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Abstract

The recent observation of non-trivial azimuthal correlation in high-multiplicity
Proton-Proton (pp) collisions at the Large Hadron Collider (the so called ridge
phenomena) aroused a considerable interest. The reason that similar correlation
were observed previasly in heavy ion collisions in LHC and Relativistic Heavy-Ion
Collier (RHIC), where they were considered as a vital sign of the creation of Quark
Gluon Plasma (QGP). These correlation appear natural in the QGP frame work,
duo to the large interactions between the particles emitted in the collisions (final
state interaction), these interactions however absent in pp collisions. This lead to
the study of new possible mechanisms for the ridge phenomena, in particular a new
approach based on quantum interference and Multi-pParton Interaction (MPI) was
developed. This formalism was recently secssesfully aplide to symmetric correlators.

In this thesis we study the influence of quantum interference and colour flow
on three point correlations described by asymmetric cumulants in high multiplicity
events in pp collisions. We use the model previously developed for the study of
the collectivity in symmetric cumulants. We show that the resulting three point
asymmetric cumulant is in qualitative agreement with the experimental data for the
same parameters of the model as it was with the symmetric cumulants. Our results
show that the initial state correlations must play a major role and may be even
dominant in the explanation of the correlations in high multiplicity pp events.

We formulate the goals for our research in the introduction. in part two we
review the basic ideas of the approach for high multiplicity pp collisions based on
quantum interference and multi-parton interactions. In chapter three we carry the
actual computation of the three-point cumulant and study the dependence of the

momenta and number of emitted particles and compare it to experimental data.
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Chapter 1
Introduction

Recent studies of high-multiplicity proton-proton (pp) collisions at the Large Hadron
Collidor (LHC) [1, 2, 3, 4, 5], have observed a collective behavior that was considered
to be a sign for the creation of Quark-Gluon Plasma (QGP) when it was observed
in heavy-ion collisions (AA) before [5, 6, 7, 8, 9], the so called Ridge phenomena.

The ridge phenomena is natural in heavy-ion collision where it can be explained
by strong final state interactions of the emitted particles, however in pp collisions
we expect much smaller transverse size and density in the collision, more over,
these collisions are generally well described by Monte Carlo generators that assume
independent emitted particles. consequently we need a new approach to ridge not
based on strong final state interactions.

A new approach, based on quantum interference and Multi-Parton Interaction
(MPI) was proposed in references [10, 11] to explain such collective behavior. Using
this model we can calculate the azimuthal correlations in pp collisions and explain
the emergence of the ridge phenomena.

The studies in papers [10, 11] was devoted to symmetric cumulants, recently
ATLAS measured a new type of correlations in high-multiplicity pp collisions, the
3-point asymmetric cumulant [12].

In this thesis we use the approach of papers [10, 11] to calculate the 3-point
asymmetric cumulant. We study the dependence on the momenta and multiplicity
of emitted particles, we find our results are in good agreement with the experimental
data.

The thesis is organised in the following way:

In chapter 2 we review the basic formalism developed in papers [10, 11] to study
the collective behavior in high-multiplicity pp collisions. In particular, in section
2.1 we explain the geometry of high-multiplicity pp collisions and explain the basic

experimental and mathematical tools used to describe this correlations (the so called



Flow analysis), in section 2.2 we review the basic ideas of multi-parton interaction,
in section 2.3 the model of [10, 11] for the study of the correlations in pp collisions.

In chapter 3 we carry the actual calculations of the 3-point asymmetric cumulant.
In particular, in section 3.1 we reestablish the physical problem we want to solve,
in section 3.2 we go summaries the formalism we will use next, in section 3.3 we
find the 3-point asymmetric cumulant for the case of 3 partonic interactions and 3
emitted particles and find the momenta dependence, in section 3.4 we extand the
result to the case of general numbers of partonic interactions and emitted particles,
and compare the multiplicity dependence to the experimental results.

The conclusions are presented in chapter 4.



Chapter 2

Review of Quantum Interference

Approach

2.1 Ridge and Cumulants

2.1.1 Heavy-Ion Collisions

Experimentalists have been using heavy-ion (AA) collisions to create and study
Quark-Gluon Plasma (QGP) since it was discovered in the beginning of the mil-
lennium [13]. One of the ways to study the emergence of QGP in AA collisions
is to look at multi-particle production event, and quantify the distribution of the
emitted particles rapidity and azimuthal directions related to reaction plane angle
(The reaction plain is the plains that contains the centers of the colliding particles
and is parallel to the beam axis).

In Fig. 2.1 we depict a simplified diagram taken from ref. [14], of the geometry
of a collision, projected onto the plane transverse to the beam axis. To be able
to compare measurements of the azimuthal distribution for single particles from
different events we need to know the reaction plane angle for each event and shift
the measurements accordingly. One way to get around that is by looking at the
correlations between particles instead of the distribution of a single particle relative
to reaction plain.

Looking at measurements like the ones shown in Fig. 2.2 (taken from ref. [6]
and ref. [7]). We can see here several clear trends [6, 7], in particular we see that
regardless of the the azimuthal difference between the particles, the correlation is
almost independent of the the pseudorapidity difference, where the pseudorapidity
(n) and rapidity (y) are defined as:

- nfen(2)) o

4



Figure 2.1: A diagram of a coordinates system used in flow analysis. The Z-axis
is the beam axis coming out of the page, the XY plane the the transverse plane,
where the X axis, or the azimuthal 0, is chosen arbitrarily. The X'Y” plane is the
XY plane rotated by the reaction plane angle Wg, where the reaction plane is the
plane containing the beam axis and the two centers of the nuclei, making it that
both centers are on the X’ axis, b is the impact parameter given by the projection
of the distance between the centers of the nuclei, and ¢ is the azimuthal angle of an

emitted particle. diagram taken from [14].

1 E+p,
=1 . 2.2
y Qn(E_p) (2.2)

Here 6 is the angle between the particle momentum and the beam axis, F is

the particle energy and p, is it’s momentum along the beam axis. Recall that for
massless or ultra-relativistic particles this is the same as the pseudorapidity that is
used in the measurements, y ~ 7.

The phenomena where the azimuthal correlations are almost independent of the
pseudorapidity difference, is called ridge. This correlation between very distant in
rapidity particles is a sign of collective behavior that points to a the existence of a
medium, that way information can be shared between the emitted particles. The
existence of such a medium is somewhat expected in AA collisions where we axpact
the creation of QGP. As was stated at the beginning of the chapter, one of the
many research topics that we study via AA collisions is the existence and properties
of QGP. The collective behavior in PbPb collisions have also been observed in ref.
[5, 8,9, 15, 16].
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Figure 2.2: 3D Plots of two particles correlations, C'(An, A¢), from AA collisions
as a function of the A¢, the azimuthal difference between the particles, and An, the
pseudorapidity difference between the particles, Pb+Pb on top [6], and Xe+Xe on
the bottom [7], for different centrality intervals, 0—5% (left), 30%—40% (center) and
60% —70% (right). Both experiments looked at particles with transverse momentum
in the range of 2GeV < p; < 3GeV and pseudorapidity in the range |n| < 2.5, \/syn
is the center of mass energy of the collisions in each experiment. We can see few
clear trends from those measurements, the most important one for us is the apparent
independence of the correlation on the pseudorapidity difference, this phenomena is
called ridge. The correlations peak around A¢ = An = 0, this is partly a non-flow

contribution that comes from looking at particles that are originating from the same

jet.



2.1.2 High Multiplicity Proton-Proton Collisions

In High Multiplicity Proton-Proton (pp) collisions transverse size of the collision is
very small in comparison to AA collisions, for example, in ultra-relatevistic Pb+Pb
collitions the ratio of gluon density is much higher compared to pp collisions. So
it is not expected for QGP to be created in those systems (sometimes called small
systems, relative to large systems created in AA collisions). Therefore we cannot
explain the correlations between high rapidity difference particles by the emergence
of new medium. The particles emitted from a pp collision should act almost as free
particles with no sign for a collective behavior, in other words, we do not expect
ridge in pp collisions.

the first observation of ridge in pp collisions was made by the CMS collaboration
in 2010 [1]. Those measurements and more that came out since, such as the ones in
[2, 3, 4, 5] as depicted in Fig. 2.3 and Fig. 2.4, lead us to ask the question how do
the particles that are almost completely free embody this collective behavior? We
need to find a different origin for correlations in pp collisions other then final state

interactions. |[htbp]
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Figure 2.3: Correlations for 2 particles in a proton-proton collision as a function
of the A¢, the azimuthal difference, and An, the pseudorapidity difference, from
[2]. The different plots show different selection parameters. From top to bottom:
only charged particles (top), events with kion particles (middle), and and events
with lambda (or anti-lambda) particles (bottom). Low Multiplicity events (left)
and high multiplicity events (right). As we saw in the correlations in AA collisions,
the correlations peak at two regions. The correlations peak around A¢p = An = 0,
is mostly a non-flow contribution that comes from from looking at particles that
are originating from the same jet, like it was in Fig. 2.2. The peak around A¢ 7
is very similar to the same peak as in the AA collisions, including the very weak
dependence on the pseudorapidity difference.
[htbp]
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Figure 2.4: Correlations for 2 particles in a proton-proton collision after applying
ZYAM procedure, the ZYAM procedure is a shift to the measurements be 0 at
minimum, as a function of the A¢, the azimuthal difference, from [2]. On the
top there are long-range correlations, for particles pairs with high An, and on the
bottom are short range correlations, particles pairs with low An. Filled symbols
show multiplicity between 105 and 150, empty symbols show multiplicity between
10 and 20. The Different colors show different types of events: only charged particles
(black), events with kion particles (blue), and and events with lambda (or anti-

lambda) particles (red). The black line is a Fourier fit.

2.1.3 Cumulants

When we study correlations between s particles we want to be sure that what we
calculate comes from the correlations of all particles. To do this we need to define
the cumulants. Let us assume that the 1-particle momentum distribution function

as defined in [17]:
dN
= 2.3
f(p) Py (2.3)
Here dN is the differential multiplicity, or the number of particles within a small
momentum space d®p. To calculate the properties of the emitted particles we can
think of taking the average with respect to the momentum distribution function, for

example we can take the average of a function F' (p) over the azimuthal component

of the particle momentum, leaving us with a function of the transverse momentum
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and rapidity:

_JF(p)f(p)de
(F(p)) (p.y) = T &y

here () marks an average. The correlation between two different particles is then

(2.4)

defined by the 2-particles distribution function:
d*N

_— 2.
d3*p1d3ps ’ ( 5)

f(P1,py) =

here p; and p, are the 3-momentum of the 2 different particles. If the two
particles are not correlated the distribution function will factorize f (py,ps) =

f(py) f (ps), however in general case we have:

f(P1,po) = [ (P1) f(P2) + fe (P1,P2), (2.6)

here f.(py,py) denotes the correlated part of the distribution. An important
note here is that for a single particle f. (p) = f (p) since we can’t break it down to
smaller pieces.

This approach can be generalized to any number of particles correlations, for

example, the 3-particles distribution is given by: **###*

d*N 3
e fe(p1) fe (P2) [e (p3)+]§:1 fe(D5) fe ({pk}k#)Jrfc (1, P2, P3) .
(2.7)

where the first term on the right-hand side is the product of the 1-particles distri-

f(p17P2,p3) =

butions, the second term comes from the pair correlations within the three particles,
and the last term is the 3-particles true correlation. In general to decompose the s-
particles distribution function we first take all possible partitions of {p1, ps, ..., Ds}-
For each subset {pj,,pj,,--.,Pj,.} We find the corresponding correlated function,
fe (Pj1sDjss - - -, s, )- The contribution of a given partition is the product of the con-
tributions of each subset. Finally, f (p1,po,...,Ps) is the sum of the contributions
of all partitions.

Using those relations we can express the true correlated distributions in terms

of the full correlation functions, for example, for 1, 2 and 3 particles:

fe@) = f(p)
fe (P1,P2) = f(Phpz) - f(pl)f(P2)
fe(P1,p2,p3) = [ (P1,p2,p3) — [ (P1,02) f (p3) — f(P1,p3) f (P2) — f (P2, p3) [ (P1)

+ 2f(p1) f (p2) f (p3) - (2.8)

This true correlations f,. are called cumulants.
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2.1.4 Flow Analysis

Studying the azimuthal distributions and correlations of particles gave rise to the
subject of "flow analysis”. Flow analysis studies the anisotropic behavior in the
azimuthal direction by breaking down the distribution of the emitted particles into

a Fourier expansion [14], for example:

F0) = g (1425w eosino -] (9

here f(p) is the 1-particle momentum distribution function as defined in eq.
(2.3), y is the rapidity of the particle, E is the energy of the particle, p; is the
transverse momentum of the particle, ¢ is its azimuthal coordinate of the particles
momentum, Wg is the azimuthal angle between the X-axis, that was chosen arbi-
trarily, and the projection of the vector connecting the two centers of the nuclei
onto the XY plane, also known as the reaction plane angle, and v,, are the Fourier
coefficients, also known as flow harmonics.

It is important to note that in general v,, are functions of the transverse momen-
tum and pseudorapidity of the emitted particles, but since we are looking at the
case of ridge we can neglect the pseudorapidity. The coefficients v,, can be defined

by the following average over the azimuthal angle ¢:

| cin(6—x)
v, (pt) = <e”‘(¢_‘I'R)> = (cos (n(¢p — Wg))) = / 7 (p){igg) d¢- (2.10)

In a similar way we can decompose the correlations into Fourier expansion, for

example, the two particle correlation can be found using the 2-particles distribution

function by taking the average over both azimuthal components:

(e —E)inte ¥Ry  (gintor=a)) / eij(ﬁ}_(d)?)f (p1, 3”2> ff(bld‘b?. (2.11)
p1,P2) Bprd3py

In such a way we get read of the explicit dependence on the position of the
reaction plane.

Flow analysis is the study of the flow harmonics, v; and vy are commonly known
as direct and elliptic flow respectively, v; corresponds to a preference to a single
direction, vy represents a symmetry by a half way rotation around the Z-axis, this
symmetry is expected in a system of AA collision. In general v,, are sensitive to the
geometry of the collision, that is why higher order flow harmonics, n > 2, are also
important in studying the collision structure.

