitly.

(e) To ensure no agent acts more than once in a multi-action, an additional effect of
agent φi’s action is takeni and an additional precondition is ¬takeni. Thus, in our
example, a precondition of cross(a1, br1, loc1, loc2) is (not(taken ?a1)) and an
effect is (taken ?a1).

52push and push cannot appear together also because they would cause the multi-action to be not well-
formed.
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3. aend has the effect ¬in, to denote that a multi-action has ended; the conditional effect
Pos-p → p and Neg-p →¬p for every proposition p, to update the state with the effects
of all primitive elements of the multi-action; and the effect ¬pa for every a ∈ A and
¬takeni for every agent, to reset these propositions; and the effect ¬Pos-p and ¬Neg-p
for every p ∈ P, to reset these variables.

The entire aend action for our example domain appears in Listing 5.2.

(: action a−end
: parameters ()
: precondition (and ( in ) )
: effect (and (not ( in ) )

( forall (? agt − agent) (not ( taken ?agt ) ) )
( forall (?b − box ?loc − location )

(and (when (pos−box−at ?b ?loc ) (box−at ?b ?loc ) )
(when (neg−box−at ?b ?loc ) (not (box−at ?b ?loc ) ) ) )

( forall (?a − agent ?l − location )
(and (when (pos−at ?a ?l ) ( at ?a ?l ) )

(when (neg−at ?a ?l ) (not ( at ?a ?l ) ) ) ) )
( forall (?a − agent)

(and (when (pos−tired ?a) ( tired ?a) )
(when (neg−tired ?a) (not ( tired ?a) ) ) ) )

( forall (?b − bridge ?loc1 − location ?loc2 − location )
(and (when (pos−has−bridge ?b ?loc1 ?loc2) (has−bridge ?b ?loc1 ?loc2) )

(when (neg−has−bridge ?b ?loc1 ?loc2) (not (has−bridge ?b ?loc1 ?loc2) ) ) ) )
( forall (?b − box)

(and (when (pos− intact ?b)( intact ?b))
(when (neg−intact ?b)(not ( intact ?b)) ) ) )

( forall (?a1 − agent ?b − bridge ?loc1 − location ?loc2 − location )
(and (when (p−cross ?a1 ?b ?loc1 ?loc2) (not (p−cross ?a1 ?b ?loc1 ?loc2) ) ) ) )

( forall (?a1 − agent ?b − box ?loc1 − location ?loc2 − location )
(and (when (p−push ?a1 ?b ?loc1 ?loc2) (not (p−push ?a1 ?b ?loc1 ?loc2) ) ) ) )

( forall (?a1 − agent ?a2 − agent ?b − box ?loc1 − location ?loc2 − location )
(and (when (p−2push ?a1 ?a2 ?b ?loc1 ?loc2) (not (p−2push ?a1 ?a2 ?b ?loc1 ?loc2) ) ) ) ) ) ) )

Listing 5.2 Compiled action schema for aend

At the end of this chapter, we can find the entire compiled domain in Listing 5.3 .
We stress again, that a more economical representation is possible, where multi-actions
consider a fixed set of objects only. On the one hand, this requires multiple copies of various
propositions and actions, but each action is much smaller. In particular, the end action for a
specific object will have to update only propositions relevant to this set of objects and actions
that manipulate this set of objects.

5.5.4 Formal Properties

The main property of our compilation is that it is sound and complete:

Lemma 2 Let ΠS = ⟨P, I,g,Φ,{A1, . . .An},Ac⟩ be a specification of a multi-agent planning
problem. Let ΠM = ⟨S,A,s0,G,Φ,{Ai : 1 ≤ i ≤ n}⟩ be the model it specifies. Let ΠCl =



92 Representing and Planning with Interacting Actions and Privacy

⟨PCl,ACl, ICl,gCl⟩ be the classical planning problem into which ΠS is compiled. ΠM is
solvable iff ΠCl is solvable.

Proof Let πM be a solution to ΠM. Let πCl be a classical plan that corresponds to it:
each multi-action in am ∈ πM is replaced by astart ,a′1, . . . ,a

′
k,aend , where a1, . . . ,ak are the

members of am (ordered arbitrarily). We claim that πCl is a solution to ΠCl . By definition of
the interpretation, s0 assigns true exactly to all propositions in I, and the true propositions in
ICl are the same as in I. In particular, all added propositions are initially false. First, notice
that after aend is executed, we are in a similar situation: all added propositions have the
value false. Thus, it is enough to show that the first step of πCl and of πM yield an identical
assignment to P. Let am be the first action in ΠM. Given the definition of the interpretation
and Lemma 1, we can treat it as a multi-action. We know that the union of preconditions
and the union of effects of its primitive elements are well defined, and the union of their
preconditions is satisfied in ICl and in all the following states, until aend is executed. This
is because until aend is executed, none of the propositions in P changes its value. The other
preconditions of actions a′1, . . . ,a

′
k must also be satisfied because am is well-formed. One

precondition is ¬takeni, where agent φi is (one of) the actors in that action. Since it is not an
actor in any other action, takeni will be false until φi’s action is executed. The second type
of preconditions is added in 2(d). We claim that because all actions are well-formed, it is
satisfied. Imagine such a precondition of a′i is not satisfied. This implies that for some action
ac, the elements of a′i together with the elements of actions a1, . . . ,ai−1 contain the elements
of ac. In that case, am is not well formed.

