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Abstract— The latest process technologies have become susceptible to asymmetric aging, whereby timing of logical elements degrades at unequal rates over lifetime, causing reliability concerns. Most existing tools can handle asymmetric aging in relatively small circuitry and rely on physical design approach.  In this paper, we introduce a design flow and a tool to minimize asymmetric aging in data-path structures. The tool can be integrated into standard design-flows of large-scale circuits. In addition, the tool automatically embeds a special circuitry in the design to eliminate asymmetric aging. Our experimental analysis indicates that reliability concerns can be eliminated while introducing minor overhead. 
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INTRODUCTION
	Advanced VLSI process nodes have become highly susceptible to reliability concerns. New applications such as datacenters, medical appliances, and automotive systems introduce challenges for the semiconductors industry by imposing severe requirements on reliability [1, 2]. Today, transistor aging has been identified as one of the major reliability concerns in integrated circuits (ICs). Two physical mechanisms induce transistor aging: hot carrier injection (HCI) and bias-temperature instability (BTI) [2-4], both of which lead to transistor failure and degraded performance. The common approach to handling transistor aging is to apply extra timing margins to the clock cycle time. When timing degradation due to aging is symmetric, this can be a suitable solution; however, many logical elements may undergo asymmetric aging, whereby logical paths may experience critical timing violations even if the delay shift is relatively small. 
BTI, which may arise when a constant voltage is applied to transistor gates, is the main cause of asymmetric aging. Prior studies [2] report that, for BTI to induce transistor timing degradation, such voltages must be applied for durations on the order of seconds up to several weeks. This observation is highly disturbing because constant logical values, when applied to any logical element, may result in severe reliability issues. The common techniques [5–17] to handle asymmetric aging rely on physical design solutions that are complex and may involve non-scalable analysis and simulation methods. Today, the problem has been further intensified because common Electronic Design Automation (EDA) tools have limited capabilities to offer adequate solutions.
In our previous work [6] we have introduced an automated EDA tool for asymmetric aging avoidance in data-path designs. The tool analyzes the design and identifies elements that are suspectable to asymmetric aging. The tool generates special circuitry that is embedded in the design to avoid asymmetric aging while the device is in mission mode. In this paper we further extend our previous work and enhance the tool to support automated engineering change order (ECO) flow (Section III). In addition, we extend our experimental analysis and examine new data-path modules (Section IV).  
The contributions of this paper are summarized as follows:
1. The proposed tool automatically analyzes data-path structures, identifies elements suspectable to asymmetric aging and generates a special circuitry to avoid asymmetric aging. 
2. The tool introduces an automatic ECO procedure to further enhance avoidance of asymmetric aging.
3. Timing simulations combined with aging models indicate that the tool efficiently eliminates asymmetric delay shift and thereby avoids BTI reliability issues. 
4. Our experimental results show that the design flow incurs negligible power and area overhead.
5. The design flow can be straightforwardly integrated as part of standard design flows of large-scale ICs.
	The remainder of this paper is organized as follows: Section 2 presents asymmetric aging and previous studies. Section 3 presents our tool and design flow. Section 4 describes our experimental results and, finally, Section 5 summarizes the conclusions.
Asymmetric Aging
Starting at 28 nm process technology nodes and below, the vulnerability of ICs to reliability issues grows significantly. Reliability issues introduce major challenges to EDA tools and ICs mainly because they involve physical phenomena that require complex simulation and analysis for various combinations of temperature, voltage, and process corners. The semiconductor industry has invested major efforts to cope with reliability issues, which mainly consisted of attempting to enhance physical implementation flows. However, the effectiveness of such flows is quite limited, primarily due to their small scale and the substantial design efforts they involve. This section starts by reviewing asymmetric aging and then discusses prior works.
Asymmetric Transistor Aging
Transistor aging is the process whereby silicon transistors develop faults in their circuitry over time [2]. This degradation is induced by the two physical mechanisms HCI and BTI. When HCI is involved, excessive energy causes charge carriers from the source-drain current to be trapped at the gate oxide. For BTI, the charge carriers are trapped whenever a constant voltage is applied to the transistor gate, but no current flow is involved in this case. Both HCI and BTI lead to an increase in transistor threshold voltage, which degrades the transistor speed and mandates a higher voltage to switch on the transistor. This imposes extra timing margins in the clock-cycle time to allow ICs to continue operating reliably throughout their lifetime. Various approaches have been proposed to handle transistor aging, including physical-design- and circuit-based solutions [7]. 
When the aging degradation of transistors is not uniformly distributed, the problem becomes even more complicated. This may happen when p- and n-type devices age unequally and thereby the rising and falling transients incur asymmetric delay shifts. The problem can also occur when the timing degradation between different logical paths becomes asymmetric [5]. This may lead to severe setup and hold timing violations, which cannot be identified by conventional timing analysis tools. This phenomenon, referred to as “asymmetric aging,” is today a major reliability concern in ICs. 
