
AROUND SMALE’S 14TH PROBLEM

TALI PINSKY

Abstract. We consider the Lorenz equations on R3. We prove analytically the
existence of T-parameters, where there exists a heteroclinic connection between
the singularities forming an invariant trefoil knot. Furthermore, we show that at
a T-parameter the geometric model is a minimal representative for the equations,
implying e.g. that the Lorenz equations contain all Lorenz knots (defined by the
geometric model) as periodic orbits.

1. Introduction

We study the classical Lorenz equations as given in [Lor63]:

(1)

 ẋ(t) = σ(y − x)
ẏ(t) = ρx− y − xz
ż(t) = xy − βz

This system has been extensively studied over the last decades, being the first
system to demonstrate chaos in a deterministic low dimensional setting. It has been
studied especially at the classical parameter values ρ = 28, σ = 10, β = 8

3
which were

those originally studied by Lorenz.
At these parameter values the three-dimensional motion given by the Lorenz equa-

tions (1) converges almost always onto its famous butterfly shaped strange attractor.
Although this is easily seen to be the case by running any ODE solver there is no
analytical proof for it, and in general the equation has proven to be hard to study
both analytically and numerically.

For these reasons, a simpler model, called the geometric Lorenz model, was devel-
oped [GW79, ABS77]. This model shares much of the characteristic of the equations
as it also possesses a butterfly shaped strange attractor. At the same time, the
geometric model is susceptible to analytic study and it can be proven to be chaotic
in a specific sense, for example its attractor has a central limit theorem [HM07]
and exponential decay of correlations [AM16]. The periodic orbits in the geometric
model, which are called “Lorenz knots” have been studied topologically by Williams
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[Wil79] and Birman and Williams [BW83] (see also see also [Deh11, BK09]) and have
a number of surprising knot properties.

Smale’s 14th problem [Sma00] asks whether the original system at the classical
parameters can be proven to be topologically equivalent to the geometric model. This
has been answered by Tucker [Tuc99], via a rigorous numerical proof. Tucker’s proof
implies in particular that the Lorenz equations indeed possess a butterfly strange
attractor.

An astounding result of Ghys [Ghy07] is that the set of Lorenz knots also arise as
the set of periodic orbits for the geodesic flow on the modular surface. The modular
flow is also a chaotic flow but a very different one. It is a hyperbolic flow arising
from arithmetics, for which statistical properties can more readily be proven. It is
defined on the complement of the trefoil knot, which is the simplest nontrivial knot.
It is well known by numerical studies that for the Lorenz equations there exist points
in parameter space, called T-points, for which there exists a heteroclinic connection
connecting its three singular points [PI80, AF85, Byk80]. It has been suggested by the
author in [Pin17] that this heteroclinic connection can be continued to an invariant
knot passing also through infinity. For the first T-point at ρ0 ≈ 30.8680, σ0 ≈ 10.1673
and β0 = 8

3
, the invariant knot is a trefoil knot, depicted in Figure 1

Figure 1. The trefoil knot at the first T-point, see also [CKO15].

In an attempt to explain the relation between the equations and the geometric
model and the modular geodesic flow, Christian Bonatti and the author have con-
structed an extension of the geometric model [BP21], which is defined on the entire
three dimensional sphere, and for some parameter has an invariant trefoil shaped
heteroclinic connection.

Our main theorem is an approximate answer to Smale’s problem. It states that
there exists a parameter for which the Lorenz equations can be continuously deformed
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to the geometric model. Furthermore the deformation, although not an equivalence,
cannot create new periodic orbits.

Theorem 1.1. There exists a parameter value for the Lorenz equations for which a
trefoil shaped heteroclinic connection exists. At this parameter value, the extended
geometric model is isotopic to the Lorenz equations.

The main tool is the existence of a convenient cross section for the flow, which
allows us to establish the return map corresponds to a symbolic dynamics on two
symbols. Note that an isotopy is much weaker than a topological equivalence, as
it can potentially lose much of the dynamics of the flow. Our second result is thus
that this doesn’t happen, namely, that the isotopy taking the geometric model to
the Lorenz flow cannot kill any of its periodic orbits. This is done using the section
in order to apply methods from surface dynamics [Thu88, Boy94, AF83].

