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ABSTRACT
A key challenge of evolutionary game theory and multi-agent

learning is to characterize the limit behavior of game dynamics.

Whereas convergence is often a property of learning algorithms

in games satisfying a particular reward structure (e.g. zero-sum),

it is well known, that for general payoffs even basic learning mod-

els, such as the replicator dynamics, are not guaranteed to con-

verge. Worse yet, chaotic behavior is possible even in rather simple

games, such as variants of Rock-Paper-Scissors games [52]. Al-

though chaotic behavior in learning dynamics can be precluded by

the celebrated Poincaré-Bendixson theorem, it is only applicable to

low-dimensional settings. Are there other characteristics of a game,

which can force regularity in the limit sets of learning?

We show that behaviors consistent with the Poincaré-Bendixson

theorem (limit cycles, but no chaotic attractor) follows purely based

on the topological structure of the interaction graph, even for high-

dimensional settings with arbitrary number of players and arbitrary

payoff matrices. We prove our result for a wide class of follow-the-

regularized leader (FoReL) dynamics, which generalize replicator

dynamics, for games where each player has two strategies at dis-

posal, and for interaction graphs where payoffs of each agent are

only affected by one other agent (i.e. interaction graphs of inde-

gree one). Since chaos has been observed in a game with only two

players and three strategies, this class of non-chaotic games is in

a sense maximal. Moreover, we provide simple conditions, under

which such behavior translates to efficiency guarantees, implying

that FoReL learning achieves time average sum of payoffs at least

as good as that of a Nash equilibrium; and connecting the topology

of the dynamics to social welfare analysis.
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1 INTRODUCTION
Dynamical systems and evolutionary game theory have been in-

strumental in much of modern research on multi-agent learning [8,

12, 21, 47, 53, 54, 56]. In particular, characterizing convergence and

limit sets of learning trajectories is key in understanding long-

term behavior of multi-agent systems. However, even in simple

games, such as Rock-Paper-Scissors [45, 52] models of evolution

and learning are not guaranteed to converge; and even beyond
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cycles, long-term behavior may lead to chaotic behavior, known to

the dynamical systems community, e.g., from weather models [36].

Not only does chaos manifest itself even in simple games with

two players, but moreover, a string of recent results seems to sug-

gest that such chaotic, unpredictable behavior may indeed be the

norm across a variety of simple low dimensional game dynamics [4–

6, 13, 15, 18, 20, 43, 50, 57]. Importantly, these results are persistent

even for the well known class of Follow-the-Regularized-leader

(FoReL) dynamics [14, 39], despite the fact that FoReL dynamics

include some of the most widely studied learning dynamics such

as replicator dynamics [27, 55], the continuous time analogue of

the Multiplicative Weights Update meta-algorithm [3], and are well

known for their optimal regret properties. Finally, the emergence

of chaotic behavior has been connected with increased social ineffi-

ciency showing that chaotic dynamics may lead to highly inefficient

outcomes [16, 48]. Such profoundly negative results lead us to the

following natural questions:

• Do there exist simple, robust conditions under which learn-

ing behaves well?

• Which type of games lie at the “edge of chaos"?

• Does dynamic simplicity translate to high efficiency, social

welfare?

Traditionally, a lot of work has focused on showing that in spe-

cific classes of games (e.g. zero-sum or potential games), learning dy-

namics can lead to convergence and equilibration, see [12, 19, 51, 60]

and references therein. There are few results that span over to gen-

eral sum games and games of arbitrary payoff structures; however

arguably such general approaches are essential in modern research

on multi-agent learning. For instance, unstructured payoffs can

naturally occur, when stochastic extensive form games are used

do create empirical normal form games, by averaging payoffs from

simulations for combinations of strategies [35, 40, 58]. Unstruc-

tured payoffs also arise in many real world applications – such

as e.g. modelling impact of investing strategies of large funds on

the stock market. While equilibriation may not always be possi-

ble in such cases, one can still wish to ensure regularity of sorts

in the learning outcomes of the multiagent system. In particular,

the famous Poincaré-Bendixson theorem (Theorem 1) ensures that

two-dimensional continuous learning and adaptation dynamics will

never form truly chaotic outcomes. This comes however at a cost;

even though no specific payoff structure is needed, the underlying

learning dynamics need to be at most two dimensional.

Our approach and results. Rather than by making assump-

tions on the reward structure, or on the dimension, we explore

a different type of constraint in games. We show, that the limit

behavior of learning can be determined solely by the topological-

combinatorial structure of the game, regardless of the number of

players, or algebraic correlations between the payoffs (e.g. zero-

sum). Firstly, we restrict ourselves to binary games [9, 38, 61] where

players have two strategies to choose from. Secondly, we assume

that every agent can be affected by the behavior of up to one other



agent. Finally, we add a technical restriction that the game is con-

nected – it cannot be decomposed into two subgames completely

independent of each other. Such games encompass, among others,

all 2×2 games [23], Jordan’s game [22, 25, 29], as well as easily iden-

tifiable subclasses of real-world systems, where the graph structure

is evident – e.g. certain traffic networks [1, 34], supply chains [11]

or problems of water allocation in deltas [2, 31]. Under these as-

sumptions, in Section 3 we prove our main contribution in form of

Theorems 3, 4 – that the limit behavior of FoReL learning of these

games is always consistent with the Poincaré-Bendixson theorem.

Having excluded the presence of chaos, we further analyze quan-

titative properties of binary games, which admit cyclic interaction

graphs. In Section 4 we show that under additional but structurally

robust assumptions on the payoff matrices (i.e., assumptions that

remain valid after small perturbations of the payoff matrices, so are

suitable for e.g. empirical payoff matrices), one can derive positive

results about the efficiency of the time-average behavior of the

dynamics regardless of whether they are convergent or not. As it

is typically the case in the Price of Anarchy (PoA) literature [33]

we focus on the measure of social welfare – the sum of individual

payoffs, but whereas the typical PoA literature tries to argue that

regret-minimizing dynamics (such as FoReL) are at most a constant

factor worse than the behavior of the worst case Nash equilib-

rium [48, 49], we instead show that FoReL dynamics are always

at least as efficient as the worst case Nash equilibrium. Finally, in

Section 5 we provide examples of games satisfying our assumptions,

and their possible limit behaviors, as well as a counterexample – a

simple, binary game, which breaks our assumptions, and induces

chaotic learning dynamics.

Related work. First of all, we would like to point to several

papers containing complementary results, in form of examples of

simple FoReL systems with chaotic dynamics. In addition to the

papers mentioned in the introduction, we would like to highlight

a chaotic example of Sato et al. [52] in a 2-player, 3-action game

as well as two complex/chaotic examples in 3-player binary games

without structured interactions – by Plank [46], and recently by

Peixe and Rodrigues [44]. Contrasting these to our assumptions (i.e.

binary games, and previous neighbor interactions), we see that our

results establish a maximal class of games for which such regularity

results on limit sets are possible.

