
(MASTER) The hyplet - Joining a Program and a Microvisor for real time
and security

xxx

Abstract

This paper presents the concept of sharing a microvisor
address space with a standard Linux program. We add
hypervisor awareness to the Linux kernel and execute
code in the HYP exception level. We do this through
the use of the hyplet. The hyplet is an innovative way to
code interrupt service routines under ARM. The hyplet
provides many benefits including: high performance, se-
curity, run time predictability and an RPC mechanism.
The hyplet uses special features of the ARM hypervi-
sor memory architecture. We demonstrate the hyplet im-
plementation using the C programming language on an
ARMv8 platform and under the Linux kernel. We pro-
vide performance measurements, use cases and security
scenarios.

1 Introduction

There are various techniques to achieve real time. One is
to use a single operating system that provides real time,
as seen in Figure 1.

RTOS

CPU 0 CPU 1 CPU 2 CPU 3

Figure 1: RTOS

Another technique is the microkernel, where the gen-
eral purpose operating system (GPOS) is preempted by a
microkernel. A subclass of the microkernel is the micro-
visor. A microvisor is an operating system that employs
some characteristics of a hypervisor and some character-
istics of a microkernel. A typical architecture of a micro-
visor is depicted in Figure 2.

GPOS

Microvisor OS

CPU 0 CPU 1 CPU 2 CPU 3

Figure 2: Microvisor

The hyplet, depicted in Figure 3 is a single real-time
processing unit shared between a process and a microvi-
sor.

GPOS
Hyplet Microvisor

CPU 0 CPU 1

hyplet hyplet

CPU 2 CPU 3

Figure 3: Hyplet Microvisor

The hyplet is a hybrid of a normal user program and
a microvisor that offers real time processing and secu-
rity benefits. We introduce the hyplet for the purpose
of interrupt handling in real time and for the purpose
of efficient interprocess communication using a powerful
mechanism that is similar in nature to remote procedure
calls.

There are already multiple microvisor solutions today.
These microvisors often provide security and/or real

time features to applications. In a microvisor environ-
ment, each VM is encapsulated in its own logical hard-
ware partition. Furthermore, each VM has its own mini-
mal operating system Iqbal et al. [2009]. Many microvi-
sors separate among the hypervisor exception level, the
kernel and user space exception levels. However, Heiser
expressed a difficulty in this approach. According to

Heiser Heiser [2011] pure virtualization is not suitable
due to the lack of efficient resources sharing and rough
scheduling. Heiser Heiser and Leslie [2010] Varanasi
and Heiser [2011] proposed the OKL4 microvisor as a
solution to the real time requirements. Kanda et al Kanda
et al. [2008a] doubted the concept of running two dis-
tinct operating systems sharing the same application pro-
cessor, as this might increase the engineering cost. For
instance, supporting a low energy RTOS Kumar and Sri-
vastava [2000] or task scheduling under limited power
Jejurikar and Gupta [2002]. Performing such tasks by
multiple operating systems raises the project complexity
and costs.
Therefore, we present the hyplet ISR as a para-
virtualization technique to reduce hardware to user space
latency. We will use the term hyp-ISR to distinguish a
normal ISR from an ISR in hyplet mode. In addition
to the hyplet real time features, we will also demon-
strate a new hyplet based RPC system. In this area,
Liedtke Liedtke et al. [1991] showed that L4 microker-
nel Inter-process communications can be 20 times faster
than other microkernels.

Para-virtualization is a technique in virtualization.
Para-virtualization exposes to a virtual machine a soft-
ware interface the resembles the hardware interface.
Para-virtualization goal is to simplify and improve per-
formance in the guest VM. Hartig Härtig et al. [1997]
demonstrated that para-virtualization reduces the com-
munication overhead between user to kernel services to
a few percent overhead. Furthermore, in addition to hyp-
ISR we present hypRPC. HypRPC is a reduced RPC
mechanism which has a latency of a sub-microsecond on
average, and 4 microseconds worst case. Our RPC is a
type of hypervisor trap where the user process sends a
procedure id to the hypervisor to be executed with high
privilege without interrupts in another process address
space. We use the term hypRPC for our RPC as a mix-
ture between hypercall and RPC.
The hyplet is based on the concept of a delicate ad-
dress space separation within a running process. Instead
of running multiple operating systems kernels, the hy-
plet divides the Linux process into two execution modes.
Part of the process would execute in an isolated, non-
interrupted privileged safe execution environment. The
other part of the process would execute in a regular user
mode.

To summarize, the hyplet is meant to reduce the la-
tency of:

• hardware interrupt to a user space program

• program to program local communication in user
space programs

to sub microsecond order of magnitude. In the taxonomy
of virtualization, hypelts are classified as bare metal type

2 hypervisors. A type 2 hypervisor is a hypervisor which
is loaded by the host operating system. A type 1 hyper-
visor is a hypervisor which is loaded by the boot loader,
prior to the general operating system. The hyplet is not
virtual machines at all, and may execute in hardware that
does not have support for interrupts virtualization. The
hyplet is meant to be simple to use and adapt to an exist-
ing code. The hyplet does not require any modifications
to the the boot loader, only to the Linux kernel. As such,
we consider the hyplet as an extension to the Linux ker-
nel.
This paper is organized as follows: Section 2 describes
ARM architecture features in the hyplet context. Section
3 explain the hyplet in detail. Section 4 is an evalua-
tion. Section 5 demonstrates some use cases. Section 6
is an example code. Section 7 provides an overview of
related work. Section 8 is a summary of the expected
future work and conclusions.

2 Background

2.1 ARM Permission model usage in the
hyplet

ARM has a unique approach to security and privilege
levels, that is crucial to the implementation of the hyplet.
In ARMv7, ARM introduced the concept of secured and
non secured world, through the implementation of Trust-
Zone, and starting from ARMv7a, ARM presents 4 ex-
ception (permission) levels.

Exception Level 0 (EL0) refers to user space code.
This is analogous to ”ring 3” in x86 platform.

Exception Level 1 (EL1) refers to operating system
code. This is analogous to ”ring 0” in x86 platform.

