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Whole-body transcriptional coordination patterns
Whole-body physiological homeostasis is pivotal for maintaining human health and longevity and is properly maintained by various mechanisms such as an inter-tissue networks of communication coordinating physiological responses among organs and tissues. While gene-to-gene transcriptional co-regulation was observed in many tissues, the global co-regulation of transcription, across the whole-body at the system level remains unclear. Our central hypotheses are that (1) gene expression of molecular systems are co-regulated and coordinated between tissues and that (2) perturbations in this coordination may represent one of the central mechanisms by which health predispose to disease and aging process and therefore may be a marker for aging. With the advent in ultrahigh-throughput sequencing technologies for gene expression profiling of human and mice samples from multiple tissues derived from each donor and at a single cell levels we can now infer inter-tissue associations at a large scale. 
Here, we propose a new computational approach to leverage inter-tissue co-expression of genes, pathways and networks to the systems-level at whole-body scale to decipher global transcriptomic coordination patterns across the whole body and its aberration with aging. We will apply our methodology to multi-tissue RNA-seq and single-cell data in young and aging cohorts, to define the biological systems that are coordinated across tissues and the changes in this coordination with age. Our preliminary results show a global metabolic coordination pattern between multiple human tissues and promising results for coordination changes with aging. We expect our approach to generate more accurate and reliable understanding of whole-body coordination and cross talk patterns. Our approach will establish fundamentally the global whole-body transcriptional co-regulation patterns and their dysregulation in aging. In addition, it can be used to develop a prediction tool for the biological age and serve as a diagnostic tool for the implications of age-related therapeutics. 