Research which considers non-convergence but focuses on non-

chaoticity results is scarce. In the closest works to ours, [17, 41, 42],

the authors leverage the Poincaré-Bendixson theorem to show that

the limit behavior of bounded learning trajectories in certain learn-

ing systems can be either convergent or cyclic, but in particular no

chaotic attractor is possible. However, they do so by assuming re-

spectively low-dimensionality (three players limit) or non-generic

structure on the set of allowable games, which allows for dimen-

sionality reduction (i.e. a network of 2 × 2 zero-sum / coordination

games). In terms of connections between cyclic behavior and the

efficiency of learning dynamics, [32] has shown that for a class

of three agent, two strategy games a cyclic attractor can result in

social welfare (sum of payoffs) that can be better than the Nash

equilibrium payoff, however, that result is once again constrained

to exact game theoretic model.

2 PRELIMINARIES
2.1 Normal form games
A finite game in normal form consists of a set of 𝑁 players each with

a finite set of strategiesA𝑖 . The preferences of each player are repre-

sented by the payoff function 𝑢𝑖 :
∏

𝑖 A𝑖 → R. To model behavior

at scale, or probabilistic strategy choices, one assumes that play-

ers use mixed strategies, i.e. probability distributions (𝑥𝑖𝛼𝑖 )𝛼𝑖 ∈A𝑖
∈

Δ(A𝑖 ) =: X𝑖 . With slight abuse of notation, the expected payoff of

the 𝑖-th player in the profile (𝑥𝑖𝛼𝑖 )𝑖,𝛼𝑖 is denoted by 𝑢𝑖 again, and

given by

𝑢𝑖 (𝑥) = Σ𝛼1∈A1,...𝛼𝑁 ∈A𝑁
𝑢𝑖 (𝛼1, . . . , 𝛼𝑁 )𝑥1𝛼1

. . . 𝑥𝑁𝛼𝑁
. (1)

A mixed strategy 𝑥 is a Nash equilibrium iff ∀𝑖 ∀𝑥 : 𝑥 𝑗 = 𝑥 𝑗 , 𝑗 ≠ 𝑖

we have 𝑢𝑖 (𝑥) ≤ 𝑢𝑖 (𝑥); in other words no player can unilaterally

increase their payoff by changing their strategy distribution. The

minimax value for player 𝑖 is given by min𝑥−𝑖 max𝑥𝑖 𝑢𝑖 (𝑥), where
𝑥−𝑖 := (𝑥 𝑗 )𝑗≠𝑖 . It is the smallest possible value player 𝑖 can be forced

to attain by other players, without them knowing player 𝑖 strategy.

We call a game binary iff |A𝑖 | = 2 for all 𝑖 .

2.2 Graphical polymatrix games
To model the topology of interactions between players, we restrict

our attention to a subset of normal form games, where the struc-

ture of interactions between players can be encoded by a graph

of two-player normal form subgames, leading us to consider so-

called graphical polymatrix games (GPGs) [28, 30, 59]. A simple

directed graph is a pair (V, E), where V = {1, . . . , 𝑁 } is a finite
set of vertices (representing the players), and E is a set of ordered

vertex pairs (edges), where the first element is called predecessor,

and the second is called successor. Each edge (𝑖, 𝑘) has an associ-

ated two-player normal form game, where only the successor 𝑘

is assigned payoffs. These are represented by a matrix 𝐴𝑖,𝑘
with

rows enumerating strategies of player 𝑘 , and columns enumerating

strategies of player 𝑖 . For a given strategy profile 𝑠 = {𝑠𝑖 }𝑖 ∈
∏

𝑖 A𝑖

the payoffs for player 𝑘 in the full game are then determined as the

sum

𝑢𝑘 (𝑠) =
∑

𝑖:(𝑖,𝑘) ∈𝐸
𝐴𝑖,𝑘 (𝑠𝑖 , 𝑠𝑘 ) . (2)

The payoffs can be extended to mixed strategies in a standard

multilinear fashion:

𝑢𝑘 (𝑥) =
∑

𝑖:(𝑖,𝑘) ∈𝐸

∑
𝑥𝑠𝑖 ,𝑥𝑠𝑘

𝐴𝑖,𝑘 (𝑠𝑖 , 𝑠𝑘 )𝑥𝑠𝑖𝑥𝑠𝑘 . (3)

A situation, where both the successor 𝑘 and also the predecessor

𝑖 obtain a reward can be modelled by including both edges (𝑖, 𝑘)
and (𝑘, 𝑖) in the graph.

We say that a simple directed graph is weakly connected, if any

two vertices can be connected by a set of edges, where the direction

of the edges is not taken into account. This is a weaker condition

than strong connectedness, where each pair of vertices needs to

be connected by a path, i.e. a sequence of edges, together with

associated vertices, where the successor in one edge needs to be

the predecessor in the next one. The indegree of a vertex, is the

amount of edges for which the vertex is the successor (in other

words: the number of its predecessors). The outdegree is the amount

of edges, for which the vertex is the predecessor, i.e. the number of



its successors. A cycle is a path, where the predecessor in the first

edge is the successor in the last edge. For our exposition we shall

identify cycles modulo shifts, i.e. if two paths consist of the same

edges in shifted order, then they form the same cycle. In this paper

we consider two types of weakly connected GPGs:

(1) firstly, cyclic games, where the interaction between the agents

forms a cycle, where each agent interacts only with the pre-

vious neighbor. We observe that in such a cyclic game the

indegree and outdegree of each vertex is one. For simplicity,

we will label the nodes of such 𝑁 -player games by natural

numbers 𝑖 = 0, 1, . . . , 𝑁 , and use the convention that 𝑖th

node is the successor to 𝑖 − 1st node, and that the 0th node

is identified with the 𝑁 th node.

(2) Secondly, a more general class of graphical games, where

each player’s payoffs depend on up to one other player, i.e.

the indegree of each vertex is at most one. For a vertex 𝑖 ∈ V ,

we will then denote the predecessor vertex by 𝑖 , if it exists.

For cyclic games we have 𝑖 = 𝑖 − 1.

Below, we state and prove a simple lemma, which characterizes

the one-predecessor assumption in terms of graph topology and

clarifies the relation between cyclic and indegree-one graphs (c.f.

Figure 1).

Lemma 1. Let (V, E) be a weakly connected, simple, directed
graph. If the indegree of each vertex is at most one, then, the graph
can have up to one cycle. If the graph has no cycle, then it has to have
at most one root vertex, i.e. a vertex of indegree zero, such that all
other vertices are connected to it by a unique, directed path.

