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1. Statistical Inference

Study Goals

After completing this unit you will have learned

• about Bayes’ theorem and its applications.

• the foundations of Bayesian inference.

• how to build Bayesian networks.

• the underlying principles of Markov Chain Monte Carlo (MCMC).

• how to use MCMC in Bayesian probabilistic inference.

Introduction

Statistical inference allows us to make predictions about a system we want
to study. In a nutshell, we assume that this system can be described by
random variables that follow a specific probability density function. For
example, if we want to analyze the shopping behavior of customers in a
supermarket, we can, in general, assume that the demand follows a Poisson
process and can be described using a negative binomial distribution. Once
we have estimated the parameters of this distribution, for example, by
comparing the distribution to the observed data in a fit, we can then infer
the most probable or the expected demand for future sales.

In classical statistical inference we typically follow the frequentists’ school
of thought where we interpret the data as realizations of repeatable exper-
iments. This implies that we assume that the data are random, or more
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precisely, the data are the concrete realizations of the random variable
(such as, e.g. “demand”). The parameter(s) of the probability distribu-
tion that describes the random variable, however, are fixed, even if we do
not know their value. This means, in particular, that the parameters of
the probability distribution are not random variables.

In Bayesian inference, on the other hand, we take a different viewpoint:
Here, we assume that the data are fixed—they are what we observe and
they do not necessarily have to originate from repeatable experiments. In
some cases, for example, if we consider the rolling of dice, the experiment
is—in principle—repeatable, if we are able to control the environment in
which we perform the experiment sufficiently well. In other cases, the data
are the result of single events. For example, today’s weather is only observ-
able today—we neither have access to multiple other earths with the same
configuration, nor can we go back in time to observe how a hypothetical
“today” might have unfolded. With the data fixed, the parameters (θ) that
describe the system we want to study are now random variables. Even be-
fore we look at the recorded data, we will, in most cases, know something
about the system under study. This knowledge is encoded in the prior
f(θ) and may come, for example, from empirical studies performed earlier,
expert knowledge, etc. Using Bayes’s theorem as the core ingredient of
Bayesian statistical inference, we want to determine the posterior distri-
bution f(θ|x), that describes the probability distribution of the quantify
of interest, depending on the parameters θ, given the observation of the
data (x). The prior distribution f(θ) and the posterior distribution f(θ|x)
can either be discrete or continuous. The parameters θ themselves will, in
general, be continuous in any case.

Once we have calculated the posterior distribution, we can use this to make
inferences about the system under study. For example, we can calculate
the expected value of the quantity we are interested in. Coming back to
the example of the supermarket, we use all the recorded sales data we
have collected in the past, choose a suitable prior to calculate the posterior
distribution that describes the probability density function for the future
sales in the supermarket. Using this distribution, we can, for example,
calculate the expected value (or any other quantile) to estimate how many
items need to be ordered to be able to fulfill the future demand.
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1.1. Bayesian Inference

In most cases, we do not know that some event A will happen with cer-
tainty. Instead, we use the probability P (A) with 0 ≤ P (A) ≤ 1 to express
the notion that the event will occur with some probability where P (A) = 0
means that we are absolutely certain that the event will never occur and
P (A) = 1 means that we are absolutely certain that the event will occur.
If we have two events, A and B, then they can be independent of each
other, i.e., P (A ∨ B) = P (A) + P (B), which means that the probability
that event A or (∨) event B occurs is given by the individual probabilities
that each event occurs on its own. We can also calculate the probabil-
ity that both events happen at the same time (for independent events):
P (A ∧ B) = P (A) · P (B). It is common for “∧” to be replaced by a
comma, i.e., P (A ∧B) = P (A,B).

Quite often, it is difficult to directly determine the total probability of an
event. In some cases, it might be possible (or easier) to determine the
probability that some event A occurs at the same time as event B. If
the events Bi are mutually exclusive and cover all possibilities, we can
“partition” the event A:

P (A) =
∑
i

P (A,Bi) (1.1)

The above equation is also known as the “total law of probabilities.” The conditional

probability is the

probability of an

event A given

that an event B

has already

occurred or is

assumed to be

true.

The conditional probability P (A|B) (read: probability of A, given B)
means that B has already occurred and we know the values of any asso-
ciated parameters. If A and B are independent, then P (A|B) = P (A).
Using the conditional probability, we can express the probability that both
event A and B occur as P (A,B) = P (A|B)P (B), and the total law of
probabilities becomes

P (A) =
∑
i

P (A|Bi)P (Bi) (1.2)

Note that P (A|B) 6= P (B|A). Instead, P (A|B)P (B) = P (B|A)P (A),
which leads to Bayes’ theorem (Bayes, 1763):

P (A|B) =
P (B|A)P (A)

P (B)
(1.3)

3



In many cases, P (B) is difficult to obtain, and we use the total law of
probabilities to partition over the events Aj:

P (Aj|B) =
P (B|Aj)P (Aj)∑
i P (B|Ai)P (Ai)

(1.4)

An important application of Bayes’ theorem is hypothesis testing, i.e., if
we want to determine whether the data we observe can support a given
hypothesis. In this case, we set A = H (where H denotes the hypothesis we
want to test) and B = D (where D represents our data). Bayes’ theorem
then becomes

P (H|D) =
P (D|H)P (H)

P (D)

and the elements of the theorem have the following meanings:

• P (H)—Prior. This is what we know about the system before we look
at any data.

• P (D)—Evidence. This is the distribution of the data, fixed for a
given data-set. Hence, it acts as a normalization.

• P (D|H)—Likelihood. This is the conditional probability of observing
the data given the hypothesis, i.e., how likely is it to observe the data
we have for a given hypothesis. This probability is maximal if we
choose the correct hypothesis.

• P (H|D)—Posterior. This is what we really want to know. Given
the data we observe, what is the (conditional) probability that the
hypothesis we investigate is correct?

Let’s illustrate this with an example focused on medical diagnosis.

Example: Medical Test

Suppose a person is not in a risk group for contracting a specific
disease. A test exists for this disease and, if a person has the disease,
the test will return a positive result with 99.9 percent probability.
The test will only be positive in 0.5 percent of cases, even if a patient
does not have the disease.
Suppose we consider a disease with very severe consequences and the
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test is positive. Should the person worry?

As a first step, we translate the given probabilities into the language
of statistics using conditional probabilities. We use the following
notation: + means the test is positive, − means the test is negative,
D means the patient (truly) has the disease; ¬D means the patient
does not have the disease. Keeping in mind that all probabilities
need to be normalized to one, we obtain
P (+|D) = 0.999 P (−|D) = 0.001
P (+|¬D) = 0.05 P (−|¬D) = 0.995

Using Bayes’ theorem, we can calculate the posterior we want to
know, i.e., if the test is positive, what is the probability that the
patient has the disease?

P (D|+) =
P (+|D)P (D)

P (+|D)P (D) + P (+|¬D)P (¬D)

If we examine this equation, we note the following: it is difficult to
determine the denominator P (+) describing the probability that the
test will be positive. However, we can use the total law of probabil-
ities to express this for the cases P (D) and P (¬D).
We now find that we are missing a crucial piece of information: the
value of the prior P (D) that describes the occurrence of the disease
in the population of interest. We have to get these details exter-
nally. Knowing the accuracy of the test is not sufficient to determine
whether or or not the patient has the disease.
We stated initially that the patient does not belong to a risk group.
In our example, we may refer to a database that lists how many
cases there are, in a given population, among those not in a risk
group. Suppose we find that the probability is P (D) = 0.0001, i.e.,
the probability of contracting the disease is very low if a patient does
not belong to a risk group.
If we now put all numbers into Bayes’ theorem, we obtain P (D|+) =
0.02, i.e., even if the test is positive, the probability that the person
has the disease is only 2 percent.
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Posterior Distribution

We have considered the case where we can group events into separate and
discrete classes (e.g., a test is positive or negative, or a patient has a spe-
cific disease). However, in most cases, we want to analyze a more complex
system where we observe a continuum of values. In order to make any
predictions about a system, we need a model that depends on one or more
parameters θ. The “frequentist” approach to statistics assumes that while
we may not know the value of the parameter(s) θ that describe the system
we want to analyze, its value is fixed. In the Bayesian view however, weA random variable

is a measurable

quantity that

depends on a

probability

distribution;

while the exact

values the

variable will take

next are unknown,

the underlying

mechanism

described by the

distribution is

not.

treat the parameter(s) θ as a random variable that follow a prior distri-
bution f(θ). We then observe the data with specific values. If X is the
variable describing the data and x is the observed value, we can write this
as X = x, i.e., in the concrete realization, we observe the value x of the
random variable X. For simplicity, we continue the case of just one vari-
able, even though the same arguments hold for a vector of variables with
corresponding observations: ~X = (X1, X2, X3, . . .) = ~x = (x1, x2, x2, . . .)
As was true concerning the several event categories, we are interested in
the posterior distribution f(θ|x) (or, more generally, f(~θ|~x)). This means
when we assume a specific prior distribution f(θ), the distribution de-
scribes the probability of observing a value θ for our model, conditional on
the observation of the data x.

Following Eqn. (1.3), we can use Bayes’ theorem and express the posterior
distribution for a continuous parameter θ as:

f(θ|x) =
f(x|θ)f(θ)

f(x)
(1.5)

As before, the quantity f(x|θ) = L(θ) is the likelihood function that de-
scribes the conditional probability of observing the data for a given choice
of the parameter(s) θ. The function f(θ) is the prior that includes all
our knowledge about θ before we analyze the data. The evidence f(x)
in the denominator is the normalization and describes the probability of
observing the data.

We have seen earlier for the case of discrete events that it is often easier to
express the evidence as a sum of events using the total law of probabilities
and expanded the denominator accordingly in Eqn. (1.4). In the case of
the continuous parameter θ, we can follow the same approach. However,
the sum is now replaced by an integral over θ. Therefore, the posterior
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distribution is given by

f(θ|x) =
f(x|θ)f(θ)∫
f(x|θ)f(θ)dθ

(1.6)

Here, we have used∫
f(x|θ)f(θ)dθ =

∫
f(x, θ)dθ = f(x) (1.7)

for the denominator. Hence, we can say that the posterior distribution is
given by the multiplication of the likelihood with the prior distribution,
followed by normalization (Held, 2008, p. 140).

The Role of the Prior

We have already seen in the example above that the prior P (A) for the
discrete case, or f(θ) in the continuous case, plays a vital role in Bayesian
inference. Recalling the example of a medical diagnosis above, we saw that
we can only answer the of question whether the patient has the disease if
we also know the prior: in this case, the prevalence of the disease in the
non-risk population.

However, the question remains: generally speaking, from where can we
obtain the prior? In some cases, we may have external or domain knowledge
about the system we want to analyze. For example, when rolling dice, we
may assume that that each die is fair. Hence, the (prior) probability that
each side faces up is 1/6. In other cases, we may have historic data, census
information or any other form of recorded statistics that, as in the medical
example, allows us to determine the prior probability.

We have, however, seen that we will need to evaluate integrals of the form
likelihood times prior both in the normalization of the posterior distribu-
tion (the evidence), as well as when we use the posterior distribution for
inference. If possible, we would like to take a pragmatic approach and
choose a prior distribution that makes the evaluation of these integrals
easier. We cannot influence the parametrization of the likelihood much
because this is defined by the system from which we obtain the data. We
can, however, choose the form the prior takes and choose, for example, a
parametrization such that the posterior calculated from the integral over

7



the likelihood times the prior belongs to the same family of distributions
as the prior. This has the advantage that the posterior distribution can
expressed in a closed form and instead of using a numerical approximation,
we can estimate the parameters of this posterior distribution and work with
the analytic expression. We call these choices of priors conjugate priors.

Conjugate Prior

A class of priors is called a conjugate prior with respect to a given
likelihood function, if the a posteriori distribution is of the same
family of probability distributions as the prior.

The theory of conjugate priors was first developed in (Raiffa & Schlaifer,
1961). It is important to keep in mind that, ultimately, choosing a con-
jugate prior is a convenience - if we can describe our prior knowledge in
terms of a conjugate prior, then we can make the further handling of the
Bayes’ formula easier. In other cases, however, it may not be possible to
make such a convenient choice.

The most important conjugate priors are given below (Held, 2008, p. 148):

Likelihood Conjugate prior Prior hyper-parameter
Binomial, Bernoulli Beta α, β
Negative Binomial Beta α, β
Poisson Gamma α, β
Exponential Gamma α, β
Normal (σ2 known) Normal µ, σ2

Normal (µ known) Inverse Gamma α, β

Depending on the problem at hand, a specific choice of prior may be helpful.
For example, we can interpret A/B tests as a sequence of Bernoulli trials
where the results fall in either category A or B. We can then choose a
Beta prior, where we can interpret the hyper-parameters as α−1 successes
and β − 1 failures in the observed data. As a special case, the choice of
α = β = 1 results in a flat or uniform beta distribution. As we add more
data, we can interpret that we start from a uniform prior where we do not
assume any knowledge about the outcome and then use α = 1 + number
of successes and β = 1 + number of failures (or choice of A and B) to refine
our prior.
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This raises the question of whether it is generally advisable to start with a
uniform prior. Näıvely, this seems like an obvious choice: if we do not know
anything a priori about the parameters of our model, it seems conservative
or cautious to use a uniform prior to indicate that we do not know what
their values should be.

Unfortunately, this is not the case. Many real-world datasets follow Ben-
ford’s law (Newcomb, 1881; Benford, 1938), which states that the first
digit of a number follows a skewed distribution given by Eqn. (1.8). This
means that numbers start more frequently with a one than a two, three or
any other digit—and the same holds for the other digits. Hence, only few
numbers start with a nine. In other words, in nature the logarithms of the
numbers is uniformly distributed—not the numbers themselves.

P (d) = log10

(
1 +

1

d

)
(1.8)

Instead, we want the prior we choose to contain as little information as
possible. Apart from Benford’s law, the uniform distribution is not ideal
for this. Consider, for example, the case that we start with a uniform
distribution and then choose another set of parameters or coordinates to
re-parametrize the distribution. Since we only change the way we express
the parameters (but not what they represent), we expect that this has no
consequence on the prior. Let φ = h(θ) be the transformation where the
function h transforms the original parameters θ to a new parametrization
φ. If the function h is bijective, we have a 1:1 correspondence between φ
and θ. The distribution of φ is then given by Eqn. (1.9) (Held, 2008, p.
151). However, unless the transformation h is linear, the resulting distri-
bution f(φ) is not constant, even if we start with a uniform distribution
for θ. Hence, a simple change in the way we express the parametrization
transforms the uniform distribution into a different shape. This means
that trying to use the uniform distribution to express that we do not know
much about the parameters is not helpful.

f(φ) = f
(
h−1(φ)

) ∣∣∣∣dh−1(φ)

dφ

∣∣∣∣ (1.9)

Instead, we look for a non-informative prior such as the Jeffrey prior
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(Jeffreys, 1946), see also (Liu & Abeyratne, 2019, App. 4) or (Gelman
& Rubin, 1992, p. 52ff). This is defined as

f(θ) ∝
√
J(θ) (1.10)

where J(θ) is the expected Fisher information of θ. The Fisher infor-The Fisher

information is a

metric that

measures the

amount of

information that a

random variable X

contains.

mation measures the amount of information about the parameters θ and is
given by the negative of the second derivative of the log-likelihood function:

I(θ) = −d
2LogL(θ)

dθ2
(1.11)

The first derivative of the log-likelihood function is also called the “score
function” S(θ):

S(θ) =
dLogL(θ)

dθ
(1.12)

The Fisher information can then be written as

I(θ) = −d
2LogL(θ)

dθ2
= −dS(θ)

dθ
(1.13)

The expected Fisher information is then the expectation value of I(θ), i.e.,

J(θ) = E[I(θ)] (1.14)

Under the assumption that we can change the order of differentiation and
integration (regularization assumption), we can show that (Held, 2008, p.
66):

E[S(θ]) = 0 (1.15)

V ar[S(θ)] = E[S(θ)2] = J(θ) (1.16)

Using the transformation rule in Eqn. (1.9), we can show that the Jeffrey
prior has the same form before and after the transformation:

The Jeffrey Prior is Invariant Under Bijective Transformations

Show that the Jeffrey prior is invariant under bijective transforma-
tions.
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We define the Jeffrey prior for the parameter θ as f(θ) ∝
√
J(θ) ac-

cording to Eqn. (1.10). Then, we use the rule for the transformation
of probability distributions in Eqn. (1.9):

f(φ) ∝ f(h−1(φ))

∣∣∣∣dh−1(φ)

dφ

∣∣∣∣
∝ f(θ)

∣∣∣∣dh−1(φ)

dφ

∣∣∣∣ with f(θ) = f(h−1(φ))

∝
√
J(θ)

∣∣∣∣dh−1(φ)

dφ

∣∣∣∣ with f(θ) ∝
√
J(θ)

=

√
J(θ)

∣∣∣∣dh−1(φ)

dφ

∣∣∣∣2
=
√
J(φ)

Hence, if we express the prior f(θ) according to Jeffrey’s rule and
then transform θ → φ, the resulting prior using the transformed
variable also follows Jeffrey’s rule (Held, 2008, p. 152).

This allows us to construct a prior that does not depend on the parametriza-
tion chosen for the distribution of the parameter(s) θ that describes our
model of the system we wish to analyze.

Bayesian Prediction

Once we have determined the posterior distribution, we need to derive
quantities that we can use, for example, as a concrete prediction: The
full posterior distribution includes all knowledge we have of the system we
want to study, including the expected volatility or uncertainty. However,
in many practical scenarios, we need a point estimate. In principle, we can
use any quantile of the distribution, however, the following point estimators
are most commonly used:

• The expectation value is given by

E[θ|x] =

∫
θf(θ|x)dθ (1.17)
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• The mode is the maximum of the a posteriori distribution

Mod(θ|x) = arg maxθf(θ|x) (1.18)

• The median is the quantile that cuts the posterior distribution in half,
i.e., 50 percent of the distribution are on the left of this quantile, 50
percent on the right:∫ q0.5

−∞
f(θ|x)dθ = 0.5 and

∫ ∞
q0.5

f(θ|x)dθ = 0.5 (1.19)

The best choice of the point estimator depends on the problem at hand.
As usual, the mode is quite sensitive to the exact shape of the estimated
posterior distribution, and small fluctuations may have a big impact. The
expectation value may be influenced by long tails of the a posteriori dis-
tribution, whereas the median is generally more stable.

Additionally, we can construct credible intervals, i.e., regions that contain
the variable θ|x with probability 1− α. These intervals are defined by an
lower and an upper bound.∫ bu

bl

f(θ|x)dθ = 1− α (1.20)

The easiest way to set the boundaries is to use the α/2 and 1−α/2 quantiles
of the posterior distribution.

Note that the credible interval is similar to (but not the same as) the confi-
dence interval used in frequentist statistics. Remember that in frequentist
statistics, the parameter(s) θ are unknown and fixed, whereas in Bayesian
inference, the parameter(s) θ are random variables. In the frequentist’s
view we say that if we repeat an experiment many times, the unknown
parameter θ will be contained in the confidence interval in 100 · (1− α)%
of the cases. For example, a 95 percent confidence interval means that
if we repeat the experiment very often, the (fixed) parameter θ would be
in that interval in 95 percent of cases. We cannot make a claim that the
parameter θ is contained within the confidence interval with probability
1−α, because this is a Bayesian interpretation and not defined within the
frequentist’s interpretation.
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In the Bayesian credible interval on the other hand, we have access to
the posterior distribution directly and can hence assert that the parameter
will be in the region bounded by bl and bu with 95 percent probability.
Note, however, that the Bayesian credible intervals contain additional in-
formation via the prior distribution, whereas the confidence intervals are
constructed from data alone.

Self-Check Questions

1. Please discuss why the probability of having the disease is only two
percent in the medical example—and why this seems counter-intuitive.

2. Suppose we want to build an email spam detector. Three percent of
all emails we receive are spam. The spam detector classifies an email
as spam with 95 percent accuracy and falsely flags a normal email
as spam with a rate of 0.7 percent. What is the probability that the
email we receive is spam if the test is positive?

Solutions

1. The medical test is very accurate, but not extremely so. Additionally,
the test has a low (but not negligible) false positive rate. Since the
prevalence of the disease is very low in the non-risk population, a
single positive test does not mean that the person has contracted the
disease. It is more likely that the test is not accurate enough and
further tests are required.

2. First, we need to translate the numbers into probabilities: P (s) =
0.03. This is the rate at which we (truly) receive spam, which we take
as the prior. The test has an accuracy of 95 percent, i.e., P (+|s) =
0.95 and the false positive rate P (+|¬s) = 0.07. Entering these into
Bayes equation gives P (s|+) = 0.8, i.e., the probability that a mail
is truly spam is 80 percent if the test is positive.
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1.2. Bayesian Networks

So far, we have encountered systems where we need maybe one or two
pieces of information to infer the probability of an event (e.g., if a patient
contracts a disease despite not belonging to a risk group and their test
for that disease is positive). In many situations, we need to take a large
number of variables into account, meaning that the probability depends on
a set of variables P (X1, X2, . . . , Xn). Even if each variable is binary and
can be expressed by zero or one (or true or false), we would need to store
2n − 1 elements. Apart from practical considerations of handling these
values, it is also very difficult to calculate such a joint probability that
depends on many variables. To simplify this joint probability, we look for
ways to split it into smaller components that we can more easily treat.

In the case of two variables X1 and X2, we can express the joint probability
P (X1, X2) as P (X1, X2) = P (X2|X1)P (X1). We can generalize this with
regard to more variables and obtain the chain rule for probability:

P (X1, X2, . . . , Xn) =
∏
j

P (Xj|X1, . . . , Xj−1) (1.21)

Example of Chain Rule of Probability

For the case of four variables, we can express the joint probability
P (X1, X2, X3, X4) as

P (X1, X2, X3, X4) =P (X4|X3, X2, X1)P (X3, X2, X1)

=P (X4|X3, X2, X1)P (X3|X2, X1)P (X2, X1)

=P (X4|X3, X2, X1)P (X3|X2, X1)P (X2|X1)P (X1)

This by itself does not help us much, as we simply expressed the joint
probability as a (long) product of conditional probabilities. However, when
we build a model, we know more about the characteristics of the system
we wish to describe.Variables are

independent if

P (X1, X2) =

P (X1)P (X2).

Some variables may be independent, which means that we have P (X1|X2) =
P (X1) for the conditional probability. This expresses that the probability
of observing X1 is independent of X2. We can call this unconditional
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or absolute independence of the two variables. In contrast, two vari-
ables can also be conditionally independent on a third variable. We will
cover conditional independence formally a bit later. For now, we say that
the two variables X1 and X2 are conditionally independent given X3 if
P (X1|X2, X3) = P (X1|X3) and P (X2|X1, X3) = P (X2|X3). This means
that if we know the value of X3, the variables X1 and X2 become inde-
pendent. Hence, if we know more about the structure of the system we
wish to model, we can considerably simplify the (conditional) probabilities
from the chain rule. For example, if we knew that X1 became conditionally
independent of all other variables based on knowing the value of X2, we
can write

P (X1, X2, . . . , Xn) = P (X1|X2)P (X2, . . . Xn)

instead of

P (X1, X2, . . . , Xn) = P (X1|X2, . . . Xn)P (X2, . . . Xn)

Using our expert or domain knowledge, we can make the relations between
variables explicit. Suppose we have three variables, A, B, and C, and we
know that both A and C depend on B, but A does not depend on C.
Hence, we can say

• A is conditionally dependent on B: P (A|B).

• C is conditionally dependent on B: P (C|B).

• A is conditionally independent from C given B: P (A|C,B) = P (A|B).

• C is conditionally independent from A given B: P (C|A,B) = P (C|B).

Therefore, we can express the joint probability as

P (A,B,C) =P (A|B,C)P (C|B)P (B) chain rule

=P (A|B)P (C|B)P (B) cond. independence

We can visualize these relations as shown in Fig. 1.1; this is a simple
Bayesian network. Bayesian networks are graphical representations of the
statistical relations between variables and were introduced by Pearl in the
1980s (Pearl, 1985; Pearl & Russel, 2003; Pearl, 2014a). Technically, a
Bayesian network is represented as a directed acyclic graph. For now, we
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Figure 1.1.: A Simple Bayesian Network

say that the nodes (shown as boxes) represent variables that are connected
by “edges” (shown as arrows), indicating the relationship between vari-
ables. In this graph, B is the top node and is called the “parent” of both
A and C. Parent variables are often denoted with as PA, i.e., the parent
of variable Xj for some index j is PAj. A formal definition is given in
(Pearl, 2009, p. 14).

Note that we do not require the connections to represent causal relation-
ships: although using our domain knowledge we find that many of these
relationships have a causal meaning, we can express non-causal structures
in Bayesian networks. They are meant as a method to simplify working
with the joint probability, regardless of whether a causal relationship exists
between variables.

So far, we have used the Bayesian networks to represent the relationship
between variables. In order to infer the values of variables or determine
the probability of outcomes, we need to add the concrete values for all
(conditional) dependencies. These tabulated values are called conditional
probability tables (CPT), which summarize the values we observe in the
data. In the simplest case, all variables are binary and can be represented
in terms of “true” or “false”. Fig. 1.2 shows a simple example that has
been adapted from (Murphy, 2001). In this example, we want to express
the probability that the grass is wet, which is related to either a sprinkler
or rain. In this network, the sky condition is the parent of all nodes.
It can be cloudy (or not) each with a probability of 50 percent. The
variables “sprinkler” and “rain” are then children of “cloudy.” Their values
depend on the value of “cloudy.” Hence, each value of the variable (e.g.
“sprinkler = true” or “sprinkler = false”) depends on the value of the
parent, (i.e., “cloudy = true” or “cloudy=false”). The same applies for the
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Figure 1.2.: Bayes Network for Wet Grass, adapted from (Murphy, 2001)
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Figure 1.3.: Asia Network, adapted from (Lauritzen & Spiegelhalter, 1988)

variable “rain.” The final variable “wet grass” can again take the value
“true” or “false”—but now this value depends on the value of both its
parents “sprinkler” and “rain.” Hence, the conditional probability table
for “wet grass” needs to capture all combinations where each variable is
either “true” or “false.”

Note that the numbers in the CPT for the wet grass example are fictional
values. In the case of a real system, we would carefully measure all condi-
tional probabilities that enter the modeling of the system. A more detailed
example is shown in Fig. 1.3, which shows the “Asia network” (Lauritzen
& Spiegelhalter, 1988). This is used to determine the probability of the
quantity of interest. On its own, each part of this Bayesian network con-
tains the conditional probabilities of visiting Asia. Say that in 99 percent
of the cases, a person has not visited Asia. Then, following all conditional
probabilities, we can determine the probability that a person has an abnor-
mal X-ray result or suffers from dyspnea. We can also turn this around and
determine how likely it is that a person with dyspnea also smokes. Since
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the arrows do not represent causal relationships, we can move across the
graph to investigate the conditional probabilities as they change depending
on the values of other variables. For example, if we know that a person
has dyspnea, we can set the value of this variable to 100% and then use
the conditional dependencies to observe the change in all other variables.