Exception Level 2 (EL2) refers to HYP mode. This is
analogous to ”ring -1” or ”real mode” on the x86
platform.

Exception Level 3 (EL3) refers to TrustZone as a spe-
cial security mode that can monitor the ARM pro-
cessor and may run a security real time OS. There
is no direct analogous modes but related concepts in
x86 are Intel’s ME or SMM.

Each of the exception levels provide its own state of
special purpose registers, and can access these registers
of the lower levels but not higher levels. The general pur-
pose registers are shared. Thus, moving to a different ex-
ception level on the ARM architecture, does not require
the expensive context switch that is associated with the
x86 architecture.
ARMv8 architecture dictates that the translation tables of

2

the different exception levels are to be distinct. Excep-
tion level 2 refers to HYP mode. This is analogous to
”ring -1” or ”real mode” on the x86 platform.

3 The hyplet

When there is need to improve the latency of an inter-
rupt event in user space, the trivial approach would be
to migrate code to the kernel, or inject a program as the
eBPF framework suggests Corbet [2018]. However, ker-
nel programming requires a high level of programming
skills, and eBPF, which we describe in the related work
section, is restrictive. A different approach would be to
trigger a user space event from the interrupt, but this
would require an additional context switch. A context
switch in most cases is time consuming and not suitable
for real-time applications. Therefore, to make sure that
the program code and data are always accessible, it is
essential to disable evacuation of the program’s transla-
tion table from the processor. So, we chose to constantly
accommodate the code and data in the hypervisor trans-
lation registers Penneman et al. [2013] as depicted in fig-
ure 4. In order to map a user space program, we modified
the Linux ARM-KVM, Dall and Nieh [2014] mappings
infrastructure to map a user space code with kernel space
data.

P

EL0
EL1
EL2MMU TTBR EL2

MMU TTBR EL1

Figure 4: Asymmetric dual view

Figure 4 demonstrates how identical address may be
mapped differently in two separate exception levels.
TTBR0 EL1 is the register that points to the transla-
tion table for the user space program, while TTBR0 EL2
points to the translation table of the hypervisor. The
shared section, colored red, is part of of the translation ta-
ble of EL2 and therefore accessible from EL2. However,
when executing in EL2, EL1 data is accessible without
premature mapping to EL2. Therefore, the hyplet is a
method to install code in a hypervisor that causes privi-
lege elevation, and execution of such code.

3.1 The hyplet security & Privilege escala-
tion in RTOS

Real time systems may eliminate user and kernel mode
separation, or move a certain process to higher privileges
levels.

Escalating privileges does provide minor performance
gains, but exact a price in security. A security bug at
higher privilege levels may cause greater damages com-
pared to a bug at the user process level. For example
in the XBox Steil [2005] case running games in kernel
mode, provided an entry point for breaking the DRM
system. The hyplet also escalate privilege levels, from
exception level 0 (user mode) or 1 (OS mode)to excep-
tion level 2 (hypervisor mode).

Since the hyplet executes in EL2, it has access to EL2
and EL1 special registers. For example the EL2 hyplet
has access to level 1 exception vector.

Therefore, it can be argued that the hyplet comes with
a security costs. We argue that this is not the case. In
most embedded systems and mobile phones no hypervi-
sor is installed. In the case where no hypervisor is in-
stalled, exception level 1 (OS) does not have lesser ac-
cess than the hypervisor mode when only one OS run-
ning, as in the hyplet use case. So leveraging a code from
EL1 without a hypervisor to EL2 is just as dangerous as
doing the same with a hypervisor.

Additionally, it is expected that the hyplet would be
a signed code; otherwise, the hypervisor would not exe-
cute it.
The hypervisor can maintain a key to verify the signa-
ture and ensure that lower privilege level code cannot ac-
cess the key. This was shown by Resh and Zaidenberg
[2013] on Intel platform. In addition, on ARM the Trust-
zone may be configured to trap illegal access attempts to
special registers, and prevent any malicious tampering of
these registers.
In order to do reduce security risks associated with the
hyplet, we suggest a static binary code analyzer. The
code analyzer scans the ELF binary and verifies that there
are no references to special purpose registers. We bor-
rowed this idea from eBPF. The code analyzer scans the
hyplet opcode, and checks that are no references to any
black-listed register. With the exception of the clock reg-
ister and general purpose registers, any other registers are
not allowed. If the hyplets uses libc’s APIs, we assume
libc does not violate security.
However, since most of the memory is not mapped to
the hypervisor, only a non sensitive part of the calling
process memory is mapped. The hyplet does not map
(and thus have no easy access to) kernel space code or
data. Thus the hyplet does not pose a threat of uninten-
tional corrupting kernel’s data, or any other user process.
Therefore, The risk of a rogue pointer manipulating sen-

3

sitive EL1 memory is minimized. (Unintentional mem-
ory corruption is almost impossible. Intentional mem-
ory corruption requires remapping by EL2 and can be
trapped by TrustZone).

Last, future architecture of the ARMv8 processor,
ARMv8.1 comes with a new extension called VHE Pen-
neman et al. [2013] , Virtual Host Extension. With VHE,
EL2 has a additional translation table, TTBR1 EL2, that
would map the kernel address space, while TTBR0 EL2
will continue to accommodate user space code, similar to
TrustZone. This way, it would be possible to execute the
hyplet without endangering the hypervisor. VHE hard-
ware is not available at the time of this writing, and as
such we are forced to use software measures to protect
the hypervisor.

3.2 The hyplet - User Space Interrupt

In Linux and other operating systems, when an inter-
rupt reaches the processor, it triggers a path of code that
serves the interrupt. Furthermore, in some cases, the in-
terrupt ends up waking a pending process Bovet and Ce-
sati [2005] as depicted in figure 5.