Proof. For the first part of the lemma, let us assume the con-

trary: that 𝑎1, 𝑎2 are nodes of two distinct cycles within the same

weakly connected component. The edges between 𝑎1 and 𝑎2 need

to form a path (otherwise there would be a vertex with two pre-

decessors). Assume the path leads from 𝑎1 to 𝑎2, and let 𝑎0 be the

first vertex which is both on the path and on 𝑎2 cycle. Then 𝑎0 has

two predecessors, which leads to a contradiction.

For the second part of the lemma, we can argue as follows. If any

vertexwould have a sequence of predecessorswhichwould not form

a cycle, then by backtracking through the predecessors we could

identify an infinite collection of distinct vertices. Therefore, there

needs to be at least one root node for each vertex. The path from

such root node to the given vertex needs to be unique, otherwise

one could identify a vertex along the path with two predecessors.

Finally, if there were two root nodes, from connectedness it follows

that there must be a node with two predecessors on the edges

between them. □

Remark 1. Under the assumptions of Lemma 1, if the graph has a
cycle, then the cycle enjoys similar properties as a root node would; i.e.
there are no paths from outside of the cycle to it (otherwise one vertex
in the cycle would have two predecessors), and all vertices outside of
the cycle have to be connected by a path from one of the vertices of
the cycle (unique, up to the starting point within the cycle). Further
on we will refer to such cycle as the root cycle.

Figure 1: A weakly connected graph where each vertex is of
indegree at most one.

2.3 Follow-the-regularized-leader equations
Denote by 𝑣𝑖𝛼𝑖 (𝑥) := 𝑢𝑖 (𝛼𝑖 ;𝑥−𝑖 ) and 𝑣𝑖 (𝑥) = (𝑣𝑖𝛼𝑖 (𝑥))𝛼𝑖 ∈A𝑖

. To

model the dynamics of learning we use a class of learning systems

known as follow-the-regularized-leader systems (FoReL) [12, 53].

This class encompasses a variety of models ranging from gradient

to replicator dynamics, and allows for natural description of agent

learning as regularized maximization of individual payoffs.

FoReL dynamics for player 𝑖 are defined by evolution of utilities
𝑦𝑖 = {𝑦𝑖𝛼𝑖 }𝛼𝑖 ∈A𝑖

∈ R |A𝑖 |
– that is real numbers representing

a score each player assigns to each respective strategy – by the

integral equation

𝑦𝑖 (𝑡) = 𝑦𝑖 (0) +
∫ 𝑡

0

𝑣𝑖 (𝑥 (𝑠))𝑑𝑠,

𝑥𝑖 (𝑡) = 𝑄𝑖 (𝑦𝑖 (𝑡)),
(4)

where the choice map 𝑄 = (𝑄1, . . . , 𝑄𝑁 ), 𝑄𝑖 : R
|A𝑖 | → X𝑖 , which

determines the evaluated strategy profile 𝑥 (𝑡) is given on each

coordinate by:

𝑄𝑖 (𝑦𝑖 ) = argmax𝑥𝑖 ∈X𝑖
{⟨𝑦𝑖 , 𝑥𝑖 ⟩ − ℎ𝑖 (𝑥𝑖 ) }. (5)

In the aboveℎ𝑖 : X𝑖 → R∪{−∞,∞} is a convex regularizer function,
representing a regularization/exploration term. The equation (4)

represents how players adapt their mixed strategies to changing

utility values. Observe, that without the regularization term, the

map𝑄𝑖 would simply put all weight on the strategy with the highest

utility.

In binary games, each agent has only two strategies at his dis-

posal, say𝛼0, 𝛼1. The variable 𝑥𝑖 denotes then the proportion of time

player 𝑖 plays strategy 𝛼0, and the proportion of 𝛼1 is given by 1−𝑥𝑖 .
Following [39], we introduce new variables 𝑧𝑖 := 𝑦𝑖𝛼0

− 𝑦𝑖𝛼1
∈ R,

representing the difference in utilities between playing strategy

𝛼0 and 𝛼1. It is intuitively clear, and it was proved formally e.g.

in [39] that𝑄𝑖 (𝑧𝑖 + 𝑐, 𝑐) is constant in 𝑐 , and therefore, without loss
of generality, we can set 𝑐 := 0, and restrict our considerations to

a 𝑧-dependent choice map 𝑄̂𝑖 (𝑧𝑖 ) := 𝑄𝑖 (𝑧𝑖 , 0). Provided that 𝑄 is

sufficiently regular (e.g. continuous), the integral equation (4) can

be converted to a system of differential equations

¤𝑧 = 𝑉 (𝑧) (6)

given coordinate-wise by

𝑉𝑖 (𝑧) := 𝑣𝑖𝛼0
(𝑄̂ (𝑧)) − 𝑣𝑖𝛼1

(𝑄̂ (𝑧)), (7)

for details again see [39].



Remark 2. An intuitively obvious, but technically important ob-
servation is that evolution of 𝑖th coordinates of the system (4), and,
in turn (7) depends solely on the values of 𝑥 𝑗 or 𝑧 𝑗 , respectively, for
nodes 𝑗 that influence the payoffs of 𝑖 . In particular, for GPGs we
have 𝜕𝑉𝑖/𝜕𝑧 𝑗 ≠ 0 implies that there is an edge from 𝑗 to 𝑖 in the
game graph; and for GPGs with up to one predecessor, without loss of
generality we can rewrite (6) as

¤𝑧𝑖 = 𝑉𝑖 (𝑧𝑖 ) = 𝑣𝑖𝛼0
(𝑄̂𝑖 (𝑧𝑖 )) − 𝑣𝑖𝛼1

(𝑄̂𝑖 (𝑧𝑖 )) (8)

As previously hinted, for equation (7) to be well-posed, we need

to pose certain regularity conditions on the regularizer. The fol-

lowing lemma determines desirable properties of monotonicity

and smoothness of the choice map, when a player has exactly two

strategies at disposal (so X𝑖 = [0, 1]).

Lemma 2. Assume that the regularizer ℎ𝑖 satisfies the following
conditions:

(1) ℎ𝑖 ∈ 𝐶2 ((0, 1)) ∩𝐶0 ( [0, 1]) (smoothness),
(2) ℎ′

𝑖
(𝑥𝑖 ) → −∞ as 𝑥𝑖 → 0 and ℎ′

𝑖
(𝑥𝑖 ) → ∞ as 𝑥𝑖 → 1

(steepness),
(3) ℎ′′

𝑖
(𝑥𝑖 ) > 0 for 𝑥 ∈ (0, 1) (strict convexivity).

Then 𝑄̂𝑖 ∈ 𝐶1 (R) and 𝑄̂ ′
𝑖
(𝑧𝑖 ) > 0.

