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Abstract: Deep Neural Networks (DNNs) are broadly used in various artificial intelligence applications and platforms such as sensors in IoT devices, speech and image recognition in mobile systems and web searching in datacenters. While DNNs achieve remarkable prediction accuracy, they introduce major computational and memory bandwidth challenges due to the increasing model complexity and the growing amount of data used for training and inference. These challenges introduce major difficulties not only due to the constraints of system cost, performance and energy consumption but also due to the limitations of the available memory bandwidth. The recent advances in semiconductor technologies have further intensified the gap between computational hardware performance and memory systems bandwidth. Thereby, memory systems are today a major performance bottleneck for DNN applications. In this paper we present DRAMA, a Deep neuRAl network Memory Simulator. DRAMA extends the SCALE-Sim simulator for DNN inference on systolic arrays with detailed, accurate and extensive modeling and simulation environment of the memory system. DRAMA can simulate the detailed hierarchical main memory components such as memory channels, modules, ranks, banks and related timing parameters. In addition, DRAMA can explore tradeoffs for memory system performance, and identify bottlenecks for different DNNs and memory architectures. We demonstrate DRAMA’s capabilities through a set of experimental simulations on several use cases.
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1. Introduction
The usage of Deep Neural Networks (DNNs) is continuously growing in various applications such as IoT, edge devices, mobile phones and high-performance servers in cloud platforms and datacenters ([1-3]). In the recent years, DNNs have demonstrated phenomenal prediction and classification capabilities in various applications such as image recognition ([4]), natural language processing ([5]) and recommendation systems ([6]). The remarkable accuracy of DNNs, however, introduce a high computational complexity and huge memory system throughput for both network training and inference. These challenges have become major entry barriers for DNNs in various computation platforms not only because they are limited in performance, cost and energy, but also due to their limited memory system bandwidth. 
In the recent years, there is a significant growth in using dedicated accelerators ([7, 8]), such as systolic arrays (SAs) and graphics processing units (GPUs), that can offer a more efficient processing of DNNs than general-purpose CPUs. An SA is a spatial compute system which consists of a network of processing elements that rhythmically performs computations and pass data through the system. A GPU is a single instruction multiple data (SIMD) architecture. Similar to SAs, GPUs consists of an array of processing elements which run the same operation simultaneously, however GPUs have two fundamental differences from SAs:
1. While GPU’s processing elements are programable and execute the same operation simultaneously, the SA processing elements can only execute a fixed operation (usually a multiply-and-accumulate).
2. Unlike the SA, the processing elements in GPUs cannot pass data directly but rather have to exchange data only through memory. This introduces a major benefit for the SA since it utilizes memory bandwidth more efficiently. 
Both SAs and GPUs are highly dependent on the performance and throughput of their memory systems. This has been further intensified in the recent years with the advances of semiconductor technologies which led to an exponentially growing gap between compute elements and memory systems speed ([9]). 
In this paper we introduce DRAMA, a Deep neuRAl network Memory Simulator. DRAMA extends the SCALE-Sim ([10]) simulator, which is commonly used to mimic DNN inference on SAs, with detailed, accurate and extensive simulation environment of the memory system. SCALE-Sim is a cycle-accurate functional simulator which can process matrix multiplications and convolutions for various DNNs architectures. SCALE-Sim allows designers and architects to perform architectural and performance exploration by running various DNNs with different SA configurations while considering various system tradeoffs. While SCALE-Sim can accurately model memory accesses performed by the SA to the local memory, it lacks accurate modeling of the main memory system. Due to the growing impact of memory systems on DNN processing performance it is essential to model the complete memory system accurately. In order to overcome this gap, DRAMA offers an extension to SCALE-Sim which can simulate the detailed building blocks of main memory such as memory channels, modules, ranks, banks and related timing parameters. In addition, DRAMA offers a broad range of configuration parameters which can help exploring various memory system configuration tradeoffs and identify bottlenecks for different DNNs architectures. This is further demonstrated in Section 4 where we present an architectural exploration for various ResNet-18 ([11]) memory systems using DRAMA simulation environment.
We summarize the contributions of this paper as follows:
1. We introduce DRAMA, a novel open-source simulation environment which can perform detailed, accurate and extensive simulation of SAs memory system. 
2. DRAMA can run either as an extension the SCALE-Sim simulator to model the entire memory system accurately or as a standalone main memory simulator.  
3. DRAMA offers a broad range of configuration parameters which can help performing an accurate memory system exploration for DNNs and understanding the interplay among key memory system parameters.
4. DRAMA generates an accurate main memory trace file which takes into account main memory system configuration and related timing parameters.
5. We demonstrate the impact of memory systems parameters on SA performance and memory system throughput through an experimental analysis of several case studies. 
The remainder of this paper is organized as follows: Section 2 provides related background and reviews previous work. Section 3 describes the DRAMA simulation environment architecture and flow of operation. Section 4 presents the experimental results. Finally, Section 5 summarizes our conclusions.
2. Background and Prior Works
We start our background discussion by providing an overview on systolic arrays and their memory system. Next, we provide an overview on prior and in particular the SCALE-Sim environment which is extended by this study.
2.1. Systolic Arrays
Systolic arrays (SAs) belong to the group of spatial architectures that are commonly used for DNNs convolution or general matrix multiplications [1, 12]. An SA (illustrated by Figure 1) consists of a two-dimensional mesh array of tightly coupled processing elements (PEs) which can forward data directly between PEs in the same row and column through unidirectional connections. Each PE has an arithmetic logic unit (ALU) which is typically a multiply-and-accumulate functional unit and a local storage element which is used to store intermediate computations. The matrix multiplication, which is performed by the SA, multiplies the input feature map matrix (INFMAP) with the filter weights and produces the output feature map (OFMAP). The INFMAP and filter weights are read from the SA local memory and the OFMAP is written to the local memory. One of the key advantages of SAs is their mesh structure which can save significant number of memory accesses by taking advantage by reusing forwarded data that have been processed by neighbor PEs.
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Figure 1. Schematic illustration of a systolic array.

