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Abstract

The schedule of the operations in a large hospital is performed jointly by several groups of people,
each with its objective and its constraints. It is a two-phase process, starting with the allocation
of operating rooms to wards, followed by the scheduling of operations in each operating room of
the hospital at each day. The final schedule must satisfy all inter ward hard constraints, such as
the allocation of anesthetists, nurses, and equipment to operations that are taking place in parallel,
and preferably address soft constraints such as taking urgency and complexity of operations under
consideration.

Besides the assignment of the operation request and surgeons to a time-slot in an operation
room, the final daily schedule involves the assignment of anesthetists, nurses, and required equip-
ment. All of these are shared resources among all the surgical wards.

We contribute to the ongoing effort of adapting multi-agent optimization models and algorithms
to real world applications by modelling the problems in both phases as distributed constraint opti-
mization problems (DCOPs), with different properties. The first, includes partial cooperative agents
representing wards, allocating operating rooms for daily usage among themselves. In the second,
ward representing agents interact with agents representing constraining elements, in order to gen-
erate daily operation schedules for each operating room, thus forming a unique bipartite constraint
graph. On one side are the wards representatives, while on the other are the constraining resource
representative agents. Each agent has a non-trivial local problem to resolve, and its solution serves
as the proposed assignment in the distributed algorithm.

We discuss the properties required from the solving algorithms of the two phases, adjust exist-
ing distributed partial cooperative and local search algorithms to solve these problems, and compare
algorithms implementing different approaches. Our results in both phases emphasize that success-
ful collaboration requires that agents hold consistent information regarding their peers’ states and
that the degree of exploration the algorithm implements must be restricted in order to produce high
quality solutions.

Keywords: Distributed Constraint Optimization, Multi-Agent System, Multi-Agent Applications,
Operating-Room Scheduling, Distributed Local Search Algorithms

1. Introduction

For many years, the ongoing study and development of multi agent optimization models and
algorithms considered abstract random problems such as random uniform constraint graphs, graph
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coloring and scale-free networks. Researchers in this community emphasized the importance of
identifying practical applications in which it is essential to apply such models and algorithms many
times in the last two decades. The emerge of IoT-related research has produced a set of relevant ap-
plications in which devices interact, and therefore, distributed models and algorithms are adequate
for solving them [12, 41]. Yet, much of the distributed problem-solving motivation has been the
human interests, represented by the system’s agents, such as privacy and cooperation intentions.
Thus, practical applications that include human representing agents are still uncommon, and the
introduction of such applications, is a significant relevant challenge. Many real-world scheduling
problems include conflicting interests between interdependent entities. An intuitive example is the
scheduling of activities that require a limited set of resources. Solving such problems requires the
interaction of autonomous entities (agents), each with its objective and its constraints. The goal
is that the final schedule will satisfy the hard inter-group constraints and take into consideration
soft constraints as well. Some examples are the scheduling of dentist appointments, automobile
fixing, job interviews, and hospital operating room scheduling. It’s notable that all of these have
a similar combination of properties that include a level of urgency, the requirement of experts and
equipment, and a room or venue for the scheduled process to take place. Such applications have a
natural distributed structure, in which each autonomous entity participating in the schedule has its
requirements for optimizing its performance and private preferences and constraints.

The last scenario mentioned above, the scheduling of operations in a large hospital, will be the
focus of this study. A large hospital can have several operating theatres, each with ten or more op-
erating rooms. Teams of operating rooms have multiple professionals, each of which is scheduled.
In addition to surgeons, teams include nurses, anesthetists, technicians, and more. Furthermore,
operations over a single day are performed by multiple doctors belonging to numerous wards and
performed on patients who need to be prepared correctly for the operation at hand [26]. Since
operating theatres, their teams, the operating doctors, and the patients are involved in a crucial and
very costly part of a hospital’s activity, computerized and efficient management can have a signif-
icant impact [1]. However, the procedure of scheduling the time of all operations performed is a
complicated and time-consuming process, not to mention cumbersome (and discouraging) for all
team members involved.

Several separate groups of professionals are involved in the construction and management of
the assignment of time and date and room to all operation requests. While all of these groups aim
to achieve a common global goal, each has different constraints and preferences, and even different
sub-goals and objectives that they aim to accomplish. Additionally, there are multiple wards, each
managing its schedule of operations in the rooms per date allocated to it. Each ward has preferences
regarding the days and the rooms in which its operations will take place [27]. After receiving the
allocation of operation rooms at specific dates, a ward needs to assign the operation requests of its
patients to the operating rooms allocated to it in specific dates and determine the daily schedule in
each operating room. Daily schedules must be coordinated with schedules of other rooms such that
inter constraints (i.e., the availability of specially required equipment, skilled anesthetists, etc.) are
satisfied [51].

We separate the discussion to the two phases which must be performed in order for operations
to be executed [15]. The first is the allocation of operating rooms to wards per day. Different wards
in the hospital have different needs for operating rooms. Each room at each day, is allocated solely
to a single ward. Constraints define which room can be used for which type of operation, the level
of concurrency in which wards can perform operations, the preferences of each ward regarding the
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rooms to be allocated and days of the week, and the cardinal needs for operation rooms for each
ward [3].

The second is the generation of daily schedules of operations by wards, to each room per
date that was allocated to them. As mentioned above, the daily schedule of each operation room
must take into consideration the available resources required for the operations performed, such
as nurses, anesthetists, equipment, etc. These aspects produce a natural multi-agent problem in
which the ward representing agents need to coordinate their decisions with the representatives of
the constraining and shared elements. Each ward determines the daily schedule for a specific date
in each operating room allocated to it on that date. The assignments of all elements that participate
in the operations are considered. The resulting multi-agent optimization problem takes the form
of a bipartite graph. On one side of the graph are the ward agents (WR), each representing a hos-
pital ward. On the other side are the agents representing the constraining elements (CE), the head
nurse, the anesthetist’s ward, and the equipment agent (there can be others such as technicians or
unlicensed assistive personnel representatives as well). Hence, agents performing this process must
consider both the internal ward and medical constraints, such as the urgency of the operation and
the availability of surgeons. In addition, all inter ward constraints and management preferences
need to be considered, such as the required equipment and personal availability [6].

The final daily schedule involves the assignment of operation requests, surgeons and required
critical equipment to time-slots and operating rooms. Even though the participants are all au-
tonomous entities, they all belong to the same hospital. Thus, they share common goals, such as
the reputation and financial success of the hospital.

Multi-agent optimization scenarios are commonly represented as distributed constraint opti-
mization problems (DCOP) [32, 36, 39, 48, 53, 8]. When agents value the possible outcomes differ-
ently for these multi agent problems (have different constraints), the adequate model for represent-
ing the problems is the asymmetric distributed constraint optimization problem (ADCOP) [20, 7].
The problems at the focus of this study are indeed asymmetric. In the room per day allocation
problem, different wards have different needs and obviously have different valuations on differ-
ent allocations. Moreover, since all wards are part of the same hospital, they have incentives for
other wards to succeed as well, thus, in this scenario agents representing wards are partial coopera-
tive [22, 49]. In the inter ward daily schedule problem, the agents representing the constraining ele-
ments (e.g., nurses, anesthetics, technicians, etc.) and the underlying communication and constraint
graph structure are unique. Different wards have different preferences, and the representatives of
the constraining elements have their own interests.

ADCOPs are known to be NP-hard, and thus, the enormous size of the problem at hand rules
out complete ADCOP algorithms. Consequently, the study proposes ADCOP-based models for
representing the problems and distributed incomplete local search algorithms for solving them.
More specifically, in this paper we advance the research on realistic implementations of multi-agent
optimization models and algorithms by:

1. Proposing an extension of the socially motivated partial cooperative model (proposed in [49]),
specific for periodic indivisible resource allocation, which applies to the allocation of oper-
ating rooms per date to wards in a large hospital.

2. Proposing a bipartite distributed constraint optimization model. The model is an extension
of ADCOP for representing problems that include agents that attempt to schedule elements
constrained by the availability of resources. These resources are in control of other agents.
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All agents seek to reach a schedule that does not violate hard constraints and maximizes the
utility expressed by soft constraints. Each scheduled operation includes the assignment of all
elements involved. This model applies to the problem of scheduling operations in operation
rooms allocated to wards on specific dates.