Proof. For a given 𝑧𝑖 , 𝑄̂𝑖 (𝑧𝑖 ) is defined as the maximizer of

⟨(𝑧𝑖 , 0), (𝑥𝑖 , 1 − 𝑥𝑖 )⟩ − ℎ𝑖 (𝑥𝑖 ) over 𝑥𝑖 ∈ [0, 1]. We have

⟨(𝑧𝑖 , 0), (𝑥𝑖 , 1 − 𝑥𝑖 )⟩ − ℎ𝑖 (𝑥𝑖 ) = 𝑧𝑖𝑥𝑖 − ℎ𝑖 (𝑥𝑖 ) . (9)

From steepness, continuity and strict convexity it follows that

ℎ𝑖 (0) = ℎ𝑖 (1) = ∞ so the maximum cannot be attained there.

A necessary condition for maximum to be attained in (0, 1) is
𝑧𝑖 = ℎ′𝑖 (𝑥𝑖 ). (10)

From steepness and strict convexivity it follows that equation (10)

has a unique solution 𝑥𝑖 =: 𝑄̂𝑖 (𝑧𝑖 ) for any 𝑧𝑖 ∈ R. From the inverse

function theorem we have

𝜕𝑥𝑖

𝜕𝑧𝑖
= 𝑄̂ ′

𝑖 (𝑧𝑖 ) = 1/ℎ′′𝑖 (𝑥𝑖 ) > 0, (11)

which also implies that 𝑄̂𝑖 is 𝐶
1
. □

Perhaps the best known example of a FoReL learning system are

the replicator equations [55], where the regularizer is given by

ℎ𝑖 (𝑥𝑖 ) :=
∑
𝛼𝑖

𝑥𝑖𝛼𝑖 log𝑥𝑖𝛼𝑖 . (12)

In particular, such regularizer satisfies the assumptions of Lemma 2,

and yields the following equations for a binary GPG with up to one

predecessor:

¤𝑧𝑖 =
∑

𝑗,𝑘∈{0,1}
(−1) ( 𝑗+𝑘)𝐴𝑖,𝑖 (𝛼 𝑗 , 𝛼𝑘 )

exp(𝑧𝑖 )
1 + exp(𝑧𝑖 )

−𝐴𝑖,𝑖 (𝛼1, 𝛼1) +𝐴𝑖,𝑖 (𝛼1, 𝛼0), 𝑖 = 1, . . . , 𝑁

(13)

which translates to the following system in original (𝑥 ) coordinates:

¤𝑥𝑖 = 𝑥𝑖 (1 − 𝑥𝑖 )
∑

𝑗,𝑘∈{0,1}
(−1) ( 𝑗+𝑘)𝐴𝑖,𝑖 (𝛼 𝑗 , 𝛼𝑘 )𝑥𝑖

− 𝑥𝑖 (1 − 𝑥𝑖 )
(
𝐴𝑖,𝑖 (𝛼1, 𝛼1) −𝐴𝑖,𝑖 (𝛼1, 𝛼0)

)
𝑖 = 1, . . . , 𝑁 .

(14)

2.4 Limit sets, periodic orbits and chaos
A differential equation ¤𝑥 = 𝐹 (𝑥) given by a 𝐶1

vector field 𝐹 :

Ω → R𝑛 on a domain Ω ⊂ R𝑛 admits a unique solution on a

maximal open interval 𝐼 = (𝐼𝑙 , 𝐼𝑟 ), 𝐼𝑙 , 𝐼𝑟 ∈ R ∪ {±∞}, denoted by

𝑥 (𝑡) : 𝐼 → R𝑛 , for any initial condition 𝑥 (0) = 𝑥0 ∈ Ω. Among

possible solutions to such equation, we distinguish particular types

of solutions defined by their qualitative properties: we say that

a solution 𝑥 (𝑡) is an equilibrium iff 𝑥 (𝑡) = const for all 𝑡 ∈ 𝐼 . A

solution is periodic iff 𝑥 (𝑡) = 𝑥 (𝑡 +𝑇 ) for some 𝑇 > 0 and all 𝑡 ∈ 𝐼 ;

and it is a connecting orbit between equilibria 𝑥1 and 𝑥2 (allowing

𝑥1 = 𝑥2), iff 𝑥 (𝑡) → 𝑥1 as 𝑡 → ∞ and 𝑥 (𝑡) → 𝑥2 as 𝑡 → −∞.

A set 𝜔 (𝑥0) ⊂ Ω is a limit set for an initial condition 𝑥0 ∈ Ω,
if ∀𝑥 ∈ 𝜔 (𝑥0) there exists an unbounded, increasing sequence

{𝑡𝑛}𝑛 ⊂ R+, such that 𝑥 (𝑡𝑛) → 𝑥, 𝑛 → ∞. Limit sets are invariant
– they are formed by unions of solutions of the differential equation.

They are also compact – bounded as subsets of R𝑛 , and closed under
the limit operation for sequences from itself.

Fundamental research has been devoted to study the properties

of solutions within limit sets, as they offer a qualitative description

of long-term behavior of the system [24]. Since the discovery of

chaotic attractors [36], it has become known that in the general

setting, these solutions can have arbitrarily complicated shapes and

exhibit seemingly random behavior, a clearly undesirable feature

from the point of view of applications; and engineering systems

with simple 𝜔-limit sets became of particular interest.

Definition 1. We say that a differential equation ¤𝑥 = 𝐹 (𝑥), 𝑥 ∈
Ω has the Poincaré-Bendixson property iff for all 𝑥 ∈ Ω, such that the
solution 𝑥 (𝑡) is bounded, each limit set 𝜔 (𝑥) is either:

• an equilibrium;
• a periodic solution;
• a union of equilibria and connecting orbits between these equi-
libria.

A well known result from the qualitative theory of differential

equations shows that planar systems exhibit this trait.

Theorem 1. The Poincaré-Bendixson Theorem [7]. Let 𝐹 = 𝐹 (𝑥),
𝑥 ∈ Ω ⊂ R2 be a 𝐶1 vector field with finitely many zeroes. Then, the
differential equation ¤𝑥 = 𝐹 (𝑥) has the Poincaré-Bendixson property.

Already in R3 there are known examples of systems having

complicated, chaotic attractors [36]. However, dimensionality is

not the only factor which could determine potential shapes of limit

sets. In particular, for certain systems of arbitrary dimension, with

structured “previous-neighbor” interactions between the variables,

the limit sets can be as as simple as in planar systems.

Theorem 2. Mallet-Paret & Smith [37]. Let (𝑓𝑖 (𝑥𝑖−1, 𝑥𝑖 ))𝑛𝑖=1, be
a 𝐶1 vector field on an open, convex set 𝑂 ⊂ R𝑛 , and let 𝑥0 := 𝑥𝑛 .

Assume that 𝜕𝑓 𝑖

𝜕𝑥𝑖−1
≠ 0 for all 𝑥 ∈ 𝑂 . Then, the system of differential

equations

¤𝑥𝑖 = 𝑓𝑖 (𝑥𝑖−1, 𝑥𝑖 ), 𝑖 = 1, . . . , 𝑛, (15)

has the Poincaré-Bendixson property.