2.2. Memory System
The SA memory system is depicted in Figure 2 and includes three key elements: a local memory, a single or multiple memory controllers and a main memory. The local memory, which is located near the SA, is typically a fast and small memory. The SA continuously access the local memory through the process of matrix multiplication. The local memory stores three double-buffer (also termed ping-pong buffers) for the IFMAP, OFMAP and filter weights ([1, 12]). The double buffers in the local memory allow the SA to execute the matrix multiplication in parallel to fetching the next IFMAP and weights from main memory and writing the previous OFMAP to main memory. All main memory access requests are enqueued into the memory controller job queue which manages all read and write access to the main memory ([13]). The SA can employ multiple memory controllers where every controller is connected to a different memory channel. Multiple memory channels can perform parallel memory access operations and thereby increase memory bandwidth. Every memory channel consists of a single or multiple dual in memory modules (DIMMs). A DIMM consist of multiple memory chips which are soldered to the DIMM. There are two DIMM configuration: a single rank DIMM and a dual rank DIMM. In a single rank DIMM the memories are soldered on one side of the DIMM while in dual rank DIMM the memories are soldered on both sides. Using a dual rank configuration increases the DIMM storage capacity by x2.
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Figure 2. Memory system scheme of a systolic array.
The memory chips in DIMMs are dynamic random-access memories (DRAMs) ([14]) which are relatively slower than the local memory and have a significantly larger storage capacity. As illustrated in Figure 3, every DRAM chip is organized in multiple memory banks. A bank consists of a 2-D matrix of memory elements and each element is uniquely associated with an individual address. Memory elements within the same row have consecutive memory addresses. The memory address provided by the SA for read or write operations is partitioned into a row-select and a column-select. The row-select activates an access to a single row (also known as a page) while the column-select accesses the particular memory element within the row. Consecutive memory accessed within the same row in a bank can be performed faster since the row has been already activated and the individual memory elements can be directly accessed from the previously read row. This mode of operation is termed fast page mode (FPM). When a new memory access switches to a different row, the time required for the access will become longer since the new row needs to be activated.
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Figure 3. A scheme of a memory bank.
One of the methods to enhance main memory efficiency is to increase the number of memory banks since larger number of banks will increase the likelihood for FPM access. The number of banks and pages that are available for FPM access in the main memory is given by Equation 1.
	Total number of banks = CDRB
	(1)