This allows us to use Bayesian networks to reason under uncertainties.
As we model all dependencies in conditional probability tables, we can
determine the effect of a given or imagined observation. Using the example
of the wet grass, we can also ask whether it is more likely that the grass
is wet because the sprinkler has been switched on or because it has been
raining. Hence, we want to determine the conditional probabilities P (R =
T |W = T ), i.e., what is the probability that it has been raining, given
that we see that the grass is wet, as well as the P (S = T |W = T ) for the
sprinkler. Using the chain rule, the conditional probability for the sprinkler
having gone off is given by

P (S = T |W = T ) =
P (S = T,W = T )

P (W = T )
(1.22)

meaning that the conditional probability is the joint probability divided
by a normalization factor expressing that we observe the grass to be wet
(P (W = T )). To calculate this quantity, we need to sum over all possible
values (or integrate in case of continuous variables) of the joint probability.
This process is called marginalization, i.e., we wish to obtain the marginal
distribution . In wet grass example, we need to sum over all possible The marginal

distribution is

obtained by

integrating over

all variables

except the one

that we are

interested in.

values (i.e., “true” and “false”) of all variables except the one describing
the wet grass. This variable is set to one, as we observe the grass to be wet.
We use the notation where capital letters (C, S,R) refer to the variables
and small letters (c, s, r) indicate the values of the variables, in our case
“true” and “false.” We need to compute the expression:

P (W = T ) =
∑
c

∑
s

∑
r

P (C = c, S = s, R = r,W = T ) (1.23)

To allow use of the conditional probability tables in the Bayesian network,
we need to first use the chain rule to expand the joint probability into
conditional probabilities:

P (C, S,R,W ) = P (C) · P (S|C) · P (R|C, S) · P (W |C, S,R) (1.24)

From our model representing the graph, we know that the sprinkler S and
rain R are conditionally independent, given the clouds C, Hence we can
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simplify P (R|C, S) = P (R|C). We also know that the value of C is no
longer necessary once we know the state of S and R, meaning that we
can write P (W |C, S,R) = P (W |S,R). Now, the expansion for the joint
probability becomes

P (C, S,R,W ) = P (C) · P (S|C) · P (R|C) · P (W |S,R) (1.25)

which are the values we have in our conditional probability tables. Hence
the equation for P (W = T ) becomes

P (W = T ) =
∑
c

∑
s

∑
r

P (C = c, S = s, R = r,W = T )

=
∑
c

∑
s

∑
r

P (C) · P (S|C) · P (R|C) · P (W = T |S,R)

and we can calculate this explicitly:

P (W = T )

=P (C = F ) · P (S = F |C = F ) · P (R = F |C = F ) · P (W = T |S = F,R = F )+

P (C = F ) · P (S = F |C = F ) · P (R = T |C = F ) · P (W = T |S = F,R = T )+

P (C = F ) · P (S = T |C = F ) · P (R = F |C = F ) · P (W = T |S = T,R = F )+

P (C = F ) · P (S = T |C = F ) · P (R = T |C = F ) · P (W = T |S = T,R = T )+

P (C = T ) · P (S = F |C = T ) · P (R = F |C = T ) · P (W = T |S = F,R = F )+

P (C = T ) · P (S = F |C = T ) · P (R = T |C = T ) · P (W = T |S = F,R = T )+

P (C = T ) · P (S = T |C = T ) · P (R = F |C = T ) · P (W = T |S = T,R = F )+

P (C = T ) · P (S = T |C = T ) · P (R = T |C = T ) · P (W = T |S = T,R = T )

=0.5 · 0.5 · 0.8 · 0.0+

0.5 · 0.5 · 0.2 · 0.9+

0.5 · 0.5 · 0.8 · 0.9+

0.5 · 0.5 · 0.2 · 0.99+

0.5 · 0.9 · 0.2 · 0.0+

0.5 · 0.9 · 0.8 · 0.9+

0.5 · 0.1 · 0.2 · 0.9+

0.5 · 0.1 · 0.8 · 0.99+

=0 + 0.045 + 0.18 + 0.0495+

0 + 0.324 + 0.009 + 0.0396

=0.6471
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If we then want to calculate the probability that the sprinkler was on
(S = T ) after we observe the wet grass (W = T ), we need to calculate
P (S = T |W = T ) as given in Eqn. (1.22). Hence, we need to calculate the
joint probability P (S = T,W = T ) in the same way as we have obtained
the normalization constant above. This time, we only need to sum over c
and r, since we set W = T and S = T : P (S = T,W = T ) =

∑
c

∑
r P (C =

c, S = T,R = r,W = T ) and, following the same approach as above, we
obtain P (S = T,W = T ) = 0.2781. Therefore, the probability P (S =
T |W = T ) = 0.2781/0.6471 = 0.430.

In a more complex graph (like the one concerning the Asia network), we
can then explore the effect of setting various variables to different values
and observe how the other variables change. This allows us to calculate
the probability of the effect we wish to investigate given all the other
variables. Remember that we do not make any assumptions about causal
relationships at this point, although the conditional probabilities will often
reflect a causal structure.

Self-Check Questions

1. Show that P (S = T |W = T ) = 0.430 for the wet grass example.

2. Calculate P (R = T |W = T ) for the wet grass example.
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Solutions

1. We first need to calculate P (S = T,W = T ):

P (S = T,W = T )

=
∑
c

∑
r

P (C = c, S = T,R = r,W = T )

=
∑
c

∑
r

P (C) · P (S = T |C) · P (R|C) · P (W = T |S = T,R)

=P (C = F ) · P (S = T |C = F ) · P (R = F |C = F ) · P (W = T |S = T,R = F )+

P (C = F ) · P (S = T |C = F ) · P (R = T |C = F ) · P (W = T |S = T,R = T )+

P (C = T ) · P (S = T |C = T ) · P (R = F |C = T ) · P (W = T |S = T,R = F )+

P (C = T ) · P (S = T |C = T ) · P (R = T |C = T ) · P (W = T |S = T,R = T )

=0.5 · 0.5 · 0.8 · 0.9+

0.5 · 0.5 · 0.2 · 0.99+

0.5 · 0.1 · 0.2 · 0.9+

0.5 · 0.1 · 0.8 · 0.99

=0.18 + 0.0495 + 0.009 + 0.0396

=0.2781

Then P (S = T |W = T ) = P (S = T,W = T )/P (W = T ) =
0.2781/0.6471 = 0.430
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2. We first need to calculate P (R = T,W = T ):

P (R = T,W = T )

=
∑
c

∑
s

P (C = c, S = s, R = T,W = T )

=
∑
c

∑
s

P (C) · P (S|C) · P (R = T |C) · P (W = T |S,R = T )

=P (C = F ) · P (S = F |C = F ) · P (R = T |C = F ) · P (W = T |S = F,R = T )+

P (C = F ) · P (S = T |C = F ) · P (R = T |C = F ) · P (W = T |S = T,R = T )+

P (C = T ) · P (S = F |C = T ) · P (R = T |C = T ) · P (W = T |S = F,R = T )+

P (C = T ) · P (S = T |C = T ) · P (R = T |C = T ) · P (W = T |S = T,R = T )

=0.5 · 0.5 · 0.2 · 0.9+

0.5 · 0.5 · 0.2 · 0.99+

0.5 · 0.9 · 0.8 · 0.9+

0.5 · 0.1 · 0.8 · 0.99

=0.045 + 0.0495 + 0.324 + 0.0396

=0.4581

Again we need to divide by the normalization constant P (W = T )
and obtain P (R = T,W = T ) = 0.4581/0.5471 = 0.708. Hence in
general it is more likely that the grass is wet because it has rained
than the sprinkler was switched on.

1.3. Probabilistic Modelling

When discussing Bayesian modeling earlier, we saw in Eqn. (1.6) that we
need to estimate the posterior distribution f(θ|x) to make inferences about
the system we are interested in, where the posterior is given by

f(θ|x) =
f(x|θ)f(θ)∫
f(x|θ)f(θ)dθ

For any concrete prediction, we need to choose a suitable point estimator.
We specify this estimator using a loss function (sometimes also called cost
function) C(a, θ) that specifies the loss (or cost) if we estimate θ using a.
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Then the Bayes estimator of θ with respect to this cost function is given
by:

E[C(a, θ)|x] =

∫
C(a, θ)f(θ|x)dθ

In the simplest case, we use the expectation value of the posterior distri-
bution:

E[θ|x] =

∫
θf(θ|x)dθ

As discussed earlier, in some cases we can choose a suitable prior distri-
bution such that the posterior distribution is known - this leads us to the
concept of conjugate priors.The conjugate

prior is from the

same family of

distributions as

the posterior.

However, this only works in select cases and, in general, we need to cal-
culate the integral. Unfortunately, this can only be done analytically for
a limited number of functions or when the integrand can be transformed
such that an analytical solution is known. In many cases, the integral has
to be evaluated numerically. This can be done using random numbers,
which is why this method is also called “Monte-Carlo integration,” where
“Monte-Carlo” refers to the famous casinos in Monte-Carlo, a hint to the
random numbers used in the process.

First, we investigate the one-dimensional case where we have to evaluate
integrals of the form

I =

∫ b

a

f(x)dx

which can be brought to the standardized form

I =

∫ 1

0

f(x)dx

using a suitable variable transformation. The simplest approach is then
to interpret the integral as the constant function 1 and determine the
expectation value

I =

∫ 1

0

1 · f(x)dx = E[f(x)]

We then choose random numbers and we evaluate the function f(x) at
these specific values. Then, we approximate the expectation value with
the sample mean:

I = E[f(x)] ≈ 1

n

∑
i

f(xi) (1.26)
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The more random numbers we use in this procedure, the more accurate the
estimate will be. Unfortunately, in many cases obtaining a sample from
the function f(x) may be difficult to obtain. For example, we may not be
able to sample the function directly because we do not know the complete
parametrization of f(x) or it may be difficult to do so. When evaluating the
sum in Eqn. (1.26) above, we implicitly assumed that we choose the values
xi at which we evaluate the function, from a uniform distribution. However,
if the function f(x) varies rapidly or is concentrated in a small region, this
is not very efficient, since a large number of samples do not contribute much
to the final result. It would be better to choose our sampling points such
that more samples are drawn from a region where f(x) is concentrated
in. This challenge is amplified in higher dimensions. In these cases we
can evaluate the integral using a technique called importance sampling.
The intuition behind this approach is to find a suitable function g(x) from
which we can sample. The function g(x) should be defined on the same
interval as f(x) and mimic f(x) as closely as possible while being easier to
evaluate.

Then, we can use

I =

∫ 1

0

f(x)dx =

∫ 1

0

f(x)

g(x)
g(x)dx = E

[
f(x)

g(x)

]
and, again approximating the expectation value with the sample mean, we
obtain

I ≈ 1

n

∑
i

f(xi)

g(xi)
(1.27)

where the random numbers are chosen according to g(x). Since g(x) mim-
ics the shape of f(x), the distribution of random numbers we use to sam-
ple f(x) more closely follows the regions where f(x) changes rapidly (as
compared to choosing the random numbers, e.g., according to a uniform
distribution). This allows us to evaluate f(x) more accurately with a lower
number of random numbers.

The crude approach becomes more challenging in higher dimensions. This
can be illustrated using a two-dimensional example where we have to inte-
grate a function in the triangle given by, say, the points (0, 0), (1, 0), (1, 1):

I =

∫ 1

0

∫ x

0

f(x, y)dydx
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Figure 1.4.: Random Numbers in the Triangle (0, 0), (1, 0), (1, 1)

Following the one-dimensional approach, we might be tempted to evaluate
the integral using random numbers obtained using the approach outlined
below:

• Generate a random number xi from a uniform distribution in (0, 1).

• Generate a random number yi from a uniform distribution in (0, xi).

However, as we can see in Fig. 1.4, this approach does not work: the
random numbers are not distributed evenly, although we have implicitly
assumed this in the simple approach in order to generate the random num-
bers above. In particular, the numbers towards the origin (0, 0) are much
denser than in the region towards x = 1. This can lead to severe biases in
the evaluation of the integral. This issue becomes even more problematic
in higher dimensions, and we have to use other methods to approximate
the posterior distribution.

The main challenge here is that we do not generally fully know the details
of the posterior distribution. Hence, we lack the means to generate sta-
tistically independent samples from this distribution. In particular, recall
that the posterior distribution is given by

f(θ|x) =
f(x|θ)f(θ)∫
f(x|θ)f(θ)dθ

The denominator is called the “evidence” (P (D)), essentially the normal-
ization given the observed data. We need to solve at least this integral to
be able to work with the posterior distribution.
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Figure 1.5.: A Simple Markov Chain.

Hence, we need to estimate the properties of the posterior distribution
without knowing everything about it. We need to know how to calculate The likelihood

measures how well

a distribution

with its

parameters fits

the observed data.

the likelihood. A popular way of achieving this is called “Markov Chain
Monte Carlo (MCMC) sampling” where we use random numbers (“Monte
Carlo”) in a special way (“Markov Chain”) to draw random numbers ac-
cording to the posterior distribution we are interested in. In other words,
we use a special process (the Markov chains) to approximate the Monte
Carlo integration we have discussed so far. To develop an intuition as to
how Markov Chain Monte Carlo sampling works, we need to understand
some crucial properties of Markov Chains.

Markov Chains are named after A.A. Markov, see e.g. (Hayes, 2013) for
a historic account. Markov Chains are used to describe systems with a
specific number of states. A simple example shown in Fig. 1.5 shows
a system with three states. Each state is connected to another state and
even to itself via an arrow that represents the probability that the state will
go from state si to the next state si+1 according to a specific probability.
For example, we can say that states A,B,C represent the weather, e.g.
cloudy, rainy, or sunny. Or they might represent student life: studying,
sleeping, eating, or others. Let’s take the example of the weather: If we
model tomorrow’s weather observing today’s weather, we can say that
each change in weather occurs with a specific probability. For example,
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we may find that, if it’s sunny today, there’s a 60 percent probability
that it will be sunny tomorrow as well, a 25 percent probability that it’s
cloudy tomorrow, and a 15 percent probability that it will rain. As we go
from day to day, we can predict tomorrow’s weather by judging today’s
weather. To express this in more general terms, we traverse the Markov
Chain and move from state si to state si+1. Such a sequence might be:
A,B,B,A,C,A,C,B,B,A,A, . . ..Memoryless means

that the next

state only depends

on the current

state but not all

the states that

precedes it.

The crucial property of Markov Chains is that they are memoryless. In
the weather example, this means that we can make a prediction about
tomorrow’s weather without knowing the weather of all days preceding
today. Once we are in a particular state (say, A), we can calculate the
probability that we will observe any other state without knowing how we
got into the current one. If we traverse the Markov Chain long enough,
we will eventually reach the equilibrium or stationary state where we can
predict which state we are going to be in with a given probability, regardless
of the initial state. In the example of the three states, we find that, in the
equilibrium case, we are in state A with pA, in state B with pB and C
with pC . For example, imagine the following matrix that determines the
transition from any state to the next:

P (si+1|si) =

A B C
A 0.8 0.1 0.1
B 0.2 0.7 0.1
C 0.15 0.25 0.6

(1.28)

Hence, we go from A → A with 80%, from A → B with 10% probability,
etc. Note that each row adds up to one, as we need to end up in one of
the states A,B or C.

The equilibrium state of this Markov Chain with the transition probabil-
ities given by Eqn. (1.28) is A = 0.475, B = 0.325, C = 0.2. Fig. 1.6
shows how the Markov Chain converges towards this equilibrium state,
initially starting from state B. Since the Markov Chain is memoryless, the
equilibrium state does not depend on which state we start from.

The general idea behind Markov Chain Monte Carlo is that we construct a
chain that has the desired distribution (in our case, the posterior distribu-
tion), as its stationary or equilibrium point. Once we reach the equilibrium
point we can then use the Markov Chain to sample from the distribution,
i.e., to generate random numbers according to the shape of the posterior
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Figure 1.6.: Equilibrium State of a Simple Markov Chain with Three
States.

distribution. As we have seen above, the starting point does not mat-
ter, as we will reach the equilibrium point after the method has been
applied for sufficient time. The challenge is then to find a set of states
s = (s1, s2, . . . sm) that has the distribution we are interested in as its sta-
tionary distribution, i.e., s = Ps, where s is the vector of states and P is
the transition probability matrix.

One way to do this is the Metropolis-Hastings algorithm (Metropolis,
Rosenbluth, Rosenbluth, Teller, & Teller, 1953; Hastings, 1970). Intu-
itively, the algorithm works as follows: Suppose we want to sample from
some distribution p(x) = p̃(x)/C, where p̃(x) is a distribution that is pro-
portional to the distribution p(x) we are interested in. In our case, p(x)
is the posterior distribution f(θ|x) and p̃ is proportional to this. We then
start with an arbitrary state sx. In case of continuous distributions, this
is a point (xt) chosen randomly. Then, we repeat the following two steps:

1. Generate a new point y (or state sy) for some Markov transition
matrix Q(y|x)

2. Accept the point xt+1 = y with probability

α(y|x) = min

{
1,
p̃(y)

p̃(x)
· Q(x|y)

Q(y|x)

}
Otherwise, keep the old point, i.e. xt+1 = xt

The function α(y|x) is called the acceptance probability and intuitively
describes if the proposed new state is in a region were the desired target
distribution is not vanishingly small. Then, once the algorithm converges,
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we can sample from the distribution p(x) (in our case, the posterior dis-
tribution). However, the above outline requires some further discussion.
First, how do we judge whether the algorithm has converged? Indeed, this
is difficult to establish and, generally, needs to be assessed on a case-by-
case basis. Typically, we run the algorithm for a given “warm-up” period,
during which the resulting values are not recorded to get to the region
where the states of the Markov Chain built by the algorithm are more rep-
resentative of the distribution we want to sample from. This is discussed
further in (Gelman, 2014, chap. 11.4).

The other question concerns which distribution we should choose for Q?
The choice of this proposal distribution has a big impact on how long
we need until we reach the equilibrium or stationary point. The exact
choice also depends on the problem at hand. For the Metropolis (not
the Metropolis-Hastings) algorithm, a symmetric distribution is chosen for
which Q(y|x) = Q(x|y). In this case, the acceptance criterion is simpler
and becomes

α(y|x) = min

{
1,
p̃(y)

p̃(x)

}
(1.29)

Empirically, a Gaussian or Normal distribution is often chosen with mean
µ = x, i.e., Q ∼ N (x, σ2). The variance σ2 is then a parameter that has
to be tuned during the warm-up period of the algorithm. This leads to a
random walk where proposed points xt+1 around the previous point xt are
more likely.

In the acceptance criterion above, we have thus far referred to a general
distribution p(x) from which we would like to sample and a distribution
p̃(x) that we use for accepting a new point where p̃(x) ∝ p(x). In our case
of Bayesian inference, we want to sample from the posterior distribution
f(θ|x). Therefore, we need to construct a distribution that is proportional
to this. Remembering Bayes’ theorem (Eqn. (1.6)), we know that the
posterior is proportional to the likelihood times the prior. Hence, we can
express the ratio of posteriors as

f(θ∗|x)

f(θ|x)
=

f(x|θ∗)f(θ∗)∫
f(x|θ∗)f(θ∗)dθ∗

f(x|θ)f(θ)∫
f(x|θ)f(θ)dθ

=
f(x|θ∗)f(θ∗)

f(x|θ)f(θ)

where θ∗ represents the proposed new values of the posterior distribution

30



f(θ|x) (given the observed data x) and θ the current values. Hence, by us-
ing Bayes’ theorem we can express the ratio of posteriors we are interested
in as the ratio of the likelihoods times the priors—and both quantities are
known or described in our model. In particular, we notice that the de-
nominator in Bayes’ theorem representing the evidence (or normalization)
drops out. This is good as we cannot in general compute it.

The Metropolis and Metropolis-Hastings algorithms are conventionally rel-
atively easy to understand. However, in many real-world scenarios, they
are not powerful enough. One of the problems is that the Metropolis-
Hastings algorithm is a bit too random and, for example, has a high reject
(or low acceptance) rate. This, in turn, means that a lot of computations
are wasted. Other MCMC sampling techniques have to be used such as
Gibbs sampling (Geman & Geman, 1984) or the more performant No-U-
Turn-Sampler (NUTS) (Hoffman & Gelman, 2014) using a slightly different
approach called “Hamiltonian Monte Carlo” (Duane, Kennedy, Pendleton,
& Roweth, 1987; Betancourt, 2017).

Further details on Markov Chains and MCMC can also be found in, for
example, (Gelman, 2014; Van Ravenzwaaij, Cassey, & Brown, 2018).

Example: Linear Regression

Let us now illustrate probabilistic modeling using linear regression
as an example and generate some simple toy data according to the
following model for n data points:

1. Generate n x-values according to a standard Normal (or Gaus-
sian) distribution.

2. For each x-value, compute the corresponding y-value as

yi = m · xi + b+ εi

where m is the slope of a linear model, b the intercept and εi a
noise term that is distributed according to a standard Normal
distribution.

For m = 2.0, b = 1.0, the following dataset is obtained if we generate
n = 200 samples:
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In a standard linear regression approach, we would use the data and
determine the model parameters, for example, via least-squared op-
timization. The following plot shows the result of such a fit, together
with the data and the model we used to generate the toy data. The
optimization returned the values m = 2.100 and b = 1.046, which is
reasonably close to the values we used to generate the dataset with.

We now use a Bayesian or probabilistic approach to describe the
data, again using a simple linear model. We start by saying that
our independent variable X with values x is a random variable that
has a linear relationship with the independent variable Y with values
y. The variables X and Y are connected with some Gaussian noise.
This can be expressed in the language of statistic as

Y ∼ N (β ·X + b, σ2) (1.30)

meaning that we use a linear model with Gaussian noise.
Since we are now focusing on Bayesian probabilistic modeling, we
need to assign a prior to all our parameters that need to be deter-
mined in our fit. In the case of our simple linear model, we need priors
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for the slope and intercept of the linear model, as well as the vari-
ance of the noise term. If we have any domain-specific knowledge, we
can choose the priors accordingly. In this simple example, we choose
a wide Gaussian distribution centered around zero as prior for the
intercept and the slope. The conjugate prior for the variance would
be an inverse gamma distribution. However, it is recommended to
use a half-Cauchy distribution as prior for σ (Gelman, 2006; Polson
& Scott, 2012).
Using a probabilistic modeling framework such as PyMC, we can use
for example the NUTS algorithm to construct a Monte Carlo Markov
Chain for this model. First, we check that the has chain converged
by determining the R̂ metric. This number should be smaller than
1.01 (Gelman & Rubin, 1992; Vehtari, Gelman, Simpson, Carpenter,
& Bürkner, 2019).
In contrast to the “standard” linear regression, we now have a
full posterior distribution for the model parameters “intercept” and
“slope” (beta) as shown below. Note that the shape of the poste-
rior distributions is quite similar to (but not exactly the same as) a
Gaussian distribution. The mean values for the intercept (1.0) and
slope (2.1) are very close to the true model values we have used to
generate the data with and in this case identical to the ones we have
obtained using the standard linear regression approach.

We can also show the Bayesian credible intervals for these parame-
ters.
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Using the different values from the posterior distributions for the
model parameters, we can then draw a representation of all possible
models compatible with the data as shown below. Each option is
drawn as a light grey line, and the intensity of the black area indicates
the most probable model parameters. Additionally, the models for
one standard deviation are drawn in orange, and the true model has
been used to generate the data with in red.
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Since we have the full posterior information available, we can not
only determine the credible intervals for the model parameters and
their posterior distribution but calculate the posterior distribution
for each value y of the dependent variable Y at each point x of the
independent variable X. For example, at the point x = 0.2, the
standard linear regression would yield y = 2.1 · 0.2 + 1.046 = 1.466
(indicated by the red dashed line), whereas we obtain the posterior
distribution for y at x = 0.2. The posterior distribution is again
quite similar to a Gaussian distribution, and its mean agrees with
the result from the ordinary least squares approach.
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Self-Check Questions

1. What is the stationary distribution of the Markov Chain given by
Eqn. (1.28) if we start from the configuration (A,B,C) = (0, 0, 1)
instead of (A,B,C) = (0, 1, 0) ?

2. What is the stationary distribution for the Markov Chain with tran-
sition probability?

P (si+1|si) =

A B C D
A 0.6 0.1 0.1 0.2
B 0.2 0.5 0.1 0.2
C 0.15 0.025 0.6 0.225
D 0.001 0.02 0.2 0.779

(1.31)

Solutions

1. The stationary distribution is given by A = 0.475, B = 0.325, C =
0.2, as it does not depend on the starting configuration.

2. The stationary distribution is given by A = 0.145, B = 0.064, C =
0.299, and D = 0.493.
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Summary

Statistical inference allows us to make statements about systems or
their future behavior. One key aspect is that the inferred outcomes
are expressed as probabilities. Bayes’ theorem is at the core of the
Bayesian approach to inference that aims to calculate the posterior
probability of a given outcome, taking both the observed data as
well as any prior information into account. This prior needs to be
carefully chosen and a minimally informative prior should be taken
if only very limited information is available. From a practical point
of view, in many cases, conjugate priors allow us to calculate the
posterior much easier.
In statistical inference, we are often concerned with the analysis of
few a quantities. In many situations, however, we need to investigate
larger systems described by many variables. Bayesian networks allow
to model the dependencies of large systems and derive the predicted
outcome based on a large set of input values.
Finally, in probabilistic modeling, we take into account that our
model variables themselves are random variables, and we can use
Bayesian approaches, in particular a prior, to derive the most likely
outcome. The key challenge of probabilistic modeling is that we
need to determine the posterior distribution without being privy to
all details. This can be done using Markov Chain Monte Carlo meth-
ods, and popular algorithms include the Metropolis and Metropolis-
Hastings algorithm.
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2. Introduction to Causality

Study Goals

On completion of this unit, you will have learned

• what a directed acyclic graph (DAG) is.

• what the elements of DAGs are.

• how expected associations between variables change if we condition
on variables connecting them.

• how to determine whether to expect an association between two vari-
ables.

Introduction

Perhaps one of the most important questions regarding the study of causal-
ity and causal effects is why one should study it at all. In particular, spec-
tacular progress in the area of machine learning and artificial intelligence
has made applications possible that were unthinkable even a few decades
ago. Computers and AI systems play the complex game of Go better than
humans (Silver et al., 2016) and can detect skin cancer with a level of ac-
curacy on par with human experts (Esteva et al., 2017). However, these
systems cannot answer questions as to why something is happening. In
many situations, understanding the underlying causal structure may not
be necessary. We can improve clinical care significantly if we can quickly
and reliably identify skin cancer and use an AI-based system as a diagnos-
tic tool. Similarly, operational procedures (such as replenishing goods at
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a supermarket) depend on many different factors that influence customer
demand. However, we do not have to understand the causal reasoning of
individual customers–—rather, we only need to describe the overall effect,
i.e., the resulting expected demand of all customers on a given day in a
particular store. Additionally, many of these cases where AI based solu-
tions are deployed successfully are within the remit of “narrow AI,” i.e.,
a particular, singular task that the system focuses on. This often implies
that causal structures can be explained in terms of domain knowledge,
and that many of the correlations the machine learning model relies on
are closely related to causal relationships, as they are taken from a very
specific application domain.

On the other hand, many questions cannot be properly addressed and
answered by this approach. For example, while we may use an AI system
as a diagnostic tool, said system cannot answer certain questions, such as
whether a given medication really is the cause of the improvement seen
during treatment. In particular, there may be many biases present in the
data that originate, for example, from common causes between variables.
Correlations between variables found in the data may be spurious and
only present in the data because the process of acquiring the data was
flawed: had we obtained the data correctly, some variables would have
been independent. But as the process of collecting the data was flawed, a
later statistical or machine learning model may pick up on these spurious
correlations and generate misleading results. Furthermore, some data may
be impossible to obtain, for example, due to prohibitive costs or because
the means of obtaining the data would be unethical. In many of these
cases, careful, causal studies can help to gain deeper insights, allowing us
to look at which part of the story the data are not telling.

2.1. Correlation versus Causation

We humans are intimately aware of the concepts of both causality and
correlation and apply them in our daily lives. Unfortunately, however, our
intuition is often wrong. While our behaviour is understandable from an
evolutionary perspective, the conclusions and actions we draw from them
are often wrong and we are prone to a wide range of cognitive biases. For
example, in his research, psychologist D. Kahnemann has found that our
mind can be divided into two cognitive systems through which we experi-
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Figure 2.1.: US Sociology Doctorates versus Worldwide, Non-Commercial
Space Launches

ence the world: “system 1” and “system 2”. System 1 acts subconsciously
and constantly evaluates our world, trying to make sense of it. Only when
this is no longer sufficient is system 2 engaged. System 2 is associated with
abstract cognitive processes, problem solving, and deliberate thought. In-
terestingly, system 1 always constructs a causal story based on what we
experience (Kahneman, 2012, p. 75). For example, after hearing the fol-
lowing sentence

“After spending a day exploring beautiful sights in the crowded streets of
New York, Jane discovered that her wallet was missing” (Kahneman, 2012,
p.76),

a study found that people associated the word “pickpocket” more strongly
with the story than “sights,” even though the sentence makes no mention
of “pickpocket” or “thief”. However, because the sentence is set in New
York, we “jump to the conclusion.” That is, our system 1 builds a probable
and believable causal story that the wallet was stolen rather than lost.
Further studies show that we already have an impression of causality from
birth (Kahneman, 2012, p.76), even though most of our everyday causal
reasoning happens subconsciously.

When looking at a graph such as Fig. 2.1, we immediately notice that the
two curves follow the same pattern. Even (or especially) when we do not
look at the description or details of the graph, we notice that the behaviors
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are the same and our system 1 intuitively assumes that there is a causal
connection between the graphs. Looking at the graph more closely, we see
that the two curves show the number of sociology doctorates in the United
States compared to the number of non-commercial space launches (Office,
2011; Foundation, 2018). The curves show an obvious relationship–—but
in thinking more about it (engaging system 2), we cannot possibly find a
reason why the number of doctorates awarded in the field of sociology in
the United States should be related to worldwide, non-commercial space
launches. Admittedly, the graph employs some bad data visualization tech-
niques (such as two scales for the y-axes), and the range of y values is also
tuned to make the graph more convincing visually. However, the behavior
is real and observable—we say that the two quantities “number of US so-
ciology doctorates” and “worldwide, non-commercial space launches” are
correlated.

The Pearson correlation coefficient is defined as

ρx,y =
cov(x, y)

σxσy
(2.1)

where σx is the standard deviation of variable x (and correspondingly for
y) and cov(x, y) is the covariance of the variables x and y defined byThe covariance

measures how the

variables

‘‘co-vary,’’ i.e.,

how one variable

changes when the

other changes.

cov(x, y) = E [(x− µx)(y − µy)] (2.2)

where E[·] denotes the expectation value and µx is the mean of variable x
(and correspondingly for y). The correlation coefficient is normalized using
the standard deviations and has a range between −1 ≤ ρx,y ≤ 1. A value
of |ρx,y| = 1 means that the variables are related 100%, ρx,y = 0 means that
they are unrelated. Positive values indicate that the two variables change in
the same direction, e.g., if x increases, y increases as well. Negative values
indicate that x and y change in opposite directions. Note that the Pearson
correlation coefficient only captures linear correlation between variables,
as illustrated by Fig. 2.2.