1  Scientific Background
1.1  Transcriptome coordination
Whole-body physiological homeostasis is pivotal for maintaining human health1 and longevity and is properly acquired by simultaneous tissue co-regulation. These tissues in multicellular organisms do not operate in isolation but interact with each other through networks of communication. Several factors can cause inter-tissue interactions: (1) they are regulated independently by the same genetic locus, or (2) they respond independently to the same environmental cues or internal events, or (3) signaling between tissues via biological signals, such as ligand and receptor, to regulate the transcription of genes (e.g. gene i product in one tissue signals to another tissue and regulates expression of gene j) [3, 4]. Indeed, circadian clocks 2–4 as well as internal or external stimuli, such as metabolic signals 5–7, were shown to regulate gene expression. 
Intriguing questions related to whole body regulation are (1) although the body needs to respond to various events, is gene expression regulated at a whole-body level? and (2) can we detect global and specific cross-tissue coordination patterns in gene expression?. The arrival of “omics” technologies such as RNA-seq combined with the creation of multi-tissue gene expression public databases such as the GTEx (Genotype-Tissue Expression) Project8, which is a growing repository of RNA-seq gene expression data from multiple tissues profiled for each individual across hundreds of individual donors in a publicly accessible portal, today enable us to explore systematically and on a large-scale tissue–tissue associations. 
Most research explored gene-to-gene tissue specific co-expression. The most advanced efforts to test tissue-tissue associations detected gene-level relations between pairs of tissues, e.g., co-expression of genes from two distant tissues, and was conducted at the gene-to-gene and gene-to-pathway levels 9–11. Other research 9 tested tissue-to-tissue connectivity by exploring yet gene-to-gene associations across three tissues—hypothalamus, liver and adipose—of healthy and obese mice, constructed per tissue co-expressed networks and showed connectivity using gene-to-gene Spearman’s correlation coefficients between single genes in one tissue and genes in co-expressed modules in another. Another work 10 detected new gene level tissue-to-tissue endocrine associations, i.e., co-expression, between ligand gene expression levels in source tissues and affected genes forming a pathway in the target tissue in six-tissue mouse data, which were then validated experimentally. The GTEx8 multi-tissue dataset was used 11 to calculate inter-tissue connections in humans between single genes in one tissue and genes forming a pathway in other tissue, e.g., to find the importance of the DPP4 gene in heart to blood communication. A recent work 12 offered an approach to evaluate a global gene-to-gene coordination between single cells in distinct tissues. It is now the time to go beyond a single tissue and a single gene level analysis into a holistic understanding that make sense of how the biological system functions as a one whole connected system. These scarce studies of inter-tissue interactions were based on detecting the associations between a single gene in the source tissue and a single gene within pathways in the target tissue. In addition, these gene-level efforts that count on a single gene’s association with other genes may be prone to noise, which may affect the levels of single genes13. A large-scale study, based on ensemble of associations, as we suggested in this proposal, of multiple tissues presenting network-level and system-level interactions, which to date is absent, may circumvent this problem. Moreover, such an approach can elevate the research to identifying the validity of global whole-body system-level coordination patterns in general and multi-inter-tissue coordination patterns in specific.  Here we aim to fill in this lacuna and investigate if the human body transcriptome is coordinated. We ask the following question: Can we detect coordination patterns of transcriptomic systems (co-expression networks) and pathways across human tissues? Answering this question may be an important step in delineating a comprehensive view of systems transcriptome regulation patterns across the human body. To this end, we will develop a comprehensive large-scale multi-inter-tissue network-level approach to evaluate whole-body transcriptomic coordination patterns, which we already initially applied specifically to metabolic networks across 31 human tissues. 
1.3 Aging and transcription regulation
Aging is one of the most important biological processes and is a known risk factor for many age-related diseases in humans such as cardiovascular disease, cancer, Type 2 diabetes, Alzheimer’s disease, and Parkinson’s disease. It is a process in which multiple organs and tissues gradually lose physiological integrity, followed by functional impairment and eventually death of the individual14. There are many theories of the biological causes of aging, which suggests that many different mechanisms contribute to the aging process. The current hypotheses encompass genetic predisposition, calorie restriction, mitochondrial dysfunction, telomere attrition, genomic instability, and many others15. Whereas chronological age represents a major risk factor for disease, there is marked heterogeneity in human lifespan and health outcomes for people of the same chronological age16. 
Numerous age-related tissue-specific transcriptomic studies, mainly for detecting marker genes or predicting age using machine learning models have been conducted in several species, including humans [17,18,19]. The AGEMAP project 20 profiled gene expression in 16 tissues in mice and tested for coordination of aging with different tissues using a new score representing the apparent age of each tissue based on age-related expression profile changes for each specific tissue. Ren X et al. 21 introduced a versatile cross-tissue and tissue-specific transcriptional age calculator using the GTEx database using machine learning models and feature selection approaches. Yang et al. 15 used an unsupervised method based on dimensionality reduction (principal component analysis) and a supervised learning method using the Elastic Net regression on the GTEx data to estimate tissues’ age and calculated the age coordination for each tissue pair to show that tissue aging is synchronized in multiple tissues as reflected by the age-related gene expression changes. 
The described studies defined tissue-specific aging genes and their coordination with age. We suggest here extending our framework to define the changes of inter-tissue global coordination patterns with age which to the best of our knowledge were not studied before. Developing a systematic method of uncovering global age-related coordination changes in tissues across the whole body can enhance our understanding of the aging process and promote the development therapeutic strategies for complex age-related diseases and other interventions that may assist with healthy ageing.
2 Research objectives and significance 