P
waits

P
wakes

Top
half

Bottom
Half

P
wakes

User Space

Figure 5: Common Interrupt Flow

Interrupt latency is the time that elapses from the mo-
ment an interrupt is generated to the moment it is ser-
viced. In the hyplet, the dual view of the program, elim-
inates the penalty of a context switch to run user space
code, and the top half and the bottom half of an inter-
rupt.
The hyplet reduces the amount of time from the inter-
rupt event to the program. To achieve this, as the inter-
rupt reaches the processor, instead of executing the user
program code in EL0 Flur et al. [2016] after the ISR
(and sometimes after the bottom half), a special proce-
dure of the program is executed in HYP mode, before
the kernel’s ISR. The hyplet does not changes the pro-
cessor state when it is in interrupt, thus, once the hyplet
is served, the kernel interrupt can be processed as well.
This is depicted in figure 6.

P
waits

hyplet

Top
half

Bottom
Half

P
wakes

User Space

Figure 6: Latency to the hyplet

The hyplet does not require any new threads. Since
the hyplet is actually an ISR, it can be triggered in high
frequencies. This way we can have a high frequency user
space timers in small embedded devices.
Some ARMv8 platforms do not support a complete vir-
tualization of the interrupt controller. Raspberry PI3,
for example, does not support VGIC fully. As a con-
sequence, ARM-KVM does not run on a Raspberry PI3.
For this reason, the hyplet is a para-virtualization tech-
nology. Interrupts are being routed to the hypervisor by
calling the HVC (hypervisor call) from the kernel main
interrupt routine.

3.3 Hypervisor based RPC

RPC (Remote procedure call) is a type of interprocess
communication(IPC), in which parameters are trans-
ferred in the form of function arguments. The response
is returned as the function return value. The RPC mecha-
nism handles the parsing and handling of parameters and
return values. In principal, RPC can be used locally (as a
form of IPC) and remotely, over TCP/IP network proto-
cols. In this paper we will only consider the local case.

IPC in real time systems is considered a latency
challenge Härtig and Roitzsch [2006]. In many cases
IPC is refrained from use because of that challenge. The
solution programmers use is to put most the logic in a
single process. This technique decreases the complexity
but increases the program size and risks.
In multicore computers, one reason for the latency
penalty is because it is possible that the receiver is
not running when the message is sent. Therefore, the
processor needs to switch contexts. HypRPCs are
intended to reduce this latency to the sub microsecond
on average. HypRPCs act as a temporary address space
extension to the sending program.
HypRPCs are easy to use, because there is no need for a
synchronization between the receiver and the sender. If
the receiving programs exits, then the API immediately
returns an error. If the function need to be replaced in
real time, there is no need to notify the sending program,
but simply replace the function in the hypervisor.

Figure 7 demonstrates the hypRPC state machine. The
green circles represent EL0 exception level, while the red
circles represent EL2 exception level. Program P is a

4

P

Pf ()

hyp

Q f ()

f (x0,x1,x2, ..) brk

ret eret

Veri f ied

ret

Figure 7: HypRPC State Machine

request program, and Q is a serving program. As pro-
gram P loads, it defines itself as a hypRPC requesting
program. HypRPC program, unlike hypISRs, is a pro-
gram that when it executes the brk instruction, it traps
into HYP mode. The reason for that is that user space
programs are not permitted to perform the HVC instruc-
tion. Function f () in P is a two lines function:

foo:

brk

ret

When P calls f () , the first argument is the RPC id, i.e;
x0 = rpcid . As the processor execute brk , it shifts to
HYP mode. Then the hypervisor checks the correctness
of the caller P and the availability of Process Q, and if all
is ok, it executes f () in EL2.
Thus, program Q can be loaded on any processor, as a
hypervised background program, and act as an auxiliary
program for any program P. Figure 8 shows a possible
scenario in which whenever there is any P that needs a
fast RPC, the hypRPC is triggered.

Q

P1

Q

P2

Q

P3

Figure 8: Background Program

As a side benefit, a hyplet RPCs can also be considered
as a trusted execution environment. This is because the
hyplet can be protected from modifications by keeping it
encrypted. This technique is explained in this paper, in
protection against reverse engineering section.

3.4 Additional benefits of the hyplet
• Safety

The hypISR provides a safe execution environment
for the interrupt. In Linux, if there is a violation
while the processor is in kernel mode, the operating
system may stop. The kernel stops because it is con-
sidered unsafe. So, the kernel prints a log that de-
scribes the failure position and reason and the sys-
tem freezes.

In the hyplet case, if there is a fault in the hypISR,
the microvisor would trigger a violation (for in-
stance, a SEGFAULT). The microvisor would send,
through the kernel, a signal to the process contain-
ing the hyplet. This is possible because the fault
entry of the microvisor handles the error as if it
is a user space error. For example; if a divide-
by-zero failure happens, the operating system does
not crash, but the hyplet’ed program exits with a
SIGFPE.
Another facet of hypISR is sensitive data protection,
even from the operating system kernel. We can use
the hyplet to securely access data. I/O data may be
hidden from EL1 and accessible only in EL2.

• Temporality
We often consider software as dynamic and change-
able. For example, interpreters or bash scripts,
python and so on. The same cannot be said about
device drivers. Interrupts service routines rarely
change , i.e. it is not easy to modify a behavior
of an interrupt routine in real time (while the de-
vice is running) . Consider the case of a robotic
system; due to the dynamicity of the robot, the ISR
may be needed to change and some services may
not be needed at all. In the hyplet case, however,
instead of modifying the kernel drivers, we can stop
the user space hyplet program, and run a new hyplet
with new heuristics.

• Scalability
Though the hyplet is part of a user space program,
we cannot easily have more than one hyplet-capable
process on one processor. However, we can have
several hyplets over the same interrupt in the same
program. There is no restriction on the amount of
hyplets to use on any interrupt, other than the time it
takes the hyplet to complete execution. There is also
no restriction on the amount of memory the hyplet
uses nor the stack size. This is a benefit, since the
Linux kernel stack is restricted to 16 kilobytes, and
virtual memory is not abundant in kernel mode.

• Programming Languages
The only requirement is an ELF binary regardless
of the programming language.

5

• Unification of interrupts
The hyplet can be assigned to any interrupt. All
types of interrupts may be joined together to the hy-
plet. For example, the same hyplet may serve an
input event from the USB subsystem and the video
subsystem.