Asymmetric aging is induced by long periods of unequal static stress applied to logic elements in different logical paths, which may vary between tens of seconds up to several weeks [2]. BTI, which is the main contributor to asymmetric aging, can degrade the speed of both p-type (NBTI) and n-type (PBTI) devices. The impact of NBTI is much more significant relative to PBTI, although, in advance process nodes, the impact of PBTI is considerable.  
Asymmetric aging introduces major challenges due to the complex modeling and analysis required to eliminate its impact in large-scale circuits. In particular, timing-verification tools that model BTI effects are nontrivial because they depend on the functional modes of operation through the IC lifetime. From an architectural point of view, asymmetric aging in many cases is a result of dynamic power-saving techniques that impose static states on logical circuits.
Prior studies
Many prior works approached asymmetric aging from the physical design point of view ([7]). Such an approach is not straightforward, since the process of simulating, analyzing, and fixing asymmetric aging issues in large-scale circuits is highly complex, with only a few EDA tools having such a limited capability. The suggested strategies attempted to cope with the problem from various directions. Traditional approaches relied on taking margins in timing closures that would consider the asymmetric aging effect. This was found to necessitate a highly complex analysis and, in many cases, ended up in overdesign. Other studies attempted to model and predict the degradation as a result of NBTI [2] and suggested solutions such as transistor sizing, VDD tuning, duty cycle reduction, and decreasing the transistor channel length. 
Only a limited number of works have suggested architectural solutions for asymmetric aging. Firouzi et al. suggested a NOP instruction insertion to reduce the impact of NBTI on microprocessors [8]. Abbas et al. suggested running anti-aging programs when the processor is not utilized [9]. This technique was efficient; however, it required a complex analysis of the critical paths and the requisite anti-aging values. Other studies proposed solutions for asymmetric aging in memory systems [4]. 
Design-Flow and Tool for Asymmetric Aging Avoidance
This section presents a new design flow and a tool to cope with the asymmetric aging problem. The proposed flow and tool are based on a prior study [5] where it has been observed that data-path circuits may be susceptible to asymmetric aging under different workloads. Past experiments suggest that microprocessors execution units may incur very long static BTI stress. For example, for integer workloads the utilization of FP execution units is extremely low, resulting in excessive BTI stress. Reference [5] introduced a novel scheme to mitigate BTI stress over FP adder. The proposed scheme uses a pseudorandom sequence bit (PRBS) generator [5] that generates pseudorandom patterns into the data path of the FP adder unit to prevent extended periods of constant stress. 
This study generalizes the prior work and extend it to automatically handle any data path logical structure. We introduce a full design flow and an automated EDA tool to minimize the asymmetric aging effect in data-path structures. We first present our design flow and then describe the implementation details of our tool.
Asymmetric Aging Avoidance Design Flow 
	The proposed design flow is depicted in Figure 1 (a) consists of two iterative phases. In the first phase, the analysis is done at the RTL level, and the second phase is performed on the synthesized design at the gate-level. In the RTL phase, our tool runs on the original design, and the run setting is specified through a configuration file, which will be described later. The tool automatically generates two modules: a testbench module and a synthesizable module, which are presented in Figure 1 (b). In this figure, all the logical components that are automatically added by the tool are shown by the light and dark gray colors. For the synthesizable design module, the tool generates a top-level wrapper that instantiates the original data path, a PRBS generator, and a multiplexor. The PRBS generator, which is activated by a slow frequency clock, generates pseudorandom patterns that are fed into the module through a multiplexor to prevent extended periods of constant stress when the module is idle. The multiplexor arbitrates between the functional inputs and the PRBS outputs. The slow clock frequency can be in the order of MHz or even lower to minimize dynamic power overhead.
The testbench is used to quantitively measure the effectiveness of the asymmetric aging avoidance circuitry. The testbench module instantiates the synthesizable module with the clock generators and a set of signal probability counters. The tool automatically maps all the nets in all hierarchies of the original design and associates each net with an individual counter. Through the RTL simulation, the counters measure the number of clock cycles in which the corresponding net is in the logical state of 1. The signal probability 1, denoted as SP(1), of every net in the synthesizable design is calculated by dividing the corresponding counter value by the number of simulated clock cycles.
In the next step of our design flow, the tool invokes an RTL simulation of the testbench, and once completed, it dumps the signal-probability counter values and the corresponding net names into a temporary file. The file is post-processed by the tool, and a report, which summarizes the SP(1) of every net in the design, is generated. The report highlights the nets with excessive BTI stress that could not be mitigated by the asymmetric aging avoidance circuitry. If some of these cases can be fixed manually at the RTL level, the process will repeat itself till there are no manual fixes left. An example of such a manual fix is illustrated in in Figure 1 (c) where one of the multiplexor inputs is connected to logical 0, inducing a constant BTI stress. This can be simply eliminated by using the equivalent circuit shown in this figure.