Coming back to the example of sociology doctorates and space launches,
we can say that the variables are highly correlated—but we cannot con-
ceive of a reason why there should be a causal relationship between them:
correlation does not imply causation. What do we mean by this? Implic-
itly, we assume that because two variables are correlated and co-vary in a
defined way, there is also an underlying cause for this. This is, indeed, one
of the main assumptions of statistical modelling, machine learning models

42



Figure 2.2.: Correlation Coefficient

or artificial intelligence applications: the model determines the best com-
bination of the input variables or features to derive a prediction for the
future behavior of the variable or target of interest. Spectacular successes
of such systems (such as the detection of skin cancer with human-level pre-
cision (Esteva et al., 2017)) prove that relying on correlations to predict
the outcome of a variable works very well. This opens the question as to
whether the study of causation is merely a “luxury” or irrelevant in prac-
tice. The answer is, of course, no. Studying the causal structure allows us
to address questions we cannot answer by looking at the data alone. In
other words, the data only contain part of the story.

Why, then, do machine learning or AI models work so well if they do not
include causal relationships? The answer lies in the data we give these
systems. Using our expert knowledge, we feed a curated set of data and
features to the machine learning model or AI system. From these data,
it learns about the relationship we are interested in. However, we already
know that such a relationship can be extracted from the data and is rel-
evant to the problem at hand. However, if we just pass all data to a
self-learning system, we will quickly discover that the resulting predictions
will be sub-optimal (or even wrong). Imagine we were modeling the num-
ber of space launches and, following the often repeated mantra “it’s all
in the data” or “the data speak for themselves”, we would include the
number of doctorates in sociology as a further feature or variable. The
subsequent modelling stage will pick up on the correlation and, given that
this relationship holds over a long period, might even improve the model.
Since there is no causal relationship between the number of doctorates and
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Figure 2.3.: Correlation Depending on “Hidden” Variables

the number of space launches, our prediction model will lead to incorrect
results as we have trained it to include the spurious correlation should the
observed correlation no longer hold.

Correlations between variables can also be very misleading. Pearl et al.
(Pearl, Glymour, & Jewell, 2016, p. 3) discuss the example of the vari-
ables “cholesterol” and “exercise” From our general knowledge, we know
that exercise is beneficial to our health and it is better for cholesterol levels
to be low. However, when we plot a (fictitious) dataset containing these
two variables, we find that cholesterol and exercise are strongly positively
correlated (see Fig. 2.3, part a). Performing a linear regression (part b)
with the functional form y = mx + b results in a slope of approximately
1. From this, we (or a machine learning or AI model) would learn, that
an active lifestyle with lots of exercise is associated with high cholesterol
levels. In other words, exercise would be bad for our health as it increases
cholesterol levels. However, we also know that exercise is good for our
health. We cannot answer this conundrum from these data alone. To un-
derstand the data, we need to look deeper, and, in this case, it turns out
that age plays an important role. If we segregate the data by age (part c),
we find the expected (negative) relationship between cholesterol level and
the amount of exercise. The “age” variable is a common cause for both
cholesterol and exercise: older people tend to have higher cholesterol levels
regardless of their level of exercise. If we had given the “age” variable to a
sophisticated machine learning algorithm in conjunction with “cholesterol”
and “exercise,” it might have learned this relationship. However, we would
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have had to understand the story behind the data in order to know to
include this variable in the first place. Also, simply adding all variables
at hand into such an algorithm just increases the chance that such mis-
leading correlations are learned, as the machine learning algorithm cannot
learn the causal relationship from the data. It “just” exploits the observed
correlations optimally. However, it should be noted (as we will learn later)
that segregating variables by a third variable (in this example, by age) does
not always result in the correct answer. We need to understand the causal
story behind the data to decide whether segregating will give us a useful
answer or make things worse.

But what if (for some reason) the correlation between, for example, the
number of doctorates and space launches was not spurious? What if it
actually held? Testing and evaluating such a question is the main focus of
causal models. The data cannot answer these questions. We can observe
a correlation, but, without further knowledge, we cannot decide whether
it is spurious nor real. Admittedly, we would likely not investigate the
relationships between these two variables in practice. However, the same
underlying question is very relevant to many cases. As an example, in the
1950s, many studies focused on the relationship between smoking cigarettes
and lung cancer (Mendes, 2014). Prior to the 1900s, lung cancer was
very rare, even accounting for the difficulty in diagnosis then. As smoking
cigarettes became more popular and widespread, the number of lung cancer
cases started to rise sharply, from 54 cases in 1900, to 4,345 by 1963. Lung
cancer became one of the most common types of smoking and lung cancer
rose at the same time, it is not the same as proving that smoking is indeed
the cause of the increase in lung cancer. Tobacco companies have a strong
interest in not establishing a causal relationship, as this would likely result
in public policies limiting or banning smoking (as it has been done in many
countries much later).

From the 1950s onwards, many studies were performed that proved a causal
relationship between smoking and lung cancer. However, this topic also
highlights some issues with experimental studies: many studies are per- In a RCT, subjects

are randomly

assigned to the

treatment or

control group.

formed as randomized controlled trials (RCT). Since each individual in
such a study is assigned to the treatment or control group randomly, there
is no cause that could influence whether that individual would receive the
medicine. In a medical study, we can then determine if the medicine works
by observing the outcome in the two studies. However, what if adminis-
tering a medicine (or withholding it) were unethical? What if we forced
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participants to take a substance we suspect is lethal? In the case of the
tobacco studies, the researchers used volunteers. This might solve the eth-
ical dilemma, as the participants do smoke voluntarily. Even though they
were made aware of the risk, however, relying on volunteers might intro-
duce a bias, since only a specific type of person might volunteer. Again, we
need to understand more of the causal story behind the data to understand
possible complications.

Thus far, we have pointed out that causal relationships play an important
role when understanding the relationships between variables and their val-
ues.

Causal Relationship

“A variable X is a cause of a variable Y if Y in any way relies on X
for its value.” (Pearl et al., 2016, p. 5)

Pearl et al. use the example of listening to illustrate the definition: “X is
a cause of Y if Y listens to X and decides its value in response to what it
hears.”(Pearl et al., 2016, p. 5)

Self-Check Questions

1. How is the correlation coefficient defined?

2. What can happen when correlated variables share a common cause?

3. When dealing with correlated variables that have common cause, is
it always correct to look at the two correlated variables in slices of
the common cause?

4. Why is the use of volunteers in a study problematic?

Solutions

1. The correlation coefficient is given by ρx,y = cov(x,y)
σxσy

.
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2. If variables share a common cause, the correlation between the vari-
ables may not be meaningful or appear wrong. For example, the
variables “cholesterol level” and “exercise” seem to be strongly pos-
itively correlated. However, both are influenced by a third variable
(“age”) that needs to be taken into account. Doing so restores the
expected negative correlation.

3. Depending on the causal structure, this may or may not be correct.

4. Using volunteers may introduce a bias in selecting the participants
in a study, as some underlying cause or condition may influence the
individual’s choice to volunteer.
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Figure 2.4.: Granger Causality (BiObserver (Wikipedia) CC BY-SA 3.0)

2.2. Granger Causality

Time series data

are data that

follow a distinct

temporal order.

Granger causality (Granger, 1969) is a concept of causality that is exclu-
sively related to the analysis of time series data, and hence quite different
to the discussion of causality in the remainder of this text. See, for exam-
ple, Eichler (2012) for more information on this topic. It was developed in
the context of economics and therefore caution should be exercised when
Granger (or G-) causality is used for other time series data. In this context,
causality is defined temporally: a preceding event can cause a later one,
but a later event cannot cause an earlier one.

If we have two (or more) time series, we can intuitively understand G-
causality in the following way: a specific feature of one time series causes
feature in the other time series at a later time, i.e., at a given lag. This is
illustrated in Fig. 2.4 (BiObserver, 2014), where the big spikes in the time
series X occur in time series Y at a later time.

This means that one time series (X) contains some information that can be
used to explain the behavior of the other time-series (Y ). Hence, including
X in the forecast of Y leads to better predictions than when X is not used.

A bit more formally, we can look at two time series X1 and X2, where we
use the subscripts to indicate that we could extend the argument to more
time series up to some index Xn. We can then write the system of time
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series equations for an auto-regressive model for the two time series as:

X1(t) =

p∑
i=1

α11,iX1(t− i) +

q∑
i=1

α12,iX2(t− i) + ε1(t) (2.3)

X2(t) =

p′∑
i=1

α21,iX1(t− i) +

q′∑
i=1

α22,iX2(t− i) + ε2(t) (2.4)

where coefficients α determine the strength with which each lag i con- The lag determines

the time shift

between the

original and

modified time

series.

tributes to the time series, and the order of the auto-regressive model is
given by p, p′, q, q′. The numbers ε1(t), ε2(t) are residual uncertainties. As
we can see, the two time series depend on each other. For example, if
α12,i 6= 0, then X1(t) depends on X2(t), and vice versa for α21,i 6= 0. We
say that the time series are connected via G(ranger)-causality if we can
establish that α12,i 6= 0 with some level of significance.

Note that this implies that both time series X1 and X2 can be connected by
Granger causality: X1 can be the cause of some feature in X2, and, at the
same time, X2 can be the cause of some other feature in X1. As mentioned
before, we can extend this to n different time series X1, . . . , Xn that can
all, to some varying degree, be connected by Granger causality with each
other. The dependencies can also be expressed as directed acyclic graphics
(Chen & Hsiao, 2010) which allows to connect Granger causality to the
concepts developed in the rest of this textbook.

In the considerations above, the lag at which a feature in one time series
causes the feature in the other time series was always fixed. This means
that when the feature in the time series occurs that causes the effect in
the other time series, the effect would appear there with a fixed delay. In
many systems, this delay is not fixed, but may be variable, which can be in-
cluded in an extended definition of Granger causality (Amornbunchornvej,
Zheleva, & Berger-Wolf, 2019)

When looking at the temporal order of events, it is important to avoid the
“post hoc ergo propter hoc” (Latin for “after this, and, therefore, because
of this”) fallacy. Events can occur after one another, even though they are
not causally related. For example, the rooster crows at sunrise but does
not cause the sun to rise. Examples of this from the medical field are given
in (Grouse, 2016).
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Self-Check Questions

1. True or False: Granger causality can only affect time series in one
direction, from time series X to Y .

2. Explain Granger causality informally.

Solutions

1. False, the temporal causal structure can go both ways.

2. Granger causality is when, including one time series into another, the
forecast accuracy improves, as the information contained in one time
series helps to make the forecast of the other better.
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Figure 2.5.: Basic Graphs

2.3. Directed Acyclic Graphs (DAG)
A graph is made

from ‘‘nodes’’ or

‘‘vertices’’ that

may or may not be

connected to other

nodes via

‘‘edges.’’

Causal relationships can be expressed in a number of ways. A very powerful
method is centered on a graphical representation called “directed acyclic
graphs” (or DAGs), and we will follow the notation in (Pearl et al., 2016).
Fig. 2.5 shows the basic setup of simple graphs. In this example, the
nodes are labelled X, Y, Z. The edges connecting the nodes are either
undirected (see part a) or directed (part b). In the latter case, we use
little arrows to indicate the direction. Hence, directed edges come out of
one node and go into another. The node from which the arrow emerges
is called the “parent,” and the node into which the arrow enters is called
the “child.” The relationship between grandparents and grandchildren is
defined accordingly. Occasionally, we may use undirected edges as shown
in part a) of Fig. 2.5 to indicate that two variables are associated with each
other and are therefore correlated, but we do not know which variable is
the parent and which is the child. However, the point of causal diagrams is
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to model causal relationships explicitly. If we do not know the relationship,
we will typically draw causal graphs for all alternatives and then find ways
to experimentally test which is the correct graph.

A path between any two nodes is called a directed path, if we can follow
the arrows emerging through the parent, going through all children and
grandchildren until we arrive at the destination node.

If any two nodes are on a directed path, the first node is called the ancestor,
and all subsequent nodes on the directed path are the descendants of this
node.

In a cyclic graph (part c), we can return to the origin node following a
directed path. This means that, starting at one node, we can follow the
direction of the arrows and come back to the node we started from. In an
acyclic graph (part d), no such directed path exists, and we can move from
ancestors to descendants—but not back.

It is important to note (and remember) that information can “flow” along
any edge (directed or undirected) and, in case of a directed edge, even
against the direction of the arrow. Although it may appear counter-
intuitive or confusing at the beginning, an arrow does not indicate that
information only flows in the direction of the arrow.

Causal graphs are mainly constructed from, and are extensions of, part b
and d of Fig. 2.5. In these graphs, the arrow indicates a causal relation-
ship: the ancestor can causally influence the descendants (in the direction
of the arrow, but not the other way round). As an example, we can imag-
ine a barometer. If it rains, the needle will point to a low value: rain →
barometer value. The underlying physical explanation is that the barome-
ter measures the air pressure, and during bad weather, the air pressure is
low. For the point of illustrating the causal relationship, we can imagine
that the variable “barometer value” listens to “rain” (as proxy for atmo-
spheric pressure). However, even though we can manually force the needle
of the barometer to any value, the weather will not change. Causal graphs
are typically read either left to right or top to bottom. This is not a strict
rule, but we generally try to arrange the graph such that the ancestors are
either toward the left (or top) of the graph and the descendants towards
the right (or bottom).

Part d of Fig. 2.5 also illustrates that we have generally two types of effects:
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a direct effect and an indirect effect. The variable X causally affects the
variable Z directly—this is called the direct effect. In addition, X also
affects Y , and Y in turn affects Z. Hence, even in the case where there is
no direct effect from X to Z, X can still affect Z via Y—this is called the
indirect effect. An important path of building causal models is to add all
the ways the variables can influence each other and in which way they are
(causally) connected.

Variables can also have more than one cause. For example, in part d
of Fig. 2.5, the variable X is a common cause of both Y and Z and
(causally) influences both. X, Y , and Z are associated with each other.
By this we mean that these variables are related to each other but either
we do not know their relationship yet, or we do not make such a statement.
More formally, we can say that two variables are associated when observing
one changes the probability of observing the other. This implies that the
variables are correlated but we do not want to make a causal statement:
The association can be due to a causal connection between the variables
which also makes them correlated. This association can also originate
from, for example, a spurious correlation because we have not (yet) taken
all causal dependencies into account. By saying that a set of variables are
associated we want to express that we know that they are related to each
other in the sense that observing one changes the probability of observing
the other(s), but we do not want to make a further statement as to why
the variables behave this way.

In the above example, neither Z nor Y can be a cause for the behaviour
of X. Expressing this using the earlier definition of causality, the variables
Y and Z listen to the value of X to define their values—but X does not
listen to either Y or Z. Nodes that are not connected via an edge are not
associated with each other, hence we neither have a causal relationship nor
can we observe a correlation between them—they are independent.

As an example, consider Fig. 2.6, part a. Smoking (variable X) is both
a cause to yellow fingers (Y ) and lung cancer (Z). Note that there is no
arrow from Y (yellow fingers) to Z (lung cancer). Having yellow fingers
does not cause lung cancer. Note that we did not use any data to construct
the causal graph. Instead, we constructed the causal graph from the expert
knowledge we may have in this area. However, if we were to look into a
(large) dataset, we would observe the following: the variables Y (yellow
fingers) and Z (cancer) are associated, i.e., the proportion of individuals
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Figure 2.6.: Common Cause

that are affected by lung cancer is different for those with and without
yellow fingers. Hence, we observe an expected correlation between yellow
fingers and cases of lung cancer. However, this correlation is not due
to the fact that yellow fingers are a cause of lung cancer, but that both
yellow fingers and lung cancer share a common cause: smoking. Hence,
two variables can be associated even though there is no direct connection
(an edge) between them in the causal graph. This constellation can lead to
a bias in the analysis and illustrates that the information flows both in the
direction of the arrows and against it: Informally, we can say that yellow
fingers and lung cancer are associated because the information about lung
cancer flows backwards via the common cause into the variable describing
yellow fingers. We call the variable X (smoking) a confounder of variable
Y and Z.

So far, we have only considered all values of the variables. We now look at
the relationship between Y (yellow fingers) and Z (lung cancer) in different
slices of the common cause X (smoking). In this case, X is a binaryA binary variable

can only take two

values, such as

‘‘true’’ or

‘‘false.’’

variable, and we consider both options, smokers and non-smokers, and
look at the association between Y and Z for each value of X. This is
called conditioning, and we indicate that we condition on a variable by
adding a little box around it in the causal graph, as shown in part b of
Fig. 2.6. We then look at the data and check the association between
yellow fingers and cases of lung cancer, for example across all individuals
who never smoked. Since yellow fingers were associated with smoking and
we are now looking at people who have never smoked, learning that an
individual has yellow fingers does not change their chances of developing
lung cancer. In the same way, if we look at all individuals who smoke and
the rate of lung cancer, we find that this rate doesn’t change regardless of
whether or not the individual has yellow fingers. Hence, in each stratum
of the common cause X, the association between the variables Y and Z is
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Figure 2.7.: Common Effects

removed—even though it is present if we don’t condition on X, but look at
the complete or marginal distribution. This also holds if X is not a binary
variable and can take any range of values.

Confounder

We expect an association between two variables, even if the variables
are not causally connected when sharing a common cause. This
confounding effect is blocked if we control for the common cause
(the confounder).

Similarly, causal graphs can contain structures with common effects. As an
example, consider the causal graph in figure Fig. 2.7, part a. With a simple
picture, we can imagine that developing cancer is due to a genetic factor
and an environmental factor. For simplicity, we assume that these factors
are binary, i.e., either you have a genetic disposition to develop cancer
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(or not); or you are either exposed to some environmental factor (or not).
There are arrows from both the genetic and the environmental factor to
cancer, but there is no arrow from the genetic factor to the environmental
factor. Your genetic code cannot causally influence the environment, for
example, air pollution. Again, we have drawn this causal diagram using
expert knowledge and did not rely on data. If we were to look at a large
data set, we would find that X and Y are indeed independent. If two
variables have a common effect, they are still independent from each other
if they are not causally connected. For example, a given fraction of the
population has a genetic factor that raises the chances of developing cancer.
This factor does not vary depending on where the people live. Likewise,
being exposed to some environmental factor does not alter your genetic
predisposition.

However, this situation changes if we now look at specific values of Z, i.e.,
individuals who have developed cancer. As before, we indicate that we
look at specific values or condition on the variable by adding a square box
around the variable, as shown in part b of Fig. 2.7. Let’s say we look
at all individuals with cancer, i.e., Z = 1. We then look at the values
of X and Y . We now find that X and Y are indeed associated, whereas
they were not when we looked at all values of Z. We can understand it
this way: If a person has cancer (Z = 1) and does not have a genetic
prevalence (X = 0), it is more likely that this individual was exposed to
the environmental factor (Y = 1). This is not due to any causal connection
between the two factors. Rather, since the the person has cancer, it must
have been caused by something - and it wasn’t the genetic factor. This
makes the environmental factor more likely, and X and Y therefore become
correlated. This is called the selection bias, a systematic bias that arises
due to the selection of our data set. Note that this applies not only to the
common effect, but also happens if we condition on any descendants of this
variable, as shown in part c of Fig. 2.7. In this case, surgery is a treatment
for cancer. Since we do not perform the surgery randomly, S can act as a
proxy for Z and hence causes the same bias as if we had conditioned on Z
directly.

Selection Bias

We expect an association between variables that are not associated
or otherwise causally connected if we condition on a common effect.
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Figure 2.8.: Graph with Unobserved Causes

The above discussion highlights that causal graphs representing causal
models are closely related to statistical models. For example, if we draw an
edge between two nodes, we expect a correlation and a causal relationship.
If no such edge is present, we understand that the nodes are independent
from each other.

In some causal models, it is important to account for any exogenous causes
that influence the variables. We denote these with U (for unknown), indi-
cating that the observable and measurable variables (such as X, Y or Z)
are influenced by external effects that we cannot access or measure directly.
A simple example is shown in Fig. 2.8. In more complicated settings, un-
observed causes may influence more than one variable or lie on a directed
path.

Furthermore, we have assumed so far that all variables measured so far
can be measured fully and correctly, i.e., there is no measurement error.
In many real situations, this will not be possible, and we need to account
for the fact that the variable we observe or we can measure is not the
one causally connected to other variables. This is illustrated in Fig. 2.9:
we are interested in variable Z, or, more precisely, the effect of X and Y
on Z. However, in this case, our measurement of Z is impaired by some
measurement error, and we therefore only have access to the variable Z∗,
which is influenced both by the “true” behaviour of the underlying variable
Z and the uncertainty of the measurement process UZ .

When constructing DAGs to represent causal models, it is paramount to
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Figure 2.9.: Variables with Measurement Errors

remember that these graphs are built to express testable models—not rep-
resent the most realistic way any number of variables might be influenced
by any number of effects. We can always find (un-) observable effects that
are influenced by further (un-) observable effects, etc. The point is to
build a simple model of the causal relationship we wish to explore in our
research question. As such, the DAG is a simplification. That being said,
it must not be too simple. In particular, we need to be careful to include
all common causes of all nodes we add to the graph, as these can lead to
biases.

Self-Check Questions

1. Selection bias arises...

2. The confounding effect of common causes can be removed by...

3. True or False: In a DAG, we can return to the position we started
from by following the path along the arrows.

4. True or False: Selection bias is not affected by descendants of com-
mon effects.
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Solutions

1. Selection bias arises when conditioning on a common effect of two
variables.

2. The confounding effect of common causes can be removed by condi-
tioning on the common cause or confounder.

3. False.

4. False.
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2.4. Elements of Causal Graphs

In the following section, we want to investigate the basic building blocks
of causal graphs in more detail. In particular, we will look at how three
variables or nodes (say A,B and C) can be connected by arrows or di-
rected edges in directed acyclic graphs (DAGs). In particular, we look at
mediators (chains of variables), forks (confounders), and colliders. Each
type of connection describes a different way that the variables can affect
each other.

Fork or Confounder
In a fork, arrows

split into two

different

directions.

The fork is a frequently encountered constellation in a causal graph. This
is illustrated in Fig. 2.10, which shows the same constellation in three
different ways. In each case, the arrows exit variable B and enter variables
A and C.

Figure 2.10.: Fork or Confounder

Variable B in the fork is often called a “confounder.” We have already
previously encountered this situation when we analyzed the relationship
between smoking, yellow fingers and cancer. In that case, smoking (B)
was a common cause between yellow fingers (A), and cancer (C), and we
found that A and C were associated even though there was no causal
connection between them. This can be illustrated by a further example
(Pearl & Mackenzie, 2018, p. 114): we want to investigate the reading
ability of school children. If we look into the data, we find an associa-
tion between shoe size and reading ability. While the correlation found
in the data is observable, we cannot imagine why shoe size should be re-
lated to the ability to read. However, there is a common cause to both
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Figure 2.11.: Mediator

shoe size and the reading ability: age. On average, older children will
have larger shoes and can read better. The corresponding causal graph
is: Shoe size ←− Age −→ reading ability. Here, age is a common cause
to both shoe size and reading ability. This is why variable B in the fork
(age in this example) is called a confounder: it introduces a spurious asso-
ciation between variables that are otherwise unrelated. Controlling for B,
i.e., looking at the values of A and C in separate regions of B, removes this
association: If we look at, e.g., only children of a specific age, the ability
to read is no longer associated with the shoe size.

For further information also see (Pearl & Mackenzie, 2018, p. 114) (Pearl
et al., 2016, p. 35ff).

Chain or Mediator

The chain connects the three variables (A,B and C) with directed edges
via arrows: A → B → C, i.e., A is the parent of B, B is the parent of
C, and A is the grandparent and ancestor of C, as shown in part a of
Fig. 2.11. The variable B in the middle is also called the “mediator.” The mediator

transmits the

effect from cause

to outcome.

We can understand this construct using the example of a fire alarm (Pearl
& Mackenzie, 2018, p. 113). Although we call them fire alarms, most
detectors work by detecting the presence of smoke and not, for example,
heat. The corresponding DAG is Fire → Smoke → Alarm. Hence, the
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alarm is triggered by the presence of smoke and not by any other cause.
For example, we could have a fire that produces no smoke (or so little that
the detector would not recognize it). In this case, the alarm would not be
triggered even if there was a fire. This means that mediator B (smoke)
“screens off” the value of the original cause A (fire): once we know the value
of B, knowing the value of A will not add any additional information.

Generally, we do not need to build causal graphs this way. For example,
if we are interested in establishing whether smoking causes lung cancer,
we could just use A for smoking and C for lung cancer. We do not need
to know the exact mechanism causing this to happen. Or, if we want to
know if some medicine (A) is the cause for the improvement in the outcome
(C) of the treatment, we do not need to know the underlying mechanism
to establish that the medicine works. Note that this is not the same as
understanding why the medicine works—here, we just want to establish
the fact that the medicine is indeed the cause of the improvement seen
in the patient receiving the treatment (as opposed to some other factor).
However, there are some cases in which we want to use a chain or put a
mediator in explicitly. For example, imagine that we know that a medicine
works and at least part of it works in a specific way. Then, we can draw
the DAG shown in part b of Fig. 2.11: We know medicine A has an effect
on outcome C of the treatment. We then use mediator (B) to separate the
effect the medicine has via a specific mechanism from the general effect.

An important question is whether or not we should control for mediators,
i.e., look at specific values and add a little box around the mediator in the
causal graph to illustrate that we fix its value. In most settings, we do not
want to control for the mediator in the chain as fixing B would “screen
off” the value of A, and we would not be able to learn about the causal
relationship. For example, if we controlled for smoke in fire alarms and only
look at cases B = 0 (no smoke), the alarm would never go off, regardless
of whether we would also observe a fire. Hence, when we have made the
mistake of controlling for the mediator, we might conclude that fire has no
causal effect on fire alarms. In practical situations, the mediator is oftenA proxy is a

variable that is

used to measure a

variable that is

not directly

accessible.

replaced by a proxy, as illustrated in part c of Fig. 2.11. For example, we
might take the affiliation to a religious group as a proxy for religious belief
or the membership to a political party as a proxy for political views. In
each case, we cannot directly measure the causal variable (B), but we can
acquire data that is closely related to it. Typically, proxies are not perfect
representations of the variable itself. However, controlling for the proxies
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Figure 2.12.: Controlling for Mediators

can have the same effect as controlling for the mediator itself.

However, there are some scenarios where we want to control for mediators.
Suppose we want to establish the causal effect of variable A on C. However,
as a complication, both have a common but unknown or immeasurable
cause (U), as shown in part a of Fig. 2.12. Hence, U is a confounder for
the effect of A on C. Unfortunately, since U is immeasurable, we cannot
control for it by fixing its value. However, if we can measure a variable
(M) that mediates the effect of U on A, we can control for the mediator M
instead of the confounder U , thereby determining the causal relationships.
The same holds if M is not a mediator for the effect of U on A, but for U
on C.

It is important to note that mediators and confounders share the same
independence condition: the causal graphs are given by A ←− B −→ C
for the fork or confounder and by A −→ B −→ C for the mediator or
chain. In both cases, conditioning on B, i.e., fixing the value of B makes
the variables A and C independent. Hence, we cannot, for example, use
data alone to determine which causal structure is correct. Instead, we need
to use our expert knowledge and may need to expand the causal graph to
determine which is correct.

For further details, see (Pearl & Mackenzie, 2018, p. 113) (Pearl et al.,
2016, p. 35ff).

Collider

Fig. 2.13 shows three examples of how a collider could be used in a causal
graph. This construct is used when a variable has multiple causes. In A collider in a

causal graph is a

node into which

two arrows enter.

our examples, arrows from both A and B enter C, meaning that A and B
are causes of C. We had already encountered colliders when we discussed
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Figure 2.13.: Collider

common effects earlier in the example of cancer that can develop from either
a genetic or an environmental factor. This example also highlighted one of
the most important aspects of working with colliders: when conditioning
on a collider, two variables that are otherwise unrelated become associated.
A further example illustrates this using three aspects of Hollywood actors:
Talent −→ Celebrity ←− Beauty (Elwert & Winship, 2014). Both talent
and beauty contribute to the success of actors. However, in the general
population, these factors are unrelated, which means that if we look at a
sample of talented individuals, the distribution of the variable “beauty” is
not different from the sample where we set “talent = 0.” However, if we
condition on the collider by setting “celebrity = 1,” we find that talent
and beauty become associated, even though there is no causal connection
between them. This is because we know that a given actor is a celebrity,
and if this is not due to talent, beauty must play a stronger role. Therefore,
talent and beauty become negatively correlated.

Another way to see how colliders work is to use three variables (X, Y , Z)
that are connected via the simple equation Z = X + Y ; the variables X
and Y are independent from each other.(Pearl et al., 2016, p. 41). If we
know the value of X, say x = 3, we would not know anything about Y ,
since X and Y are unrelated. However, if we also knew the value of Z,
e.g., z = 10, then, knowing X, we are able to infer Y . Hence, X and Y
become associated if we know Z.