• SMP
It is possible to register different hyplets over dif-
ferent processors. This means that if an interrupt is
assigned to more than one processor, then in order
to trap it, we need to bind to each processor a hyplet
capable program.

• Scope of Code Change
The hyplet patch does not interfere with the hard-
core of the kernel code, neither does it require any
modification to any hardware driver. The modifi-
cations are in the generic ISR routine, in a pro-
gram exit, and we introduce a new system call:
sys hyplet. For this reason it is easy to apply it
as it does not change the operating system heuris-
tics. Microvisors, such as seL4 and Xvisor are not
so easy apply on arbitrary hardware, as they require
a modify the boot loader, a fact that makes them im-
possible to apply in some cases, for example, when
the boot loader code is closed. Jailhouse Barysh-
nikov [2016] and KVM won’t even run because vir-
tualization hardware does not suffice (the GIC vir-
tualization is incompatible) in some cases, one of
which is raspberry PI3. RT PREEMPT is still not
so stable enough. For instance, while preparing this
paper we learned how difficult it is to apply the RT
PREEMPT patch on raspberry PI3. In Android OS
it is undesirable to apply RT PREEMPT because it
changes the entire operating system behavior. In
short, it is best localize the changes as little as pos-
sible.

• Dynamicity
The hyplet is a part of a running program. Like
other Unix-like APIs, such as signals or sockets, it
may be removed and assigned dynamically while
the hyplet’ed process runs. If the process exits the
hyplet will remove itself automatically from the hy-
pervisor. Any data section or code section that is
unmapped from the process, while the process runs,
is automatically unmapped from the hyplet as well,
if it is mapped to the hypervisor.

4 Evaluation

We demonstrate that the hyplet is suitable for hard real
time systems. We will provide synthetic microbench-
marks, and compare our solution to Normal Debian

Linux, RT PREEMPT Linux, seL4 microkernel Klein et
al. [2008], and Xvisor, all on a Raspberry PI3. Raspberry
PI3 main specifications are shown in 1:

Soc Broadcom BCM2837
CPU 4 cores, ARM Cortex A53, 1.2GHz,

(clocked to 700MHz)
RAM 1GB LPDDR2 (900 MHz)
Clock 19.2 Mhz

Table 1: PI3 specifications

We selected Xvisor because Xvisor is a thin microvi-
sor. We chose RT PREEMPT because it is considered
a free open source non-commercial RTOS Linux OS ac-
cording to Fayyad-Kazan et al. [2013] and others. We
chose seL4 because it is a hard real time mathematically
proven microkernel.

4.1 Latency
In order to evaluate PI3’s interrupt latency, we measured
the delay from an attached hardware to the start of the
hyplet. For this purpose, we connected an Invensense
mpu6050 Fitriani et al. [2017] to the PI, and configured
this IMU to work in i2c protocol. In i2c, for each 8 bits
of data, there is an acknowledgement signal, that gener-
ates an interrupt to the PI. We wanted to measure the time
interval between the moment of the i2c ACK, to the mo-
ment the processor runs the main interrupt routine. So,
we connected a logic analyzer probe to the SDA of the
IMU, and programmed one of the PI’s GPIO to trigger
a signal in the kernel’s the main interrupt routine. This
way we could take the time of the IMU ACK signal, and
the kernel ISR time. The results were an average of 3.9
µs , maximum 9µs, and the minimum was 1.7µs.
This means that a user space program that expects to be
woken for each interrupt will fail. A minimal kernel to
user latency, even in seL4, as we show in the paper, is
between 2 to 5 microseconds. In other operating systems
on this hardware, it is even longer. For this reason, if we
want to propagate information in real time to user space,
the interrupt must execute in user space, hence the hy-
plet.

4.2 Timer
We continue the evaluation and construct a timer. A com-
mon flow of a timer driven program is as depicted in al-
gorithm 1.

In the hyplet case we modify the flow of the program,
by using the new system call sys hyplet as in algorithm
2.

6

Algorithm 1: typical timer use

Connect to an oscillator;
Configure the device frequency;
Start the device;
while Device is running do

Wait on Event;
do something;

end

Algorithm 2: typical hyplet use

if need connect to an oscillator then
Configure the device frequency;
Start the device;
hyplet start(the irq , hyplet procedure)

end
... Hyplet function awakes periodically, there no

need for a special thread ...

In table 2 we measured delay latencies of programs.
We conducted a delay of 1 ms for 5 minutes, while
Linux/seL4 runs. In RT PREEMPT and Normal Rasp-
bian Linux we used cyclictest Gleixsner, a real time test
suit for Linux.

In the hyplet we wrote a simple test that wakes up in
each interrupt. In Xvisor, to make the test equal to the
hyplet, it terms of which privilege level the code was ex-
ecuted, we wrote a simple test that waits for 1 ms, in
HYP mode (not in the VM/guest OS). Nevertheless, it is
notable to say that Xvisor was not intended to run real
time programs.

ranges RT Hyplet Nrmal Xvsr seL4
in µs PRPT
0 0 99.9477 0 0 0
1 0 0.0523 0 0 0
2-5 0 0.0020 0 0 100
6-10 0 0 47.7 99.9 0
11-15 69 0 49.7 0 0
16-20 28 0 1.6 0 0
21-25 2 0 0.25 0 0
26-30 0.085 0 0.26 0 0
31-35 0.01 0 0.0874 0 0
36-40 0.05 0 0.034 0 0
41-45 0.001 0 0.034 0 0
46-50 0.0003 0 0.05 0 0
51-55 0 0 0.0321 0 0
56-100 0 0 0.18 0 0
101+ 0 0 0.0014 .1 0

Table 2: : Latencies Distribution in percentage

In the hyplet case, 99.96% of the samples were bellow
1µs latency , and 100% were bellow 5µs. In RT PRE-
EMPT case, the upper boundary was 47µs, and 14µs
on average. In normal Linux the maximum value was
144µs, and the values distribution was higher. Xvisor
presents an impressive benchmark where 99.9% samples
jitter in less than 8 µs, the rest unfortunately, were nearly
500 us. seL4 is an RTOS.
It is evident that ISR-hyplet can provide hard real time in
a regular Linux kernel.