Where C is the number of memory channels, D is the number of DIMMs, R is the number of ranks and B is the number of banks. The efficiency of the memory system is crucial to the SA performance and throughput. It is required that the next IFMAP and weights will be ready in the local memory before the current matrix multiplication is completed. In addition, the previous OFMAP must also be written to main memory prior to the completion of the SA. If the memory system is the bottleneck, the SA will become stalled. 

2.3. SCALE-Sim
SCALE-Sim ([10]) is a cycle-accurate functional simulator which mimics SA accelerators for DNNs. It can simulate both matrix multiplication and convolutions which are used by many DNN models. SCALE-Sim allows designers to configure different SA architectures and validate their performance and throughput while considering various tradeoffs. In addition, it can also model the memory system in a limited level of a detail. The memory accesses run by the SCALE-Sim are limited to the local memory where it simulates the doubled buffers of IFMAPs, OFMAPs and weights. SCALE-Sim generates cycle accurate read accesses to the local memory which are required for the SA continuous operation. In addition, it accurately models the write accesses which are the outputs of the SA to the OFMAPs buffer in the local memory. It should be noted that SCALE-Sim models the main memory using a single configuration parameter which represents the main memory average bandwidth. SCALE-Sim does not model the main memory channels, DIMMs, ranks, banks and the detailed timing parameters related to the main memory. In addition, SCALE-Sim also generates trace files which consists of all memory accesses for IFMAPs, OFMAPs and weights and can be used for offline processing and analysis of memory traffic. In order to guarantee a continuous operation of the SA, SCALE-Sim also uses the main memory traces to determine whether the prefetching of the data required for the SA operation (INFMAP and weights) and the writing of the previous OFMAP have been completed prior to the next computation task.

2.4. Prior related simulation environments
Memory system simulation environments can be partitioned into 3 classes: statistical, cycle-accurate and RTL-based. Statistical simulators typically use a statistical model for the memory system latency ([15-17]). Such simulators offer the advantage of a high simulation speed; however, they incur lack of accuracy which can significantly vary between different use cases. Cycle accurate simulators accurately model the memory system, but they involve longer execution time. In the recent years, several cycle-accurate DRAM simulators have been developed for general applications ([18-21]). These simulators are tightly coupled to the evolving DRAM JDEC standard and some of them are tightly coupled to general purpose single core and multi-core CPU simulators [22-24]. RTL-based simulators ([25]) use hardware description models (HDLs) in order to accurately simulate DRAM controllers and memory system elements accurately, however they suffer from lack of scalability and requires long simulation time.
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3. DRAMA Simulation Environment Framework 
In this study we present DRAMA, a deep neural network memory hierarchy simulator. DRAMA offers a plug-and-play extension to the SCALE-Sim simulator and can also be simply integrated with other DNN simulators or run as a standalone simulator. DRAMA offers a highly configurable simulation environment which can be very useful for system architects to explore different memory hierarchies, topologies and related parameters and tune the overall SA and memory system performance. DRAMA is designed in python and is provided as an open-source code in github[footnoteRef:1]. We start by introducing DRAMA operation flow, describe its architecture and discuss the implementation details. Next, we present DRAMA’s configuration setting and last, we describe the details of the simulator outputs  [1:  https://github.com/DRAMA-technion/DRAMA ] 