The overall objective of the proposed study is to establish a novel computational methodology and framework for defining whole-body coordination patterns. To achieve this objective, we will address three specific aims:
2.1 Aim 1. Develop a new computational methodology and pipeline to measure a global whole-body transcriptional coordination 
We will develop a novel methodology to evaluate a global whole-body inter-tissue transcriptomic coordination at the system level (e.g., metabolic global coordination). The new methodology will combine computational techniques of dimensionality reduction, meta-network analysis, and statistical analysis to detect and measure the extent of inter-tissue network/pathway level global coordination at the whole-body level. The results will be validated at the single gene level. We will apply the approach to publically available RNA-seq and single-cell human and mouse multiple-tissue data sets. We found that metabolic co-expression networks are significantly coordinated (Fig. 3) across the whole body as compared to randomly chosen networks. 
Significance: 
The proposed study pioneers in taking advantage of human and mouse high-throughput data for showing the validity of global whole-body transcriptional coordination at the system level, of functionally related genes. The global coordination measure can be used in further systems and conditions and for testing health states. We will construct an installable package available for performing a similar analysis for any type of organism or condition, system type, and at a single gene or pathway/network level of relevance. 
2.2 Aim 2. Develop an algorithm to define a comprehensive catalog of specific tissue-axis coordination patterns for humans and mice
We will extend our methodology to define coordination patterns at a whole-body system level (i.e, annotated co-expression networks) and pathway level (e.g., KEGG pathways). The approach will detect communities of densely coordinated systems in tissues and develop a new algorithm to define specific inter-tissue-axis transcriptomic coordination patterns for these communities. The patterns will define co-regulation and co-inhibition associations between sub-nodes (systems in tissues) within each community. We will apply our framework to human and mouse multi-tissue datasets. We will extend our framework to publicly available human and mice single-cell transcriptome data to test patterns of crosstalk between general coordination of  cell type compositions across tissues and specific coordination of cell-autonomous expression changes within particular cell types. 
We have already detected communities automatically and a brain-tissues-axis metabolic feedback coordination pattern (Fig.6). We have established collaborations with the Mikl labs (c. elegance models) and the detected patterns will be validated by the domain experts and by wet-lab experiments for metabolic patterns using the c. elegance model (the Mikl lab), see attached letter.
Significance: 
The proposed research will provide a fully comprehensive picture of the tissue-axis coordination and crosstalk patterns and will detect new whole-body system-level coordination patterns. This patterns catalog will be publically available to the research community and will innovate our knowledge of tissues-axis feedback loops and whole-body transcription co-regulation and co-inhibitions.
2.3 Aim 3. Develop an inter-tissue measure for each individual whole-body coordination level and use it to predict chronological age. 
We propose to extend our novel computational methodology to aging. We will (1) study the possible effects of aging on whole-body gene expression coordination patterns, (2) define a clinically meaningful metric of age, based on tissues coordination, to classify the age of individuals (3) use feature analysis to define the mostly dysregulated genes and molecular systems (represented by pathways and annotated genomic networks) during aging. We will develop a novel metric per each individual (the features), to represent its genomic inter-tissue coordination, which will be fed into machine learning classifiers to predict aging. Specifically, we will develop the novel scores (the features) that will be based on the inter-tissue coordination level of each individual; evaluate and compare the performance of the models trained on human/mice; identify key markers of coordination that change with age in each organism; use feature analysis to identify coordination key markers for aging; evaluate the extent to which marker genes/pathways are transferable from mouse to human; test the models on a combination of datasets while reducing feature size and elevate model performance. Based on the conclusions of the above analysis we will develop optimized machine learning classifiers for inferring markers and age prediction. We have established a collaboration with Atzmon lab (aging expert) and the detected markers will be experimentally validated.
Significance: 
The proposed study innovates to show that (1) whole-body coordination declines with age and (2) using coordination measures for predicting age and (3) a comparative exploration of the changes detected with age in whole-body transcription coordination. The detection of new system-level genomic coordination patterns and their changes with age will enhance our understanding of the aging process. The novel metric for age can be used to define a person’s biological age, based on the level of tissues-coordination, even better than the chronological age. Moreover, this metric can be used to evaluate the beneficial effects of therapeutic drugs and life changes in this biological age. In the future, this metric can be refined to include the most representative tissues that predict aging which can enable the development of a diagnostic tool. Our analysis will provide important insights into the key features, genes and biological pathways, and networks, that drive whole-body inter-tissue coordination deterioration with the aging process. Our developed coordination-based scores and classifiers will be available to the scientific community to detect disease and predict the biological age versus the chronological age. Our approach will pave the way for new perceptions of thinking about aging treatments, with practical implications that can assist in the development of therapeutic strategies for complex age-related diseases and other interventions that may assist with healthy aging.
3  Detailed description of the proposed research (Each aim is presented separately)
3.1 Aim 1. Develop a new computational methodology and pipeline to measure whole-body global transcriptional coordination 
We will develop a computational methodology and framework, named (WBCL) Whole Body Coordination Level to evaluate the global system-level multivariate inter-tissue dependency of tissues. Our WBCL methodology includes 3 steps as detailed below. 
3.1.1 Working hypothesis and rationale: 
In this proposal, we hypothesize that an inter-tissue regulation exists and conjecture that transcription is co-regulated and coordinated (see Fig. 4) at the whole-body level. Moreover, we hypothesize the existence of a global system-dependent transcription co-regulation at the whole-body level can be detected from gene expression data. Our main hypothesis is that not only does gene expression vary in specific but that the whole set of functionally related genes varies in a coordinated manner across the whole body, a phenomenon that we suggest being measured by computational and statistical means. 