3. Proposing adjustments of distributed local search algorithms for solving the two models that
represent the resource allocation and the scheduling problems, in which agents solve their
local problem using a centralized heuristic (e.g., Simulated Annealing) and exchange assign-
ments with their neighbors to resolve inter constraints.

4. Present experimental results that demonstrate the compatibility of the proposed algorithms
for solving the real-world problem described above.

Our empirical results demonstrate the importance of shared preferences, when agents are par-
tially cooperative. Ignorance may lead to altruistic decisions, which hurt the altruist agents more
than they benefit their neighbors. On the other hand, exchanged indications regarding the prefer-
ences of agents on their neighbors’ actions trigger high-quality solutions. Furthermore, the results
on the daily operation scheduling indicate the importance of using means for stability and incre-
mental improvement of interim solutions. They reveal that a limited level of exploration is required
in order to achieve solutions with high quality. This exploration level can be achieved by a limited
number of revisions in each algorithm iteration or by penalizing schedule revisions, such that only
modifications with high benefits are performed.

The rest of this work is organized as follows: Section 2 presents the background regarding
operating room planning and scheduling, distributed artificial intelligence, multi-agent systems,
distributed constraint optimization problems (DCOPs), asymmetric DCOPs, algorithms for solving
DCOP, and centralized local search algorithms. Next, models for representing the problems in the
two phases are formalized in Section 3. Then, the algorithms description is presented in Section 4.
Finally, Section 5 presents our experimental evaluations, followed by our conclusion in Section 6.

2. Background

In this section we provide background on operation scheduling, on distributed optimization
problems and on local search algorithms for solving them.

2.1. Operating Room Planning and Scheduling
The directorial view of supplying health services to patients in hospitals is becoming progressively
more crucial. Hospitals want to decrease costs and improve the utilization level on one hand, while
maximizing the level of patient contentment on the other. The operating theatre is the hospital’s
main cost and revenue center [10] and has a significant influence on the hospital’s performance.
However, operating theatre management is challenging due to the lack of expensive resources and
the participants’ conflicting priorities and preferences. These emphasize the need for productivity
and require the development of sufficient planning and scheduling procedures.

Advanced scheduling is the method of setting up a surgery date for a patient. Allocation
scheduling on the other hand, defines the operating room and the starting time of the surgery on the
day that the surgery was assigned to [28]. [37] arranges the literature on operating room schedul-
ing based on broad areas of interest, such as cost control or the scheduling of specific resources.
Two main patient groups are considered in the literature with respect to operating room scheduling:
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elective and non-elective patients. The first group includes patients whose surgery can be scheduled
in advance, and the second, patients that must be urgently and unexpectedly operated [6].

Former studies on surgery scheduling problems can be separated into two branches. First, the
single operating room (OR) scheduling problems aim to define the start times for a set of surgeries
in an OR on a given day [9, 46, 47]. Second, multiple ORs scheduling problems (including this
study) [2, 24], that consider the scheduling of parallel surgeries in various ORs.

Distinct methods have been used to solve the surgery scheduling problems. These methods can
be divided into four categories: queuing models, simulation methods, optimization methods, and
heuristic methods [6, 11, 14]. Queuing models are typically used to solve single OR scheduling
problems. Simulations can be used to evaluate several scheduling heuristics and are adjustable
to model ambiguity during surgery scheduling. Concerning the optimization methods, most re-
searchers used deterministic/stochastic integer programming/mixed-integer programming models
and algorithms. Aside from exact methods, some heuristics have been applied, such as Simulated
Annealing, Tabu search, and genetic algorithms. In addition, some centralized Constraint Program-
ming (CP) approaches have been proposed for solving the surgical schedule problem [51]. All of
the above require the centralization of all the problems constraints and preferences to a single entity
that solves the problem, in contrast to our approach.

2.2. Distributed Artificial Intelligence and Multi-Agent Systems
Many real-world problems are distributed by nature. An interaction between autonomous entities
is commonly defined by the influence of an entity on other entities’ decisions and actions [4]. Such
an entity is commonly referred to as an agent. An agent can be a physical or virtual autonomous
entity that can act, perceive its environment (sometimes in a partial way), communicate with others,
and has skills to achieve its goal and tendencies [16, 40]. A significant focus in distributed artificial
intelligence (DAI) is given to the coordination between multiple autonomous agents. This coordi-
nation is described by the interaction between behaviors, knowledge, goals, skills, and programs of
agents [4].

A particular environment in which a number of agents interact in order to pursue some set of
goals or perform some set of tasks is also known as a Multi-agent System (MAS). MAS contain an
environment, objects, agents (the agents being the only ones to act), and interactions between all
entities. The agent is an autonomous entity, virtual or real, that perceives the environment. Each
agent has a set of skills that allow it to execute actions in order to accomplish its goals [16]. From
the point of view of a system’s agent, the environment is dynamic; it changes according to the
activity of other systems’ agents. Systems in which several agents use interaction to maximize
utility and jointly solve tasks are called Cooperative MAS [4, 45].

2.3. Distributed Constraint Optimization
Distributed Constraint Optimization Problem (DCOP) is a framework used to characterize combi-
natorial optimization problems that are distributed by nature and include constraints. DCOPs can
represent real-life problems that cannot be resolved in a centralized way for reasons such as au-
tonomous decisions of the agents, user’s privacy, and infeasibility of centralization. They usually
involve many interdependent agents, can be represented by a graphical model, and solved using
message passing algorithms. DCOPs have a broad range of applications in MAS [33]. They con-
stitute a scientific challenge because they require the cooperation of various agents (only aware of
a minor component of the problem) to obtain global solutions [21].
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A DCOP includes a set of agents, each holding at least one variable and a set of functions/constraints.
Values assigned to the variables that agents hold are taken from finite, discrete domains. The agents
interact via messages to coordinate the selection of values for their variables aiming to optimize a
given global function, which is commonly to minimize/maximize the sum of costs/utilities of the
set of constraints between variables. Constraints among variables that are possibly held by distinct
agents, define the costs incurred or utilities derived from combinations of value assignments.

The following formal description of a DCOP is consistent with the definitions in many DCOP
studies, e.g., [32]. A DCOP is a tuple 〈A,X ,D,R〉. A is a finite set of agents {A1, A2, . . . , An}. X
is a finite set of variables {x1, x2, . . . , xm}. A common assumption in DCOP is that every variable
is held by a single agent. ,D is a set of domains {D1, D2, . . . , Dm}. Each domain Di contains
the finite set of values that can be assigned to the variable xi. An assignment of value d ∈ Di

to xi is denoted by an ordered pair 〈xi, d〉. R is a set of relations (constraints). Each constraint
C ∈ R defines a nonnegative cost for every possible value combination of a set of variables and is
of the form C : Di1 × Di2 × . . . × Dik → R+ ∪ {0}. A binary constraint refers to precisely two
variables and is of the form Cij : Di × Dj → R+ ∪ {0}. A binary DCOP is a DCOP in which
all constraints are binary. A partial assignment (PA) is a set of value assignments to variables,
in which each variable appears at most once. vars(PA) is the set of all variables that appear in
PA. A constraint C ∈ R of the form C : Di1 × Di2 × . . . × Dik → R+ ∪ {0} applies to PA if
xi1 , xi2 , . . . , xik ∈ vars(PA). The cost of a PA is the sum of all applicable constraints to PA over
the assignments in PA. A complete assignment (or a solution) is a partial assignment that includes
all the DCOP’s variables (vars(PA) = X). An optimal solution is a complete assignment with
minimal cost.

DCOP can be used to characterize a wide variety of multiagent systems in which agents need
to cooperate to attain a common goal. Some examples of these applications are Automatic meeting
scheduling by intelligent calendars, Mobile sensor nets, IoT applications such as electronic device
operation scheduling in smart homes, and resource allocations [17, 20, 30].