Theorem 1.2. Any periodic orbit in the geometric model is isotopic to a periodic
orbit for the Lorenz equations at the T-point.

An immediate corollary of our results above and Ghys’ theorem [Ghy07] is thus
the following.

Corollary 1.3. The geodesic flow on the modular surface is the minimal represen-
tative to the Lorenz equation at the trefoil T-point. Namely, and periodic geodesic is
isotopic to a periodic orbit of the Lorenz equations.

Note that at the classical parameters it follows from Tucker’s proof that any pe-
riodic orbit for the Lorenz equation is isotopic to a modular geodesic, but not every
geodesic appears. The set that does appear is determined by the kneading sequence
at that point.

Acknowledgments. The author wishes to thank Lilya and Misha Lyubich, Omri
Sarig, Andrey Shilnikov and Gershon Wolansky for helpful discussions.

2. The existence of a heteroclinic trefoil

In this section we prove the existence of a trefoil heteroclinic connection passing
through all four singular points for some point in the parameter space. The first step
in the proof is establishing the existence of a global cross section, and the second is
a winding number argument.

The cross section we use is modified from the one commonly used in numerical
studies which has a constant z coordinate, and is reminiscent of Sparrow’s use of the
maximal values of the z coordinate of the orbit. It is a section also at parameter
values for which the regular section fails to be one.
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Proposition 2.1. There exists an open simply connected domain A of parameters,
for which for any point κ = (β, σ, ρ) there exists a two dimensional topological rec-
tangle Rκ ⊂ R3 with interior transverse to the κ-Lorenz flow, so that the forward
orbit of any point in R3 that does not limit onto one of the singular points meets Rκ.

Proof. We start by considering the hyperbolic paraboloid

P = {xy = βz}
Which is the set of points for which ż = 0, containing the three singular points. The
paraboloid P divides R3 into two components, we call the part of R3 \P above the
origin the inside and the other component the outside.

For any orbit, its z coordinate decreases while it is on the inside, and increases if
and only if it crosses P to be on its outside.

A normal to P is given by
N = (y, x,−β).

Taking its inner product with the vector field X = (X1, X2, X3), along the paraboloid
P we obtain

N ·X = σy2 − σxy + ρx2 − xy − 1

β
x3y

The equation N ·X = 0 is quadratic in y, and thus the set of points N ·X = 0 for
which the vector field is tangent to P consists of a point at the origin, and of two
smooth one dimensional curves which we denote by δ− and δ+ each containing one
of the wing centers.

When ρ > (σ+1)2

4σ
the two dimensional curves are far from the origin and the point

at the origin is an isolated solution, while for smaller ρ the two curves have cusps
touching the origin. Thus we will restrict our attention from now on to the domain

A =

{
β, σ, ρ| β, σ > 0, ρ > 1, ρ >

(σ + 1)2

4σ

}
.

Note that the domain A is simply connected (i.e. any loop in A can be retracted
to a point). For any parameter in A, the orbits cross P to its outside below the two
curves δ− and δ+ and enter the inside above these curves. An example of the regions
of entrance to the inside of P and exit from it are depicted in Figure 2.

Recall that a large enough ellipsoid around the origin of the form

S = rx2 + σy2 + σ(z − 2r)2

is transverse to the vector field X, so that orbits only enter the region bounded by
the ellipsoid (see [Lor63, Spa82]). The curves δ− and δ+ intersect the ellipsoid in
four points.

We next define another pair of arcs, α1 and α2. First, fix an ε > 0. Define an arc
continuing from each intersection point of δ±∩S downwards, in the intersection P ∩S,
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Figure 2. The paraboloid P for the classical parameters, with the
regions where the flow is directed upwards depicted in red and down-
wards flow is depicted in blue.

until it reaches the plane z = ε. Then, connect the endpoints in the intersection of the
plane and the ellipsoid (and in the inside of P). The union of two of the downwards
arcs and a horizontal arc is an arc αi, i = 1, 2 so that the four arcs δ−, δ+, α1, α2

bound a closed rectangle R, contained in the union of P and the plane z = ε.
The Lorenz equation have a symmetry of rotation about the z axis π : (x, y, z) 7→

(−x,−y, z). By construction, R is preserved by the symmetry and π(α1) = α2.,
π(δ−) = δ+.