Next, let πCl be a solution to ΠCl . πCl must be a sequence of action sequences of the form
astart ,a′1, . . . ,a

′
k,aend . astart is the only action executable when in is false. aend is the only

action that makes in false, and ¬in is part of gCl . As noted above, all added propositions are
false initially and after aend is executed. So it remains to show that {a′1, . . . ,a

′
k} corresponds

to a well-formed multi-action. Because the propositions in P change value only in aend , the
union of preconditions of a′1, . . . ,a

′
k must be satisfied in the state where astart is applied, so

the union is well-defined. For the effect not to be well-defined, two elements of this action
must have conflicting effects, but if ai conflicts with a j, then ¬pai is a precondition of a j, and
they cannot occur together in this sequence. No agent can act twice, because of the takeni

propositions. Finally, if some combination of elements appearing in a′1, . . . ,a
′
k corresponds

to a different collaborative action, the last action in this combination could not be applied
because of constraint 2(d). □

Lemma 3 The size of the classical encoding is worst-case cubic in the size of the multi-agent
planning problem.
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Proof Clearly, the number of propositions is linear in the number of original propositions
and actions, whereas the number of actions increases by two. The actions, however, are
modified to include additional effects. In the worst case, 2|A| new effects are added to each
action due to 2(b) and 2(c). Condition 2(d) adds a precondition whose size is bounded
by the number of actions times the maximal size (number of elements) of a collaborative
action. Potentially, this needs to be done for a linear number of actions, leading to a quadratic
increase in size per action, and a cubic increase overall. In practice, the impact of 2(b−d) is
likely to be linear. For example, 2(d) considers only actions with shared elements. Finally,
aend has linear size. □

5.6 Adding Privacy

Privacy Preserving Planning (PPP) [57] supports agents that wish to plan collaboratively
without revealing private information about their local state, their private actions, and their
cost. For example, producers cooperating on a joint product will want to expose the capa-
bilities they can contribute to the project, without necessarily revealing the identity of their
suppliers and employees, their internal processes, and their inventory level. PPP algorithms
are able to compute a joint-plan in a distributed manner without revealing private information.
We now explain how to modify our specification and compilation technique to support PPP
with interacting actions.

The input to a PPP problem differs from that of a centralized multi-agent planning
problem: Each agent has a separate domain specification that contains a description of its
actions. This specification also differentiates between private and public propositions and
between private and public actions. A proposition may be private to an agent only if it does
not appear in the description of actions of other agents. An action can be private only if its
description contains private propositions only. Public actions may contain both private and
public propositions. Their public projection is obtained by removing all private propositions
from their description.

5.6.1 Modifying the Representation

In PPP, the domain description of each agent contains: a complete description of all its actions
and the public projection of the public actions of other agents; together with public propo-
sitions and propositions private to the agent. We extend this description with collaborative
actions.
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A collaborative action is public by definition, as it involves multiple agents. For the same
reason, we will also assume that single agent actions that interact with actions of other agents
are public, too. That is, single agent actions that appear as elements of collaborative actions.
By definition, their effect depends on the actions of other agents, so in a collaborative setting,
we would expect this information to be public. This implies that propositions of the form pa

that are added in our compilation are also public. Note that we need to add a pa proposition
for an action a only when a is public.

Although collaborative actions are public, some of their preconditions or effects could
be private to one of the agents. For example, the action 2push(a1,a2,b) may have the
precondition healthy(a1) private to a1, and a private effect tired(a1). The description of
2push in a2’s domain description will not include these preconditions and effects, i.e., they
are projected out. Notice that while the specification is now distributed among n agents, the
semantics remains the same.

5.6.2 Privacy Preserving Planning with Collaborative Actions

To perform privacy preserving planning with collaborative actions, the first step is to apply our
compilation scheme to the public part of the domain. All added propositions and actions are
public. Private actions and propositions need not be changed, and the private preconditions
and effects of actions need not be modified. In particular, if we allow interfering actions,
then we must add astart ,aend , as is required in the compilation for this case, and these actions
can be assigned to arbitrary agents. Notice that these actions manipulate public propositions
only, so no privacy is lost by assigning them to a particular agent.

The next step is to use an existing PPP algorithm to solve the resulting problem. However,
existing PPP algorithms are distributed, and this raises the question of when to insert a
collaborative action into the plan. One agent cannot commit to a collaborative action in the
name of another agent because it does not know if the private preconditions of that agent
hold. To address this, Brafman and Zoran (2014) added a special message between the agents
to address this. We believe that splitting collaborative actions as follows is a simpler solution
which allows us to use any existing PPP planner.

1. Add the precondition ¬in-joint to all existing public non-collaborative actions;

2. For each collaborative action am involving k agents:

(a) Separate am into k actions a1
m, . . . ,a

k
m, where ai

m is obtained from am by removing
the private preconditions and effects of agents other than φi. The parameters of
each new action that do not appear in its preconditions or effects are removed.
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(b) Add to a1
m precondition ¬in-joint and effect in-joint.

(c) Add to ak
m the effect ¬in-joint.

(d) For all i < k, add to ai
m the effect next-ai+1

m .

(e) For all i > 1, add to ai
m the precondition next-ai

m and the effect ¬next-ai
m.

For example, we split 2push(a1,a2,b) into 2push1(a1,a2,b) and 2push2(a1,a2,b). If a2 is not
mentioned in the description of 2push1 and a1 is not mentioned in the description of 2push2,
we obtain 2push1(a1,b) and 2push2(a2,b). Thus, the first pushing agent need not commit
to the identity of the second pushing agent. 2push1 will have ¬in-joint as a precondition
and in-joint ∧ next-2push2 as an effect. 2push2 will have next-2push2 as a precondition and
¬in-joint ∧¬next-2push2 as an effect.