2.4. Asymmetric DCOP
In a DCOP, the costs incurred by all of the agents involved in each constraint are equal. Therefore,
the DCOP definition cannot correctly characterize real life problems in which agents value the
outcomes of decisions differently [20]. For instance, in meeting scheduling problems, agents might
have separate valuations for the meeting they were summoned to, a scenario that cannot be captured
by the standard DCOP model [54].

Asymmetric DCOP (ADCOP) was introduced by [20]; the new expanded framework allows
each agent to hold its own valuated cost for each constraint it is involved in. ADCOPs generalize
DCOPs by explicitly defining for each combination of assignments of constrained agents the exact
cost for each participant in the constraint [20]. Combination of value assignments are mapped to a
tuple of costs, one for each constrained agent, and each agent holds only its part of the constraint.

Formally, an ADCOP is defined by a tuple 〈A,X ,D,R〉. Where A,X , and D are defined the
same as in DCOP. Each constraint C ∈ R of an asymmetric DCOP defines a set on nonnegative
costs for every possible value combination of a set of variables and takes the following form C :
Di1 ×Di2 × . . .×Dik → Rk

+ ∪ {0}. Rk
+ is a vector that contains for each agent Aj; 1 6 j 6 k its

cost for each combination of value assignments. This way, each agent Aj; 1 6 j 6 k holds its part
of the constraint Cj, Cj : Di1×Di2× . . .× . . .Dik → R+∪{0} such that its privacy is maintained.
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As in DCOP, an optimal solution to an ADCOP is a complete assignment to all variables with a
minimal sum of all agent costs.

2.5. Algorithms for Solving DCOPs
In multiagent optimization algorithms, intelligent agents interact with one another by exchanging
messages and sharing information concerning the problem to achieve a particular goal. While
centralized solutions (in which all agents send their information to one agent, which computes
the results and returns a solution) may be more efficient, problem requirements might include the
necessity to be solved in a distributed way. Many of these problems are distributed by nature, imply
physical restrictions, or have privacy requirements that prevent centralized problem solving [17, 19,
53].

2.5.1. Complete and Incomplete Algorithms
Solving methods can be roughly divided to two sets. The first is complete methods, which are
guaranteed to find an optimal solution if one exists. In practice, since DCOPs are NP-hard [32],
complete algorithms can solve many exciting problems within a reasonable amount of time, despite
their discouraging worst-case guarantees. A significant obstacle for these algorithms is that it can
be challenging to anticipate the time required for such algorithms to solve novel problem instances
[43].

Researchers propose several complete algorithms for solving DCOPs. However, as mentioned
above, DCOPs are known to be NP-Hard (with exponential worst time complexity in the number
of variables). Therefore, these algorithms have restricted effective use, especially with practical
applications which primarily involve significant problems with a large set of variables. Thus, there
is a great incentive in developing incomplete algorithms [13, 34, 50].

Incomplete methods are not guaranteed to find optimal solutions but run quickly and efficiently
enough to be applied to the mentioned realistic problems [43]. These algorithms can be divided
into two major groups: inference algorithms and distributed search algorithms.

Inference algorithms (DPOP, Max-Sum, etc.) are based on the propagation of information
provided by agents from the entire system. The given information is the foundation for beliefs
maintained by the agents about the best cost that can be achieved. Belief propagation implies
calculating beliefs based on each new data’s influence concerning the constraints’ costs. The beliefs
are propagated through the graph via message-passing between neighboring variables [35].

Search algorithms (DSA, MGM, etc.) traverse the solution space by generating a complete
assignment and performing local assignment replacements to improve it. First, agents select value
assignments and share them with each other. Then, the solution is improved iteratively, applying
search strategies to discover (hopefully) better assignments [21, 31, 50, 53]. The general design
of most state-of-the-art local search algorithms for DCOPs is synchronous [23]. In each algorithm
step (or iteration), an agent sends its assignment to all its constraint graph neighbors and receives all
the neighbors’ assignments. They vary in the approach agents use to determine whether to change
their current value assignments to their variables [53].

Anytime algorithms hold the best assignment that is found throughout the search. In these al-
gorithms, the anytime feature ensures that the solution’s value remains the same or improves if
more steps of the algorithm are performed. This property cannot be assured easily in distributed
environments. In these environments, agents are only aware of the cost of their own assignment
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(and maybe that of their neighbors, too), but no one knows when an excellent global solution is ob-
tained. A general framework that enhances distributed local search algorithms for DCOPs with the
anytime property was proposed by [53]. The suggested framework uses a BFS-tree to accumulate
the costs of the system’s state during the algorithm’s iterative performance and to propagate the
detection of the best new state when found. The proposed framework does not involve additional
network load.

2.5.2. Non-Concurrent Atomic Operations
Evaluating the runtime performance of distributed algorithms is not trivial. Agents may be per-
forming on machines with different hardware, the implementation quality may affect the runtime
as well and some of the agents’ actions can be performed concurrently, while others cannot. There-
fore, there is a need to establish which of the operations performed by agents could not have been
performed concurrently in order to detect the sequence of implementation independent actions
performed by agents. This sequence constitutes an implementation independent performance mea-
sure of distributed algorithms in a distributed environment. Thus, the run-time performance of
the algorithm is the most extended non-concurrent sequence of operations that the algorithm per-
forms. [52] suggested a uniform method for measuring and comparing their performance. The
performance measure allows an evaluation of the different DCOP algorithms on a consistent scale.
The straightforward concept is to measure the most extended sequence of non-concurrent atomic
operations (NCLO) [33] (e.g., constraint check). This approach is the one we adopt in this study
since we evaluate the quality of the solutions of the algorithms as a function of the asynchronous
advancement of the algorithm when agents perform computation concurrently.

2.5.3. Distributed Stochastic Algorithm
The Distributes Stochastic Algorithm (DSA) is a simple distributed local search algorithm in which
following a primary step in which agents choose a starting value for their variable (randomly),
agents perform a series of steps (loops iteratively) until some termination condition is met. In every
step, an agent sends its value assignment to its neighbors in the constraint graph and collects the
value assignments of its neighbors. Once collecting the value assignments of all its neighbors, an
agent decides whether to keep its value assignment or to modify it. This decision has a significant
effect on the performance of the algorithm. If an agent in DSA cannot upgrade its current state by
substituting its present value, it does not replace it. On the other hand, if it can improve (or keep
the exact cost, depending on the version used), it determines whether to replace the values using a
stochastic strategy.

2.6. Partial Cooperation
In contrast to early studies of ADCOPs, which assumed full cooperation by the agents [5, 21],

partial cooperation models represent agents that cooperate only under some conditions. The level of
cooperation (which is represented by λ) determines the reference point according to which agents
intentions are modeled. In order to allow the agents to consider solutions with high global quality,
which may reduce their personal utility, the parameter λ bounds the losses that an agent is willing
to undertake in order to contribute to the global objective, i.e., agents perform actions only if they
do not result in a cost that exceeds the maximum cost they are willing to endure. Formally, the
following parameters are used by the model:

9



Algorithm 1 AGC
input: baseLineAssignmenti, baseLineCosti, λi and

value← baseLineAssignmenti;
µi ← baseLineCosti;
localV iew ← null;
send(value) to N(i);
while stop condition not met do
PHASE 1:
Collect all value messages and update localV iew
〈vali, gaini〉 ← improvingAssignment();
send(〈vali, gaini〉) to N(i);

PHASE 2:
Collect all 〈valj, gainj〉 messages;
aj ← agent in N(i) ∪ Ai with maximal socialGain s.t.

ci(localV iew including received valj) ≤ µi · (1 + λi);
send(Neg!) to N(i) \ aj;

PHASE 3:
Collect Neg! messages;
if did not receive Neg! & can improve then
value← vali;

send(value) to N(i);

Definition 1. Denote by µi the base-line cost of agent Ai (i.e., the cost for agent Ai that she
assumes she will pay if she acts selfishly).

Definition 2. The cooperation intention parameter λi ≥ 0 defines the maximal increase in the
value of µi that is acceptable by agent Ai.

