$\rho\text{-}\textsc{einstein}$ solitons on warped product manifolds and applications

NASSER BIN TURKI, SAMEH SHENAWY, H. K. EL-SAYIED, N. SYIED, AND C. A. MANTICA

ABSTRACT. The purpose of this research is to investigate how a ρ -Einstein soliton structure on a warped product manifold affects its base and fiber factor manifolds. First, many interesting properties of ρ -Einstein solitons are given. Then, some necessary and sufficient conditions on a ρ -Einstein soliton warped product manifold to make its factors ρ -Einstein soliton are examined. On a ρ -Einstein gradient soliton warped product manifold, necessary and sufficient conditions for making its factors ρ -Einstein gradient soliton are presented. Also, ρ -Einstein solitons on warped product manifolds admitting a conformal vector field are considered. Finally, the structure of ρ -Einstein solitons on some warped products space-times is investigated.

1. An introduction

Ricci soliton is crucial in the Ricci flow treatment. In [10, 12], the Ricci flow is defined on a Riemannian manifold (E, g) by an evolution equation for metrics $\{g(t)\}$ of the form

(1.1)
$$\partial_t g(t) = -2 \operatorname{Ric},$$

where Ric is the Ricci curvature tensor. The initial metric g on E satisfies

(1.2)
$$\operatorname{Ric} + \frac{1}{2}\mathcal{L}_{\zeta}g = \lambda g,$$

where ζ is a vector field on E, λ is a constant, and \mathcal{L}_{ζ} represents the Lie derivative in the direction of a vector field ζ on E. Manifolds admitting such structure are called Ricci soliton [13]. Hamilton first investigated the study of Ricci solitons as fixed points of the Ricci flow in the space of the metrics on E modulo diffeomorphisms and scaling [19]. A Ricci soliton is called shrinking (steady, or expanding) if $\lambda > 0$ ($\lambda = 0$, or $\lambda < 0$ respectively). If $\zeta = 0$ or is Killing, then the Ricci soliton is called a trivial Ricci soliton. If f is a smooth function and $\zeta = \nabla f$, then the Ricci soliton is called gradient, ζ is called the potential vector field, and f is called the potential function. In this case, equation (1.2) becomes

(1.3)
$$\operatorname{Ric} + H^{f} = \lambda g,$$

where H^f is the Hessian tensor. For different reasons and in distinct spaces, Ricci solitons have been remarkably studied [5,6,21,24,28,30,31]. In [32], it is shown that a complete Ricci soliton is gradient. Gradient Ricci solitons are basic generalizations of Einstein manifolds [4]. If λ is a smooth function, then we say that (E, g) is a

²⁰¹⁰ Mathematics Subject Classification. Primary 53C21; Secondary 53C50, 53C80.

Key words and phrases. Einstein manifolds, Einstein soliton, $\rho\text{-}\text{Einstein}$ soliton, warped product manifolds .

nearly Ricci soliton manifold [2,3,33]. A generalization of Einstein soliton has been deduced by considering the Ricci-Bourguignon flows [7–9]

(1.4)
$$\partial_t g(t) = -2 \left(\operatorname{Ric} - \rho R g \right).$$

These manifolds are called ρ -Einstein solitons and are defined as follows. Let (E, g) be a pseudo-Riemannian manifold, and let $\lambda, \rho \in \mathbb{R}, \rho \neq 0$ and $\zeta \in \mathfrak{X}(E)$. Then (E, g, ζ, λ) is called a ρ -Einstein soliton if

(1.5)
$$\operatorname{Ric} + \frac{1}{2}\mathcal{L}_{\zeta}g = \lambda g + \rho Rg.$$

Likewise, if a smooth function $f : E \to \mathbb{R}$ exists such that $\zeta = \nabla f$, then a ρ -Einstein soliton (E, g, ζ, ρ) is gradient and denoted by (E, g, f, ρ) . In this case, equation (1.5) becomes

(1.6)
$$\operatorname{Ric} + \operatorname{Hess}\left(f\right) = \lambda g + \rho Rg.$$

As usual, a ρ -Einstein soliton is called steady, shrinking or expanding on whether λ has zero, positive or negative values. The function f is called a ρ -Einstein potential of the gradient ρ -Einstein soliton. Later, this perception was circulated in many instructions, such as *m*-quasi Einstein manifolds [20], Ricci-Bourguignon almost solitons [14], (E, ρ) -quasi-Einstein manifolds [22], etc. Huang got a sufficient condition for a compact gradient shrinking ρ -Einstein soliton to be isometric to a quotient of the round sphere S^n in [23]. Moreover, Mondal and Shaikh proved that a compact gradient ρ -Einstein soliton with a non-trivial conformal vector field ∇f . is isometric to the Euclidean sphere S^n in [27]. Recently, in [14] Dwivedi demonstrated other isometric theories of gradient Ricci-Bourguignon soliton. In [40], the authors investigated gradient ρ -Einstein soliton on Kenmotsu manifold. Some curvature conditions on compact gradient ρ -Einstein soliton M are given in [34] to guarantee that M is isometric to the Euclidean sphere. In contrast, an integral condition on a non-compact ρ -Einstein soliton M is given to ensure the vanishing of the scalar curvature. A splitting theorem of gradient ρ -Einstein soliton is given in [36]. Accordingly, many characterizations of gradient ρ -Einstein solitons are considered in [35]. The same study is recently extended to Sasakian manifolds in [29]. A study of the lower bound of the diameter of a compact gradient ρ -Einstein soliton is given in [37].

As far as we know, no research has been done on such a structure on warped product manifolds. Research problems in this regard from the point of view of warped product manifolds (WPM)s can be summarized into two paths:

- (1) Under what conditions does a WPM become a ρ -Einstein soliton or a gradient ρ -Einstein soliton?
- (2) What does a factor of a ρ -Einstein soliton WPM or a gradient ρ -Einstein soliton WPM inherit?

To address these problems, first we proved many results on ρ -Einstein soliton. Then, we investigate necessary and sufficient conditions on (gradient) ρ -Einstein soliton WPM in order to make its factors (gradient) ρ -Einstein soliton. Also, we study ρ -Einstein soliton on a WPM admitting a conformal vector field. Finally, we apply our results to GRW space-times and standard static space-times.

2. Preliminaries

2.1. ρ -Einstein solitons on pseudo-Riemannian manifolds. If ζ is a conformal vector field with conformal factor 2ω in a ρ -Einstein soliton (E, g, ζ, λ) , then

(2.1)

$$\operatorname{Ric}(U,V) + \frac{1}{2}\mathcal{L}_{\zeta}g(U,V) = \lambda g(U,V) + \rho Rg(U,V)$$

$$\operatorname{Ric}(U,V) + \omega g(U,V) = \lambda g(U,V) + \rho Rg(U,V)$$

$$\operatorname{Ric}(U,V) = (\lambda - \omega + \rho R)g(U,V).$$

By taking the trace over U, V, we get

(2.2)
$$\begin{aligned} \frac{R}{n} &= \lambda - \omega + \rho R \\ R &= \frac{(\lambda - \omega) n}{1 - n\rho}. \end{aligned}$$

Since the scalar curvature of Einstein manifolds is constant, the conformal factor is also constant, that is, ζ is homothetic. Moreover, $\lambda = \omega$ if $\rho = \frac{1}{n}$.

