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Abstract

This paper assumes that cause-effect relationships between random variables can be represented by a Gaussian linear
structural equation model and the corresponding directed acyclic graph. Under the situation where we observe a set
of random variables that satisfies the back-door criterion, when the ordinary least squares (OLS) method is utilized
to estimate the total effect, we formulate the unbiased estimator of the causal effect on the variance (the estimated
causal effect on the variance), i.e., the unbiased estimator of the variance of the outcome variable with an external
intervention in which a treatment variable is set to a specified constant value. In addition, we provide the variance
formula of the estimated causal effect on the variance. The variance formula proposed in this paper is exact, in contrast
to those in most previous studies on estimating causal effects.
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1. Introduction

Statistical causal inference using linear structural equation models (linear SEMs) has been widely used to clarify
cause-effect relationships between random variables in sociology, economics, biology, etc., and its origin can be
traced back to path analysis (Wright, 1923, 1934). Statistical causal inference has been re-developed as the theory of
structural causal models (Pearl, 2009).

When a linear SEM is given as a statistical model to describe cause-effect relationships between random variables,
the concepts of direct, indirect, and total effects are the important aspects of linear SEMs (Bollen, 1989). According
to Bollen (1989), the direct effect is defined as“ those influences unmediated by any other variable in the model,"
and the indirect effect is defined as “those influences mediated by at least one intervening variable." The total effect is
defined as the sum of direct and indirect effects. In the framework of statistical causal inference using linear SEMs,
the total effect also means the amount of the change in the expected value of an outcome variable when a treatment
variable is changed by one unit by external intervention. To evaluate the total effect, statistical researchers in the field
of linear SEMs have provided various identification conditions and estimation methods (e.g., Brito, 2004; Chan and
Kuroki, 2010; Chen, 2017; Henckel et al., 2019; Kuroki and Pearl, 2014; Maathuis and Colombo, 2015; Nandy et al.,
2017; Pearl, 2009; Perković, 2018; Tian, 2004).

When we wish to characterize the distributional change by the external intervention based on linear SEMs, there is
no reason to limit our causal understanding to the change in the expected value of an outcome variable by the external

∗Corresponding author. Email address:kuroki-manabu-zm@ynu.ac.jp

Preprint submitted to Journal of Multivariate Analysis March 28, 2022



intervention. In fact, Hernán and Robins (2022,p.7) stated

“the average causal effect, defined by a contrast of means of counterfactual outcomes, is the most com-
monly used population causal effect. However, a population causal effect may also be defined as a contrast
of functionals, including medians, variances, hazards, or cdfs of counterfactual outcomes. In general, a
population causal effect can be defined as a contrast of any function of the marginal distributions of coun-
terfactual outcomes under different actions or treatment values. For example, the population causal effect
on the variance is defined as var(Ya=1) − var(Ya=0)."

Actually, in practical science, it is important to estimate the change in the expected value of an outcome variable due
to the external intervention (the causal effect on the mean). However, it is often necessary to evaluate the variation
(variance) of the outcome variable due to the external intervention (the causal effect on the variance) as well. For
example, in the field of quality control, in order to suppress a defective rate of products effectively, it is necessary to
bring the outcome variable closer to the target value by the external intervention and reduce the variation (or minimize
the variance) of the outcome variable as much as possible. In quality control, Kuroki (2008, 2012) and Kuroki and
Miyakawa (1999ab) discussed what happens to the variance of the outcome variable when conducting the external
intervention. In addition, according to Gische et al.(2021), in medical science, the physician’s goal is that the patient’s
level of blood glucose will be maintained within the euglycemic range (acceptable range) after the treatment (external
intervention). Then, the variance of the outcome variable by the external intervention, together with the medical
knowledge, plays an important role in constructing the acceptable range to detect a threat to a patient ’s health.

Regarding the estimation accuracy of the causal effect on the variance, when the ordinary least squares (OLS)
method is utilized to estimate the total effect, Kuroki and Miyakawa (2003) discussed how the asymptotic variance
of the consistent estimator of the causal effect on the variance differs with different sets of random variables that
satisfy the back-door criterion (Pearl, 2009). In addition, Shan and Guo (2010) studied the results of Kuroki and
Miyakawa (2003) from the perspective of a particular type of external interventions using more than one treatment
variable. Shan and Guo (2012) also extended the variable selection criteria provided by Kuroki and Miyakawa (2003)
from a deterministic intervention to a stochastic intervention. Kuroki and Nanmo (2020) applied the results of Kuroki
and Miyakawa (2003) to predict future values of the outcome variable when conducting the external intervention.
Subsequently, Tezuka and Kuroki (2022) pointed out that the existing estimators of the causal effect on the variance
(the estimated causal effect on the variance) are the consistent but not unbiased estimators. In addition, they formulated
the unbiased estimator of the causal effect on the variance and applied it to the anomaly detection problem. However,
they did not provide the exact variance formula of the unbiased estimator of the causal effect on the variance. The
estimation accuracy problems are essential issues related to statistical causal inference. This is because the reliable
evaluation of the estimation accuracy of the causal effect on the variance plays an important role in the success of
statistical data analysis, which aims to evaluate what would happen to the outcome variable when conducting the
external intervention based on non-experimental data.

This paper assumes that cause-effect relationships between random variables can be represented by a Gaussian
linear SEM and the corresponding directed acyclic graph. Under the situation where we observe a set of random vari-
ables that satisfies the back-door criterion, when the OLS method is utilized to estimate the total effect, we formulate
the unbiased estimator of the causal effect on the variance, i.e., the unbiased estimator of the variance of the outcome
variable with an external intervention in which a treatment variable is set to a specified constant value. In addition,
we provide the variance formula of the unbiased estimator of the causal effect on the variance. The variance formula
proposed in this paper is exact, in contrast to those in most previous studies on estimating causal effects.

2. Preliminaries

2.1. Gaussian Linear Structural Equation Model

2.2. Graph Terminology

A directed graph is a pair G = (V, E), where V is a finite set of vertices. E, which is a subset of V × V of pairs
of distinct vertices, is a set of directed edges (→). If (a, b) ∈ E for a, b ∈ V, then the G contains the directed edge
from vertex a to vertex b (denoted by a → b). If there is a directed edge from a to b (a → b), then a is said to
be the parent of b and b the child of a. Two vertices are adjacent if there exists a directed edge between them. A
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path between a and b is a sequence a = a0, a1, · · · , b = am of distinct vertices such that ai−1 and ai are adjacent
for i = 1, 2, · · · ,m. A directed path from a to b is a sequence a = a0, a1, · · · , b = am of distinct vertices such that
ai−1 → ai for i = 1, 2, · · · ,m. If there exists a directed path from a to b, then a is said to be an ancestor of b and b
a descendant of a. When the set of descendants of α is denoted as de(a), the vertices in V\(de(a)∪{a}) are said to be
the nondescendants of a. If two edges on a path point to a, then a is said to be a collider on the path; otherwise, it is
said to be a non-collider on the path. A directed path from a to b, together with the directed edge from b to a, forms
a directed cycle. If a directed graph contains no directed cycles, then the graph is said to be a directed acyclic graph
(DAG).

2.3. Linear Structural Equation Model

In this paper, it is assumed that cause-effect relationships between random variables can be represented by a
Gaussian linear structural equation model (linear SEM) and the corresponding directed acyclic graph (DAG). Then,
such a DAG is called a causal path diagram, which is defined as Definition 1. Here, we refer to vertices in the DAG
and random variables of the Gaussian linear SEM interchangeably.

