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What do we know about contributing factors for “never events” in operating rooms? A machine learning analysis


ABSTRACT
Background
A Surgical “Never Event” (NE) is a preventable error. Various factors contribute to the occurrence of wrong site surgery and retained foreign item, but little is known about their quantified risk in relation to surgery's characteristics. Our study uses machine learning to reveal factors and quantify their risk to improve patient safety and quality of care.
Methods
We used data from 9,234 observations on safety standards and 101 Root-Cause Analysis from actual NEs, and utilized three Random Forest supervised machine learning models. Using a standard 10-cross validation technique, we evaluated the model's metrics, and, through Gini impurity we measured the impact of factors thereof to occurrence of the two types of NEs. 
Results
We identified 24 contributing factors in six surgical departments. Two had an impact of >900% in Urology, Orthopedics and General Surgery, six had an impact of 0–900% in Gynecology, Urology and Cardiology, and 17 had an impact of <0%. 

Factors' combination revealed 15-20 pairs with an increased probability in five departments: Gynecology:875–1900%; Urology: 1,900:2,600%; Cardiology:833–1,500%; Orthopedics:1,825–4,225%; and General Surgery:2,720–13,600%.  
Five factors affected the occurrence of wrong site surgery (-60.96–503.92%) and five of retained foreign body (-74.65–151.43%), three of them overlapping: two nurses (66.26–87.92%), Surgery length<1 hour (85.56–122.91%), Surgery length 1-2 hours (-60.96–85.56%).
Conclusions
The use of machine learning has enabled us to quantify the potential impact of risk factors for wrong site surgeries and retained foreign items, in relation to surgery's characteristics, which in turn suggests tailoring the safety standards accordingly. 
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BACKGROUND

Adverse medical events can lead to significant morbidity and mortality and increase healthcare expenditures. [1] A Never Event (NE) is an unacceptable adverse event, both preventable and unjustified, and should be reduced to zero through quality improvement. [2] Major NEs in perioperative care include incorrect surgery sites and foreign items retained in patients following surgery. [3-4]  
The human factors approach recognizes that human error is often the result of a combination of both individual surgeon factors and work system factors, [5] which makes human error the main contributing factor to NEs. [6] Human error includes surgeon distraction, [7] lack of situational awareness of the surgical team to possible error, and miscommunication among team members. [8] Additionally, institutional factors, working conditions, such as increased workload and clinician pressure, create a work climate that is not conducive to meeting the standards required to maintain patient safety [9] and effective teamwork. [10]

Currently, there are two essential international standards aiming to reduce NE occurrence: 1) the WHO Surgical Safety Checklist; [11] and 2) surgical counts of all items used during the surgery. [12] 

Yet, partial compliance, unstandardized implementation of these standards, [13] and other possible unknown factors keep the incidence of NEs unchanged. [14] In Israel, the incidence of retained foreign items during surgery is 3.2 in every 100,000 surgeries. [15] The incidence for wrong site procedure is unclear, but is generally estimated as 1 in every 100,000 surgeries.

This study adopts a machine learning (ML) approach [16] to identify currently unknown contributors to NE occurrence. Previous studies leveraging ML methods in healthcare have demonstrated the benefits of analyzing and revealing non-trivial insights from diverse data types when compared to traditional methods. [17] To the best of our knowledge, this is the first study to use ML methods to identify potential contributing factors to the occurrence of NEs in ORs.


METHODS
Study Design 
We utilized a supervised ML method called Random Forest (RF), [18-19] incorporating the popular Extra Tree classifier. [20] 
RF is an ensemble learning method that trains multiple “simple” decision tree models and merges them to achieve a more accurate and stable prediction. The use of RF entails several desired elements needed for properly conducting the analysis for this study. First, RFs are used to rank the importance of features in a natural way. Specifically, the importance of features can be determined by examining to what extent the tree nodes using a feature reduce the impurity (i.e., the uncertainty in classification) across all “trees in the forest.” Second, RFs are known to cope well with imbalanced datasets (as is the case in this study), and avoid overfitting the data. Finally, RFs compared favorably with several other supervised ML algorithms we tested using our data, including popular deep neural networks and support vector machines (SVMs). It is worthwhile mentioning that RFs have been used extensively in the medical field for clinical risk prediction, [21] among other applications.

Safety Standards used in the OR (surgical safety checklists and surgical counts) were divided into safety verification at three distinct time periods – pre-procedure, sign in and time out – [11] and addressed incorrect surgery site errors, which we will define as type A errors. Surgical counts were divided into three separate counts throughout the surgery to address retained foreign body errors, which we will define as type B errors: prior to skin incision; initiation of closure of fascia/cavity; and following skin closure. [22] In addition, we added general features, such as the name of the hospital, length of surgery, patient’s gender and age, surgeon’s specialty, and number of physicians and nurses present during surgery.