There remains one subtle issue when a MAFS-based algorithms [57] is used. In MAFS,
agents must end every sequence of private actions with a public action. Imagine that we
attempt to insert into a plan, a collaborative action such as 2push(a1,a2,b) that has two
preconditions: p1 is private to a1 and p2 is private to a2, and these preconditions are initially
false. Suppose that the first agent uses private action ap1 to achieve p1 and then applies
push1(a1,b) (which is public and was split as described above). At this point a2 cannot
apply push2(a2,b) because p2 does not hold. Suppose ap2 is private and achieves p2. We
must allow a2 to perform ap2 before applying push2(a2,b). This is indeed possible because
¬in-joint is not a precondition of private actions. However, the actions now appear in the
order: ap1 , push1(a1,b), ap2 , push2(a2,b). But collaborative actions must be executed in the
same time, so we must push back all intermediate private actions to before the first part of
the collaborative action, to obtain ap1 ,ap2 , push1(a1, b), push2(a2,b). Because private actions
of one agent do not interact or interfere with actions of other agents, such re-ordering does
not impact the result of the plan, and is correct.

5.7 Empirical Evaluation

We now evaluate the scalability of our compilation approach for the regular MAP and for
PPP. Existing domains do not incorporate fully interacting actions, but only limited aspects of
them. Thus, we defined a new set of domains with interacting actions, and for each domain,
we generated a centralized version and a distributed version with private elements.

For each centralized domain, we compared three different compilation schemes. In the
first two variants, we adapt the strategy of CJR in which all single-agent actions within each
joint-action deal with a fixed set of objects. The code for generating both compilations is
built upon the software of Furelos-Blanco, Frances, and Jonsson (2019) and exploits their
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encoding of object constraints. The third variant removes this restriction – i.e., joint-actions
can contain actions manipulating different object sets. The code for this variant is not
based on Furelos-Blanco, Frances, and Jonsson (2019). More specifically: the first variant
(Rep1 [81]) is based on a formalism we proposed earlier which used a notion weaker than
well-formedness, called well-defined (see Section 5.8 for more details on this including how
the general compilation scheme described in Section 5.5.3 differs to ensure well-definedness).
As noted above, it allows only multi-actions, all of whose actions manipulate a fixed set
of objects. This compilation scheme also incorporates the object cardinality constraints of
CJR. The second variant is identical to Rep1, except that it enforces the requirement for well-
formed multi-actions instead of well-defined. While this compilation includes the cardinality
constraints mechanism of CJR, as well, it requires us to add additional collaborative actions,
as we now explain.

A well-defined multi-action can contain multiple instantiations of similar collaborative
actions (e.g., 2push(a1,a2,b) and 2push(a3,a4,b)), whereas such multi-actions are not well-
formed. Thus, if we want to allow between 2 to 4 simultaneous rowers for a boat, in the case
of well-defined multi-actions, we can make do with the row and 2row actions, as they can be
combined. But if we require multi-actions to be well-formed, we must specifically define
2row, 3row, and 4row.

The third variant (Rep3) is based on the formalism we define in this chapter. We do not
enforce any constraints on the content of a multi-action, and we require multi-actions to be
well-formed. In each domain a general PDDL-like representation is used, e.g, the action
2push has two agent parameters and one box parameter.

5.7.1 Domains

We used four PDDL-like domains in our experiments of which two are new, and the other
two modify existing domains.
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Maze

This domain is a modified version of the Maze domain used by CJR. Based on their descrip-
tion, it covers situations in which multiple actions must or cannot be performed together. It
also includes resources that cannot be utilized more than once in the planning.

The domain consists of a 2D grid, in which agents start from their initial locations and
each agent has a dedicated goal location. Two adjacent cells in this 2D grid are connected,
and one cell can be reached from the other via moving through a door, crossing a bridge,
or rowing a boat. Only one agent can pass through a door at a time, while several agents
can cross a bridge simultaneously. However, this bridge collapses after its first use. In our
description, a boat can be rowed by exactly two agents (and thus, following our explanation
above, we introduced a collaborative action 2row. In addition to that, some doors may be
closed initially and they will have an associated switch at some arbitrary location in this grid.
This switch must be pushed to open the door.

In the privacy preserving planning settings, the location of an agent in the grid is private
to that agent.

TableMovers

The Table-Movers domain consists of a number of tables and rooms, and agents can move
between connected rooms, only. Tables are placed at their initial locations, and agents are
supposed to move the table to their dedicated goal locations. Each table has some fragile items
on top of it, and these objects must remain intact. The primitive single-agent actions in this
domain are: move-agent, charge-agent, move-table, lift-table, drop-table. The collaborative
actions are: 2move-table, 2lift-table, 2drop-table, where each one of is a composition of the
corresponding two primitive single-agent actions.

If an agent lifts/drops a table alone, objects on top of this table fall and the table is no
longer intact. But the collaborative actions 2lift-table and 2drop-table, respectively, lift and
drop the table simultaneously, keeping it intact in the process. Agents can move a table only
if they are charged. Charging points are available only in some rooms. In the PPP settings,
the location of an agent and its charging status are private information.

BoxPushing

This domain is a modified version of the box-pushing domain described in [19]. It consists
of agents, boxes and locations. Each box is kept at some initial location, and the goal is to
move all boxes to their goal locations. The primitive single-agent actions are: move-agent
and push-box, while the only collaborative action is: 2push-box, which is a composition of



5.7 Empirical Evaluation 99

two primitive push actions. The single-agent push moves the box to a connected location.
An agent pushing a box alone will hurt her back and cannot perform additional push actions.
But when using the collaborative action, the box moves without this side effect. The location
of an agent and whether her back hurts are private to that agent.

ApartmentMovers

This domain is based on the classical Depot domain. It consists of locations and trucks.
Trucks are used to move furniture and electronic items from one location (Apartment A) to
another location (Apartment B), if they share a connected path. Electronic items are fragile
and, therefore, must be packed in a carton-box before they are moved. There is no limit on
the number of items that can be packed in a carton-box.