These cooperation bounds can significantly decrease the number of feasible outcomes for a
distributed incomplete algorithm, as can be seen in the next definition.

Definition 3. A feasible outcome for a distributed algorithm is defined to be any outcome (solu-
tion) o in the set of all possible outcomes O, that satisfies the following condition.

Ofeasible = {o ∈ O | ∀Ai ∈ A, ci(o) ≤ µi · (1 + λi)}

Where ci(o) is the cost for agent Ai in outcome o

2.7. Partial Cooperative Local Search
The Asymmetric Gain Coordination (AGC) algorithm, guarantees that the personal cost of an

agent does not exceed the predefined cooperative intention limit, while constantly seeking glob-
ally improving solutions. Agents executing this algorithm exploit possible improvements until they
converge to some local optimum, which cannot be further improved without breaching the coop-
eration bound of one of the agents. Before replacing a value assignment, an agent requests her
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Algorithm 2 SM AGC
input: baseLineAssignmenti, baseLineCosti, λi and Ωi

value← baseLineAssignmenti;
µi ← baseLineCosti;
localV iew ← null;
send(value) to N(i);
while stop condition not met do
PHASE 1:
Collect all value messages and update localV iew
for each Aj ∈ N(i) do
πi,j ← preferences(Aj);
send(πi,j) to Aj;

PHASE 2:
Collect all π messages;
Πi← πj∈N(i) ∪ preferences(Ai);
alterV ali ← socialImprovingAssignment(Πi,Ωi);
send(alterV ali, socialGaini) to N(i);

PHASE 3:
Collect all 〈alterV alj, socialGainj〉 messages;
aj ← agent in N(i) ∪ Ai with maximal socialGain s.t.

ci(vj ← alterV alj|St) ≤ µi · (1 + λi);
send(Neg!) to N(i) \ aj;

PHASE 4:
Collect Neg! messages;
if did not receive Neg! & can improve then
value← alterV ali;

send(value) to N(i);

neighbors’ approval, which is given only if this value assignment replacement does not cause a
breach of the cooperative bound for the neighbor. Only if all neighbors approve, the agent replaces
her value assignment.

The pseudo-code for the AGC algorithm is presented in Algorithm 1. It emphasizes the three
phases that constitute each step of the algorithm. The algorithm begins after agents computed a
baseline assignment by performing a simple non cooperative interaction between them. Thus, the
agent can select her baseline value assignment and use the baseline cost as a reference point. After
exchanging their value assignments the agents loop over the three phases of the algorithm until a
termination condition is met, e.g., a predefined number of iterations. In the first phase, each agent
selects an action (an assignment replacement) that maximizes her gain, and sends a suggestion to
perform it, along with its expected gain from this action, to her neighbors. In the second, agents
receiving the suggested actions of their neighbors, approve one of them that does not cause a
damage that they are not willing to endure, and send Neg! messages to the rest. In the third phase,
agents that did not get a Neg! message from their neighbors, perform the assignment replacement
they have proposed.
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2.8. Socially-Motivated Local Search
In the AGC algorithm described above, agents cooperate by approving or rejecting assignment

replacements suggested by their neighbors, and thus, preserve a level of personal utility that is
acceptable to them. In order to allow agents to exploit the cooperative intentions of their neigh-
boring agents, and so to improve the solution’s quality, an approach towards partial cooperative
local search, in which agents take an extra step in the interaction process before selecting an as-
signment, was proposed in [49]. In this additional stage, agents share with their neighbors some
information regarding their preferences over their assignment selection, i.e., an indication of the an-
ticipated benefits (or costs) should the neighbors decide to change their current value assignment.
After exchanging this information, agents attempt to find an alternative value assignment, taking
into consideration their own preferences as well as the indications received from their neighbors.
This approach was combined with the AGC algorithm, resulting in the Socially Motivated (SM)
AGC [49].

Algorithm 2 includes the pseudo code of SM AGC. Like the original AGC version, the algo-
rithm begins after agents computed a baseline assignment and use the baseline cost as a reference
point. Similar to AGC, after exchanging their value assignments the agents loop over the four
phases of the algorithm until a termination condition is met.

In Phase 1, each agent, after receiving the value assignments from her neighbors, sends to each
of them an indication regarding her preferences on their value assignment selection. In Phase 2,
after receiving preferences indications, each agent attempts to find an alternative social improving
value assignment, i.e., selects a value while taking into consideration her own preferences and the
indications regarding the neighbors’ preferences 1. After selecting the alternative value, the agent
sends it to her neighbors along with the the calculated expected social gain. Phases 3 and 4 are
identical to phases 2 and 3 in AGC.

The DSA algorithm is uniform, i.e., it does not use agents’ identities. It is also synchronous; in
each iteration of the algorithm agents send messages to all their neighbors and wait to receive the
messages sent to them before advancing to the next iteration [50].

2.8.1. Simulated Annealing
Simulated Annealing (SA) is a local search algorithm that uses an analogy to statistical mechanics
in order to balance between exploration and exploitation. In metallurgy, annealing is the procedure
used to soften harden metals by heating them to a high temperature and then gradually cooling
them, allowing the material to arrive at a low energy crystalline state. SA exploits the idea of
annealing to find the bottom cost solutions for combinatorial optimization problems [25].

SA is a state-of-the-art meta-heuristic for assessing global optimization in a sizable domain [44].
The algorithm accepts occasional transitions leading to more pricey solutions, but it avoids getting
trapped in local optima. The interpretation of the gradual cooling of metal is translated in the algo-
rithm as a gradual decrease in the probability of accepting worse solutions as it explores the solution
space. Obtaining worse solutions is an essential property of meta-heuristics because it allows for a
broader search for the optimal solution (explores the solution space).

At the beginning of the search, the algorithm explores the search space widely; therefore, the
probability for accepting a negative transition is high. As the search continues, the changes are

1Ω is used for assessing the weights of the preferences of neighbors. For more details see [49]
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restricted to local improvements and optimizations. The cooling schedule can be regulated by the
initial system temperature, the temperature decrement function, and the number of iterations in
between [44].

3. Problems Formalization

In this section we present a model for representing each of the problems at hand, followed by their
implementation as an ADCOP.

3.1. Operating Room per Date Allocation to Wards
An operating room per date allocation (ORDA) problem is composed of: A set of n wards W =
{W1,W2, ...,Wn} and a set of m pairs of the form 〈room, date〉, RD = {RD1, RD2, ..., RDm}.
The atomic time unit in which a resource can be allocated in this problem is a day and the number
of days in which we allocate rooms (the time horizon H) is finite. Each room date pair RDj is
assigned solely to one of the wards Wi ∈ W . Thus, an allocation of a room at some date to a ward
is a pair 〈Wi, RDj〉. A complete allocation CA is a set of exactly m allocation pairs, such that,
each of the room date pairs RDj (1 ≤ j ≤ m) is included exactly once in these pairs.

Each ward Wi has a cardinal constraint CCi that defines the utility it derives with respect to the
number of RDs it received in the specified time interval, and two bounds. A lower bound defines
the minimal amount of RDs required in the time interval (LBi), and an upper bound that defines
the maximal number of RDs the ward can use (UBi). These bounds define a different utility/cost
scheme. An allocation that does not satisfy the lower bound incurs a high cost. It can be a fixed
cost or related to the amount of RDs allocated. The upper bound (UBi) defines the number of RDs
allocated to ward Wi such that if it is allocated an additional RD, there is no increment to its utility.

The utility that a ward Wi derives from a complete allocation CA is denoted by Ui(CA). The
global utility of CA is the sum of the personal utilities of the wards, U(CA) =

∑n
i=1 Ui(CA).

ORDA as an ADCOP: In order to represent an ORDA as an asymmetric DCOP, we define the
possible allocations of RDs to Wards in terms of variables held by agents and domains of values
that can be assigned to them. Furthermore, the utility calculation needs to be decomposed into
asymmetric constraints that agents (representing wards) can compute and aggregate. Agent Ai
representing ward Wi holds variables vi1 , vi2 , ...vik , where k is the maximal number of resources
that it may be allocated. The domains include all the relevant RDs.