Using the approach of the of the previous section correlations between many

particles can be reduced to sums of correlations between smaller numbers of particles,
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similar to the s-particles distribution functions, i.e. the two particles correlation can

be reduced to:
<em(¢r¢2)> — <€m¢1> <efm¢2> + <ein(¢r¢z)>c, (2.12)

Here <em(¢1_¢2)>c is just the two particles cumulant defined in the previous sec-
tion.

If we assume a perfect detector it is easy to see that <ei”¢i> vanish due to axial
symmetry of the system for any n # 0, since it implies also an average over the
reaction plane angle, there for it is not the same as v,. In the same way, all the
correlations of the form <ei 2% > where >°7_; n; # 0 also vanish.

2.1.5 Calculating Cumulants From Data

Determination the s-particles cumulant out of measurements is done with few steps.
First, we calculate the single-event multi-particle correlations, for example the 2-

and 4-particles single event correlations are given by:

, 1 ;.
9 = ezn((i)l —¢2) — 61"(¢i_¢j) 7
< >n < > Pm,Q%
. 1 »
(@), = (rerememed) = g 5o et (@)
a4 5.k,

Where (s)

or number of emitted particles in the event, P, s = m!/(m — s)! and the sum Y’

., is the single event n’th s-particle correlation, m is the multiplicity,

means all the indices are different. We then average over all events:

Zevents (W<S>) . <S>n
s)) = L . 2.14
<< >>n Zevents (W<S>)z ( )

Where ((s)),, denote the averaged n’th s-particles correlation, first over all parti-

cles and then over all events. <W<S>)i is the weight of the i’th event, which are used
to account for the multiplicity variations in different events, we can take them to be
<W<S>)i = Om,;,m to look only at events with a fixed multiplicity M, or (W<S>>i =Po.s
for general multiplicity, picking this option will result in ((s))  independent of mul-
tiplicity, or many other functions.

The connection between the double bracketed correlations and the cumulants is
discussed in detail in [18], we write here the cumulants for s = 2,4,6, marked as
¢n {s}, functions of the transverse momenta and pseudorapidity of all s particles

being correlated, to provide examples that are helpful to see the patterns:

{2} = {2),
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{4} = ((4), —2(((2),)"
ca {6} = ((6)), — 9((4)), ((2)), +12(((2)),)" (2.15)

Those examples assume both large average multiplicity and a detector with uni-
form acceptance, more general definitions can be found in [14, 18]. The cumulants
are defined in such a away that for all ¢, {2k} for £ > 1 they vanish unless there is a
sizable s = 2k correlation. For example, if we assumed that there are no 4-particle
correlations we could expand ((4)) into a product of a pair 2-particle correlations,

like so:

((4)), = <<6in(¢1+¢2—¢3—¢4)>> ~ 9 <<em(¢1—¢3)>> <<€in(¢z—¢4)>> _9 <<<2>>n)2 (2.16)

Plugging this result back to ¢, {4} in eq. (2.15) we see it vanish identically, this
will be the same for ¢, {6} and any other ¢, {s} for s > 2.

Using the cumulants we can approximate the flow harmonics, with ¢, {s} giving
us better approximation for higher values of s, using the results from [18] we can

write the approximations:
(a 2D = {2}
(va {41 = —ea {4}
(0, {61)" = ¢, {6} /4 (2.17)

The fact that v, {2k} o< (=1)*"" ¢, {2k} is called collectivity.

2.1.6 Three-Particles Cumulant

So far we have only talked about symmetric cumulants, all the particles have the
same flow harmonic index, but this limit us to only look at even number of particles,
that way the reaction plane angle dependent cancels out. We can extend the notion
of the cumulant to odd numbers of particles by allowing correlations between flow
harmonics with different indices. For the case of 3-particle correlations it is common
to define them in a similar way to the 4-particle correlations where the two particles

with a negative weight are chosen to be the same one:

A B 3
f ezn(¢1+¢2 2¢3) Wd(ﬁldngd(éS _ (218)

3N 3, 137 13
S d3p1d3p2d3p3d p1d°pad?ps

<€in(¢1 +¢2—2¢3) >

To calculate it from data we can define the single event average is then given by:

(3 njzn = <@in(¢1+¢2—2¢3)> _

lein(¢i+¢j_2¢k). (2.19)
Pm,3 i,k
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We can also considered taking the harmonic indices with the opposite sign, but
if we assume a perfect detector we find that correlation is just the complex con-
jugate of the one we defined, (3),, 1., = (<3>—n,—n|—2n>* = (<3>2n‘n7n)*, and since
the correlations are real, from the symmetry between the particles, they are the
same. Taking this correlation and averaging over many events gives us the average

correlation, ((3)) from which we get the 3-particles cumulant also known as

n,n|2n’

the 3-particles asymmetric cumulant:

aCrnian {3} = ((3)) s mion - (2.20)

Note that like the 2-particles cumulant, the asymmetric 3-particles cumulant is
the same as the 3-particles average correlation, that is because it is impossible to
break the correlations down into pairs without separating the angle with the greater
weight from itself. The 3-particles cumulant is called asymmetric cumulant as it
breaks the symmetry between the flow harmonics indices, but this property is not
limited to 3 particles correlations, we can define cumulant with different flow indices
for any number of particles, see ref. [12] for example, where 4-particles correlation
defined as ((4)),, uin.m

indices are equal the correlation and associated cumulants are well defined. But

was studied. As long as the sums of the positive and negative

even then, in general it is common to call the even number particles cumulants
the symmetric cumulants and the asymmetric cumulants stand for the odd number
cumulants. For the sake of brevity and to follow naming conventions it is common
to write acp nj2n {3} as ac, {3}

In Fig. 2.5 we depict the results of the measurements of ace {3} there were
published by the ATLAS collaboration in 2019 [12] for both pp collisions and AA
collisions. We see the correlations in pp collisions are the same order of magnitude
as in AA collisions. We expected to see such collective behavior in the presence of
QGP, that can be the medium for the information between the particles, but it’s
appearance in pp collisions as well is the reason we need to develop a model that
can explain this behavior for free particles. In Fig. 2.6, taken from [19], we see the
same measurements with the non-flow contributions reduced, leaving a sizable flow

contribution that need to be accounted for.
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Figure 2.5: The second asymmetric cumulant for 3 particles acy {3}, or the azimuthal
correlations <ei2(¢1+¢2_2¢3)> as a function of (N.,), the number of charged particles
detected, in pp (top), p+Pb (middle) and Pb+Pb (bottom) collisions for different
ranges of the emitted particles transverse momentum, 0.3GeV < pr < 3GeV (left)
and 0.5GeV < pr < 5GéV (right), as measured by [12]. The 2(3)-sub event methods
refer to dividing the detector into 2(3) equal parts respectively in the range |n| <
Nmaz = 2.5 and taking the particles from the different parts, this gives us more
confidence that the correlations come from the existence of ridge, and don’t just

arise from taking particles out of the same jet, see Fig. 2.2 and Fig. 2.3.
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Figure 2.6: The second asymmetric cumulant for 3 particles acy {3}, or the azimuthal
correlations <e"2(¢1+¢2*2¢3)> as a function of (N.,), the number of charged particles
detected, in pp collisions for emitted particles with transverse momentum in the
range 0.3GeV < pr < 3GeV with the non-flow contributions reduced. The reduction

of the non-flow contribution is done by [19]
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2.2 Multi-Parton Interactions

The processes in which several partons from one nuclion collide from several partons
from another nuclion are called Multi-Parton Interaction (MPI). A diagram of an
MPI process with an arbitrary amount of partonic interactions is depicted in Fig.
2.7 (right). Each partonic interaction involves one parton from hadron h, and one
parton from haron h; and results in a hard event, producing 2 or more hard out-
going partons. In each collision there can be any number of MPIs. In Fig. 2.7
(left) we see an example of a collision with only two hard processes, this case is
usualy called Double Parton Scattering (DPS) and will be discussed in detail later
this chapter.

Hadron ha Hadron hq

Parton Parton

TN ST §'Y

Figure 2.7: Two diagrams of amplitudes for two hadrons collision, the horizontal
lines represent the hadrons h, and hy, the vertical arrows represent the hard partons,
the circles represent different hard events, and the diagonal lines represent out-going
particles. The cross section of the process is the square of those diagrams. On the
left we see an event with only two partonic interactions, on the right we see an event
with an arbitrary amount of partonic interactions, where the points indicate the

possibility for many more partoninc interactions not shown on the diagram.

2.2.1 Hard Process in QCD

In this section we will discuss the example of a collision with a single partonic
interaction and define tools that will help us work with partonic interactions.

An important parameter in a hadronic interaction is the hard scale Q?, which
characterises the transverse scale of the hard event.

The behavior of a parton inside a hadron is only defined in a quasi-probabilistic

manner. For each parton we define the parameter z, called the longitudinal fraction,
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or the light-cone hadron’s momentum fraction of the parton. Given a hadron with
4-momentum P* and a parton with initial 4-momentum as p*, we define:

Do +pz

xEPO—FPZ.

(2.21)

This parameter was first defined by Bjorken and is often depicted as z, here the
index z indicates the momentum component along the beam axis, and we see that
x goes from 0 to 1. Assuming the partons are massless, the parton’s momentum is
therefore defined by x and it’s transverse momentum.

As seen in Fig. 2.8, the two hadrons are a bundle of many partons, in this exam-
ple, a parton from h, with momentum x, k and a parton from h;, with momentum of
x, k' interact and two new particles with momentum ¢; and g; are emitted. Here we
need to separate two types of cross sections, the first is the hadronic cross section,
that is the cross section of the two hadrons to produce the particles ¢; and g;, or
any other products, this is the cross section of the entire diagram, this cross section
can be measured. In the grey dashed rectangle there is a diagram of just two parton
interacting with no connection to the hadrons, this is the partonic cross section that

can be calculated via QCD with fundamental particles, but never measured directly.

1
1
1
1
1
1
s
1
1
1
1l
1
T

Figure 2.8: A diagram of hadronic cross section, of two hadrons colliding via a single
partonic interaction. Each parton is contributes a parton that then interact with the
other parton, the black circles represent the QCD processes that can originate from
the two partons and emit two new particles. The grey dashed rectangle represent

the diagram of a partonic cross section.

To find the hadronic cross section of this process we need to know the probability

to find a parton with momentum fraction x inside a hadron, and use it to reduce the
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problem to the partonic cross section diagram. Those probabilities are dependant
on the hard scale Q? of the process and on QCD processes inside the hadron. We
say that when we look at an event with hard scale of @2, the quasi-probability to
find a parton of type j with momentum fraction of x inside a hadron is given by
f; (x,Q?), where f is known as the standard Parton Distribution Function (PDF).

The PDFs satisfy a number of the following sum rules. The first is the valence
rule, for every hadron the integral over = for the valence partons need to be the
number of those partons in that hadron. For example, in a proton there are 2

valence up quarks and 1 valence down quark so we write:

1 1
| [f(o.@) - fe(e.@)] =2 [ de[fa(0.Q%) - S (2.@7)] = 1
(2.22)
For all other flavors of quarks, i.e. f # u,d, we write f; (z,Q%) = f;(z,Q%).
This implies that for every hadron we will need a different set of PDF's, but we only
work with protons so we don’t need to keep indices for the hadron type.

The other sum rule is the condition that the total momentum fraction is 1:

/01 d [fg (z,Q%) + }f: (fr (2.Q%) + f5 (=, Q2))] — 1. (2.23)

To define the way the PDF change for different hard scales we need to define
the splitting functions. The splitting function P;.; () is proportional to the quasi-
probability of a parton of type ¢ with momentum fraction z/z to split into two
partons that one of them is real particle of type j with momentum fraction z.
In QCD there are 3 diagrams that contribute to finding the splitting functions:
q—>q+g,9—q+qgandg—g+g.

When calculating the splitting functions we need to avoid a pole at z = 1, for
this we define the function:

1 I
——— =lim
(1-2), 01—z

@(1—5—,2)—5(1—2)/016 dz ] (2.24)

1—2

Where O is the step function, it is 1 for a positive argument and 0 for a negative
argument.

Using this function we can define the splitting functions:

Prg(z) = ;1 (11_—‘_5)+25(1_Z)]7
SNEREEL[ESLES i}
Pry(e) = 5[+ 127,
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1—=2 z
P ,(2) = 6[ . +(1—z)+

Where n; is the number of light quarks with masses lower than hard scale Q).

11 nf

+z(1—z)—{—(—)5(1—2)].(2.25)

12 18

The diagrams that define the splitting functions also include a factor o, (Q?) /7,
where a, (Q?) is the QCD running coupling, in the one loop approximation is ex-

pressed us:
47

o, (Q*) = .

( ) (%Nc — %TW) In (QQ/AQCD)

Here N, is the number of colors (for QCD N, = 3), ns is the number of light
quarks, and Agep ~ 0.3GeV is the QCD scale parameter.

(2.26)

Using the splitting functions we can write the Dokshitzer—Gribov—Lipatov—Altarelli-Parisi
(DGLAP) equations that describe perturbative QCD (PQCD) in the leading logar-

itmic approximation (LLA):

ioggh (@) = 0 [ {r oz [ (2 0) e (20

+ Poyg(2) fy (j Q2>} )

dlodg ol (@.@%) = “5;@2) [ Elre @5 (5@) + By (200

dlong?(I’QQ) - @/ﬂ:f{Pq%q@)h(j

O

)+ R 04 (1 0) )
(2.27)

Since the derivation of the DGLAP equations respects the conservation laws of
QCD, namely conservation of flavor and longitudinal momentum, they obey the
summation rules in Fig. 2.22 and Fig. 2.23.

We now want to write the connection between the hadronic and partonic cross
sections. The inclusive hadronic cross section, oj, for colliding hadrons h, with
momentum P and h;, with momentum P’, to the production of two particles ¢ and

J with momenta ¢; and ¢; is given by:

on (ha (P)+ hy (P') > i+ j+X) = /Oldx/oldx’Zfa (2,Q%) f5 (<, @?)
a,B8

X op(a(x)+p()—=i+7). (2.28)

Where o, is the hard partonic cross section of the process a (x) + 3 (2') — i+ 7,
the indices v and § go over all types of partons, (quarks, anti-quarks for each flavor,

or gluons).
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From here on out we will not write the type index for the PDF, since at high
hard scales, such as in the LHC, the gluons dominate the proton structure [20],
meaning we will assume that all partons are gluons.