The primitive actions in this domain are: consume, move-agent, drive-truck, load-carton,
unload-carton, load-furniture, unload-furniture, pack-appliance and unpack-appliance. Like
the previous domains, several collaborative actions are defined: 2load-carton, 2unload-
carton, 2load-furniture and 2unload-furniture. Each of these collaborative actions is a
composition of exactly two corresponding single-agent primitive actions. Single agent actions
that have a collaborative version do not succeed in having their intended effects, but make
the agent tired. Only move-agent, pack-appliance, and unpack-appliance can be performed
by a tired agent. She can recharge by performing the consume action. Collaborative actions
have their intended effect and do not make the agent tired.

In the privacy preserving planning settings, the location of an agent and whether she is
tired are private to the agent.

5.7.2 Results

Our algorithms were implemented in C++ and built on the publicly available code of Furelos-
Blanco, Frances, and Jonsson (2019), except for Rep 3. Experiments were carried out on an
Intel Core i5 3.20 GHz with 64-bit processor and 4GB of RAM. A time limit of 30 minutes
was set per problem. Our translation schemes generate standard single-agent planning
problems if there is no privacy involved in the domain description which is identical to that of
CJR’s method’s output when there are no pre/eff interactions and privacy, except for a small
overhead associated with maintaining data-structures required to detect and correctly handle
inputs with Pre/Eff Interactions. Their implementation does not address Pre/Eff interactions,
and can return incorrect solutions or miss valid solutions when such interactions exist.

For each problem, the translation step generates a single-agent problem, which is given
to Fast-Downward (FD) [36]. The search approach used in FD is lazy-greedy with hFF heuris-
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Ins (#agents) Size
CJR’s Rep 2: Well-Formed

Length Makespan Time (s) Length Makespan Time (s)
P01 (5) 19 U 8 4 0.075
P02 (4) 52 34 7 31.1 43 36 35.4
P03 (10) 198 58 58 11.6 58 58 12.1
P04 (20) 208 135 131 507.9 139 131 381.4
P05 (6) 444 U 69 68 18.5
P06 (10) 446 96 96 258.8 96 96 263.4
P07 (10) 734 TO TO

Table 5.2 Sorted by the problem size the table compares CJR’s approach and our well-formed
approach with object constraints in the Maze domain [23]. U stands for unsolved and TO
stands for a timeout.

tic [38]. We note that all tables reflect solution time without compilation time. Compilation
time is negligible, taking small fractions of a second. The size of the translated domain is
roughly four times larger.

We note that our compilation code does not automatically add mutex constraints between
the actions, and these have been added manually. Defining mutex relations between ground
actions is not hard, and could, in principle, be added following the generation of ground
actions by the FD solver. However, figuring out mutex relations properly in a domain with
ungrounded actions is non-trivial, and is currently not a part of our implementation. In
the general approach (Rep 3), since the planner can apply any action that manipulates any
object or object set, there are many mutex actions and propositions. In Rep 1 and Rep 2,
since only actions that manipulate the same objects are allowed concurrently, fewer mutex
actions and propositions are needed. Moreover, as we noted, additional information regarding
consistency must be supplied in some domain. For example a box can be pushed to two
different locations by two agents simultaneously. Logically, the two effects (at Box loc1) and
(at Box loc2) are consistent, and their inconsistency must be declared explicitly. This is done
by adding explicit mutex relationship between them.

Table 5.1 shows how our compilation algorithm scales in each domain with no privacy.
Each major column represents plan length, makespan, and solution time in seconds of one of
our variants.

Comparing Rep 1 and Rep 2, we see that the method described in this chapter, scales a bit
worse than the version described in [81], when we force the use of single object set in each
multi-action. This is most likely because of the stricter requirement of using well-formed
multi-actions. Somewhat surprising to us, removing the restriction of multi-actions that focus
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on a single set of objects, leads to much better performance (Rep 3). We initially expected
that this would lead to a much larger branching factor, and hence worse performance.

Another observation is that Rep 2 plans are often longer than Rep 1 plans, although
their makespan is often shorter. On the one hand, every well-formed plan is also, essentially
well-defined, so Rep 2 has more flexibility, and should be able to produce shorter plans.
On the other hand the well-formedness constraint forces us to define actions such as 3push
and 4push, which in Rep 1 would require two actions to represent (e.g., (2push,push) and
(2push,2push)). But these seem to be minor issues. One must recall that we are not using an
optimal planner to solve the problems, and that different heuristics have different behavior,
and how they interact with a particular domain description is not well understood. When we
rerun some of the instances using the LAMA2011 heuristic [72] instead of the FF heuristic,
we indeed observed such sensitivity. On some problems in which Rep 1 produces shorter
plans than Rep 2 using the FF heuristic, it generated longer plans than Rep 2 when using the
LAMA2011 heuristic, and vice versa.

The results in the BoxPushing domain are somewhat different from those of the other
domains. There, Rep 1 scales much better than Rep 3. The issue seems to be memory. To
verify this, we run Rep 3 using 8GB instead of 4GB, yet even this was not sufficient for the
larger instances. FD grounds everything before it actually starts the search process. Due to
many universal and existential quantifiers and propositions in the compiled problems, the
memory explodes too early in the general case. Quantifiers also affect the performance of
the planner in the scenario of well-formed multi-actions with constraints. However such
memory related issues only appeared in the Boxpushing domain; in the other three domains
our general approach is much faster than the other two, but plans generated are often a little
longer. Note also that when memory was not an issue, Rep 3 was and Rep 1 are quite similar
in this domain.

Following Table 5.1, in the Maze domain, we can see that plan length obtained for
problems varies from 12 to 125, however, the sizes of the problems do not vary that much.
We hypothesize that it is not always correlated with the difficulty of planning (which is the
number of objects), perhaps the nature of the objects and how they constrain the possible path
plays a more significant role. The nature is also characterized by the degree of interaction
between action.