The utility that an agent derives from an allocation, is defined by its personal constraints. We
denote by Ci the set of constraints of agent Ai. A constraint c ∈ Ci includes a set of q assignments,
q ≥ 1 and the utility the agent derives from this constraint, i.e., c = [〈Ai1 , RDj1〉, ..., 〈Aiq , RDjq〉, ui].
Personal preferences are represented by unary constraints. Cardinal constraints are also unary con-
straints, which include all the resources allocated to a single agent. The utility that agent Ai derives
from an allocation, Ui, is the sum of the utilities it derives from all the constraints it is involved in.

3.2. Operation Day Scheduling
The operation day scheduling (ODS) is a multi-agent optimization problem where each agent has
a complex local problem and includes inter agent constraints. The natural structure of this prob-
lem has agents representing wards (WRs) that need to schedule the operations in operation rooms
that were assigned to them on specific days, on one side, and agents representing coordinators of
constraining elements (CEs) on the other. The resulting structure is a bipartite graph.
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Formally the operation day schedule problem (ODSP) includes two sets of agents: WR, the
agents representing wards, and CE, agents representing constraining elements. The problem solved
by each wr ∈ WR is a tuple 〈S,RTG,R,Xs, Xσ, C〉. S = {S1, S2, ..., Sn} is the set of the ward’s
surgeons. RTG = {σ1, σ2, ..., σm} is the set of surgery requests that can be scheduled. R is a table
defining the availability of operating rooms to the ward, in the relevant dates. For example, ri,j
represents the allocation of room j to the ward on day i. Xs and Xσ are two sets of variables. Xs

includes variables that represent the assignment of surgeons to operations, e.g. the assignment of
Si to an operation o. The domain of a variable x ∈ Xs includes all surgeons that are available at the
specific day. Xσ consists of variables representing the allocation of an operation request (OR) to
an operation o that will take place at a room at that day. The value of 0 < o ≤ k is the position of
this operation in the order of the k operations that are scheduled to be performed in that room that
day. If o = 1 then the operation is the first to be held in that room that day. The domain of variable
x ∈ Xσ includes all the ward’s RTGs.

C is the set of constraints. It includes hard constraints, e.g., a constraint that prevents the same
surgeon from being allocated to two different operations simultaneously, and soft constraints that
represent surgeons’ preferences, the urgency of operation requests etc. The constraints also define
the utility derived from the assignment combination of a surgeon and the assignment of an operation
request. For example, if the surgeon cannot perform this type of surgery, the utility derived is −∞
and for valid capabilities the utility is positive.

The CE agents solve a standard COP problem, i.e., a problem that is a tuple 〈X,D,C〉, where
X is the set of variables, D is a set of domains for these variables and C is a set of constraints.
However, X has a unique structure, since the variables represent requirements in ordered operation
slots for all the operation rooms in the hospital. Thus, X is a n over k over r table, where n is the
hospital number of operating rooms, k is the maximal number of operations that can be performed
in a room in a single day, and r is the maximal number of units of the relevant element that can be
required in an operation. An entry in the table xi,o,r represents an assignment of the r’th element in
the o’th operation in room i on that day. The domains include all the available elements on a given
day, e.g., nurses or X-ray machines. For this assignment problem, hard constraints prevent invalid
assignments while soft constraints define the degree of suitability of the elements to the surgery
taking place and the preferences. In addition, constraints also represent priorities between wards
and among types of surgeries.2

The global utility for a complete assignment to this distributed allocation problem, as in stan-
dard (ADCOP), is the sum of utilities of all agents.

4. Local Search Algorithms

In this section we present distributed incomplete local search algorithms for solving the problems
we model above. While we use distributed local search to solve the problems, the two models
require the design of algorithms that implement different solution approaches. In the first, agents
need to balance between the requirements of the wards they represent and the global good of the
hospital they are a part of. Thus, partial cooperation algorithms are appropriate [22, 49]. For the
generation of daily room schedules, besides each ward’s internal constraints, inter ward resource
constraints exist, i.e., limited resources required for performing operations. These are represented

2A full problem formalization is included in the appendix
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by agents that manage their assignment to operations. Thus, these types of problems include two
unique features:

1. The local problem that each of the agents must solve is on its own a complex multi variable
problem.

2. The constraint graph is bipartite, where on one side, there are wards representing agents and
on the other side are the agents representing the constraining elements.

4.1. Partial Cooperative Algorithms for the Operating Rooms and Dates Allocation Problem
In order to solve the ADCOPs representing ORDA problems we adjusted partial cooperative local
search algorithms (including socially motivated partial cooperative algorithms) such that they will
be compatible with ORDA problems [22, 49]. The main difference between the existing general
partial cooperative algorithms and the algorithms adjusted for ORDA, is that the actions in ORDA
algorithms are specific requests for the release or exchange of RDs. The expected benefits that
agents exchange are either the utility that they are expected to derive from the RDs that are released
for their use or the increment in utility as a result of an exchange.

In more details, the AGC ORDA version of AGC (depicted in Algorithm 3), includes three
synchronous phases (iterations) in each step of the algorithm. In the first, agents select one of
their neighbors and send a request for a release of a RD or an exchange, including their expected
gain from this action. In the second phase, each agent selects the offer with the highest reported
gain (including its own), which does not cause a reduction in utility, beyond her limitations, sends
an accept message to the proposer and NEG! messages to all its other neighbors. In the third
phase, requests that were not replied by NEG! messages are performed whether they are transfers
or exchanges of RDs. Notice that in contrast to the standard version of AGC, here only the agents
involved in a request (the agent sending the request and the one receiving it) must approve it in
order for it to take place.

A similar adjustment is required in order to use the SM AGC algorithm in ORDA scenarios
(pseudo code depicted in Algorithm 4). In the first phase, agents exchange preferences regarding
the RDs they would like to receive from their neighbors. In the second phase, each agent calculates
the social gain for each request from a neighbor for an exchange or release of a RD it holds, and
selects the one with the highest social gain (the mutual gain for her and the other agent involved).
Notice that here, only the agents involved in the exchange of a resource affect the gain, thus, for
each request it receives, an agent only needs to take into consideration the preferences of the sender
of the request, and its own. After comparing the expected social gains of all possible requests it
can send, it selects the request with the highest social gain and sends it to the relevant neighbor
along with the social gain. The following actions in the third and fourth phases of the algorithm,
are similar to the second and third phase of the AGC ORDA algorithm described above.

Consider the example depicted in Figure 1. It is an example of the hospital operating room
scheduling problem we described above. The example includes three wards and two operating
rooms that are allocated per day. Ward1 can only use operating room OR1, Ward3 can only use
OR2 and Ward2 can use both. For each ward the minimal and maximal number of allocations they
require is depicted on its left (lower and upper bound). We will assume that a ward that does not
satisfy its lower bound endures a cost of 100. The allocation that the agents seek to schedule is for
a five day working week. For each room that can be allocated to a ward, next to the line connecting
them, the personal preferences of the ward are specified as an array of natural numbers between
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Algorithm 3 AGC ORDA
input: baseLineAllocationi, baseLineCosti, λi,

alloc← baseLineAllocationi;
µi ← baseLineCosti;
localV iew ← null;
send(alloc) to N(i);
while stop condition not met do
PHASE 1:
Collect all alloc messages and update localV iew
〈riq, gaini〉 ← improvingRequest();
send(〈riq, gaini〉) to Aq;

PHASE 2:
Collect all 〈rji, gainj〉 messages;
aj ← agent in N(i) ∪ Ai with maximal socialGain s.t.

ci(localV iew after performing rji) ≤ µi · (1 + λi);
send(Neg!) to N(i) \ aj;

PHASE 3:
Collect Neg! messages;
if did not receive Neg! from Aq and from Ai & can improve

then perform riq;
else if did not receive Neg! from Aj

then perform riq;
send(alloc) to N(i);

zero and nine. The preferences for day 1 are presented in the left entry of each array, next, the
preferences for day 2 and so forth.

Consider a situation in which the current allocation has:

• OR1 allocated to Ward1 in the first two days of the week.

• OR1 is allocated to Ward2 in the rest of the week (days 3, 4 and 5).