It is important to remember that the PDF are not real probabilities, the real
probabilities are defined via the wave functions of the partons, and we can define
many other quasi-distributions that can be useful.

A natural framework for visualization of the MPI is the impact parameter rep-
resentation of the collision, as seen in Fig. 2.1, in the high energy limit the angular
momentum conservation implies that the impact parameter b becomes a constant
for the collision. In addition hard collisions have the hard scale that localise them
in an transverse area 1/Q?.

To describe the transverse geometry of the pp collisions it is convenient to con-
sider quasi-probability to find a parton with given x and transverse distance 7 from
the hadron transverse center of mass, in hard scale Q*: p (x,7]Q?%). This quantity is
referred to as the diagonal Generalized Parton Distribution (GPD), and is related
to the PDF by:

f(2.Q%) = [ dro(.71Q?), (2.20)
The inclusive cross section does not depend on the transverse structure of the collid-
ing hadrons in the Leading Twist (LT) pQCD regime. The cross section is expressed

through the convolution of parton densities. Indeed, we can write the connection

between the hadronic and partonic cross sections as:
on(ha +hy = Y +X) / ol rdr'5® (7 — 7 = B) p (2, 71Q%) p (', 7]Q?)
X op(a(z)+ B () =Y)

= f(2.Q) f (¢ @) oy (a(@x)+B()—Y), (230)

Which is equivalent to eq. (2.28).

2.2.2 Double Parton Scattering

In this section we want to look at the example of Double Parton Scattering (DPS),
and use it to define the tools we will use for the general MPI.

The case of DPS, in which each of the two colliding hadrons contribute two
partons that collide and create two independent hard processes. DPS are normally

parameterized as:
0102

Oeff

o PPS) = (2.31)
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Here o(PF5)

is the total hadronic cross section of the process of two partons from
each hadron coming in and making two hard processes, the quantities oy and o9 are
the hadronic cross sections of a process with only one partonic interaction, and o.s¢
characterizes the geometry of the DPS process.

Note that ¢PP%) and oess are functions of the hard scale, @7, and z;, 2’;, the
light-cone hadron’s momentum fractions for both hard processes (i = 1,2), while
o; are functions of only the the variables with the same index, meaning they are

assumed to be independent.

Figure 2.9: The geometry of a DPS process in the transverse plain. The two big
circles represent the hadrons h, and Ay, the two small circles are their centers and
b is the impact parameter vector. The vectors 7, T, Ty and 7, are the transverse

positions of the four partons that perform the interactions.

In Fig. 2.9 we depict the geometry of this process in the transverse plain. We see
that in the transverse plain the two hadrons are almost circles, the vector connecting
their centers is the impact parameter l;, as seen in Fig. 2.1. To simplify our
calculations, we can use the single parton transverse position distribution functions
to treat the partons as a point like particle, that can only interact with partons from
the other hadron if they are in the same transverse position.

If we note the transverse position of a parton from h, as 7 with respect to the
center of h,, and a parton the transverse position of a parton from h; as 7 with
respect to the center of hy, then for both of them to be in the same travnsverse

—

position the vectors need to satisfy the connection b=7—7i.

Using the diagonal GPD we can write 0.7y by averaging over all possible hard
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processes positions for all possible values of impact parameters:
(0ers)” /d2 (H dridrip (24, 71Q7 ) p (5, 7|Q7) 0@ (7 — 7% — 6)) . (232)

2.2.3 Generalized Partons Distribution.

In order to find the cross section of a hard processes with N partons interactions
we need to intrudes a new physical quantety, the N-particle Generalized Partons
Distribution, normally denoted as yGPD.

The yGPD can be defined using the light cone wave function of the hadron:

pu(fernall) = S [ (f oo tar ) (T gtion)

p=N+1 I=N+1 (2m)

() ) (S5 (S)

X Py ({3517 /;l}f:l) 0ol <{xz, ki + Az}l Jiz, kl _ N+1>

(2.33)

X

Where h is an index for the hadron, z; is the light-cone hadron momentum
fraction of 'th parton, the integral over z; for [ > N goes from 0 to 1, Q? is
the hard scale of the 7’th partonic interaction, 51 is the Fourier conjugate to the
transverse positions of the i’th parton, p is the number of partons in the hadron, l;l
is the transverse momentum of the I’th parton, © (Q? — k?) is the step function, 1
for Q7 > k7 and 0 for Q7 < k7, in the second line the first delta function forces the
condition that the sum over the light-cone fraction of all the partons is 1, the second
delta function forces the condition that the sum over the transverse momentum is
0, and ), is the p-parton wave function normalized to 1.

Note that unlike the diagonal GPD we defined in section 2.1, that were defined
in the coordinate space, we define the yGPD here in the transverse momentum
space, those definitions are equivalent via Fourier transformation. This connection
will be shown in section 2.4.

For an MPI with NV partonic interactions we can generalize the parameterization

of the cross section from eq. (2.31) to

(MPI) _ vazl 0 (xia 7', QZQ)
oN = N\
Ky ({%,1’ i QF }¢:1)

(2.34)

Where agvMPI) is the total hadronic MPI cross section, 7 is an index going over all

the N partonic interactions in the process, o; is the hadronic cross section of a single
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independent hard process, and Ky is a dimensionful function, Ky o (area)Nfl, of
the following parameters: z;, z’; that are the light-cone hadron momentum fractions
of the partons, the unprimed index comes from hadron h, and the primed ones comes
from hadron hy, and Q7 is the hard scale of the i’th hard process. Note that for
N =2 we get Ky = 0.

Using the yGPD we can see that the total cross section for N partonic interac-

tions is proportional to:

N N

(MPI) /D { N2 A}N D { 12 _5,}]\[ 5@ Z& I d*A;

OnN X a Ly &5y A4 i=1 b €, &y ifiq ' 7 ' (271_)2-
=1 =1

(2.35)

To compare this to our example of DPS we take N = 2, we can use the delta

function §® (Zle ﬁz) to write:

D (oo @.035) = 3 [ (52 ) (TTn) 0 (@2 - 1) 0 (@3- 2)

X ’gb({(l?l,_)l}p )’(,ﬁT (.T]_,E]_"‘&,.TQ,EQ_&7{xl,];:l}p )

=3

(2.36)

The DPS cross section is then given by:

d?A N A
oD = [ L d0dD, (1,2 Q3,03 &) Dy (211,42, Q3. @3, &)
(2m)

do (z1,2'1, Q%) do (13, 2'5, Q%)
| 2.37
% dQl dQQ ( )

From this we can find that o.s; is given by:

2A Da xax7Q27Q27& D .ZU/,ZE,, 2)Q27_&
(Ueff)lz/d (022,01, @4, &) Dy (&', %2, Q. &, 4 (2.38)

2n)®  f (21, QF) f (22, Q3) f (2/1,QF) f (22, Q3)
where f (z,Q?) is the standard PDF. For general N we can write:

1 _ / (N dQAj) o ({xj’ it &J}j‘v—1> Do ({x/j’ i _&j};\[_l) o (Zj'v:l &j>

11 (2r)? I (f (25,Q3) f (215, Q3))

J=1

Ky

(2.39)
It is important to note here that a hard parton can split perturbatively and

the resulting partons interact with the partons from the other hadrons, resulting in
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Figure 2.10: Two diagrams of collisions between two hadrons h, and h; with two
partonic interactions. On the left each of interacting partons is originating in the
hadron’s wave funtion. On the right is an example for a 1 ® 2 process, where the
parton from h, split into two partons that each perform its own partonic interaction

with a parton from h,. The diagrams are taken from [21].

different dependence on the transverse momentum, a process like this is represented
in Fig. 2.10 on the right and is called 1 ® 2 process.

When we calculate the GPD we need to take into account the possibility of the
splitting process, this is done by summing over all possible splitting combinations.

For example, for the two parton GPD we can write:
Dy, ($1;I2, Q%,an&h &2) = [Q}Dh (1’1,@7 Q%u an 51,&2)
+ wDn (xl, w2, Q1, Q3. A, &2> (2.40)

Where the index [y represents the Non-Perturbative (NP) part of the production
of two hard partons from the wave function, as in the diagram on the left in Fig.
2.10, and py) represents the Perturbative Theory (PT) part of the production of one
hard parton from the wave function that then split into two, as in the diagram on
the right in Fig. 2.10.

2.2.4 Single Parton Distribution

We will now define the generalized single-parton distribution and the two gluon form
factor, and use them to find a parameterization of the diagonal GPD in coordinate
space, p (z, 71Q?).

The generalized single-parton distribution, marked as G, is the non-forward
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parton correlator, and is defined using the light cone wave function of the hadron:

6 (n.02.8) = 3 [ ({152 ) (TLan) o (015

e(§) o (£
< o (k) )t (o F B e BY) . )

This function can be parametrise, using the processes like the ones shown in Fig.

2.11, where a parton with momentum =z, k; inside a proton interacts with a virtual
photon v*, emitting a vector meson V° and a new parton with momentum z;, lgl +A

is absorbed into the proton.

Figure 2.11: A diagram of the process measured in HERA [22], of a proton inter-
acting with a virtual photon, v*, and a emitting a vector meson, V°. The particles
connected to the protons are partons, and we see one parton with parameters 1, El,

participate in the interaction, and a parton with z, lgl +A gets back in the proton.

It is related to the diagonal GPD in coordinate space via Fourier transformation

over the transverse position:

—

d?re AT m ,T1Q ) (2.42)
We see from here that for A = 6, using eq. (2.29) we get:

G (:1: Q% O /dQTp x, 7@ ) (:)3,@2). (2.43)

It is common to parametrise GGy as a product of two functions:

Gy (2,Q%A8) = f (2,Q%) - Fyy (2,Q% A). (2.44)
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Here f (z,Q?) is the standard PDF and Fy, (:v, Q?, &) is called the two-gluons
form factor.
There are two common parameterizations for the two-gluons form factor referred

to as exponential and dipole parameterizations. We can write them as:

7B(I,Q2)A2
St G P ol

Fgg ((L’,Al@2) = ¢

L, (2.45)
(1+ A%/m2 (z, Q%))

Here the first one is the exponential parameterization and the second is the dipole
parameterization. B and m, are functions of z and Q. The two parametrizations
give very similar results for the right choices of B and m, and both can be fitted to
the data as seen in [23] where the relation B = 3.24/m] is used.

For our calculations it is much easier to work with the exponential parameteri-
zation, so we will only consider it.

We can now also find the diagonal GPD in coordinate space p (x, 7]Q?):

p(x.7Q?) = / é?yeiw)al (2,Q%4) = f (2.@*) / (‘;A)Qeiwmg (,Q%A).
(2.46)
. —B<x,Q2 A2
Taking the exponential parameterization, Fj, (93, Q?, A) =e 2z ,we get:
Fyy (2,7Q%) = W{w@% p(,71Q%) = f (2, Q) Fyy (.71Q%).
(2.47)

Note that Fy,, both the spatial and momentum forms,depends on = and Q? only
via B. Analysis of the HERA data gives us a parametrization for B [21] of the
form:

B (z) = By + 2&/ In (zo/x) . (2.48)

Where for Q2 ~ 3GéV? fitting to the HERA data, the parameters take the values:
By =4+ 04GeV2, o = 0.14 £+ 0.08GeéV~2 and z, = 0.0012. For fixed z we can
use DGLAP evolution, eq. (2.27), to see that B (z,Q?) vary very slowly with Q2.
Because of this we can take B to be a constant and write F5, as a function of A or

r only, neglecting its  and Q? dependence.

2.2.5 Mean Field Approximation

In the mean field approximation we can concider the partons as independent parti-

cles. Then the light cone wave function factorises to:

o (fm),) -

l

W (w0, k). (2.49)

p
=1
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Assuming this we can express the yGPD functions as:
N
S YN
Dy, ({Iz’,Q?7 Ai}izl) =~ H Gy (%w@% Ai) H f (xu Q2) F2g( ) (250)
i=1

Here Gy (z;, Q%, A;) is the generalized single-parton distribution as defined in eq.
(2.41), f (z;,Q?) is the standard PDF, and Fy, (4A;) is the two-gluons form factor.

This approximation is not perfect, first this approximation loses the property of
the GPD: Dy, (Zl 1T > 1) = 0, meaning we can’t work in region where z; are too
big. On the other hand, if x; are too small we start to look at the region where the
1 ® 2 process is non-pertubative. In [10] it is stated that this approximation should
hold for 107! > z; > 1073.

For DPS we can write ;GPD and o.:

Dy, (%J%Q%a@g,&) = G, (xl Qp )G1 (x27Q27 ) ~ f (9017@%) / (@;Qg) F229 (A>

-1

= oy = (/ (ﬁj Fl (A)) — 87B. (2.51)

And for general N we get:

d2A] 2 2 a B N-1
Ky =~ (/ (H ol )5< ) (Zl j)) —N@urB)N'. (252)

Jj=1 Jj=

2.2.6 Soft Gluon Emission

In addition to the hard out-going particles (jets) the partons in the hard process
can also emit soft gluons. Since those gluons will be important to us we should note
that for a collision with N partonic interactions the cross section to emit m gluons

with transverse momenta {k;}" using the approximations above is given by:

Here M ({k;},{A;}) is amplitude for the production of m gluons by N par-

tons in the hadron wave function and o; is the cross section for the i’th partonic
interaction. The corresponding m-particle spectrum is obtained by normalizing this

expression with the cross section:

o= [ (H P2AF ( ) (Z A, ) (2.54)
The m-particle spectrum can now be written in coordinate space representation
as:
dmoy ({k;y) S (T0N ) @b IM (LR} {rh)* p ({7}, b)
N2k Py, S (T, d2r:) d2bp ({r:} . b) |

(2.55)
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Here p ({r;}, b) is a quasi-probability distribution of the impact parameter b and

the hard partons transverse positions {7;}, as seen in Fig. 2.9, and is given by:

p({ri}.b) H/

2 2./ o ,
d A d i Z Az eiAi~(r¢+r 1)5(2) b— r;, + ’I“/Z' . 2.56
g

For the exponential parameterization we have chosen for Fy, (A;) we get:

| G

p({ri},b) = N e e B . (2.57)

2.2.7 The Effective Cross Section

Using the mean field approach the clear connection between o, s and B in eq. (2.51)
allows us to use experimental data to find what values of B we should consider.