The part of R that is contained in P is disjoint from the set N · X = 0, and
therefore the flow is transverse to R on this set. The other part of R is contained
in the intersection of the plane z = ε with the inside of P . Thus, the flow there
satisfies ż < 0, and as this part of the rectangle is horizontal, the flow is transverse
to R there as well.

Orbits cannot escape to infinity as close to infinity the flow is pointing inwards
through a family of concentric large enough ellipsoids [Lor63]. It follows from the
shape of P that there are no nonsingular orbits with constant z coordinate, the
forward orbit of any point x ∈ R3 either has at some point an increasing and then
decreasing z coordinate, in which case it must meet R, or the orbit limits onto a
singular point (or is fixed at a singular point). This completes the proof. �
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Lemma 2.2. The component of the intersection of the stable manifold and R con-
taining the point on the z axis is a one dimensional curve dividing R into two com-
ponents, yielding a symbolic coding on two symbols.

Proof. Recall that the stable manifold of the origin is two dimensional and contains
the z axis, thus it intersects R at least at one point, i.e. the point at which the z axis
intersects the plane z = ε. From the transversality of the flow to R it follows, since
the flow is tangent to the stable manifold, that the intersection of the stable manifold
and R is transversal. The stable manifold is topologically a disk. It cannot have a
periodic orbit on its boundary as in this case it would follow from the symmetry
that it has two boundary components, in contradiction. Thus, the intersection is a
one-dimensional manifold that connects to infinity on both sides.

The intersection curve η is preserved by the symmetry π, and does not pass through
the wing centers p+ and p−. Thus it divides R into two symmetric subsets, each
containing one of the wing centers.

Denote the Poincaré return map by ϕ. The curve η yields a natural way to endow
the system (R,ϕ) with a symbolic dynamics with two symbols, corresponding to the
two components of R \ η.

�

Denote by A and B the two components of R \ η. Each component has one of
the wing centers on its boundary, and thus the transition A to A appears in the
dynamics, and also B to B. This suggests the return map has the shape of two
triangles. However, there is still too much freedom for this symbolic dynamics to be
useful. This is why we next focus on special parameter values allowing us to pinpoint
the behaviour of the return map.

2.1. Existence of the heteroclinic trefoil.

Proposition 2.3. For each of the wing centers p±, one side of its stable manifold
connects it to infinity.

This has been observed numerically, see for example [Spa82] and [CKO15].

Proof. Consider the quadrant

Q+ = {(x, y, z) |x ≥ x0, y ≤ x},

where x0 = y0 =
√
β(ρ− 1) is the coordinates of the fixed point p+. By considering

the linearization at the fixed point one finds that there is always at least one negative
real eigenvalue λ, corresponding to an eigenvector v with v1 6= 0. Consider a vector
v corresponding to λ with v1 > 0. By considering the equation for ẏ it must have
v2 ≤ v1 and thus the vector v (based at p+) points to the interior of Q.
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Next, consider ∂Q+. The flow is transverse to the half plane x ≡ x0 when y ≤
x, pointing outwards at each point. It points outwards through the plane x = y
whenever z < ρ− 1, and points inwards whenever z > ρ− 1.

In addition to ∂Q+ we may consider the ledge sticking into the interior of Q+

consisting of a wedge with one edge being the line {x = y, z = ρ− 1} and a second
edge on the half of δ− within Q (note that these two curves meet at p+), so that the
interior of the ledge lies entirely outside P as in the figure.

consider the half of δ+ and its image under the flow. locally near p+ each half of
δ+ flows, forming a two dimensional spiral with a cone point at p+. Its image cannot
intersect the original curve δ+ as then there would exist a compact region in space,
composed of the spiral shell of δ+ and its flowlines, and the union of the ledge and
∂Q+, from which the flow only exists, contradicting the fact the Lorenz flow has
negative divergence everywhere.