• OR2 is allocated to Ward2 in the first three days of the week.

• OR2 is allocated to Ward3 in the last two days of the week.

If the agents are performing AGC, then in phase 1, Ward1 sends to Ward2 a request to transfer OR1

to them on day 4 with a gain of 108 (since currently this ward is not satisfying it’s lower bound).
The preferences for this day are high for Ward2. However, if λ is large enough, they would agree
to release OR1 on that day to Ward1, since they will remain above the lower bound. If the agents
would perform SM AGC, the results would be the same because the preferences of Ward3 are not
relevant for OR1 and the gain for Ward1 is much larger than the loss for Ward2. However, in the
next iteration, if the agents are performing AGC, Ward1 can ask for OR1 at day 3 as well and it will
get it for similar reasons. On the other hand, if agents are performing SM AGC, Ward1 would not
make this request because the social gain is negative.
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Algorithm 4 SM AGC ORDA
input: baseLineAlloci, baseLineCosti, λi and Ωi

alloc← baseLineAlloci;
µi ← baseLineCosti;
localV iew ← null;
send(alloc) to N(i);
while stop condition not met do

PHASE 1:
Collect all alloc messages and update localV iew
for each Aj ∈ N(i) do
πi,j ← preferences(Aj);
send(πi,j) to Aj ;

PHASE 2:
Collect all π messages;
Πi← πj∈N(i) ∪ preferences(Ai);
riq ← socialImprovingRequest(Πi,Ωi);
send(riq, socialGaini) to Aq;

PHASE 3:
Collect all 〈rji, socialGainj〉 messages;
aj ← agent in N(i) ∪Ai with maximal socialGain s.t.

ci(localV iew after performing rji) ≤ µi · (1 + λi);
send(Neg!) to N(i) \ aj ;

PHASE 4:
Collect Neg! messages;
if did not receive Neg! from Aq or from Ai & can improve

then perform riq;
else if did not receive Neg! from Aj

then perform rji;
send(alloc) to N(i);

At the same time, Ward3 asks Ward2 to exchange the allocations of OR2 of days 1 and 5. Ward2

has already agreed to release OR1 on day 4 and therefore it sends Neg! to Ward 3. In the next step
of the algorithm it will agree to exchange the days of OR2 with Ward3. The resulting allocation will
be OR1 to Ward1 on days 1, 2 and 4. OR2 to Ward3 on days 1 and 4 and the rest of the allocations
are to Ward2. The utility for each ward is U1 = 15, U2 = 25, U3 = 13 and the global utility is 53.

4.2. Distributed Local Search for Generating Daily Schedules
The model we describe above for representing the daily schedule problem includes a bipartite
graph of agents, each of which has its own complex local search problem. Distributed local search
algorithms are synchronous algorithms in which agents exchange information and decide whether
to replace their local assignments [29, 50]. Thus, to design a distributed local search algorithm,
we first specify how agents generate local assignments. In all our algorithm implementations,
the agents used simulated annealing (SA) [38, 42] for generating the first solution to their local
problem. In some versions, SA was used at each iteration of the distributed search.
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Figure 1: Hospital operating rooms example
.

We examine two main approaches for the design of the distributed local search algorithms.
In the first, inspired by the distributed stochastic algorithm (DSA) [18, 50], an agent, generates
a solution to its local problem and sends it to its neighbors in the bipartite graph. Then, in each
iteration, the agent searches for an improving assignment and, if it finds one, replaces its current
assignment with probability p (in our experiments we set p = 0.7 ). Notice that, in contrast to
standard DSA [50] the graph’s structure is bipartite, thus, agents send their (complex) assignment
only to agents of the other type, i.e., WRs to CEs and vice versa.

The second approach we propose, considers the natural role of CEs, which is to provide service
to the operating wards. Thus, we propose a query-response protocol in which the wards suggest
schedules and the CEs react to these suggestions, specifying which of the scheduled operations
they could allocate the required element.

A sketch of the code of the proposed query response daily schedule algorithm (QRDSA) is pre-
sented in Algorithm 5. The main difference in QRDSA from standard DSA, is the query response
structure. Thus, the pseudo-code for the WR agents starts with selecting an assignment for their
local problem using SA. Then, a WR agent wi, sends its selected schedule to its CE neighbors
(in set CEi) and waits for their response. Once these responses are received, it updates its local
information, and revises its local assignment before sending it again. On the other hand, the CE
agent cei waits for the assignments of its WR neighbors (WRi) to arrive before it performs its
computation. It updates its local operation schedule and proposes its corresponding assignment of
constrained elements to this schedule. Each of its neighboring WR agents sends the projection of
its assignment on the schedule relevant to the neighbor.

For the selection of the revised assignment in each iteration in both algorithms, we used three
different methods:
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1. Single change (SC): The variables are ordered. According to this order, the agent searches for
the first variable (operation) that did not receive all elements required for the operation to take
place (not fully scheduled). The assignment for this variable is replaced. If the agent’s utility
decreases by this change, the variable’s previous value is returned, and the agent attempts to
change the following ordered variable’s value.

2. Single change with exploration (SC e): A random variable is selected. The agent tries to
replace the current variable’s assignment with an alternative value to improve its utility. Sup-
pose the variable change does not improve the utility. In that case, the variable’s previous
value is reassigned, and the another random variable is chosen, until a stop condition is met.

3. Simulated Annealing (SA): The agent performs a new SA search to select its assignment in
every iteration.

We also examined the use of a stability factor (sf) that penalizes a change in the assignment of
an operation, i.e., whenever an operation that was fully scheduled was moved to a different slot or
postponed to an undetermined future schedule, there was a reduction in the utility the agent derives.
We examine the stability factor in two levels; the first that does not record unsuccessful attempts
(sf). The second on the other hand uses a dynamic memory structure, which stores no-good visited
solutions (sf ng) throughout the algorithms run. The no-good visited solutions consist of the
surgery requests which were scheduled but did not result in a full allocation of all the constraining
resources—in the expanded formulation. Scheduling a surgery request from the no-good structure
results in a reduction in the agent’s utility. Furthermore, the size of the penalty is relative to the
time passed since the unsuccessful attempt to schedule the operation request.

In all versions of the algorithm we used forward checking, i.e., values that were not consistent
with previous assignments performed were removed from the domains. For the selection of value
assignments in the single change versions, among the consistent values in the domains we used
two methods. The first was selecting a random value and the second was selecting the value that
seemed most promising (the one expected to increment the utility the most). We demonstrate
in our experiments that the second method required much more calculations that was not always
beneficial.

Figure 2 presents a small example of the daily schedule problem described above. It includes
two wards, and it demonstrates the scheduling of a single day in which each ward is allocated a

Algorithm 5 QRDSA
WR:

1: while Not Terminated do
2: sched← assign(localProblem)
3: send(sched) to CEi
4: receive respj from all cej ∈ CEi and update(localInfo)

CE:
5: while Not Terminated do
6: recieve schedj from WRi and update (localInfo)
7: sched← assign(localProblem)
8: for all wrj ∈WRi do
9: respj ← {sched ↓ respj}

10: send respj to wrj
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Figure 2: Daily schedule generation example.

single operating room. The problem further consists of a single constraining element (CE) agent
that schedules the use of an indivisible resource (e.g., an X-ray machine). The day in this small
example is two hours long, and the length of each operation is one hour. We further assume that
surgery requests sr1A and sr2A require the equipment unit. Consider the initial local schedules
chosen by each one of the agents as presented in the tables included in Figure 2. As depicted in the
CE agent table, in its initial schedule, the agent allocates the equipment unit such that each ward
has it for one surgery slot. Both surgery requests overlap in the current schedule; revisions must be
made for the daily schedule to be feasible.

5. Experimental Evaluation

Our experiments included scenarios based on real data for both problem types. In order to avoid
privacy breach, some of the parameters of the problems were selected randomly. However, the
distributions from which they were selected were realistic according to our analytical review of the
data and to the hospital personal input. In all sets of experiments we used t-tests for examining
statistical significance.