Proposition 1. Assume that ζ is a conformal vector field on a ρ -Einstein soliton (E, g, ζ, λ) with factor 2ω . Then, ζ is homothetic, (E, g) is Einstein, and

$$R = \frac{(\lambda - \omega) n}{1 - n\rho}.$$

where $\rho \neq \frac{1}{n}$. Moreover, $\lambda = \omega$ if $\rho = \frac{1}{n}$.

Corollary 1. Assume that ζ is a Killing vector field on a ρ -Einstein soliton (E, g, ζ, λ) , then

$$R = \frac{n\lambda}{1 - n\rho}$$

where $\rho \neq \frac{1}{n}$. Moreover, (E, g, ζ, λ) is steady if $\rho = \frac{1}{n}$.

Conversely, assuming that (E, g) is an Einstein manifold, then

$$\frac{R}{n}g\left(U,V\right) + \frac{1}{2}\left(\mathcal{L}_{\zeta}g\right)\left(U,V\right) = \lambda g\left(U,V\right) + \rho Rg\left(U,V\right)$$
$$\left(\mathcal{L}_{\zeta}g\right)\left(U,V\right) = \left(\lambda - \frac{R}{n} + \rho R\right)g\left(U,V\right)$$

Therefore, ζ is a homothetic vector field on E.

Proposition 2. In a ρ -Einstein soliton (E, g, ζ, λ) , ζ is a homothetic vector field on E if (E, g) is Einstein. Furthermore, ζ is Killing if $\lambda = (\frac{1}{n} - \rho) R$.

In local coordinates, a contraction of the defining equation implies

$$R_{ij} + \frac{1}{2} \left(\nabla_i \zeta_j + \nabla_j \zeta_i \right) = \lambda g_{ij} + \rho R g_{ij}$$
$$\nabla_i \zeta^i = n\lambda + (n\rho - 1) R$$

Thus, the vector field ζ is divergence-free. The conservative laws in physics usually arise from the vanishing of the divergence of a tensor field. Here is a simple characterization of the vanishing of the divergence of ζ .

Corollary 2. The vector field ζ in a ρ -Einstein soliton (E, g, ζ, λ) is divergence-free if and only if $n\lambda + (n\rho - 1)R = 0$.

It is also known that the flow lines of a divergence-free vector field are volumepreserving diffeomorphisms [1, Chapter 3]. This discussion leads to the following result.

Theorem 1. The flow lines of the vector field ζ in a ρ -Einstein soliton (E, g, ζ, λ) are volume-preserving diffeomorphisms if and only if $n\lambda + (n\rho - 1)R = 0$.

2.2. Warped product manifolds. Let (E_i, g_i, D^i) , i = 1, 2 denote two n_i -dimensional C^{∞} pseudo-Riemannian manifolds equipped with metric tensors g_i where D^i is the Levi-Civita connection of the metric g_i for i = 1, 2. Let $f_1 : E_1 \to (0, \infty)$ be a smooth positive real-valued function. A WPM, denoted by $E = E_1 \times_f E_2$, is the product manifold $E_1 \times E_2$ equipped with the metric tensor $g = g_1 \oplus f^2 g_2$ (For more details the reader is referred to [15, 17, 25, 38, 39] and references therein). Let $E = E_1 \times_f E_2$ be a pseudo-Riemannian WPM and $U_i, V_i \in \mathfrak{X}(E_i)$ for all i = 1, 2. Then, the Ricci tensor Ric of E is given by

- (1) $\operatorname{Ric}(U_1, V_1) = \operatorname{Ric}^1(U_1, V_1) \frac{n_2}{f} H^f(U_1, V_1),$
- (2) $\operatorname{Ric}(U_1, U_2) = 0$,
- (3) Ric $(U_2, V_2) = \text{Ric}^2 (U_2, V_2) f^\circ g_2 (U_2, V_2)$, where $f^\circ = f\Delta f + (n_2 1) \|\nabla f\|_1^2$, and Δ is the Laplacian on E_1 .

The scalar curvature a WPM satisfies

(2.3)
$$R = R_1 + \frac{1}{f^2} R_2 - 2n \frac{\Delta f}{f} - n (n-1) \frac{1}{f^2} g_1 (\nabla f, \nabla f).$$

Lemma 1. [38] In a WPM $E_1 \times_f E_2$, the Lie derivative with respect to a vector field $\zeta = \zeta_1 + \zeta_2$ satisfies

(2.4)
$$\mathcal{L}_{\zeta}g(U,V) = \left(\mathcal{L}_{\zeta_1}^1g_1\right)(U_1,V_1) + f^2\left(\mathcal{L}_{\zeta_2}^2g_2\right)(U_2,V_2) + 2f\zeta_1(f)g_2(U_2,V_2),$$

for any vector fields $U = U_1 + U_2$, $V = V_1 + V_2$, where $\mathcal{L}_{\zeta_i}^i$ is the Lie derivative on E_i with respect to ζ_i , for i = 1, 2.

3. ρ -Einstein solitons structure on WPMs

In this section, we investigate ρ -Einstein soliton structure on WPMs. For the rest of this work, let $E = E_1 \times_f E_2$ be a WPM with warping function f and let $g = g_1 \oplus f^2 g_2$. Also, let $\zeta = \zeta_1 + \zeta_2$ be a vector field on E. Let (E, g, ζ, λ) , be a ρ -Einstein soliton, that is,

(3.1)
$$\operatorname{Ric}(U,V) + \frac{1}{2}\mathcal{L}_{\zeta}g(U,V) = \lambda g(U,V) + \rho Rg(U,V)$$

Thus, for any vector fields $U = U_1 + U_2$, $V = V_1 + V_2$ and $\zeta = \zeta_1 + \zeta_2$ on $E = E_1 \times_f E_2$, Lemma 1 implies

(3.2)

$$\operatorname{Ric}^{1}(U_{1}, V_{1}) - \frac{n_{2}}{f} H^{f}(U_{1}, V_{1}) + \operatorname{Ric}^{2}(U_{2}, V_{2}) - f^{\circ}g_{2}(U_{2}, V_{2}) + \frac{1}{2} \left(\mathcal{L}_{\zeta_{1}}^{1}g_{1}\right)(U_{1}, V_{1}) + \frac{1}{2} f^{2} \left(\mathcal{L}_{\zeta_{2}}^{2}g_{2}\right)(U_{2}, V_{2}) + f\zeta_{1}(f)g_{2}(U_{2}, V_{2}) + \left(\lambda_{1}f^{2}g_{2}(U_{2}, V_{2}) + \lambda_{1}f^{2}g_{2}(U_{2}, V_{2}) + \rho Rg_{1}(U_{1}, V_{1}) + \rho Rf^{2}g_{2}(U_{2}, V_{2})\right)$$

Let $U = U_1$, $V = V_1$ and $H^f = \sigma g$, then

$$(3.3) \qquad \qquad + \left[-\lambda_1 + \lambda + \frac{1}{f} \sigma + \rho R \right] g_1(U_1, V_1)$$

(3.4)
$$= \lambda_1 g_1 (U_1, V_1) + \rho_1 R_1 g_1 (U_1, V_1).$$

Then, $(E_1, g_1, \zeta_1, \lambda_1)$ is a ρ_1 -Einstein soliton, where

$$\rho_1 R_1 + \lambda_1 = \rho R + \frac{n_2}{f}\sigma + \lambda.$$

Now, let $U = U_2$ and $V = V_2$, then

$$\begin{aligned} \operatorname{Ric}^{2}\left(U_{2}, V_{2}\right) &- f^{\circ}g_{2}\left(U_{2}, V_{2}\right) \\ &+ \frac{1}{2}f^{2}\left(\mathcal{L}_{\zeta_{2}}^{2}g_{2}\right)\left(U_{2}, V_{2}\right) + f\zeta_{1}\left(f\right)g_{2}\left(U_{2}, V_{2}\right) \\ &= \lambda f^{2}g_{2}\left(U_{2}, V_{2}\right) + \rho R f^{2}g_{2}\left(U_{2}, V_{2}\right). \end{aligned}$$