Note that if we condition on a descendant of a collider, this has the same
effect as conditioning on the collider itself, i.e., the two variables with
arrows pointing into the collider and further on into the descendant become
associated when being conditioned on.

For further details, see (Pearl & Mackenzie, 2018, p.115) and (Pearl et al.,
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2016, p. 40ff)

Paths

We have so far discussed the basic building blocks from which we construct
causal graphs. In particular, the variables are also known as nodes in the
graph and may be known or measurable or unknown or not measurable.
These nodes are connected via arrows and elements such as chains (or
mediators), forks, or colliders express how the variables are related to each
other. Once we build a causal graph, the nodes become connected by
paths. A path is made of

a sequence of

connections (or

edges) between the

nodes.

Path

A path in a causal graph is any route between any two nodes in
the graph connected by arrows. Some paths follow the direction of
arrows, whereas other paths do not.

It is important to remember that the paths are made from the arrows, but
valid paths can go in the direction of the arrows or against the direction of
the arrows. This may be a bit confusing at first, as we intuitively assume
that a path follows the direction of the arrows—but this is not the case.

In Fig. 2.14, we can explore how to determine the paths by using the
example of a simple collider where A and B are common causes of C. Part
a of the figure shows the collider, and this simple graph has three paths:

1. From A to C in the direction of the arrow (part b)

2. From B to C in the direction of the arrow (part c)

3. From A to C in the direction of the arrow and then from C to B
against the direction of the arrow (part d)

A path can be either blocked or open, and to determine whether a path is
open or not, we need to look at the behavior of the elements on the path.
We have already seen examples of this when we looked at the association
between variables. When we looked at the collider in terms of common
causes, we saw that, for example, the variables “talent” and “beauty”
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Figure 2.14.: Paths in a Collider
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Figure 2.15.: Paths in a fork

become associated when we know that an actor is a celebrity, even though
“talent” and “beauty” are unrelated amongst the general population. We
can also say that the path between “talent” and “beauty” is blocked by
the collider but becomes open when conditioning on the collider (Pearl et
al., 2016, p. 46).

Path Rule for Colliders

A collider blocks a path and, hence, the association between variables
along the path they lie on. Conditioning on a collider opens the path,
and the variables become associated. This also holds for conditioning
on descendants of colliders.

The opposite is true for chains and forks. In the case of forks, we have
already seen this in the example where smoking is a common cause of both
yellow fingers and lung cancer. Even though yellow fingers are not a cause
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of lung cancer, the two are associated because they share a common cause
(smoking). In this situation, the central element of the fork is also called
“confounder.” We then saw that we can remove this spurious association
by conditioning on the confounder in the fork. We can express this in the
following rule that holds for all non-colliders (Pearl et al., 2016, p. 46).

Path Rule for Non-Colliders

A path through a non-collider (fork or chain) is open, meaning vari-
ables on a path connecting any two nodes are expected to be asso-
ciated. Conditioning on the non-collider (e.g., on a confounder or
mediator) blocks the path and the association is removed. This also
holds for descendants of non-colliders.

Note that colliders are path specific. If multiple paths go through a node,
that node may be a collider for some of the paths but not others.

Self-Check Questions

1. True or False: A valid path only follows the direction of the arrows.

2. Conditioning on a collider will ... the path.

3. Conditioning on a confounder will ... the path.

4. The central element of a fork is called the ...

Solutions

1. False. A valid path can go in the direction of the arrows or against
it.

2. Conditioning on a collider will open the path.

3. Conditioning on a confounder will block the path.

4. The central element of a fork is called the confounder.
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2.5. D-Separation

Causal graphs, or DAGs, are a model of how we think a number of vari-
ables do or do not depend on each other. If we think that a variable (X) In a graph,

variables are

represented by

nodes.

has a causal influence on another variable (Y ), we draw an arrow from X
to Y . This also means that we expect to observe an association or corre-
lation between these variables in the data. If there is no causal influence
of X on Y , we do not draw an arrow. However, as we have already seen,
this does not generally mean that that we do not expect to observe an
association between X and Y in the data. In several examples, we have
already seen that X and Y may be associated due to the structure of the
graph. Depending on the arrangement of colliders, chains and forks, as
well as whether we condition on some of these elements (or not), we ex-
pect to observe or remove an association between variables. Paths allow
us to traverse the graph and determine the relationship between any two
variables, even if they are far apart in the graph.

As we have discussed before, a causal graph is a tool that helps us under-
stand a concrete research question or a specific relationship. It is not in-
tended as a “world-model” that explains everything that may be connected
to some variable we come across in any given question. As we pointed out
earlier, we can always find possible causes of causes of causes and so on.
Attempting to build such an inclusive diagram quickly leads us down the
proverbial rabbit hole. Instead, we focus on a specific question such as
“Does smoking cause cancer?” or “Is medicine X a cure for disease Y?” or
“Does the vaccine work?” We only need to include the variables that are
relevant to the question at hand. In most cases, we do not even include
mediators in chains unless we are interested in their specific properties.
However, we do need to make sure that we include all relevant variables,
all common causes to each variable, as well as unobservable variables that
influence one or more variables in the graph.

One of the most important applications of the resulting graph is deter-
mining whether we are prone to any bias in the analysis by measuring
certain variables in the data, i.e., which data we take and which variables
we condition on. Remember that conditioning on variables can introduce
an expected association or remove them, depending on how the variable is
connected to other variables in the graph. We have previously discussed
that we can analyze the path between any two variables or nodes in or
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against the direction of the arrows connecting them to determine whether
we expect an association.

Unfortunately, variables can be connected by multiple paths in a complex
graph, and along each path, there will be any number of colliders, forks,
or even chains. To be able to analyze a graph, we need a criterion that
determines whether we expect an association between two variables in the
data and if there is a way to remove unwanted associations that lead to
biases or if handling a specific variable introduces a new bias. This criterion
is called “d - separation” (where d stands for “directional”) (Pearl et al.,
2016, p. 46). This means that variables (nodes in the graph) X and YAny two nodes are

called ‘‘d -

connected’’ if

there is a path

connecting them

and ‘‘d -

separated’’ if

there is no such

path.

are d-separated when either there is no path between them (i.e., no arrow
along the path) or if all paths between them are blocked. If even one
path is not blocked, the variables are d-connected, and we can expect an
association in the data. Pearl uses the example of pipes (Pearl et al., 2016,
p. 46) that represent the paths. If all pipes are blocked, water cannot be
exchanged between the nodes. If at least one pipe is open, water can flow.
As with pipes, paths only need to be blocked in one place.

As we have discussed before, the following nodes can block a path (Pearl
et al., 2016, p. 46):

• a collider that is not conditioned on (or any of its descendants)

• a chain or a fork that is conditioned on

More formally, we can define d-separation as the following.

Definition of D-Separation

Let p be a path between nodes. Then p is blocked by a set of nodes
Z if and only if (Pearl et al., 2016, p. 46):

1. The path p contains a chain of nodes A −→ B −→ C or a fork
A←− B −→ C such that the middle node B is in Z, i.e. that
B is conditioned on;

2. The path p contains a collider A −→ B ←− C such that the
collision node B (or any of its descendants) is not in Z, i.e.,
that neither B, nor any of its descendants, is conditioned on.
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Figure 2.16.: A Complex Causal Graph

Set Z is said to d-separate X from Y if and only if Z blocks every
path from a node in X to a node in Y (Pearl, 2009, p. 17).

As an example, consider the causal graph in Fig. 2.16 (Pearl et al., 2016,
p. 47). Here, we want to determine whether the nodes Z and Y are d-
separated or if they can be d-separated. First, we note that there is a
fork involving the node T , i.e. T is a common cause to both Z and Y ,
and, hence, a confounder for these nodes. If not conditioning on T , the
path Z ←− T −→ Y is open and Z and Y are d-connected. There is
another path between Z and Y : Z −→ W ←− X −→ Y . This path is
blocked because W is a collider and, following the above rules, blocks the
path. However, if we condition on W , the path is open again according to
the rules. The nodes are d-connected, because there is at least one path
connecting the nodes, and we therefore expect an association. The same
applies if we condition on U , because U is a descendant of the collider W .
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Because X is a fork just like T , we can block the path again if we need to
condition on either W or U . We can summarize this as follows:

• If we leave the graph as it is, then Z and Y are d-connected, because
of the fork at T .

• If we condition on T , then Z and Y are d-separated, because both
the conditioned fork and W , a collider, block the path.

• If we condition on either W or U , then Z and Y are d-connected,
irrespective of whether we condition on T .

• If we condition on T , then W and/or U , as well as X, and the nodes
Z and Y are d-separated again, because X is the central element of
the fork W ←− X −→ Y .

This example illustrates that analyzing causal graphs becomes quite com-
plex even with a small number of variables. In particular, we need to pay
close attention to the elements along a path connecting two nodes to deter-
mine whether any two nodes are d-connected or d-separated, i.e., if we can
expect to find an association between the variables in the data. We also
have to be careful which variables we condition on when analyzing the data.
Conditioning on the wrong variable, for example on a collider, will open a
previously blocked path and we can expect a spurious correlation. On the
other hand, we need to condition on confounders to block the path. The
causal graph allows us to determine whether or not it is possible to block
all paths and remove the expected association. This is important because
any spurious association can lead to a bias in our analysis in general.

If two variables are d-separated without conditioning on any nodes along
the path connecting them, these variables are unconditionally or marginally
independent. If the variables become d-separated after some element along
the path has been conditioned on, the variables are said to be conditionally
independent, given a set of variables that has been conditioned on.

Self-Check Questions

1. Two nodes, X and Y , are d-separated if and only if . . .
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2. Two nodes, X and Y , are d-connected if . . .

3. A collider . . . the path if not conditioned on.

4. True or False: Conditioning on a descendant of a collider keeps a
path blocked if the collider is not conditioned on.

Solutions

1. Two nodes X and Y are d-separated if and only if every path between
the nodes (if it exists) is blocked.

2. Two nodes X and Y are d-connected if there is any unblocked path
between the nodes.

3. A collider blocks the path if not conditioned on.

4. False.
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2.6. Conditional Independence

We have previously seen that we expect variables to be associated (or not)
depending on how they are related to each other in a causal graph. We
have also found that conditioning on variables can make them become
dependent and we expect to find a correlation between them in the data
- or, conversely, that conditioning on variables makes them independent.
Here, we want to give a more formal and thorough definition of the terms
“independence” and “conditional independence.”

Two variables are independent if observing one does not influence the other.
For example, while having a cough increases the likelihood that you may
be ill (where we make an observation that someone has a cough), noting
that there are five books on your table has no impact on the probability.
Formally, we can express the independence for two events A and B as

P (A|B) = P (A) (2.5)

This means that observing the value of the variable B does not give us any
further information on the likelihood that event A occurs. If the above
relation does not hold, then A and B are dependent. Dependence and
independence are symmetric: if A is independent or dependent of B, then
B is independent or dependent of A.

We can define dependence and independence for the variables X and Y in
the same way as we defined it above for events A and B. Here we say that
the variables are independent if for every value x of variable X and every
value y of variable Y

P (X = x|Y = y) = P (X = x) (2.6)

and, correspondingly, P (Y = y|X = x) = P (Y = y), as, again, dependence
and independence are symmetric. Variables are dependent if the above
equation does not hold for at least one combination of pairs of values for
the variables X and Y .

In addition to this absolute independence, two events (A and B) can be
independent depending on a third variable (C). In this case, A and B are
independent given C if

P (A|B,C) = P (A|C) and P (A|B,C) = P (B|C) (2.7)
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This means that in the presence of event C (or, if we condition on C), A
and B become independent, i.e., the distribution P (A|B,C) is independent
of B. We can understand this intuitively by looking at the example of
fire detectors (Pearl et al., 2016, p. 10): The event “detector in on” is
dependent on “there is a fire.” However, these detectors do detect the
presence of smoke and not fire itself. If we now fix the value of the event
C to “there is smoke” (i.e. condition on C and only look at events where
there is smoke), we find that the detector is always on, regardless of whether
there is a fire nearby.

We can express this condition for variables as well where we adopt a more
formal approach.

Conditional Independence

Let X, Y, and Z be variables and P (·) a probability distribution over
some variables. Then, X and Y are conditionally independent given
Z if (Pearl, 2009, p. 11):

P (x|y, z) = P (x|z) whenever P (y ∧ z) > 0 (2.8)

∀x ∈ X, y ∈ Y and z ∈ Z.

We can express this in more detail: if for any combination where the
variable X takes the value x, Y takes the value y and Z takes the value
z and we have P (Y = y ∧ Z = z) > 0, then P (X = x|Y = y ∧ Z = z) =
P (X = x|Z = z). Informally, when we know that the value of Z is z and
the probability distribution is greater than zero, P (Y = y ∧ Z = z) > 0,
all information is already contained in Z. We do not learn anything else
about X if we also know the value of Y,. In this case, knowing the value
of Z is enough. We can say “z screens off X from Y” (Pearl, 2009, p. 11).
The symbol ⊥⊥ is often used to indicate conditional independence (Dawid,
1979). Using this symbol, we can write Eqn. (2.8) as: ‘‘iff’’ is short

for ‘‘if and only

if.’’(X ⊥⊥ Y |Z) iff P (x|y, z) = P (x|z) . (2.9)

Note that instead of using the symbol ∧ for “and,” a comma is often
used as an abbreviation. Hence, the following notations are equivalent
P (A and B) = P (A ∧B) = P (A,B).
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Self-Check Questions

1. When do we say that two events (A and B) are independent?

2. When are the events A and B conditionally independent?

3. What does the conditional independence P (A|B,C) = P (A|C) imply
for B once we know C?

Solutions

1. Two events (A and B) are independent if observing one event does
not influence the probability of observing the other: P (A|B) = P (A).

2. The events A and B are conditionally independent given an event C
if P (A|B,C) = P (A|C). This means if we learn the value of C, we
do not gain any further knowledge about A if we also learn the value
of B.

3. In this case the probabilities become independent of B. We can also
say informally that C screens off A from B.
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Summary

In this unit, we have discussed how causal graphs can be used to ana-
lyze the relationship between variables. In particular, we have found
that correlation or association between variables may be counter-
intuitive and relying on correlations alone may lead to wrong re-
sults, as these correlations may be spurious. We have used directed
acyclic graphs to represent causal relationships and we have learned
how we can analyze such a graph to determine whether or not to
expect an association between variables in the data. These graphs
are built from nodes that are connected with arrows, with each node
representing a variable. Special configurations of arrows and nodes
such as chain, fork or collider determine the properties of the causal
graph. The d-separation criterion allows us to determine whether
we can expect an association between any two nodes or if we can
remove a spurious association by conditioning on a variable along
the path. Granger causality is a concept related to time series where
one time series improves the prediction of another, for example, a
specific feature causes the occurrence of a specific behavior at a later
time in another time series.
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3. Interventions

Study Goals

On completion of this unit, you will have learned

• the difference between observations and interventions.

• what confounders are and how to take them into account in causal
analysis.

• what counterfactuals are and how to use them to explore the “world
that would have been.”

• what a randomized controlled trial is and why they work.

• when we cannot perform a randomized controlled trial.

Introduction

When we perform statistical studies and causal analyses, we are typically
not content with describing the issue at hand. Instead, we want to take
action in some way. For example, when developing a new medical drug,
we want to establish how patients respond once they receive it. This is
called an intervention, that is, actively do something and exploit a causal
relationship, e.g., between administering the medicine and the health of
the patient.

Everyone has probably heard the famous sentence: “correlation does not
imply causation.” To that effect, a correlation between variables does not
necessarily indicate that using these variables to describe or predict a given
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effect is a valid and useful approach. On the contrary, we have previously
discussed how spurious correlations can be created by conditioning on some
variables or failing to condition on others, and, without access to the causal
graph, it is very difficult to establish the causal effect of one variable on
another.

In some scenarios, we can establish a causal effect using randomized con-
trolled trials where all factors apart from one are either static or vary
randomly. By influencing this one factor, we can establish a causal rela-
tionship. For example, when testing a new drug, we can choose a group of
patients at random who get the drug and a control group that does not.
If we then determine the outcome of the study, we can infer that the new
drug works or it does not. However, in many cases, we cannot perform such
randomized controlled trials. Under certain circumstances, performing the
study may be unethical. For example, it would be unethical to force a large
group of randomly selected individuals to heavily smoke over a long period
of time simply to determine whether they would be more likely to develop
and die of lung cancer than those who do not smoke. In other cases, it may
be not be practical to perform a randomly controlled trial on a large scale,
or it may not be possible to control external efforts such as the weather.

In this unit, we want to understand the difference between observing and
intervening or “seeing versus doing.” Central to this are interventions, i.e.,
the answer to the question “what happens if I do...” and counterfactuals,
which describe an alternative reality: “if I had done X instead of Y, what
would have happened?”

3.1. Seeing versus Doing

A core aspect of working with causal models is the understanding of how
the system described would behave if we changed it, either by actually
performing the change or by theorizing about what would have happened
if we had done so.

This difference between observations and interventions (or “seeing versus
doing”) can be illustrated by the firing squad example (Pearl & Mackenzie,
2018, p. 39ff) illustrated in Fig. 3.1. In this example, a prisoner is to be
executed by firing squad. The squad is divided into two teams, A and
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Figure 3.1.: Causal Diagram for the Firing Squad Example.

B. The execution must be ordered by the courts (court order CO in the
diagram), the order is passed to the leader of the squad (Captain C) who
gives teams A and B the order to fire. As soon as the order is given, both A
and B obey the order and fire, which results in the death D of the prisoner.
Each of the variables (CO,C,A,B,D) is binary and can be represented by
“true” (1) or “false” (0). Using the graph in Fig. 3.1, we can dissect
what has happened. For example, if we observe that the prisoner is dead
(D = 1), we can conclude that both team A (i.e., A = 1) and team B (i.e.,
B = 1) have fired, following an order given by the captain (i.e., C = 1),
which will only occur if the court order was issued (i.e., CO = 1). Hence,
we know that if the prisoner is dead, a corresponding court order was
issued, because this is the only constellation in which the prisoner can end
up dead. Suppose we observe that team A fired. What could we conclude
about team B? Because of the causal structure, team A would only fire if
the court order was issued, which, in turn, means that the captain would
had to have given both teams the order to shoot. Hence, observing that
team A shoots implies that team also B shoots, since both teams obey the
order from the captain. Note that this reasoning holds even though A is
not a cause of B, i.e., there is no arrow pointing from A to B. We also
observe that we cannot reconstruct this causal graph from observational
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Figure 3.2.: Interventions in the Firing Squad Example.

data alone. If we are to record the variables, we only have two types of
events: all variables are true or all variables are false. Hence, all variables
are perfectly correlated, even though we know from our expert knowledge
that A and B are only associated because they have a common cause (the
captain’s order) and don’t share a causal relationship otherwise. We can
find many analogous examples to illustrate that observational data alone
do not explain our world. For example, without interventions, we would
abstain from seeking medical expertise, as visiting a physician is strongly
associated with being ill. We understand that someone going to a physician
is correlated with being ill. However, that observation is not what makes
them ill. On the contrary, that person goes to the physician to seek a
(medical) intervention. Likewise, raw observation alone would suggest that
firefighters might be related to fires erupting, as we only see them in times
of emergency. From such observations, one could erroneously come to the
conclusion that we should disband all fire brigades. However, we know that
this is nonsensical, as the firefighters are only there to intervene.
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We can now investigate what would happen in the firing squad scenario
if we were to intervene. Imagine that team A always fires, regardless of
whether the captain issues an order or not. This is not compatible with
the causal graph we have discussed so far. Instead, we need to change
the causal graph, as seen in part a of Fig. 3.2. Since we intervene (i.e.,
set A = 1, regardless of any order the captain may have given), we force
variable A to take a specific value and erase any arrows pointing to A. We
do this because there is then no other cause that can influence the value
of A and we force the variable to take a specific value. As we can see from
the modified causal graph, the prisoner will always die. Furthermore, we
also conclude that team B likely didn’t shoot because B is still waiting for
the command from the captain, who, in turn, needs a court order. Since
team A always shoots, it’s less likely that a court order was given. Counterfactuals

are used to

examine how a

system would react

if the situation

had been different

to the one

observed.

Finally, we can investigate the counterfactual situation to the original
situation from Fig. 3.1. Suppose the court order was issued, the captain
gave the firing order, team B complied, but team A decided not to fire
(despite the order). Would the prisoner be dead? This is called the coun-
terfactual to the original situation, as we are taking a fictitious situation
into consideration: Normally, team A would obey the order and fire—but
what would happen if if it did not? In this case, we remove the arrow from
C into A to indicate that A does not obey the order (C = 1) and set A = 0.
Unfortunately, even though team A changes its course, the prisoner will
still die, as team B will still carry out the order.

We can illustrate the concept of counterfactuals with another example:
Suppose a patient follows a treatment and takes a specific medicine. We
then observe a specific outcome, for example, the patient gets better. Then,
we can investigate the counterfactual. What would have happened had the
patient never taken the medicine? By definition, we cannot observe the
actual outcome of the counterfactual scenario, as the patient has already
taken the medicine and we have observed the corresponding outcome. To
consider a counterfactual is to establish a fictitious world where we can
go back in time, make sure that the patient does not take the medicine,
and, crucially, change nothing else. If the patient does not get better in
this hypothetical world, we would conclude that the medicine had a causal
effect on the patient’s real-world outcome.

Using these examples, we can also understand the difference between in-
tervening on a variable and conditioning on them.
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Difference between Intervention and Conditioning

The difference between intervening on a variable and conditioning on
it is as follows (Pearl, 2009, p. 54): Intervening on a variable means
that we fix the value of the variable and erase the arrows leading into
the corresponding node in the graph. Hence, we change the system
(and the graph). If we condition on a variable, however, we restrict
the variable to a subset of values, but we change neither the real
system nor the causal graph representing it.

It is important to note that interventions refer to individuals, whereas con-
ditioning generally refers to populations. In particular, when we condition
a variable X to the value x, we observe the value y of variable Y with
probability P (Y = y|X = x). This means that P (Y = y|X = x) describes
the distribution of the variable Y for the case that X = x, i.e., for the
subset of individuals in which the value of the variable X happens to be
x. On the other hand, if we intervene, we force each individual in the
population to take the value X = x (Pearl et al., 2016, p. 55). To make
this distinction explicit, we introduce the following notation:

Do-Operator

When we intervene on a variable (as opposed to conditioning on
them), we express this as do(X = x) (Pearl et al., 2016, p. 55).

Hence, P (Y = y|X = x) is the probability that Y = y conditional on
finding X = x, whereas P (Y = y|do(X = x)) is the probability that Y = y
if we force X = x through our intervention (Pearl et al., 2016, p. 55).

In the discussion above, we have implicitly assumed that the intervention
is binary, as in the example of the firing squad. There, we considered
the case where team A would fire irrespective of whether the captain (C)
would issue the order. However, in general, interventions will follow a
dynamic policy (Pearl et al., 2016, p. 70 ff). In these cases, the value of
the variable X that we intervene on is specified by another variable or set
of variables in a specific way. For example, we can imagine that the value
x of variable X is given by x = g(z), where g(z) is some functional form
that depends on another variable Z with value z. We can write this as
P (Y = y|do(X = g(z)).
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As a concrete example, consider a physician treating a patient. The dose of
the medicine the patient receives depends on the value of certain measured
parameters such as blood pressure. If a patient’s blood pressure is too
high, they will be asked to take the medicine and the dose of that medicine
depends on how high the blood pressure is. In this scenario, we say that
the action (i.e., force X = x for all individuals) is conditional on the value
of variable Z.

Self-Check Questions

1. What does the expression do(X = x) mean?

2. What do we wish to achieve by considering interventions and coun-
terfactuals?

3. What do we mean by the term dynamic policy?

Solutions

1. When we write do(X = x), we mean that we are intervening and,
through our intervention, force the value of variable X to take the
value x.

2. Observational data can only take us so far. If we wish to entangle
causal relationships, we need to consider the system we want to ex-
plore. In case of interventions, we can force the variables to take
specific values by changing the system (and the corresponding causal
graphs); in the case of counterfactuals, we evaluate hypothetical out-
comes where we change one variable and leave everything else intact.
This allows us to probe and explore the causal structure of the prob-
lem at hand.

3. In a dynamic policy, our intervention depends on the value of another
variable or set of variables Z. Hence, our intervention is conditional
on this variable and we can write P (Y = y|do(X = g(z)) to express
this formally.
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3.2. Confounders and Counterfactuals

We encountered both confounders and counterfactuals when we investi-
gated how to build causal graphs and how to distinguish the concepts
between observation and intervention, i.e., seeing versus doing.

Confounders

Earlier, we saw that confounders generally rise when there is a common
cause of multiple effects. For example, we have seen that both yellow fin-
gers and lung cancer are caused by smoking. Looking at data, we expect to
find an association or correlation between yellow fingers and lung cancer,
even though yellow fingers are not a cause of lung cancer. In this example,
smoking is a confounder. If we didn’t include it in our analysis, we would
include the variables “yellow fingers” and “lung cancer,” as they are cor-
related. However, the correlation is spurious. If we condition on smoking,
e.g., only look at people who do not smoke, the correlation disappears;
having yellow fingers does not alter your chance to contract lung cancer if
you do not smoke. This also applies to variables that are continuous and
not binary. Pearl explains this with another example (Pearl & Mackenzie,
2018, p. 138): Imagine we test a new medicine and split the participants
of the study into two groups, one that receives the drug and one that does
not. However, it turns out that, on average, the participants in the group
receiving the medicine is younger than those in the control group. Hence,
the age of the participants becomes a confounder; we cannot directly trans-
late the results from the study, as the two groups may behave differently
due to the age of the participants. However, we can control for age and
compare the two groups by stratifying by age, meaning that we form sub-
groups according to age within each group. We can then take the weighted
average over all age groups, taking the relative population in the group
into account, and then compare the group that receives the medicine to
the control group.

While controlling for age is the right thing to do in the above scenario,
it raises an important question: Which variables should we control for?
Näıvely, the safest bet seems to be to control for everything. We could
control for any variable imaginable, including age, gender, weight, height,
etc. However, it is likely that we would only complicate the situation; we
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have already seen that conditioning on colliders introduces a (spurious)
association between variables. Controlling for variables in the central ele-
ment of a collider will make the results worse than if we leave the variables
alone. Causal diagrams allow us to determine which variables we need to
control for and which must not be controlled for.

Historically, there have been several ways to define confounding and con-
founders. One definition is: “A confounder is any variable that is correlated
with both X and Y ” (Pearl & Mackenzie, 2018, p. 152).

Another definition is given by Hernberg(Hernberg, 1996): “Formally one
can compare the crude relative risk and the relative risk resulting after
adjustment for the potential confounder. A difference indicates confound-
ing, and in that case one should use the adjusted risk estimate. If there
is no or a negligible difference, confounding is not an issue and the crude
estimate is to be preferred. Personal judgment comes into play when what
is “negligible” is decided. Some authors show both estimates and leave
the decision to the reader.” Informally, Hernberg suggests comparing the
results when controlling and not controlling for a variable. If the differ-
ence between them is small, that variable is not a confounder and we can
use the result when not controlling for that variable. As Hernberg points
out, this approach leaves much to the interpretation of the author or the
reader: which variables do we consider for controlling? Even in the best
cases, we cannot look at all conceivable variables. Furthermore, what does
“negligible” mean? The above discussion highlights that this definition of
confounding is unlikely to result in a stringent approach.

Another approach to define confounding is the “classic epidemiological def-
inition of confounding” that consists of three parts (Morabia, 2010)(Pearl
& Mackenzie, 2018, p.152): A confounder of X (treatment, e.g., medicine
being administered) and Y (outcome, e.g., patient gets better) is a variable
Z:

1. that is associated with X in the population at large.

2. that is associated with Y among people who have not been exposed
to treatment X.

3. that should not be on a causal path between X and Y .

The third part of the definition is a relatively recent addition. Furthermore,
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we should note that both the first and the second part of the definition do
not require any causal links. The definition is based entirely on statistical
concepts, and Z is assumed only to be correlated to X and Y but is not
required to have any causal connection. However, consider the following
constellation:

X −→ Z −→ Y

In this case, Z fulfills the “classical” definition above, i.e., the first two
points. However, Z is not a confounder. Rather, it is a mediator, as it lies
on a causal path between X and Y . Now consider the case where Z is a
descendant of M in the chain X −→M −→ Y , which we can illustrate as

X −→ M −→ Y

↓
Z

In this case, Z is associated with X and Y and fulfills the first two require-
ments of the epidemiological definition (as before). However, now Z is a
descendant of the mediator M and does not lie on a causal path between
X and Y . Hence, the third requirement of the definition is also fulfilled,
and yet, controlling for Z would be a disaster; since Z is a descendant
of M and M is a mediator in the chain X −→ M −→ Y , Z acts as a
proxy of M , and controlling for Z has the same effect as controlling for
M , at least to some degree. As we have discussed before, proxies areIf variables are

not directly

measurable, we can

often use proxies

that are

measurable and

closely related to

the variable in

question.

generally not perfect substitutes for the variable, but controlling for them
has (almost) the same effect as controlling for the “real” variable. For ex-
ample, we might take the membership to a religious community as a proxy
for religious beliefs or the membership in a political party as a proxy for
political orientation.