In Table 5.1, for problem P02, with the maximum bound 4 on each boat, the well-formed
case (Rep 2) is almost 5 times slower compared to Rep 1, perhaps produced equal length
plans. We can also see that, for problems P03, the Rep 2 took more time (almost 3 times)
than Rep 1 as there were 5 agents acting, and that would have increased the total number of
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Domain Ins (#agent) Size
Time (sec)

Length Makespan
Centralized Distributed

B
ox

-P
us

hi
ng Pdp01 (3) 7 0.7 2.9 8 4

Pdp02 (4) 9 2.4 5.72 12 7
Pdp03 (4) 13 321.0 322.2 26 16
Pdp04 (5) 12 420.9 766.6 25 18
Pdp05 (5) 13 691.3 1497.1 39 25

M
az

e

Pdp01 (3) 49 8.0 62.2 3 1
Pdp02 (4) 50 10.7 270.1 25 22
Pdp03 (4) 51 13.0 104.8 17 10
Pdp04 (5) 49 15.7 407.9 17 10
Pdp05 (5) 52 18.4 142.7 26 15

Ta
bl

e-
M

ov
er

s Pdp01 (3) 9 0.7 2.9 7 5
Pdp02 (4) 11 2.8 23.1 20 16
Pdp03 (4) 13 5.6 65.5 28 22
Pdp04 (5) 16 4.6 - - -
Pdp05 (5) 15 39.9 - - -

A
pa

rt
m

en
t-

m
ov

er
s

Pdp01 (3) 14 15.7 12.8 16 10
Pdp02 (4) 24 47.0 241.0 31 23
Pdp03 (4) 32 35.0 301.0 36 28
Pdp04 (5) 34 200.0 254.5 44 38
Pdp05 (5) 36 160.9 781.6 26 20

Table 5.3 GPPP’s performance on the compiled domains with privacy. Size shows the number
of objects appeared in each problem including the agents. The column centralized shows the
time taken to find a centralized solution with no privacy, is compared against the distributed
case.

grounded actions given that there were several higher order collaborative actions in Rep 2.
However, for P04 with 4 agents, Rep 1 is slower than Rep 2 by more than three times.

In the Tablemovers domain, the well-formed approach is the worst performer among
the three, it usually found longer plans and took more time. Also, some problems were
unsolvable using this compilation approach, but they were solved by the other two approaches,
and P03. P05 which contain 6 agents, were solved only by the general approach.

In the Apartmentmovers domain a similar trend emerges. Some problems solvable by
the well-defined approach and general well-formed were unsolved when only restricted
well-formed multi-actions were allowed. P06 and P07 differ only in the addition of an extra
agent in P07. The well-defined case solved P07 when we relaxed the upper time bound
slightly. In some problems we found that adding another agent in the domain makes them
unsolvable for the well-formed case, for example, problems P02 and P03. This is because
the Rep2 has more collaborative actions in general than the Rep1.
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Table 5.2 shows a comparison of the compilation approach by Crosby, Jonsson, and
Rovatsos (2014) and our compilation approach that enforces a multi-action to be well-formed
with object constraints as described by CJR. These approaches are compared in the Maze
domain. We use the exact domain description for this comparison in which there are only
single-agent actions. We note that if the effect of a collaborative action is not different than
the union on the effects of its individual components then it is not needed to define the
collaborative action. This can be captured by object constraints as described in [23]. For
example, suppose that the given constraints on a bridge is (1,10), according to our formalism,
multi-action ⟨astart , cross, cross, cross, aend⟩ is an example of a well-formed multi-action.

We created two example problems, P01 and P05 in Table 5.2, such that to solve those,
agents must use actions that interfere with each other. For example two agents must cross
a bridge simultaneously, as the bridge collapses after its first usage. These problems were
unsolved by CJR’s compilation approach while our approach solves them both since action
interactions are explicitly tackled in our compilation approach. In general our approach adds
up several predicates to the compiled domain description to support the notion of well-formed
multi-actions and action interactions. These new predicates take extra time to ground before
the actual search process starts (in FD). For problems P03 and P06, both the approaches
come up with the exact same plans, but our approach was a bit slower. For problem P04,
there were 20 agents, their approach took more than 500 seconds to solve, while for our
approach it took roughly 380 seconds. For this problem, the solution plan obtained for the
well-formed case contains a multi-action with four agents simultaneously crossing a bridge.
This multi-action (a.k.a. joint action for CJR’s approach) is not possible to obtain in a plan
by CJR’s compilation approach. The planner consequently found relatively smaller plan and
quicker as well. It timed out for P07 for both the approaches.

Table 5.3 shows results for distributed PPP, for which we used the distributed PPP solver
GPPP [52] with the distributed hFF heuristic. Note that currently GPPP has difficulty in
supporting the quantifiers present in compiled domain descriptions and several other syntax
related issues. In this table we present results for well-defined case. Once a distributed
privacy preserving problem is generated, we need to remove some of quantified propositions
and add actions to make the compiled problem compatible for GPPP. The idea here is to show
that our compilation approaches are supported by a PPP planner. Although a lot of manual
work is required to do this currently. We do not present results for PPP case for other two
approaches. However, one can relate a possible outcomes/results for those two approaches,
with the results obtained in the centralized (Table 5.1) case in all three cases.

GPPP is far less optimized than FD (on single-agent problems it was 123 times slower,
with average ratio per domains ranging from 40 to 287). Hence, we used simpler problems
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than in Table 5.1. For each problem, beyond showing the results of running GPPP on the
compiled problem, we also describe (centralized) the running time when the problem is solved
by GPPP with a single-agent (that has access to all actions). This gives a sense of the relative
difficulty associated with privacy, which we can see is non-negligible, generally between 4-20
times slower. The gap in Table-Mover is largest, and Box-Pushing and Apartment-Mover,
smallest.