Data Collection and Annotation 
Data were collected from 29 Israeli hospitals and consisted of two types of data entries: observations of 9,234 surgeries performed between January 2018 and February 2019 in which no NE occurred in the surgeries observed, and root cause analyses (RCA) of 101 NEs that occurred between January 2016 and February 2020 in the examined hospitals. 

Observations
Initiated by the supervisory arm of the Israeli Ministry of Health, passive observations by medical students, physicians, nursing students or RNs are routinely performed in ORs. Observers for this study underwent an eight-hour long training that included simulations. In each OR, at least two observers passively observed randomly selected surgeries, and recorded and annotated the surgery process using a pre-defined set of features. Observations were then transferred to a central database and routinely assessed for variability and reliability. Overall, 9,234 observations were conducted. Each observation was translated into a 93-feature long vector, representing characteristics of the surgery (Appendix 1). To maintain reliability, entries with greater than 5% discordance among annotators in one OR were discarded (<1%). 
Root Cause Analyses (RCA) 
RCAs were performed in response to NEs that occurred between January, 2016 and February, 2020. Overall, we reported 101 NEs: 49 of Type A and 52 of Type B. The obtained RCAs were manually annotated by the authors using the same 93-feature-long representation used to characterize the observations. However, unlike the observations, RCAs were performed retrospectively and, thus, a significant portion of the features was missing and could not be obtained. Specifically, up to 40% of all other feature values were missing, a challenge we address further on. 

Pre-Processing and Analysis Technique
As some features were non-binary (e.g., patient age, length of surgery), we first discretized them, resulting in 250 binary features. This and subsequent steps were performed using a designated Python 3 program implemented by the authors that uses the standard scikit-learn ML package (https://scikit-learn.org/stable). 

Examination of the 40% missing feature values revealed that most were strongly dependent on the NE type. Namely, for type A NEs, features that were assumed to be more related to NEs of type B were not investigated and vice versa. For example, for an NE on which the wrong hand was operated, there was no indication as to whether the surgeon scanned the surgical cavity for retained surgical items before closure. To mitigate this artifact, we used the popular iterative data imputation approach [23] where we predicted the value of each missing value while relying on the present features and available examples. Specifically, using the entire dataset, each missing value was estimated using a standard Decision-Tree Regressor.

In addition, balancing steps were taken to cope with the high imbalance of the dataset. Specifically, with over 9,000 observations and only 101 NEs, we adopted a cost-sensitive training approach [24] whereby our model adjusted for prediction mistakes on the minority class (NEs) by an amount proportional to how underrepresented it was (here, approximately 90 times under-represented). 

We implemented three RF models using our data: Model 1 for differing between observations and NEs; Model 2 for differing between observations and NEs Type A; and Model 3 for differing between observations and NE Type B. We used a standard 10-cross validation technique to evaluate the model’s metrics and adopted the standard Gini impurity, [25] measure to estimate the importance of features and their combination in our models. Intuitively, Gini impurity captures the “noise” in a set by measuring of how often a randomly chosen element from the set would be incorrectly labeled if it were randomly labeled according to the distribution of labels in the set. Feature importance ranking was conducted using the trained RF models and we reported the change in NE occurrence probability given the entire data set. We considered each feature separately and calculated the probability of NE occurrence when that feature assumed the value True as compared to the value False. 
The study was approved by the University's and Ministry of Health Ethics Committee (MOH 032-2019). 
 
RESULTS
The majority of NEs (62.32%) occurred in six main departments: General Surgery, 19 (18.81%); Gynecology, 17 (16.83%); Orthopedics, 16 (15.84%); Cardiac and Cardiothoracic 15 (14.85%); Ophthalmology 8 (7.92%); and Urology, 7 (6.93%) (Table 1). Therefore, our analysis focused on the occurrence of NEs in these six departments.