Definition 1 (causal path diagram). Consider a DAG G = (V, E), for which a set V = {V1,V2, · · · ,Vm} of random
variables and a set E of directed edges are given. Then, the DAG G is called the causal path diagram, if the random
variables are generated by a Gaussian linear SEM

Vi = αvi +
∑

V j∈pa(Vi)

αviv j V j + ϵvi , i = 1, 2, . . . ,m, (1)

satisfying the constraints entailed by the DAG G. Here, pa(Vi) is a set of parents of Vi ∈ V in the DAG G. In addition,
letting 0m be an m-dimensional vector whose i-th element is zero for i = 1, 2, ...,m, ϵv = (ϵv1 , ϵv2 , . . . , ϵvm ) denotes a set
of random variables, which is assumed to follow the multivariate normal distribution with the mean vector E(ϵv) = 0m

and the positive diagonal variance–covariance matrix Σϵvϵv . In addition, the constant parameters αvi and αviv j for
i, j = 1, 2, ...,m (i , j) are referred to as the intercept of Vi and the causal path coefficient (or direct effect) of V j on
Vi, respectively. □

The conditional independence induced by the Gaussian linear SEM (1) can be obtained from the causal path
diagram G through the d-separation (Pearl, 2009).

Definition 2 (d-separation). Let {X,Y} and Z be the disjoint sets of vertices in the DAG G. If Z blocks every path
between distinct vertices X and Y , then Z is said to d-separate X from Y in the DAG G. Here, the path p is said to be
blocked by (a possibly empty) set Z if either of the following conditions is satisfied:

(1) p contains at least one non-collider that is in Z;
(2) p contains at least one collider that is not in Z and has no descendant in Z. □

If Z d-separates X from Y in the causal path diagram G, then X is conditionally independent of Y given Z = z for
any value z taken by Z in the corresponding linear SEM (e.g., Pearl, 2009).

2.4. Back-door Criterion

In this paper, for X,Y ∈ V (X , Y), consider the external intervention in which X is set to be the constant value
X = x in the Gaussian linear SEM (1), denoted by do(X = x). According to the framework of the structural causal
models (Pearl, 2009), do(X = x) indicates mathematically that the structural equation for X is replaced by X = x in
the Gaussian linear SEM (1).

Let V = {X,Y} ∪W be the set of random variables in the causal path diagram G, where {X,Y} and W are disjoint.
When f (x, y,w) and f (x|pa(x)) denote the joint probability distribution of (X,Y,W) = (x, y,w) and the conditional
probability distribution of X = x given pa(X) = pa(x), respectively, the causal effect of X on Y , which is denoted by
f (y|do(X = x)), is defined as

f (y|do(X = x)) =
∫

w

f (x, y,w)
f (x|pa(x))

dw (2)
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(Pearl, 2009). When equation (2) can be uniquely determined from the probability distribution of observed variables,
it is said to be identifiable: that is, it can be estimated consistently. Here, in this paper,

E(Y |do(X = x)) = µy|x =

∫
y

y f (y|do(X = x)) dy, var(Y |do(X = x)) = σyy|x =

∫
y
(y − µy|x)2 f (y|do(X = x)) dy (3)

are called the causal effect on the mean of Y on do(X = x) and the causal effect on the variance of Y on do(X = x),
respectively. E(Y |do(X = x)) and var(Y |do(X = x)) are also called the interventional mean and the interventional
variance, respectively, by Gische et al (2021). Then, in the Gaussian linear SEM (1), the first derivative of E(Y |do(X =
x)) of Y , namely,

dE(Y |do(X = x))
dx

= τyx (4)

is called the total effect of X on Y . Graphically, the total effect τyx is interpreted as the total sum of the products of
the causal path coefficients on the sequence of directed edges along all directed paths from X to Y . If the total effect
τyx can be uniquely determined from the variance-covariance parameters of observed variables, then it is said to be
identifiable; that is, it can be estimated consistently. The interpretation of the total effects in the Gaussian linear SEM
(1) via the path analysis (Wright, 1923, 1934) is also discussed by Henckel et al. (2019) and Nandy et al. (2017) in
detail.

Let GX be the directed graph obtained by deleting all the directed edges emerging from X in the DAG G. Then,
the back-door criterion is a well-known identification condition of the causal effect (Pearl, 2009).

Definition 3 (back-door criterion). Let {X,Y} and Z be the disjoint subsets of V in the DAG G. If Z satisfies the
following conditions relative to an ordered pair (X,Y) in the DAG G, then Z is said to satisfy the back-door criterion
relative to (X,Y):

1. no vertex in Z is a descendant of X;
2. Z d-separates X from Y in GX . □

When Z satisfies the back-door criterion relative to (X,Y) in the causal path diagram G, the causal effect of X on
Y is identifiable and is given by

f (y|do(X = x)) =
∫

z
f (y|x, z) f (z)dz (5)

(Pearl, 2009).
Here, we define some notations. For univariates X and Y and a set Z of random variables, let µx and µy be means

of X and Y , respectively. In addition, let σxy, σxx and σyy be the covariance between X and Y , the variance of X and
the variance of Y , respectively. When the prime notation (′) represents the transpose of a vector or matrix, let Σxz, Σyz

and Σzz be the cross covariance vector between X and Z (Σzx = Σ
′
xz), the cross covariance vector between Y and Z

(Σzy = Σ
′
yz) and the variance–covariance matrix of Z. Furthermore, for a non-empty set Z, let

σyy.x = σyy −
σ2

xy
σxx
, σxx.z = σxx − ΣxzΣ

−1
zz Σzx, σxy·z = σxy − ΣxzΣ

−1
zz Σzy, σyy.z = σyy − ΣyzΣ

−1
zz Σzy

σyy.xz = σyy.z −
σ2

xy.z
σxx.z
, Σyz.x = Σyz −

σxy
σxx
Σxz, Σzy.x = Σ

′
yz.x, Σzz.x = Σzz − ΣzxΣxz

σxx

 . (6)

Then, consider the regression model of Y on X and Z

Y = βy.xz + βyx.xzX + Byz.xzZ + ϵy.xz, (7)

where ϵy.xz is a random variable of the regression model (7) that has a normal distribution with zero mean and variance
σyy.xz, while βy.xz, βyx.xz, and Byz.xz are the regression intercept, the regression coefficient of X, and the regression
coefficient vector of Z in the regression model (7), respectively. Here, according to the standard assumption of linear
regression analysis, in the regression model (7), ϵy.xz is assumed to be independent of both X and Z. Then, the
regression coefficient of X and the regression coefficient vector of Z are given by βyx·xz = σxy·z/σxx·z and Byz·xz =

Σyz·xΣ
−1
zz·x, respectively, when σxx.z , 0 and Σzz.x is a positive definite matrix.
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When a set Z of observed variables satisfies the back-door criterion relative to (X,Y), then the total effect τyx is
identifiable and is given by τyx = βyx.xz (Pearl, 2009). Then, according to equation (5), consider the regression model
of Y on X and Z, namely, equation (7). Then, E(Y |do(X = x)) and var (Y |do(X = x)) are formulated as

E(Y |do(X = x)) = µy|x = µy + βyx.xz(x − µx) = µy + τyx(x − µx) (8)

and
var (Y |do(X = x)) = σyy|x = σyy.xz + Byz.xzΣzzB′yz.xz, (9)

respectively (Kuroki and Miyakawa, 1999ab, 2003). Here, equation (9) shows that Z behaves similarly to the random
variable by conducting the external intervention do(X = x), and thus may not reduce the variation of the outcome
variable Y by the external intervention (Kuroki, 2012).

To proceed our discussion, we also consider the regression coefficient vector of Z in the regression model of X on
Z

X = βx.z + Bxz.zZ + ϵx.z, (10)

where ϵx.z is a random variable of the regression model (10) that has a normal distribution with zero mean and variance
σxx.z, while βx.z and Bxz.z are the regression intercept and the regression coefficient vector of Z in the regression model
(10), respectively. Here, in the regression model (10), ϵx.z is also assumed to be independent of Z. Then, the regression
coefficient vector of Z is denoted by Bxz·z = ΣxzΣ

−1
zz when Σzz is a positive definite matrix.