Thus,

(3.5)

$$\operatorname{Ric}^{2}(U_{2}, V_{2}) + \frac{1}{2}f^{2}\left(\mathcal{L}_{\zeta_{2}}^{2}g_{2}\right)(U_{2}, V_{2})$$

$$= \left[\lambda f^{2} + f^{\circ} - f\zeta_{1}\left(f\right) + \rho Rf^{2}\right]g_{2}\left(U_{2}, V_{2}\right)$$

$$= \lambda_{2}g_{2}\left(U_{2}, V_{2}\right) + \left[-\lambda_{2} + \lambda f^{2} + f^{\circ} - f\zeta_{1}\left(f\right) + \rho Rf^{2}\right]g_{2}\left(U_{2}, V_{2}\right)$$

$$= \lambda_{2}q_{2}\left(U_{2}, V_{2}\right) + \rho_{2}R_{2}q_{2}\left(U_{2}, V_{2}\right).$$

Then, $(E_2, g_2, f^2 \zeta_2, \lambda_2)$ is a ρ_2 -Einstein soliton, where

(3.6)
$$\rho_2 R_2 + \lambda_2 = \rho R f^2 + \lambda f^2 + f^\circ - f \zeta_1 (f) \, .$$

Theorem 2. Let $(E, g, \zeta, \lambda, \rho)$ be a ρ -Einstein soliton. Then,

(1) $(E_1, g_1, \zeta_1, \lambda_1)$ is a ρ_1 -Einstein soliton if $H^f = \sigma g$ where

$$\rho_1 R_1 + \lambda_1 = \rho R + \frac{n_2}{f}\sigma + \lambda.$$

(2) $(E_2, g_2, f^2\zeta_2, \lambda_2)$ is a ρ_2 -Einstein soliton, where

$$\rho_2 R_2 + \lambda_2 = \rho R f^2 + \lambda f^2 + f^\circ - f \zeta_1 (f)$$

Let (E_1, g_1) and (E_2, g_2) be two Einstein manifolds with factors μ_1 and μ_2 respectively, and let $H^f = \sigma g$. Then Equation (3.2) becomes

$$\mu_1 g_1 (U_1, V_1) + \mu_2 g_2 (U_2, V_2) - \frac{n_2}{f} \sigma g_1 (U_1, V_1) - f^{\circ} g_2 (U_2, V_2) + \frac{1}{2} \left(\mathcal{L}_{\zeta_1}^1 g_1 \right) (U_1, V_1) + \frac{1}{2} f^2 \left(\mathcal{L}_{\zeta_2}^2 g_2 \right) (U_2, V_2) + f \zeta_1 (f) g_2 (U_2, V_2) \lambda g_1 (U_1, V_1) + \lambda f^2 g_2 (U_2, V_2) + \rho R g_1 (U_1, V_1) + \rho R f^2 g_2 (U_2, V_2) .$$

Thus,

=

(3.7)
$$\left(\mathcal{L}_{\zeta_{1}}^{1}g_{1}\right)\left(U_{1},V_{1}\right) = 2\left[\lambda + \frac{n_{2}}{f}\sigma - \mu_{1} + \rho R\right]g_{1}\left(U_{1},V_{1}\right),$$

(3.8) $\left(\mathcal{L}_{\zeta_{2}}^{2}g_{2}\right)\left(U_{2},V_{2}\right) = \frac{2}{f^{2}}\left[f^{\circ} - \mu_{2} - f\zeta_{1}\left(f\right) + \lambda f^{2} + \rho R f^{2}\right]g_{2}\left(U_{2},V_{2}\right).$
That is ζ_{1} and ζ_{2} are conformal vector fields on E_{1} and E_{2}

That is, ζ_1 and ζ_2 are conformal vector fields on E_1 and E_2 .

Theorem 3. In a ρ -Einstein soliton (E, g, ζ, λ) , $E = E_1 \times_f E_2$,

- (1) ζ_1 is conformal vector field on E_1 if $H^f = \sigma g$ and (E_1, g_1) is Einstein, and
- (2) ζ_2 is conformal vector field on E_2 if (E_2, g_2) is Einstein.

The symmetry assumptions induced by Killing vector fields, denoted by KVF, are widely used in general relativity to gain a better understanding of the relationship between matter and the geometry of a space-time. In this case, the metric tensor does not change along the flow lines of a KVF. Such symmetry is measured by the number of independent KVFs. Manifolds of constant curvature admit the maximum number of independent KVFs. Similarly, conformal vector fields, denoted by CVF, play a crucial role in the study of space-time physics. The flow lines of a CVF are conformal transformations of the ambient space. Thus, the existence and characterization of CVFs in pseudo-Riemannian manifolds are essential and are extensively discussed by both mathematicians and physicists.

Now, assume that ζ is a conformal vector field on E, i.e., $\mathcal{L}_{\zeta}g = 2\omega g$ for some scalar function ω , then ω is constant and

(3.9)
$$\operatorname{Ric}(U, V) = (\lambda - \omega + \rho R) g(U, V).$$

This equation implies

$$\operatorname{Ric}^{1}(U_{1}, V_{1}) - \frac{n_{2}}{f} H^{f}(U_{1}, V_{1}) + \operatorname{Ric}^{2}(U_{2}, V_{2}) - f^{\circ}g_{2}(U_{2}, V_{2})$$

(3.10) =
$$[\lambda - \omega + \rho R] g_1 (U_1, V_1) + [\lambda - \omega + \rho R] f^2 g_2 (U_2, V_2).$$

If $H^f = \sigma g$, then

(3.11)
$$\operatorname{Ric}^{1}(U_{1}, V_{1}) = \left[\lambda - \omega + \rho R + \frac{n_{2}}{f}\sigma\right]g_{1}(U_{1}, V_{1}),$$
$$\operatorname{Ric}^{2}(U_{2}, V_{2}) = \left[f^{\circ} + \lambda f^{2} - \omega f^{2} + \rho R f^{2}\right]g_{2}(U_{2}, V_{2})$$

That is, both the base and fibre manifolds are Einstein.

Theorem 4. In a ρ -Einstein soliton (E, g, ζ, λ) , $E = E_1 \times_f E_2$ admitting a conformal vector field $\zeta = \zeta_1 + \zeta_2$,

- (1) (E_1, g_1) is Einstein if $H^f = \sigma g$, and
- (2) (E_2, g_2) is Einstein.