4.3 Fast RPC
We evaluated the round trip of calling a function
that returns the time. For Xvisor, Native Linux and
RT PREEMPT we used ptsemtest, which is part of
cyclictest. Ptssemtest measures the interprocess latency
communication with POSIX mutexes. In seL4 we used
ptssetest-like test (sync.c), because ptssemtest is not
available in seL4. The hyplet test was a C program that
made an RPC to a hyplet’ed process. The reference test
is to evaluate to the cost of the calling the function of the
hyplet when not in HYP mode.

Name Avg Max
Ref 156ns 520ns
Hyplet 520ns 4.2µs
Normal 13µs 56µs
RT PRMT 15 µs 59µs
Xvisor 203µs 7067µs
seL4 8µs 17µs

Table 3: Round Trip RPC

It is evident that the hyplet is the fastest RPC, even in
the worst case.
We note that it is essential not to overuse the hypRPC
(over 10000/second calls). HypRPCs bypasses the
operating system, and hence might delay the processor
from moving through a quiescient state Bovet and Cesati
[2005]. An overuse of the processor usually trigger ker-
nel watchdogs and might even hog the operating system.

5 Use cases

This section details real use cases for the hyplet and a
possible use case.

5.1 Trusted Interrupts
The hyplet can be used to mask the handling of an inter-
rupt so that it will not be visible by the OS driver. In-
terrupts handled by the hyplet can be verified by TPM or

7

Trustzone, and pose an extra layer of protection in order
to reverse or modify, unlike OS based interrupt handler.
In order to modify a normal OS interrupt it is sufficient
to elevate privileges to the OS level. In order to modify a
hyplet one must first elevate permissions to the OS level,
and then attack and subvert the hypervisor itself. To pre-
vent a malicious hyplet from being injected, we offer a
static analysis tool that scans the binary ELF and checks
that there are no inferences to special purpose registers,
such as TTBR0 EL1 or HCR EL2.

5.2 Protection against reverse engineering

On x86 platforms, TrulyProtect provides anti-reverse en-
gineering Resh et al. [2017a], end-point security Resh
et al. [2017b], video decoding David and Zaidenberg
[2014], forensics etc. TrulyProtect relies on Dynamic
Root of Trust Measurement (DRTM) attestation to cre-
ate a trusted environment in the hypervisor to receive en-
cryption keys Rosenblatt et al. [2001].

We have used the hyplet to implement a TrulyProtect-
like system on the ARM platform. We have encrypted
parts of the software and used the hyplet in order to
switch context and elevate privileges. Our systems then
decodes the code in the hypervisor context (a hyplet), so
that the code or decryption keys will not be available to
the OS.

Our system for protection against reverse engineering
has a cost affiliated with first execution and decryption of
the code, but very low per iteration overhead as demon-
strated in the table below.

Iterations Encrypted Clear
1 1185 1127
10 2737 2597
100 18022 18018
1000 173925 171251
10000 1758997 1670811

Table 4: Duration of stack access in ticks

5.3 Robotics

A kinetic robotic system is composed of a motion con-
troller and axes. The motion controller is referred as the
master and the axes are the slaves. The motion controller
communicates with the slaves over a fieldbus protocol. A
fieldbus Thomesse [2005] protocol is a generic term for
real time communication protocols like Sercos XIE et al.
[2001], EtherCAT Shan et al. [2007], CAN LIU and SU
[2006], Modbus Rotvold et al. [2007] and many others.
We can describe a motion controller as receiving the co-
ordinates of each axis (slave), calculating the future co-
ordinates of each axis and transmitting them. This is a

cyclic operation; and the closest time it is performed to
the time it is sent, the more smooth the kinematics would
be. In figure 9 the coordinates are received at cycle t, the
new position is calculated and sent at cycle t+1.

t-1 t t+1

Figure 9: Field Bus

However, some programmers write this code in the
kernel, and avoid the kernel-to-user space latency alto-
gether. Since it is not easy to access user space data from
an interrupt context, prior to the transmit, we miss the
opportunity of last minute calculations. These calcula-
tions are important because the hardware timer jitters,
so the next position calculations have some small errors.
Therefore, this paper offers the hyplet would execute and
modify the axes’ data prior to the regular kernel timer in-
terrupt, right before the data is sent. Figure 10 depicts
this design, the hyplets are in red.

t-1 t t+1

Figure 10: FieldBus with the hyplet

In addition, usually Linux main timers (the tick) are
programmed to run at 1Khz, but with the hyplet it is pos-
sible to execute the hyp-ISR in much higher frequencies,
for instance to run the hyplet in 10Khz, and pass only
tenth of the interrupts to the operating system.

6 Usability

The hyplet is very easy to use. The following code is an
example of a hyplet. The program maps data and code
to the hypervisor through a set of APIs, and when told it
routes the IRQ to user space. The program is compiled
without any special requirements, and executed like any
other ELF binary.

int some_global = 0;

/*

* user_hyplet is executed in a

* hyplet context.

* some_global is accessible from

* EL2 and EL0. the variable odd

* on the stack may be protected

* or not.

* Opaque may be any value

8

* passed from the kernel.

* The function returns indication whether

* or not to filter the interrupt

* from the kernel.

*/

long user_hyplet(void *opaque)

{

int odd = 0;

some_global++;

if (some_global % 2)

odd = 1;

if (odd)

return MASK_IRQ;

return NO_MASK;

}

int hyplet_start(int irq)

{

int stack_size = 1048576;

void *stack_addr;

/*

* Map the entire binary to the

* hypervisor. This eases the .bss

* mapping of the program.

*/

hyplet_map_all();

/*

* Create a stack and fault it.

*/

stack_addr = malloc(stack_size);

memset(stack_addr, 0x00, stack_size);

/*

* You may choose not to map the stack

* and use the hypervisor

* stack for the sake of security.

* Here we map the stack.

*/

hyplet_set_stack((long)stack_addr,

stack_size);

/*

* Here we mark which function we wish

* to invoke in EL2.

* user_hyplet is the hyplet.