(a)
(b)
(c)

[bookmark: _Ref67594753]Figure 1 – (a) Asymmetric aging avoidance design flow, (b) an automatically generated design with asymmetric aging avoidance circuitry and (c) manual fix at RTL level


The second phase of our flow runs at the gate-level. The synthesizable module only and the asymmetric aging avoidance circuitry are synthesized, and the gate-level netlist is presented to the tool as an input. The tool automatically generates a testbench module, as illustrated in Figure 1 (b). Next, the tool automatically analyzes the gate-level netlist and uniquely associates every net to an individual signal probability counter. In the next step, the tool invokes a gate-level simulation, and once completed, all counter values are dumped into a temporary file and a signal probability report is presented to the designer. Since the PRBS pattern may not be able to propagate to all the nets, a step of incremental fixes may be needed to handle these nets. Incremental fixes may be done manually or can be automatically performed by the tools.
The incremental fix procedure is done by the tool as an ECO procedure on the gate-level netlist. The tool provides the designer with two options (which can also be combined) to specify the required fixes. In the first option, the designer provides a list of nets to be fixed by the tool and, in the second option, the designer provides two SP(1) thresholds: threshold-high (thH) and threshold-low (thL). Given the two thresholds, the tool fixes all nets with SP(1) in the range 0 to thL and thH to 1. Identifying the nets that require incremental fixing involves running a timing verification with aging models in conjunction with the SP(1) values from the flow. All the nets from the violating paths are candidates for incremental fixes.
The fixes that can be done by the tool are illustrated in Figure 2. The tool detects all the nets to be fixed and inserts a multiplexor to drive the input of the original net. One of the inputs of the multiplexer is connected to the original driver cell, whereas the second input is connected to one of the outputs of the PRBS generators. The multiplexor selector signal is controlled by the slow clock circuitry. With this method, the tool ensures that the pseudorandom pattern propagates through a selective number of nets in the design. Note that the fix process is fully controlled by the designer. The designer can adjust for the overall design considerations and initiates the needed tradeoffs between the required number of fixes and the power and area overhead associated with the incremental fixes (also included by the tool’s report). 

[image: ]
[bookmark: _Ref67686186]Figure 2 - Automatic incremental fix.
	Asymmetric Aging Avoidance Tool Architecture 
Figure 3 illustrates the block diagram of our tool. The tool has been designed in Tcl language and includes the following software modules: configuration-file parser, hardware description language (HDL) generation engine, signal-probability analyzer, incremental fix engine, and report generator. The configuration file parser reads the configuration file supplied by the designer (shown in Figure 3). The HDL generation engine creates a new top-level wrapper for the synthesizable design and a testbench module. The HDL generation engine invokes the simulation and once completed, a dump file of the SP(1) information is created. The dump file is analyzed, and the information is provided to the report generator. The report generator can generate the reports described in Figure 3. Finally, the incremental-fix engine identifies all nets that require fixes and inserts the needed incremental fixes.
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[bookmark: _Ref67758688]Figure 3 – Asymmetric Aging Avoidance Tool Block Diagram

Experimental Results
This section presents the experimental results of our design flow and tool to mitigate the asymmetric aging effect which consists of three parts: first, we present the signal probability improvement that is gained by our tool. Second, we summarize the power and area overhead of our design flow, and last, we present timing analysis with aging models, which demonstrates the reliability improvement gained by our design flow which combines the incremental-fix mode.
As part of our experimental analysis, we examine the effectiveness of the full flow presented in Figure 1 (a) on integer ALU, FP adder, FP multiplier, FP divider, and FP round logic. All modules were obtained from the OpenCores[footnoteRef:1] repository. Our analysis is performed on a 28nm process technology using the Synopsys Digital Cell Libraries [10]. The synthesis tool (Synopsys Design Compiler Q-2019.12-SP1) ran with core voltage of 1.05V, clock frequency of 420MHz and process corner SS_1p05_125C (Slow-Slow corner). The PRBS generator that we use is PRBS9 ([6]). The runtime of the simulation is 1 million clock cycles.  [1:  www.opencores.org] 