3. Results

Let µ̂x and µ̂y be the sample means of X and Y , respectively. In addition, let sxx, syy, sxy, S zz, S xz and S yz be the
sum-of-squares of X, the sum-of-squares of Y , the sum-of cross-products between X and Y , the sum-of-squares matrix
of Z, the sum-of-cross-products vector between X and Z (S zx = S ′xz), and the sum-of-cross-products vector between
Y and Z (S zy = S ′yz), respectively. Based on the notation, let

syy.x = syy −
s2

xy
sxx
, sxx.z = sxx − S xzS −1

zz S zx, sxy.z = sxy − S xzS −1
zz S zy, syy.z = syy − S yzS −1

zz S zy,

syy.xz = syy.z −
s2

xy.z
sxx.z
, S yz.x = S yz −

sxy
sxx

S xz, S zy.x = S ′yz.x, S zz.x = S zz − S zxS xz
sxx

 . (11)

Then, through the ordinary least squares (OLS) method, the unbiased estimators of βyx.xz, Bxz.z and Byz.xz of equations
(7) and (10) are given by β̂yx.xz = sxy.z/sxx.z, B̂xz.z = S xzS −1

zz and B̂yz.xz = S yz.xS −1
zz.x, respectively, when S zz and S −1

zz.x
are positive definite matrices. Here, letting n and q be the sample size and the number of random variables in Z,
respectively, for q < n − 2,

σ̂yy.xz =
syy.xz

n − q − 2
, Σ̂zz =

1
n − 1

S zz (12)

are also unbiased estimators of σyy.xz and Σzz, respectively.
Under the random sampling, when the total effect τyx is estimated as τ̂yx = β̂yx·xz through the OLS method in the

regression model (7), the exact variance of β̂yx·xz is given by

var
(
β̂yx·xz

)
=

1
n − q − 3

σyy·xz

σxx·z
(13)

for q < n − 3 (e.g., Kuroki and Cai, 2004).
The following theorem holds:

Theorem 1. Under the Gaussian linear SEM (1), suppose that Z satisfies the back-door criterion relative to (X,Y) in
the causal path diagram G. When the OLS method is utilized to evaluate the statistical parameters in equations (8)
and (9), the unbiased estimators of the causal effect on the mean µy|x = E(Y |do(X = x)) and the causal effect on the
variance σyy|x = var (Y |do(X = x)) are given by

µ̂y|x = µ̂y + β̂yx.xz(x − µ̂x) (14)
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σ̂yy|x = σ̂yy.xz

1 − 1
n − 1

q + B̂xz.zS zzB̂′xz.z

sxx.z

 + B̂yz.xzΣ̂zzB̂′yz.xz, (15)

respectively. µ̂y|x and σ̂yy|x are called the estimated causal effect on the mean of Y on do(X = x) and estimated causal
effect on the variance of Y on do(X = x), respectively. In addition, for q < n − 5, the variances var(µ̂y|x) of µ̂y|x and
var(σ̂yy|x) of σ̂yy|x are given by

var
(
µ̂y|x

)
=

1
n

(
σyy.xz + Byz.xzΣzzB′yz.xz

)
+

σyy.xz

(n − q − 3)σxx.z

(
(x − µx)2 +

σxx

n

)
, (16)

var(σ̂yy|x) =
2(Byz.xzΣzzB′yz.xz)

2

n − 1
+

2σ2
yy.xz

n − q − 2

((
1 − q

n − 1

)2
− 2

(
1 − q

n − 1

) qσxx.z + (n − 1)Bxz.zΣzzB′xz.z

(n − 1)(n − q − 3)σxx.z

+E

 B̂xz.zS zzB̂′xz.z

(n − 1)sxx.z

2
 + 2σ2

yy.xz

(n − 1)2

q + 2
qσxx.z + (n − 1)Bxz.zΣzzB′xz.z

(n − q − 3)σxx.z
+ E

 B̂xz.zS zzB̂′xz.z

sxx.z

2


+
4σyy.xz

(n − 1)2

(n − 1)Byz.xzΣzzB′yz.xz + E
 (Byz.xzS zzB̂′xz.z)

2

sxx.z

 , (17)

respectively, where

E

 B̂xz.zS zzB̂′xz.z

sxx.z

2 = 2qσ2
xx.z + 4(n − 1)σxx.zBxz.zΣzzBxz.z

(n − q − 3)(n − q − 5)σ2
xx.z

+
2(n − 1)(Bxz.zΣzzBxz.z)2

(n − q − 3)(n − q − 5)σ2
xx.z

+
(qσxx.z + (n − 1)Bxz.zΣzzBxz.z)2

(n − q − 3)(n − q − 5)σ2
xx.z

(18)

E
 (Byz.xzS zzB̂′xz.z)

2

sxx.z

 = (n − 1)(n(Byz.xzΣzzB′xz.z)
2 + (Bxz.zΣzzB′xz.z)(Byz.xzB′xz.z)

2 + σxx.zByz.xzΣzzB′yz.xz)

(n − q − 3)σxx.z
. (19)

□

Equations (14) and (15) are given by Kuroki and Nanmo (2020) and Tezuka and Kuroki (2022), respectively.
Equation (16) is also given by Kuroki and Nanmo (2020). The derivation of equation (17), which is one of the new
results, is provided in Appendix. Here, we also provide the derivation of equation (15) in the Appendix because
Tezuka and Kuroki (2022) is written in Japanese.

For the large sample size n such as n−2 ≃ 0, the consistent estimator σ̂yy|x of σyy|x can be given by

σ̂yy|x = σ̂yy.xz + B̂yz.xzΣ̂zzB̂′yz.xz, (20)

which shows that equation (20) is larger than equation (15). In addition, the asymptotic variance of σ̂yy|x, a.var(σ̂yy|x),
is given by

a.var(σ̂yy|x) =
2σ2

yy.xz

n
+

2(Byz.xzΣzzByz.xz)2

n
+

4σyy.xz

n

(
Byz.xzΣzzB′yz.xz +

(Byz.xzΣzzB′xz.z)
2

σxx.z

)
=

2
n

(
σyy.xz + Byz.xzΣzzB′yz.xz

)2
+

4σyy.xz

nσxx.z
(Byz.xzΣzzB′xz.z)

2. (21)

Here, when we let βyx.x = σxy/σxx, βyx.xz = τyx, Bxz.z = ΣxzΣ
−1
zz and the covariance between X and equation (7)

leads to
σxy = βyx.xzσxx + Byz.xzΣzx = τyxσxx + Byz.xzΣzx, (22)

which provides
Byz.xzΣzzB′xz.z = Byz.xzΣzx = (βyx.x − τyx)σxx (23)
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and

σyy.xz + Byz.xzΣzzB′yz.xz = σyy.x − Byz.xzΣzz.xB′yz.xz + Byz.xzΣzzB′yz.xz = σyy.x +
(Byz.xzΣzx)2

σxx
= σyy.x + (βyx.x − τyx)2σxx. (24)

From equation (24), the first term of equation (21), which is equivalent to equation (9), does not depend on the
selection of the set Z of random variables that satisfies the back-door criterion (Kuroki, 2008, 2012). In addition,
Byz.xzΣzzB′xz.z in the second term of equation (21) does not depend on the selection of the set Z of random variables.
Thus, the difference between selected sets of random variables depends on σyy.xz/σxx.z in the second term of equation
(21). From this consideration, letting σ̂yy|x,z be the estimated causal effect on the variance of Y on do(X = x) to
emphasize that Z is utilized to estimate equation (9), the following theorem is the extension of the variable selection
criterion given by Kuroki and Miyakawa (2003), from the univariate case to the multivariate case.