3.1. DRAMA Architecture
Figures 4 and 5 illustrate DRAMA’s operation flow and block diagram respectively in conjunction with SCALE-Sim. The block diagram and flow represent the software implementation of DRAMA (the hardware representation of DRAMA is illustrated in Figure 6). SCALE-Sim simulation consists of three main functions:
1. A simulation of the SA processing and generation of local memory access traces.
2. A simulation of the requests targeted to the local memory ping-pong buffers.
3. Generation of trace to the main memory for prefetching the next INFMAPs and filter weights and for writing the previous OFMAPs.
As illustrated in Figure 5, SCALE-Sim reads the topology parameters of the neural network from the topology file ([10]). The file specifies the number of layers and type, INFAMP dimensions and filter dimensions. The configuration file, which will be described later, is used to specify the simulation parameters for both SCALE-Sim and DRAMA. 



[image: ]
Figure 4. SCALE-Sim and DRAMA operation flow
As part of DRAMA’s software architecture, we have designed a software interface such that all main memory access traces from SCALE-Sim are tunneled into DRAMA. This software interface allows co-simulation of DRAMA and SCALE-Sim to take place simultaneously. DRAMA reads the main memory traces and generates main memory requests which are forwarded to the detailed main memory simulation engines. The requests which are initiated by different sources (INFMAPs, filter weights and OFMAPs) are arbitrated by the request arbiter and are enqueued to the one of the main memory channels queues. The mapping is done such that every memory region (defined by start address and end address) is mapped to an individual channel. Last all accesses in the queues are arbitrated by the channel arbiter. For every request that is scheduled for main memory access, DRAMA performs the following actions:
1. It calculates the overall time required by the DDR channel to serve the request, 
2. Updates the simulator performance statistic counters, and 
3. Deque the request from the channel queue. 
Once the request processing is done, the main memory access details are written to the trace file. This process is repeated as long as there are access requests in the channel queue. Once the requests in all queues have been processed the simulator checks if additional traces have been generated. If there are new main memory access traces the process will be repeated as illustrated in Figure 4, otherwise the simulation will be terminated, and DRAMA will generate the simulation statistics. DRAMA simulation outputs are described in detail in Section 3.3. 

[image: ]
Figure 5. DRAMA block diagram
The main memory system hardware architecture which is simulated by DRAMA is illustrated in Figure 6. The system consists of a set of DRAM controllers, where each controller is assigned to an individual DRAM channel. Each DRAM controller compromises of:
1. An arbiter which arbitrates the stream of memory requests destined to the DRAM channel. The arbiter operates in a round-robin (RR) manner and enqueues the requests into the request queue.
2. A request queue which includes all pending requests. The queue is managed in a first-in-first-out (FIFO) manner. 
3. A scheduler which schedules the request in the head of queue to be served by the DRAM channel as soon as it becomes available. The scheduler deques the served request from the memory controller queue. 
The DRAM channel topology can be viewed as a tree structure. Every channel consists of multiple DIMMs of a single or dual rank. All memory chips in a rank operate as a single logical memory which is partitioned into multiple banks. The number of channels, DIMMs, ranks and banks is specified in the configuration described in Section 3.2.
[image: ]
Figure 6. DRAMA System architecture scheme
3.2. DRAMA Configuration Settings
The configuration file is parsed by the DRAMA simulator and is used to specify the detailed architecture of the main memory system. The configuration file, which is summarized by Table 1, specifies the number of DRAM channels and size, the number of DIMMs per channel, the DIMMs rank, the number of banks and the page size. In addition, it defines the memory channel data bus width and the DRAM timing parameters. The configuration also specifies the method of mapping memory addresses to DRAM channels. The mapping can be done using the least significant bits of the address, i.e., consecutive memory addresses are mapped to different memory channel. When the mapping is made based on the most significant bits, the entire memory space is partitioned into multiple windows where each is associated with an individual memory channel. 



Table 1. DRAMA Configuration File Setting Parameters
	Configuration Parameters

	NumerOfChannels
	The number of DRAM channels


	ChannelMapping
	Defines the mapping of memory address to a DRAM channel. The address mapping can be based on the least significant bits or the most significant bits of the memory address.