Signal probability experimental analysis
	The first part of our experimental analysis examines the SP(1) distribution. Initially, we run the tool at RTL level and generate histogram reports of the signal probability for each module. Next, we synthesize every module with the asymmetric aging avoidance circuitry. Finally, we run the tool on the gate-level netlist and generate SP(1) histograms. Figure 4 presents the histograms for both RTL and gate levels. As previously indicated,  designs that allow static BTI stress for long periods may incur serious reliability issues due to asymmetric aging. For example, microprocessors that run integer applications do not use FP execution units. In some cases, even the available integer ALUs cannot be fully utilized. Prior studies [5, 6] show that, in such cases, approximately 50% of the nets are static logical 1 while the rest are static logical 0. Clearly, Figure 5 shows that the proposed tool and circuitry can remove the continuous BTI stress from the majority of nets. The FPU adder, FPU multiplier, and ALU all have SP(1) in the range of 30%–70% for the majority of nets. The FPU divider and FPU round modules have an even tighter distribution, and the majority of their nets have SP(1) in the range of 40%–60%. The histograms show that a smaller portion of nets cannot be toggled effectively and remain static through most of the simulations. We have identified this behavior is due to (1) constant values in the design and (2) big logical shifters in the integer ALU and in the FPU divider that involve many nets with constant zero-padding. Such nets are easily fixed by running the proposed tool in incremental-fix mode. However, this may be needed only for a small number of nets because such nets are not typically on the critical path in an asymmetrically aged design. In subsection 4.C we discuss how the SP(1) distribution affects reliability and timing violations.
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[bookmark: _Ref67899103]Figure 4 – SP(1) histograms for execution units.
Power and area overhead analysis 
As part of our experimental analysis, we have integrated all modules and wrapped them together in a top-level module, which represents an execution unit that combines multiple processing elements. We synthesized the combined execution unit using the process technology parameters which have been previously described. We run the asymmetric aging avoidance flow on the combined gate-level netlist. The total area and power of all modules is 0.1455 mm2 and 0.3 mW respectively. The asymmetric aging avoidance circuitry area and power overhead is 0.0022 mm2 and 0.3 mW respectively (1.8% and 2.7%, respectively). 

Timing analysis based on aging models
In the last part of our experimental analysis, we perform a timing analysis based on aging models to examine the improvement in reliability gained by the proposed design flow. In this method, the conventional timing models are extended with BTI-aging models where the rising cell delays are derated by their corresponding NBTI degradation factors (as a function of the SP), whereas the falling delays remain unchanged. The derate factors for the aging libraries were generated by using SPICE simulations with the nominal Vth values replaced by aged Vth values that correspond to the lifetime and SP. The Vth degradation model is based on the reaction-diffusion model, which is the most widely accepted model for BTI aging [6, 11]. 
	Tables 1 summarizes our timing analysis comparison of fresh, aged, and asymmetric-aging-aware designs. The results show that all modules incur setup violations when asymmetric aging is considered. In addition, the FP adder, FP round, and FP divider also experience hold violations. Note that, even if the integer ALU still meets the hold constraints, the positive slack becomes smaller and thereby the design becomes marginal. Tables 1 also shows that the tool significantly reduces the timing violations of the asymmetrically aged designs. The FP divider, FP round logic, and integer ALU are now clean from any timing violations. Both FP multiplier and FP adder exhibit a small number of setup and hold violations that are cleaned by applying the incremental-fix flow. In both modules, the number of paths involved is very small, so the power and area overhead are negligible. 

TABLE 1
SETUP AND HOLD VIOLATED ENDPOINT PATHS FOR FRESH, AGED, AND ASYMMETRIC-AWARE DESIGNS.
	
	
	Setup
	
	

	
	Fresh
	Aged 
	Asym. aging-avoidance tool
	Incremental fix flow

	FP Add.
	0/687 
	4/687 
	1/687 
	0/687 

	FP Mul.
	0/1803
	12/1803
	3/1803
	0/1803

	FP Div.
	0/992
	4/992
	0/992
	0/992

	FP Rou.
	0/322
	8/322
	0/322
	0/322

	Int. ALU
	0/134
	2/134
	0/134
	0/134

	Hold

	
	Fresh
	Aged 
	Asym. aging-avoidance tool
	Incremental fix flow

	FP Add.
	0/687 
	59/687 
	3/687 
	0/687 

	FP Mul.
	0/803
	68/803
	4/1803
	0/1803

	FP Div.
	0/992
	116/992
	0/992
	0/992

	FP Rou.
	0/322
	115/322
	0/322
	0/322

	Int. ALU
	0/134
	0/134
	0/134
	0/134


Conclusions
IC reliability is a crucial requirement that has been highly challenged by advanced process technologies and new computation-intensive applications. Recent advanced process nodes have become highly susceptible to asymmetric aging that can cause critical timing violations in ICs and overall system failure. In this paper, we introduce a novel tool and design flow to mitigate the asymmetric aging effect. Further studies on EDA flows to cope with asymmetric aging are highly encouraged since the effect of BTI and HCI are further intensified in advanced process node. This is a major challenge for both industry and research communities to find practical solutions to allow the development of future reliable ICs. A possible future direction of research is to further extend the proposed tool and design flow to control path modules, memory systems and domain-specific accelerators.  
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