Taking into account the flow directions on ∂Q+, one thus concludes that the image
of the half of δ+ contained there may either wind around δ+ and intersect the ledge,
or it may exit Q through one of the faces where the flow points outwards. In both
cases, the union of the shell of flowlines

⋃
t≥0 ψ

t(δ−) together with the ledge and the

outflowing part of ∂Q+ bounds an open cone with tip at p+, to which the flow is
either tangent or exiting. Therefore, a component of the stable manifold of p+ must
be contained in this cone. As flowlines can enter this cone only from infinity (passing
through the sphere S), this half of the stable manifold connects p+ to infinity without
intersecting the cross section R.

The same claim for p− follows from the symmetry. �

Theorem 2.4. There exists a point in the parameter space at which there exists a
heteroclinic trefoil for the Lorenz equations.

The main tool of this proof is the following theorem, proving existence of homo-
clinic orbits and their linking with the vertical lines

L± = {x = y = ±
√
β(ρ− 1)}

through the two wing centers.

Theorem 2.5 (Chen, Theorem 1.1 and Lemma 4.3 of [Che96]). For any given pos-
itive number β and non-negative integer N , there exists a large positive constant
R0(N, β) such that for each R > R0 there is a positive number s = s(N, β,R) =
(2β+ 1)/3 +O(R−1/2) such that the Lorenz system has a homoclinic orbit associated
with the origin which rotates around L+ exactly [N+1

2
] times, and rotates [N−1

2
] times

around L−.

Proof. We define a family of isotopic loops l+κ and l−κ each passing through infinity
and through one of the wing centers, as follows. One half of the loop is the half of
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Ws(p±) that connects p± to infinity by Proposition 2.3. Now consider the image of
half of δ± that is on the other side of p± (and is not in the quadrant considered in the
proposition). For a small enough time segment this image is either on the outside
of P , including the region of P where the flow flows outwards, or on the inside of P
(including the inward flowing region.

At parameters at which the image is inside P , we choose l±κ to be the union of this
half of δ± and the half of Ws(p±) that connects p± to infinity by Proposition 2.3.

At parameters at which the image is outside P , the half of δ± and the flowlines
emanating from it, until the first point they hit P in its incoming region enclose
together with P a three dimensional region from which the flow can only exit, proving
as in Proposition 2.3 that the other half of the stable manifold of p± connects to
infinity as well (and in particular, the two curves are isotopic). For these parameters
we choose l±κ to be equal to the stable manifold Ws(p±). In both of these cases, the
choice of l±κ ensures that orbits arriving from inside P can hit l±κ only at p±.

The description in Theorem 2.5 of the homoclinic orbits implies that the positive
half of the simplest such orbit links once with L+ and does not link with L−. It
follows that the separatrix, i.e. the unstable manifold of the origin, at that parameter
returns to P from the x, y > 0 quadrant, linking delta+, and likewise l+κ , once, and
then connects to the origin after hitting R a single time. In particular it is not linked
with l−κ . At the second homoclinic loop the separatrix links L+ like in the first loop,
and then continues to also link once with l−κ . It then connects to the origin after it
hits R the second time.

Choose ε small enough so that the ball B(ε) of radius ε about the origin does not
intersect l±κ , and so that once the homoclinic loops enter the ball they do not leave
it.

Consider the map ψT taking a point κ in parameter space to the point along the
separatrix, (on its half γ+ starting with positive x coordinate) to the point reached
at time T when starting at distance ε/2 from the origin along γ+. ψT is continuous
as the separatrix depends continuously on the parameters. This is true as it is a
fixed point of a contracting operator on a Banach space depending continuously, in
the C1 topology, on the parameters of the ordinary differential equation.

Consider a path κ(s) connecting two points in parameter space κ(0) corresponding
to the first homoclinic loop and κ(1) to the second. Suppose for each point along
κ(s) there exists a finite time T (s) for which ψT (s)(κ(s)) ∈ B(ε).