The above theorem is key to proving our further results.



3 THE POINCARÉ-BENDIXSON THEOREM
FOR GAMES

In this section we state and prove our main results on the topology

of limit sets in Follow-the-regularized-Leader learning. We will first

state and prove the Poincaré-Bendixson theorem for cyclic games:

Theorem 3. Let ¤𝑧 = 𝑉 (𝑧) be a system of differential equations
given by the vector field (7) – the follow-the-regularized-leader learn-
ing dynamics – for a binary, cyclic game. For any smooth, steep,
strictly convex collection of regularizers {ℎ𝑖 }𝑖 such system possesses
the Poincaré-Bendixson property.

Proof. Since 𝑢𝑖 depends only on 𝑄𝑖 and 𝑄𝑖−1, we have

𝑉𝑖 (𝑄̂ (𝑧)) = 𝑉𝑖 (𝑄̂𝑖−1 (𝑧𝑖−1))
= 𝑣𝑖𝛼0

(𝑄𝑖−1 (𝑧𝑖−1, 0)) − 𝑣𝑖𝛼1
(𝑄𝑖−1 (𝑧𝑖−1, 0)) .

(16)

Our goal is to employ Theorem 2. Therefore, we would like to

establish under which conditions

𝜕𝑉𝑖

𝜕𝑧𝑖−1
≠ 0. (17)

for all 𝑖 . We have:

𝜕𝑉𝑖

𝜕𝑧𝑖−1
=

𝜕𝑣𝑖𝛼0

𝜕𝑥𝑖−1

𝜕𝑥𝑖−1
𝜕𝑧𝑖−1

−
𝜕𝑣𝑖𝛼1

𝜕𝑥𝑖−1

𝜕𝑥𝑖−1
𝜕𝑧𝑖−1

. (18)

Moreover, differentiation of mixed strategy payoffs yields

𝜕𝑣𝑖𝛼1

𝜕𝑥𝑖−1
−

𝜕𝑣𝑖𝛼0

𝜕𝑥𝑖−1
= 𝐴𝑖,𝑖 (𝛼0, 𝛼0) −𝐴𝑖,𝑖 (𝛼1, 𝛼0)

+𝐴𝑖,𝑖 (𝛼1, 𝛼1) −𝐴𝑖,𝑖 (𝛼0, 𝛼1) .
(19)

From Lemma 2 we have
𝜕𝑥𝑖−1
𝜕𝑧𝑖−1

> 0, so the necessary condition to

satisfy inequality (17) is:

𝐴𝑖,𝑖 (𝛼0, 𝛼1) +𝐴𝑖,𝑖 (𝛼1, 𝛼0)

≠ 𝐴𝑖,𝑖 (𝛼0, 𝛼0) +𝐴𝑖,𝑖 (𝛼1, 𝛼1) .
(20)

Now let’s consider the edge case, where𝐴𝑖,𝑖 (𝛼0, 𝛼1)+𝐴𝑖,𝑖 (𝛼1, 𝛼0) =
𝐴𝑖,𝑖 (𝛼0, 𝛼0)+𝐴𝑖,𝑖 (𝛼1, 𝛼1) for some 𝑖 . Then 𝜕𝑣𝑖𝛼0

/𝜕𝑥𝑖−1 = 𝜕𝑣𝑖𝛼1
/𝜕𝑥𝑖−1.

Consequently, 𝜕𝑉𝑖/𝜕𝑧𝑖−1 = 0, and hence 𝑖-th coordinate of all solu-

tions has the form 𝑧𝑖 (𝑡) = 𝑎𝑖𝑡 + 𝑏, for some 𝑎𝑖 , 𝑏𝑖 . If 𝑎𝑖 ≠ 0, then all

solutions diverge to infinity. If, however 𝑎𝑖 = 0, then 𝑧𝑖 (𝑡) = 𝑐𝑜𝑛𝑠𝑡 .

Since𝑉𝑖+1 depends only on 𝑧𝑖 , and 𝑧𝑖+1 = 𝑎𝑖+1𝑡 +𝑏𝑖+1; the argument

continues, until all coordinates of solutions are constant, or one

coordinate diverges for all solutions. □

We are now ready to state and prove the theorem for GPGs with

nodes of indegree at most one.

Theorem 4. Let ¤𝑧 = 𝑉 (𝑧) be a system of differential equations
given by the follow-the-regularized leader dynamics of a binary,
weakly connected, graphical polymatrix game, where each player
has up to one predecessor. Then, for any smooth, steep, strictly convex
collection of regularizers {ℎ𝑖 }𝑖 (c.f. Lemma 2), such system possesses
the Poincaré-Bendixson property.

Firstly, we state the following lemma on inheritance of the

Poincaré Bendixson property when extending dynamical systems.

Lemma 3. Consider the following 𝑦-augmented system of differen-
tial equations

¤𝑥 = 𝑓 (𝑥),
¤𝑦 = 𝑔(𝑥𝑖 ),
𝑥 = {𝑥1, . . . , 𝑥𝑛} ∈ R𝑛, 𝑦 ∈ R.

(21)

for smooth 𝑓 , 𝑔. If the original system

¤𝑥 = 𝑓 (𝑥) (22)

has the Poincaré-Bendixson property, then the augmented system (21)

also has the Poincaré-Bendixson property.

Proof. Let 𝑍 be an 𝜔-limit set corresponding to some solution

(𝑥 (𝑡), 𝑦 (𝑡)) to the system (21). Consider 𝑋 – an 𝜔-limit set to solu-

tion 𝑥 (𝑡) of (22).
From invariance of𝜔-limit sets it follows set𝑍 consists of a union

of solutions of (21). For any solution {𝑥∗ (𝑡), 𝑦∗ (𝑡) : 𝑡 ∈ R} ⊂ 𝑍 ,

we have {𝑥∗ (𝑡)} ⊂ 𝑋 . By the Poincaré-Bendixson property of the

original system, we can distinguish three cases:

(1) 𝑥∗ (𝑡) is an equilibrium of (22),

(2) 𝑥∗ (𝑡) is a periodic orbit of (22),
(3) 𝑥∗ (𝑡) is a connecting orbit of (22) – a part of a cycle of

connecting orbits.

In the rest of the proof we will frequently use the integral form

of solutions 𝑦 (𝑡) to (21), given by 𝑦 (𝑡) = 𝑦 (0) +
∫ 𝑡

0
𝑔(𝑥𝑖 (𝑠))𝑑𝑠 .

Case (1): We will prove that (𝑥∗ (𝑡), 𝑦∗ (𝑡)) is stationary for (21).