Using the do-operator, we can define confounding more formally:

Confounding

Confounding is whenever P (Y |X) 6= P (Y |do(X)) (Pearl & Macken-
zie, 2018, p. 151) (Pearl, 2009, p. 184).

Here, P (Y |X) is the conditional probability that we observe some value
of Y = y given that we have observed X = x. The quantity P (Y |do(X))
describes the probability of observing Y = y if we perform a (hypothetical)
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Figure 3.3.: Graphs for Adjustment Formula

intervention that forces X = x. Whenever observing the variables taking
a specific set of values for X and Y and forcing X = x and observing the
response of Y leads to a different result, we know that there is a confounder
that we haven’t yet accounted for. Coming back to the example of how
smoking is a common cause and confounder of both yellow fingers and
cancer, we can observe the ratio of people with yellow fingers who develop
cancer at some point in their life. However, if we paint everyone’s finger
yellow, that does not alter the chance of getting cancer. Therefore, there
must be something that causes both cancer and yellow fingers, and we need
to look for a confounder and avoid confounding.

We now investigate how we can calculate the causal effect in the presence
of a confounder (Pearl et al., 2016, p. 55ff). Suppose X represents the
treatment in a medical study, for example, getting the drug (X = 1) or
not (X = 0). We then want to estimate if the new medicine has an effect,
i.e., if the difference P (Y = 1|do(X = 1)) − P (Y = 1|do(X = 0)) is not
zero when Y = 1 represents that the patients get better. This is also called
the “average causal effect” (ACE). In this simple example, we only look at
whether we administer the new drug at all. However, generally speaking,
we could also investigate different doses and grades of improvement seen
in the patients. Hence, X and Y may have several different values or
be continuous. If there is no confounding, we can simply perform the trial
and compare the results. However, we suspect that there is a third variable
involved that may confound the results. For example, we may suspect that
the gender of the patients plays a role. We can then introduce a confounder
(Z) representing the gender and obtain the graph in part a of Fig. 3.3

Z is a common cause to X and Y and is, therefore, a confounder—just like
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in the smoking example concerning yellow fingers and cancer. However,
in our current example there is also a direct causal effect of X on Y ,
as we, of course, hope that the new medicine does indeed have a causal
influence on the recovery of the patients. In order to proceed, we need to
compute the probability P (Y = y|do(X = x)), i.e., the probability that
we observe Y = y when we force X = x. Forcing X = x, i.e., applying
the do-operator modifies the causal graph, as shown in part b of Fig. 3.3:
Since we force the value of X, there cannot be any causal connection from
the confounder Z to X. Any influence is severed, since we now control
the value of X ourselves. Consequently, we remove the arrow from Z to
X. In terms of probabilities, the conditional probability of the modified
graph in part b of the figure is then the same as when applying the do-
Operator: P (Y = y|do(X = x)) = Pm(Y = y|X = x). A key observation
is that Z is not influenced by our intervention as symbolized by the do-
Operator. While we have removed the arrow from Z to X, the values of Z
remain the same. In the medical example, whether we make the patients
take the medicine (X = 1) or not (X = 0) does not change their gender
(Z). Hence, if we have a ratio of 50% to 50% male/female at the start,
we will have the same ratio after applying the do-operator. Or, in the
language of statistics, the marginal distribution of P (z) remains invariant.
Furthermore, the probability P (Y = y|Z = z,X = x) remains the same asP (Y = y|Z = z,X =

x): remember that

the comma is a

shorthand for ∧,
i.e., P (Y = y|Z =

z ∧X = x)

we do not change the arrows from X into Y or from Z into Y . Informally,
the probability remains unchanged, because the outcome in Y will not
change even if we observe X = x or force do(X = x). Hence, we observe
the invariance conditions in the modified graph following the intervention
using the do-operator:

Pm(Z = z) = P (Z = z) (3.1)

Pm(Y = y|Z = z,X = x) = P (Y = y|Z = z,X = x) (3.2)

We also note that X and Z are d-separated in the modified graph, as there
is no connection between the variables. We have removed the arrow from
Z to X, and Y is a collider on path X via Y to Z, blocking the path unless
conditioned on (which we don’t do). This implies that

Pm(Z = z|X = x) = Pm(Z = z) = P (Z = z) (3.3)

In the first part of this equation, we make use of the fact that Z is inde-
pendent of X and, in the second, that the intervention via the do-operator
does not change the marginal distribution of Z. We can then compute the
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effect of the intervention:

P (Y = y|do(X = x)) = Pm(Y = y|X = x) (3.4)

=
∑
z

Pm(Y = y|X = x, Z = z)Pm(Z = z|X = x)

(3.5)

=
∑
z

Pm(Y = y|X = x, Z = z)Pm(Z = z) (3.6)

In this derivation, Eqn. (3.4) follows immediately from the above defini-
tion of applying the do-operator: This is how we arrived at the modified
graph. In order to arrive at Eqn. (3.5), we make use of the total law of
probabilities (Pearl et al., 2016, p. 13): According to the

total law of

probabilities, we

can decompose a

probability into a

weighted sum of

all contributing

factors.

P (A) = P (A|B1)P (B1) + P (A|B2)P (B2) + · · ·+ P (A|Bn)P (Bn)

=
n∑
i=1

P (A|Bi)P (Bi)

where the sum runs over all values that index i can take, i.e., all possible
“sub-events” Bi that may contribute to A. The reason why we describe
the probability for A like this is because it is often easier to describe the
conditional probabilities of individual events and the probability that these
occur than the total probability that A will occur. In our case, the variable
Z can take two values: male and female. We then exploit the fact that
X and Z are independent (d-separated) to arrive at Eqn. (3.6). Using
the invariance conditions in Eqn. (3.1), we can express the effect of the
intervention using the do-operator.

Adjustment Formula

P (Y = y|do(X = x)) =
∑
z

P (Y = y|X = x, Z = z)P (Z = z)

(Pearl et al., 2016, p. 57)

This adjustment formula describes what we mean by “controlling for Z”:
We compute the association between the X (called the “treatment”) and
Y (the “outcome”) for each possible value of the confounder Z and then
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take the average. It is important to note that this can be determined
from the data as the right hand side of the adjustment formula only uses
observational values. It is also important to note that, in this case, Z is
always a parent of the treatment X and an observable confounder. This
means that Z is a “real” variable we can measure and that the arrows
emerging from Z point into X. The parent is often denoted pa (for parent)
instead of Z in the adjustment formula, i.e., P (Y = y|X = x, PA =
z)P (PA = z) (Pearl et al., 2016, p. 59).In an acyclic

graph, no path

between nodes

points back to a

starting node.

We can re-write the adjustment formula using the rule of product composi-
tion for DAGs (Pearl, 2009, p. 29): In acyclic graphs, the joint distribution
of the variable is given by the product of the conditional probabilities from
the parents to the children in the nodes:

P (x1, x2, . . . , xn) =
∏
i

P (xi|PAi) (3.7)

where PAi are the parents of the nodes xi.

In our graph, variable Z is the parent of X and Y . If we multiply and
divide the summand of the adjustment formula by P (X = x|Z = z) (which
doesn’t change anything as it is equivalent to multiplying by one), then
the numerator becomes P (Y = y|X = x, Z = z)P (Z = z|X = x)P (Z =
z), which is the joint distribution P (X = x, Y = y, Z = z). The new
adjustment formula is (Pearl et al., 2016, p.59):

P (y|do(x)) =
∑
z

P (X = x, Y = y, Z = z)

P (X = x|Z = z)
(3.8)

where we remember that Z is a parent of X. The quantity P (X = x|Z = z)
is also called the “propensity score.”

Counterfactuals

As we have seen earlier, counterfactuals explore the world that would have
been. The interventions discussed above relate to a population or a group
such as in the following scenario: what is the causal effect if we force all
members of the medical study to take the medicine versus prohibit them
from taking it? Conversely, counterfactuals predominantly apply to indi-
viduals. For example, “Jon has taken the red pill and was cured of the
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disease—what would have happened had Jon taken the blue pill?” This is
a purely hypothetical question, as Jon has already taken the red pill and we
have observed the outcome. We cannot travel back in time and let Jon take
the blue pill. We could, however, try to find someone similar to Jon and
have that person take the blue pill. However, this ultimately only approx-
imates an answer concerning Jon, as the two individuals are not identical.
The above discussion illustrates that the methods we have discussed so far
are not sufficient and that we cannot express the counterfactuals with the
do-operator. Instead, we need a new notation. Using the above example,
we let X denote the treatment: Jon takes the medicine (X = 1) or does
not (X = 0). Y denotes the outcome: Jon gets better (Y = 1) or does
not (Y = 0). In the counterfactual world, we want to solve the following
question: Given that we know that Jon took the medicine (X = 1) and got
better (Y = 1), what is the probability that Jon’s condition would have
worsened (Y = 0) had he not taken the medicine (X = 0)? To express
this, we use the following notation:

P (YX=0 = 0|X = 1, Y = 1) =? (3.9)

This notation highlights the difference between two different “worlds”: We
know the outcome of the “actual” world (X = 1) but would like to know
the probability in a different world, one where X = 0. This difference is a
critical aspect of counterfactuals (Pearl & Mackenzie, 2018, p. 287): If we
didn’t have hindsight into what has actually happened in the “real world,”
there would be no difference between P (YX=0 = 0) and P (Y = 0|do(X =
0)).

How do we then work with counterfactuals and determine the value we are
interested in? Following Pearl (Pearl et al., 2016, p. 93 ff), we assume
that we have some causal model M in which two variables, X and Y , are
connected:

Yx(u) = YMx(u) (3.10)

where Mx is a modified model in which we have replaced X with X = x,
i.e, the counterfactual value we are interested in. Then, the counterfactual
Yx(u) we want to compute is the solution to the modified model with the
value set to the value X = x. So far, we have only considered graphical
representations where the causal graph represents a statistical model. In Structural causal

equations are the

mathematical

equivalent to a

causal graph.

order to work with counterfacutals, the original model M and the modified
model Mx need to be a set of equations, also known as structural causal
equations. These can also be used to study the effect of interventions
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Figure 3.4.: Example for Counterfactual Reasoning

with the do-operator. However, the critical distinction is that we focus on
individuals when considering counterfactuals, not populations.In typical

remedial program,

students are

offered additional

tutorial support

or supervision.

We follow a simple example focused on students studying for a course
(Pearl et al., 2016, p.94 ff). The students are offered the chance to join a
remedial program. This is the variable we can control, the “treatment”
(X) where the value of X signifies the amount of extra tutoring time in the
program. The students also do homework (H), and both the extra tutoring
and the amount of homework a student does are causally connected to
their performance during exams. Participating in the program can both
help in the final score directly and when doing homework, which, in turn,
helps improve exam performance. In our example, to avoid any selection
bias, students are assigned to the program randomly. The resulting causal
graph is shown in part a of Fig. 3.4. The example makes a number of
assumptions:

• All variables are standardized, i.e., they follow a Gaussian distribu-
tion with mean 0 and standard deviation 1. This means that if, e.g.,
the exam score is positive, the student scored better than average in
the exam.

• The simple model assumes linear relationships between all variables.
This implies we do not consider non-linear, higher order, or threshold
effects.

• We assume that each variable is influenced at most by one unmea-
sured exogenous variable. These variables can have some influence
on the variable in the graph, but we assume that these exogenous
variables only influence one variable directly (and not two or more)
and that there is no cross talk between these exogenous variables. In
this simple linear model, these variables (U) represent the variation
between students, i.e., some students will perform better than others,
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for example, due to talent.

Then, the causal graph can be “translated,” so to speak, into the following
set of linear equations:

X =UX (3.11)

H =aX + UH (3.12)

Y =bX + cH + UY (3.13)

σUiUj
=0 ∀i, j ∈ X,H, Y (3.14)

This means that

• students are assigned randomly to the “treatment” X, meaning there
is no arrow into X from external causes apart from the exogenous
variable UX that summarizes all unmeasured external influences.
Hence, X only depends on UX , as seen in Eqn. (3.11).

• the amount of homework a student does only “listens” to X, mean-
ing there is an unknown coefficient a connecting the two and the
exogenous variable UH , as seen in Eqn. (3.12).

• the exam score is causally influenced both by the participation in the
program and by the amount of homework, as well as an exogenous
variable UY , as seen in Eqn. (3.13). In the linear model, these
connections are represented by the coefficients b and c.

• all exogenous variables are uncorrelated and do not influence each
other, as seen in Eqn. (3.14).

Before we can use the model, we need to determine the unknown coefficients
(a, b, c). These can be measured using population data where we look at
a large number of students and determine the numerical values. In the
example, we assume that a = 0.5, b = 0.7, and c = 0.4 (Pearl et al., 2016,
p. 95). With these values, we can now look at individual students. Suppose
we measure that a particular student spent about half the average time in
the tutoring program. (X = 0.5), the average amount of time on homework
(H = 1), and scored better than the average student (Y = 1.5). This is the
“real world,” i.e, the one where we can measure both the treatment and the
outcome. Using the equations above, we can use all values to determine
the exogenous variables to be UX = 0.5, UH = 0.75, and UY = 0.75. As
we have said above, these variables describe the “unique properties” of the
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student itself, i.e., their variation when measured against all other students.

We can then ask the counterfactual question: what would have happened
had the student spent double the time on homework instead of the average
time? What would have happened if H = 2 instead of H = 1, everything
else being equal? To answer this question, we need to modify the model
as shown in part b of Fig. 3.4. We remove the arrow from X to H, as
the participation in the study program no longer has an influence on the
amount of homework the student does. Instead, we set H = 2, since this
is what we want to know. According to Eqn. (3.10), the value of the
counterfactual is given by the solution to the modified model, i.e., the one
in part b of Fig. 3.4. We are interested in the counterfactual solution
for the hypothetical “outcome” YH=2, i.e., the performance in the exam
had the student studied twice as much as the average student, all else
being remaining the same. Using the numerical values b = 0.7, c = 0.4,
UY = 0.75, and X = 0.5 (the student still participates in the remedial
program for half the time than the average—the only thing we change is
the amount of homework) and H = 2, we obtain YH=2 = 1.9, i.e., the
student is almost twice as good as the average if they study for double the
time than the average, up from Y = 1.9 in the “real world.”

The same approach can then be followed for non-deterministic models.
However, in this case, we cannot uniquely identify the exogenous variables.
We need to assign a suitable probability distribution for each.

A related concept to the approach analyzing counterfactuals described
above is that of “potential outcomes.” This was developed by Rubin
(Rubin, 1974). The framework uses the same notation to denote the coun-
terfactuals: YX=x(u) or Yx(u) is the counterfactual outcome for some “unit”
(or individual) u if the value of the “treatment” we can control had been
X = x. In fact, Pearl has taken the notation from the potential out-
come model and used it for his analysis of counterfactuals (Pearl, 2009, p.
243). The main difference between Rubin’s potential outcome framework
and Pearl’s counterfactual framework is that Pearl’s framework is based
on causal graphs that are connected to a structural model. The dependen-
cies of the variables can be derived from the graph and causal model. In
Rubin’s framework, however, there is no underlying causal graph or struc-
tural model. Instead, the questions about counterfactuals are formulated
algebraically. This leads to three assumptions that have to be accepted to
work in that framework (Pearl & Mackenzie, 2018, p.280)(Pearl, 2009, p.
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100):

• The effect of a treatment on an individual is independent of what
treatment (if any) the other individuals get. This assumption is gen-
erally fulfilled unless the treatment is a scarce resource in emergency
situations. This assumption is called the stable unit treatment value
assumption (SUTVA).

• The treatment is assumed to be “consistent,” meaning that if you
receive the treatment (e.g., take medicine), the effect remains the
same regardless of whether you took part in the study. For example,
you might take an aspirin against your headache. The headache
would go away if you took the aspirin, as part of the study or in
everyday situations.

• The variables must meet the requirement for conditional indepen-
dence Y (x) ⊥⊥ X|Z (“conditional ignorability”).

The last assumption specifying the “conditional ignorablity” is the most
difficult to understand. It can be interpreted in the following way: “The
way an individual with attributes Z would react to treatment X = x is
independent of the treatment actually received by that individual” (Pearl,
2009, p. 100). This means that if we control for any confounders in Z,
those individuals that have one potential outcome YX = y are as likely
assigned to either the treatment group (i.e. they receive the treatment
X = x) or the control group (that does not receive the treatment), as indi-
viduals that have a different potential outcome YX = y′: The value of the
potential outcome does not influence whether an individual would end up
receiving the treatment. This is similar to the concept of “exchangeability”
by Greenland and Robins (Greenland & Robins, 1986). This means that
we randomly assign the participants to two groups: group A and group B.
Since the participants are assigned randomly, the two groups are homoge-
neous and have the same characteristics. Otherwise, we could not establish
a causal effect from the observation of the outcome of the two groups, e.g.,
if one group in a medical study was healthy and the other not. We then
make a choice, e.g., group A receives the treatment and group B doesn’t
and we observe the outcome. However, we could also have made the choice
that group B receives the treatment and A doesn’t. Hence, the groups are
exchangeable. The challenge with the concept of “ignorability” is that it is
difficult to confirm that it is fulfilled. In the structural approach followed
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by Pearl, confounders are defined in the context of a causal graph with an
associated model. Using this model, we can determine all confounders and
determine the relationship between all variables. Admittedly, our model
may be incomplete or wrong. Regardless we do have all (technical) means
to develop and test such a model. The potential outcome framework by
Rubin is not based on causal graphs. It is, therefore difficult to determine
whether the assumptions, in particular the ignorability requirement, are
fulfilled.

Self-Check Questions

1. How is the average causal effect defined?

2. How is confounding defined, according to Pearl?

3. What are counterfactuals (informally)?

4. What is the major difference between Pearl’s and Rubin’s approach
to counterfactuals?

Solutions

1. The average causal effect is given by P (Y = 1|do(X = 1))− P (Y =
1|do(X = 0)), i.e., the difference between making the intervention of
applying a treatment X or not. As an example, the treatment could
be administering a certain medication to a group and withholding it
from another, studying the difference between them.

2. There is confounding whenever P (Y |X) 6= P (Y |do(X)).

3. Counterfactuals explore the world that would have been. We observe
a given output according to a set of variables and then change some
condition and ask ourselves: “What would the outcome have been
had the setting been this?”

4. In Pearl’s approach, counterfactuals are explored in terms of a graph-
ical causal model from which a structural model can be derived. In
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Rubin’s model, no such underlying model exists and the counterfac-
tuals are essentially treated as random variables.
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3.3. Causal Inference versus Randomized
Controlled Trials

Thus far, we have encountered the difference between seeing and doing,
where we compared observations and interventions, explored the “world
that would have been” with counterfactuals, and removed confounding by
adjusting for a specific set of variables for which we we have learned to be
careful to distinguish between the variables that we should control for and
those we do not. This should give us all the tools we need to estimate the
causal effects. However, when looking at the literature, the randomized
controlled trial (RCT) is seen as the gold standard of establishing causal
effects. For example, if a new medicine is to be approved, it first needs
to be tested in a clinical trial. The RCT was popularized by R. A. Fisher
(Box, 1978, chap. 6), who used the example of a field that is to be treated
with one of two possible options for fertilizers. To find out which fertilizer
is better, Fisher discusses an experimental approach. The farmer could
use fertilizer A on one half of the field and B on the other. However, this
would be subject to confounders, as the two halves may be different. The
top half may have a different drainage than the bottom half, or the left
half a different texture or intrinsic fertility than the right. Swapping the
halves in the next year would introduce weather as a confounder.

Initially, Fisher then devised an elaborate grid called “Latin square” to
cover all combinations of fertilizer, soil type, plants, etc. Yet, however
elaborate such a testing scheme is devised, one can always think of one
more confounder that needs to be included. In the end, Fisher realized
that only random assignment would solve this problem; the experiment
needs to be repeated many times to account for natural (statistical) vari-
ations, and the type of fertilizer is assigned randomly. This is the random
controlled trial because we are assigning the “treatment” randomly within
a controlled study. In a clinical setting, we would take all the test sub-In medicine, a

placebo is a

substance that

looks like

medicine but has

no effect.

jects and randomly assign them into group A and group B. We then decide
(randomly) whether group A receives the medicine we want to test and B
the placebo (or the other way round). In this case, the random aspect
defines in which group each individual is placed. There is no mechanism
other than a random number influencing how the decision of which partic-
ipants receive the medicine is made. To avoid any lurking bias, the trial is
typically performed double-blind. The crucial aspect is that this ran-In a double-blind

study, neither the

patient nor doctor

know if the

patient receives

the actual

medicine or a

placebo.

domization erases all arrows pointing from potential confounders into the
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variable (X) describing the treatment. Because the treatment is assigned
randomly, there is no possibility that this assignment can be influenced by
any other variable. Hence, even if there are confounders present, they are
removed. This is why randomized controlled trials work and allow us to
establish the causal effect. We can, of course, only observe the actual out-
come in the groups of the trial, e.g. “received treatment” (YX=1) and “has
not received treatment”(YX=0), i.e., the treatment and the control group.
Randomization ensures that the means of the outcomes in the study will
converge to the means if we could observe all potential outcomes. The
causal effect observed in the trial will hence converge to the “true” causal
effect E[YX=1 − YX=0] that we could determine if we could calculate all
counterfactuals. This is because the randomization implies that there is
no intrinsic bias when assigning the individuals to a group. This also ex-
plains why the treatment and control group need to be “sufficiently” large.
If the groups are too small, the statistical fluctuation of the observed effect
may be too small compared to the causal effect we wish to establish. The
smaller the effect, the larger the two groups need to be to get an accu-
rate estimate of E[YX=1 − YX=0]. This difference is also called the average
treatment effect (ATE). Remember that the causal effect is defined at the
level of individuals. What we are really interested in is the causal effect on
an individual. In such a scenario we observe the outcomes when the same
individual has received the treatment (YX=1) or not (YX=0). This can, of
course, not be observed in practice, since we cannot both give and not give
the treatment to the same person. Hence, one of the outcomes is a counter-
factual describing what would have happened. What we can observe is the
average treatment effect ATE=E[YX=1−YX=0] of those assigned to receive
the treatment (or not) at the group level. This is because the expectation
value is a linear operator and, hence, E[X±Y ] = E[X]±E[Y ]. In our case,
this means that the average of the difference is equal to the difference of the
averages, and, hence, we can write ATE = E[YX=1]−E[YX=0]. In a random
controlled trial, we assign individuals randomly to the treatment and con-
trol group and, by observing the average in each group, we can estimate the
average treatment effect. Related to the ATE are the Average Treatment
effect on the Treated (ATT) and Average Treatment effect on the Control
(ATC). These refer to the average causal effect when looking only at the
group that has received the treatment (ATT) or the control group (ATC).
Note that both ATT and ATC contain an unobservable counterfactual, as
we cannot measure the outcome of individuals in the treatment (or control)
group that have not received (or have received) the treatment. In the case
of a randomized controlled trial, ATE is the same as ATT, since we assume
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that both the group receiving the treatment and the control group have
the same properties.

Whether we see an RCT as a gold standard is probably more a question of
preference and of the social dynamics within a given research community.
The more important question is whether they are necessary given all we
know about how to deal with confounders. The answer is: no, not really.
If we know all relevant confounders and measure them, we can adjust for
them (Pearl & Mackenzie, 2018, p.149). However, the randomization in the
RCT ensures that the “treatment” is assigned randomly. This means that
all arrows from any confounders pointing into the treatment variable are
severed, not just the ones we think of. If we do not perform a randomized
controlled trial, we have to convince ourselves (and others!) that we have
indeed considered and adjusted for all confounders. By design, an RCT
does this for us automatically. Moreover, some confounders may be difficult
to determine.

However, when we want to perform a random controlled trial, we have to
make sure prerequisites and assumptions are fulfilled. The group of peo-
ple participating in the trial needs to be representative of the population
we want to analyze. For example, if we want to study the effect of extra
tutoring on university students, looking at kindergarten children will not
be helpful. We also have to look at how we obtain the participants of
the study should the study involve individual persons. In most cases, we
cannot grab people at random off the street and add them to the trial.
Typically, we need to work with volunteers. However, the act of volun-
teering may also introduce a bias. Some terminally ill patients may opt to
participate in a study because they have nothing to lose. Their health is
also severely compromised, which may skew their response to treatment.
In some studies, financial compensation is offered for those who volunteer,
which again may introduce a bias regarding the people who are attracted
by this, etc.

If the study runs for a prolonged length of time, we also need to make
sure that the participants do not drop out of the study while the study
is being conducted. For example, if we want to test the effectiveness of a
new medicine targeting high blood pressure or cholesterol, the study will
likely run for weeks or months. If the patients do not report regularly, the
resulting data may be biased, particularly, if the patients do not drop out
randomly. This is called “loss of follow-up.”
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Typically, all aspects of the trial are defined before it is started. This
includes, for example, the length of the trial, the actual treatment, and
how it is administered. For example, it may be decided that a procedure is
performed as the treatment or a medicine is administered in specific doses.
Ideally, one should then acquire the data in the study but not perform the
full analysis until all data are recorded. This is done to avoid a potential
bias that arises if an intermediate result we obtain while recording the data
and analyzing the data while the study is performed, may show a large
statistical fluctuation which in turn may mean that such an intermediate
result may not be representative of the final result. However, that may
lead to a conundrum, especially in medical studies: would it be ethical
to withhold a treatment from the control group if the group receiving
the treatment has already shown significant improvement at a preliminary
analysis? Therefore, in many cases, data are analyzed at fixed intervals
and a decision is made to continue or conclude the study. In a case of
significant positive results, studies may then indeed be ended early and
the treatment offered to all participants, e.g. Auvert et al. (2005); Gray et
al. (2007); Bailey et al. (2007).

While RCTs do indeed offer practical benefits, performing one may not
always be possible. For example, interventions may not be possible, or
it may be unethical to force the participants to receive a treatment that
we want to prove is harmful. In these cases, using causal analysis on
observational data is the only way we can establish the causal structure
and the causal effects of the aspect we are interested in.

Self-Check Questions

1. What key aspect enables randomized controlled trials?

2. Why do we need a sufficient number of participants in the trial?

3. Please list some examples in which we cannot perform a randomized
controlled trial.
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Solutions

1. RCTs work because the assignment of the treatment (e.g., an individ-
ual receives the actual medicine and not the placebo) is random. This
severs all incoming arrows from potential confounders and allows us
to measure the causal effect.

2. Since the individuals are randomly assigned to the treatment or con-
trol group, there is no bias due to confounders. Therefore, we can
estimate E[YX=1−YX=0] from observational data. However, in order
to avoid statistical fluctuations, we need a large enough number of
elements to estimate the causal effect. the smaller the effect, i.e. the
smaller the difference, the more participants we need in the study.

3. An RCT is not possible, for example, when we cannot perform the
intervention, the intervention would be unethical, we cannot recruit
sufficient individuals for the study, or the volunteers are not repre-
sentative of the population we wish to study.
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Summary

One of the most critical aspects when understanding causal effects is
the distinction between observations and interventions, i.e., “seeing
versus doing.” In observations, we see what happens in a given cir-
cumstance. However, in most cases, we want to determine the effects
of an intervention. For example, does this new medicine have any
effect? What would happen if we did this or that? When we try to
measure causal effects, we need to be sure that we take all relevant
confounders into account. Confounders are variables that are, for
example, a common cause for treatment and outcome and they can
lead to wrong results if we do not account for them. Note that we
are using here the terms “treatment” and “outcome.” This is be-
cause causal inference has been used for a long time in epidemiology,
therefore these terms tend to be used even if we are not considering
medical or epidemiological examples. A treatment is understood to
be an intervention we perform and the outcome is what we observe.
Counterfactuals are a powerful way to interrogate causal relation-
ships. They address the following question: “What would have been
had I done x?” Counterfactuals are always hypothetical questions,
as we have already performed an intervention and observed the re-
sult. In many disciplines, randomized controlled trials are considered
the gold standard for measuring causal effects. These trials work be-
cause the randomization procedure severs the effect of possible con-
founders. However, there are a number of circumstances in which
such a trial cannot be performed, such as forcing people to smoke to
determine whether smoking is harmful.
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4. Do-Calculus

Study Goals

After completing this unit, you will have learned

• what front-door and back-door paths are.

• how front-door and back-door criteria are defined.

• the three rules of do-calculus and how to apply them.

Introduction

We have previously encountered interventions (e.g., confounders) and el-
ements that we can use to express the behavior of variables in directed
acyclic graphs (DAG). Taking confounders into account, that is, to “ad-
just” for them (in causal analysis terms), is one of the most important
aspects of establishing a causal effect from data. To do so, we first need to
identify which variables act as confounders and then determine how these
can be taken into account.

Thus far, we have primarily built an intuitive understanding of confounders
and how to adjust for them. In this unit, we want to formalize the ap-
proach. Additionally, establishing the relevant rules allows us to analyze
more complex graphs than the ones we have seen in the earlier examples.