The condition $H^f = \sigma g$ is equivalent to ∇f is a concircular vector field. Equation (3.2) yields

$$\operatorname{Ric}^{1}(U_{1}, V_{1}) - \frac{n_{2}}{f} H^{f}(U_{1}, V_{1}) + \frac{1}{2} \left(\mathcal{L}_{\zeta_{1}}^{1} g_{1} \right) (U_{1}, V_{1})$$

$$\lambda g_{1}(U_{1}, V_{1}) + \rho R g_{1}(U_{1}, V_{1}) .$$

Suppose that ∇f is a concircular vector field with factor γ , i.e., $D_{U_1} \nabla f = \gamma U_1$, we get

(3.12)

$$\operatorname{Ric}^{1}(U_{1}, V_{1}) + \frac{1}{2} \left(\mathcal{L}_{\zeta_{1}}^{1}g_{1}\right) (U_{1}, V_{1})$$

$$= \lambda g_{1}(U_{1}, V_{1}) + \left[\frac{\gamma n_{2}}{f} + \rho R\right] g_{1}(U_{1}, V_{1})$$

$$= \lambda_{1}g_{1}(U_{1}, V_{1}) + \left[-\lambda_{1} + \lambda + \frac{\gamma n_{2}}{f} + \rho R\right] g_{1}(U_{1}, V_{1})$$

$$(3.13)$$

$$= \lambda_{1}g_{1}(U_{1}, V_{1}) + \rho_{1}R_{1}g_{1}(U_{1}, V_{1}).$$

Then, $(E_1, g_1, \zeta_1, \lambda_1)$ is a ρ_1 -Einstein soliton where

(3.14)
$$\rho_1 R_1 + \lambda_1 = \frac{\gamma n_2}{f} + \rho R.$$

Corollary 3. In a ρ -Einstein soliton $(E, g, \zeta, \lambda, \rho)$, assume that ∇f is a concircular vector field with factor γ , then $(E_1, g_1, \zeta_1, \lambda_1)$ is a ρ_1 -Einstein soliton where

(3.15)
$$\rho_1 R_1 + \lambda_1 = \frac{\gamma n_2}{f} + \rho R.$$

Bang-Yen Chen proved that a Riemannian manifold admitting a concircular vector field is locally a warped product of the form $I \times_{\varphi} \bar{E}_1$ [11]. Thus, the aforementioned warped product manifold becomes a sequential warped product manifold [16].

From Lemma 1, it is clear that ζ_1, ζ_2 are conformal vector fields on E_1, E_2 with conformal factors η_1, η_2 , respectively. Then, by employing equation 3.11 we get

$$\mathcal{L}_{\zeta_{1}}^{1} \operatorname{Ric}^{1} (U_{1}, V_{1}) = \left[\frac{n_{2}}{f} \sigma + \lambda - \omega + \rho R \right] \mathcal{L}_{\zeta_{1}}^{1} g_{1} (U_{1}, V_{1}) + \zeta_{1} \left(\frac{n_{2}}{f} \sigma + \lambda - \omega + \rho R \right) g_{1} (U_{1}, V_{1}) .$$
$$\mathcal{L}_{\zeta_{1}}^{1} \operatorname{Ric}^{1} (U_{1}, V_{1}) = \left[\left(\frac{n_{2}}{f} \sigma + \lambda - \omega + \rho R \right) \eta_{1} \\+ \zeta_{1} \left(\frac{n_{2}}{f} \sigma + \lambda - \omega + \rho R \right) \right] g_{1} (U_{1}, V_{1}) \\= \varphi_{1} g_{1} (U_{1}, V_{1}) .$$

where

(3.16)
$$\varphi_1 = \left[\frac{n_2}{f}\sigma + \lambda - \omega + \rho R\right]\eta_1 + \zeta_1\left(\frac{n_2}{f}\sigma + \lambda - \omega + \rho R\right).$$

Also,

$$\mathcal{L}_{\zeta_{2}}^{2} \operatorname{Ric}^{2} (U_{2}, V_{2}) = \left[\left(\frac{f^{\circ}}{f^{2}} + \lambda - \omega \right) f^{2} + \rho R f^{2} \right] \mathcal{L}_{\zeta_{2}}^{2} g_{2} (U_{2}, V_{2})$$

$$\mathcal{L}_{\zeta_{2}}^{2} \operatorname{Ric}^{2} (U_{2}, V_{2}) = f^{2} \left[\frac{f^{\circ}}{f^{2}} + \lambda - \omega + \rho R \right] \eta_{2} g_{2} (U_{2}, V_{2})$$

$$= \varphi_{2} g_{2} (U_{2}, V_{2})$$

(3.17) where

(3.18)
$$\varphi_2 = f^2 \left[\frac{f^{\circ}}{f^2} + \lambda - \omega + \rho R \right] \eta_2.$$

Theorem 5. In a ρ -Einstein soliton (E, g, ζ, λ) admitting a conformal vector field ζ with factor ω , (1) $\int_{-1}^{1} \operatorname{Bic}^{1}(U_{1}, V_{2}) = \cos \alpha_{1}(U_{2}, V_{2})$ if $H_{1}^{f} = \sigma a_{2}$ where

(1)
$$\mathcal{L}_{\zeta_1}^{\circ} \operatorname{Ric}^{\circ}(U_1, V_1) = \varphi_1 g_1(U_1, V_1) \text{ if } H^{\circ} = \sigma g, \text{ where}$$

(3.19) $\varphi_1 = \left[\frac{n_2}{f}\sigma + \lambda - \omega + \rho R\right] \eta_1 + \zeta_1 \left(\frac{n_2}{f}\sigma + \lambda - \omega + \rho R\right),$
(2) $\mathcal{L}_{\zeta_2}^2 \operatorname{Ric}^2(U_2, V_2) = \varphi_2 g_2(U_2, V_2), \text{ where}$

(3.20)
$$\varphi_2 = f^2 \left[\frac{f^{\circ}}{f^2} + \lambda - \omega + \rho R \right] \eta_2.$$

The Killing vector fields provide the isometries of space-time whereas the symmetry of the energy-momentum tensor is given by the Ricci collineation. A vector field ζ represents a Ricci collineation if the Ricci tensor is invariant under the Lie dragging through flow lines of ζ . The foregoing conclusion establishes the shape of the Lie derivative of the Ricci tensor with regard to the fields ζ_i , on M_i , i = 1, 2.

Let $(E, g, \zeta, \lambda, \rho)$ be a gradient ρ -Einstein soliton with $\zeta = \nabla u$, then

$$\operatorname{Ric} + H^u = \lambda g + \rho R g.$$

Thus,

$$\operatorname{Ric} (U_1 + U_2, V_1 + V_2) + H^u (U_1 + U_2, V_1 + V_2) = \lambda g (U_1 + U_2, V_1 + V_2) + \rho Rg (U_1 + U_2, V_1 + V_2).$$

Let $U = U_1, V = V_1$

$$\operatorname{Ric}^{1}(U_{1}, V_{1}) - \frac{n_{2}}{f} H^{f}(U_{1}, V_{1}) + H_{1}^{u_{1}}(U_{1}, V_{1})$$
$$= \lambda g_{1}(U_{1}, V_{1}) + \rho R g_{1}(U_{1}, V_{1})$$

$$\operatorname{Ric}^{1}(U_{1}, V_{1}) + H_{1}^{\phi_{1}}(U_{1}, V_{1})$$

= $\lambda_{1}g_{1}(U_{1}, V_{1}) + (-\lambda_{1} + \lambda + \rho R) g_{1}(U_{1}, V_{1})$
= $\lambda_{1}g_{1}(U_{1}, V_{1}) + \rho_{1}R_{1}g_{1}(U_{1}, V_{1}),$

where $\phi_1 = u_1 - u_2 \ln f$ and $u_1 = u$ at a fixed point of E_2 . Then, $(E_1, g_1, \zeta_1, \rho_1)$ is a gradient ρ_1 -Einstein soliton where

$$\rho_1 R_1 + \lambda_1 = \lambda + \rho R.$$

Now, let $U = U_2, V = V_2$, then

$$\operatorname{Ric}^{2} (U_{2}, V_{2}) - f^{\circ}g_{2} (U_{2}, V_{2}) + H_{2}^{\phi_{2}} (U_{2}, V_{2})$$