The map s 7→ T (s) is continuous and thus the topological disk D = {(s, T )|0 ≤ s ≤
1, 0 ≤ T ≤ T (s)} is mapped by ψT (κ(s)) to a disk in S3, with boundary contained
in the union of the two different homoclinic loops and of B(ε).

The disks’ boundary ∂D winds once along l−κ and hence there exists a point (s∗, T∗)
within the disk so that ψT∗(κ(s∗)) lies on l+κ . The choice of l+κ and l−κ ensures that any
flowline hitting them not at p± arrives from infinity without crossing R or P . This
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implies that ψT∗(κ(s∗)) = p−, and this is impossible for a finite time T∗. Therefore,
the separatrix orbit for s∗ cannot return to B(ε) in a finite time for any s.

Therefore, for any such path there must exist a value of s for which the separatrix
orbit does not return to B(ε) for any finite time. Assume the separatrix orbit hits
the cross section R(κ(s)) for any s ∈ [0, 1] in a finite time T (s). The path η(s) =
ψT (s)(κ(s)) in R is continuous. In this case the ball B(ε) can be stretched through
the stable manifold of the origin and along η(s), remaining topologically a ball. This
forces every separatrix orbit to return to it along the way, in contradiction to the
previous claim. Thus we conclude that there exists a parameter along η(s) for which
the separatrix does not hit R for any finite time. It follows that the separatrix there
reaches p− and is a heteroclinic orbit. Hence, there exists a parameter for which we
have a heteroclinic connection along any path connecting the homoclinic orbits.

Let κ∗ be such a parameter. It follows from the proof that the separatrix does
not hit R before reaching p−, and p+ on its other side. Now it follows from 2.3 that
the other half of each stable manifold connects directly to infinity and therefore the
resulting knot is a trefoil knot as required. �

Remark 2.6. It follows that a heteroclinic trefoil exists at any fixed β, as the pa-
rameter domain A restricted to any fixed β is still simply connected.

3. The dynamics at a trefoil T-point

We next prove Theorem 1.2, showing that at a trefoil T-point, every Lorenz knot
(and equivalently by Ghys any modular knot) appears as a periodic orbit for the
Lorenz system.

Proof. Consider for a T-parameter where the heteroclinic connection is a trefoil knot
the cross section R, divided into two components A and B by the stable manifold of
the origin, and the return map ϕ as developed in previous sections.

The image of A under ϕ is a topological disk that includes both wing centers on
its boundary: The wing center in A as it is a fixed points and thus is equal to its
image, and the wing center in B as it is the limit of points that are adjacent to the
stable manifold of the origin, and thus after approaching the origin they continue
along the separatrix that connects to this fixed point.

Thus, the image of R under the return map ϕ has the shape of two bananas
sharing the two fixed points p± on their boundaries at their “corners”. To define a
symbolic dynamics, send a point x in R to the infinite sequence of letters A’s and B’s
(. . . , s(f−1(x)), s(x), s(f(x))), . . . ) where s(x) is A if x ∈ A and B if x ∈ B. As each
image crosses R from side to side, The map is onto, i.e. any symbol corresponds to
at least one point in R.

The map need not be injective, however by Brouwer fixed point theorem, every
periodic symbol corresponds to at least one point in R of a periodic orbit with the
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same period (under the first return map). This orbit is isotopic to a Lorenz knot as
the images of A and B do not intersect and thus the orbit will always pass from A
to B from above, and from B to A from below.

The extended geometric model in [BP21] corresponds to the full set of possible
symbols in A and B, and any possible periodic symbol corresponds to a periodic
orbit in the geometric model which is a Lorenz knot by the equivalence proven in
[BP21] between the extended model and the classical Lorenz geometric model. �

Remark 3.1. Using the topological approach presented here to give an analytical
solution to the problem will require a way to prove the nonexistence of attracting
periodic orbits for the Lorenz equations, showing the above symbolic partition is gen-
erating. This seems to be hard as it is a local phenomenon that cannot be obstructed
topologically. It is numerically observed that there are parameters for which such
orbit appear, but at ρ values ∼ 100.
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