We have also encountered the do-operator already, which we use to express
interventions such as do(X = 1), where we force the value of the variable
X to take the value of 1. For example, let’s imagine that X = 1 refers
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Figure 4.1.: Common Cause

to administering a certain medicine we want to test to a group of people
and X = 0 to withholding it. Or, we could refer to different values of X
describing a specific dose we wish to administer (or something else). In this
unit, we will give a more detailed description of do-calculus that allows us
to use the do-operator to establish causal effects. The main idea is that
we need to transform expressions that contain the do-operator into others
that can be estimated from observational data—only then are we able to
use data outside a randomized controlled trial to infer causal effects.

4.1. Front- and Back-door Criterion

Back-Door and Front-Door Paths

We have previously seen how variables can be associated, even if there is
no apparent (causal) relationship between them (e.g., yellow fingers and
lung cancer being related even though yellow fingers are not causally con-
nected to lung cancer). This means that if we painted fingers yellow, i.e.,
do(yellowfinger), we would not affect the risk of getting cancer. However,
both are associated in the data, since smoking is a common cause of either
of them. In this case, smoking is a confounder, as shown in part a of Fig.
4.1.

We then saw that we can remove this spurious association by conditioning
on the confounder, i.e., by looking at the values of the variables “yellow
fingers” and “lung cancer” for smokers and non-smokers separately. This
is shown in part b of Fig. 4.1, where the box around X indicates that we
adjust for the confounder, i.e., look at specific values.

As illustrated by this example, variables can be associated if there is a
path between them. For example, in Fig. 4.1 we have the followingA path is any

connection between

any two nodes

(such as X or Y )

in a directed

acyclic graph

(DAG), running

either in the

direction of the

arrows or against

the arrows.

paths: X to Y (in the direction of the arrow); X to Z (in the direction of
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the arrow); and Z via X (against the direction of the arrow) to Y (in the
direction of the arrow).

We can formalize the different characterisations of the paths in the follow-
ing way:

Front- and Back-Door Path

• A front-door path is a causal path in the direction of the arrow
between any two nodes X and Y in the graph.

• A back-door path is any path between any two nodes X and
Y that starts with an arrow pointing into X, i.e., against the
causal direction (Pearl & Mackenzie, 2018, p. 158).

The front-door (or causal) paths represent the causal relationships we want
to explore or we know are true. Informally, these are the “real” associations
or correlations between variables that have a “deeper meaning.” By this,
we mean that they can explain what we observe, for example, that smoking
is a cause of lung cancer. If we look at the population of smokers and non-
smokers, we will find that the population of smokers is more prone to lung
cancer than the non-smokers and that smoking is the cause of lung cancer.

The back-door paths, on the other hand, are those that introduce spurious
correlations or associations between variables in the data. In the example
of smoking, we have a spurious correlation between “yellow fingers” and
“lung cancer.” We can start a back-door path between these variables by
starting at Y with an arrow pointing into Y from X and then go to Z or,
conversely, by starting with an arrow pointing into Z from X and then
going to Y . Note that, according to the definition a back-door paths with
an arrow pointing into one of the variables, it is not required that we go
against the direction of the arrow along the entire path. In our example, we
start with the first step against the direction of the arrow (hence making
it a back-door path) and then move in the direction of the arrow for either
variable X or Y .

In order to avoid spurious correlations, we need to treat the variables we
have (or we can add) so that they block the path according to their prop-
erties. This can be done using the following rules (Pearl et al., 2016, p.
46):
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Figure 4.2.: A Complex Causal Graph

Path Blocking Rules

• A path can be blocked when conditioning on a fork or chain.

• A blocked path is opened when conditioning on a collider.

The confounder discussed above is represented by a fork in the DAG.
Hence, conditioning on the variable “smoking” blocks the back-door path,
meaning we can establish the causal effect of smoking on lung cancer (or
yellow fingers). Note that the same holds true if we condition on descen-
dants of these elements. For example, we may open a blocked path if we
condition on a descendant (or child) of a collider. We need to be careful
when analyzing more complex graphs that we do not accidentally open
paths we need to block by conditioning on children further down in the
graph.

We can illustrate this at the slightly more complicated DAG shown in
Fig. 4.2 Note that we have already encountered this DAG earlier (Pearl
et al., 2016, p. 48). In this example, we want to figure out if there are
any spurious connections between Z and Y and if we can remove them—
in other words, if there are any open back-door paths that we can close.
There are two paths with arrows pointing into Y . The first one is from
Y to T (against the arrow), and then from T to Z (in the directionA path against the

direction of the

arrow is an

back-door path.

of the arrow). The node T is both a fork and a confounder because it is
a common cause to both Z and Y . Assuming we can measure T , we can
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block this path by conditioning on T . Then, there is another path starting
at Y going against the direction of the arrow (thus making it a back-door
path again) to X from X to W (in the direction of the arrow) and from W
to Z (against the direction of the arrow). Therefore, we have two back-door
paths connecting Y and Z. However, that path is blocked because W is a
collider and colliders block the path unless conditioned on. We therefore
only need to condition on T to remove the spurious association of Z and
Y . In this case, Z and Y are also said to be d-separated since there are no
open back-door paths.

However, if we were to condition on W or on U (as a descendant of W ), we
would open the blocked path and Z and Y would become d-connected and
associated again, even if the path via T were still blocked by conditioning
on T . This might happen for two reasons: for example, we might make a
mistake, which can easily happen if the graphs become more complicated.
Alternatively, we may want to measure the causal effect depending on W .
For example, we might want to know what the causal effect is for specific
values of W . In this case, we need to condition on W to look at specific
values. Another reason might be that we have no choice: in order to
block some other back-door path crossing through that node, we need to
condition on it. Remember that the function of a node is path specific:
A node may be a collider on one path but a fork or chain in another. If
we are forced to block that other path because the node is, for example,
a fork there, we need to condition on it—even if that opens the path on
which that node acts as a collider. We then need another way of closing
the path again. In the example in Fig. 4.2, we can also condition on X,
which is a fork on the path between Z and Y . In this case, the path is
blocked again. Hence, we can d-separate Z and Y by either conditioning
on T alone, T , W , and X, or T , U (because U is a descendant of W and
X). We could also condition on T and X. However, the path through X
is already blocked because of the collider in W , so we do not have to do
this. Note that it would not do any harm.

Back-Door Criterion

We can now formalize our treatment and give a precise definition that
describes the possibility of closing back-door paths. This is known as the
“back-door criterion” (Pearl, 1993).
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Let G be a given causal diagram with a set of variables (V ) measured
from observational data. We wish to establish the causal effect of theThe term

observational data

refers to data

obtained by

observing a system

without

influencing it (as

opposed to data

from a controlled

trial).

intervention do(X = x) for treatment (X) on the outcome variable (Y ).
Both variables X and Y are part of the set of variables V , i.e., measured
from data. Using the backdoor criterion we want to determine whether
there is a subset of variables (Z) from V , i.e., Z ⊆ V that we can use to
block all back-door paths, thus allowing us to estimate the causal effect
from the observational data.

Back-Door Criterion

A set of variables (Z) satisfies the back-door criterion relative to an
ordered pair of variables (Xi, Xj) in a DAG (G) if

• no node in Z is a descendant of Xi.

• Z blocks every path between Xi and Xj that contains an arrow
into Xi.

(Pearl, 2009, p. 79)

Although this definition sounds quite intimidating, it really means the same
thing as our evaluation of the back-door paths in the example above—it
is just more formal and applicable to any DAG G. Informally, we can
summarize this as (Pearl et al., 2016, p. 61):

• We block all back-door paths, for example, by conditioning on forks
or chains.Directed paths in

the direction of

the arrow are also

called ‘‘causal

paths.’’

• We make sure that the directed paths in the direction of the arrows
we wish to investigate are still open.

• We make sure that we don’t accidentally open another back-door
path that leads to spurious correlations in the data by controlling (or
not) on the wrong element in the graph.

If the back-door criterion is fulfilled, we can estimate the causal effect
of intervention (X), i.e., do(X = x) on outcome Y using the back-door
adjustment formula:
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Figure 4.3.: Front-Door Criterion

Back-Door Adjustment

P (Y = y|do(X = x)) =
∑
z

P (Y = y|X = x, Z = z)P (Z = z)

(Pearl et al., 2016, p. 61)

A proof can be found in (Pearl, 2009, p. 80). Note that this is very
similar to the adjustment formula we encountered earlier. The previous
adjustment formula was specifically aimed at confounders that are direct
parents of the intervention. The above back-door adjustment formula is
more general and contains this case automatically.

Front-Door Criterion

The back-door criterion allows us to identify backdoor paths that lead
to spurious associations in the data and identify confounders we need to
control for. The back-door adjustment formula then allows us to estimate
the causal effect from observational data. Unfortunately, in some cases,
this approach will not work.

An example is shown in part a of Fig. 4.3. The situation is similar to
what we have already encountered: the variable U is a common cause to
X and Y and is, hence, a confounder on a back-door path from Y to X.
To block the path, we would need to condition on U—this is the approach
we have taken so far. In these situations, we have assumed that we have
data regarding this variable so we can condition on it. In the example of
yellow fingers and lung cancer above, we would condition on “smoking” and
look at the association between yellow fingers and lung cancer separately
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for smokers and non-smokers (or heavy and light smokers or smokers who
smoke one, two, three, etc. cigarettes per day).

However, what happens if we do not have data on U , i.e., U is unobserved?
In this case, we cannot close the back-door path and remove the spuri-
ous association. An example is the causal connection between smoking
and cancer. In this example, X is smoking and Y is cancer. We want
to establish the causal relationship and establish whether smoking indeed
causes cancer. At the time, there was a major discussion, and the tobacco
industry argued that the association between cancer and smoking is ex-
plained by a supposed “smoking gene,” see, e.g., (Spirtes, 2000, p. 239ff).
In this argument, the gene takes the role of the unobserved variable (U), as
we cannot measure the gene directly (at least, we could not at the time).
Later, it was discovered that there truly is a gene related to smoking (Lassi
et al., 2016). However, the act of smoking still causes cancer. Hence, in our
example, U is unobservable, which means we cannot block the back-door
path. For a long time, the tobacco industry argued successfully that the
causal influence could not be proven.

Nevertheless, the causal effect of X on Y can be established under some
circumstances. If we can identify a mediator that transports the causal
effect from X to Y , we can determine the causal effect, even in the presence
of unobservable confounders. This is shown in part b of Fig. 4.3. In this
case, Z is a mechanism of the causal effect. In the example of smoking,
Z is the tar deposits in the lung. Hence the causal chain is as follows:
smoking leads (X) to tar deposits in the lung (Z) that cause cancer (Y ).
We still cannot block the back-door path because U is still unmeasured,
but we can exploit the new variable (Z) as mediator (Pearl et al., 2016, p.
68). The causal effect from X to Z can be identified immediately, as there
is no back-door path from X to Z. Hence,

P (Z = z|do(X = x)) = P (Z = z|X = x) (4.1)

which means that the observation is the same as the intervention. We can
also identify the causal effect of Z on Y . There is a back-door path from Z
to X (against the arrow, making it a back-door path), from X to U , and
from U to Y . However, X is a non-collider on this path and accordingA non-collider is

either a fork or a

chain.

to the rules, we can block it by conditioning on X. We can do this because
X is observable and we have data for this variable—indeed, this is the
variable we wanted to analyze in the first place. Using the adjustment
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formula, we can then write

P (Y = y|do(Z = z)) =
∑
x

P (Y = y|Z = z,X = x)P (X = x) (4.2)

We now need to combine both effects, since we are interested in P (Y =
y|do(X = x)), i.e., the result of the outcome when we perform an inter-
vention on X. The idea is as follows: we do not intervene on Z directly as
this mechanism. In the example of smoking, we do not add tar deposits
into the lung ourselves. This is what happens due to the properties of
the system we want to analyze. Hence, if the system “chooses” to assign
the value z to Z, the probability of observing Y is P (Y = y|do(Z = z)).
However, since we perform the intervention do(X = x), the probability of
this is P (Z = z|do(X = x)). Taking all possible values of the mediator Z
into account, we can combine the parts:

P (Y = y|do(X = x)) =
∑
z

P (Y = y|do(Z = z))P (Z = z|do(X = x))

(4.3)
We can then use the expressions 4.1 and 4.2 to transform the right-hand
side into do-free expressions that can be estimated from observational data:

P (Y = y|do(X = x)) =
∑
z

∑
x′

P (Y = y|Z = z,X = x′)P (X = x′)P (Z = z|X = x)

(4.4)

This is known as the “front-door” criterion and adjustment, which we can
define more formally in the following way (Pearl, 1995):

Front-Door Criterion

A set of variables (Z) satisfies the front-door criterion for an ordered
pair of variables (X, Y ) if the following conditions are met (Pearl et
al., 2016, p. 69):

• Z intercepts all directed paths from X to Y .

• There is no unblocked back-door path from X to Z.

• All back-door paths from Z to Y are blocked by X
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Essentially, Z is a mediator on all possible paths from X to Y , and we can
establish the causal effects from X to Z and from Z to Y .

If the front-door criterion is fulfilled, we can establish the causal effect from
observational data via the front-door adjustment formula.

Front-Door Adjustment

P (y|do(x)) =
∑
z

P (z|x)
∑
x′

P (y|x′, z)P (x′)

(Pearl et al., 2016, p. 69)

Note that, in general, we do not want to introduce a mediator, as we are
typically interested in the total causal effect of an intervention, not just
the one that is related to a specific mechanism expressed by the media-
tor. Furthermore, if the mediator we choose is not the right mechanism
to transport the causal effect, our conclusions will also be wrong. This is
illustrated by the following example (Pearl & Mackenzie, 2018, p. 302ff):
In the early days of long distance travels on the seas, scurvy was a dan-
gerous disease for the sailors. It was observed that consuming citrus fruits
eliminated the risk of falling ill to this disease. Soon after, all ships carried
a supply of citrus fruit. It was therefore unexpected that, about a century
after this problem was thought to be solved, expeditions to the polar re-
gions were again plagued by scurvy. It was thought—but not proven—that
citrus fruit prevented scurvy by virtue of their acidity, i.e., acidity was the
mechanism by which the disease was prevented: citrus fruit −→ acidity
−→ scurvy. However, a detailed analysis showed that it was vitamin C
(and not any acid) that prevented scurvy. Therefore, the correct causal
path is citrus fruit −→ vitamin C −→ scurvy.

Self-Check Questions

1. When do we need to check to see if we can use the front-door crite-
rion?

2. What is a back-door path regarding node X?
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3. True or False: When following a back-door path, we must always
traverse the graph against the direction of the arrow.

4. Complete: A causal path goes ... the direction of the arrow.

Solutions

1. Sometimes, we cannot block all back-door paths, for example, be-
cause a confounder is unobserved. In these cases we may be able to
establish the causal effect if we can find a mediator that transmits the
effect we wish to study. Here, we can apply the front-door criterion.

2. A back-door path for node X starts with an arrow pointing into node
X.

3. False

4. A causal path goes along the direction of the arrow.

4.2. The Three Rules of Do-Calculus

We have seen previously how the do-operator can be used to formalize
interventions and derive the causal effect. The general idea behind using
the do-operator is that we want to extract the causal relationships between
the intervention or treatment and the outcome using observational data.

In the front-door and back-door adjustment formula, we have seen how we
can make use of the special structure of these constructs to transform the
expressions that contain the do-operator into those that do not. This is
because we cannot observe probability distributions that contain the do-
operator, but only those without, as these relate to observational data we
can record.

The do-calculus (Pearl, 1995) provides three rules that are sufficient to
transform to expressions that contain the do-operator into those that do
not. However, this requires that that the causal effect is “identifiable”. We
call a causal effect identifiable if we have a causal graph G and we can use
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Figure 4.4.: Graphs Demonstrating Various Applications of the Do-
Calculus Rules

a finite number of transformations according to the rule of do-calculus that
translate the expressions containing the do-operator into those that do not.
The latter can be determined from observational data (Pearl, 2009, p.86).

Before we focus on the rules of do-calculus, we need to introduce further
notation that relates to the various operations we can perform on a causal
graph G, specifically, the removal of arrows emerging from or pointing into
some node. We place a line over the variable, if we delete any arrows that
point into some node. For example, if we start with the full causal graph
G as shown in part a of Fig. 4.4, part b shows the graph if we remove
the arrow between X and Z. Since the arrow we have removed points
into Z, the new graph after this operation is called GZ . Similarly, we use
a line under the variable if we remove an arrow that emerges from the
corresponding node. Since the arrow we removed emerges from node X,
the same example (part b of Fig. 4.4) can also be denoted as GX .

We also remember the definition of conditional independence we have en-
countered earlier: we let X, Y , Z be variables and P (·) a probability dis-
tribution. The (sets of) variables X and Z are conditionally independent
given Z if (Pearl, 2009, p. 11):

P (x|y, z) = P (x|z) whenever P (y, z) > 0 (4.5)

which can be expressed using the notation (X ⊥⊥ Y |Z). Informally, this
means that once we know that Z has a specific value, learning the value of
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Y does not provide any further information about X.

The Three Rules of Do-Calculus

Let G be a directed acyclic graph that is associated with a causal
model. For any disjoint subsets of variables X, Y, Z, and W , the
following rules apply:

• Rule 1 (insertion / deletion of observations):

P (y|do(x), z, w) = P (y|do(x), w) if (Y ⊥⊥ Z|X,W )GX
(4.6)

• Rule 2 (exchange of action and observation):

P (y|do(x), do(z), w) = P (y|do(x), z, w) if (Y ⊥⊥ Z|X,W )GXZ

(4.7)

• Rule 3 (insertion / deletion of actions):

P (y|do(x), do(z), w) = P (y|do(x), w) if (Y ⊥⊥ Z|X,W )G
X,Z(W )

(4.8)
where Z(W ) is a set of nodes Z that are not ancestors of any
nodes W in GX .

(Pearl, 2009, p. 85)

The proofs for the rules of do-calculus can be found in (Pearl, 1995). The
rules are a bit terse, so we will examine them in more detail. For more
information, see (Pearl & Mackenzie, 2018, p. 234).

Rule 1 allows us to add or remove observations from our data. If we
have observed some variable Z that is irrelevant (possible conditional on
some other variables W ) to the outcome Y we are interested in, then the
probability distribution of Y will not change regardless of the value of Z—
and the conditional probability for Y is the same with or without Z. That
means the node for W blocks all paths from Z to Y . As an example, we
can consider the fire alarm again. Since they do not detect fire directly,
but via the presence of smoke, smoke is the mediator in the chain Fire −→
Smoke −→ Alarm. Once we know that there is smoke, we know the alarm
will go off—whether or not there is a fire.
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Figure 4.5.: Example for Do-Calculus: Smoking

Rule 2 expresses that do(X) is the same as see(X) once we have controlled
for all possible confounders. Informally, once we have removed all spurious
correlations and closed all back-door paths, the remaining association we
see in the data is the causal effect.

Rule 3 means that if there is no causal path with only forward directing
arrows from a variable Z to the outcome Y we are interested in, we can
remove the do-operation entirely. In other words, if we want to do(Z) but
it does not affect the outcome Y , the probability distribution of Y will not
change, i.e., we will not cause an effect.

Following these rules repeatedly and in an appropriate order, we can ex-
press our interventions (symbolized by the do-operator) into expressions
that can be estimated from observational data—if such a sequence exists,
i.e., if the graph is identifiable. The good news is that these rules are
complete and mathematically proven (Pearl, 1995). The bad news is that,
while we can use the rules to verify that the sequence used to eliminate
the do-operator is correct, it does not help us find the correct sequence, al-
though algorithms exist for this purpose (Bareinboim & Pearl, 2012; Tian
& Pearl, 2002; Shpitser & Pearl, 2006).

To show how the rules work explicitly, we return to the example of smoking
we have solved earlier with the front-door criterion (Pearl & Mackenzie,
2018, p. 236): we wanted to determine whether smoking caused cancer
in the presence of an unmeasured variable, the “smoking gene.” The cor-
responding graph is shown in Fig. 4.5 where X corresponds to smoking,
Y to cancer, and U to the unmeasured confounder (the smoking gene).
Because U is not measured, we cannot condition on it and hence we can-
not block the back-door path, implying that we cannot use the back-door
criterion and adjustment formula. However, as we have discussed earlier,
if we include a new measurable variable (Z) (tar deposits) on the causal
path from X (smoking) to Y (cancer), we can nevertheless establish the
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causal effect via the front-door criterion by conditioning on Z in the chain
X −→ Z −→ Y .

Before we start with the example, we remind ourselves of the following
relationship for the probability of an event (A):

P (A) =
∑
i

P (A|Bi)P (Bi) (4.9)

This means that the (total) probability of observing event A can be split
into a sum of many conditional probabilities for events Bi, multiplying the
conditional probability of observing A given that we observe Bi (P (A|Bi))
with the probability that Bi occurs, etc. This way, we can decompose the
total probability of A into its dependencies of other events Bi that may be
easier to obtain.

Let’s now return to the example of smoking. We want to establish that
smoking causes cancer, i.e., P (Y |do(X)). How would the probability of
developing cancer change if we made the intervention do(X), i.e., “make”
people smoke. We do not want to do this in a random controlled trial—it
would be unethical to force people to smoke and look who develops cancer
with time.

First, we introduce the mediator (Z) using Eqn. (4.9):

P (Y |do(X)) =
∑

Z P (Y |do(X), Z)P (Z|do(X))

We now apply the second rule, which allows us to exchange intervention
and observation if all back-door paths are closed. We remember that there
is no back-door path between X (smoking) and Z (tar deposits), hence
“seeing” is the same as “doing,” and we can replace Z with do(Z):

. . . =
∑

Z P (Y |do(X), do(Z))P (Z|do(X)) Rule 2

There is a back-door path from Y (cancer) to Z (tar deposits) via the
unobserved variable (smoking gene), but X (smoking) is a non-collider,
and we can block the path by controlling for X. Hence, we can apply the
second rule again and replace do(X) with X in the second part of the sum:
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. . . =
∑

Z P (Y |do(X), do(Z))P (Z|X) Rule 2

Since we have introduced the tar deposits as mediator Z, there is no longer
a causal path from X (smoking) to cancer (Y ) once we intervene and
“force” the tar deposits (do(Z)). Informally, we could say that, once we
force tar deposits into the lung of the test subjects, it no longer matters
whether or not they also smoke. Hence, using the third rule we are allowed
to remove do(X) from the equation:

. . . =
∑

Z P (Y |do(Z))P (Z|X) Rule 3

We now use Eqn. (4.9) again to account for all possible cases of smoking we
control for, e.g., smokers and non-smokers or different amounts of tobacco
consumed per day.

. . . =
∑

X′
∑

Z P (Y |do(Z), X ′)P (X ′|do(Z))P (Z|X) Eqn. (4.9)

Now we can use the second rule again, keeping in mind that the back-door
path between Z (tar deposits) and Y (cancer) is blocked as we control for
X (smoking). Hence, “seeing” is the same as “doing”:

. . . =
∑

X′
∑

Z P (Y |Z,X ′)P (X ′|do(Z))P (Z|X) Rule 2

In the final step, we use third rule to replace P (X ′|do(Z)) with P (X ′).
There is no causal influence from Z (tar deposits) to X (smoking), hence
we arrive at:
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. . . =
∑

X′
∑

Z P (Y |Z,X ′)P (X ′)P (Z|X) Rule 3

Putting it all together, we arrive at the front-door adjustment formula

P (Y |do(X)) =
∑
X′

∑
Z

P (Y |Z,X ′)P (X ′)P (Z|X) (4.10)

where we have successfully replaced all expressions containing the do-
operator into those without. These can then be estimated using the obser-
vational data.

As we can see, once we know the correct sequence of steps and rules to apply
in each case, we can convince ourselves that the transformations are sound
and follow the rules of do-calculus. However, as with most mathematical
proofs, it will be quite hard to come up with the right sequence of steps.

Self-Check Questions

1. Why does the third rule of the do-calculus work?

2. What is the intuition behind the first rule of the do-calculus?

3. What does the second rule of the do-calculus mean?

Solutions

1. If there is no causal path from X to Y , there is no causal effect when
we intervene and do(X). Since there is no effect we can remove do(X)
entirely as intervening (or not) does not make a difference.

2. If we observe a variable that is irrelevant to the outcome (Y ), we can
add or remove it, as it will not affect the probability distribution for
Y P (Y |X,W, . . .). Informally, if the observed variable is “screened
off,” measuring its value does not make a difference.
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3. Rule 2 states that once we have controlled for all confounders, “see-
ing” is the same as “doing”: once all confounders are controlled for,
what remains is the causal effect.
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Summary

The front-door and back-door criterion formalize the way we deter-
mine whether we can establish the causal effect of some variable X
on an outcome Y . Tracing the back-door paths, we can determine
if there are any spurious correlations between variables expected in
the data and if we can block the paths to estimate the causal ef-
fects. The back-door adjustment formula allows us to determine the
causal effect from observational variables if the back-door paths can
be closed. In some situations, the causal effect can be established via
the front-door path even if the back-door paths cannot be closed due
to unobserved confounders. In this case the front-door adjustment
formula can be used.
The do-calculus formally expresses the mathematical operations that
are required to transform expressions that contain the do-operator
into those expressions that do not. However, in terms of the asso-
ciated graph G we require that G is identifiable, i.e., if the causal
effect can be established from observational data. The three rules of
do-calculus are complete in the sense that they are sufficient to do
this transformation if it is possible; however, the correct sequence
and order of the operations is often difficult to ascertain.
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5. Fallacies

Study Goals

Upon completion of this unit, you will have learned

• why we should be careful to avoid fallacies when analyzing data.

• what the mediation fallacy is.

• how to identify the collider bias.

• what the causal explanation behind the most common fallacies is.

• how the imputation of missing values taken from a data-driven and
a causal approach can lead to very different results.

Introduction

Understanding complex systems is challenging and establishing causal rela-
tionships even more so. Exploiting correlations in the data can lead to very
powerful prediction models that allow us to classify events or forecast fu-
ture behavior. Indeed, the aim of machine and deep learning approaches is
to exploit such correlations in the data to make accurate predictions. How-
ever, as we have discussed so far, correlations can be spurious, and variables
can become associated because either we not not taken confounders into
account or failed to block relevant back-door paths—assuming that we have
already determined that there might be additional confounders or that we
have created a causal graph for the task we wish to model.

In the following section, we want to highlight a few specific paradoxes,
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biases, and fallacies to highlight potential traps we wish to avoid when
understanding complex systems. We also include a discussion about the
imputation of missing data. This is a staple in statistical analyses, but
common approaches used there typically do not take causal implications
into account, potentially leading to different or even wrong conclusions
compared to a causal model.

5.1. Mediation Fallacy

As we have seen earlier, mediators allow us to specifically express the way
an effect comes about.An intervention is

also commonly

known as a

treatment (in

analogy to medical

RCTs).

In general, we are mainly interested in the effect of an intervention (X)
on an outcome or effect Y , i.e., X −→ Y . Mostly, we do not want to
include an mediator (M) in the chain X −→M −→ Y , as we are typically
interested in the total effect of X on Y , for example, to see if smoking
causes cancer.

However, in some cases, we may want to include a mediator, for example,
if we cannot close the back-door paths because potential confounders are
unobserved. In some situations, we may use the mediator to enable use
of the front-door criterion. As we have seen in the smoking example, we
could establish the causal effect via smoking −→ tar deposits −→ cancer.
If we include a mechanism that mediates the effect, we need to be sure that
it is the right mechanism. This can be illustrated through the history of
scurvy (Lewis, n.d.; Ceglowski, 2010) (Pearl & Mackenzie, 2018, p. 302ff):
This disease was a major issue for early sailors on long distance trips across
the Atlantic Ocean. It was found that a diet of citrus fruits prevented the
disease. However, the way citrus fruit had a positive effect was never firmly
established, and scientists assumed it was due to their acidity, i.e., citrus
fruit −→ acidity −→ scurvy. However, a polar expedition undertaken much
later was also compromised due to participants contracting scurvy, causing
much consternation. It was only later that the mechanism was discovered
that prevented scurvy: vitamin C. Hence, the correct causal path is citrus
fruit −→ vitamin C −→ scurvy. Adding a specific but wrong mediator
leads to wrong conclusions.

There is, however, another reason to include a mediator in a causal chain:
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Figure 5.1.: Controlled Direct Effect

we add a mediator if we are interested in the specific mechanism of an
intervention. For example, let’s say that we are testing a new medicine
(X) and we want to establish its effect on the outcome of the patients (Y )
based a specific way the medicine interacts with our bodies. In general, we
can then split the effect of the intervention or treatment X on outcome Y
into two parts, as shown in part a of Fig. 5.1: One path from X to Y is
between the nodes directly, i.e., X −→ Y , and the other one comes via the
mediator M , i.e., X −→M −→ Y . In this picture, we could establish the
part of the effect X −→ Y by conditioning on M . However, this does not A common cause of

two variables is a

parent to both.

work in more complex graphs, for example, if there is a common cause
of the mediator (M) and the outcome (Y ), i.e., a confounder W . In this
case, conditioning on M will block the path X −→M −→ Y and open the
spurious path via the confounder: X −→M ←− W −→ Y . Hence, if we do
not condition onM , we cannot distinguish between the paths, including the
mediator (or not). If we do condition on M , we condition on the collider
along the path, including W , and introduce a new spurious association.
There is no way to deal with this situation in classical statistics. However,
the do-operator allows us to define a new concept of holding a variable
constant without conditioning on it. Informally, we can say that we can
obtain the “direct effect of X on Y when we ‘wiggle ’X without allowing
M to change” (Pearl & Mackenzie, 2018, p. 317).