*/

hyplet_set_callback(user_hyplet);

/*

* begin trapping the interrupt

* and route it to user space

*/

hyplet_trap_irq(irq);

return 0;

}

In addition, we added some special APIs.

6.1 Application interface
• Synchronization

API: hyp lock(spinlock),hyp unlock(spinlock)
In cases where the programmer wishes to protect a
resource from concurrent access from EL0 and EL2,
or EL2 and EL2 from two processors. The locks are
implemented as spin locks.

• Get Time
API: hyp gettime()
Returns the current time in nanoseconds. It is the
uses cntvct el0 register that holds the the current
clock value.

• Printing
EL2 API: hyp print(const char* format,...)
EL0 API: print hyp()
The format print string and the values passed are
recorded to a temporary buffer. This buffer is allo-
cated in EL0 and then mapped to EL2. When the
program is in EL0, it should call print hyp, to print
the data to the program’s terminal, as if it is regular
C’s printf.

• Event
API: hyp wait()
When an user space program needs to be notified of
the completion of the hyplet, it can call this API and
get notified. There is no restriction on the number
of the callers.

6.2 Additional
A hyplet can be removed in two ways:

• Termination
The minute the process terminates, gracefully or
not.

• Unregisteration
The program explicitly unregisters the hyplet.

It is a good practice to lock the hyplet memory to the
RAM to avoid relocation, invalidation or swapping.

7 Related work

EBPF Corbet [2018] Borkmann [2016] is described as
in-kernel virtual machine, and it provides the ability
to attach a program to a certain trace point in the
kernel. Whenever the kernel reaches the trace point, the

9

program is executed without a context switch. eBPF
is undergoing a massive development, and is mainly
used for packet inspection, tracing and probing. EBPF
supports x86 architectures, and ARM. It runs in kernel
mode which is considered unsafe, but it uses a verifier to
check that there are no illegal accesses to kernel areas,
or tampering some registers. Access to user space is
done through memory maps.
EBPF uses LLVM and requires clang to generate a
JIT code, and has a quite small instruction set. As a
consequence, eBPF has serious limitations. Only a
subset of the C language can be compiled into eBPF,
it has no loops, no native assembly, no static variables,
has no atomics, may not take long time, and is restricted
to 4096 instructions. Many vulnerabilities in an eBPF
program might jeopardize the operating system.
This is not the case with the hyplet. The hyplet is not
a program that executes in the kernel’s address space,
but in the user’s address space. So, there is no need for
maps to share data between the user and the kernel. The
hyplet does not require any special compiler extensions,
much less restricted (what mapped prematurely can
be accessed) and less complicated to use compared to
eBPF. The hyplet is meant to propagate hardware real
time events to a user space program, eBPF collects data.
Hyperupcalls Chan et al. [2018], which are ePBF
extension for a hypervisor, are a mean to run hypervisor
code in the guest’s kernel context. Hyperupcalls are
intended mainly for monitoring the health of the guest
VM, and are available only for the x86 architecture. The
hyplet on the other hand, only uses the hypervisor and
is not intended for control and management of virtual
machines. Nevertheless, it is possible to combine eBPF
and the hyplet technologies, so that an eBPF program
will invoke a hyplet directly.
There has been a significant amount of research on
a secure microkernels and microvisors. A prominent
microvisor is the OKL4 by Open kernel labs. The
OKL4 microvisor Heiser and Leslie [2010] is a secure
hypervisor that is supported by Cog Systems and
General Dynamics. The OKL4 microvisor supports both
paravirtualization and pure virtualization. It is designed
for the IoT and mobile industries, and supports ARMv5,
ARMv6, ARMv7 and ARMv8.Unlike the hyplet the
OKL4 microvisor is a full kernel executing in HYP
mode. OKL4 microvisor has an open source sister
project microkernel called seL4. Installing seL4 and
running it is a challenging task, which requires expertise,
as well as to adopt the hardcore of the code. Other
microvisors for the ARM platform are Xvisor Xavier et
al. [2016] and JailhouseBaryshnikov [2016].
Dune Belay et al. [2012] is a system that provides
a process rather than a machine abstraction through
virtualization. Dune offers a sandbox for untrusted code,

a privilege separation facility, and a garbage collector.
Dune is implemented on Intel Architecture.
Xen-Arm Kanda et al. [2008b] is a para-virtualized
hypervisor based on Xen framework. Xen ARM hyper-
visor may host many different operating systems, but
requires modifications to the guest OS.
MirageOS Madhavapeddy et al. [2015] is a unikernel for
ARM, based on Xen Barham et al. [2003]. Though the
hyplet share similarities to unikernels, the hyplet is not a
kernel, but part of a process’s address space. When the
program is no longer in EL2, the program is a regular
Linux program that may use any API available. In
addition , the hyplet does not require any complex boot
handling, and its memory footprint is a few kilobytes.
However, both the hyplet and MirageOS Madhavapeddy
et al. [2015] gain from the fact that there is no need to
context switch, when entering the application code.
Rump kernels Kantee and others [2012] are virtual
lightweight containers for drivers in NetBSD Mewburn
[2001]. Rump kernels run on top of the hypervisor, and
are processes running in a hypervisor mode, wrapped
by containers that enables the driver operations, such as
threads and synchronization primitives. Rump Kernels
are designed for running drivers with little if any
modifications, and still leave the kernel monolithic. It is
not easy to run the hyplet as a rump kernel in ARMv8a,
because there is no easy way to access the kernel’s
data without a premature mapping to the hypervisor.
Moreover, Rump Kernels are implemented on Intel x86
processors Matz et al. [2013].
In the area of pure virtualization, some efforts, such
as Jailhouse and Xvisor, were made to run a guest OS
as a RTOS, for instance, the evaluation of VxWorks
Barbalace et al. [2008] as a RTOS guest over a Linux
KVM Kivity et al. [2007], Zhang et al. [2010] showed
a sub-millisecond interrupt response, or when RT
PREEMPT is the guest operating system, Zuo et al.
[2010] showed an average of 28us. Heiser Heiser [2011]
disagrees with this approach and had the hypervisor
execute the RTOS, and the guest as the general OS.
However, Jailhouse demonstrates that it possible to run
RTOS guest on top of a thin hypervisor.
In the Linux area, the topic of user-space drivers han-
dling IO events, exists in the Linux kernel inside the
Universal I/O (UIO) framework. The UIO Agrawal and
Malhotra [2012] device driver Ganapathy et al. [2008] is
a user space driver that blocks until an interrupt arrives.
UIO offers an easy way to interact with various hardware
devices. UIO device drivers are not suitable for devices
with a high interrupt frequency.