Table 1: Characteristics of the data set according to surgical specialty
	Observations n=9234
	 Never Events
n=101

	Phase


Specialty
	*Pre-procedure
(n=1,539)
(missing data on 760 cases)
	Sign in 
(n=1,504)
	Time out
(n=1,498)
	First count
(n=1,518)
	Second count
(n=1,501)
	Third count
(n=1,498)
	

	Urology
	72
	156
	148
	124
	118
	124
	7 (6.93%)

	Orthopedics
	185
	331
	324
	341
	302
	326
	16 (15.84%)

	ENT
	64
	105
	105
	99
	102
	93
	3 (2.97%)

	Gynecology
	63
	143
	139
	149
	153
	153
	17 (16.83%)

	General surgery
	313
	537
	558
	576
	623
	604
	19 (18.81%)

	Plastic surgery
	22
	39
	37
	40
	36
	42
	2 (1.98%)

	Vascular surgery
	18
	45
	42
	45
	42
	43
	5 (4.95%)

	Neurosurgery
	7
	25
	19
	22
	19
	19
	5 (4.95%)

	Dermatology
	7
	16
	26
	21
	22
	24
	2 (1.98%)

	Ophthalmology
	12
	41
	34
	33
	19
	18
	8 (7.92%)

	Maxillofacial
	3
	12
	10
	8
	10
	11
	2 (1.98%)

	Cardiac and Cardiothoracic 
	13
	54
	56
	60
	55
	41
	15 (14.85%)



Table 2: Characteristics of patients and surgery in the dataset 
	Characteristic
	Observations
	Never Events

	Average age
	50.8 years (SD 20.4)
	46

	Gender
	Male (n=388 (49.8%)), Female (n=391 (50.2%)) 
	Male (n=46 (45.5%)) 
Female n=55 (54.5%)

	Length of surgery
	Up to 1 hour: 2124 (23%)
1–2 hours: 4340 (47%)
3–4 hours: 2031 (22%)
Over 4 hours: 739 (8%)
	Length of surgery:
Up to 1 hour: 54 (53.5%)
1–2 hours: 13 (12.9%)
3–4 hours: 17 (16.8%)
Over 4 hours: 17 (16.8%)





In order to evaluate our models, we adopted the Area Under the Curve (AUC) measure which is especially suited for imbalanced data, as in our case in this study, since it does not have any bias toward models that perform well on the minority of majority classes in the expense of the other. [26] Our three RF models demonstrated good performance, exhibiting an Area Under the Curve (AUC) between 0.81 and 0.85. Generally, AUC scores between 0.8 to 0.9 are considered excellent.  [27]. AUC is interpreted as the probability that our model will rank a randomly chosen positive instance higher than a randomly chosen negative one. [28] As such, our models can be considered relatively strong and accurate despite their limitations.  

Feature Importance
Figure 1 presents the top contributing features to the occurrence of NEs (of both types combined) in the six departments along with the associated probability change. 
Figure 1  Top 15 contributing features for the six examined departments                                                                              
The top 14 contributing features varied significantly across departments, and there was no single feature set which was consistently more informative across all operations in predicting NEs. For example, feature [C], Discrepancy in second count, varied significantly across departments (160% to 1,950%). Feature [B], Surgery is paused because of discrepancy in third count, appeared in four of the six departments, and the associated probability change varied dramatically as well, between 269% and 1,540%. There were 10 features that consistently decreased the chance of an NE, including [F]; Surgeon scans the cavity/fascia before closure during the second count, which affected five out of six departments, which was consistent in its probability change between 65%–100%. Features [I], [J], [ K], [L], [M], and [N] decreased the chances of NEs between 2%–100% in three departments. Three features, [A], Discrepancy in absorbing materials, [E], Surgery time > 4 hours, and [G], Surgery time < 1 hour appeared just once across departments, with a medium impact on NE occurrence.
Analysis of the results per department shows a variation among contributing features. For example, in Ophthalmology, the probability was consistently -100% in five features, while in General Surgery, two features that increased the probability of an error varied between 1,168–1,283%: features [B] Surgery is paused because of discrepancy in third count; and [C] Discrepancy in second count. In Orthopedics, those same two features, [B] and [C], increased the probability of error (1,540–1,950%). Three features decreased the probability of error: [F] Surgeon scans the cavity/fascia before closure; [H] Second count is performed before closure of fascia/cavity; and (I) Procedure type is compared to the one written in patient's file, -65 to -87%. 
Effects of Feature Combinations 
In the following analysis (Figure 2), we examine the effects of paired features, i.e., features that occur together in the data. It is important to note that, when considering feature combinations, their occurrence is expected to be very low especially in the NEs class. As such, the estimated effects are likely to be very high, yet their confidence is significantly low.