Theorem 2. Under the Gaussian linear SEM (1), suppose that sets Z1 and Z2 of random variables satisfy the back-
door criterion relative to (X,Y) in the causal path diagram G. When the OLS method is utilized to evaluate the
statistical parameters in equations (8) and (9), if Z2 d-separates X from Z1, then

a.var(σ̂yy|x.z1,z2 ) ≤ a.var(σ̂yy|x.z2 ) (25)

holds, and if {X} ∪ Z1 d-separates Y from Z2, then

a.var(σ̂yy|x.z1 ) ≤ a.var(σ̂yy|x.z1,z2 ) (26)

holds. □

The proof of Theorem 2 is trivial from the following lemma given by Kuroki and Cai (2004):

Lemma 1. When {X,Y} ∪ Z1 ∪ Z2 follows a multivariate normal distribution, if X is conditionally independent of Z1
given Z2, then

σyy·xz1z2

σxx·z1z2

≤
σyy·xz2

σxx·z2

(27)

holds, and if Y is conditionally independent of Z2 given {X} ∪ Z1, then

σyy·xz1

σxx·z2

≤
σyy·xz1z2

σxx·z1z2

(28)

holds.

4. Numerical Experiments

This section will report numerical experiments conducted to examine statistical properties of the estimated causal
effect on the variance for sample sizes n = 10, 25, 50, and 100. For simplicity, consider the DAG depicted in Figure 1
and the Gaussian linear SEM in the form of

Y = αyxX + αyz1 Z1 + ϵy, X = αxz2 Z2 + ϵx, Z1 = αz1z2 Z2 + ϵz1 , Z2 = ϵz2 , (29)

where ϵx, ϵy, ϵz1 and ϵz2 independently follow a normal distribution with mean zero. The matrices of the path coeffi-
cients of X, Y , Z1, and Z2 shown in Table 1 are utilized for our purpose. In this situation, Z = {Z1}, {Z2} and {Z1,Z2}
satisfy the back-door criterion relative to (X,Y). Cases 1 and 2 represent situations where the empty set satisfies the
back-door criterion relative to (X,Y). Because X is independent of {Z1,Z2} in Case 1, we obtain τyx = βyx.x = βyx.xz for
Z, and the information about Z would asymptotically improve the estimation accuracy of the total effect τyx (Kuroki
and Cai, 2004). In Case 2, because Y is conditionally independent of Z given X, we also obtain τyx = βyx.x = βyx.xz.
However, the information about Z does not asymptotically improve the estimation accuracy of the total effect τyx

(Kuroki and Cai, 2004). Cases 3 and 4 represent situations in which Z satisfies the back-door criterion relative to
(X,Y); however, parametric cancellation occurs (Cox and Wermuth, 2014), where βyx.x = 0 and τyx = βyx.xz , 0 hold

7



Table 1. Path Coefficients

Case1 Case2 Case3
Y X Z1 Z2 Y X Z1 Z2 Y X Z1 Z2

Y - 0.7000 0.7000 0.0000 - 0.7000 0.0000 0.0000 - -0.3430 0.7000 0.0000
X - - 0.0000 0.0000 - - 0.0000 0.7000 - - 0.0000 0.7000
Z1 - - - 0.7000 - - - 0.7000 - - - 0.7000

Case4 Case5
Y X Z1 Z2 Y X Z1 Z2

Y - 0.0000 0.7000 0.0000 - -1.9697 2.5303 0.0000
X - - 0.0000 0.7000 - - 0.0000 0.9900
Z1 - - - 0.7000 - - - 0.9900

•

Z2 •
Y•

X

•

Z1

Fi
gu

re
1.

C
au

sa
lp

at
h

di
ag

ra
m

in
C

as
e

3,
w

he
re

as
β

yx
.x
,

0
an

d
τ y

x
=
β

yx
.x

z
≃

0
ho

ld
in

C
as

e
4.

C
as

e
5

re
pr

es
en

ts
an

ex
tr

em
e

si
tu

at
io

n
in

w
hi

ch
th

e
si

m
pl

e
re

gr
es

si
on

m
od

el
of

Y
on

X
,

E
(Y
|X
=

x)
=
µ

y
+
β

yx
.x

(x
−
µ

x)
,

is
or

th
og

on
al

to
th

e
ca

us
al

eff
ec

to
n

th
e

va
ri

an
ce

E
(Y
|do

(X
=

x)
)
=
µ

y
+
β

yx
.x

z(
x
−
µ

x)
,

i.e
.,
β

yx
.x

zβ
yx
.x
=
τ y

xβ
yx
.x
≃
−1

ho
ld

s.
W

e
si

m
ul

at
ed

n
ra

nd
om

sa
m

pl
es

fr
om

a
m

ul
tiv

ar
ia

te
no

rm
al

di
st

ri
bu

tio
n

w
ith

a
ze

ro
m

ea
n

ve
ct

or
an

d
th

e
co

rr
el

a-
tio

n
m

at
ri

ce
s

ge
ne

ra
te

d
fr

om
ea

ch
ca

se
of

Ta
bl

e
1.

T
he

n,
re

ga
rd

in
g

th
e

ca
us

al
eff

ec
ts

on
th

e
va

ri
an

ce
,w

e
ev

al
ua

te
d

bo
th

th
e

un
bi

as
ed

es
tim

at
or

(1
5)

an
d

th
e

co
ns

is
te

nt
es

tim
at

or
(2

0)
50

00
0

tim
es

ba
se

d
on

n
=

10
,2

5,
50

,
an

d
10

0.
Ta

bl
e

2
re

po
rt

s
th

e
ba

si
c

st
at

is
tic

s
of

eq
ua

tio
ns

(1
5)

an
d

(2
0)

w
he

n
{Z

1}
,{

Z 2
}a

nd
{Z

1,
Z 2
}a

re
ut

ili
ze

d
to

id
en

tif
y

th
e

ca
us

al
eff

ec
ts

.
Fi

rs
t,

fr
om

th
e

“E
st

im
at

es
"

ro
w

so
fT

ab
le

2,
fo

re
ac

h
ca

se
,t

he
co

ns
is

te
nt

es
tim

at
or

sa
re

hi
gh

ly
bi

as
ed

in
th

e
sm

al
le

r
sa

m
pl

e
si

ze
sb

ut
be

co
m

e
le

ss
bi

as
ed

in
th

e
la

rg
e

sa
m

pl
e

si
ze

s.
E

sp
ec

ia
lly

,t
he

bi
as

re
du

ct
io

n
sp

ee
d

ba
se

d
on

th
e

sa
m

pl
e

si
ze

de
pe

nd
s

on
th

e
co

rr
el

at
io

n
be

tw
ee

n
X

an
d

Z
:

it
se

em
s

th
at

it
is

sl
ow

er
w

he
n

X
is

hi
gh

ly
co

rr
el

at
ed

w
ith

Z
.

In
co

nt
ra

st
,t

he
un

bi
as

ed
es

tim
at

or
s

ar
e

cl
os

e
to

th
e

tr
ue

va
lu

es
ev

en
fo

r
th

e
sm

al
ls

am
pl

e
si

ze
s.

H
ow

ev
er

,a
s

se
en

fr
om

th
e

“M
in

im
um

"
ro

w
s

of
Ta

bl
e

2,
w

he
n

X
is

co
rr

el
at

ed
w

ith
Z

,t
he

m
in

im
um

va
lu

es
of

th
e

un
bi

as
ed

es
tim

at
or

s
ar

e
ne

ga
tiv

e
fo

rt
he

sm
al

le
rs

am
pl

e
si

ze
,b

ut
no

tf
or

th
e

la
rg

er
sa

m
pl

e
si

ze
;t

he
co

ns
is

te
nt

es
tim

at
or

s
do

no
tt

ak
e

ne
ga

tiv
e

va
lu

es
.I

n
ad

di
tio

n,
fr

om
bo

th
th

e
“M

in
im

um
"

an
d

“M
ax

im
um

"
ro

w
s

of
Ta

bl
e

2,
w

he
n

X
is

hi
gh

ly
co

rr
el

at
ed

w
ith

Z
,

th
e

sa
m

pl
e

ra
ng

es
of

th
e

un
bi

as
ed

es
tim

at
or

s
ar

e
w

id
er

th
an

th
os

e
of

th
e

co
ns

is
te

nt
es

tim
at

or
s

in
th

e
sm

al
le

r
sa

m
pl

e
si

ze
s.