Mediator Fallacy

The mediator fallacy occurs when conditioning on a mediator instead
of holding the mediator constant. (Pearl & Mackenzie, 2018, p. 315)

The fallacy reveals that we intend to remove the influence of a mediator in
establishing an effect from X to Y , but, by conditioning on it (rather than
holding it constant), we introduce spurious associations between variables
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and confounders in the data.

Instead, we need to look at the controlled direct effect (CDE), where we
intervene on the mediator M and force assign it to a specific value m and
then compare the outcome where we intervene on the treatment X = x or
X = x′.

Controlled Direct Effect

CDE = P (Y = y|do(X = x), do(M = m)) − P (Y = y|do(X =
x′), do(M = m))
(Pearl et al., 2016, p. 77)

Note that the controlled direct effect depends on the value of the mediator
M . For example, if all variables are binary and can take either 0 or 1 as
its values, we can define CDE(0) for the case where M = 0

CDE(0) = P (Y = 1|do(X = 1), do(M = 0))−P (Y = 1|do(X = 0), do(M = 0))
(5.1)

and, correspondingly, CDE(1) for M = 1

CDE(1) = P (Y = 1|do(X = 1), do(M = 1))−P (Y = 1|do(X = 0), do(M = 1))
(5.2)

The expression for the CDE contains two do-operators. In order to esti-
mate the controlled direct effect from observational data, these need to be
removed. This can be done according to the rules of do-calculus. Taking
part b of Fig. 5.1 as an example, we can do this by the steps listed below
(Pearl et al., 2016, p. 77): There is no back-door path between X and Y .
Hence, since we control for X by comparing X = x and X = x′, “seeing” is
the same as “doing” (following the second rule of do-calculus). Therefore,
we can remove the do-operator and the CDE becomes:

P (Y = y|X = x, do(M = m))− P (Y = y|X = x′, do(M = m)) (5.3)

Next, we need to remove the do-operator on the mediator (M). Looking at
the causal graph, there are two back-door paths from M to Y , one through
the treatment X and one via the additional confounder W . The first path
is already blocked, as we condition on X. The second path can be blocked
if we condition on the confounder (W ) (provided it is observable) according
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to the back-door adjustment formula. This results in the following:∑
w

[P (Y = y|X = x,M = m,W = w)− P (Y = y|X = x′,M = m,W = w)]P (W = w)

(5.4)
and the resulting expression is free of do-operators.

Generally speaking, we can estimate the CDE of X on Y via M from
observational data, i.e., the CDE is “identifiable” if the following conditions
hold (Pearl et al., 2016, p. 77):

• There is a set S1 of variables that block all back-door paths from
mediator M to outcome Y .

• There is a set S2 of variables that block all back-door paths from
treatment X to outcome Y after deleting all arrows into mediator
M .

We can also define the natural direct effect (NDE) using counterfactuals.

Natural Direct Effect (NDE)

NDE = P (YM=M0 = y|do(X = x)) − P (YM=M0 = y|do(X = x′))
(Pearl & Mackenzie, 2018, p. 318)

In the example in (Pearl & Mackenzie, 2018, p. 318), the authors use
discrete binary variables, i.e. the variable Y takes only the value Y = 1
and the variable X takes the values X = 0 and X = 1. Informally, we can
interpret the NDE as the expected change in Y when we change X = x
to X = x′ and keep the the mediators constant at the values they would
have had under do(X) (Pearl, 2009, p. 131). Additionally, we can define
the Natural Indirect Effect (NIE) as the value when we hold X constant
and set the mediator to the counterfactual value it would have had if we
had changed X from x to x′:

Natural Indirect Effect (NIE)

NIE = P (YM=M1 = y|do(X = x)) − P (YM=M0 = y|do(X = x))
(Pearl & Mackenzie, 2018, p. 318)
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Note that there are now two counterfactuals in the definition of the natural
indirect effect, M = M0 and M = M1, whereas X only has the value X = x
(which is set to X = 0 in the example shown in (Pearl & Mackenzie, 2018,
p. 318)),

To explain the difference between the controlled direct effect and the natu-
ral direct effect, we follow the example of the Berkeley admission paradox
(Pearl & Mackenzie, 2018, p. 309ff) (Bickel, Hammel, & O’Connell, 1975;
Fairley, 1977): In 1973, Eugene Hammel looked at the graduate admis-
sion rates at Berkeley and noticed that, across the university, 35 percent
of all female applicants and 44 percent of all male applicants were ac-
cepted. He wanted to avoid any gender discrimination and, since graduate
admissions (unlike undergraduates) were handled independently by each
department, he looked at the values per department. However, once he
did that, he found that women were consistently favoured over men, which
seems paradoxical: How could overall admission indicate that men were
favoured across the university but not when looking at each department
that makes the decision? Looking at possible graphs, we start with part
(a) of Fig. 5.1, where X is the gender of the applicant, Y the admission
to the graduate program, and M the department. There are two paths
from the gender to the outcome, one via the mediator (department) and
one direct connection. As we have seen before, if this is indeed the correct
causal graph, conditioning on M gives the correct results. However, this
changes if there is an additional confounder that influences both the medi-
ator and the outcome. In this case, conditioning on M means conditioning
on a collider, which introduces a spurious association.

If we were to look at the controlled direct effect (CDE), we would use
the do-operator both on X and the mediator M , i.e., we would intervene
on the gender and on the department. However, if we truly did that,
we would be forcing applicants to apply, say, to the physics department
(do(M)) when they otherwise never would have. This would look very
strange to the committee looking at these applications. Imagine an un-
dergraduate student with a degree in, say, musical history applying to the
physics department—they would most certainly not be admitted, as they
lack the relevant previous studies. Instead, we look at the natural direct
effect, where we let the students apply to the department they would have
applied to anyway and then intervene on the gender. This is what is meant
when we use the counterfactual notation P (YM=M0 = y|do(X = x)). We
look at the outcome, e.g., admission (Y = 1), when the students choose
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the department (M = M0) and then intervene to make them report for the
purposes of this scenario, as one of two potential options—“biologically
male” or “biologically female” as their sex (do(X = 1) or do(X = 0)).

If the mediators are unconfounded, the natural direct and indirect effect
can be estimated via the following adjustment formulae:

Mediation Formula for Unconfounded Mediators

NDE =
∑
m

[P (Y = y|X = x,M = m)− P (Y = y|X = x′,M = m)]× (5.5)

× P (M = m|X = x′) (5.6)

NIE =
∑
m

[P (M = m|X = x)− P (M = m|X = x′)]P (Y = y|X = x′,M = m)

(5.7)

(Pearl, 2009, p. 132) (Pearl, 2012)

These adjustment formulae do not contain any counterfactuals or do-operators
and can be estimated by looking at observational data.

Self-Check Questions

1. Describe the mediation fallacy informally.

2. What is a mediator?

3. How do we represent mediators in a directed acyclic graph?

Solutions

1. The mediation fallacy occurs if we condition on a mediator instead of
holding it constant. Conditioning on mediators can lead to spurious
association in the data should there be any uncontrolled confounders.

2. A mediator “mediates” the causal effect from intervention X (treat-
ment) to outcome Y , i.e., it is the mechanism by which the causal
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Figure 5.2.: Collider Bias

effect is established.

3. They are represented by a chain.

5.2. Collider Bias
A collider is a

node with two or

more arrows

pointing into it.

Collider bias occurs when we condition on a collider as shown in Fig.
5.2: Both A and B are a common cause to C, and C is a collider, as
arrows from both A and B point into C. The conditioning is indicated
by a box drawn around C. We have already encountered an example of
collider bias using the example of Hollywood actors (Elwert & Winship,
2014), where we used the graph: talent −→ celebrity ←− beauty. We can
represent this using Fig. 5.2 when A is “talent,” B is “beauty,” we remove
the arrow from A to B, and C is celebrity. For the general population,
talent and beauty are unrelated. However, if we condition on C and only
look at those who are celebrities in Hollywood, we find that the variables
“talent” and “beauty” become associated. Intuitively, this can be explained
in the following way: We know that the person is a celebrity. If their
success is not due to talent, this makes it more likely that it is due to their
beauty. Conditioning on a collider opens a previously closed back-door
path between variables, which means they may become associated in the
data. Note that this can also happen if we condition on descendants of
variables that enter a collider, as shown in Fig. 5.3 (Pearl & Mackenzie,
2018, p. 160): In this graph, U is a confounder of treatment X and
outcome Y . If we want to establish the causal effect, we need to condition
on the confounder. However, if U is unobservable, we cannot close the
back-door path, meaning we cannot disentangle the causal effect. Since
conditioning on a descendant of U would also close the back-door path (at
least partially), we might be tempted to condition on A as a descendant
of U , if A is observable. However, there is also an arrow pointing from
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Figure 5.3.: Collider Bias with Descendants

Figure 5.4.: M Bias

X −→ A. Since arrows point into A both from U and X, A is a collider
and conditioning on it would introduce a new collider bias and spurious
correlation, even if it (partially) closes the back-door path of the confounder
U .

Collider bias also occurs in the type of diagram shown in Fig. 5.4 which is
called “M-bias” due to the shape of the graph (Pearl & Mackenzie, 2018,
p. 161). The variables X and Y are connected via a back-door path:
X ←− A −→ B ←− C −→ Y . However, the path is already blocked by
the collider B. Regardless, one might be tempted to call B a confounder
because it is associated both with the treatment X (via A) and the outcome
Y (via C). Additionally, it is not on a causal path from X to Y nor is it a
descendant of an element of a causal path, because the graph does not have
a causal path. Therefore, all three conditions of the test for confounders
often used in statistics are fulfilled. Yet, it would be disastrous to condition
on B, as this would unblock the path (because B is a collider). If A or C
are observable, we can condition on either of them to close the path again
should we accidentally or deliberately condition on B.

Collider bias can also be a source of selection bias. Selection bias is an
umbrella term for biases that originate from the procedure by which we
include individuals into an analysis (Hernan & Robins, 2020, p. 99). For
example, a medicine (A) has a direct effect on the recovery of the individual
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Figure 5.5.: Birth-Weight Paradox

(C) but the effect may also be mediated by a specific mechanism (B). If
we only accept those into the study who have fully recovered from the
illness, i.e., if we conditioned e.g., C = 1, we would unblock the collider
and introduce a spurious correlation between A and B. We can avoid this
by considering all individuals, regardless of whether they have recovered
or not.

Another example of collider bias is the “birth weight paradox” (Pearl &
Mackenzie, 2018, p. 183), (Hernandez-Diaz, Schisterman, & Hernan, 2006;
VanderWeele, 2014). The data show that infants born in the United States
whose parents (in particular, mothers) smoke are at a greater risk of lower
birth weight and even death as compared to infants where the parents do
not smoke. However, among infants with lower birth weights, the mortality
rate is lower for those whose parents smoke as compared to those who do
not. This sounds very paradoxical and counter to what we now know
about smoking: If the parent smokes, their children have a better chance
of survival compared to those of a non-smoker—if the infants have a low
birth weight. However, if we draw the causal diagram shown in Fig. 5.5, we
understand that the apparent paradox is due to conditioning on a collider:
the parents’ smoking both affects an infant’s birth weight and increases
their chance of death. Birth defects can also influence both the weight at
birth and the mortality rate; additionally, the birth weight can also causally
influence the mortality. Because smoking can influence the birth weight
and birth defects can also influence the weight, the variable “birth weight”
becomes a collider. When conditioned on in the analysis, this introduces a
spurious association.
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Self-Check Questions

1. Explain collider bias informally.

2. What is a collider?

Solutions

1. Collider bias happens when we condition on a collider. This opens a
previously blocked back-door path and leads to spurious association
in the data.

2. A collider is a node in a graph into which two or more arrows point.

5.3. Simpson’s and Berkson’s Paradoxes

When studying complex systems, we often encounter seemingly paradoxical
behavior of variables that are associated with each other. Many of these
examples are typical for a specific constellation in which we misinterpret
the data and do not take the full (causal) story behind the often confusing
behavior of the variables into account.

These paradoxes are often associated with a famous scientist who is associ-
ated with promoting or solving them in published works. In the following
section, we will focus on well-known examples that illustrate how impera-
tive it is that we analyze the data carefully and, specifically, think about
the casual data-generating process.

Simpson’s Paradox

Simpson’s paradox is attributed to Edward Simpson, the statistician who
popularized it. Essentially, the paradox describes a behavior seen in the
data where a specific correlation between variables is observed when looking
at the population from which the data are taken as a whole—but the
correlation is reversed in every sub-population. This effect had already
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Figure 5.6.: Simpson’s Paradox

been observed by Pearson in 1899 (Aldrich, 1995) and later by others
(Blyth, 1972; Cohen & Nagel, 1934).

We have already come across such an example earlier when we looked at
the correlation between exercise and cholesterol, as shown in part a and
b of Fig. 5.6. The two variables are strongly correlated, as indicated by
the regression line. Yet, it is contrary to our general understanding that
exercise is beneficial for us. We would expect that exercise, if it has any
effect at all, helps to lower cholesterol, as it is generally beneficial to our
health and high cholesterol levels are associated with health issues. Surely,
exercising should not make it worse; however, this is what the correlation
seems to suggest. However, once we look at the relation in different age
groups, as shown in part c of the figure, the correlation is reversed. Instead,
within each age group, we find the expected negative correlation between
exercise and age.

The example given by Simpson who popularized the paradox is concerned
with a new medicine that is administered to patients(Simpson, 1951). Note
that the following example uses language written at a time that does not
reflect today’s standards concerning gender and sex. For its inclusion in
this course book, we have kept the language as close as to the original as
possible. Looking at all patients, fewer patients recovered who took the
drug than those who did not. However, looking at the number of men, more
men taking the drug recovered than those who did not, and the same holds
for women. Hence, it seems that the drug helps men and women, but not
if we do not know the gender. This is of course counter to any intuition we
might have. To illustrate the example, we can use the following numbers
(Pearl et al., 2016, p. 2):
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Figure 5.7.: DAG for Simpson’s Paradox (Confounder)

Medicine No medicine
Men 81/87 recovered (93%) 234/270 recovered (87%)
Women 192/263 recovered (74%) 55/80 recovered (69%)
All patients 273/350 recovered (78%) 289/350 recovered (83%)

In this example, a total of 700 patients were enrolled in the study, 350
of which taking the medicine and 350 not. The first row seems to show
that the medicine helps men: 93% of the men recover after taking the
drug and 87% recovered who do not take it. The same is true for women:
74% recovered after taking the medicine compared to 69% who recovered
without taking it. However, if we look at the data for all patients regardless
of gender, only 78% recover if they take the medicine as opposed to 83% if
they do not. This is, of course, paradoxical. If the medicine helps men and
women, then, issues concerning gender or sex aside, it must help anyone.
We can write this as three statements:

• The medicine helps men and women.

• The medicine makes conditions worse for people.

• The medicine changes the gender of the patients.

Since the medicine most likely does not change the gender of the patients,
one of the two other statements must be wrong.

The situation becomes a bit clearer if we draw a causal graph for the
situation: We assert that the drug does not change the gender, but the
gender may have an influence on the way the drug works. In fact, looking at
the table above, we notice that the recovery rates are different for men and
women. This also implies that we need an arrow from gender to recovery.
We also say that the medicine will have an effect on the recovery; hence
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Figure 5.8.: DAG for Simpson’s Paradox (Mediator)

we need an arrow from medicine to recovery. This is shown in Fig. 5.7.

Now we can understand why the data seem to behave paradoxically: In
this example, “gender” is a confounder, and we need to adjust for it to
determine the causal effect and block the back-door path between taking
the medicine and recovery. In the case of exercise and cholesterol, age is
the confounder, and, if we control for age, we find that exercise is, indeed,
good for our health.

However, we can also use the same numerical data in a different causal
story (but with the column labels switched) (Pearl et al., 2016, p. 4):

No medicine Medicine
Low BP 81/87 recovered (93%) 234/270 recovered (87%)
High BP 192/263 recovered (74%) 55/80 recovered (69%)
All patients 273/350 recovered (78%) 289/350 recovered (83%)

Now we assume we know that the medicine works by lowering the blood
pressure—but it has a toxic side-effect. Now we see that the drug itself
works. In the group that does not take the medicine, 87 patients haveA placebo looks

and feels like

real medicine but

has no medical

effect.

low blood pressure after taking the placebo, 263 have high blood pressure.
Among those who take the medicine, 270 have low blood pressure and 80
continue having high blood pressure. Hence, the drug does what it should:
it “moves” the patients from high to low blood pressure. We also notice
that the overall recovery rate of those who take the drug is better than
those who do not: 83% compared to 78%. However, when we look at the
patients with low and high blood pressure, the correlation is reversed—but
now blood pressure is a mediator rather than a confounder as in the case of
gender earlier. We know the medicine is designed to work by lowering blood
pressure, and we measure the blood pressure after the medicine has been
taken. Hence, stratifying on the post-treatment blood-pressure disables
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Figure 5.9.: Berkson’s Paradox

one of the causal paths in which the medicine works, thus revealing the
toxic side-effects. In this case, we should not condition on blood pressure,
as it is the mediator of the effect (a chain in the DAG) and not a confounder
(a fork in the DAG). Since we should not condition on “blood pressure,”
we look at the last line for all patients, which shows a higher recovery rate
for those taking the medicine and would suggest one should take it.

For further discussions about Simpson’s paradox refer to (Pearl, 2014b).

Berkson’s Paradox

Berkson, after whom this paradox is named, noticed an odd behavior of
variables in observational studies conducted in hospitals (Berkson, 1946):
Even if the occurrence of one disease is not related to the other in the
general population, the two are correlated if we look amongst the patients
in hospitals. The effect was studied over a long period of time and evi-
dence collected, e.g., (Roberts, Spitzer, Delmore, & Sackett, 1978; Sackett,
1979)—however it was not clear why this correlation would come into ex-
istence.

To understand this bias, imagine we have only two diseases: disease 1 and
disease 2. We can imagine two scenarios: In one scenario, having just one
disease can be sufficiently severe as to require someone to be hospitalized.
In the other scenario, neither disease alone would require hospitalization.
Having both diseases, however, requires hospitalization. To illustrate how
the paradox comes about, we draw the causal diagram shown in Fig. 5.9:
Disease 1 can cause hospitalization, hence we draw an arrow from “disease
1” to “hospitalization” and the same reasoning applies to disease 2. Disease
1 does not cause disease 2, and vice versa. Hence, there are no arrows
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between them. Looking at the causal graph, we can immediately explain
why Berkson and others found a (spurious) correlation among hospitalized
patients: By looking only at patients in the hospital, we condition on
hospitalization (“hospitalization = true”). Because hospitalization is a
collider, we open a previously blocked back-door path between “disease 1”
and “disease 2.” This can be also interpreted as a selection bias. Only those
patients who made it into the study who were hospitalized; no individuals
were randomly selected from the general population.

As mentioned above, we could interpret this collider or selection bias in
two scenarios. In one scenario, either disease can be sufficiently severe to
require admittance to hospital. This scenario is very similar to the example
of celebrities encountered earlier: If the patient was not admitted due to
disease 1, it is more likely they are admitted due to disease 2. In this case
the correlation is negative. In the other scenario, hospitalization is required
only if both diseases are contracted. In this scenario the correlation is
positive: if a diagnosis confirms one disease, it is very likely the other is
also present.

Further discussion is also found in (Pearl & Mackenzie, 2018, p. 197 ff.).

Self-Check Questions

1. Describe Simpson’s paradox informally.

2. True or False: Simpson’s paradox always arises due to a confounder.

3. Berkson’s paradox is an example of . . . bias.

Solutions

1. Simpson’s paradox describes the effect when the variables in the data
are correlated one way in the general population but the reverse way
in sub-populations.

2. False. It can also occur in other constellations, e.g. with a mediator.
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3. Berkson’s paradox is an example for collider (or selection) bias.

5.4. Imputing Missing Values: Causal versus
Data-Driven View

Structured data

follow a defined

structure called a

‘‘schema’’ and can

be represented by

a database table.

Imputing missing values is a task that occurs frequently in the work of
data scientists, statisticians, and all those who analyze data frequently.
Imputing missing data sees us determining a data point missing from the
data we do have. This mostly this happens in structured data, which
can be represented as a table. For example, a row in such a table may
represent an observed event, and the columns would correspond to the
variables we can measure that describe the event. In some cases, one or
more of these variable values may be missing, and we need to account for
this in our analysis. Näıvely, we might be tempted to just remove this
observation with missing data. However, this could introduce a bias if
the data are not missing due to a random glitch. There are a number
of ways we can impute (or calculate) approximations to what we think
the missing value should be—or at least determine a value that does no
harm. For example, we can replace the missing value with the average
value of all other values of the variable we observe in our data. We could
also interpret the variable as a random variable and use all observed values
to create an approximation of the underling probability distribution that
governs the behavior of the variable. If the true distribution is known,
we could fit its parameters from the observed data. Otherwise, we can
create a non-parametric parametrization from the observed data to create
an approximate probability distribution. This distribution can then be
used to generate the missing value in a number of ways. For example, we
can use the mean, mode, median, or any other quantile as an estimate—or
we can draw a random number according to the probability distribution.
The latter approach has the benefit that it is not static, i.e., if several
values are missing we use a different imputed one each time instead of the
same value. These approaches are purely statistical, meaning we exploit
no knowledge of the data generating process we might have. Instead, we
only use the observed values only to infer the missing one.

Another option would be to find a matching pair of variables: Compare
this event with the others, find the one that is closest to the one with the
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missing value for all other variables, and then use the matching event to fill
the missing value. Note that, by doing this, we apply a type of conditioning
because we require the value in the data to take certain values. We could
also create a regression model to determine the values.

However, none of these approaches take the data generating process into
account and include the causal story behind the data. Using the examples
concerning salaries (Pearl & Mackenzie, 2018, p. 273 ff.) we will illustrate
how the answers may be quite different if we follow a purely statistical or
a causal approach to impute missing values.

The example uses the following table:

Fictitious data for potential outcomes example
Employee (u) Ex(u) Ed(u) S0(u) S1(u) S2(u)
A 6 0 81,000 ? ?
B 9 1 ? 92,500 ?
C 9 2 ? ? 97,000
D 8 1 ? 91,000 ?
E 12 1 ? 100,000 ?
F 13 0 97,000 ? ?

Here, Ex(u) represents the number of years of experience in a given job
and Ed(u) the level of education where, for simplicity, it is assumed that
only three levels exits: Ed=0: High school diploma; Ed=1 (undergraduate
degree) and Ed=2 (graduate degree). S(u) represents the salary of the
employee.

Note that this example is more advanced than the one discussed above
concerning missing values, because here, we want to impute counterfactual
missing data. Each individual employee has their own salary based on
experience, as well as on their level of education. In this example, we
want to know which salary an individual employee would have if they had
a different level of education. Still, the same considerations apply. We
could try to find matching entries for different employees and infer the
counterfactual salary this way. Given sufficient data in all columns, we
could also take any other statistical approach. For example, if we had a
few hundred thousand employees, we could approximate the probability
distribution of the salaries. We could also use a simple linear regression
model for the salary: S = 65, 000+2, 500·Ex+5000·Ed (Pearl & Mackenzie,
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Figure 5.10.: Causal DAG for the Salary Example

2018, p. 274) in which each employee has a base salary of 65,000 that is
then increased depending on experience (Ex) and the level of education
(Ed).

However, as mentioned above, no statistical method takes the causal story
or data generating process into account. They cannot, as statistical meth-
ods work with the data only. In a causal model, we would first think about
the dependencies of the variables, i.e., which arrow points from one place
to another. We can safely assume that both experience and the level of
education have an impact on salary. For example, more years of experi-
ence and/or a higher level of education will, generally, lead to a higher
salary. Therefore, we draw an arrow from education to salary and another
from experience to salary. However, experience is also related to education.
Generally, we have two options: either an arrow from experience to educa-
tion or from education to experience. It is more plausible that education
is the cause of experience, i.e., that we draw the arrow from education
to experience rather than the other way around. We could say that the
level of education we have determines the years of experience we may have
gained in our profession, whereas the number of years of experience will,
generally, not affect our level of education. The resulting causal diagram
is shown in Fig. 5.10.

In this diagram, the years of experience are a mediator in the chain: edu-
cation −→ experience −→ salary. However, if experience were a cause of
education, experience would become a confounder, as the direction of the
arrow would be reversed. This is important because we have to adjust for
a confounder to avoid bias. However, we do not adjust for the mediator. The SCM is the

‘‘translation’’ of

the causal DAG

into mathematical

equations.

As we have done when discussing counterfactuals, we can translate the
causal graph in a structural causal model (SCM) to calculate the coun-
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terfactual missing values. In such a model, the variable we want to model
is a function of the related causal variables. In our case, the salary S
is causally influenced both by experience and the level of education, i.e.,
S = f(Ed,Ex, Us), where Us models any unobserved variations affecting
the salary for a specific individual. In the simplest case, this can expressed
as a linear model. In this example, we obtain (Pearl & Mackenzie, 2018, p.
277): S = 5, 000+2, 500·Ex+5000·Ed+US. Although the equations looks
the same as the previous one (apart from the factor US), the interpretation
is very different. Previously, we chose to regress S on Ed and Ex—but this
had no connection to the real world. In particular, we did not assume a
causal relationship between them. We could have chosen any other combi-
nation of the three variables. In contrast, our formula S = f(Ed,Ex, Us)
now expressed our belief or knowledge that the salary (S) is causally con-
nected to Ed and Ex. We cannot write a structural causal equation for,
say, Ed = f(S,Ex, U), because our causal model represented by the graph
says that such a model does not exist. However, our model requires us to
write another equation for experience: Ex = f(Ed,UEx), because we have
added an arrow from “education” to “experience.” The resulting equation
is (Pearl & Mackenzie, 2018, p. 277) Ex = 10 − 4 · Ed + UEx. Note that
although we expect the salary and experience to be highly correlated in
the data, the variable S does not occur in the above equation.

If we then want to know the counterfactual imputed missing value, we can
follow the same approach we have taken when discussing counterfactuals.
Suppose we want to know the salary for employee A at varying levels of
education. At present, employee A only has a high school diploma and
six years of experience. How would it look if they had an undergraduate
or graduate degree? In a first step, we use the structural equations to
determine the unknown factors Us and UEx for this specific employee and
we find US(A) = 1, 000 and UEx(A) = −4 (Pearl & Mackenzie, 2018, p.
278). Now we assume that employee had an undergraduate degree, i.e.,
we set the variable Ed = 1, or, in the language of causality do(Ed = 1),
and make the relevant change to the causal DAG by removing all variables
pointing into Ed (in this example, however, there is no arrow to remove).
First, we evaluate the new level of experience for employee A using the
second equation we obtained from the model ExEd=1(A) = 10− 4 · 1− 4,
where we use the subscript to indicate that we calculate the counterfactual
(i.e., hypothetical) for the case that we do(Ed = 1), even though this is a
hypothetical case. This means that employee A would only have two years
of experience if they had an undergraduate degree. This can then be used
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in the structural equation for the salary SEd=1(A) = 65, 000 + 2, 500 · 2 +
5, 000 · 1 + 1, 000 = 76, 000. This is the salary employee would have if they
had an undergraduate degree.

However, if we used the regression model discussed earlier, i.e., S = 65, 000+
2, 500·Ex+5000·Ed, we would get S−65, 000+2, 500·6+5000·1 = 85, 000.
This is because we just changed the level of education and left everything
else, in particular the years of experience, the same. Hence, in this exam-
ple, we can get two answers for the imputed missing values, one from a
purely data-driven approach leading to a salary of 85,000 and one taking
the causal structure into account leading to 76,000. In the causal model,
we also need to take into account the changed values of the variables we
do not impute. In this example, we are looking at the years of experience
the employee would have had if they had a different level of education, as
well as the factors U that are unique to this individual. These factors are
not considered in the regression model and, hence, the regression and the
causal approach arrive at very different answers. This example uses a sim-
ple linear structural causal model, but the equations for Ex = f(Ed,UEx)
and S = f(Ed,Ex, Us) may be more complex. This is especially true in
more complex graphs with more than three variables.

Self-Check Questions

1. What is the main difference between using counterfactuals and using
purely data-driven approaches to impute missing values?

2. In the structural casual model discussed in this unit, what do the
factors US and UEx in the structural causal represent?