5.1. Evaluation of RD Allocation Algorithms
This set of experiments included different versions of socially motivated local search algorithms,
solving the hospital operating room date allocation problem. Agents represented hospital wards
with different needs. The resources being allocated were operating rooms, each with specific prop-
erties, that make it attractive to some of the wards, and useless for others. The problem included 10
wards and 15 operating rooms allocated periodically every day. The allocation was for a five work-
ing day week , i.e., each room was allocated five times. For each problem, the personal constraints
specifying the preferences of wards over days of the week and operating rooms was randomly
picked between zero and 9. Among the 15 rooms, 7 could be used by all the wards, one could be
used by a single ward, two could be used by two wards, three could be used by three wards and the
last two could be used by four wards.

In order to examine the relation between the results and the problem structure, we generated
two additional, less realistic, sets of problems: A set of sparse problems, in which we had every
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Figure 3: Average social welfare (a) for the origin problem set (b) for the sparse problem set.

ward interested in exactly two operation rooms, and a dense set, in which we had each ward inter-
ested in exactly five operating rooms. We will refer to the three sets as origin, sparse and dense,
respectively.

The versions of the partial cooperative local search algorithms we compared included (corre-
sponding notations in brackets):

• AGC with λ = 0.1 (AGC 0.1).

• AGC with λ = 0.7 (AGC 0.7).

• SM AGC with λ = 0.1 (SM 0.1).

• SM AGC with λ = 0.7 (SM 0.7).

• SM AGC with bounds (agents reject any request that may cause a reduction beneath their
lower bound and do not require a trade for allocations they give beyond their upper bound)
(SM LIM ).

• SM AGC with bounds and λ = 0.1 (SM LIM 0.1).

• SM AGC with bounds and λ = 0.7 (SM LIM 0.7).

Figure 3(a) presents the global utility (social welfare) derived from the allocations generated
by the versions of the algorithms listed above, as a function of the number of iterations preformed.
Consistent with the results presented in [49], the results depicted demonstrate the clear advantage of
the socially motivated versions over standard AGC. Moreover, they demonstrate that intentions for
cooperation (represented by λ) must be combined with preference sharing among agents, in order
to increase social welfare. Thus, in all socially motivated versions the λ = 0.7 versions outperform
the λ = 0.1 versions. On the other hand, the λ = 0.1 version is more successful in AGC. Among
the socially motivated versions of the algorithm, the ones using bounds are more successful.

One may wonder if the use of partial cooperative methods prevents outcomes in which some of
the agents derive very low utility from the allocation. In order to answer this question we present in
Figure 3(b) the average on the minimum utility derived by an agent from the allocations produced
by the different algorithms. It is clear that socially motivated algorithms with λ = 0.7 are most
successful when considering this egalitarian measure.

21



595

605

615

625

635

645

1 6 11 16 21 26 31 36 41 46

Uti
lity

Iterations

SM_LIM

SM_LIM_07

SM_LIM_01

SM_07

SM_01

AGC_07

AGC_01
595

615

635

655

675

695

1 6 11 16 21 26 31 36 41 46

Uti
lity

Iterations

SM_LIM

SM_LIM_07

SM_LIM_01

SM_07

SM_01

AGC_07

AGC_01

(a) (b)
Figure 4: Average social welfare (a) for the sparse problem set (b) for the dense problem set.

 

Figure 5: Average global utility (a) for the origin set with best-selection (b) for the origin set

Figure 4 presents the social welfare of the allocations generated by the algorithms for the sparse
(a) and the dense (b) synthetic problem sets, respectively. The most apparent difference is that for
the sparse problems, the version that only uses bounds is most successful, while for the dense
problems the versions that use λ = 0.7 produce better solutions. It seems that when agents do not
have many options for operating rooms to be allocated to them, only the bounds are relevant, while
when more options are available, more refined intentions for cooperation are beneficial.

5.2. Evaluation of Daily Schedule Algorithms
This set of experiments included different versions of local search algorithms, solving the opera-
tions daily schedule problem, implemented in a simulator in which the realistic distributed schedul-
ing problem is represented, according to the model described. In all our experiments the instance
of the bipartite graph described above covered 10 WR agents representing 10 different surgical
wards, and 3 CE agents representing the nurses, anesthetists and equipment allocation surgical
coordinators.
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Figure 6: Average global utility for the origin set with enlarged ng (a) with best-selection and enlarged ng (b)

All problems included 500 patients awaiting surgery. Each patient had a birth date sampled
uniformly between 01/01/1925 and 01/01/2020. Every patient holds a list of at least a single surgery
request. Different parameters define each surgery request:

• The surgery type of the surgery request was uniformly selected from all the ward’s possible
surgery types.

• The number of cancellations (NC) is the number of times that this surgery request was sched-
uled for surgery and canceled. For every surgery request, the number of cancellations was
sampled uniformly between 0 and 10: NC ∼ Uniform(0, 10).

• The entrance/referral date is when the surgery request entered the hospital’s system and the
queue of surgery requests awaiting surgery. The date was sampled uniformly from a period
of a year before the scheduling day.

• A surgery request may or may not be assigned in advance with a specific surgeon. Usually,
the surgery requests set in advance with a particular surgeon are unique and complex cases.
To simulate this kind of behavior for every ward, a random surgery type was chosen. Then,
all surgery requests of this surgery type were assigned with a specific surgeon randomly
selected from all the surgeons qualified for this surgery type and highly graded.

50 surgical units were randomly (uniformly) assigned to the ten wards (assuring at least one
unit to each ward), and 300 surgery types randomly assigned to the wards. For every surgery type,
the following parameters were selected: urgency, complexity, duration, and utility derived by the
hospital. The hospital in our hometown refers to six levels of urgency and complexity of surgeries,
such that level 1 is the lowest and level 6 is the highest. For every surgery type, the urgency and
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Figure 7: Average global utility for the origin set with enlarged sf and ng(a) with best-selection and enlarged sf and
ng(b)

complexity were chosen from the following discrete distribution:

Pr(X = x) =


1
12
, if x = 1, 6

1
6
, if x = 2, 5

1
4
, if x = 3, 4

0, else

The duration of every surgery type was uniformly sampled from a minimum duration of 30
minutes and a maximum duration of the surgical day length (L): Duration ∼ Uniform(30, L).

The number of surgeons for each ward was decided randomly and uniformly between the num-
ber of operation rooms allocated to the ward on a day and the number of surgery types of the ward
multiplied by 3. Every surgeon had a set of graded skills that inform the different surgeries she
is qualified to do and the level of expertise. The set size differed between the surgeons and was
decided randomly between 1 and the number of the ward’s surgery types. The level of expertise of
every surgery type was also randomly selected, assuring that there would be at least a single expert
surgeon for every surgery type. The surgeons perform surgeries in different shifts during the day;
as learned from the hospital, the generator implies a single expert surgeon for every surgery type.

Each problem included 15 operation rooms, and each of them had a list of compatible surgery
types. For every room, we sampled a random number of surgery types between 1 and the number of
surgery types of the hospital. Each ward had the rooms that were allocated to it for specific dates.
For the experiment at hand for each room, a random ward was chosen uniformly from all the wards
compatible to perform surgery in it.

In addition, 100 nurses and anesthetists were available for every problem. The nurses differ with
different skills that define the type of surgeries they can be allocated to. For every surgery type in
the problem, a set of nurses was selected as qualified to perform this surgery type. The number of
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Figure 8: Average global utility for problems with 5 rooms(a) with 5 rooms and best-selection

nurses was drawn uniformly between 1 and the number of hospital nurses. In the hospital, nurses
are first qualified to be scrubbing nurses and only later circulating nurses. Every nurse holds along
with the set of surgery types she is eligible to do a sub-set of these surgery types to indicate the
surgery types she is trained to operate as a circulating nurse. Nurses also perform surgeries by
shifts. The number of nurses assigned in a surgical shift will be precisely the number of nurses
needed, i.e., the number of surgical rooms multiplied by 2 (for every surgery, there is a need for a
circulating nurse and a scrubbing nurse). The nurses for each shift were randomly and uniformly
chosen from all the nurses in the problem.