H
ow

ev
er

,t
he

y
be

co
m

e
cl

os
e

to
th

os
e

of
th

e
co

ns
is

te
nt

es
tim

at
or

s
in

th
e

la
rg

er
sa

m
pl

e
si

ze
s.

H
er

e,
no

te
th

at
th

e
sa

m
pl

e
ra

ng
es

of
th

e
un

bi
as

ed
es

tim
at

or
s

ar
e

na
rr

ow
er

th
an

or
cl

os
e

to
th

os
e

of
th

e
co

ns
is

te
nt

es
tim

at
or

s
w

he
n

X
is

un
co

rr
el

at
ed

w
ith

Z
.

Se
co

nd
,f

ro
m

“(
17

)/
(2

1)
"

ro
w

s
of

Ta
bl

e
2,

ex
ce

pt
fo

r
C

as
e

2,
fo

r
al

ls
am

pl
e

si
ze

s,
eq

ua
tio

ns
(1

7)
an

d
(2

1)
w

he
n

Z 2
is

se
le

ct
ed

is
la

rg
er

th
an

eq
ua

tio
ns

(1
7)

an
d

(2
1)

w
he

n
Z 1

an
d
{Z

1,
Z 2
}a

re
se

le
ct

ed
,r

es
pe

ct
iv

el
y,

an
d

eq
ua

tio
ns

(1
7)

8



and (21) when {Z1,Z2} is selected is larger than equations (17) and (21) when Z1 is selected, respectively. This implies
that the relationships are consistent with the results obtained by Theorem 2. In contrast, in Case 2 with the sample
size n ≤ 50, equation (17) when {Z1,Z2} is selected is larger than equation (17) when Z2 is selected, which shows
that the relationships are different from the results obtained by Theorem 2. Thus, it seems that the difference between
the estimation accuracy by the selected variables depends on not only the sample size but also the multicollinearity
between X and Z: Theorem 2 holds for large sample sizes when X is highly correlated with Z.

Third, comparing the empirical variances with the variance formula, equation (17) is relatively close to the empir-
ical variances of the unbiased estimator for any sample size. In contrast, when X is correlated with Z, the asymptotic
variance (21) is not close to the empirical variances of the consistent estimator for the small sample sizes in each
case. Especially, the differences between the asymptotic variance (21) and the empirical variances of the consistent
estimator are significant when X is correlated with Z. However, they become close as the sample size is larger.

Finally, for each case, it seems that both unbiased and consistent estimators are highly skewed and heavy-tailed in
the small sample size, but converge to the normal distributions slowly as the sample sizes are larger. Especially, when
X is correlated with Z, both unbiased and consistent estimators take large positive/negative values in the small sample
size, which implies that these estimators are unstable under the multicollinearity with the small sample size.

5. Conclusion

In this paper, when causal knowledge is available in the form of a Gaussian linear SEM with the corresponding
DAG, we considered a situation where the causal effect can be estimated based on the back-door criterion. Under
this situation, we formulated the unbiased estimator of the causal effect on the variance with the exact variance. The
estimated causal effect on the variance proposed by Kuroki and Miyakawa (2003) and Kuroki and Nanmo (2020) is
consistent but not unbiased. Under the small sample size, the use of the consistent estimator may lead to misleading
findings in statistical causal inference. The proposed estimator would help us avoid the problem, and the results of this
paper would help statistical practitioners to predict appropriately what would happen to the outcome variable when
conducting the external intervention.

Future work should involve extending our results to (i) a joint intervention that combines several single interven-
tions and (ii) an adaptive control in which the treatment variable is assigned a value based on some covariates. In
addition, the numerical experiments show that the proposed unbiased estimator has the drawback that it can take a
negative value in the small sample size. One of our suggestion to solve the problem is to use the max{0, σ̂yy|x} but not
σ̂yy|x to evaluate the causal effect on the variance. However, noting that max{0, σ̂yy|x} is not an unbiased estimator, it
would also be future work to develop the more efficient estimator of the causal effect on the variance.
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Appendix: Proof of Theorem 1

Letting Dx and Dz denote the datasets of X and Z, respectively, from the law of total variance (Weiss et al, 2006,
pp.385-386), given Dx ∪ Dz, we have

var(σ̂yy|x) = var(E(σ̂yy|x|Dx,Dz)) + E(var(σ̂yy|x|Dx,Dz)), (30)

where E(·|Dx,Dz) and var(·|Dx,Dz) indicates that conditional expectation and variance given Dx ∪ Dz, respectively.
Then, in order to derive the explicit expression of the exact variance formula of the estimated causal effect on the vari-
ance σ̂yy|x of Y on do(X = x), we calculate the first term var(E(σ̂yy|x|Dx,Dz)) and the second term E(var(σ̂yy|x|Dx,Dz))
of equation (30) separately.
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Step 1:Derivation of var(E(σ̂yy|x|Dx,Dz))
Regarding the second term of the right hand side of equation (15), note that we derive

E(B̂yz.xzΣ̂zzB̂′yz.xz|Dx,Dz) = E(tr(Σ̂zzB̂′yz.xzB̂yz.xz)|Dx,Dz) = tr
(
Σ̂zz(σyy.xzS −1

zz.x + B′yz.xzByz.xz)
)

= σyy.xztr(Σ̂zzS −1
zz.x) + Byz.xzΣ̂zzB′yz.xz (31)

by Mathai and Provost (1992, p.53) and the basic formula of the variance-covariance matrix

var(B̂yz.xz|Dx,Dz) = E(B̂′yz.xzB̂yz.xz|Dx,Dz) − E(B̂′yz.xz|Dx,Dz)E(B̂yz.xz|Dx,Dz) = E(B̂′yz.xzB̂yz.xz|Dx,Dz) − B′yz.xzByz.xz

= σyy.xzS −1
zz.x, (32)

where tr(A), which is the trace of a square matrix A, represents as the total sum of elements on the main diagonal of
the square matrix A. Thus, noting that equation (11), σ̂yy.xz, is the unbiased estimator of σyy.xz, we have

E(σ̂yy|x|Dx,Dz) = E
σ̂yy.xz

1 − 1
n − 1

q + B̂xz.zS zzB̂′xz.z

sxx.z

 |Dx,Dz

 + E(B̂yz.xzΣ̂zzB̂′yz.xz|Dx,Dz)

= σyy.xz

1 − 1
n − 1

q + B̂xz.zS zzB̂′xz.z

sxx.z

 + tr(Σ̂zzS −1
zz.x)

 + Byz.xzΣ̂zzB′yz.xz. (33)

Here, from Sherman–Morrison formula (Sherman and Morrison, 1950), S −1
zz.x can be expressed as

S −1
zz.x =

(
S zz −

S zxS xz

sxx

)−1

= S −1
zz +

S −1
zz S zxS xzS −1

zz

sxx.z
. (34)

Thus, from equation (12), noting that Σ̂zz is the unbiased estimator of Σzz, we derive

tr(Σ̂zzS −1
zz.x) =

1
n − 1

tr(S zzS −1
zz.x) =

1
n − 1

tr
(
Iq,q +

S zxS xzS −1
zz

sxx.z

)
=

1
n − 1

(
q +

S xzS −1
zz S zx

sxx.z

)
=

1
n − 1

q + B̂xz.zS zzB̂′xz.z

sxx.z

 , (35)

where Iq,q is the q × q identity matrix. Thus, since we have

E(σ̂yy|x|Dx,Dz) = σyy.xz + Byz.xzΣ̂zzB′yz.xz (36)

from equation (31) together with equation (35), we derive

E(σ̂yy|x) = E(E(σ̂yy|x|Dx,Dz)) = σyy.xz + Byz.xzΣzzB′yz.xz (37)

and
var(E(σ̂yy|x|Dx,Dz)) = var(Byz.xzΣ̂zzB′yz.xz). (38)

Equation (37) shows that σ̂yy|x is the unbiased estimator of the causal effect on the variance of Y on do(X = x) (Tezuka
and Kuroki, 2022).