Figure 2 Effect of two features’ combination on prediction by surgical departments

Interestingly, in General Surgery, there were 14 feature combinations that caused a probability change of 13,600% (Figure 2A). In comparison, the single feature analysis (Figure 1) revealed a probability change of 1,287% and 1,168%, surprisingly by two features that were not part of the 14 feature combinations identified here. 
In Figure 2A (Gynecology), the effect of every feature combination is associated with a probability change of 1,000–2,000%. In the single feature analysis (Table 2), the effect of two of the features separately was <900%, and the rest lagged behind with <150%. In Urology (Figure 2B), results show there were dozens of pairs with an effect of 1,900–2,500%, while the effect of a single feature had <1150% effect on error. In General Surgery (Figure 2E), the accumulated effect of two features together showed a dozen pairs with an effect of 1,900–4,200%, while the effect of a single feature had an <1,950% indication on error, and the rest even lower percentages. 

Features Affecting Types A and B

Turning to Models 2 and 3, there is an overlap in three of the top five contributing features to Types A and B errors (Figures 3 and 4): 1) the presence of two nurses during the surgery predicts a greater occurrence of Type A (66%) and Type B (88%); 2) an operation < 1 hour had a greater occurrence of Type A (122%), and Type B (87%); and 3) when the operation lasted between one to two hours, both Types A and B were less frequent, decreasing by 60% and 74%, respectively. The surgical department that was most affected regarding the occurrence of Type A NEs was Ophthalmology, with a prevalence of 504%, while General Surgery was associated with a decrease of 63% in Type A (Figure 3). For Type B, the two remaining features were staff driven; the feature “more than three physicians” was associated with an increased prevalence of Type B (151%), while “two physicians” was associated with a decreased prevalence of 52% with Type B (Figure 4).


Figure 3: Features affecting the wrong site surgery (Type A)

Figure 4: Features affecting retained foreign item during surgery (Type B)

DISCUSSION
Surgical errors are a serious public health problem and uncovering their causes is challenging. [29] In this study, we aimed to uncover contributing factors to NEs by using ML methods to identify heretofore unknown contributors, since ML automatically looks for patterns not seen by classic methods. [18, 30]  
Despite the widespread use of the surgical safety checklist and strict surgical counts, the prevalence of NEs has not decreased significantly since their widespread implementation. [31-32] The human factor, and not system error, has been identified as the main contributing factor to NEs. 31,33] For example, in one study using an analysis and classification system, 628 human factors were divided into four categories that influenced NEs: preconditions for action, unsafe actions, oversight and supervisory factors, and organization influences. [6] Additional studies have identified lack of communication and lack of empirical evidence as barriers to the implementation of the universal safety standards. [29,34] Some studies have suggested that counting alone is insufficient, and even when declared correct, there have been items left in the patient, [35-36] mostly in the abdomen and pelvis [ 35, 37 This may explain our higher probability of Type B error in General Surgery and Urology, which involve those regions. 
We further analyzed paired contributing factors representing the relative risk in the OR’s complex work environment, when the graded risk increased compared to single feature analysis. For example, in Orthopedics, discrepancy in the count in combination with a surgery length of 1–2 hours increased the chances for an NE, what can be explained by partial compliance with the standards. In shorter surgeries, the staff rushes and skips some phases of the checklists [38] and the complex sets used challenges the counts. [31,39] 
We found that the occurrence of wrong site surgery increases in Ophthalmology during short surgeries and when two nurses are present. Its occurrence decreased in general surgery. This increased risk in could be due to the difficulty of performing a time out because the surgeons have antiseptic hands and cannot review charts, or perhaps doing so is not made a priority. [40] The decrease in general surgery could be explained by better implementation of the time out process in that specialty. [41-42]  
One of the main factors contributing to the occurrence of NEs is lack of communication among participating members in the surgery, [33] which may explain our findings that the number of staff had an increasing/decreasing effect on NE occurrence.
We recognize that the current study is limited by the amount, quality and diversity of the data used. In the context of this work, our samples come from two distinct sources: prospective observations and retrospective investigations of NEs where the latter consists of a small number of NEs compared to the relatively high number of analyzed observations. We believe that these limitations are inherent to the problem at hand as performing prospective analyses of NEs is virtually impossible due to their infrequency and the number of NEs is nominally small. To mitigate some of these concerns, we have used grounded statistical techniques that allowed us to train adequate model and estimate feature importance. Nevertheless, given the above, the feature impact should be considered carefully and validated in future study. 
In future study we plan to further expand our data pool with newly obtained observations and NEs as those are accumulated. In another avenue, we explore the use of transfer learning of NEs from other countries which could be used to better inform our model. This avenue could prove valuable in mitigating the imbalanced nature of our data yet may introduce significant biases due to the variety of data sources. 
Conclusion
Our results suggest that the existing "one size fits all" safety approach currently in place may significantly benefit from tailored adjustments that will consider additional factors such as those identified in this work. These more specific guidelines may be used adjust risk management programs to improve patient safety. 
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