5.8 Discussion

The problem of modeling joint actions raises various semantic issues, some of which we
tried to tackle in this chapter. But subtle issues remain. Consider for example our 2push
action. We defined it as the result of two agents pushing the same box. Thus, if the push
action is implemented using some code in a robot, we’re saying that 2push is the result of
both robots activating this code concurrently on the same box. But is 2push really two single
push actions? When two agents push a box together, they need to coordinate with each other.
Indeed, a more refined model of this situation might call for each agent executing a different
action than a simple push.

There are a number of ways of addressing this issue. A simple solution is to ignore it,
and assume that at our current abstraction level, these are indeed the same actions. Another
solution is to add a new single agent action joint-push with a cardinality constraint that
requires at least two agents to carry it out concurrently. Notice that this is a different type of
constraint from the standard CJR cardinality constraint – the requirement is not that at least
two agents manipulate an object, but that at least two agent execute this action concurrently.

With this solution in mind, 2push would now consist of two joint-push actions. This idea
can be taken farther: we can also have coordinated action dealing with multiple objects. For
example, two agents, each pushing a box, but where the boxes are adjacent and the result
is somehow coordinated. This would actually require a new version of push with two box
arguments, where each agent actually changes the location of one box only.

A potential practical way of addressing this without having to specify so many single-
agent actions is to allow for primitive collaborative actions – i.e., one for which no single
agent elements are actually specified. But essentially, for this to work out semantically, it
seems that each such collaborative action implicitly defines special single-agent actions.

Another practical issue is the need to address multiple agents doing the same action, as
in push, 2push, 3push, etc. Observe that, in fact, we cannot combine two 2push actions
in a multi-action because it would not be well-formed. For example, {2push(a1,a2,b),
2push(a3,a4,b)} has push(a1,b), push(a3,b) among its primitive elements, which together
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form the collaborative action 2push(a1,a3,b). Thus, in the worst case, we need a special
kpush action for every k ≤ n. If from some point on the addition of agents does not impact the
effects on individual agents, we could capture this using a single-action multi-push with the
same type of constraint as above, where at least k agents are required to execute multi-push.
We note that such constraints are naturally expressed in the framework of Boutilier and
Brafman (1997). However, as noted, this approach appears challenging for forward-search
planning given that the effect of an action is unknown unless the other actions are specified.
Thus, it would be difficult to get good heuristics for methods that attempt to add single-agent
actions incrementally.

The above problem impacts the succinctness of the language. The concept of well-formed
actions forces the modeler to explicitly specify the effect of combined actions. In many
cases, this is justified. But there may be cases where this is redundant. For example, suppose
that there are two collaborative action (a1,a2) and (a2,a3). In this case, ((a1,a2),a3) is
not well-formed, and to execute these three actions, we must have an explicit collaborative
action that contains all three single agent actions. But if the effect on the agent performing
a2 in (a1,a2) and in (a2,a3) is identical, and if the effect on the agent performing a3 in
(a2,a3) is identical to that of just a3, then the combination ((a1,a2),a3) makes some sense.
This, however, appears a somewhat esoteric case, which can be supported by preprocessing –
automatically suggesting to the user such combinations and forming appropriate collaborative
actions for them. Supporting this in the compilation process directly seems difficult.

The above issues might lead future work to reconsider our definition of well-formed multi-
action, allowing for more flexibility. We note that originally, we used a weaker definition of
well-defined actions [81]. Formally, if ac = {a1, . . . ,al} and a′c = {a′1, . . . ,a

′
m} are two multi-

actions, we say that ac is subsumed by a′c if: (1) e(a′c) = e(ac); (2) for every ai ∈ ac there is
some a′j ∈ a′c such that e(ai)⊆ e(a′j); and (3) m < l. That is, both multi-actions involve the
same set of elements, and moreover, for every member of ac, there is a member of a′c that
contains all the elements of ac, and that this containment is strict in at least one case (and
hence, m < l). A multi-action is well-defined if it is not subsumed by any other multi-action.
To ensure the generation of well-defined multi-actions, we used a general compilation scheme
exactly similar to the scheme shown in Section 5.5.3, except for just one major change.
In Step 2(d), if e(ac) = {a,a1, . . . ,ak} for some collaborative action ac, we added only
¬(pa1 ∧·· ·∧ pak) as a precondition to a. Perhaps it is not hard to see that every well-formed
action is well-defined, but not vice versa. In fact, if we allow well-defined multi-actions,
multiple multi-actions can have the same set of primitive elements. Thus, Lemma 1 would no
longer be true. For example, assuming push and 2push, {2push(a1,a2,b), 2push(a3,a4,b)},
{2push(a1,a3,b), 2push(a2,a4,b)}, {2push(a1,a4,b), 2push(a3,a4,b)} are well-defined and
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contain the same primitive elements. None of them is well-formed, though. In this symmetric
case, it may seem unharmful, but consider: {push(a1,b), 2push(a2,a3,b)}, {push(a2,b),
2push(a1,a3,b)}, {push(a3,b), 2push(a1,a2,b)}. All have the same primitive elements,
all correspond to the same joint-action, and if push and 2push have different effects (e.g.,
following push the agent is tired), we have an ambiguous semantic for a joint action. For this
reason, we feel the new definition is cleaner semantically.

A possible direction for future work is to use our language and semantic to support
planning using input in BB’s format. The idea is the following: given a specification using
BB’s method, we define a set of collaborative actions such that the semantics of the resulting
domain captures BB’s semantics for the original domain. The benefit of this is that the
effect of collaborative actions is independent of other actions, and so they can be introduced
into the plan incrementally without altering their effects, which seems more suitable for
existing heuristics. There seem to be two issues to tackle here. First, one must deal with
negative concurrency constraints – an effect of action a may take place only if a′ is not
performed concurrently. We believe this can be enforced using suitable preconditions, in
the spirit of Step 2(a) and Step 2(b) in our encoding. Second, one would have to show that
the well-formedness requirement does not cause us to ignore some combinations that BB’s
semantics would allow.