It is enough to show 𝑔(𝑥∗
𝑖
) = 0. Assume otherwise. Then 𝑦∗ (𝑡) =

𝑦 (0) +
∫ 𝑡

0
𝑔(𝑥∗

𝑖
)𝑑𝑠 = 𝑦 (0) + 𝑡𝑔(𝑥∗

𝑖
) → ∞ as 𝑡 → ∞. This contradicts

the boundedness of an 𝜔-limit set.

Case (2) Let𝑇 be the period of𝑥∗ (𝑡).Wewill show that (𝑥∗ (𝑡), 𝑦∗ (𝑡))
is a periodic solution of (21) of the same period. We have

𝑑

𝑑𝑡
(𝑦∗ (𝑡 +𝑇 ) − 𝑦∗ (𝑡)) = 𝑑

𝑑𝑡

∫ 𝑇+𝑡

𝑡

𝑔(𝑥∗𝑖 (𝑠))𝑑𝑠

= 𝑔(𝑥∗𝑖 (𝑇 + 𝑡)) − 𝑔(𝑥∗𝑖 (𝑡))
= 0,

(23)

hence 𝑦∗ (𝑡 +𝑇 ) −𝑦∗ (𝑡) = 𝑐𝑜𝑛𝑠𝑡 . If this quantity would be non-zero,

the diameter of the set {𝑦∗ (𝑡) : 𝑡 ∈ R} would be infinite. However,

the set 𝑍 is bounded, and therefore 𝑦∗ (𝑡 +𝑇 ) = 𝑦∗ (𝑡).
Case (3): We will show that (𝑥∗ (𝑡), 𝑦∗ (𝑡)) is a connecting orbit

between two equilibria for the full system (21). We shall only prove

convergence with 𝑡 → ∞, the very same argument holds for 𝑡 →
−∞ and 𝛼-limit sets. The orbit (𝑥∗ (𝑡), 𝑦∗ (𝑡)) is bounded and there-

fore it has an accumulation point as 𝑡 → ∞ given by (𝑥∗∗, 𝑦∗∗) ∈
𝜔 (𝑥∗ (0), 𝑦∗ (0)). The point 𝑥∗∗ is an equilibrium for (22). We will

show that (𝑥∗∗, 𝑦∗∗) is an equilibrium. It is enough to show that

𝑔(𝑦∗∗) = 0. Assume otherwise. Then𝑦∗∗ (𝑡) = 𝑦∗∗+𝑡𝑔(𝑥∗∗
𝑖
) which is

unbounded. However, it is also a part of the𝜔 ((𝑥∗ (0), 𝑦∗ (0))), since
𝜔-limit sets are invariant. Boundedness of 𝜔 ((𝑥∗ (0), 𝑦∗ (0))) leads
to a contradiction. The same process, repeated for all connecting

orbits of (22), creates a cycle of connecting orbits for (21). □

Now, we can proceed to the proof of Theorem 4.

Proof. By Lemma 1 and Remark 1 we know that the graph

of the system has either a root vertex or a root cycle. We will

first address the case of a root vertex. We will see that this case



is somewhat degenerate. Without loss of generality let us assume

that it is labelled as the 1st vertex, and that the other vertices are

numbered in order of increasing path distance from vertex 1 (i.e.

𝑗 < 𝑖 implies that the path from 1 to 𝑗 is shorter than the path from

1 to 𝑖) – this is possible by Lemma 1.

The payoffs of the root node are only affected by its own choice

of strategy. Therefore, we can write ¤𝑧1 = 𝑢1 (𝛼0) − 𝑢1 (𝛼1), and,
consequently, 𝑧1 (𝑡) = 𝑡 (𝑢1 (𝛼0) − 𝑢1 (𝛼1)) + 𝑧1 (0). This system

constitutes an autonomous ODE, which trivially has the Poincaré-

Bendixson property (as it is either completely stationary, or is

divergent). From then on, we can add nodes, starting from vertices

connected to the root vertex, and then continuing in an inductive

fashion. Then, either one of the nodes diverges, or they are all

stationary, and trivially satisfy the Poincaré-Bendixson property.

It should be noted that "divergence" in practice means that 𝑧𝑖 (𝑡)’s
approach in the limit 𝑡 → ∞ to either∞ or −∞; the former implies

that the player 𝑖 is placing almost all probability mass on strategy

𝛼0, and the latter – on 𝛼1.

The more interesting scenario arises for the root cycle, where pe-

riodic limit sets are possible. Enumerate these vertices by 1, . . . , 𝑁0,

with 𝑁0 ≤ 𝑁 , and assume that the vertices from 𝑁0 + 1 to 𝑁 are

arranged in the order of increasing path distance from vertices of

the cycle (possible by Remark 1). Observe that the system

¤𝑧𝑖 = 𝑉𝑖 (𝑧𝑖 ),
𝑖 = 1, . . . , 𝑁0,

(24)

is an autonomous system of differential equations (as there are no

edges with successors in {1, . . . , 𝑁0}, and predecessors outside of

this set), and forms a binary, cyclic game in the sense of Theorem 3.

As such, this subsystem possesses the Poincaré-Bendixson property.

From then on, the proof continues similarly as for the root vertex.

We add a vertex 𝑁0 + 1 which has an incoming edge from the root

cycle, and, by Lemma 3 observe that the system

¤𝑧𝑖 = 𝑉𝑖 (𝑧𝑖 ),
𝑖 = 1, . . . , 𝑁0 + 1,

(25)

again has the Poincaré-Bendixson property. The proof continues

inductively w.r.to the vertices, until we conclude that the full system

¤𝑧 = 𝑉 (𝑧) has the Poincaré-Bendixson property. □

Remark 3. Our theorems apply only to fully mixed initial strat-
egy profiles, as FoReL learning (4) is ill-defined for pure strategies.
However, when one player has an initial pure strategy, the system
can be suitably decomposed, and the Poincaré-Bendixson property
still holds. More specifically, in a game where each agent has one
predecessor, if agent 𝑖 plays a pure strategy, then all the agents
𝑉𝑖 := { 𝑗 : there exists a path from 𝑖 to j} would eventually sequen-
tially converge under all reasonable learning dynamics (including
replicator) to their best response to strategy 𝑖 . One can then apply The-
orem 4 to the autonomous reduced system 𝑉 \𝑉𝑖 , where Equations (4)
are again well defined.

Remark 4. The assumption of connectedness is needed for the
Poincaré-Bendixson property, as (by Lemma 1) it ensures that the
graph of interactions has only one cycle. For games with multiple
cycles, one can have yet another type of limit behavior. Consider a
disjoint union of FoReL systems for two binary graphical games, both
possessing the Poincaré-Bendixson property, such that the systems

have non-resonant periods of periodic orbits; e.g. one of the systems
has a periodic solution of period 1 and the other system has a periodic
orbit of period

√
2. Such orbits can be easily obtained from replicator

dynamics for appropriately scaled mismatched pennies games, c.f.
Section 5. Let (𝑧1 (0), 𝑧2 (0)) be a point belonging to the periodic solu-
tion of period 1, and (𝑧2 (0), 𝑧3 (0)) be a point belonging to the periodic
solution of period

√
2. Then the solution of the full system starting

from (𝑧1 (0), 𝑧2 (0), 𝑧3 (0), 𝑧4 (0)) forms a quasi-periodic motion, with
the 𝜔-limit set of a toroidal shape, c.f. [10].