Here, noting that (n − 1)Σ̂zz follows the Wishart distribution with the n − 1 degrees of freedom and parameter Σzz

and
(n − 1)Byz.xzΣ̂zzB′yz.xz

Byz.xzΣzzB′yz.xz
(39)

follows the chi-squared distribution with n − 1 degrees of freedom (Seber, 2008, p.466), the variance is given by

var

 (n − 1)Byz.xzΣ̂zzB′yz.xz

Byz.xzΣzzB′yz.xz

 = 2(n − 1), (40)

i.e., we have

var(E(σ̂yy|x|Dx,Dz)) = var
(
Byz.xzΣ̂zzB′yz.xz

)
=

2(Byz.xzΣzzB′yz.xz)
2

n − 1
. (41)

10



Step 2: Derivation of E(var(σ̂yy|x|Dx,Dz))
Noting that σ̂yy.xz and (β̂yx.xz, B̂′yz.xz)

′ are independent of each other given Dx and Dz (e.g., Mardia et al, 1979),
since

(n − q − 2)σ̂yy.xz

σyy.xz
(42)

follows the chi-squared distribution with n − q − 2 degrees of freedom, we have

var(σ̂yy|x|Dx,Dz) = var(σ̂yy.xz|Dx,Dz)
1 − 1

n − 1

q + B̂xz.zS zzB̂′xz.z

sxx.z

2

+ var(B̂yz.xzΣ̂zzB̂′yz.xz|Dx,Dz)

=
2σ2

yy.xz

n − q − 2

1 − 1
n − 1

q + B̂xz.zS zzB̂′xz.z

sxx.z

2

+ var(B̂yz.xzΣ̂zzB̂′yz.xz|Dx,Dz)

=
2σ2

yy.xz

n − q − 2

(1 − q
n − 1

)2
− 2

(
1 − q

n − 1

) B̂xz.zS zzB̂′xz.z

(n − 1)sxx.z
+

 B̂xz.zS zzB̂′xz.z

(n − 1)sxx.z

2 + var(B̂yz.xzΣ̂zzB̂′yz.xz|Dx,Dz). (43)

Step 2-1: Derivation of E
(

B̂xz.zS zzB̂′xz.z
sxx.z

)
Regarding the first term of equation (43), since B̂xz.z and sxx.z are independent of each other given Dz (e.g., Mardia

et al, 1979), noting that sxx.z/σxx.z follows the chi-squared distribution with n − q − 1 degrees of freedom, we have

E
(

1
sxx.z
|Dz

)
=

1
(n − q − 3)σxx.z

. (44)

Thus, we have

E
 B̂xz.zS zzB̂′xz.z

sxx.z

 = E
E

 B̂xz.zS zzB̂′xz.z

sxx.z
|Dz

 = E
(
E(B̂xz.zS zzB̂′xz.z|Dz)E

(
1

sxx.z
|Dz

))
=
σxx.zE(tr(S zzS −1

zz )) + Bxz.zE(S zz)B′xz.z

(n − q − 3)σxx.z
=

qσxx.z + (n − 1)Bxz.zΣzzB′xz.z

(n − q − 3)σxx.z
(45)

from
var(B̂xz.z) = E(B̂′xz.zB̂xz.z) − B′xz.zBxz.z = σxx.zS −1

zz . (46)

Step 2-2: Derivation of E

( B̂xz.zS zzB̂′xz.z
sxx.z

)2
Similar to Step 2-1, from

E
(

1
s2

xx.z

)
=

1
(n − q − 3)(n − q − 5)σ2

xx.z
, (47)

since B̂xz.z and σ̂xx.z are independent of each other given Dz (e.g., Mardia et al, 1979), we derive

E

 B̂xz.zS zzB̂′xz.z

sxx.z

2 = E

E

 B̂xz.zS zzB̂′xz.z

sxx.z

2

|Dz


 = E

(
E((B̂xz.zS zzB̂′xz.z)

2|Dz)E
(

1
s2

xx.z
|Dz

))

=
E

(
E((B̂xz.zS zzB̂′xz.z)

2|Dz)
)

(n − q − 3)(n − q − 5)σ2
xx.z
=

E
(
var

(
B̂xz.zS zzB̂′xz.z|Dz)

))
(n − q − 3)(n − q − 5)σ2

xx.z
+

E(E(B̂xz.zS zzB̂′xz.z|Dz)2)
(n − q − 3)(n − q − 5)σ2

xx.z
. (48)

From Seber (2008, p.438) and equation (12), E
(
var

(
B̂xz.zS zzB̂′xz.z|Dz

))
is given by

E
(
var

(
B̂xz.zS zzB̂′xz.z|Dz)

))
= 2σ2

xx.zE(tr(S zzS −1
zz S zzS −1

zz )) + 4E(σxx.zBxz.zS zzS −1
zz S zzB′xz.z)

= 2qσ2
xx.z + 4(n − 1)σxx.zBxz.zΣzzB′xz.z. (49)

11



Again, from
var(Bxz.zS zzB′xz.z) = 2(n − 1)(Bxz.zΣzzB′xz.z)

2 (50)

by Seber (2008, p.466), we have

E

 B̂xz.zS zzB̂′xz.z

sxx.z

2 = E

E

 B̂xz.zS zzB̂′xz.z

sxx.z

2

|Dz




=
2qσ2

xx.z + 4(n − 1)σxx.zBxz.zΣzzB′xz.z

(n − q − 3)(n − q − 5)σ2
xx.z

+
E((qσxx.z + Bxz.zS zzB′xz.z)

2)
(n − q − 3)(n − q − 5)σ2

xx.z

=
2qσ2

xx.z + 4(n − 1)σxx.zBxz.zΣzzB′xz.z

(n − q − 3)(n − q − 5)σ2
xx.z

+
var(Bxz.zS zzB′xz.z)

(n − q − 3)(n − q − 5)σ2
xx.z
+

E(qσxx.z + Bxz.zS zzB′xz.z)
2

(n − q − 3)(n − q − 5)σ2
xx.z

=
2qσ2

xx.z + 4(n − 1)σxx.zBxz.zΣzzB′xz.z

(n − q − 3)(n − q − 5)σ2
xx.z

+
2(n − 1)(Bxz.zΣzzB′xz.z)

2

(n − q − 3)(n − q − 5)σ2
xx.z
+

(qσxx.z + (n − 1)Bxz.zΣzzB′xz.z)
2

(n − q − 3)(n − q − 5)σ2
xx.z
. (51)

Step 2-3: Derivation of var(B̂yz.xzΣ̂zzB̂′yz.xz|Dx,Dz)
Regarding the second term of equation (43), from Mathai and Provost (1992, p.53), we have

var(B̂yz.xzΣ̂zzB̂′yz.xz|Dx,Dz) =
2σ2

yy.xz

(n − 1)2 tr(S zzS −1
zz.xS zzS −1

zz.x) +
4σyy.xz

(n − 1)2 Byz.xzS zzS −1
zz.xS zzB′yz.xz. (52)

From equation (29) and B̂xz.z = S xzS −1
zz , we have

E(var(B̂yz.xzΣ̂zzB̂′yz.xz|Dx,Dz)) = E

 2σ2
yy.xz

(n − 1)2 tr
((

S zz +
S zxS xz

sxx.z

)
S −1

zz.x

) + 4σyy.xz

(n − 1)2 Byz.xzE
(
S zz +

S zxS xz

sxx.z

)
B′yz.xz

=
2σ2

yy.xz

(n − 1)2

q + 2E
 B̂xz.zS zzB̂′xz.z

sxx.z

 + E

 B̂xz.zS zzB̂′xz.z

sxx.z

2


+
4σyy.xz

(n − 1)2

(n − 1)Byz.xzΣzzB′yz.xz + E
 (Byz.xzS zzB̂′xz.z)

2

sxx.z

 (53)

Here, from the law of total variance (Weiss et al, 2006, pp.385-386), we have

E
(
E

(
(Byz.xzS zzB̂′xz.z)

2|Dz

))
= E

(
var

(
Byz.xzS zzB̂′xz.z|Dz

)
+ E

(
(Byz.xzS zzB̂′xz.z)|Dz

)2
)

= σxx.zByz.xzE(S zz)B′yz.xz + E((Byz.xzS zzB′xz.z)
2) = (n − 1)σxx.zByz.xzΣzzB′yz.xz + E((Byz.xzS zzB′xz.z)

2) (54)

Thus, from equations (21) and (21). Finally, from Seber (2008,p.467), we have

E((Byz.xzS zzB′xz.z)
2) = Byz.xzE(S zzB′xz.zBxz.zS zz)B′yz.xz

= ((n − 1) + (n − 1)2)(Byz.xzΣzzB′xz.z)
2 + (n − 1)(Bxz.zΣzzB′xz.z)(Byz.xzB′xz.z)

2. (55)

Based on the above derivation, we derive the exact variance formula of the estimated causal effect on the variance of
Y on do(X = x).
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Table 2. Numerical Experiments.