= $\lambda f^{2}g_{2} (U_{2}, V_{2}) + \rho R f^{2}g_{2} (U_{2}, V_{2}).$

This yields

$$\begin{aligned} \operatorname{Ric}^{2}\left(U_{2}, V_{2}\right) + H_{2}^{\phi_{2}}\left(U_{2}, V_{2}\right) \\ &= \lambda_{2}g_{2}\left(U_{2}, V_{2}\right) + \left(-\lambda_{2} + \lambda f^{2} + f^{\circ} + \rho R f^{2}\right)g_{2}\left(U_{2}, V_{2}\right) \\ &= \lambda_{2}g_{2}\left(U_{2}, V_{2}\right) + \rho_{2}R_{2}g_{2}\left(U_{2}, V_{2}\right), \end{aligned}$$

where $u_2 = u$ at a fixed point of E_1 . Then, $(E_2, g_2, \zeta_2, \rho_2)$ is a gradient ρ_2 -Einstein soliton where

$$\rho_2 R_2 + \lambda_2 = \lambda f^2 + f^\circ + \rho R f^2.$$

Theorem 6. In a gradient ρ -Einstein soliton (E, g, ζ, λ) ,

(1) $(E_1, g_1, \zeta_1, \lambda_1)$ is a gradient ρ_1 -Einstein soliton where

$$\rho_1 R_1 + \lambda_1 = \lambda + \rho R_2$$

(2) $(E_2, g_2, \zeta_2, \lambda_2)$ is a gradient ρ_2 -Einstein soliton where

$$\rho_2 R_2 + \lambda_2 = \lambda f^2 + f^\circ + \rho R f^2.$$

This theorem provides an inheritance property of the structure of the gradient ρ -Einstein soliton structure to factor manifolds of the warped product manifold.

3.1. $\bar{\rho}$ -Einstein solitons on a generalized Robertson-Walker space-times. Let $\bar{E} = I \times_f E$ be a generalized Robertson-Walker space-time with metric $\bar{g} = -dt^2 \oplus f^2 g$. Then the Ricci curvature tensor Ric on E is

$$\bar{\mathrm{Ric}} (\partial_t, \partial_t) = -\frac{nf}{f}, \quad \bar{\mathrm{Ric}} (U, \partial_t) = 0$$
$$\bar{\mathrm{Ric}} (U, V) = \mathrm{Ric} (U, V) - f^{\diamondsuit} g (U, V) ,$$

where $f^{\diamondsuit} = -f\ddot{f} - (n-1)\dot{f}^2$, see [16, 18, 26].

Lemma 2. Suppose that $h\partial_t, u\partial_t, v\partial_t \in \mathfrak{X}(I)$ and $\zeta, U, V \in \mathfrak{X}(E)$, then

$$ar{\mathcal{L}}_{ar{\zeta}}ar{g}\left(ar{U},ar{V}
ight) = -2\dot{h}uv + f^2\mathcal{L}_{\zeta}g\left(U,V
ight) + 2hf\dot{f}g\left(U,V
ight),$$

where $\overline{U} = u\partial_t + U$, $\overline{V} = v\partial_t + V$ and $\overline{\zeta} = h\partial_t + \zeta$.

Let $(\bar{E}, \bar{g}, \bar{\zeta}, \bar{\lambda})$, $\bar{E} = I \times_f E$, be a $\bar{\rho}$ -Einstein soliton GRW space-time. Then,

$$\bar{\mathrm{Ric}}\left(\bar{U},\bar{V}\right) + \frac{1}{2}\bar{\mathcal{L}}_{\bar{\zeta}}\bar{g}\left(\bar{U},\bar{V}\right) = \bar{\lambda}\bar{g}\left(\bar{U},\bar{V}\right) + \bar{\rho}\bar{R}\bar{g}\left(\bar{U},\bar{V}\right)$$

where $\overline{U} = u\partial_t + U$, $\overline{V} = v\partial_t + V$ and $\overline{\zeta} = h\partial_t + \zeta$ are vector fields on \overline{E} . Thus,

$$\begin{aligned} &-\frac{n\ddot{f}}{f}uv + \operatorname{Ric}\left(U,V\right) - f^{\diamondsuit}g\left(U,V\right) - \dot{h}uv + \frac{1}{2}f^{2}\mathcal{L}_{\zeta}g\left(U,V\right) + hf\dot{f}g\left(U,V\right) \\ &= -\bar{\lambda}uv + f^{2}\bar{\lambda}g\left(U,V\right) - \bar{\rho}\bar{R}uv + \bar{\rho}\bar{R}f^{2}g\left(U,V\right). \end{aligned}$$

This yields

$$n\ddot{f} = f\left(\bar{\lambda} - \dot{h}\right) + \bar{\rho}\bar{R}f,$$

and

$$\operatorname{Ric}\left(U,V\right) + \frac{1}{2}f^{2}\mathcal{L}_{\zeta}g\left(U,V\right)$$
$$= \bar{\lambda}f^{2}g\left(U,V\right) + \bar{\rho}\bar{R}f^{2}g\left(U,V\right) + f^{\Diamond}g\left(U,V\right) - hf\dot{f}g\left(U,V\right) + f^{\Diamond}g\left(U,V\right) + f^{\Diamond}g\left(U,V\right) - hf\dot{f}g\left(U,V\right) + f^{\Diamond}g\left(U,V\right) + f^{\diamond}g\left(U,V\right)$$

Thus, $(E, g, f^2\zeta, \rho)$ is a ρ -Einstein soliton, where

$$\rho R + \lambda = \left(\bar{\lambda} + \bar{\rho}\bar{R}\right)f^2 + f^\diamondsuit - hf\dot{f}.$$

Theorem 7. In a $\bar{\rho}$ -Einstein soliton $(\bar{E}, \bar{g}, \bar{\zeta}, \bar{\lambda})$, where $\bar{E} = I \times_f E$ is a generalized Robertson-Walker space-time, it is

(1) $n\ddot{f} = f\left(\bar{\lambda} - \dot{h}\right) + \bar{\rho}\bar{R}f,$ (2) $(E, g, f^2\zeta, \lambda)$ is a ρ -Einstein soliton, where $\rho R + \lambda = (\bar{\lambda} + \bar{\rho}\bar{R}) f^2.$

In a $\bar{\rho}$ -Einstein soliton $(\bar{E}, \bar{g}, \bar{\zeta}, \bar{\lambda})$, where $\bar{E} = I \times_f E$ is a generalized Robertson-Walker space-time and $\bar{\zeta} = h\partial_t + \zeta$ is a conformal vector field on \bar{E} , i.e., $\bar{\mathcal{L}}_{\bar{\zeta}}\bar{g} = \bar{\omega}\bar{g}$, and $\bar{\omega}$ is constant (see Section 2), then

$$\bar{\mathrm{Ric}}\left(\bar{U},\bar{V}\right) = \left(\bar{\lambda} - \bar{\omega} + \bar{\rho}\bar{R}\right)\bar{g}\left(\bar{U},\bar{V}\right).$$

Thus,

$$-\frac{n\ddot{f}}{f}uv + \operatorname{Ric}\left(U,V\right) - f^{\diamond}g\left(U,V\right)$$
$$= -\left(\bar{\lambda} - \bar{\omega} + \bar{\rho}\bar{R}\right)uv + \left(\bar{\lambda} - \bar{\omega} + \bar{\rho}\bar{R}\right)f^{2}g\left(U,V\right).$$

Thus,

(3.21)
$$\frac{n\ddot{f}}{f} = \bar{\lambda} - \bar{\omega} + \bar{\rho}\bar{R}.$$

(3.22)
$$\operatorname{Ric}(U,V) = \left[f^{\diamondsuit} + \left(\bar{\lambda} - \bar{\omega} + \bar{\rho}\bar{R}\right)f^{2}\right]g\left(U,V\right).$$

By using equations (3.21) we get

$$\operatorname{Ric}(U,V) = \left[(n-1)\left(f\ddot{f} - \dot{f}^{2}\right) \right] g(U,V) \,.$$

Therefore, (E,g) is an Einstein manifold with factor $\mu = (n-1)\left(f\ddot{f} - \dot{f}^2\right)$.