4 FROM GEOMETRY TO EFFICIENCY: SOCIAL
WELFARE ANALYSIS

The following result shows that for cyclic, binary games, under

additional but structurally robust assumptions on the payoff ma-

trices the time-average social welfare of our FoReL dynamics is at

least as high, as the social welfare 𝑆𝑊 =
∑
𝑖 𝑢𝑖 of the worst Nash

equilibrium. The proof crucially relies on the interplay of the opti-

mal regret properties of FoReL dynamics combined with structural

characterizations of the NE set of these games.

Theorem 5. In any binary, cyclic game with the property that for
any agent 𝑖 , the payoff entries are distinct and

[𝐴𝑖−1,𝑖 (𝛼0, 𝛼0)−𝐴𝑖−1,𝑖 (𝛼1, 𝛼0)] [𝐴𝑖−1,𝑖 (𝛼0, 𝛼1)−𝐴𝑖−1,𝑖 (𝛼1, 𝛼1)] < 0,

the time-average of the social welfare of FoReL dynamics is at least
that of the social welfare of the worst Nash equilibrium. Formally,

lim inf

1

𝑇

∫ 𝑇

0

∑
𝑖

𝑢𝑖 (𝑥 (𝑡))𝑑𝑡 ≥
∑
𝑖

𝑢𝑖 (𝑥𝑁𝐸 ) (26)

where 𝑥𝑁𝐸 the worst case Nash equilibrium, i.e., a Nash equilibrium
that minimizes the sum of utilities of all agents.

In other words, the Nash equilibrium is the worst imaginable

outcome for all players; and the dynamical, regret minimization

approach yields superior payoffs.

Proof. Lets consider the payoff matrix of each agent 𝑖 . Recall,

that by the cyclicity assumption, there is at most one agent 𝑘 such

that 𝐴𝑘,𝑖
is a non-zero matrix, i.e., the unique predecessor of 𝑖 , that

for simplicity of notation we call 𝑖 − 1. By assumption, the four

entries will be considered distinct. Next, we break down the analysis

into two cases. As a first case, we consider the scenario where there

exists at least one agent with a strictly dominant strategy. The

FoReL dynamics of that agents will trivially converge to playing

the strictly dominant strategy with probability one. Similarly, all

agents reachable from agent 𝑖 will similarly best respond to it. This

is clearly the unique NE for the binary cyclic game, so in this case

the limit behavior of FoReL dynamics exactly corresponds to the

unique Nash behavior and the theorem follows immediately.

Next, let’s consider the case where no agent has a strictly domi-

nant strategy. In this case, we will construct a specific Nash equilib-

rium for the cyclic game (although it may have more than one). In

this Nash equilibrium every agent 𝑖−1 plays the unique mixed strat-

egy that makes its successor (agent 𝑖) indifferent between its two

strategies. Such a strategy exists for each agent, because otherwise

there would exist an agent with a strictly dominant strategy. In fact

by the assumption [𝐴𝑖−1,𝑖 (𝛼0, 𝛼0) −𝐴𝑖−1,𝑖 (𝛼1, 𝛼0)] [𝐴𝑖−1,𝑖 (𝛼0, 𝛼1) −



𝐴𝑖−1,𝑖 (𝛼1, 𝛼1)] < 0 such a strategy would be the 𝑖 − 1st agent’s min-

max strategy if they participated in a zero-sum game with agent

𝑖 defined by the payoff matrix of agent 𝑖 . Indeed, this assumption,

along with the fact that agent 𝑖 does not have a dominant strat-

egy, exactly encodes that the zero-sum game (defined by payoff

matrix 𝐴𝑖−1,𝑖
) has an interior Nash. Given its predecessors behav-

ior, agent 𝑖 will be receiving exactly its max-min payoff no matter

which strategy they select, therefore this strategy profile where

each agent 𝑖 − 1 just plays the strategy that makes agent 𝑖 indiffer-

ent between their two options is a Nash equilibrium, where each

agent receives exactly their max-min payoffs. However, by [39]

(Lemma C.1), continuous-time FoReL dynamics are no-regret with

their time-average regret converging to zero at an optimal rate of

O(1/T), i.e. there exists an Ω𝑖 > 0, such that for all players 𝑖 we

have:

max

𝑝𝑖 ∈X𝑖

1

𝑇

∫ 𝑇

0

(𝑢𝑖 (𝑝𝑖 ;𝑥−𝑖 (𝑡)) − 𝑢𝑖 (𝑥 (𝑡)) 𝑑𝑡 ≤
Ω𝑖

𝑇
. (27)

However, the left hand side is greater or equal to

𝑢𝑖 (𝑥𝑁𝐸 ) −
1

𝑇

∫ 𝑇

0

𝑢𝑖 (𝑥𝑖 (𝑡))), (28)

since the mixed Nash equilibrium consists of max-min strategies.

Therefore, the sum over 𝑖 of the time-average performance is at

least the sum of the max-min utilities minus a quickly vanishing

term O(1/T) and the theorem follows. □

5 EXAMPLES
To illustrate our theoretical findings, we analyze the replicator dy-

namics (14) of two classes multidimensional binary, cyclic games,

which exhibit non-convergence, and therefore non-trivial limit be-

havior. The goal of the examples is to show that all possible limit

sets indicated in the Poincaré-Bendixson property, i.e. an equilib-

rium, a periodic solution and a cycle of connecting solutions are

attainable for systems satisfying our assumptions. In addition, we

plot the social welfare of simulated trajectories, relating them to

the results of Theorem 5. Finally, we provide a counterexample;

a three-dimensional replicator system which violates the assump-

tions of our theorems, and exhibits chaos. To determine the limit

sets, we perform numerical integration of initial value problems

for various starting conditions, via the lsoda differential equation
integrator [26].

5.1 Matched-mismatched pennies game
Firstly, we analyze a four dimensional system ofmatched-mismatched

pennies. Each player has a choice of two strategies, 𝛼0 and 𝛼1. The

payoffs for players 0, 2 are given by

𝐴3,0 = 𝐴1,2 =

[
−1 1

1 −1

]
(29)

and the payoffs of players 1, 3 are given by

𝐴0,1 = 𝐴2,3 =

[
1 −1
−1 1

]
. (30)

Simply put, players 0 and 2 will try to mismatch the strategy with

players 1 and 3, and players 1 and 3 will try to match them.