3.1.2 Experimental design and methods: 
Data pre-processing includes filtering, normalizing, and adjusting each tissue dataset for technical artifacts (see an extended explanation of methods used in the preliminary results section). The death classification of the samples (DTHHRDY) is based on the four-point Hardy Scale. Since changes we detected22 in the ventilator group we will conduct our analysis on the fast death group (samples that were graded 1 or 2 on the Hardy scale, i.e., fast and violent or relatively fast death) and then compare with the ventilation group which are relatively healthy individuals who were under ventilation prior to death. 
The methodology includes 3 steps and validation of the results.
A detailed description of each step:
Our approach will be conducted at the network/pathway/gene levels and includes three steps. For module levels, we conduct steps 1 - 3. For the pathway level, we use the eigengenes of the pathways in steps 2 - 4. For gene level, we use the gene levels in the analysis and execute step 3.
Step 1: co-expression networks: The Weighted Gene Co-Expression Network Analysis (WGCNA) and related R package 23 most robust package will be used to calculate the co-expression networks (modules) and module’s eigengene (first principal component).. The WGCNA groups related genes into gene modules (networks) based on their co-expression patterns and topological similarity to neighbor genes in the network. The algorithm calculated a similarity co-expression matrix using correlation coefficients cor(i,j) for all genes (we will use the biweight midcorrelation measure that accounts for outliers, by assigning larger weights to values closer to medians). The co-expression matrix is transformed into an adjacency matrix by using the soft thresholding power beta , to which co-expression similarity is raised aij = (0.5*(1+cor(i,j)))β. where aij represents the resulting adjacency that measures the connection strengths. The power  = 12 is defined based on the criterion of approximating the scale-free topology of the network, as recommended in the original publication 23. Then, a topological overlap matrix (TOM) 23 is computed and converted into a dissimilarity TOM. The TOM calculates the topological similarity between every two neighbors in the network, i.e., evaluates the similarity of the neighbors for every two nodes. Finally, hierarchical clustering is used to produce a tree (dendrogram) from the dissimilarity TOM. By using dynamic tree cutting, different numbers of clusters (modules) are obtained from the tree. The resulting modules containes genes, densely interconnected, which construct co-expression networks, also named modules, per each tissue. To define, in each module, the positively or negatively correlated genes, the “signed” networks will be used— meaning that the co-expressed modules include positive correlations between the nodes. The module eigengene is defined as the first principal component of the module and represents the weighted average of the expression profile for the module. The eigengenes can be used to merge clusters and to screen for suitable gene targets by calculating module membership (kME) measures, also known as eigengene-based connectivity 23, 24. We used eigengenes to calculate the inter-tissue correlation between modules. We will eliminate tissue-tissue pairs with samples overlap < 15.
Step 2: Modules annotation
To annotate the modules generated in step 1 we will perform pathway enrichment analyses for the gene sets in each module based on the hypergeometric test by using the clusterProfile R package25 using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (the “enrichKEGG” function) combined with additional pathway databases if required. The P-values will be corrected for multiple testing using the BH (Benjamini & Hochberg) method 26, using the R psych package. 
Module annotation will be based on plurality vote for each of eight BRITE hierarchies (see Fig. 4A) annotated for the significantly enriched pathways (adjusted p-value < 0.05). For example, a module will be annotated as “Metabolic” module if its most significantly enriched (adjusted p-value < 0.05) pathways are classified as being “Metabolism” class using the BRITE classification of KEGG pathways. 
Step 3: Detecting global system-level coordination
Initially, we will compute pairwise tissue-tissue co-expression measures of the modules/pathways eigengenes across tissues. We then evaluate global system-level coordination, i.e., coordination of similar molecular systems such as the coordination of metabolic networks across the human body. We will compute the number of positive and negative pairwise tissue-tissue (eigengene-to-eigengene pair) correlation coefficients and p-values between similarly annotated networks (e.g., metabolic networks) and compare them with randomly chosen networks (see Fig. 4 presenting results for metabolic networks). We will choose and evaluate the correlation coefficients using Pearson’s, Spearman’s, and bias-corrected distance correlation (bcdCorr) 22 methods. To study the statistical significance of the resulting coordination pattern, we will generate Monte Carlo randomization tests27. We will randomly sample a number of modules equal to the total number of metabolic modules from all the modules generated for the tested tissues and measured the number of positive and negative edges (i.e., Pearson’s correlation coefficients) between these random modules. We repeat the analysis 1000 times. We calculate the empirical p-value as the fraction of test statistic values from these random sets that are at least as extreme as the test statistic value of our original data 28. 
Single cell analysis:
We will apply our method to single-cell transcriptome data to define to which extent the coordination patterns are driven by alterations in tissue cell-type composition and by cell-autonomous expression changes within particular cell types across tissues.
Gene-level validation:
The eigengenes explain part of the module’s variability (0.2-0.7 variability explained as dependent on module and tissue, see Fig. 3). We will validate our approach (presented above in step 3) for detecting the global coordination pattern at the inter-tissue gene-to-gene level. For this, we will gather system-level gene sets, e.g, metabolic genes, and conduct the analysis presented previously. See our preliminary work in Fig. 4 of gene-level validation of the findings.
Datasets:
We will apply similarly our developed analysis pipeline to multiple unique publicly available bulk and single-cell RNA-seq datasets derived from multiple tissues of each donor. The datasets include (1) GTEx data set of 52 human tissues (2) Mouse – 6 tissues (3) GTEx human single-cell data (see Table 1 for datasets used).
Table 1. Datasets summarizing species, tissues, number of individuals, and age range.
	Dataset accession number
	Species
	Num. Tissues
	N
	Age range
	Method
	reference