10

8 Summary

8.1 Future work
We intend to implement the hyplet for PowerPC. Pow-
erPC shares ARM capabilities and the hyplet will be effi-
cient. Intel and AMD hyplet will be implemented mainly
for completion. We expect that ARM virtualization host
extension Brash [2015] becomes available for commer-
cial use, and we will port the hyplet to this architecture.
VHE will resolve the security matters altogether.

8.2 Conclusions
We have introduced a new way ARM hypervisor instruc-
tions can enhance Linux performance in real time sys-
tems. These features allows for security and performance
benefits. The hyplet allows coding interrupts with a pre-
dictable µs latency and highly efficient RPC. We’ve im-
plemented hyplets variant as security solution for ARM.

References

Hemant Agrawal and Ravi Malhotra. Device drivers in
user space: A case for network device driver. Interna-
tional Journal of Information and Education Technol-
ogy, 2(5):461, 2012.

Antonio Barbalace, A Luchetta, G Manduchi, M Moro,
A Soppelsa, and C Taliercio. Performance compar-
ison of vxworks, linux, rtai, and xenomai in a hard
real-time application. IEEE Transactions on Nuclear
Science, 55(1):435–439, 2008.

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand,
Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and
Andrew Warfield. Xen and the art of virtualization. In
ACM SIGOPS operating systems review, volume 37,
pages 164–177. ACM, 2003.

Maxim Baryshnikov. Jailhouse hypervisor. B.S. thesis,
České vysoké učenı́ technické v Praze. Vypočetnı́ a
informačnı́ centrum., 2016.

Adam Belay, Andrea Bittau, Ali José Mashtizadeh,
David Terei, David Mazières, and Christos Kozyrakis.
Dune: Safe user-level access to privileged cpu fea-
tures. In Osdi, volume 12, pages 335–348, 2012.

Daniel Borkmann. On getting tc classifier fully pro-
grammable with cls bpf. tc, (1/23), 2016.

Daniel P Bovet and Marco Cesati. Understanding the
Linux Kernel. Oreilly, 3rd. edition, 2005.

David Brash. The armv8-a architecture and its ongoing
development specification, 2015.

Helen HW Chan, Chieh-Jan Mike Liang, Yongkun Li,
Wenjia He, Patrick PC Lee, Lianjie Zhu, Yaozu Dong,
Yinlong Xu, Yu Xu, Jin Jiang, et al. Hashkv: En-
abling efficient updates in {KV} storage via hash-
ing. In 2018 {USENIX} Annual Technical Conference
({USENIX}{ATC} 18), pages 1007–1019, 2018.

Jonathan Corbet. Bpf comes to firewalls, 2018.

Christoffer Dall and Jason Nieh. Kvm/arm: The de-
sign and implementation of the linux arm hypervisor.
In Proceedings of the 19th International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’14, pages 333–348,
New York, NY, USA, 2014. ACM.

Asaf David and Nezer Zaidenberg. Maintaining stream-
ing video drm. In Proceedings of The International
Conference on Cloud Security Management ICCSM-
2014, page 36, 2014.

Hasan Fayyad-Kazan, Luc Perneel, and Martin Timmer-
man. Linuxpreempt-rt vs. commercial rtoss: how big
is the performance gap? GSTF Journal on Computing
(JoC), 3(1), 2013.

Diah Ayu Fitriani, Wahyu Andhyka, and Diah Risqi-
wati. Design of monitoring system step walking with
mpu6050 sensor based android. JOINCS (Journal of
Informatics, Network, and Computer Science), 1(1):1–
8, 2017.

Shaked Flur, Kathryn E Gray, Christopher Pulte, Susmit
Sarkar, Ali Sezgin, Luc Maranget, Will Deacon, and
Peter Sewell. Modelling the armv8 architecture, op-
erationally: concurrency and isa. In ACM SIGPLAN
Notices, volume 51, pages 608–621. ACM, 2016.

Vinod Ganapathy, Matthew J. Renzelmann, Arini Bal-
akrishnan, Michael M. Swift, and Somesh Jha. The de-
sign and implementation of microdrivers. In Proceed-
ings of the 13th International Conference on Architec-
tural Support for Programming Languages and Op-
erating Systems, ASPLOS XIII, pages 168–178, New
York, NY, USA, 2008. ACM.

Thomas Gleixsner. rt-tests.

Hermann Härtig and Michael Roitzsch. Ten years of re-
search on l4-based real-time systems. In Proceedings
of the 8th Real-Time Linux Workshop, 2006.

Hermann Härtig, Michael Hohmuth, Jochen Liedtke,
Jean Wolter, and Sebastian Schönberg. The perfor-
mance of µ-kernel-based systems. In Proceedings of
the Sixteenth ACM Symposium on Operating Systems
Principles, SOSP ’97, pages 66–77, New York, NY,
USA, 1997. ACM.

11

Gernot Heiser and Ben Leslie. The okl4 microvisor:
Convergence point of microkernels and hypervisors.
In Proceedings of the First ACM Asia-pacific Work-
shop on Workshop on Systems, APSys ’10, pages 19–
24, New York, NY, USA, 2010. ACM.

Gernot Heiser. Virtualizing embedded systems: Why
bother? In Proceedings of the 48th Design Automa-
tion Conference, DAC ’11, pages 901–905, New York,
NY, USA, 2011. ACM.

Asif Iqbal, Nayeema Sadeque, and Rafika Ida Mutia. An
overview of microkernel, hypervisor and microvisor
virtualization approaches for embedded systems. Re-
port, Department of Electrical and Information Tech-
nology, Lund University, Sweden, 2110:15, 2009.