For pp collisions in the LHC [24, 25, 26], 0.7 was found to be about 15 4 5mb
meaning we should look at B = 1.5+ 0.5GéV 2, so in our thesis we will use the two
values B = 1, 2GeV 2.
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2.3 Quantum Interference model

In this section we will review the basic ideas of the quantum interference model
[10, 11], and explain how to find the azimuthal cumulant in the corresponding frame
work.

First we define the normalisation we will work with:

s i Z;: njp; s
i(zs,: nj¢j) s fpf ( j=1 d¢j) € ( ' >f ({kj}jzl)
e \77! <{kj7yj}j:l> = M, 5778
(2m)" 521 J, f (K;))
(2.58)
Here M, = m?®/ (T) is a normalization factor, the integral [, means [, = [ ( N d27‘i>
p({r:}), f(k;) is the l-particle momentum distribution function defined in eq.
(2.3) and f ({k:j}jzl) is the s-particles momentum distribution function defined
as f ({k:j}j:l) = %, and n; is the flow harmonic index of the j'th particle
where we only look at the case where ijl n; = 0. With that all we need to to
find the 1 and 3 particles differential multiplicity. This is a generalized form of the

normalization in [11], where they only look at even values of s.

2.3.1 Defining The Model

We model multi-particle production in pp collisions as events of N partonics interc-
tions in transverse positions {I‘Z}ZN:1 Each partonic process is represented by a line
source with initial SU (V,) adjoint representation index {bi}ivzl at the rapidity of
one of the colliding hadrons, emitting gluons with SU (/V.) adjoint representation
index {a;}’", and transverse momentum of {k;}"", in the intermediate rapidity
window and ending at the rapidity of the other hadron with final SU (N,) adjoint
representation index {cl}fil Each multi-particle production amplitude is therefore

of the type given in Fig. 2.12, where we need to account for any choices for sources

emits any of the gluons.
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Figure 2.12: Example diagrams for N sources emitting m gluons. The vertical lines
are the N sources with initial conditions of {r;,b;}.,, and finale color index of
¢;. The horizontal waves are the m emitted gluons with color index and transverse
momenta of {a;, k; };":1 Each diagram in the sum represent different choice of which
gluons are emitted from which source, and to find the total amplitude we need to
sum over all of those choices.

The emission vertix for a soft gluon is given by an eikonal vertex. If the source
is positioned in r; with a color index of ¥’; before the emission and becomes b”; after
the emission, and the emitted gluon has transverse momentum of k; and color index

a; the eikonal vertex is given by:
T o f () €0, (2.59)

here T is the adjoint representation of the SU (N,) generator, and f (k) is the
vertex form function. f (k) is a two-dimensional vector in the transverse plane, that
in the cross sections will appear dotted into another vertex function of the same
momentum. We will not assume a specific functional shape of the vertex function,
since it will not impact the results in a meaningful way, but we will assume two of

— 2
it’s properties, first, we normalize it to be: [ d%k ’ f (k)’ = 1, and second we assume

that ‘ f (k)’2 is independent of the momentum azimuthal angle. An example of a
function that can fit what we need is coulombic radiation: f (k) x k.

When calculating cross sections of event samples we will use the quasi-probability
distribution of the impact parameter b and the hard partons transverse positions
{Ti}i]\il given in eq. (2.57). Denoting coordinates in the complex conjugate ampli-

tude with primes, this means that initial and final data {r;, b;, ci}ﬁil and {r’;, b';, c’i}f\il
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are averaged with the weight:
P ({rl} ) b) 6(2) (ri - r/i) 5bib/i60i0/i' (260)

To find the spectrum of the emissions of m soft gluons of a collision with N

partonic interactions for general N and m we will use few simplifications:

e Neglecting longitudinal phase factors.

We only account for transverse momenta and transverse coordinates. We could
supplement the model with longitudinal phase factors in the definition of the
vertex function in eq. (2.59) by replacing: f (k) eT¥ — f'(k) et Kok rmkrt)
where the indices + denote components of light-cone coordinates and mo-
menta. For high collision energy, when both the emitting sources and the
emitted gluons propagate close to the light-cone we get k= ~ 0. Identifying
the particle emitting source with an energetic parton of light cone momentum
fraction p*, it follows from the uncertainty relation that = 1/p™, in the soft
gluon limit AT < p'™ we get that the total longitudinal phase is negligible:
Etr=+krt =kt /pt ~

e Emitted gluons do not cross.

We will assume that multi-gluons radiation is dominated by a ladder-type
diagrams, in which the emitted gluons do not cross each other, and that the
emitted gluons are ordered the same way in rapidity. the model is made to
retains relevant features of QCD but that is simple enough to allow for the

explicit calculation of soft multi-gluon interference for large m and N.

e Symmetrization in the m emitted particles

We shall find that interference contributions to multi-particle emission cross
sections are not always symmetric under interchange between final state mo-
menta k;. This arise from different color constraints on the gluons we will
identify with low or index (j < m,orj ~ m) and those near the center. As
these differences are small and unimportant for our discussion, but since they
lead to much longer expressions for higher order cumulants, we shall often
randomize final results by averaging over all permutations of the m outgoing

momenta.

e No modelling of hadronization.

This model only allows us to calculate partonic spectra and momentum cor-

relations.We assume that hadronization satisfies local parton-hadron duality
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(LPHD), and use it to compare our results to measured hadron spectra and
correlations. However, the simple LPHD prescription may not be phenomeno-
logically viable for multi-particle correlations at soft transverse momentum,

and that maybe a source of error not accounted for.

Using those assumptions we will be able to find the spectrum as shown in eq.
(2.55), the connection between this spectrum and the s particle differential multi-

plicity is given by:
&N oy ({kj}jzl) (2.61)
dFldFs_ aNdfl---dFS . .

Here dT'; = d*k; = k;dk;d¢; is the transverse phase space of the j'th particle,

note that we get that differential multiplicity is independent of rapidity under the

first simplification we made where we neglect the longitudinal phase factor.

2.3.2 The Dipole Interference Term

In this section we want to look at the example of a pp collision with N = 2 sources
and m = 2 emitted gluons and find the 2-particle spectrum. We will use this example
to define terminology that will help us understand the the more general cases.

There are 16 diagrams that contributes to the N = m = 2 cross section, as seen
in Fig. 2.13. In each diagram we say that the gluons are emitted from the sources
on the left side of the diagram and are absorbed by the sources on the right side.

We define two types of gluons, the first is diagonal gluons, those are absorbed
by the same source that emitted them, and off-diagonal gluons are absorbed by a
different source than the one that emitted them. We divide the diagrams shown
in Fig. 2.13 into 3 groups depending on how many off-diagonal gluons are in
them. The 4 diagrams on the top line have no off-diagonal, the 4 diagrams on the
second line from the top have 2 off-diagonal gluons, and the two bottom lines have
1 diagonal and 1 off-diagonal gluons, each of them have a different contribution to
the cross section.

Each diagram give a contribution to the cross section proportional to the trace
of the product of the SU (N,) adjoint representation of the gluons color indices
connected to each source, this factor is called the color factor, i.e. in the top-left

most diagram the color factor is given by:
brparparb 2 2 2
Tr [TTTT| Tr (1) = N2 (N2 = 1) (2.62)

Here I is the (N2 — 1) x (N? — 1) identity matrix the sum over repeating indices
is implied and we used the identities 77 = N.I and Tr [I] = N2 — 1. The color
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Figure 2.13: The 16 diagrams for the cross section of N = m = 2. The horizontal
arrows are the 2 sources, the two pointing down are the conjugation of the two
pointing up, where the other most ones are the same source and the inner ones are
the other sources, as indicated by the dashed arrows on the most left top diagram.
The two gluons that connect the sources with the conjugated sources are the emitted
gluons, the one on top has color index a and the lower one has color index b, we
say that they are emitted from the sources on the left side of the diagram and are

absorbed by the sources on the right side. This diagram is taken from [10].
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factors for all the diagrams in the top row are the same, this can be shown using this
identity. Using the identity T'r [T“Tb} = N.6% we can also show the color factor for

the diagrams on the row second from the top is given by:

Tr |17 Tr [T°T*] = N2 (N2 = 1). (2.63)

Meaning that a couple of off-diagonal gluons give us a factor of (N2 — 1)_1.

The color factor for the bottom two rows is proportional to the trace of a single
generator, o< T'r [T%] = 0, meaning the diagrams with only 1 off-diagonal gluons do
not contribute to the cross section.

The other factor that changes between diagrams is the phases that come from
the vertices, eﬂkf'ri, where the positive (negative) phase come from the amplitude
(complex conjugate amplitude). It is easy to see that for a diagonal gluon those
phases cancel, leaving us with phases only for off-diagonal gluons.

To find the spectrum for the case of N = m = 2 we need the amplitude-squared,
IM ({k;},{r:})]?, and the quasi-probability distribution of the impact parameter
and the sources positions, the latter is given in eq. (2.57). The amplitude-squared

is the sum over all 16 diagrams in we have discussed, all together we can write:

MR gD o [F )] \f (k)| N2 (N2~ 1)

<

Here the 4 are the phase factors of the 2 diagonal gluons diagrams, the phases

ei(k1tka)-(r1—r2) + el(k1—k2)-(r1—r2) + c.c.)} .

(2.64)

shown are from the 2 left most diagrams of the second row from the top, and c.c.

stands for complex conjugate, it is easy to see that the two right-most diagrams on

the second row from the top are the complex conjugate of the left most diagrams.
To simplify the quasi-probability distribution in eq. (2.57) we can take the

impact parameter to be b= 0, and normalize it to integrate 1, by replacing:

/ &op ({r:} ,b) = p({r:}) / 2625 p ({r;) ,6) 6 (b)), (2.65)

—r2
with that we can also write p ({r;}) = [I;L, p (r;) = [I;L, 5.5€E , separating the
dependence the sources.
The spectrum can now be found using eq. (2.55). We get that the spectrum in

first order in powers of (N? — 1)7! is therefore:

d?o, (K1, k2) - 2| = 2 e Blki+ks)? + e Bki—k2)?
ERL A 1 >
tyt, OO [P ()l (14— (266)




36

This spectrum characterise the QCD dipole radiation, the interference effects
decrease as for larger B, or larger distance between the sources.

We remember that we assumed that ‘ f (k:)‘2 is independent of the momentum
azimuthal angle, that leaves the first term, of the diagrams with only diagonal gluons,
completely isotropic, that means it will not contribute to the azimuthal correlation.
Meaning the correlations arise from interference between different amplitudes, where
the gluons are emitted from different sources, but it’s important to remember that
does not mean an interference between the gluons.

Another important think to note is that this spectrum is symmetric to replacing
any of the momenta by k — —k, meaning the when looking at correlations of the
form <ei"(¢1_¢2)> for odd n vanish identically.

2.3.3 Diagonal Gluons Corrections to the Dipole

In this section we will see what happens when we look at processes with more
sources, N > 2, and more emitted gluons, m > 2, we will discuss the effects that
diagonal gluons have on the spectrum and the two point cumulant.

In leading order in powers of (N? — 1)_1 we only see two types of diagrams, the
diagrams with m diagonal gluons, and the diagrams with m — 2 diagonal.

The diagrams with only diagonal gluons don’t see a drastic change, each of their
contributions to the spectrum is proportional to a color factor of (N? — 1)N NI
and the product of the squares of the vertex functions for all the emitted gluons,

i ’ f (kj>‘2‘ Since by definition diagonal gluons connect each source to it’s con-
jugate each gluon can be emitted by any of the sources but that also determines
what source absorbs it, so in total we have N™ choices for only diagonal diagrams.
In total we get that the contribution to the spectrum of only diagonal diagrams is

given by:
dmo_](\ofiiagonal) . ) N mo

i (2.67)
The diagrams with 2 off diagonal gluons don’t vanish only if the two are shared
between a pair of sources, like in Fig. 2.14. In this diagram we see three types of
relations between the diagonal and off diagonal gluons, we now want to use this as
an example for how each type of relation effects the color factor of this diagram.
The total color factor of the diagram, assuming no other sources or gluons is

given by:
Tr [T°T) Tr [TTYTST| Tr |TT T T T T | (Tr [1])*. (2.68)

We can see that we can sum over d and e easly using the identity we used before:
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Figure 2.14: An example diagram for the single dipole term in the general N and m
case. The curly lines, a and b, are the two off diagonal gluons that create the dipole,
and the wavy lines, ci,...,¢j,d and e, are diagonal gluons with different relations
to the dipoles. When we look at the color factor for this diagram we will see that
gluon e does not share a source with the off-diagonal gluons, the gluons ¢; and ¢;
are sandwiched between the off-diagonal gluons in the trace, and gluon d will just

give us a trivial factor of 79T = N.I. This diagram is taken from [10].

T*T* = N.I, e doesn’t share a source with the dipole pair, and d appear right next
to it self so they are both trivial. The gluons ¢; and ¢; are different, but we can
use the identity T°T°T° = %T“ to solve this trace, but each of them then give us a
factor of 1/2 that we didn’t see before. We say that a diagonal gluon that shares it’s
source with off-diagonals gluon and is between them on the diagram are sandwiched
by the off-diagonal gluons, those kind of gluons will give the diagram a factor of 1/2
to the color factor.

It will be useful to us to sum over all diagrams with a single pair of off-diagonal
gluons, since they all have the same source positions and gluons momenta depen-
dence, summing over all of those diagrams we find we can define a factor that
accounts those factors of 1/2 for us, this factor is marked as F2) (N, m). The to-
tal contribution to the spectrum of the diagrams with a single pairs of off-diagonal

gluons will be proportional to this correction factor.
To find F?)

1) (N, m) we use the method done in [10]. For an ordered list of m glu-

ons with one off-diagonal pair there are (m — 1 — j) way to have j = 1,2,...,m —2
diagonal gluons that are between the two off-diagonal gluons. For each configuration
with 7 diagonal gluons between the two off-diagonal gluons there are (g) 2L (N — 2)j -
of having [ of them share a source with the off-diagonal gluons, making them sand-
wiched, each such contribution is then suppressed by a correction factor of 1/2'.