The system possesses three Nash equilibria, corresponding to the

following strategy profiles: (0, 0, 1, 1), (1, 1, 0, 0), (0.5, 0.5, 0.5, 0.5),

Figure 2: Limit sets in thematched-mismatched pennies sys-
tem: an orbit converging to an equilibrium (left) and an orbit
converging to a limit cycle (right).

out of which the pure Nash equilibria are attracting, and the mixed

Nash equilibrium has two center directions, one repelling direction,

and one attracting direction. We will denote the mixed Nash by

𝑥𝑀𝑁𝐸
. Due to symmetry of the system, the plane {(𝑡, 𝑠, 𝑡, 𝑠), 𝑡, 𝑠 ∈

[0, 1]}. is invariant, and consists purely of periodic orbits, and forms

the center manifold to the mixed Nash equilibrium.

The numerical results are in line with Theorems 3, 4. The only

limit sets observed through numerical simulations, are the mixed

Nash equilibrium𝑥𝑀𝑁𝐸
itself (along a single-dimensional attracting

set), and the limit cycles around it, which also appear to be of saddle

nature and have a single attracting direction, see Figure 2. Most

crucially, more complicated behavior like chaos or invariant tori

does not emerge, despite the system being nontrivially embedded

in four dimensions.

The mixed Nash yields the minimax payoff vector (0, 0, 0, 0)
for each player, and the social welfare of 0. The payoff matrices

satisfy the assumptions of Theorem 5, and the average payoffs along

solutions are therefore at least non-negative. In fact, almost all (a

set of full measure) initial conditions appear to converge to the pure

equilibria at the boundary, their time-average payoffs exceeding

the one of Nash equilibrium, and converge to the maximal welfare

of 4, see Figure 3.

5.2 Asymmetric N-pennies game
Our second system is a system of 𝑁 -player asymmetric mismatched

pennies, previously introduced in [32]. There are three players, and

again each of them can choose between two strategies, 𝛼0 and 𝛼1.

The payoffs for players 𝑖 w.r.to the player 𝑖 − 1 are given by the

matrix

𝐴𝑖−1,𝑖 =
[
0 1

𝑝 0

]
. (31)

with 𝑝 > 0.

For odd 𝑁 there is no Nash equilibrium in pure strategies. In

the replicator system, the pure strategy profiles are saddle-type

stationary points of the ODE, linked by connecting orbits of mixed

strategies. The system has a unique, mixedNash equilibrium defined

by 𝑥𝑖 =
1

𝑝+1 , 𝑖 ∈ {1, . . . , 𝑁 }, where each player attains a payoff of

𝑝
𝑝+1 .

The system was thoroughly analyzed in [32], and the main result

shown therein was that for 𝑁 = 3 and 𝑝 > 7 all mixed strategies



Figure 3: Time-average payoffs and social welfare of a sam-
ple learning trajectory in the matched-mismatched pennies
game (top), and in the asymmetric 5-pennies gamewith 𝑝 = 3

(bottom, projection onto first three variables).

except for the diagonal converge to a sequence of orbits connecting

boundary stationary points. Moreover, the social welfare attained

close to the boundary exceeds the social welfare at the Nash equi-

librium. We extend these results. From Theorem 3 we deduce that

for all 𝑁 , and for all 𝑝 ≠ −1, the only limit sets in the interior are

equilibria, periodic orbits, and cycles of connecting orbits to equi-

libria. The payoff matrices satisfy the assumptions of Theorem 5,

and in particular for all 𝑝 > 0, the mixed equilibrium yields the

minimax payoff for each player, and time averages of payoffs along

other orbits have to exceed the minimax payoffs. We observe that

for almost all initial conditions the dynamics is attracted to the

boundary cycle of average payoff (𝑝 + 1) 𝑁−1
2

(e.g. Figure 3), and

indeed no chaotic emergent behavior is apparent.

5.3 A chaotic polymatrix replicator
Our last system serves as a counterexample; it shows that even in

a binary 3-player game, but without structured interactions (i.e.

no cyclicity, all possible connections in the game graph), learning

trajectories of replicator dynamics can approach complex chaotic

limit sets. The payoff matrices are given by

𝐴1,1 =

[
𝜇 14

0 0

]
, 𝐴2,1 = −𝐴1,2 =

[
−10 10

0 0

]
,

𝐴3,1 = 𝐴3,2 = 𝐴3,3 = −𝐴2,2 =

[
−2 2

0 0

]
,

𝐴1,3 =

[
−25 29

0 0

]
, 𝐴2,3 =

[
0 −11
0 0

]
.

(32)

Figure 4: A learning trajectory approaching a chaotic attrac-
tor in the polymatrix replicator [44] (left) and a plot of val-
ues of its coordinates (right). The game is characterized by
unstructured interactions between payoffs, and therefore
breaks the assumptions of Theorems 3, 4.

After some transformations (for details, see [44]), we arrive at

the following one-parameter system of differential equations

¤𝑥0 = 𝑥0 (1 − 𝑥0) (12 − 𝜇 + (𝜇 − 14)𝑥0 − 20𝑥1 − 4𝑥2),
¤𝑥1 = 𝑥1 (1 − 𝑥1) (−10 + 20𝑥0 + 4𝑥1 − 4𝑥2),
¤𝑥2 = 𝑥2 (1 − 𝑥2) (27 − 54𝑥0 + 11𝑥1 − 4𝑥2),

(33)

where 𝑥𝑖 represents the probability player 𝑖 plays strategy 𝛼0, and

1 − 𝑥𝑖 is the probability it plays 𝛼1.

This system was recently introduced by Peixe and Rodrigues

in [44], where it was formally shown, by a combination of theo-

retical and numerical results, that the system contains a persis-

tent strange (chaotic) attractor for a range of parameter values

𝜇 ∈ [1.4645, 9.5055]. We replicate their findings, by integrating a

sample trajectory and observing its approach to the chaotic attrac-

tor for 𝜇 = 2.8, see Figure 4. Due to lack of cyclicity, the game does

not enjoy guarantees on payoff structure given by Theorem 5.

6 CONCLUSIONS
Numerous recent results in learning in games have established a

clear separation between the idealized behavior of equilibration

and the erratic, unpredictable and typically chaotic behavior of

learning dynamics even in simple games and domains. Although

at a first glance, this realization might seem as a set-back, when

viewed from the right perspective it opens up a new way of under-

standing learning dynamics, by examining solution concepts from

the topology of dynamical systems. Our results showcase the pos-

sibility of establishing links between the topological-combinatorial

structure of multi-agent games (e.g. game graph, number of ac-

tions) to understand and constrain the topological complexity of

game dynamics (Poincaré-Bendixson property), and finally link

back to more traditional game theoretic analysis such as calculating

the efficiency of the system via social welfare. These connections

showcase promising advantages of this approach, and we hope to

encourage more work along these lines.
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