Theorem 8. In a $\bar{\rho}$ -Einstein soliton $(\bar{E}, \bar{g}, \bar{\zeta}, \bar{\lambda})$ admitting a conformal vector field $\bar{\zeta} = h\partial_t + \zeta$, where $\bar{E} = I \times_f E$ is a generalized Robertson-Walker space-time, (E, g) is an Einstein manifold with factor $\mu = (n-1)\left(f\ddot{f} - \dot{f}^2\right)$.

From Lemma 2, we get ζ is a conformal vector field on E with conformal factor η . Then, by using theorem 8, we get

$$\mathcal{L}_{\zeta} \operatorname{Ric} \left(U, V \right) = \left[(n-1) \left(f \ddot{f} - \dot{f}^2 \right) \right] \mathcal{L}_{\zeta} g \left(U, V \right)$$
$$= (n-1) \left(f \ddot{f} - \dot{f}^2 \right) \eta g \left(U, V \right)$$
$$= \varphi g \left(U, V \right),$$

where

$$\varphi = (n-1) \left(f\ddot{f} - \dot{f}^2 \right) \eta.$$

Theorem 9. In a $\bar{\rho}$ -Einstein soliton $(\bar{E}, \bar{g}, \bar{\zeta}, \bar{\lambda})$ admitting a conformal vector field $\bar{\zeta} = h\partial_t + \zeta$, where $\bar{E} = I \times_f E$ is a generalized Robertson-Walker space-time,

$$\mathcal{L}_{\zeta} \operatorname{Ric}\left(U,V\right) = \varphi g\left(U,V\right),$$

where

$$\varphi = (n-1)\left(f\ddot{f} - \dot{f}^2\right)\eta.$$

In a $\bar{\rho}$ -Einstein soliton $(\bar{E}, \bar{g}, \bar{\zeta}, \bar{\lambda})$, where $\bar{E} = I \times_f E$ is a generalized Robertson-Walker space-time, it is

$$\bar{\mathrm{Ric}}\left(\bar{U},\bar{V}\right) + \frac{1}{2}\bar{\mathcal{L}}_{\bar{\zeta}}\bar{g}\left(\bar{U},\bar{V}\right) = \bar{\lambda}\bar{g}\left(\bar{U},\bar{V}\right) + \bar{\rho}\bar{R}\bar{g}\left(\bar{U},\bar{V}\right)$$

Assume that (E,g) is Einstein, then for any vector fields $\overline{U} = U, \overline{V} = V$ and $\overline{\zeta} = h\partial_t + \zeta$ we have get

$$\mathcal{L}_{\zeta}g\left(U,V\right) = 2\left[\frac{1}{f^{2}}\left(-\mu + f^{\diamondsuit} - hf\dot{f} + f^{2}\bar{\lambda}\right) + \bar{\rho}\bar{R}\right]g\left(U,V\right)$$
$$= \eta g\left(U,V\right).$$

Then, ζ is a conformal vector field on E with conformal factor η where

$$\eta = 2\left[\frac{1}{f^2}\left(-\mu + f^{\diamondsuit} - hf\dot{f} + f^2\bar{\lambda}\right) + \bar{\rho}\bar{R}\right].$$

Theorem 10. In a $\bar{\rho}$ -Einstein soliton $(\bar{E}, \bar{g}, \bar{\zeta}, \bar{\lambda})$, where $\bar{E} = I \times_f E$ is a generalized Robertson-Walker space-time, ζ is a conformal vector field on E if (E, g) is Einstein manifold with conformal factor η where

$$\eta = 2\left[\frac{1}{f^2}\left(-\mu + f^{\diamondsuit} - hf\dot{f} + f^2\bar{\lambda}\right) + \bar{\rho}\bar{R}\right].$$

3.2. $\bar{\rho}$ -Einstein solitons on a standard static space-times. A standard static space-time (also called *f*-associated SSST) is a Lorentzian warped product manifold $\bar{E} = I_f \times E$ furnished with the metric $\bar{g} = -f^2 dt^2 \oplus g$. The Ricci curvature tensor Ric on *E* is

$$\bar{\operatorname{Ric}} (\partial_t, \partial_t) = f \Delta f \quad \bar{\operatorname{Ric}} (U, \partial_t) = 0 \bar{\operatorname{Ric}} (U, V) = \operatorname{Ric} (U, V) - \frac{1}{f} H^f (U, V) ,$$

where Δf denotes the Laplacian of f on E. This space-time is a generalization of some notable classical space-times. The Einstein static universe and Minkowski space-time are good examples of standard static space-times [4].

Lemma 3. Suppose that $h\partial_t, u\partial_t, v\partial_t \in \mathfrak{X}(I)$ and $\zeta, U, V \in \mathfrak{X}(E)$, then

$$\bar{\mathcal{L}}_{\bar{\zeta}}\bar{g}\left(\bar{U},\bar{V}\right) = \mathcal{L}_{\zeta}g\left(U,V\right) - 2uvf^{2}\left(\dot{h} + \zeta\left(\ln f\right)\right),$$

where $\overline{U} = u\partial_t + U$, $\overline{V} = v\partial_t + V$ and $\overline{\zeta} = h\partial_t + \zeta$.

Let $\bar{E} = I_f \times E$ be a $\bar{\rho}$ -Einstein soliton $(\bar{E}, \bar{g}, \bar{\zeta}, \bar{\lambda})$, then

$$\bar{\mathrm{Ric}}\left(\bar{U},\bar{V}\right) + \frac{1}{2}\bar{\mathcal{L}}_{\bar{\zeta}}\bar{g}\left(\bar{U},\bar{V}\right) = \bar{\lambda}\bar{g}\left(\bar{U},\bar{V}\right) + \bar{\rho}\bar{R}\bar{g}\left(\bar{U},\bar{V}\right)$$

where $\overline{U} = u\partial_t + U$, $\overline{V} = v\partial_t + V$ and $\overline{\zeta} = h\partial_t + \zeta$ are vector fields on \overline{E} . Then,

$$-\Delta f + f\dot{h} + \zeta \left(f \right) = \left[\bar{\lambda} + \bar{\rho}\bar{R} \right] f_{\pm}$$

and

$$\begin{aligned} \operatorname{Ric}\left(U,V\right) &+ \frac{1}{2}\mathcal{L}_{\zeta}g\left(U,V\right) \\ &= \quad \bar{\lambda}g\left(U,V\right) + \bar{\rho}\bar{R}g\left(U,V\right) + \frac{1}{f}H^{f}\left(U,V\right) \end{aligned}$$