If we were to ignore the factor of 1/2! it would be like assuming that all m — 2
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diagonal gluons are incoherently superimposed to the interference pattern of the two

off-diagonal gluons. The number of such incoherent superpositions is:

m—2 ] - . _ 1

Nincoh = Z Nm_2 ] -1- j Z < > )J_l = m]\/vm_Q. (269)
j=0 1=0 2

When we account for the factor of 1/2! we get the real color factor, but we want

to average it over all the diagrams we are counting, meaning we get that the color

correction factor is given by:

1 m—2 J ; 1
rg o) = S v e S (N2 -2
Nincoh =0 1=0 2

2

_ m“n_UNlm@MN—Um+mNm—N”ﬂ. (2.70)

We now want to note few properties of F.2) (N,m) that can be useful for us.

First, F?) (N,m) < 1 where full equality is only for m = 2. There are three

corr

interesting limits that we can look at:

e The limit of m = const and N — oo.
Increasing the number of sources at fixed multiplicity m favors incoherent

particle production and hence we find:

lim F2), (N,m)| =1 (2.71)

e The limit of m — oo for fixed average multiplicity per source m = m/N.

This limit is consistent with analyses of LHC pp data which indicate that the
multiplicity of hard processes is proportional to the soft multiplicity [27]. We
find that for any finite value of m = m/N the limit is also finite, specifically:

2m + 2e ™ — 2

m=const o W2

lim F® (m/m, m)‘

corr

(2.72)

e The limit of N = const and m — oo.

For fixed number of sources, the color correction factor behaves asymptotically
like:

corr N=const m m?2

2N N?
Jim F® (N, m)‘ ~—+0 () : (2.73)

Therefore, increasing multiplicity for a fixed number of sources leads to a lost

in correlation.
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We can not write the total contribution to the spectrum of the diagrams with a

single pairs of off-diagonal gluons:

dmaj(\?lipole) , N m )
B Rl N™(N?—1) N™ k.
dry--dl,, (NZ—1)" N ]Hl!f( )|

F@ (N

M >3 22 cos (K, (r; — 75)) cos (ky (r; — 7)) .

(ab) (i)
(2.74)

Here the factor of N72 comes from having two less diagonal gluons, The factor
of (N2 —1)"" comes from the difference between an all diagonal and 2 off-diagonal
diagrams color factors, the sum over (ab) sums over all possible ordered pair choices
of which of the m gluons are the two off diagonal ones, and the sum over (ij) is the
sum over unordered pairs of sources, the 2 cos (k, (r; — r;)) cos (ks (r; — r;)) is the
same sum over phaces we had for the N = m = 2 case.

Since we end up randomizing the gluons, and the sources are interchangable, we
can usee this symmetries to take those sums to give us a factor that only depends
on N and m, the sum over the gluons give us a factor of 3 ;) — 2!(’;), and the
sum over the sources gives us a factor of the form Z(ij) — (gf ) We now can rewrite
the two particle spectrum:

dm o
aNdl“l;‘-]YdFm = ( f ("33‘)’2)

J

22F2) (N, m) (m N
g (”Nzci?rvcg—n)(z)m(z)Cos<k1-r12>cos<k2"“”)>‘

(2.75)

s

Here 715 = ry — 75 is the displacement between the two sources.
The leading order in powers of (N? — 1)71 of the single particle differential mul-

tiplicity comes from the diagonal term of the cross section:
dN -
ar, = m‘f(kj)

To find the azimuthal correlations we integrate over a phase, meaning we can

B (2.76)

ignore the the diagonal contribution to the 2 particles differential multiplicity and

write it as:
d®N L. 2
- k.
T, (jHl\f( ) )

23 F(2) N,m) [m\ [N
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Here, again, this is only the unisotropic part to leading order in powers of
(N2—1)"". We now can use eq. (2.58) to find the two particles azimuthal cor-
relations, remembering that for two particles the two particles azimuthal correlation

is the same as the two particle symmetric cumulant, eq. (2.15), we can write:

2F@, (N,m) ()

corr

sea 2} = =35 ) (—1)"<1+(—1)")2/Jn(klm)Jn(/@m). (2.78)

p

Here J, (z) are the Bessel functions of the first kind that we get from the integral

over the phases using the relation:
2 . .
/ dpe™® cos (2 cos (¢ — ) = wi"e™ (1 + (=1)") J, (2) . (2.79)
0

Here « here is a general phase shift, but for us it is the azimuthal angle of the
vector Aryy, where the finale phase cancels, we get el =™ = 1.

We get few interesting results from eq. (2.78), first we get that for any odd n the
cumulant vanishes duo to the factor of (1 4 (—1)")?, this agrees with our observation
on eq. (2.66) that the dipole symmetry to k — —k means that all odd harmonics
vanish.

Another observation is that the 2-partlce cumulant is not separable for general

momenta, for small momenta, k < B~1/?

(kjAr12)"
2nn!

, also called the hydrodinamic approxima-

tion, we can write J,, (k;Ary2) &~ resulting in an integral that can be solved

analytically, for even n we find:

corr

317(2) m N N "
# Py (Y, 1)(!2) (VBk:)" (VBk2)". (2.80)

sen {2} & NZ(NZ—1)n

We Find that the cumulant dependence on N and m is fully expressed in the
(2) N
factor %’;@)(2), meaning it will behave very similarly to what we saw in the

three limits we discussed for F2) (N, m).

2.3.4 General Cross Section

In this section we will want to find the cross section for any number of N sources
and m emitted gluons.

Before we can find the general cross section we need to discuss diagrams with
more then 2 off-diagonal gluons. For a diagram with off-diagonal gluons to have
a non-vanishing color factor we find that for each source cannot have only one off-
diagonal gluon emitted from it, this means that the off-diagonal gluons have to come
in sets of two or more that create close loops of sources, the case of a dipole is the

2-loop, 1 — 2 — 1, but more off-diagonal gluons can create loops of as many sources
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as the number of off-diagonal gluons, but not necessarily as equal. A dipole is a 2
source loop, a tripole is a 3 source loop, 1 = 2 — 3 — 1, and a loop of a sources is
called a-pole. A diagram of a tripole is seen in Fig. 2.15 on the left, going from top
to bottom, the sources pairs of each gluon is (12) — (23) — (31), where 1 stands
for the inner most source and 3 the outer most source.

There are two reasons why there can be smaller loops then the number of off-
diagonal gluons. The fist is that if there are 4 or more off-diagonal gluons they can
group up in smaller chains, i.e. 4 off-diagonal gluons can form a 4-pole or 2 dipoles,
but not a tripole and a single off-diagonal gluon on it’s own. The second is that
any part in the loop and be connected by any number of off-diagonal gluons, i.e. 3
off-diagonal gluons can create a dipole with an extra off-diagonal gluon. A diagram
of a 3 gluon dipole with 3 sources is shown in Fig. 2.15 on the right, going from top
to bottom, the sources pairs of each gluon is (12) — (21) — (12), where 1 stands
for the inner most source and 3 the outer most source, we see this is a dipole, only

two sources are connected, with an additional gluon.

Figure 2.15: Two of the diagrams that contributes to the 3 point asymmetric cu-
mulant for the case of N = m = 3. On the left we see a diagram of a tripole, each
one of the 3 gluons is connected to a different pair sources. On the right we see a 3

gluon dipole, only two of the sources are connected by 3 off-diagonal gluons.

Each type of diagram, with different arrangements of off-diagonal gluons will have
different color factors and different correction factors, but in the limit of m — oo for
fixed average multiplicity per source m = m/N we can find the different contribu-
tions and sum them up. Each off-diagonal gluon gives us a factor of N=!, meaning

off-diagonal loops with more gluons than sources will be suppressed compered to
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loops with the sources but no extra gluons. In addition each off-diagonal gluon with
momentum k that connects the sources 1 and 2 gives as a factor of 2cos (k- ris),
where rjs = r; — ro.

1)N_(a_1) regardless of the

Each a-pole comes with a color factor of N™ (N? —
numbers of gluons in it, note that this is true ingeneral only in the limit of m — oo
for fixed average multiplicity per source m = m/N, so higher poles will be suppressed
as well in powers of (N2 — 1).

There are now two factors to consider when we want to compute the cross section,
N and (N2 — 1), in addition, each diagram type with different number of loops
of different lengths and different numbers of gluons in them will have a different
correction factor.

The first few terms of the total cross section is given by:

dr . A
e RO ) (Y

F2 (N,m)
P A R cos (kq - 1) cos (ky - Tim)
bl s o
Fc(orr (N m 3
+Mmmn%%h“%%WWme%mw
FG )
+ corr 2 Z Z 23 CcOS (ka . /rlm) Ccos (kb . rmn) CcOoS (kc . rln)

3 2 _
N (N 1) (abe) (Im)(mmn)(In)

! O(N%Né—nﬁ}' (25

The sums over the gluons, >, and 34 in the shown terms, go over ordered
sets of gluons, in diagrams with m,ff off-diagonal gluons there are (mznf)moff!
terms in that sum. The sums over the sources, 3=,y and 3= ) (mn)n) i the shown
terms, go over non-ordered sets of sources, for an a-pole there are (]Z ) terms in

the sum, for diagrams with [ loop we mark the loop lengths as {az}l . we find

(ﬁ) (Na;zl) e (N*zé}:i ) = T ')(N!Zl 5, terms in the sum.
i=17% )"

The first line in eq. (2.81) are the factors of the full diagonal diagrams, the to

terms in the second line is the fully diagonal gluon diagrams and diagrams with a
single 2-gluon dipole, the third line is the term for the diagrams with only a 3-gluon
dipole, The fourth line is the term for the 3-gluon tripole diagrams, and the last line

-1

shows we are neglecting terms of higher orders in powers of N~! and (N2 — 1),

like a double dipole diagrams, the 4-gluon tripole, and more.
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The factor of 47! in the the 3-gluon comes from the color factor. The correction
factors 32 (N, m) and F&) (N, m) can be found the same way we got F2) (N, m).

corr corr corr

The detail of the calculation can be found in appendix B, we find: F32) (N, m) =
F®) (N, m), specifically:

corr

(m — 3)!

F® (N,m) = :
m:

corr

(6 (m —2N)N? +6 (N — 1)  N*™ (m + 2N — 2)) .
(2.82)
This correction factor behaves very similarly to F{2) (N,m) in the three limits
we have discussed, specifically for the limit of m — oo for fixed average multiplicity
per source m = m/N we get:
e ™ (m+ 2) m— 2

; (2) 7 —
rrlLl—Igo FCOTT (m/m7 m) ‘m:const =6 mo +6 mo

(2.83)

2.3.5 The Real Expansion Parameter

The way we expressed the cross section in eq. (2.81) is somewhat misleading. Note
that the diagrams with more off-diagonal loop with more gluons then sources are
suppressed by a factor of N~! for each additional gluon. It was found in [11] for

each a-pole we need to add a factor This implies that the expansion is

ma
(NZ-1)*~
only valid for small m. Because m is finite this this parameter series can summed

explicitly giving us a genuine Ni and %



Chapter 3

3-Point Asymmetric Cumulant

3.1 Introduction

Sizeable n’th harmonic coefficients v,, for azimuthal momentum asymmetries have
been observed at the LHC in nucleus-nucleus (AA), proton-nucleus (pA) and proton-
proton (pp) collisions [8, 9, 28, 5, 29, 30]. These asymmetries indicate a collective
mechanism that relates all particles produced in a given collision. The dynamical
origin of these collectivity phenomena continues to be sought in competing and
potentially contradicting pictures.

There are two basic approaches towards the explanation of this collective be-
haviour. The first approach is based on the final state interactions, like viscious
fluid dynamics simulations [31] or kinetic transport models [32, 33, 34, 35, 36] of
heavy ion collisions. In the AA collisions the jet quenching phenomena provides an
alternative confirmation for such a approach. However the jet quenching is missing
in smaller pp and pA collision systems. Moreover, in marked contrast to any final
state explanation of flow anisotropies v, in pp collisions, the phenomenologically
successful modelling of soft multi-particle production in modern multi-purpose pp
event generators [37] are based on free-streaming partonic final state distributions
supplemented by independent fragmentation into hadrons. Efforts to go beyond this
picture are relatively recent, see e.g. [38, 39]. Therefore two contradictory pictures
to describe the multiparticle dynamics in small systems currently exist— the one
based on the final state interactions, and the second that does not involve the final
state interactions. One approach in the second direction corresponds to the recent
works in the framework of Colour Glass Condensate (CGC) [40, 41, 42], see [43]
for a recent review, based on the parton saturation hypothesis, that recently made
significant progress towards phenomenological description of correlations in small

systems.

44
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Recently a QCD based simple model, based on the theory of multiparton interac-
tions (MPI) in pp collisions [44, 45, 46, 47, 48, 49, 50, 51, 52, 53] , and not involving
the saturation effects, was proposed in [10, 11] to study the effects of quantum in-
terference and colour flow in high multiplicity pp events. The strong simplification
of the model consists in neglecting a dynamically explicit formulation of the scat-
tering process: all gluons in the incoming wave function are assumed to be freed
in the scattering process with the same (possibly small) probability. The model
pictures the incoming hadronic wave function as a collection of N colour sources in
adjoint representation distributed in transverse space according to a classical den-
sity p(7;). On the amplitude level, emission of a gluon is taken into account in soft
gluon/eikonal approximation.

In Ref. [11] the flow coefficients v, {2s}, determined by 2s point symmetric

sen {25} = <<ei"<2f‘i @Z?f?il@)» . (3.1)

were calculated. Here ((---)) means averaging over the multiparticle final states

cumulants

and taking the cumulant. The phases ¢; are the azimuthal angles of measured soft
hadrons.

The model [10, 11] predicts both the collectivity phenomena and the qualita-
tively correct scale of correlations as well as their behaviour as the functions of the
transverse momenta.

Consequently, it makes sense to study the other recently measured flow phenom-
ena in high multiplicity pp collisions in this framework of this model.

One group of potentially interesting cumulants are the three point asymmetric

cumulants, The corresponding cumulants are often denoted as ac, {3}:
ac, {3} = <<6in(¢1—¢3)em(¢2—¢3)>> - <<€in(¢1+¢2—2¢3)>>‘ (3.2)

These cumulants were recently studied experimentally [12]. Since we consider in
this paper only ac, {3} cumulants, we shall denote them as simply ac,, below.

The purpose of the paper is to calculate the three point correlations (eq. (3.2))
and to compare these correlators to the available experimental data [12]. We shall
see that our results are in qualitative agreement with the experimental data although
there is not enough experimental data for detailed comparison.

We shall give the detailed predictions for transverse momenta dependence and
for the scale (characteristic magnitude) of the three point cumulant . We shall also
discuss the dependence of this cumulant on multiplicity.