	NumerOfDIMMs
	The number of DIMMs per memory channel


	NumberOfRanks
	The number of DIMM ranks.


	NumberOfBanks
	Specified the number of banks.


	BusSize
	Memory channel data bus width.


	PageSize
	DRAM page size.


	ChannelMemorySize
	The memory size of a channel.


	AddressMapping
	Specified the DRAM address mapping mode: Row interleaving or cache block interleaving.


	CacheBlockSize
	Defines the cache block size when AddressMapping is set to cache interleaving.


	OpenPageAccessTime
	The access time in clock cycle to an open page (FPM).


	ClosedPageAccessTime
	The access time in clock cycle to a closed page.



Last the configuration file specifies row, column and bank mapping within a channel using two common methods: row interleaving and cache line interleaving which are illustrated in Figure 7. In row interleaving, consecutive accesses are mapped to consecutive banks while cache line interleaving maps consecutive cache blocks to consecutive memory banks ([26]).

[image: ]
Figure 7. Row, column and bank mapping modes

3.3. DRAMA Outputs
The simulation performed by DRAMA produces two output files: a statistics summary file and a trace file. The statistics summary file, illustrated in Figure 8, summarizes for every convolution or matrix multiplication task the following performance related statistics of every channel in the memory system: 
1. Channel memory bandwidth measured in bytes per cycle.
2. Average number of clock cycle per memory request.
3. The percentages of time the SA was idle.
4. The total number of pages open in a DRAM channel.
5. Busy cycle – The number of cycles the memory channel was busy.ss
6. Total number of requests, and
7. Total number of bytes read by the SA.
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Figure 8. DRAMA statistics summary output
The trace file, illustrated in Figure 9, is a csv file where every line lists the addresses of the main memory prefetch accesses and their accurate occurrence time. DRAMA’s trace file extends the traces generated by SCALE-Sim by performing a detailed simulation of the main memory system. In particular, the timing annotation in every line takes into account the overall memory systems configuration and related timing parameters.
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Figure 9. DRAMA output memory trace file

1. 

4. Experimental Results and Discussion
Our experimental analysis demonstrates the capabilities of DRAMA simulation environment for various computational workloads and use cases. The presented experiments are mainly focused on the impact and contribution of the memory system and its impact on the overall SA performance. 
4.1. Experimental Use-case
The use-case that was used for our experimental study is the ResNet-18 convolutional neural network [11]. The ResNet-18 is 18 layers deep and is commonly used for image classification tasks. ResNet-18 can classify images into 1000 object categories. As part of the experimental use-case we have chosen 4 different convolution layers from ResNet-18 which are presented in Table 2. Each of the chosen layer has multiple repetitions in the network, so overall they fairly represent the network workload. 
Table 2. DRAMA Configuration File Setting Parameters
	Configuration Parameters
	IFMAP dimensions
	Filter dimensions
	Number of channels
	Number of filters
	Stride