Case 1:σyy|x = 0.510
Sample size 10 25

Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}
Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 0.509 0.511 0.509 0.544 0.509 0.514 0.510 0.511 0.510 0.522 0.510 0.511

Equation (17)/(21) 0.059 0.052 0.065 0.052 0.059 0.052 0.022 0.021 0.022 0.021 0.022 0.021
var 0.058 0.058 0.064 0.069 0.058 0.058 0.022 0.022 0.023 0.023 0.022 0.022

Skewness 0.937 0.936 1.038 1.000 0.937 0.936 0.570 0.570 0.576 0.566 0.571 0.570
Kurtosis 4.326 4.325 4.908 4.780 4.328 4.327 3.490 3.490 3.481 3.463 3.492 3.492

Minimum 0.016 0.017 0.016 0.018 0.016 0.019 0.102 0.103 0.105 0.108 0.100 0.102
1st Quartile 0.333 0.335 0.324 0.352 0.333 0.338 0.404 0.405 0.402 0.413 0.404 0.406

Median 0.472 0.474 0.467 0.501 0.472 0.477 0.496 0.497 0.495 0.507 0.495 0.497
3rd Quartile 0.644 0.647 0.649 0.691 0.644 0.650 0.601 0.601 0.603 0.615 0.601 0.603
Maximum 2.053 2.056 2.995 3.071 2.052 2.057 1.344 1.345 1.371 1.387 1.344 1.346

Sample size 50 100
Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}
Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 0.511 0.511 0.511 0.516 0.511 0.511 0.509 0.510 0.509 0.512 0.509 0.510

Equation (17)/(21) 0.011 0.010 0.011 0.010 0.011 0.010 0.005 0.005 0.005 0.005 0.005 0.005
var 0.011 0.011 0.011 0.011 0.011 0.011 0.005 0.005 0.005 0.005 0.005 0.005

Skewness 0.407 0.407 0.411 0.407 0.408 0.407 0.300 0.300 0.301 0.300 0.300 0.300
Kurtosis 3.237 3.237 3.238 3.233 3.239 3.239 3.110 3.110 3.115 3.114 3.110 3.110

Minimum 0.210 0.211 0.205 0.209 0.210 0.211 0.265 0.265 0.266 0.268 0.265 0.265
1st Quartile 0.438 0.438 0.437 0.442 0.438 0.438 0.459 0.459 0.459 0.461 0.459 0.459

Median 0.504 0.504 0.504 0.509 0.504 0.504 0.506 0.506 0.506 0.508 0.506 0.506
3rd Quartile 0.576 0.576 0.576 0.582 0.576 0.577 0.557 0.557 0.557 0.559 0.557 0.557
Maximum 1.034 1.035 1.044 1.053 1.035 1.035 0.867 0.867 0.876 0.880 0.867 0.867

Case 2:σyy|x = 0.510
Sample size 10 25

Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}
Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 0.510 0.603 0.510 0.658 0.511 0.744 0.511 0.541 0.511 0.556 0.511 0.580

Equation (17)/(21) 0.073 0.052 0.107 0.052 0.145 0.052 0.023 0.021 0.024 0.021 0.025 0.021
var 0.073 0.099 0.110 0.155 0.145 0.221 0.023 0.026 0.024 0.028 0.025 0.031

Skewness 1.478 1.531 4.255 4.000 4.826 4.528 0.620 0.617 0.709 0.697 0.748 0.714
Kurtosis 10.112 11.673 87.363 74.588 94.755 74.449 3.688 3.673 3.964 3.932 4.234 4.070

Minimum -0.814 0.022 -2.621 0.022 -5.144 0.026 0.108 0.113 0.107 0.115 0.107 0.120
1st Quartile 0.318 0.377 0.300 0.400 0.288 0.446 0.403 0.427 0.400 0.436 0.399 0.455

Median 0.464 0.548 0.450 0.585 0.443 0.655 0.496 0.525 0.494 0.538 0.494 0.561
3rd Quartile 0.652 0.769 0.646 0.827 0.648 0.935 0.602 0.637 0.602 0.655 0.602 0.683
Maximum 5.069 6.851 13.617 15.156 13.302 15.291 1.624 1.706 1.653 1.756 1.940 2.073

Sample size 50 100
Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}
Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 0.510 0.524 0.510 0.531 0.510 0.542 0.510 0.517 0.510 0.520 0.510 0.525

Equation (17)/(21) 0.011 0.010 0.011 0.010 0.011 0.010 0.005 0.005 0.005 0.005 0.005 0.005
var 0.011 0.011 0.011 0.012 0.011 0.012 0.005 0.005 0.005 0.006 0.005 0.006

Skewness 0.390 0.391 0.416 0.414 0.423 0.418 0.300 0.300 0.310 0.309 0.310 0.308
Kurtosis 3.206 3.207 3.270 3.267 3.297 3.288 3.152 3.152 3.187 3.185 3.185 3.183

Minimum 0.193 0.198 0.186 0.196 0.186 0.199 0.247 0.250 0.245 0.250 0.245 0.253
1st Quartile 0.436 0.448 0.435 0.454 0.435 0.463 0.459 0.465 0.458 0.468 0.458 0.472

Median 0.503 0.516 0.502 0.523 0.502 0.534 0.506 0.513 0.506 0.516 0.506 0.522
3rd Quartile 0.576 0.592 0.577 0.601 0.577 0.613 0.557 0.565 0.557 0.568 0.557 0.574
Maximum 0.994 1.026 1.071 1.113 1.110 1.171 0.898 0.910 1.010 1.030 1.009 1.037

Unbiased: unbiased estimator; Consist: consistent estimator; Estimates: the sample mean from 50000 estimated
causal effects on the variance; (17)/(21): the exact and asymptotic variances derived from equations (17) and (21)
with Table 1; Var: empirical variances from 50000 estimated causal effects on the variance.
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Table 2. Numerical Experiments.