Recall that the model [10, 11] was based on large N. and N expansion and then

the results were extrapolated to N, = 3.
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3.2 Basic formalism.

3.2.1 The Model [10, 11]

Each pp collision is considered as an event consisting of N emitting sources char-
acterized by two-dimentional transverse positions r; and the initial colours in the
adjoint representation b;. Physically these sources correspond to multiparton inter-
actions (MPI). In other words each source is a collision of two partons-one from each
of the colliding nucleons.

The emission amplitude of the gluon with colour a and transverse momentum k

from a source in transverse position 7 is given by an eikonal vertex:

T, T (k) e, (3.3)

where T3 . are the adjoint generators of SU (N.), and ? (k) is a vertex function.
The concrete form of f will not influence our results (see below). For example, for
the case of coulombic radiation we have f =k /k%. However since the relevant mo-
menta are small the function f must be taken to be a nonperturbative one. In the
cross section the emitted gluon can be absorbed by the same source in the complex
conjugated amplitude (”diagonal gluons”) or by different source (”off-diagonal glu-
ons”), leading to multiparticle correlations.The simplest diagrams contributing to
multiparticle cross section and to correlations are presented in Fig. 3.1. In the left
there is a diagram with 2 sources and 2 diagonal gluons, in the right there are still
2 sources but gluons are off-diagonal:they are emitted by one source and absorbed
by another leading to azimuthal correlations.

After calculating cross sections for given source positions we average over the
source positions with a classical probability distribution p ({r;}), corresponding to

the distribution of multiparton interactions in the pp collision [45]:

O 1 [ Eriplr)otir (3.4)
——= = ip(13)0 (ki ;) :
Py, ) O

where o(k;, ;) is the cross section of production of m gluons for sources in fixed
transverse positions r;. In this paper we shall neglect so called 1 — 2 mechanism
for MPT [45, 48, 50]., and carry all calculations in the mean field approximation. In

this case the source/MPI distribution in pp system has a Gaussian form:

=N o2

prit) = 1l 5—e=, (3.5)

bale 2B

where the parameter B is determined from the analysis of the one particle GPD
data at HERA [54]. As it was noted in [10], the mean field approach to MPI
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corresponds to B = 4 GeV 2, the actual experimental data reparametrized in the
mean field form, i.e. assuming factorization of MPI cross-sections corresponds to
B =2 GeV~2, and the best fit for experimental data for symmetric correlators sc,
considered in [10, 11] corresponds to B = 1 GeV ™2, this was justified (though not
proved) in [10] by arguments due to possible contribution of very small dipoles due
to so called 1 — 2 mechanism in MPI [45, 48, 50]. In this paper we shall see that the
value of B influences only transverse momentum dependence, and the value B = 1
GeV~2 seems to be in the best agreement with the experimental data.

We shall work in the limit of a large number of sources N, m finite, N — oo

[10, 11], and N, — oo and classify all diagrams in powers of 1/N.,1/N.

| |

1 g
| R
Tkt L
Tk *

Figure 3.1: The simplest diagrams contributing to total cross section and to corre-
lations: left-2 diagonal gluons, right-interference corresponding to two off-diagonal

gluons forming dipole.

The Correlation Functions.

The correlation functions we are interested in have the general form

J, dr...des exp [i(SZ5 nig) grtr
() TS, |

where 32, n; = 0, and [, = [T]; d*y;p(¥;) is the averaging over position of the sources.

K™ (ky, .. k) = M, (3.6)

The standard s-particle spectrum has the form

d°N d°o
B S Ai(j. (3.7)
dFl...Fs S adFl...dFs
Here & is the cross section for the production of s gluons, and the normalisation

factor M is fixed as
M, =m?/ <m> (3.8)
s
Here m is the total multiplicity, and s is the number of measured gluons. We assume

local parton-hadron duality (LPHD)[54], so radiated gluon correlations and multi-

plicities coincide with correlations and multiplicities in the soft hadronic spectrum,
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The number of radiated gluons is in one to one correspondence with a number of
radiated soft hadrons.
In this paper we shall be interested in the case s = 3,n; = n,ny = n,n3 =

—2n,i.e. in

S, dor...dgs exp [in(¢1+¢2 2¢3)]#

K" (ky, ko, k3) = Ms
o (@m) TL=1, i

(3.9)

3.2.2 The differential cross section.

The relevant differential cross section was calculated in [10]: We can now write &

explicitly in the limit N — oo , i.e. omitting terms that are zero as N — oo

& oo NPMNZ-1D)NNTLIT (k

Fc(orr(N m 2
X (1+W%%2 cos (Ko - Aryyp ) cos (kp - Arpy)
F®) (N,m
4 Lteorr VLY 23 cos (k4 - Aryy,) cos (ky - Ary,y,) cos (k. - Ary,y,)
AN3 (N2 — 1)(%)(%)
F® (N
+ corr ( ’m)2 >3 2%cos (kg - Aryy) cos (Ky - Aryp,) cos (k. - Ary)

N3 (Nc2 o 1) (abc)(Im)(mn)
+ O(N™)).
(3.10)

Here the sums go over all ordered combinations of off-diagonal gluons and non
ordered combinations of sources. Using eq. (3.10) we can find any correlation
function for any number of particles.

The first term in eq. (3.10) corresponds to diagonal gluons, the second is a
dipole term, which is a leading contribution to symmetric cumulants [11]. The
leading contribution to asymmetric correlator (eq. (3.2)) comes from the third and
fourth terms in the expansion (eq. (3.10)) corresponding to 3-gluon dipole (which is
actually 1/N suppressed relative to a second term) and a tripole diagram, depicted
in the diagram of Fig. 3.2. Note that the tripole diagram has a finite value in the
N — oo limit.

The factors F2) (N, m), F3) (N, m) correspond to the contribution of diagonal
gluons to the interference diagrams. As it was shown in [10] the diagonal gluons lead

to the multiplicative renormalisation of the correlators, given by the corresponding

coefficients F.,,.
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3.2.3 The 1/N. Expansion.

Recall the structure of the expansion discussed in [10, 11] for even harmonics for
symmetric cumulants. The expansion was in two parameters: 1/(N? — 1) and in
1/N. The leading contribution came from the dipole diagram which was of order
1/(N? — 1), and the leading approximation in 1/(N? — 1),1/N was considered ,
so that we could discard all 1/N suppressed diagrams. (Note however that odd
harmonics appeared only due to 1/N suppressed terms in the differential cross section
expansion). It was shown in [10], that the real parameters of the expansion for given
multiplicity were m?/((N2 — 1)N) where N is the number of sources, and m is the
multiplicity. The leading terms in this expansion however can be resummed, as it
was done in [11]. The corresponding diagrams are built from up to [N/2] sources
and correspond to nonintersecting dipoles ([] means the integer part).

For the case of the 3 point cumulant the situation is more complicated. For the
symmetric cumulants we were able to show that the 1/N suppressed diagrams can
be neglected. On the other hand for the three point cumulant the leading diagram
in the N — oo limit is a tripole (see Fig. 3.3 (above)). However this diagram is
suppressed by 1/(N? — 1)? in the large N, limit. On the other hand the diagram
corresponding to the dipole with three off-diagonal gluons (Fig. 3.3 (below)) has
zero limit for large N, i.e. it is suppressed as 1/N, while it is only 1/(N? — 1) in the
large N, limit. Thus we shall expect that 1/N corrections will play a significant role
for three point correlator if we extrapolate to finite 1/N.. In fact we shall see below
that the dipole with 3 gluons will dominate numerically up to rather large number
of sources. Thus we shall take into account both the tripole and the dipole with
three off-diagonal gluons. We shall also take into account the leading terms in the
expansion in m?/(N? — 1) for both leading and subleading (1/N, i.e. dipole with
3 off-diagonal gluons) terms in the expansion. It is easy to show in analogy to the
symmetric case [11] that such expansion corresponds to the inclusion of up to [N/2]
nonintersecting integrated out dipoles with 2 off-diagonal gluons. (By ”integrated
out” we mean that we integrate over momenta of the corresponding nonobservable
off-diagonal gluons). It is easy to see that all other diagrams are subleading, i.e.
suppressed by higher powers of 1/(N2—1),or 1/N,i.eas1/(N?—1)?1/N° a+b > 3.

For numerical calculations we extrapolate our results to finite N, = 3 and to
finite N, actually fixing m = m/N, in the limit m, N — oo as the parameter of the

model. We use the same values of m as it was done for symmetric cumulants in [11].
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&
W

—

Figure 3.2: Left: The tripole diagram for N = m = 3. Right: 3-gluon dipole

diagrams for N = m = 3.

3.3 The Tripole and 3-Gluon Dipole.

In this section we shall consider the simplest case of N=m=3. There are two con-
tributions in this case: first from the tripole diagram, second from dipole with 3
gluons. Note that each of these two diagrams will be the building block for the case
of arbitrary m, N.

We shall start from analysing the single tripole term, that corresponds to the
case N = m = 3. The corresponding diagram is depicted in Fig. 3.2 (left). Note
that in this case there are 3!=6 ordered combinations of gluons, in addition there
are 3 ways to put the phases on 3 available gluons, so we get, using eq. (3.10) the

multiplier 144:

T,
33) = ___m
o = NEop
144 .
= m /f)/d¢1d¢2d¢3em(¢1+¢22¢3) cos (kl . Arlg) CcOoS (k2 . Ar23) cos (k3 . AI‘31) 7
(3.11)
where ac®? is the contribution of the tripole diagram into the total ac.

Consider now the contribution of 3-gluon dipole to the asymmetric three point
cumulant. The corresponding diagram is depicted in Fig. 3.2 (right). We note that

for the 3-gluon dipole only two of the 3 sources are involved and so the multiplier
3
gets a factor of ( ) ) and a factor of 47! from the colour trace, and the multiplier

becomes 108:

62 — _In
G = N2
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144(3) /4

m / / d¢1d¢2d¢361n(¢1+¢272¢3) COS (kl : AI'12) COS (kg . AI‘12) cos (k3 : Ar12)
C - p

108 A
= [ — g ], ] A0rd0udonen T cos (- Brig) cos (k- Amig) cos (ks - Araa),

(3.12)

32 is the dipole contribution into the cumulant. Below we shall denote the

where ac
asymmetric cumulant for tripole as T, and the asymmetric cumulant for 3-gluon
dipole as T,,, while reserving the notation ac, for total asymmetric three point

cumulant for the case of general N, m. The total value of the three point cumulant

ac, = acy? + ac>?. (3.13)

3.3.1 The Tripole Momentum Dependence

We start by defining a;; to be the azimuthal phase of 7;; = 7; — 7.

We can now take the integral over the 3 azimuthal angles of vectors El, EQ, Eg,
using:

2

d¢16m¢1 COS (klATlg COS (¢1 — Oélg)) = 7T7:n6ma12 (1 + (_1)71) Jn (l{ilArlg) (314)

Here J, (z) is the n-th Bessel function of the first kind. Using eq. (3.14) we obtain

24732 (14 (-1)")”
3 (2m)°

Tn(/ﬁ, ko, ks) = /Gin(alﬁa%*m?’l)a}n (kl ‘1'12|) In (kz ’I'23|) Jon (/f3 ’I'31|) .
p

(3.15)
Note that due to antisymmetry k — —Fk all correlation functions with odd n’s vanish.

Consider now the integral over the sources:

<?1 T ?3)_)<?12 T3 ?3):(71—?2 Ty — T3 73)-
(3.16)

We can simplify the latter expression since the integral over d?r is a simple gaussian

integral:
2 2
7T1+T§+T§ B (?12+?23+?3) +(?23+?3> +r§ 7T%2+?12'?23+T%3
e 2B e 2B e 3B

dPry———— = /er =

/ * (2rB)® ’ (2rB)° 3(27B)°
(3.17)
Using eq. (3.17) we obtain the final expression for T,:
24 Tf2+T12T23 CO'S(Q12*Q23)+T§3 Fin(ai2+ass)

TnEi/drdrdadozrre_ 3B
32(273)2 120723001 2@ (23T 12723
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2n
(7"12 cos (uya) + 193 cos (craz) — i (2 sin (vyg) + rog sin (azg)))

2 2
\/7’12 + 27“127”23 COS (Oé12 — agg) + 7’23

X Jn (k‘ﬂ"lg) Jn (l{?QT‘Qg) Jgn <k53 7"%2 + 27‘127”23 COS ((1/12 — 0423) —f- 7”%3) .
(3.18)

Where we use e = (%LT) to find agy in terms of ayg, o3 ( Here 7= (z,y), hence
T + iy = rexp(ia)).
For very small momenta ( i.e. all k; << 1/B'?). we obtain

T ~ 24-2n (BQSym(klk‘ng))n
e 3 (n!)? '

(3.19)

where Sym means symmetrization over 3 gluons (and division by 1/3). The details

of calculation are given in Appendix A.

3.3.2 The 3-Gluons Dipole Momentum Dependence

In the same way as we did to T}, we can get a simplified form of T, taking the

integral over the phases gives us:

" 22.2(1+ (=)™ 1 . o
Tn(kla k27 k3) = ((271_)(3 ) ) /pem(a12+a12 2 12)Jn (k’lT’lg) Jn (kg?”u) Jgn (kg?”lg)

- (12;(3_1)71)2 [ 71 (kar1a) T, (horro) o (o). (3.20)

We note that here too due to antisymmetry k — —F all correlation functions with
odd n’s vanish. The integral over the position of the sources is now a gaussian with

two vector variables. Using the transformation:

(?1 ?2)—}(?12 ?2>:(?1—?2 ?2)7 (3.21)
we can take the integral over d?ry and over the azimuthal part of 71s:
22 (?12+?2)2+T§ 2
J/dZTykxmf;%ZSQ:=L/}fr2da12e_ (2WZ;2 ::6;2; . (322)

Using eq. (3.22) we obtain the final expression for T):

T,

2 T%z
E /dr12’r126_EJn (1{317"12) Jn (]{727”12) Jgn (]{737”12) . (323)
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For very small momenta ( i.e. all k; << 1/BY?). we obtain

T ~ 22 (B2Sym (klek‘%))n
! (n)”

where Sym means symmetrization over 3 gluons (and division by 1/3). The details

(3.24)

of calculation are given in Appendix A.

3.3.3 Numerical Results.

The value of three point cumulant is
ac, =T, /(N? — 1) + T,/(N? — 1) (3.25)

where n is the harmonics number ( we depict n=2,4 cases).