5.9 Summary

In this section we will summarize this chapter. We presented a new approach, which is built
upon earlier work, to modeling and planning with interacting actions and privacy that is
intuitive and supports efficient planning. A key property of our semantics is monotonicity in
the effects of joint actions – an element added to a multi-action does not modify the effects
of actions added earlier. We described a compilation scheme from our input language to
single-agent planning and distributed privacy-preserving planning, which is the first to extend
both the language and algorithms for classical planning to handle these issues.
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( define (domain boxpushing)
(: requirements : typing )
(: types agent − object bridge − object box − object location − object )
(: predicates

(box−at ?b − box ?loc − location )
(pos−box−at ?b − box ?loc − location )
(neg−box−at ?b − box ?loc − location )
( intact ?box − box)
(pos− intact ?box − box)
(neg− intact ?box − box)
( at ?agt − agent ?loc − location )
(pos−at ?agt − agent ?loc − location )
(neg−at ?agt − agent ?loc − location )
(has−bridge ?br − bridge ?loc1 − location ?loc2 − location )
(pos−has−bridge ?br − bridge ?loc1 − location ?loc2 − location )
(neg−has−bridge ?br − bridge ?loc1 − location ?loc2 − location )
( tired ?agt − agent)
(pos− tired ?agt − agent)
(neg−tired ?agt − agent)
( taken ?agt − agent)
( in )
(p−cross ?a1 − agent ?br − bridge ?loc1 − location ?loc2 − location )
(p−push ?a1 − agent ?b − box ?loc1 − location ?loc2 − location )
(p−2push ?a1 ?a2 − agent ?b − box ?loc1 − location ?loc2 − location ) )

(: action a− start
: parameters ()
: precondition (and (not ( in ) ) )
: effect (and ( in ) ) )

(: action cross
: parameters (?a1 − agent ?b − bridge ?loc1 − location ?loc2 − location )
: precondition (and ( in ) ( at ?a1 ?loc1) (has−bridge ?b ?loc1 ?loc2) (not ( taken ?a1)) )
: effect (and (pos−at ?a1 ?loc2) (neg−has−bridge ?b ?loc1 ?loc2)

(neg−has−bridge ?b ?loc2 ?loc1) (neg−at ?a1 ?loc1)
(p−cross ?a1 ?b ?loc1 ?loc2) ( taken ?a1)) )

(: action push
: parameters (?a1 − agent ?b − box ?loc1 − location ?loc2 − location )
: precondition (and ( in ) ( at ?a1 ?loc1) (not ( tired ?a1)) (box−at ?b ?loc1) (not ( taken ?a1))

( forall (?a3 − agent ?a4 − agent) (not (p−2push ?a3 ?a4 ?b ?loc1 ?loc2) ) )
( forall (?a3 − agent) (not (p−push ?a3 ?b ?loc1 ?loc2) ) ) )

: effect (and (pos− tired ?a1)(neg− intact ?b)(p−push ?a1 ?b ?loc1 ?loc2) ( taken ?a1)) )
(: action 2push

: parameters (?a1 − agent ?a2 − agent ?b − box ?loc1 − location ?loc2 − location )
: precondition (and ( in ) (not (= ?a1 ?a2)) ( at ?a1 ?loc1) ( at ?a2 ?loc1) (box−at ?b ?loc1)

(not ( tired ?a1)) (not ( tired ?a2)) (not ( taken ?a1)) (not ( taken ?a2))
( forall (?a3 − agent) (not (p−push ?a3 ?b ?loc1 ?loc2) ) ) )

: effect (and (pos−at ?a1 ?loc2) (pos−at ?a2 ?loc2) (neg−at ?a1 ?loc1) (neg−at ?a2 ?loc1)
(pos−box−at ?b ?loc2) (pos− intact ?b)(neg−box−at ?b ?loc1)
(p−push ?a1 ?b ?loc1 ?loc2) (p−2push ?a1 ?a2 ?b ?loc1 ?loc2) ( taken ?a1)( taken ?a2)) )

(: action a−end ....) )

Listing 5.3 The Compiled Domain





Chapter 6

Conclusions and Future Challenges

This chapter puts the thesis in a nutshell by highlighting our research contributions, and later,
it describes some challenges for future work.

6.1 Summary

This work explores the problem of collaborative multi-agent planning with partial observ-
ability, interacting actions, and privacy. We used the Qualitative Dec-POMDP model [18] to
capture the MAP problem with partial observability and under uncertainty, a model intro-
duced as an alternative to Dec-POMDPs [7, 63, 78], replacing the probability distributions
over possible states with qualitative sets of states [18]. Originally, QDec-POMDPs were
shown to scale better than Dec-POMDPs, but not substantially so. In this thesis, we pro-
posed two new algorithms that share the same high-level factored framework inspired by
the factored approaches in classical planning to enhance the scalability of QDec-POMDPs
than contemporary (Qualitative) Dec-POMDPs, using which we demonstrate far greater
scalability.

The first approach, QDec-FP, starts by treating the entire MA system as a single-agent
system, called the team problem. A solution to the team problem generated by a contingent
solver is called the team solution. We then project the team solution to the part of each
agent. Then, each agent tries to fix their projected tree so that the agent can execute it online.
Fixing their projected tree requires inserting additional actions and replacing the other agents’
sensing actions with their own sensing actions. If all agents succeed, the approach aligns the
solution of each projected problem.