Suppose that $H^{f}(U, V) = \sigma g$, then

$$\operatorname{Ric}(U,V) + \frac{1}{2}\mathcal{L}_{\zeta}g(U,V) = \lambda g(U,V) + \rho Rg(U,V),$$

where

$$\rho R + \lambda = \bar{\lambda} + \frac{\sigma}{f} + \bar{\rho}\bar{R}.$$

Theorem 11. If $H^f(U,V) = \sigma g$ in a $\bar{\rho}$ -Einstein soliton $(\bar{E}, \bar{g}, \bar{\zeta}, \bar{\lambda})$ where $\bar{E} = I_f \times E$ is a standard static space-time, then (E, g, ζ, λ) is a ρ -Einstein soliton, where

$$\rho R + \lambda = \bar{\lambda} + \frac{\sigma}{f} + \bar{\rho}\bar{R}.$$

The condition $H^f = \sigma g$ is equivalent to ∇f is a concircular vector field with factor γ , i.e., $D_U \nabla f = \gamma U$. Now, one gets

$$\operatorname{Ric}\left(U,V\right) - \frac{\gamma}{f}g\left(U,V\right) + \frac{1}{2}\mathcal{L}_{\zeta}g\left(U,V\right)$$
$$= \lambda g\left(U,V\right) + \left(-\lambda + \bar{\lambda} + \frac{\gamma}{f} + \bar{\rho}\bar{R}\right)g\left(U,V\right)$$
$$= \lambda g\left(U,V\right) + \rho Rg\left(U,V\right).$$

Then, (E, g) is an ρ -Einstein soliton where

$$\rho R + \lambda = \bar{\lambda} + \frac{\gamma}{f} + \bar{\rho}\bar{R}$$

Corollary 4. If ∇f is a concircular vector field with factor σ on a $\bar{\rho}$ -Einstein soliton $(\bar{E}, \bar{g}, \bar{\zeta}, \bar{\lambda})$ where $\bar{E} = I_f \times E$ is a standard static space-time, then (E, g, ζ, λ) is an ρ -Einstein soliton, where

$$\rho R + \lambda = \bar{\lambda} + \frac{\gamma}{f} + \bar{\rho}\bar{R}.$$

Now, assume that $\bar{\zeta} = h\partial_t + \zeta$ is a conformal vector field on \bar{E} , i.e., $\bar{\mathcal{L}}_{\bar{\zeta}}\bar{g} = \omega\bar{g}$, then

$$\operatorname{Ric}\left(\bar{U},\bar{V}\right) = \left(\bar{\lambda} - \bar{\omega} + \bar{\rho}\bar{R}\right)\bar{g}\left(\bar{U},\bar{V}\right)$$

Then

(3.23)
$$-\frac{\Delta f}{f} = \bar{\lambda} - \bar{\omega} + \bar{\rho}\bar{R}.$$

Also,

$$\operatorname{Ric}(U,V) - \frac{1}{f}H^{f}(U,V) = \left(\bar{\lambda} - \bar{\omega} + \bar{\rho}\bar{R}\right)g(U,V).$$

If $H^{f}(U, V) = \sigma g$, then by using equation(3.23) we get

$$\operatorname{Ric}(U, V) = \frac{1}{f} \left(\sigma - \Delta f \right) g(U, V)$$

Thus, (E,g) is an Einstein manifold with factor $\mu = \frac{1}{f} (\sigma - \Delta f)$.

Theorem 12. If $\bar{\zeta} = h\partial_t + \zeta$ is a conformal vector field on a $\bar{\rho}$ -Einstein soliton $(\bar{E}, \bar{g}, \bar{\zeta}, \bar{\lambda})$ where $\bar{E} = I_f \times E$ is a standard static space-time and $H^f(U, V) = \sigma g$, then (E, g) is an Einstein manifold with factor $\mu = \frac{1}{f} (\sigma - \Delta f)$.

From Lemma 3, we get ζ is a conformal vector field on E with conformal factor η . Then, by using theorem 12, we get

$$\mathcal{L}_{\zeta} \operatorname{Ric} \left(U, V \right) = \frac{1}{f} \left(\sigma - \Delta f \right) \mathcal{L}_{\zeta} g \left(U, V \right).$$

Since $\bar{\zeta} = h\partial_t + \zeta$ is a conformal vector field on \bar{E} , ζ is a conformal vector field on E with conformal factor η . Thus

$$\mathcal{L}_{\zeta} \operatorname{Ric} \left(U, V \right) = \frac{1}{f} \left(\sigma - \Delta f \right) \eta g \left(U, V \right) = \varphi g \left(U, V \right),$$

where

$$\varphi = \frac{1}{f} \left(\sigma - \Delta f \right) \eta$$

Theorem 13. If $\bar{\zeta} = h\partial_t + \zeta$ is a conformal vector field on a $\bar{\rho}$ -Einstein soliton $(\bar{E}, \bar{g}, \bar{\zeta}, \bar{\lambda})$ where $\bar{E} = I_f \times E$ is a standard static space-time, then

$$\mathcal{L}_{\zeta} \operatorname{Ric} \left(U, V \right) = \varphi g \left(U, V \right),$$

where

$$\varphi = \frac{1}{f} \left(\sigma - \Delta f \right) \eta.$$

In a $\bar{\rho}$ -Einstein soliton standard static space-time $(\bar{E}, \bar{g}, \bar{\zeta}, \bar{\lambda}, \rho)$, it is

$$\bar{\mathrm{Ric}}\left(\bar{U},\bar{V}\right) + \frac{1}{2}\bar{\mathcal{L}}_{\bar{\zeta}}\bar{g}\left(\bar{U},\bar{V}\right) = \bar{\lambda}\bar{g}\left(\bar{U},\bar{V}\right) + \bar{\rho}\bar{R}\bar{g}\left(\bar{U},\bar{V}\right).$$

Assume that (E, g) is Einstein manifold and $H^{f}(U, V) = \sigma g$, then

$$\mathcal{L}_{\zeta}g\left(U,V\right) = 2\left[\frac{\sigma}{f} - \mu + \bar{\lambda} + \bar{\rho}\bar{R}\right]g\left(U,V\right).$$

Thus, ζ is a conformal vector field on E.

Theorem 14. In a $\bar{\rho}$ -Einstein soliton $(\bar{E}, \bar{g}, \bar{\zeta}, \bar{\lambda})$ where $\bar{E} = I_f \times E$ is a standard static space-time, assume that (E, g) is Einstein manifold and $H^f(U, V) = \sigma g$, then ζ is a conformal vector field on E.

Acknowledgement 1. This project was supported by the Researchers Supporting Project number (RSP2022R413), King Saud University, Riyadh, Saudi Arabia.