We cannot calculate the integrals T), and 7,, analytically, so we will depict several
types of different behaviour of T3, T, 4,T 5 and T 1 as functions of momenta. On the
other hand the correlators have nontrivial structure as functions of k1, ko, k3. Namely

they depend in the polar coordinates:

ks = k. cos(0) ki = k, sin(0) cos(¢) ko = k, sin(0) sin(@) k, = \/k? + k3 + k3
(3.26)
in a nontrivial way: the value of the cumulant depends not ony on k, but also on

0, ¢. Indeed, already for very small kq, ko, k3 — 0
acs ~ k2k3k3(k? + k3 + k3) ~ k% sin(26)? sin(2¢)? sin(9)? (3.27)

In order to better understand the structure of the cumulant we shall consider 3

cases:
e Case I: All the momenta are equal to each other, k; = ky = k3 = k.

e Case II: 0, ¢ = const, and we consider the cumulant and its parts as functions

of k,

e Case III: We consider the cumulant as function of 6, ¢ for several values of

k.
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Figure 3.3: Above: The integrals T5 and TQ when all momenta are equal, k| = ko =
ks = k for different values of the parameter B = 1(2,4)GeV 2 in full (dashed,dotted)

line. Below: The integrals T, and T4 when all momenta are equal, ky = ky = ks =k

for different values of the parameter B = 1(2)GeV 2 in full (dashed) line.
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Figure 3.4: The cumulant acy for N =m =3, N. =3, k1 = ky = k3
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Figure 3.5: The cumulant acs for N =m =3, N. = 3 for k; = ky = k3

In Fig. 3.3 above we depict the dependence of Ty and Ty on k. We see that for
equal k, the integrals increases up to k of order 1/v/B, and then slowly decreases,
with value at maximum of order T ~ 0.04, T ~ 0.07 that depend on B very weakly.
Note also that the maximum is located approximately at the same place where
the maximum for the similar graph for symmetric cumulant (second harmonic) is
located, and their k dependence look very similar.

We see that both integrals vanish at £ = 0, and as k£ — oo we get slowly
T5 — 0 and Tg — 0. Both 75 and T. 5 have maximum in the same point, and their
k-dependence is very similar.

We observe very similar behaviour as a function of k for 7T, and T, in Fig. 3.3
below, except the fourth harmonics is 4-5 times smaller and the maximum is shifted
to larger k-s.

In Fig. 3.4 we depict the corresponding full three point cumulant acs, i.e. the
second harmonic dependence on k, for the model case N=m=3. In this case even for
N. = 3 the diagram with 3 gluons in a dipole is a dominant one, giving 90 percent
of the value of the cumulant. Similarly we depict acy in Fig. 3.5.

An interesting feature of the momentum dependence of the cumulant is that the
direction in (¢, 0 ) along which the cumulant is maximal is the one corresponding
to k1 = ko = k3. We illustrate this by considering the dependence of acy, as well as

tripole and dipole diagrams on the direction in k-space in Fig. 3.6 and Fig. 3.7.
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Figure 3.6: The integrals T, and Tg for different directions, 0,¢ = const, k, is

changing

0.01 :
——r‘os(())_ﬁ,é_% .
_-me(())_%,@_z 25" “-._~‘.
0:008 | _. o ccos(@) = =7 L
--------- cos(())fﬁ,é,% ’x; =
0.006 | —cos(®) = 5,6 =577, 7=~~~ _
3
0.004
0.002 |
0
0

Figure 3.7:  The full cumulant acy for different directions, 0,¢ = const, k, is
changing. B=1 GeV 2

We see from Fig. 3.6 and Fig. 3.7 that indeed the direction ky = ky = k3 (i.e.
cos(f) = 1/4/3, ¢ = m/4) corresponds to an absolute maximum. On the other hand
we see common structure in each direction, with increase up to some maximum value
and then slow decrease depending on the direction. The Fig. 3.6 and Fig. 3.7 are
done for B = 1GeV 2, for other values of B the behaviour is qualitatively similar.

In order to understand better the two dimensional structure we also consider the
behaviour of the cumulant as a function of 0, ¢ for k, = 2,4,6 GeV. This is depicted
in Fig. 3.8 and Fig. 3.9.
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Figure 3.8: The cumulant acy for N=m=3 N, = 3 when k, = 2,4,6GéV (from top
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Recall, that the case B = 1 GeV ~2corresponds to the best fit for even symmetric
cumulants in [10], while B=4 GeV~? corresponds to the mean field approach with
the effective cross section for MPI two times bigger than the experimental one. We
limit ourselves by depicting the second harmonic. Note that the structure of the
cumulant for B = 2,3 GeV~? is very similar to the one for B=1 GeV~2, so we do
not depict it here. and starts to change only for larger B that correspond to the
effective DPS cross sections bigger than the experimental one.

Let us note that due to very similar form of the k—dependence of T, and T,
except their scale, the similar dependence on k-s will continue for the case of arbitrary
m, N (with different overall coefficient depending on N m).

We also compared the numerical results for small momenta with the the analytic

expression (Eq. ( 3.19)) and expression (eq. (3.24)) and found that they coincide.

3.4 High Multiplicity.

3.4.1 Higher Order Diagrams.

We now consider the general case of N,m > 3. It was already noted above that the
leading behaviour in powers of 1/(N? — 1) (and a resummation of series in terms
of m?/(N? — 1)) corresponds to diagrams with one tripole and arbitrary number of
nonintersecting dipoles. However in this case there is also the term contributing to
the cumulant that is suppressed by 1/N but of the first order in 1/(N? — 1). The
corresponding resummation, analogous to the resummation for tripole, will lead to
inclusion of the series corresponding to the diagrams with one dipole with 3 off-
diagonal gluons and up to [N/2 — 1] nonintersecting dipoles, such that each of the
sources has only 2 (or zero) gluons coming out. Numerically for N. = 3 the term
with 3 gluon dipole is a dominant one up to very large multiplicities of order 100.

Consequently there are three types of diagrams we have to consider:

e Type a: The diagrams with arbitrary (up to N/2) number of dipoles with 2
off-diagonal gluons. These diagrams were considered in detail in [11]. Such

diagrams, contribute to the total cross section .

e Type b: There is one tripole and d < N/2 nonintersecting dipoles with 2

off-diagonal gluons.

e Type c: There is one dipole with 3 off-diagonal gluons and d nonintersecting

dipoles with 2 off-diagonal gluons each.
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Let us recall the calculation of the combinatorial coefficients for the case a).We
first pick 2 gluons and 2 sources for each 2-gluon dipole. From the picked gluons we

get a factor of (;)

@) <m2—2>_“<m—2d+2>;:m. (3.28)

The sources give us a similar factor of:

<];[><N2_2>"'<N_Zd+2>:2d(]<\iv—)!2d)!' (3.29)

For type b diagrams we have an additional multiplier coming from the number

of choices of the 3-gluon dipole given by:

3 (?) 31 @[) (3.30)

For type ¢ the number of choices for the tripole give us a factor:

3(?)3!@) (3.31)

Only diagrams of type b and ¢ contribute to harmonics of n > 0 so we can write:

d3§ 1=3
27 o NPMN2-DVNTTIT (k)P
Hij drl’; H
corr<N7 m) m!N!
N34(N2 —1) d'3!2!/(m — 2d — 3)/(N — 2d — 2)!

corr

N?(NZ —1)

X

( [(N—-2)/2] (ﬁOF(z)

(N, m)>d 2331 F3)

d=0

X /cos (ky - r19) cos (kg - r1o) cos (ks - r1o)
p

COT‘T‘(N7 m) m'N!
N3(N2—1)2 dI(30)2(m — 2d — 3)I(N — 2d — 3)!

corr

N2(NZ —1)

L(N=3)/2] (DOF(Q)
+

(N, m))d 2331 F13)

d=0
X /cos (ky - r12) cos (ks - ro3) cos (k3 - r31) }.
p
(3.32)

Here we defined the integral 150 corresponding to the off-diagonal dipole component
of the wave function of the nucleon fully integrated out i.e. integrated both over the

source positions and the momenta of the gluons:

Dy = / (r12dri2) ( H k;dk; (‘7(k]))‘2) %Jo (k1r12) Jo (kari2) - (3.33)

§=1,2
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This integral is determined by a normalized radiation amplitude f and like in
[11] can be considered as a free parameter (coinciding with the one in [11]). This
integral is expected to be between 0 and 1 [11].

As was already noted above, it was shown in [10] that the diagonal gluons con-
tribute to the interference diagrams by renormalizing them, i.e. multiplying by
factors F(m, N) that can be easily calculated. For renormalisation factors F?) and
F®) connected with diagonal gluons for dipole and tripole diagrams relevant for our
discussion we have the explicit expressions:

(m — 3)!

m)

F®(N,m) = (6(m —2N)N? +-6(N — 1) 'N3"™(=2 +m +2N)). (3.34)

In the limit N — oo, m — 0o, m/N = m = const, we have

“mQm)  m—2
crerm  gm-2 (3.35)

FO(N,m) = F®(m) =6 — —

In the same way it was obtained in [10]

ONT-™(N(N — 1)™ 4+ mN™ — N1+m)

F@(N,m) = :
(N,m) T =) , (3.36)
and in the limit N — oo, m — oo, m/N = m = const, we have
2m +2e ™ — 2
FO(N, m) — FO(m) = 212 . (3.37)
m

For the the 3-gluon dipole we get a correction factor that is the same as F®) (N, m),
as calculated in appendix B. For nonintersecting dipoles/tripoles it is possible to
prove that the corresponding renormalisation factors factorize.

To find the differential multiplicity we also need to find the total cross section &

in the same approximation. This cross section is equal to

6 o< NM™(N?2-—-1)NN™

& (DoFE), (N.m)\' miN!
x A Z ( N2(N2 1) ) d! (m — 2d)! (N — 2d)!

m!N!

corr corr

BFG) (N, m) Ty N2/ <D oF@ (N, m)

N3 (N2—-1) =

~

SSFc(mzr (Na ) 0 DOF( ) (N m) m!N!

NZ (N2 —1) ) 12131 (m — 2d — 3)! (N — 2d — 2)!

}s

N3 (N2 —1)° Z:: (N?C(O;Gg—l) ) (312 (m — 2d — 3)! (N — 2d — 3)!

(3.38)
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where we define the integrals:

r2
12

2 2
T, = 33/ (r19dri2) H kjdk; ’7 ‘ Jo (k1r12) Jo (kari2) Jo (ksria),
(3.39)
92 %2‘*?12?23‘“"%3
A 3
T() = 35 / (d 7’12d T23> H k’ dk‘ ‘? ‘ (27‘{'B)2
X Jo (k1r12) Jo (karas) Jo (ks ‘712 + ?23’) )
(3.40)

corresponding to the integrated out tripole and integrated out dipole with 3 off-
diagonal gluons. Note that the radiation amplitude f defines the Ty and %0 values,
i.e. they are not free parameter of the model anymore, i.e. if we know Dy the values
of To and %0 are correlated with the value of ﬁg.

For the differential multiplicity we obtain:

d*N d3o
dT1dTodl; — odl dTodl;

)

Q

m!N!

corr corr

X

2F®) (N, m) 22 (D oF 2 (N, m)

N3 (N2 —-1) 4=

X /cos (kg - r12) cos (ks - r12) cos (ks - r12)
P

m!N|

corr corr

NZ (N2 —1) > d12131 (m — 2d — 3)I (N — 2d — 2)!

2F® (N,m) N2 (DF@ (N, m)
N3 (N2 -1 S (

X /COS (k1 . I'12) COS (k2 . 1'23) COS (kg . I'31):| ,
P

where

o

NP DoF@ (N, m) ) IN!
< ( ,m)> - m!N! (3.42)

N2 (N2 —1) m — 2d)l (N — 2d)!"

is the total cross section. We have shown by direct numerical calculation that

d=0

the contribution to the total cross section of the integrated out 3-gluon dipole and
of the integrated out tripole are negligible compered to the 2-gluon dipole terms, so

we can ignore the dependence on TO and To

N2 (N2 —1) ) (302 (m — 2d — 3)! (N — 2d — 3)!

(3.41)
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Figure 3.10: The dependence of the maximum value of acy (as a function of mo-

menta) on multiplicity m for different values of m where Do =0.1 and N, = 3.

For differential one gluon distribution we have in this approximation:

dN 2

=m|T k). (3.43)
We will can now write for the parts corresponding to the 3-gluon dipole and a

the tripole contribution

3B (N -
CLC§L72 {3} — 3 corr ( 7m> Tn/3
(T)oN3(N2 = 1)

L(N=2)/2] <b0F6(022r(N7 m) ) d mIN

Z U N2(N2—1) ) d1213I(m — 2d — 3)/(N — 2d — 2)!

a03,3 {3} _ 33Fc(312r (N7 m)
S e

(N2 PoF@) (N, m) " mIN!
2 \Ne(v2=1) ) di(302(m — 24— 3)I(N — 2d — 3)!
ac, = ac>®{3}+ac*{3}. (3.44)

Note that taking Dy =0 or equivalently, only d = 0 term in the expansion for )y

we return to the result (eq. (3.11)) for for N=m=3 of the previous section.

3.4.2 Numerical Results.

We now look at ac as a function of the multiplicity for different values of m = m/N.
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Figure 3.11: The dependence of the maximum value of acy (as a function of mo-

menta) on multiplicity m for different values of m where Dy =0.1and N, = 3.
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Figure 3.12: The form of the acy for k1 = ky = k3 and for different values of
multiplicity m, with Dy = 0.1, B =1 GeV~2N, = 3.
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We first look at acy as a function of m for fixed values of m = 4,10. In Fig.
3.10 we depict the dependence on m of the maximum value of ac, as function of
transverse momenta. We see that the value of acy decreases slowly with multiplicity,
and the characteristic scale of acy for moderate m ~ 50 is of order 2 x 1074,

It is interesting to note that the scale of two point correlator vi = scy {2},
calculated in [11] was ~ 4 — 5 x 1073, i.e. we observe a decrease of order 2(N? —
1) going from v3 to acy, and the ratio between the two very weakly depends on
multiplicity.

In Fig. 3.11 we depict the analogous dependence of acs. We depict the k-
dependence of ac, for various multiplicities in Fig. 3.12. We see that the k-
dependence is practically independent on multiplicity (up to an overall scaling fac-

tor), and is the same as in N=m=3 case.