	Conv1
	56x56
	3x3
	64
	64
	1

	Conv2
	28x28
	3x3
	128
	128
	1

	Conv3
	14x14
	3x3
	256
	256
	1

	Conv4
	7x7
	3x3
	512
	512
	1




Our experimental exploration examines two memory system parameters, the DRAM bandwidth and the number of memory channels, on overall SA performance and memory system throughput. The results are presented and discussion in subsection 4.2. 
4.2. Case Studies Analysis 
In the first use case, we examine the impact of DRAM bandwidth on a single channel memory system with 8 DIMMs and 8 banks in every DIMM. The channel mapping is based on row interleaving, and the page size is 4096 bytes. The experiments examine the DRAM bandwidth of 2, 8, 16, and 32 bytes per every SA clock cycle. The SA dimension used in our simulations is 16x16 which runs output stationary dataflow. Figure 10 a-d illustrate simulation results for the four convolution layers in Table 2. The experimental results measure the percentages of time the SA was stalled, the percentages of time the memory system was idle, the SA relative performance (to an ideal SA with an ideal memory system) and the memory system overall throughput. It can be observed that as the DRAM bandwidth increases the percentages of the time the SA is stalled decreases. In addition, we observe that different convolution layers introduce different memory throughput requirements. For example, for conv1 a DRAM bandwidth of 8 bytes per clock cycle is sufficient to eliminate the SA from stalling, while conv2 requires 32 bytes per cycle to avoid SA stalls. Figures 10 a-d also show that the SA relative performance is inversely correlated with the SA stalls. Once the number of SA stall clock cycles drop to 0, the SA relative performance reaches 100%. Figure 10 a-d also indicate that as we increase the DRAM bandwidth, the overall memory system throughput utilized by the SA grows. This, however, may increase the percentages of time the memory system is idle. In certain cases, we observe that although the memory system is idle for a certain amount of time, there are still stalls in the SA. This is explained due to the fact that the DRAM access takes longer time whenever a new page is accessed, and as a result both the DRAM is idle till the new data is accessed and the SA is stalled. 
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(d)
Figure 10. The impact of DRAM bandwidth on SA performance and memory system throughput: (a) conv1 layer, (b) conv2 layer, (c) conv3 layer and (d) conv4 layer.


In the second use case we examine the impact of the number of channels and the channel mapping on the SA performance and memory system throughput. We run the simulations with 1, 2 and 4 memory channels, where the 2 and 4 channels have been run in two different channel mapping options using either the least significant bits (LSB) of the memory address or the most significant bits (MSB). The memory system configuration assumes a DRAM bandwidth of 16 bytes per SA clock cycle, a total of four DIMMs with 8 banks per DIMM. The page size is 2048 bytes, and the address mapping is row interleaving.
Figures 11 a-d summarize simulation results for all the convolution layers in Table 2. It can be observed that when increasing the number of channels, the overall SA performance is improved, and the number of SA stalls is reduced. In addition, it can be observed that LSB channel mapping achieves better performance than the MSB channel mapping for all convolution layers. This can be explained by the fact that when using LSB channel mapping, consecutive memory addresses are mapped to different memory channels while in MSB channel mapping they are mapped to the same channel. Since the SA generates consecutive memory accesses, the mapping to different channels allows serving the accesses in parallel and thereby improving overall memory throughput and SA performance. From the results presented in in Figures 11 a-d we can also conclude that using 4 channels with LSB mapping achieves the best performance in all convolution layer since it enables the SA to reach the maximum possible performance. The most noticeable speedup in the SA performance is achieved in conv1 and conv2 layers where the 4 channels with LSB mapping gain over 40% improvement in the SA performance relative to a single memory channel. When the number of channels is increases it does not only help to improve the SA performance, but it also increases the overall memory system. The total number of bytes prefetched from the system remains the same regardless to the number of channels, however as the number channels increases the overall memory access time is getting smaller and thereby the throughput is improved significantly. 
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(d)
Figure 11. The impact of the number of channels on SA performance and memory system throughput: (a) conv1 layer, (b) conv2 layer, (c) conv3 layer and (d) conv4 layer. 
5. Conclusions
DNNs processing introduce not only a major computational complexity but also continuously growing memory throughput requirements. Memory systems has a crucial impact on DNN processing performance, and thereby it is essential to accurately model them when exploring various DNN architectures and system configurations in simulation environments. In this paper we introduce DRAMA, an open-source simulation environment for deep neural network memory systems. DRAMA extends the SCALE-Sim simulator with detailed, accurate and extensive simulation environment of the memory system. DRAMA models DRAM channels, DIMMs, ranks, banks and related timing parameters accurately. In addition, it provides a comprehensive range of configuration parameters which can help examining memory system architectural tradeoffs. DRAMA can run either as an extension to SCALE-Sim or as a standalone simulator. We have demonstrated DRAMA’s capabilities on four representative convolution layers from ResNet-18 where we examined the DRAM bandwidth, number of channels and bank mapping on the SA performance and memory system throughput.  
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