Ravindra Jejurikar and Rajesh Gupta. Energy aware task
scheduling with task synchronization for embedded
real time systems. In Proceedings of the 2002 interna-
tional conference on Compilers, architecture, and syn-
thesis for embedded systems, pages 164–169. ACM,
2002.

Wataru Kanda, Yu Yumura, Yuki Kinebuchi, Kazuo
Makijima, and Tatsuo Nakajima. Spumone:
Lightweight cpu virtualization layer for embedded
systems. In Embedded and Ubiquitous Computing,
2008. EUC’08. IEEE/IFIP International Conference
on, volume 1, pages 144–151. IEEE, 2008.

Wataru Kanda, Yu Yumura, Yuki Kinebuchi, Kazuo
Makijima, and Tatsuo Nakajima. Spumone:
Lightweight cpu virtualization layer for embedded
systems. In Embedded and Ubiquitous Computing,
2008. EUC’08. IEEE/IFIP International Conference
on, volume 1, pages 144–151. IEEE, 2008.

Antti Kantee et al. Flexible operating system internals:
the design and implementation of the anykernel and
rump kernels. 2012.

Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and An-
thony Liguori. kvm: the linux virtual machine moni-
tor. In Proceedings of the Linux symposium, volume 1,
pages 225–230, 2007.

”Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June
Andronick, David Cock, Philip Derrin, Dhammika
Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon
Winwood”. sel4: formal verification of an os ker-
nel. In Proceedings of the 13th International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS XIII, pages
168–178, New York, NY, USA, 2008. ACM.

Pavan Kumar and Mani Srivastava. Predictive strategies
for low-power rtos scheduling. In Computer Design,
2000. Proceedings. 2000 International Conference on,
pages 343–348. IEEE, 2000.

Jochen Liedtke, Ulrich Bartling, Uwe Beyer, Dietmar
Heinrichs, Rudolf Ruland, and Gyula Szalay. Two
years of experience with a m-kernel based os. ACM
Operating Systems Review, 25(2):51–62, April 1991.

Xiao-qiang LIU and Mei SU. Design of data acquisition
system based on can fieldbus [j]. Instrument Technique
and Sensor, 9:009, 2006.

Anil Madhavapeddy, Thomas Leonard, Magnus
Skjegstad, Thomas Gazagnaire, David Sheets, David J
Scott, Richard Mortier, Amir Chaudhry, Balraj Singh,
Jon Ludlam, et al. Jitsu: Just-in-time summoning of
unikernels. In NSDI, pages 559–573, 2015.

Michael Matz, Jan Hubicka, Andreas Jaeger, and Mark
Mitchell. System v application binary interface.
AMD64 Architecture Processor Supplement, Draft v0,
99, 2013.

Luke Mewburn. The design and implementation of the
netbsd rc. d system. In USENIX Annual Technical
Conference, FREENIX Track, pages 69–79, 2001.

Niels Penneman, Danielius Kudinskas, Alasdair Raw-
sthorne, Bjorn De Sutter, and Koen De Bosschere.
Formal virtualization requirements for the arm archi-
tecture. J. Syst. Archit., 59(3):144–154, March 2013.

Amit Resh and Nezer Zaidenberg. Can keys be hidden
inside the cpu on modern windows host. In Proceed-
ings of the 12th European Conference on Information
Warfare and Security: ECIW 2013, page 231. Aca-
demic Conferences Limited, 2013.

Amit Resh, Michael Kiperberg, Roee Leon, and Nezer
Zaidenberg. System for executing encrypted native
programs. International Journal of Digital Content
Technology and its Applications, 11, 2017.

Amit Resh, Michael Kiperberg, Roee Leon, and Nezer J
Zaidenberg. Preventing execution of unauthorized
native-code software. International Journal of Digi-
tal Content Technology and its Applications, 11, 2017.

William Rosenblatt, Stephen Mooney, and William
Trippe. Digital rights management: business and
technology. John Wiley & Sons, Inc., 2001.

Eric D Rotvold, Donald R Lattimer, Michael J Green,
Robert J Karschnia, and Marcos AV Peluso. Interface
module for use with a modbus device network and
a fieldbus device network, July 17 2007. US Patent
7,246,193.

12

Chun-rong Shan, Yan-qiang LIU, and Ji HUAN.
Ethercat-industrial ethernet fieldbus and its driver de-
sign [j]. Manufacturing automation, 11:025, 2007.

Michael Steil. 17 mistakes microsoft made in the
xbox security system. In 22nd Chaos Communication
Congr., 2005.

J-P Thomesse. Fieldbus technology in industrial au-
tomation. Proceedings of the IEEE, 93(6):1073–1101,
2005.

Prashant Varanasi and Gernot Heiser. Hardware-
supported virtualization on arm. In Proceedings of the
Second Asia-Pacific Workshop on Systems, page 11.
ACM, 2011.

Bruno Xavier, Tiago Ferreto, and Luis Jersak. Time pro-
visioning evaluation of kvm, docker and unikernels in
a cloud platform. In Cluster, Cloud and Grid Com-
puting (CCGrid), 2016 16th IEEE/ACM International
Symposium on, pages 277–280. IEEE, 2016.

Jingming XIE, Youping CHEN, Zude ZHOU, and Bing
CHEN. Sercos protocol and its application in numer-
ical control systems [j]. Machinery & Electronics,
5:000, 2001.

Jun Zhang, Kai Chen, Baojing Zuo, Ruhui Ma, Yaozu
Dong, and Haibing Guan. Performance analysis to-
wards a kvm-based embedded real-time virtualization
architecture. In Computer Sciences and Convergence
Information Technology (ICCIT), 2010 5th Interna-
tional Conference on, pages 421–426. IEEE, 2010.

Baojing Zuo, Kai Chen, Alei Liang, Haibing Guan, Jun
Zhang, Ruhui Ma, and Hongbo Yang. Performance
tuning towards a kvm-based low latency virtualization
system. In Information Engineering and Computer
Science (ICIECS), 2010 2nd International Conference
on, pages 1–4. IEEE, 2010.

13