3.4.3 Comparison with the Experimental Results.

It will be interesting to compare our results with the recent experimental data
[12]. In that paper the average of the second harmonic over experimental data
was taken with momenta varying in two different kinematic regions k € 0.3, 3] GeV/
and k € [0.5,5] GeV .

Recall that we can completely separate the dependence of the momenta and n, in
the form of T}, and T},, and the dependence on all other parameters like multiplicity,

number of sources, N, and the model constant Dy, It is convenient to define:

3,2
R*2(N,m,N,, Dy) = ‘IC"T{?’}

R 3,3 3
R** (N,m,N,,Dy) = ach{} (3.45)

Since all of the dependence on the momenta in our model is contained in k-dependent

functions T, (ky, k2, k3) and Tn(k;l, ks, k3) we can calculate the averages:

B=1GeV?2 | B=2GeV 2| B=4GeV?
0.3-3GeV — % 9.4 x 1073 6.5 x 1073 2.7 %1073

&

2

!

(T3)

B fOSdkldedkng
< 2>03 3GV (3-03)°
(T»)

T2)o s scev = f“f:% 41%x107% | 14x107% | 1.5x10°®

2.1 x 1072 1.6 x 1072 1.1 x 1072

_ Jos Madhadks Ty o _3 -
<T >0.5—5GeV ~ (505 1.4 %10 8.7x 10 5.0 x 10

Table 3.1: Avreges of the integrals for different ranges of ki, ko, k3 and values of B
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The value of the cumulant is obtained by calculating:
(acy {3}) = R (Ty) + R* (Ty) . (3.46)

The results are depicted in Fig. 3.1313:

=4k e [0.3,3GeV

m =4k e [0.5, 5]GeV

- = =10k € [0.3,3]GeV
104t - = =10k € [0.5,5|GeV |

Figure 3.13: The 3 point cumulant ac® averaged over region 0.5 < k; < 3 and
0.5 < k; <5 (i=1,2,3)

We depict in Fig. 3.14 the theoretical value of the second harmonic (integrated
over the region 0.5 < k£ < 3 together with experimental data, namely the ATLAS
result after additional analysis, done in [56] to eliminate nonflow effects. Note that
the values of m, that are obtained here using LPHD concept, correspond to a total
number of soft hadrons which is approximately m ~ 1.5Ngharged, Where Neparged
is a number of charged particles measured in the ATLAS experiment. (The high
multiplicity sample used by ATLAS is dominated by 7 mesons [57], the factor 3/2
then comes from isotopic invariance, since m mesons form a triplet in the isotopic
space). The two different types of data, with or without gap are depicted, meaning
the gap of 0.5 units between subevents to limit nonflow is taken or not are depicted.

We refer the reader to [12, 56] for the details of the experimental analysis.
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Figure 3.14: The 3 point cumulant acy averaged over region 0.5 < k; < 3 and
0.5 < k; < 3 (i=1,2,3), compared with experimental data. The experimental data
is depicted after additional analysis [56] of the ATLAS results, made to minimize
nonflow effects, where the two types of experimental points correspond to analysis
with or without the gap of 0.5 units between subevents.

We see rather good agreement with experimental data for m < 120(Nenarged <
80) and if we average over region 0.5 < k < 3 GeV.

However for higher multiplicities the theoretical result decreases with total mul-
tiplicity m rather rapidly, contrary to the experimental data, which shows the in-
dependence of ac on multiplicity for large m. In addition the ATLAS data for
average ace over the region 0.5 < k < 5 GeV tend to increase relative to average
over 0.5 < k < 3 GeV, while Fig. 3.13 shows the opposite trend. Note however
that these averages are very sensitive to explicit k-dependence and even small inac-
curacy in k-dependence leads to rather large inaccuracy in the average. Moreover,
our results may be less accurate for large transverse momenta, where soft gluon

approximation is less accurate.



Chapter 4
Conclusions.

We have studied the influence of the effects of colour interference and colour flow
on the three point asymmetric cumulants using the model [10, 11].

We get qualitative agreement of our results for asymmetric correlator with the
scale of available experimental data [12], at least for moderate multiplicities m ~
100. Note that only integrated experimental data is available, decreasing the possi-
bility of detailed comparison with the experimental results. This data seems however
to be very sensitive on precise transverse momenta dependence. Thus the detailed
comparison between theoretical and experimental results demands further measure-
ments, in particular the detailed study of transverse momenta dependence, as it was
done already for symmetric correlators.

From our side we carried the detailed study of the transverse momenta depen-
dence and characteristic scale of the correlator.

The discrepancy with the experimental data is seen in the decrease of the ac
cumulant with multiplicity m at high multiplicities, the analogous behaviour was
also noted for symmetric cumulants in [11]. The experimental data indicates that
cumulants are virtually independent of multiplicity. On the other hand let us note
that there may be significant uncertainties in the experimental data, related to sep-
aration of the flow and nonflow effects [56]. We expect that further study of the
model, in particular inclusion of higher suppressed diagrams (like quadrupole like
ones) will improve the dependence on multiplicity both for symmetric and asym-

metric correlators [58].
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Appendix A
Small momenta limit

Consider the case of the very small transverse momenta for a tripole. Looking at
very small momenta, k; < B~/2 for all 3 momenta we can take the Taylor expansion

of the Bessel functions

ZTL

I (2) =~ —ion (A.1)
to find:
X (cos (agz) + sin (aq2))" (cos (agg) + sin (ag3))"
X (rigcos (aa) + 193 €08 (ag3) — i (T2 8in (ag2) + rog sin (0423)))2” )
(A.2)
Note that from dimensional analysis for small momenta
ac,, o< (32]{31]{32]{392))” (A.3)

Simplifying the integral (eq. (A.2)) we obtain in the limit of small k;:

(3B)%240-m) (3232k1k2k2

Tn
32 () (2n)! (27 B)?

12

/ dx dzody, dys

an 871 aZn ) ) )
- (I% +z122 +m§+y% +y1y2 +y§ ) +a(z1+iyr)+B(z2+iy2)+y(z1+x2—i(y1+y2))

oa™ aﬁn 87271

2 (BB kok3)" O On 0 An? 3r(a+p)
(n)’ (2n)! (21)*  DamOBm 9y 3

a:ﬁ:'y:()

2070 @B k)" (2> 22 (B2 ey k)"

3 (n!)* (2n)! 3 3(n))?
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Note that all expressions above are understood to be symmetrized over gluons
1,2,3, i.e. equal to sum %217273.

We can also use the same approximation to find:

~ 21-4n (g kikok2))" iy
"~ ( ym2( 1kaks)) /drlgrg‘l”e_ﬁ. (A.5)
B (n!)” (2n)!
This lives us with an integral that is easly solved by taking u = % and we get the
result: 2 (B2 b2
- 2
7, ~ 2B hikok;) (A.6)

oy



Appendix B
3-gluons dipole correction

In the same way they found the correction in Ref. [10], we can find the correction
factor for the case for the 3-gluon dipole. We note that if we are are looking at an
ordered list of emitted gluons with only three off -diagonal gluons that make the
3-gluon dipole we can divide the diagonal gluons into 4 kinds. If the off-diagonal
gluons are (1,2,3) the diagonal gluons can be before 1, between 1 and 2, between
2 and 3 and after 3. The ones between 1 and 2 and between 2 and 3 will give us
a factor of 1/2 if they are on the same sources as the off-diagonal gluons, and will
give us a factor of 1 otherwise. We first need the number of incoherent diagrams,

which will be:

m—3 m—3—j12 ‘ '
Nineoh =, > NT72728(m — 2 — j15 — jgs)

Jj12=0  j23=0

L j12 l12 Jiz—li2
< 3 ohz(N — 92)

l12

& j23 lo Ja2s—l2
« 3 ofas (N — g)iaslas

l23=0 l23

m‘ m—3
- 3!(m—3)!N (B-)

where j,;, counts the number of diagonal gluons between a and b and [, counts how
many of them are on the same gluons as the 3-gluons dipole.

The correction coefficient is then calculated by taking into account the factor of
1/2!, coming from identity T°T°T* = T°/2:

1 m—3 m—3—7j12

N‘ Z Z Nm—3—jl2_j23 (m — 2 - j12 - j23>

neoh j1o=0  ja3=0

F3Y(N m)
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ik j12 l12 Jiz—lizo—l12
x> 212(N — 2) 2

l12=0 l12

2 j23 las J2z—l2z9—la3
< 3 9las (N — )jza—laag

lo3=0 l23

= R m — 2N)N? 4+ 6(N — 1) NP2 4 4 2N),

m)!

(B.2)

We note that this is exactly F®) (N, m), as we can see from [10].
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99017 M2Y ,>I0NRDN VLIV NIPI DIPIPIN JY INIT 190N DY 31701 VINNIN .DINNNT FTIIIN
NV NPNNIN DY HONDIV 27NN XINY NN MIVNION NIPI 21DI07N VIMNN DIPIPIN DY IN-IN

.LDMYN DYPIPONN MY
: NN NYINA NITION N MDD
DV PNNN YV NMIVNN NN DXPIDN VNN N)IAN2

DOMPN N2Y NYTNN NDYN TITN DY DPD0IN NIMIYIN HY NPID DHIM) NNIX NWN P92
PEPIVYRY POMP MIIXNM 5Y DDIANN PNVIID-NVIND NPIWINNI NN DXIXIN 190N Yoy
D997 NN DI NI MYNND SY MIVDININ DX D101 NNIX TPPND .DXNVID NN

NMIN IN,DOPIPINM PA PPN MONN NN INNY 7T DN WHNWIY DPOVNNNI D1IYDNIN
STIN HY DOVIN NN DXVIDN IXY,D22IVI9 NN MPIPIVIN HY D1DX0IN NNPYIN NN DNO0N

.DXPYPON NYIDY HY MIVMONN VININN NN VYN YT YHNWI 12

NOYPYPON NYIDY 7N2Y DAPNNN IVMONN VININN DY 2NN NN DOYNIN NNIX YIDY P92
NN DNYN NDIADY ,DOVYNN DIPIPINT 190N DXPIPINT DY YINA NT VIND KW MONN NN OXIPIN
IDNNN PYAN NN YTNN DDIADN DXDPNNN NNIX NPONID . LHC-2 y770) IWX MINXIND 2WONN
571N YV DON NN DMIODN NNIN INY ININ DT NNIRY DTN YW D991 9N NN M)
DXVNN NNIN 1910 INRD ,DXPPPIN NYIDY DY M TVNPONN VINNN DX AYND 5PIWA DTN NNINY
VIDW DV DVIVAN NIPNN NIY DPIPINN DV ¥INI MOND DIPIPIN NYIDY DY MIVNPONRN VININN NN
VININN DY MONN NN DIRNXIN NMIX NDADY IODNY DIPIPON NYVIZYI NNV NPXPIVIN

DIMPN MTTNR0 MXXIND NN OMNYN) IOV DXPIPONN 19012 DIPIXPON NYIDY MNIY MVNPONN

APNNN NRPON NN DI YIIN P9



pRly

DOPPPONN) PVIND-)IVIFD NPIVINNA TPONNNIV XD PPN MY NINID NININKD NPASND

99017 MY (MYNNNN XY THINDN YN DNYY DINNII WP DININ MUNNNNN DX0HIN
VYN ION NPANN .99 NYNN D) NN 1T MON L(LHC) 5y 10 9277770 ¥)Nna 1) 08N
DY HY NMVNINNA I 29D NANI NYT MDNY NI NNDY 1T MIMIYNN . TPMYNDYNI MIIYNN

091 NYN 0>725 0N N2 WK ,(RHIC) o»mondn 0>1250 001N Yxnay LHC-2 or1ad
NNUN MYV NN U NYNN .(QGP) DIMNNXILI-PINNP NNIDS HY NP 2IWN 20D NAVN)
NPIVIINNA YAN ,DNOV 990N 28D DIXNN DIPIPONN P NPINN M8IVIND Y91 ,QGP Hv

qo1n2,QGP »1 Yy 920N May HWIP DINNN NN NPDXINN AN JOPN THND NVLY PIVIIV-NIVIND

DOVYAN DYPIPYNN YD DIXNMNNY TIP-NVNN YN DY NINXIND MDINND POIID-NVIID NMMIYNIND

NMO MNID , DI NYNN NN IPADYW DXVTN DDTIN DY DIPNND 92310 N 2IV1A THX DMDN KD
NN OVONNON 1D 7Y .(MPI) 921099 N2 PPYPIVINRY MHOVINP MIINNN DY DDAV VTN DTN

.PIVNYON MYNN YIND NNDNNL YWY

NYIZY P2 MYNN DY YAN NN PLIMP MDIRNN DY NYIVNN NN DMPIN NNIN DT NN
NMIYIINN NMX DIININ 9D DY DIWITRI MIVDIONN VIMINN YT DY NININNDY DPIPON
DYVINNA NXDVPIPN NNMINNN NVPNT NNINND NMAY TN DIVNHNYN NNIN .)IVINA-)NVIND
TPMN OINNN OXPIPIN NYIDY N12Y HAPNNN MIVNPONN VININNY DRI NNIN .OMIVNION
DYVININ NN AVYND YT IWNNYN DN DIVNII ONINI DOYNPYNN TYNI YTTIYV MNIIND
NPNY NI1N O1NON DOPIPYNN DY INONNNN A¥NI MONNY NINID OV NMINXIND .0»IVNION
DM OMININ 190 Y2 DXV Y MONN DY 120N NV IDIN INY ,TIMVNIVN

JONM9-NOVIND INIVAINNA

DYPIPYNN MDAN NNAD NN ,DO0I9 TN DXPIPONN P2 NPPOIND MDNN AN NPND 1IN DY
NPNNIN OIXIPI NN NITON DY DMNDTPNN IWNRD ,TIPAIRN TPNIN NAY 177719 NITOI YN aNIN3a
PYOYTI PN TPPAIRD MYNN NPT NPNNINN P2 WP .13 NDDIN NIPI T NPV NN
DYPYPON 1901 YY DIIONDN IWNI YIAN ,DXPPPIN INVY NN 2 MYN DY DIIONDN TWND INY

VININN NXIN NXPITN NN DX N JNNY ITHN,MXIAPN NN DY MONN DX TPNIND TIN NN
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