The anesthetists were divided by their experience into three ranks – Intern, Expert, or Senior.
Each rank had a set of roles that the anesthetics included in it could perform. For every problem
instance, the data generator assures at least a single Senior anesthetist, and for every ward, the
generator confirms at least a single Intern and a single Expert. The rest of the anesthetist’s ranks
are sampled from the subsequent discrete distribution:

Pr(X = x) =


0.45, if x =Intern
0.4, if x =Expert
0.15, if x =Senior
0, else

Intern anesthetists’ current ward rotation is selected uniformly and randomly between all the
surgical wards. An Intern is certified to perform surgery in all her past rotation’s wards, but not
all surgery types. For every Intern, a different number of wards are sampled to simulate her last
rotations. The number is determined uniformly between 0 and the number of the hospital’s surgical
wards. For every surgery type, the number of Interns certified to perform surgery is sampled uni-
formly between 1 and the number of Interns who are or were in rotation of its ward. Anesthetists
also perform surgeries by shifts. Every shift is staffed by precisely the number of anesthetists
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Figure 9: Average global utility for problems with 25 rooms(a) with 25 rooms and best-selection

needed following the different ranks required by the various roles during the surgical day.
Problems included three types of equipment that were required for some types of surgeries.

First, the units available for every type of equipment were selected randomly and uniformly be-
tween 1 and 15 (the number of operating rooms). Then, the surgery requests that required each one
of them was randomly selected.

To examine the dependency of the results on the structure of the problem, we also examined the
problem in four less realistic scenarios. We analyzed the effect of two of the problem parameters
on the quality of the algorithms, the number of operating rooms in the hospital and the length
of the operating day. The number of operating rooms was enlarged to twenty-five in one set of
experiments to illustrate a sparser problem. In the second set of experiments, the operating day was
prolonged to a ten-hour shift instead of a seven-hour shift. Finally, to demonstrate a dense collection
of problems, two additional sets of experiments were conducted. In the first, we decreased the
number of operating rooms to five, and in the next, the operating day was shortened to a four-
hour shift. In addition, we performed parameter analysis to determine the adequate stability factor.
Finally, all the algorithms were assessed without using any stability factor and with a stability
factor. Also, an additional set of experiments was performed, enlarging the value of the stability
factor by fifty.

5.3. Experimental Results
Our results compare algorithms implementing the two approaches, DSA inspires the first, and the
second is the QRDSA algorithm described above. For each of the two approaches, we implemented
the identical versions of the algorithm, i.e.:

1. sc - single change.
2. sce - sinle change with exploration.
3. sa - simulated annealing in each iteration.
4. An addition of sf - an addition of stabilization factor.
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5. An addition of ng - an addition of a no-good dynamic memory structure to the stabilization
factor.

6. An addition of best− selection - an addition of values selection from domain.

We used non-concurrent logical operations (NCLO) as a time measure [33, 52]. Each algorithm
solved fifty random instances. The results present the average over the utility of the solutions
produced by the different algorithms. The experiments were performed in Python with Pycharm
IDE on a Windows Operating System.

Figure 5 (a) presents the results in the origin set representing the natural setting, i.e., seven-
hour shifts and 15 operating rooms. Apparently, the versions using a stability factor have a sig-
nificant advantage over the algorithms that did not. The second observation is the dominance of
the versions of the algorithms using single change with exploration, both in DSA and in QRDSA.
All single change versions of DSA did better than the simulated annealing versions. Moreover,
the quality of solutions produced by the DSA version that used simulated annealing deteriorated
instead of improving during the execution. When considering QRDSA, the simulated annealing
version outperformed the single change version. When using single change with exploration, the
DSA versions significantly outperformed the QRDSA versions. When using simulated annealing,
QRDSA dominated. It is notable that the use of the no-good dynamic memory structure did not
contribute significantly.

Figure 5(b) presents the results of the algorithms, solving the origin set, while using the best
value selection method (best-selection). Obviously, (Compared to the results in Figure 5(a)) this
method is less successful than the random value selection. This result can be explained by the
limited view of the agents on the constraints of the distributed problem, e.g., a WR can repeatedly
select surgery requests of a particular surgery type, which from its point of view will contribute in
the most significant way to increasing its ward’s utility, but on this specific day, there are no qual-
ified nurses for this surgery type. It is also worth noting that both single change with exploration
versions of both algorithms are still in a climbing trend at the end of the 50,000 NCLO. The moder-
ate rate of increase can be explained by the large number of values assessments for each variable’s
value change.

In order to assess the maximal influence of the stability factor (sf) on the algorithms, Figure ??
presents the results of the versions of the algorithms that include the sf penalty, after increasing
it fifty times compared to the sf used when producing the results presented in Figure 5. Figure 6
illustrates the results of the sf versions of the algorithm with the penalty, resulting from a selected
value from the ng structure, fifty times larger. Finally, Figure ?? presents the results of the sf
versions of the algorithm with both sf and ng penalties fifty times larger than in the results shown
in Figure 5.

The results presented in Figure ?? and Figure 7 indicate that this change mainly affected the
simulated annealing versions, especially the DSA version, which did not deteriorate that much
when a larger sf was used. Figure 6 indicates that the enlargement of ng needs to be accompanied
by the growth of sf to make an impact. Furthermore, the changes when enlarging both sf and ng
are not significant to when only broadening sf.

Figure 8 and Figure 9 present results of the algorithms solving problems in which the number
of operating rooms available in a day was either smaller (5 in Figure 8) or larger (25 in Figure 9).
When the number of rooms was smaller, the problem became tighter. As a result, the advantage
of the single change explore versions became more prominent, while the other versions using sf
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(apart from the simulated annealing DSA version) produced similar results. On the other hand,
when solving the less tight version with 25 rooms, the deterioration of the DSA simulated annealing
versions was steeper. Also, it is interesting to note that in the tighter scenario, the algorithm versions
implemented with best-selection produce similar results to those that don’t. It seems that when the
problem’s constraint are tighter, the effort in selecting the best value is more beneficial, and a
random selection has lower probability to be successful. with a relatively more minor gap between
them when compared to the rest of the setups.

Figure ?? and Figure ?? present results of the algorithms solving problems in which the operat-
ing day length was either shorter (240 minutes in Figure ?? ) or longer (600 minutes in Figure ??).
When the day is shorter, the problem becomes tighter, again the problem became tighter. Nev-
ertheless, in this case the advantage of the single change explore version did not become more
prominent. However, the results were sparser once the surgical day was prolonged, and the single
change explore dominated significantly. In this scenario, the deterioration of the DSA simulated
annealing versions was steeper in the tighter setting. Uniquely the addition of the ng memory struc-
ture in the 240-minute duration day implemented with best-selection,i.e., with value selection from
the domain, impacted and improved the single change versions in both approaches significantly.

The results on all scenarios emphasize the importance of stability in such a distributed environ-
ment where agents aim to resolve conflicts among them. If agents make too many changes to their
local assignment, their neighbors’ decisions are generated while considering obsolete information.
Our results indicate that in the simulated annealing versions, an agent made an average of 17.67
operation assignment changes in each iteration in origin set up. In contrast, the single change ver-
sions made at most one. Furthermore, when the algorithm explores the different possibilities for
this single change, this effort is worthwhile.

6. Conclusions

The operation room allocation and scheduling application we present in this paper is a realistic ap-
plication that requires distributed models and algorithms, in order to preserve the natural structure
of the problem and the autonomy and privacy of the involved humans. It includes agents represent-
ing wards (or ward directors), each with her own interest, which belong to a large organization (a
hospital), and thus, besides their personal objectives there is a global mutual goal.

Each of the two phases of the problem includes unique properties, which trigger the design of
non trivial models for representing them. In the room per date allocation problem, partial coopera-
tive agents divide a mutual resource among themselves and maximize a global goal while satisfying
their needs. In the daily schedule phase, wards optimize their complex operation schedule, while
interacting with agents that represent the hospitals constraining elements.

In future work we intend to explore similar realistic distributed applications and to investigate
the compatibility of incomplete inference algorithms for solving these realistic problems.
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