Solutions

1. When we use a counterfactual approach, we explicitly use an under-
lying causal model to impute missing values. Specifically, we create
a causal model in which we connect the nodes representing variables
using edges represented by arrows in the graph. This can then be
expressed in structural causal models to compute the missing values.
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2. The structural causal models allow us to calculate counterfactual
values in hypothetical scenarios that apply to a specific individual.
Since individuals differ from one to another, the counterfactuals also
differ, even if the values of the variables are the same. Specifically,
in the example discussed in this unit, even if two employees have the
same number of years of experience and the same level of education,
their counterfactual salary with a different level of education might be
different because their unique factors U are different. These factors
can vary for a wide range of reasons that may not even have anything
to do with the setting of the model.
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Summary

When we analyze data, we are often prone to make mistakes and
fall into traps that we can only avoid by building a deeper under-
standing of the data and the data-generating process behind it. In
several cases, the behavior of the data is seemingly paradoxical, for
example, when the correlation between variables is observed to be
one way across the entire sample but goes the other way in the sub-
samples. Many of these paradoxes can be understood by analyzing
the causal structure of the data-generating process. This allows us
to identify why the data behave this way and how to avoid the para-
doxical situation. Many of these phenomena are associated with the
names of scientists whose relevant works analyzed the issue such as
Simpson’s or Berkson’s paradox. When imputing missing values, we
can take a purely data-driven approach or a causal approach. Using
a concrete example, we can see how both approaches result in plau-
sible answers, even though the results obtained by one approach can
be very different to those calculated in the other.
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T., & Munafò, M. R. (2016, December). The CHRNA5–A3–B4 Gene
Cluster and Smoking: From Discovery to Therapeutics. Trends in
Neurosciences , 39 (12), 851–861. Retrieved from https://doi.org/

10.1016/j.tins.2016.10.005 doi: 10.1016/j.tins.2016.10.005
Lauritzen, S. L., & Spiegelhalter, D. J. (1988). Local computations with

probabilities on graphical structures and their application to expert
systems. Journal of the Royal Statistical Society: Series B (Method-
ological), 50 (2), 157–194.

Lewis, H. E. (n.d.). Medical aspects of polar exploration: sixtieth anniver-
sary of Scott’s last expedition. state of knowledge about scurvy in
1911. Proceedings of the Royal Society of Medicine, 65 (1), 39–42.

Liu, Y., & Abeyratne, A. I. (2019). Practical Applications of Bayesian
Reliability. Wiley. doi: 10.1002/9781119287995

Mendes, E. (2014). The Study That Helped Spur the U.S. Stop-Smoking
Movement. https://www.cancer.org/latest-news/the-study

-that-helped-spur-the-us-stop-smoking-movement.html. (Ac-
cessed: 2020-03-11)

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., &
Teller, E. (1953). Equation of state calculations by fast computing
machines. The journal of chemical physics , 21 (6), 1087–1092.

Morabia, A. (2010, August). History of the modern epidemiological
concept of confounding. Journal of Epidemiology & Community
Health, 65 (4), 297–300. Retrieved from https://doi.org/10.1136/

jech.2010.112565 doi: 10.1136/jech.2010.112565
Murphy, K. (2001). An introduction to graphical models. Rap. tech, 96 ,

1–19.
Newcomb, S. (1881). Note on the Frequency of Use of the Different Digits

in Natural Numbers. American Journal of Mathematics , 4 (1/4), 39.
doi: 10.2307/2369148

Office, U. C. (2011). https://www2.census.gov/library/

publications/2011/compendia/statab/131ed/tables/

12s0822.xls. (Accessed: 2020-03-11)
Pearl, J. (1985). Bayesian networks: A model of self-activated memory

for evidential reasoning. In Proceedings of the 7th Conference of the
Cognitive Science Society, University of California, Irvine, CA, USA
(pp. 15–17).

Pearl, J. (1993). Comment: Graphical Models, Causality and Interven-
tion. Statistical Science, 8 (3), 266–269. Retrieved from https://

154

https://doi.org/10.1016/j.tins.2016.10.005
https://doi.org/10.1016/j.tins.2016.10.005
https://www.cancer.org/latest-news/the-study-that-helped-spur-the-us-stop-smoking-movement.html
https://www.cancer.org/latest-news/the-study-that-helped-spur-the-us-stop-smoking-movement.html
https://doi.org/10.1136/jech.2010.112565
https://doi.org/10.1136/jech.2010.112565
https://www2.census.gov/library/publications/2011/compendia/statab/131ed/tables/12s0822.xls
https://www2.census.gov/library/publications/2011/compendia/statab/131ed/tables/12s0822.xls
https://www2.census.gov/library/publications/2011/compendia/statab/131ed/tables/12s0822.xls
https://doi.org/10.1214/ss/1177010894
https://doi.org/10.1214/ss/1177010894


doi.org/10.1214/ss/1177010894 doi: 10.1214/ss/1177010894

Pearl, J. (1995). Causal diagrams for empirical research. Biometrika,
82 (4), 669–688. Retrieved from https://doi.org/10.1093/

biomet/82.4.669 doi: 10.1093/biomet/82.4.669

Pearl, J. (2009). Causality: Models, Reasoning and Inference (2nd ed.).
Cambridge University Press.

Pearl, J. (2012). The Causal Mediation Formula—A Guide to the As-
sessment of Pathways and Mechanisms. Prevention Science, 13 (4),
426–436. doi: 10.1007/s11121-011-0270-1

Pearl, J. (2014a). Probabilistic reasoning in intelligent systems: networks
of plausible inference. Elsevier.

Pearl, J. (2014b). Understanding Simpson’s paradox. The American Statis-
tician, 68 (1), 8–13.

Pearl, J., Glymour, M., & Jewell, N. P. (2016). Causal inference in Statis-
tics: A Primer. Wiley.

Pearl, J., & Mackenzie, D. (2018). The Book of Why: The New Science of
Cause and Effect. Basic Books.

Pearl, J., & Russel, S. (2003). Bayesian networks. Handbook of Brain
Theory and Neural Networks .

Polson, N. G., & Scott, J. G. (2012, 12). On the Half-Cauchy Prior
for a Global Scale Parameter. Bayesian Anal., 7 (4), 887–902. doi:
10.1214/12-BA730

Raiffa, H., & Schlaifer, R. (1961). Applied statistical decision theory.

Roberts, R. S., Spitzer, W. O., Delmore, T., & Sackett, D. L. (1978).
An empirical demonstration of Berkson’s bias. Journal of Chronic
Diseases , 31 (2), 119–128. doi: 10.1016/0021-9681(78)90097-8

Rubin, D. B. (1974). Estimating causal effects of treatments in random-
ized and nonrandomized studies. Journal of educational Psychology ,
66 (5), 688.

Sackett, D. L. (1979). Bias in analytic research. Journal of Chronic
Diseases , 32 (1-2), 51–63. doi: 10.1016/0021-9681(79)90012-2

Shpitser, I., & Pearl, J. (2006). Identification of joint interventional dis-
tributions in recursive semi-Markovian causal models. In Proceed-
ings of the 21st national conference on artificial intelligence and the
18th innovative applications of artificial intelligence conference, aaai-
06/iaai-06 (Vol. 2, pp. 1219–1226). (21st National Conference on
Artificial Intelligence and the 18th Innovative Applications of Arti-
ficial Intelligence Conference, AAAI-06/IAAI-06 ; Conference date:
16-07-2006 Through 20-07-2006)

155

https://doi.org/10.1214/ss/1177010894
https://doi.org/10.1214/ss/1177010894
https://doi.org/10.1093/biomet/82.4.669
https://doi.org/10.1093/biomet/82.4.669


Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driess-
che, G., . . . Hassabis, D. (2016, January). Mastering the game of
Go with deep neural networks and tree search. Nature, 529 (7587),
484–489. doi: 10.1038/nature16961

Simpson, E. H. (1951). The Interpretation of Interaction in Contingency
Tables. Journal of the Royal Statistical Society. Series B (Method-
ological), 13 (2), 238–241. Retrieved from http://www.jstor.org/

stable/2984065

Spirtes, P. (2000). Causation, Prediction, and Search. MIT Press, Cam-
bridge, Mass. USA.

Tian, J., & Pearl, J. (2002). A General Identification Condition for Causal
Effects. In Eighteenth national conference on artificial intelligence
(p. 567–573). USA: American Association for Artificial Intelligence.

VanderWeele, T. J. (2014). Commentary: Resolutions of the birthweight
paradox: competing explanations and analytical insights. Interna-
tional Journal of Epidemiology , 43 (5), 1368–1373. doi: 10.1093/ije/
dyu162

Van Ravenzwaaij, D., Cassey, P., & Brown, S. D. (2018). A simple in-
troduction to Markov Chain Monte–Carlo sampling. Psychonomic
bulletin & review , 25 (1), 143–154.

Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner, P.-
C. (2019). Rank-normalization, folding, and localization: An

improved R̂ for assessing convergence of MCMC. arXiv preprint
arXiv:1903.08008 .

156

http://www.jstor.org/stable/2984065
http://www.jstor.org/stable/2984065


List of Figures

1.1. A Simple Bayesian Network . . . . . . . . . . . . . . . . . 16
1.2. Bayes Network for Wet Grass . . . . . . . . . . . . . . . . 17
1.3. Asia Network . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4. Random Numbers in the Triangle (0, 0), (1, 0), (1, 1) . . . . 26
1.5. A Simple Markov Chain. . . . . . . . . . . . . . . . . . . . 27
1.6. Equilibrium State of a Simple Markov Chain with Three

States. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1. US Sociology Doctorates versus Worldwide, Non-Commercial
Space Launches . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2. Correlation Coefficient . . . . . . . . . . . . . . . . . . . . 43
2.3. Correlation Depending on “Hidden” Variables . . . . . . . 44
2.4. Granger Causality (BiObserver (Wikipedia) CC BY-SA 3.0) 48
2.5. Basic Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.6. Common Cause . . . . . . . . . . . . . . . . . . . . . . . . 54
2.7. Common Effects . . . . . . . . . . . . . . . . . . . . . . . . 55
2.8. Graph with Unobserved Causes . . . . . . . . . . . . . . . 57
2.9. Variables with Measurement Errors . . . . . . . . . . . . . 58
2.10. Fork or Confounder . . . . . . . . . . . . . . . . . . . . . . 60
2.11. Mediator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.12. Controlling for Mediators . . . . . . . . . . . . . . . . . . . 63
2.13. Collider . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.14. Paths in a Collider . . . . . . . . . . . . . . . . . . . . . . 66
2.15. Paths in a fork . . . . . . . . . . . . . . . . . . . . . . . . 67
2.16. A Complex Causal Graph . . . . . . . . . . . . . . . . . . 71

3.1. Causal Diagram for the Firing Squad Example. . . . . . . 81
3.2. Interventions in the Firing Squad Example. . . . . . . . . . 82
3.3. Graphs for Adjustment Formula . . . . . . . . . . . . . . . 89
3.4. Example for Counterfactual Reasoning . . . . . . . . . . . 94

4.1. Common Cause . . . . . . . . . . . . . . . . . . . . . . . . 108

157



4.2. A Complex Causal Graph . . . . . . . . . . . . . . . . . . 110
4.3. Front-Door Criterion . . . . . . . . . . . . . . . . . . . . . 113
4.4. Graphs Demonstrating Various Applications of the Do-Calculus

Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.5. Example for Do-Calculus: Smoking . . . . . . . . . . . . . 120

5.1. Controlled Direct Effect . . . . . . . . . . . . . . . . . . . 129
5.2. Collider Bias . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.3. Collider Bias with Descendants . . . . . . . . . . . . . . . 135
5.4. M Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.5. Birth-Weight Paradox . . . . . . . . . . . . . . . . . . . . 136
5.6. Simpson’s Paradox . . . . . . . . . . . . . . . . . . . . . . 138
5.7. DAG for Simpson’s Paradox (Confounder) . . . . . . . . . 139
5.8. DAG for Simpson’s Paradox (Mediator) . . . . . . . . . . . 140
5.9. Berkson’s Paradox . . . . . . . . . . . . . . . . . . . . . . 141
5.10. Causal DAG for the Salary Example . . . . . . . . . . . . 145

A.1. Asia Network . . . . . . . . . . . . . . . . . . . . . . . . . 161
A.2. DAG for coupons as an intervention . . . . . . . . . . . . . 164
A.3. Raw data to simulate the response to a survey . . . . . . . 169
A.4. Simulated responses to the survey. . . . . . . . . . . . . . . 169
A.5. Survey results if only dissatisfied customers participate. . . 170
A.6. Survey results weighted by response probability. . . . . . . 170

158



A. Workbook Questions &
Solution Hints

A.1. Machine Learning vs. Probabilistic
Modelling

Question 1

Explain the difference in the underlying concepts between curve fit-
ting, probabilistic modelling, and machine learning / deep learning.

We can characterise the three approaches in the following way:

• Curve Fitting: We have a (simple) model, such as linear regression,
(though of course it can be a lot more complex) that depends on a
number of parameters. Using the data we have collected, we deter-
mine the best values of these parameters (and their uncertainties).
For example, a simple linear regression model is y = m · x + b and
we have to determine the parameters m and b using a fit to the data.
Of course, if the model is wrong, we may still be able to fit the
parameters—but the model may not be a good way to describe the
data.

• Probabilistic Modelling: In a way it’s similar to curve fitting but we
go one step further. We still have a model, but now we specify a
prior for all parameters and explicitly model random noise. As with
curve fitting, we have to “know” the model from elsewhere. After we
train/fit the model (e.g. MCMC) we can then draw from the posterior
distribution of the parameters to represent a specific incarnation of
the model, e.g. the most probable value of the parameters, or the
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median, etc. For example, Y ∼ N (β ·X + b, σ2) is the probabilistic
version of the linear regression. This is essentially the same model as
the one above for curve fitting (apart from the Gaussian noise) - but
now we treat everything in terms of probability distributions.

• In Machine Learning and Deep Learning we go in a different direction:
Here we start from the data and essentially let the algorithm learn
the model, for example, the best description of the training data for
a specified training target or label. Noisy data or data quality issues
will therefore degrade the model that we aim to learn from the data.

All approaches have in common that we do not really motivate the choice
of model as such: In curve fitting and probabilistic modelling, we need to
start with a model—but there is no stringent way to define it. Whether we
happen to know the “correct” model, we use an ad-hoc guess or something
else is something we have to determine in other ways. In machine and
deep learning, we do not have an explicit model—it is indeed one of the
challenges to verify if the algorithm has learned “useful” relationships or
artefacts in the data such as spurious correlations that work well on the
given data but are not “fundamental”.

A.2. Bayesian Networks & Causal Graphs

Question 2

Explain what Bayesian networks and causal graphs are, how they
work and discuss the differences between them. Draw an example
for both a Bayesian network and a causal graph and use these vi-
sualizations in your discussion. In particular, highlight the elements
of causal graphs, discuss how some of these elements can lead to
biases as well how to avoid them. Add graphical representations of
the elements of the causal graphs and use such visualizations in your
explanations of how biases can arise and how they can be avoided.
Illustrate your answer with a concrete example that is not covered
in the course book.

Bayesian Networks and causal graphs use the same underlying elements
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Figure A.1.: Asia Network, adapted from (Lauritzen & Spiegelhalter,
1988)

to build the graphs, such as “nodes” (representing variables) and “edges”
which connect the nodes. The main difference between the two is that
we do not assume causal relationships in Bayesian networks whereas we
do in causal graphs. Essentially, Bayesian networks are both a tool and a
visualisation how variables depend on each other and we can traverse the
network to explore how the variables (represented by nodes behave). An
example of the Bayesian network is the so-called “Asia Network” (Lauritzen
& Spiegelhalter, 1988) as shown in Fig. A.1 which we have discussed in
Unit 1.2.

The nodes are connected via conditional probability tables (CPT) that,
intuitively, determine how the value of the other variables change if we
start exploring possible values for some variable(s). For example, we could
look how the probability for visiting Asia changes if we consider a person
who smokes and has dyspnea.
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Causal graphs are also built from nodes that are connected via edges.
In contrast to Bayesian networks, the direction of the arrows (directed
edges) indicate a causal relationship between two variables. Key elements
of causal graphs arise from specific combination of nodes and directed
edges such as: forks (see Fig. 2.10), chains or mediators (see Fig. 2.11)
and collider Fig. 2.13).

A collider is a node into which two (or more) arrows point into and we have
seen an example of collider bias in Fig. 5.2. This occurs if we condition
on a collider, for example: talent −→ celebrity ←− beauty. Here, if we
only look at celebrities, talent and beauty become correlated, even if they
are unrelated in the general population. Another example is Berkson’s
paradox or the “M”- bias.

We have discussed the mediation fallacy in sec. 5.1, for example citrus
fruit −→ vitamin C −→ scurvy. If we do not know the correct mediator,
we will draw wrong conclusions. Generally, we want to avoid specifying
mediators as we are generally interested in the total effect and not in the
part transported via a specific mediator. However, in specific cases, we do
need to introduce mediators (e.g. when we have to rely on the front-door
criterion).

A.3. Confounder

Question 3

Explain what is meant by “adjusting for confounders”. Design a
causal graph and add a visual representation of the causal graph to
your answer. Use this causal graph to explain the effect of adjusting
for confounders on the causal graph.

A confounder (or fork) is a common cause to multiple effects, see the graph
in Fig. 2.10. We have used this to explain the issue between the seemingly
startling effect of the association of yellow fingers with lung cancer. Here,
smoking was a common cause (or confounder) associated both with yellow
fingers and lung cancer. Another example is the analysis of the reading
ability of school children and their shoe size, where age is a confounder.
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Adjusting or controlling for confounders means that we take their effects
explicitly into account. For example, “controlling for age” in the examples
about the shoe sizes means we look in strata of age, i.e. we group the
children into age groups and then look if the effect is still there within
the groups. Similarly, in the case of smoking, we look at the correlation
between yellow fingers and lung cancer separately for smokers and non-
smokers. Within Pearl’s do-calculus, we say that there is confounding if
P (Y |X) =6= P (Y |do(X)), see Fig. 3.3. Using the total law of probabilities,
we can derive the adjustment formula for confounders(Pearl et al., 2016,
p. 57):

(Y = y|do(X = x)) =
∑
z

P (Y = y|X = x, Z = z)P (Z = z)

where we look at the effect for every value of the variable Z representing
the confounder (see unit 3.3).

A.4. Customer Targeting

Question 4

Advertisements and promotions play a key role in selling goods, for
example, in a retail store or supermarket. Take the example of a
coupon that offers a specific rebate (e.g., save 20% when using this
coupon code on the offer) and explain how such a coupon influences
the customers’ behavior. Design a corresponding causal graph and
use this visualization to illustrate your explanation. Additionally,
discuss which kind of customers you want to target and which kind
of customers you do not want to target.

First of all, we can think about how coupons work in general, there are
several ways. For example, we could hand customers a rebate coupon
at the check-out for their next shop or, similarly, make it available in a
smartphone app. In this case, the coupon itself is an intervention and we
can choose to hand a coupon to a specific customer (or not). Here we
aim to change the customer’s behaviour to use the coupon and purchase
some goods they might not have bought otherwise or might have bought
elsewhere instead.
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Figure A.2.: DAG for coupons as an intervention

Alternatively, the coupons could be part of a general promotion leaflet.
Here we do not necessarily target individual customers with the coupon as
such but we may run a promotion for a limited time to attract customers.
Here, the coupon is likely more a mediator: We run a promotion campaign
and the coupon is the mechanism through which this incentive boosts our
sales.

In the following we assume that we target the customer directly with a
coupon. The question we then need to address is: Will this intervention
(i.e. handing a customer a coupon) lead to a purchase?

The individual preferences of customers are part of the unobservable vari-
ables influencing a customers: Some customers will generally be more sus-
ceptible to coupons than others. However, income (individual or total
household) is likely to be a confounder. It is at least plausible that house-
holds with above average income are generally less susceptible to coupons
compared to low-income households. The latter may need to rely more
on coupons to “make ends meet” and use the available Furthermore, high
income households will in general have a different spending pattern com-
pared to low income households, for example spending more than strictly
necessary, choose higher quality products at a higher price, as well as in-
dulge in some luxuries. Our graph for this scenario is then like the one
shown in Fig. A.2. Here, the coupon is the “treatment” (X), the sales are
denoted by the variable Y and the income is a confounder (Z).

Generally, if we approach customers, they can respond in several ways:

• Customers who were going to buy anyway, will still buy, even if we
approach them or give them a discount, etc.
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• Customers who were not going to buy something are going to buy
something now that we have given them an additional incentive.

• Customers who were going to buy something are “turned off” by the
intervention and are no longer going to buy.

• Customers who were not going to buy are still not going to buy after
receiving another incentive.

Ideally, we will only want to target those customers who were not going
to buy but will do so after receiving an incentive, i.e. those who respond
positively to our intervention. We will use revenue on those customers
who were going to buy anyway: They will still do so but now spend less.
Furthermore, those customers who will no longer shop with us will hit us
harder: they were going to pay the full price but will now go elsewhere.
The final group of “lost causes” does no harm in terms of our intervention:
they were not going to spend money on our products and the intervention
didn’t change that.

One way to use coupons from the retailer’s perspective then is that if we
are able to target the customers who are susceptible to this intervention of
receiving the coupon we can increase revenue as we either convince them
to make a purchase (e.g. the price for the product drops below a certain
threshold) or we convince them to make the purchase with us and not with
the competition (e.g. the customers need that product anyway but now
they buy it from us and not from the competition).

A.5. A/B Test

Question 5

Explain how A/B tests work and how we can draw conclusions using
A/B tests from a specific setup. Discuss how we can use causal
analysis on observational data on the same setup and illustrate the
difference between both approaches. What can we do if a direct
intervention is impossible or unethical?
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In general, A/B tests work in the following way: We want to test which
of two variants is more successful, for example, if the new design of a web-
page leads to more revenue or clicked ads, which of two products is more
successful, if the advertisement campaign leas to more sales than the old
one, etc. The two variants need to be comparable like-with-like. In an
online environment, this can be realised much easier than in the physical
world. For example, we can randomly divert users to one or the other
variant of a web-page etc. In the physical world, we often need to be more
careful: not only do the variants of the physical products we want to test
be directly comparable, we also need to take into account the way the
potential customers can interact with them. For example, if we place one
variant in a store and then observe the customers’ behaviour for a given
time and then use the other variant, we may find that other effects have a
strong impact. For example, there may be a seasonal influence that affects
the sales of products or promotion campaigns that run during the time one
variant was tested but not the other, even if they are not directly related
to this product, etc. We could also place the two variants in two different
shops at the same time—then we have to take the aspects of the physical
location into account, e.g. the demographics of the customer base, the
store layout, the placement of the products, etc. We also have to make
sure that we run the test “long enough” to be able to discern if variant A
is better than B or vice versa. Generally speaking, in A/B tests we are
not fundamentally interested in causal relationships but want to observe
which variant, A or B, work better considering a group of individuals.

In a causal analysis we want to study the effect of causal relationships and
interventions. For example, we want to establish whether smoking causes
cancer or if the rise in lung cancer observed as more people smoke is due
to some other factor.

Using the example of the coupon from task 4, we could design an A/B
test such that randomly customers are assigned a coupon. For example we
could give customers a specific coupon when they visit a web-page (group
A) or not (group B) and then observe the revenue generated by those
two groups. Alternatively, we might give all customers a coupon but vary
its value, e.g. 10% or 20%. We then let the A/B test run for a while
and observe the outcomes. However, there are a number of issues with
this: The A/B test can only make a statement on the group of people
interacting during the time. This may or may not be representative: Of
all the people in the general population, we can only observe those who

166



visit the web-page during the test. Depending on the setting, that may not
be representative for the group of users we want to analyze. Furthermore,
the visitor themselves decide whether or not to use the coupon, this is
another source of self-selection bias. Then, we only get an answer about
the average effect whereas in the case of a coupon we are interested in the
effect on the level of individuals. Finally, the A/B test does not include
any confounders. In the example of the coupon we have discussed already
in task 4 we argued that income is a confounding variable which we have
to take into account. Using observational data, we can for example track
if customers have used coupons in the past and control for confounders.
Ideally, we send out coupons randomly initially. This way we can collect the
data about coupon usage such that it is not biased do to our intervention
of sending out coupons before we target individual customers.

In the case of the coupon, we do not run into ethical issues. However,
in other scenarios, such as in the case of smoking, we can neither do an
A/B test nor a randomized controlled trial. It would be unethical to place
participants in a study into a “smoking group” or send out free cigarettes
to a group A over a long period of time to observe the outcome if group A
develops more cancer than group B who do not get free cigarettes. Instead,
we have to use observational data alone. Essentially, we build causal graphs
and then use the rules of do-calculus to transform expressions that contain
the do-operators into those that do not. In the case of cancer, we want to
transform the expression P (cancer|do(smoke)) into a “do-free” expression.

A.6. Customer Feedback

Question 6

A company wants to get feedback on their product and uses a volun-
tary survey to ask their customers. For example, we can imagine that
the company runs a web-service and customers use a web-browser or
app to use this service. The link to the survey is placed on the web-
page and inside the app, but customers are not required to fill in
the survey at any point of using the product. As part of the survey,
the customers are asked to rate their satisfaction with the product
on a scale of 1 (very satisfied) to 6 (not satisfied). To present the
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findings of the feedback to the management, the feedback should be
mapped to a simple visualization such as a traffic light whether the
customers are happy, or action is required. Discuss which bias(es)
may arise due to the setup of the way the feedback is acquired and
outline potential paths to mitigate them. How is the “traffic light”
indicator for the management affected if the probability of taking the
survey depends on the satisfaction? Create a numerical simulation
to illustrate the result. For simplicity, assume that we can model the
results of the survey using a Poisson distribution where we map any
value greater than 6 to 6 (not satisfied).

In the scenario, the customers of the service obtain a link to the survey but
they decide themselves whether or not they participate. This leads to a
strong self-selection bias, since we do not know anything about the motiva-
tion of the customer completing the survey. For example, customers may
be very dissatisfied and use the survey to express their disappointment. For
these customers we can generally expect a bad review. Other customers
may be very satisfied and want to pass the praise on—here we can expect
favourable ratings. Other customers may feel obliged to complete the sur-
vey. Since we do not approach the customers randomly, we have to assume
that the self-selection of participants in the survey is biased. To mitigate
this we could, for example, do another study where we approach customers
randomly and ask for their feedback. We may not have a response rate of
100% but a much better idea how the customer response is overall and can
compare this to the results from the voluntary survey.

To understand this a bit more quantitatively, we assume that we can sim-
ulate the response to an ideal survey (without biases) using a Poisson
distribution. We choose the Poisson distribution because it describes dis-
crete random events and we only know the mean of the values. Say, we
have kind of happy customers and choose µ = 1.6, the resulting data are
shown in Fig. A.3

In our setup we assume that the responses are only between 1 (for very
satisfied) to 6 (not satisfied), so we need to adjust the figure slightly by
replacing all data greater than six by six as shown in Fig. A.4. We observe
that the mean of the distribution of “responses” is about 2.5, whereas the
median is 2.0. Here we notice already that the way we quote numbers can
lead to a bias in the reporting. For example, if we were to base the traffic
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Figure A.3.: Raw data to simulate the response to a survey

Figure A.4.: Simulated responses to the survey.

light on the mean and choose anywhere between 2.0 and 2.5 as cutoff to
switch the traffic light from “green” to “yellow”, report would show green
if we were to use the median but yellow based on the mean. Since the idea
of the traffic light system is to avoid understanding the numbers and their
distributions in more detail, we would already not be able to understand
in detail if action should be taken or not.

Next, we investigate a few response patterns. For example, we could in-
vestigate the, admittedly extreme, case that only customers who are not
satisfied will complete the survey. We can, for example, assume that only
responses three or greater are recorded as shown in Fig. A.5

More realistically, we could assume that we can model the response be-
haviour using probabilities: We assign a probability that a customer will

169



Figure A.5.: Survey results if only dissatisfied customers participate.

Figure A.6.: Survey results weighted by response probability.

complete the survey for each mark, for example: [0.1, 0.2, 0.2, 0.8, 1.0, 1.0].
The result is shown in Fig. A.6. We notice that the resulting distribution,
as well as mean and median reflect a bad customer rating, even though the
original data indicate that the customers are satisfied. Since we cannot
disentangle these biases from the survey data alone, the resulting reported
numbers, as well as the traffic light indicator, are meaningless and cannot
be used to gauge customer satisfaction.

170


	Statistical Inference
	Bayesian Inference
	Bayesian Networks
	Probabilistic Modelling

	Introduction to Causality
	Correlation versus Causation
	Granger Causality
	Directed Acyclic Graphs (DAG)
	Elements of Causal Graphs
	D-Separation
	Conditional Independence

	Interventions
	Seeing versus Doing
	Confounders and Counterfactuals
	Causal Inference versus Randomized Controlled Trials

	Do-Calculus
	Front- and Back-door Criterion
	The Three Rules of Do-Calculus

	Fallacies
	Mediation Fallacy
	Collider Bias
	Simpson's and Berkson's Paradoxes
	Imputing Missing Values: Causal versus Data-Driven View
	References

	Workbook Questions & Solution Hints
	Machine Learning vs. Probabilistic Modelling
	Bayesian Networks & Causal Graphs
	Confounder
	Customer Targeting
	A/B Test
	Customer Feedback