Case 3:σyy|x = 1.118
Sample size 10 25

Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}
Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 1.119 1.234 1.119 1.373 1.120 1.409 1.116 1.153 1.118 1.196 1.117 1.202

Equation (17)/(21) 0.397 0.289 0.596 0.331 0.566 0.308 0.128 0.115 0.154 0.132 0.141 0.123
var 0.408 0.457 0.584 0.725 0.595 0.721 0.130 0.135 0.157 0.171 0.145 0.156

Skewness 1.837 1.873 2.391 2.328 2.678 2.774 0.751 0.745 1.040 1.006 0.895 0.867
Kurtosis 14.121 15.044 15.610 14.888 24.310 24.522 4.008 4.012 5.210 5.073 4.491 4.418

Minimum -0.420 0.043 -2.802 0.043 -8.253 0.051 0.161 0.179 0.168 0.184 0.161 0.191
1st Quartile 0.668 0.758 0.617 0.804 0.620 0.849 0.860 0.892 0.838 0.903 0.846 0.921

Median 0.999 1.108 0.952 1.194 0.964 1.238 1.074 1.110 1.060 1.138 1.065 1.149
3rd Quartile 1.433 1.568 1.421 1.721 1.427 1.756 1.328 1.370 1.333 1.422 1.331 1.425
Maximum 13.817 14.935 12.257 13.943 17.465 18.915 3.792 3.959 4.504 4.658 4.427 4.560

Sample size 50 100
Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}
Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 1.117 1.134 1.117 1.153 1.117 1.156 1.119 1.127 1.119 1.136 1.119 1.138

Equation (17)/(21) 0.061 0.058 0.071 0.066 0.065 0.062 0.030 0.029 0.034 0.033 0.032 0.031
var 0.061 0.062 0.071 0.074 0.066 0.069 0.030 0.030 0.034 0.035 0.032 0.032

Skewness 0.516 0.513 0.679 0.670 0.611 0.600 0.337 0.336 0.443 0.439 0.392 0.388
Kurtosis 3.461 3.457 3.898 3.881 3.718 3.697 3.184 3.184 3.342 3.337 3.277 3.273

Minimum 0.337 0.344 0.340 0.360 0.332 0.357 0.561 0.567 0.555 0.568 0.575 0.586
1st Quartile 0.943 0.959 0.929 0.962 0.935 0.971 0.998 1.006 0.988 1.005 0.993 1.011

Median 1.096 1.114 1.088 1.125 1.092 1.132 1.110 1.118 1.105 1.123 1.108 1.127
3rd Quartile 1.269 1.288 1.274 1.314 1.272 1.315 1.229 1.238 1.234 1.253 1.231 1.251
Maximum 2.435 2.470 3.173 3.241 2.545 2.609 2.075 2.091 2.111 2.133 2.071 2.092

Case 4:σyy|x = 1.000
Sample size 10 25

Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}
Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 1.001 1.094 0.999 1.220 0.999 1.233 1.000 1.030 0.999 1.067 1.000 1.069

Equation (17)/(21) 0.316 0.232 0.481 0.270 0.436 0.247 0.102 0.093 0.126 0.108 0.113 0.099
var 0.317 0.349 0.483 0.593 0.463 0.526 0.102 0.105 0.124 0.135 0.113 0.120

Skewness 1.444 1.449 3.284 3.150 0.595 2.589 0.731 0.726 1.016 0.988 0.861 0.840
Kurtosis 7.138 7.186 39.242 34.466 96.540 22.520 3.903 3.899 5.103 5.015 4.351 4.314

Minimum -2.116 0.038 -3.755 0.040 -29.146 0.051 0.164 0.170 0.161 0.175 0.157 0.176
1st Quartile 0.603 0.678 0.553 0.718 0.563 0.753 0.770 0.797 0.749 0.806 0.760 0.821

Median 0.897 0.985 0.851 1.061 0.868 1.092 0.964 0.993 0.948 1.015 0.955 1.024
3rd Quartile 1.278 1.384 1.270 1.529 1.276 1.539 1.189 1.222 1.193 1.270 1.191 1.268
Maximum 7.246 7.902 18.483 19.766 13.702 15.580 3.042 3.114 4.030 4.203 3.577 3.719

Sample size 50 100
Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}
Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 1.000 1.015 1.000 1.032 1.001 1.033 1.000 1.007 1.000 1.015 1.000 1.016

Equation (17)/(21) 0.049 0.046 0.058 0.054 0.052 0.049 0.024 0.023 0.028 0.027 0.025 0.025
var 0.049 0.050 0.059 0.061 0.054 0.055 0.024 0.024 0.028 0.029 0.026 0.026

Skewness 0.515 0.512 0.677 0.669 0.601 0.592 0.360 0.359 0.461 0.457 0.412 0.409
Kurtosis 3.500 3.498 3.871 3.854 3.709 3.690 3.240 3.239 3.407 3.402 3.324 3.321

Minimum 0.324 0.330 0.313 0.329 0.312 0.330 0.505 0.510 0.481 0.490 0.488 0.499
1st Quartile 0.844 0.857 0.829 0.857 0.837 0.867 0.892 0.898 0.881 0.895 0.887 0.902

Median 0.981 0.995 0.975 1.006 0.979 1.011 0.991 0.998 0.988 1.003 0.989 1.005
3rd Quartile 1.139 1.154 1.144 1.179 1.141 1.176 1.099 1.107 1.105 1.122 1.102 1.118
Maximum 2.508 2.532 2.559 2.590 2.419 2.447 1.803 1.814 2.020 2.044 1.877 1.895

Unbiased: unbiased estimator; Consist: consistent estimator; Estimates: the sample mean from 50000 estimated
causal effects on the variance; (17)/(21): the exact and asymptotic variances derived from equations (17) and (21)
with Table 1; Var: empirical variances from 50000 estimated causal effects on the variance.
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Table 2. Numerical Results.

Case 5:σyy|x = 6.890
Sample size 10 25

Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}
Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 6.889 8.935 6.846 11.998 6.818 11.758 6.891 7.478 6.839 8.310 6.849 8.093

Equation (17)/(20) 89.284 39.921 273.079 85.493 258.651 69.743 20.461 15.968 48.386 34.197 39.017 27.897
var 89.195 96.603 269.086 288.518 261.860 276.373 20.314 20.997 48.615 50.410 39.916 41.375

Skewness 3.174 3.590 3.751 4.816 3.909 5.284 1.404 1.435 1.944 2.010 1.797 1.864
Kurtosis 27.518 32.126 45.247 57.833 50.464 69.849 6.565 6.677 10.115 10.369 9.068 9.359

Minimum -41.487 0.043 -217.754 0.057 -209.358 0.047 -1.922 0.227 -7.491 0.217 -6.815 0.241
1st Quartile 1.233 2.735 -1.117 2.227 -0.831 2.314 3.679 4.201 1.922 3.255 2.389 3.519

Median 4.427 6.001 2.666 6.404 2.911 6.363 5.996 6.543 5.160 6.467 5.372 6.531
3rd Quartile 9.754 11.656 10.415 14.959 10.489 14.655 9.120 9.719 9.769 11.290 9.641 10.861
Maximum 227.310 249.270 458.364 521.416 428.839 538.489 48.157 49.007 87.847 91.660 85.278 88.653

Sample size 50 100
Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}
Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 6.907 7.176 6.916 7.589 6.910 7.466 6.886 7.015 6.879 7.200 6.889 7.152

Equation (17)/(20) 8.971 7.984 20.098 17.099 16.240 13.949 4.225 3.992 9.245 8.549 7.501 6.974
var 9.001 9.149 20.271 20.664 16.558 16.865 4.206 4.241 9.205 9.290 7.575 7.643

Skewness 0.916 0.925 1.248 1.270 1.137 1.156 0.615 0.617 0.820 0.825 0.767 0.772
Kurtosis 4.414 4.427 5.743 5.808 5.190 5.245 3.591 3.593 4.037 4.042 3.878 3.882

Minimum 0.162 0.406 -1.882 0.327 -1.062 0.364 1.473 1.617 0.203 0.443 0.326 0.613
1st Quartile 4.758 5.004 3.666 4.310 3.981 4.494 5.426 5.546 4.696 4.999 4.906 5.156

Median 6.487 6.751 6.093 6.739 6.213 6.751 6.674 6.801 6.467 6.781 6.547 6.802
3rd Quartile 8.574 8.852 9.264 9.949 9.050 9.623 8.135 8.269 8.616 8.947 8.497 8.768
Maximum 27.249 27.699 44.779 46.374 39.581 40.831 19.980 20.117 25.766 26.199 22.501 22.832

Unbiased: unbiased estimator; Consist: consistent estimator; Estimates: the sample mean from 50000 estimated
causal effects on the variance; (17)/(21): the exact and asymptotic variances derived from equations (17) and (21)
with Table 1; Var: empirical variances from 50000 estimated causal effects on the variance.
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