The QDec-FP’s team planning process relaxes the need to maintain different information
states for different agents. Instead, the team planning only manages a single belief state
for multiple agents. Therefore, while fixing their projected subtrees, agents might require
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to act under the conditions they cannot know, which often led to failure in planning at the
agent-level. To alleviate this issue, we proposed to model agent-specific knowledge during
team-planning. This new idea not only helped to generate informed team solutions but also
helped model communication between agents. We model signaling – an implicit form of
communication in which agents share knowledge by changing the state of the world and use
that in team planning, which is not possible practically to model in QDec-FP.

In Chapter 3, we showed that QDec-FP scaled much better than the IMAP approach,
the prior state-of-the-art algorithm. In Chapter 4, we showed that the QDec-FPS solver,
which models individual agents’ knowledge, enhanced the scalability of the QDec-POMDP
framework even further. It solved problems that needed signaling to be solved, which were
practically not solvable by QDec-FP.

Therefore, one can say that seeking a good factored algorithm sometimes helps better
understand the underlying abstraction used for coordinating the agents and its shortcomings.
This understanding may lead to insights for creating better abstractions, e.g., an approach
with a better pruning technique, heuristics, etc.

As we sought to improve the QDec-FP approach and we realized that team planning
is generating an abstraction that is too strong. The obtained abstract solution allows all
agents to execute their public actions based on the results obtained by a “private” action a
single agent. In our case, that private action is that agent’s own sensing action. This often
leads to failure at the agent-level planning. A better abstraction is achieved when we use
agent-specific knowledge-modeling during team planning in QDec-FPS; by allowing the
team planner, unlike in the previous case, to apply only those actions related to the agent,
who applied its sensing action earlier in the plan tree. However, this is not true when an agent
applies a regular public action, say a push, and in that case, the effects/results are shared with
all agents at the level of team planning. In the next section, one of the listed future works
belongs to the same trace of thoughts.

The latter part of the thesis explored a formalism for specifying joint-actions in a composi-
tional way, which is intuitive, and a compilation-based approach to planning with interacting
actions, as well as privacy. It also highlights and discusses subtle issues that arise when
attempting to model and plan with interacting actions.

6.2 Future Work

Many challenges remain for future research, which we briefly discuss now in this section.
We describe some ideas that can be considered as immediate future extensions of our current
approaches, while others are for the long run.



6.2 Future Work 111

6.2.1 MAP with Partial Observability and under Uncertainty

There are many important questions left still unanswered in the Qualitative Dec-POMDPs
formalism. We hope that future research will continue investigating this topic. An immediate
extension of our factored approach one could think of is a more efficient backtracking
mechanism. A sound approach that augments the MAP domain with learned no-goods can
help generate team plans that are even more likely to succeed. Together they are expected to
enhance the scalability of QDec-POMDP even further.

One can also restrict an agent from applying specific actions (ideally “public”) or the
agent must apply specific actions under certain conditions during team planning, which
would help generate an even more informed abstract plan (a team solution). However, we
note that to achieve this, one needs to change the underlying planner, which is CPOR in the
case of QDec-FP/S, in a certain way. One can expect that a sound mechanism would enable
the factored approach to go for an “early” backtrack. However, one needs to devise a sound
approach to learn no-goods for domain augmentation in this case, too.

Even with improved knowledge modeling, the underlying planner (CPOR) can generate
a team plan that requires an agent to act differently for some value of a variable that it cannot
observe. To be precise, these are the cases where one agent does not need the exact value of
this variable to execute its actions in the team plan (i.e., that exact value is not required as
a precondition of its actions). Such a team plan cannot be decomposed and solved by this
agent. The situation arises here because a team plan is represented as a tree (or a graph), and
is not linear, so the decision-making and reasoning required under partial observability and
uncertainty is much more involved.

Modeling some form of communication (“signaling”) can handle such scenarios under
specific circumstances where an agent can share some information that another agent cannot
learn on its own. Let us consider an example: Suppose that the agent ϕ1 wakes-up at 7AM,
then another agent ϕ2 would pick ϕ1 up from station-A, at some time point, but if ϕ1 wakes-
up later, ϕ2 picks ϕ1 up from station-B, at some other time point. To pick-up ϕ1 from a
station, it must be there at the station, which also means that ϕ1 is initially not present at
either station. Moreover, ϕ2 cannot observe the wake-up time of ϕ1, but it can sense the ϕ1’s
presence at a station. Here the two decision points, (a) when ϕ1 wakes up, and (b) at which
station ϕ1 would be present after some time points to get picked, are intertwined. Our current
approaches cannot generate an abstract team plan that supports proper coordination of the
actions of the agents. Although, once agents fail to convert this team plan into a solution
plan, one can post-process the team plan to learn some relations between the two decision
points and use them in the next iterations.
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Another approach that is orthogonal to the current plan representation, one could also
think of is to come up with a different plan representation for a joint-policy tree (or for a
contingent (team)-plan tree to be precise for which currently we use a tree or graph). An
in-depth study of the joint-policy trees obtained while solving specific benchmark domains
motivates us to seek a different representation than what we currently use. Moreover, we also
think that it would help minimize the number of backtracks currently needed to solve the MAP
problem, in general, and enhance the overall scalability and applicability of QDec-POMDPs.

A big challenge awaiting is a thorough study of the applicability of the factored approach
on non-deterministic domains. Note that our proposed methods have not been tested on
non-deterministic domains.

6.2.2 MAP with Interacting Actions

For future research in this direction, one could consider the input in the format Boutilier and
Brafman (1997) suggested in [12], and use our language and semantics to support multi-agent
planning. The idea is the following: Given a specification using Boutilier and Brafman’s
method, we define a set of collaborative actions such that the semantics of the resulting
domain captures Boutilier and Brafman’s semantics for the original domain. The advantage
of this is that the effect of collaborative actions is independent of other actions, and therefore
they can be introduced into the plan incrementally without altering their effects, which seems
more suitable for existing classical heuristics.
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