References

- Ilka Agricola, Thomas Friedrich, Global Analysis: Differential Forms in Analysis, Geometry, and Physics. Vol. 52. American Mathematical Soc., 2002.
- [2] A. Barros and E. Ribeiro Jr, Some characterizations for compact almost Ricci soliton, Proc. Amer. Math. Soc., 140(3) (2011), 1033–1040.
- [3] A. Barros, J. N. Gomes and E. Ribeiro Jr, A note on rigidity of the almost Ricci soliton, Archiv der Mathematik, 100(5) (2013), 481–490.
- [4] A. L. Besse, *Einstein Manifolds*, Classics in Mathematics, Springer-Verlag, Berlin, (2008).
- [5] Simon Brendle, Rotational symmetry of Ricci solitons in higher dimensions, Journal of Differential Geometry 97 (2014) 191-214.
- [6] M. Brozos-V´azquez, E. Garcia-Rio and S. Gavino-Fern´ andez, Locally conformally flat Lorentzian gradient Ricci solitons, J. Geom. Anal. 23 (2013) 1196-1212.
- [7] J. P. Bourguignon, *Ricci curvature and Einstein metrics*. Global differential geometry and global analysis, Berlin, 1979, 42–63, Lecture Notes in Math. 838, Springer, Berlin, 1981
- [8] G. Catino, Generalized quasi-Einstein manifolds with harmonic weyl tensor, Math. Z., 271 (2012) 751–756.
- [9] G. Catino and L. Mazzieri, Gradient Einstein solitons, Nonlinear Anal., 132 (2016), 66-94.
- [10] Bang-Yen Chen, Classification of torqued vector fields and its applications to Ricci solitons, Kragujevac Journal of Mathematics, Volume 41(2) (2017), Pages 239–250.
- [11] Chen, Bang-Yen. "Some results on concircular vector fields and their applications to Ricci solitons." Bulletin of the Korean Mathematical Society 52, no. 5 (2015): 1535-1547.
- [12] B. Chow, P. Lu, and L. Ni, Hamilton's Ricci Flow, Graduate Studies in Mathematics, Amer. Math. Soc., 77 (2006).
- [13] De, Uday Chand, Carlo Alberto Mantica, Sameh Shenawy, and Bülent Ünal. "Ricci solitons on singly warped product manifolds and applications." Journal of Geometry and Physics 166 (2021): 104257.
- [14] Dwivedi, S., Some results on Ricci-Bourguignon solitons and almost solitons, Canad. Math. Bull., 00(0) (2020), 1–15.
- [15] De, Uday Chand, and Sameh Shenawy. "On Generalized Quasi-Einstein GRW Space-Times." International Journal of Geometric Methods in Modern Physics 16(2019), no. 8, 1950124.

- 14 N. BIN TURKI, SAMEH SHENAWY, H. K. EL-SAYIED, N. SYIED, AND C. A. MANTICA
- [16] U. C. De, Sameh Shenawy and Bulent Unal, Sequential Warped Products: Curvature and Killing Vector Fields, Filomat, 33(2019), no. 13, 4071–4083.
- [17] El-Sayied, H. K., Sameh Shenawy, and Noha Syied. "Conformal vector fields on doubly warped product manifolds and applications." Advances in Mathematical Physics 2016 (2016)., Article ID: 6508309, 11 pp
- [18] El-Sayied, H. K., Sameh Shenawy, and Noha Syied. "On symmetries of generalized Robertson-Walker spacetimes and applications." Journal of Dynamical Systems and Geometric Theories 15(2017), no. 1, 51-69.
- [19] R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differ. Geom., 17 (1982), 255–306.
- [20] Hu, Z., Li, D. and Xu, J., On generalized m-quasi-Einstein manifolds with constant scalar curvature, J. Math. Ann. Appl., 432(2) (2015), 733–743.
- [21] Huai-Dong Cao and Detang Zhou, On complete gradient shrinking Ricci solitons, Journal of Differential Geometry, 85 (2010) 175-186.
- [22] Huang, G. and Wei, Y., The classification of (m, ρ)-quasi-Einstein manifolds, Ann. Glob. Anal. Geom., 44 (2013), 269–282.
- [23] Huang, G., Integral pinched gradient shrinkingρ-Einstein solitons, J. Math. Ann. Appl., 451(2) (2017), 1045-1055.
- [24] Mancho Manev, Ricci-Like Solitons with Vertical Potential on Sasaki-Like Almost Contact B-Metric Manifolds, Results Math. 75, 136 (2020).
- [25] Mantica, Carlo Alberto, and Sameh Shenawy. "Einstein-like warped product manifolds." International Journal of Geometric Methods in Modern Physics 14(2017), no. 11, 1750166.
- [26] Mantica, Carlo Alberto, Luca Guido Molinari, Young Jin Suh, and Sameh Shenawy. Perfect-Fluid, Generalized Robertson-Walker Space-times, and Gray's Decomposition, Journal of Mathematical Physics 60(2019), 052506.
- [27] Mondal, C. K. and Shaikh, A. A., Some results on η-Ricci Soliton and gradientρ-Einstein soliton in a complete Riemannian manifold, Comm. Korean Math. Soc., 34(4) (2019), 1279-1287.
- [28] Ovidiu Munteanu, Natasa Sesum, On Gradient Ricci Solitons, Journal of Geometric Analysis 23 (2013) 539-561.
- [29] Patra, D. Some characterizations of ρ-Einstein solitons on Sasakian manifolds. Canadian Mathematical Bulletin, 2022, 1-14.
- [30] Peter Petersen and William Wylie, Rigidity of gradient Ricci solitons, Pacific Journal of Mathematics, 241 (2009) 329-345.
- [31] P. Petersen and W. Wylie, On the classification of gradient Ricci solitons, Geom. Topol. 14 (2010) 2277-2300.
- [32] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv:math/0211159, (2002).
- [33] S. Pigola, M. Rigoli and A. Setti, *Ricci almost solitons*, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 10 (2011), 757–799.
- [34] Shaikh, Absos Ali, Chandan Kumar Mondal, and Prosenjit Mandal. "Compact gradient ρ-Einstein soliton is isometric to the Euclidean sphere." Indian Journal of Pure and Applied Mathematics 52, no. 2 (2021): 335-339.
- [35] Shaikh, A. A., Cunha, A. W., and Mandal, P., Some characterizations of ρ-Einstein solitons, J. Geom. Phys. 166(2021), 104270.
- [36] Shaikh, Absos Ali, Prosenjit Mandal, and Chandan Kumar Mondal. "Splitting theorem of Gradient ρ-Einstein solitons." arXiv preprint arXiv:2201.01109 (2022).
- [37] Absos Ali Shaikh, Prosenjit Mandal, Chandan Kumar Mondal, Diameter estimation of gradient ρ-Einstein solitons, Journal of Geometry and Physics, Volume 177, 2022,
- [38] S. Shenawy and B. Unal, 2-Killing vector fields on warped product manifolds, International Journal of Mathematics, 26 (2015) 1550065.
- [39] Sameh Shenawy and B. Unal. The W2-curvature tensor on warped product manifolds and applications, International Journal of Geometric methods in Mathematical Physics, 13(2016), no. 7, 1650099 (14 pages).
- [40] Venkatesha, V., and H. Aruna Kumara. "Gradient ρ-Einstein soliton on almost Kenmotsu manifolds." ANNALI DELL'UNIVERSITA'DI FERRARA 65, no. 2 (2019): 375-388.

(N. Bin Turki) DEPARTMENT OF MATHEMATICS, COLLEGE OF SCIENCE, KING SAUD UNIVERSITY,
 P.O. BOX 2455, RIYADH 11451, SAUDI ARABIA,
 E-mail address: nassert@ksu.edu.sa

E-mail address: drssshenawy@eng.modern-academy.edu.eg

(S. Shenawy) MODERN ACADEMY FOR ENGINEERING AND TECHNOLOGY, MAADI, EGYPT

MATHEMATICS DEPARTMENT, FACULTY OF SCIENCE, TANATA UNIVERSITY, TANTA EGYPT *E-mail address*: hkelsayied1989@yahoo.com *URL*: http://www.modern-academy.edu.eg

Current address, N. Syied: Modern Academy for engineering and Technology, Maadi, Egypt *E-mail address*: drnsyied@mail.com

(C. A. Mantica) I.I.S. LAGRANGE, VIA L. MODIGNANI 65, 20161 MILAN, ITALY, *E-mail address:* carloalberto.mantica@libero.it *URL:* http://www.modern-academy.edu.eg