	Izgi et al.
	Mice
	4
	8
	3–30 months
	RNA-seq
	

	Jonker et al.
	Mice
	5
	18
	3–30 months
	Microarray
	

	GEO GSE132040 

	Mice
	8
	26
	3–27 months
	RNA-seq
	22

	
	Mice
	20
	
	
	Single cell
	22

	GTEx
	Humans
	52
	~1000
	20–79 years
	RNA-seq
	8

	GTEx
	Human
	8
	16
	20-80
	Single-cell RNA-seq
	8

	AGEMAP
	Mice
	16
	
	
	RNA seq
	20



3.1.3 Preliminary results: In our preliminary work we used the WGCNA23 algorithm for 19 human tissues that generated 609 modules across tissues, followed by pathway enrichment analysis and plurality module annotation of 40 metabolic modules. We found evidence for the global coordination of functionally related genes. We have pre-processed the data and developed the initial pipeline for co-expression networks in steps 1, 2, and 3. We already detected and measured the extent of inter-tissue global coordination (see figure 3). We also generated the statistical validation analysis compared to randomly chosen networks to show a global whole-body network-level metabolic coordination pattern. For gene-level validation, we used a gene-level analysis of metabolic genes versus random genes for inter-tissue analysis of adipose subcutaneous and adipose visceral (see Fig. 3).
3.1.4 Pitfalls: Our modules annotation approach may yield skewed result, since shared genes between pathways can skew the plurality votes, e.g., many human disease pathways share genes, skewing the plurality vote towards human disease. We will combine overlapped pathways to refine our annotations. Another issue is the insufficient gene coverage (about ~8000 genes) and the tissue non-specificity of pathways in the KEGG pathways library. Therefore, we will incorporate additional available GO annotations and additional Pathways DBs (e.g., Reactome) to enlarge genes coverage and to refine our annotations. A third issue is that third of our modules were not annotated (204 modules out of the 609 did not have an adjusted p-value score of under 0.05). The usage of multiple gene pathways libraries should complement these annotations.
The random modules sampling analysis yielded a skewed p-values since the higher proportion of networks with more samples than the tested (metabolic) samples. In order to balance the numbers, we selected and showed the refinement of using the same number of co-expression networks per tissue as the tested (metabolic) networks. In addition, to overcome the issue of spurious single correlations we are combining an ensemble of signals that strengthens the evidence of inter-tissue synchronization at the whole-body level.
3.1.5 Expected results: The proposed pipeline will be automated for detecting global coordination patterns and their statistical significance. It will define the globally coordinated tissues at the whole body and network/pathway/gene levels. 
3.2  Aim 2. Develop an algorithm to define tissues-axis coordination patterns 
We will extend our framework with community analysis and with an algorithm that we will develop for detecting inter-tissue crosstalk coordination patterns. We will apply our approach to three human/mouse datasets (see Table 1 in aim 1). We will determine the extent of similarity of coordination pattern rules between humans and mice. Domain experts, and experimental validation will validate the detected patterns. 
3.2.1 Working hypothesis and rationale: The biological system is co-regulated using cross feedback loops while some systems/pathways are downregulated while others are upregulated concordantly. We conjecture that the transcriptome can be a valid tool for unraveling tissue-axis-specific coordination patterns and feedback loops between organs at the whole-body level and our developed method will enable us to draw a comprehensive map of these patterns.
3.2.2 Experimental design and methods: 
Our new methodology to define tissue-axis-specific coordination patterns includes two steps.
Step 1. Meta-communities: This analysis will define coordinated systems across multiple tissues. we will use the modules/pathways eigengenes calculated in aim 1 to generate meta-communities, i.e., densely inter-connected graphs of co-expression networks/biological pathways in tissues. In our graphs, each node represents a module/pathway in a tissue and the edges are the correlation coefficients between every two such nodes. From now on, we use the term system to represent a co-expression network or a biological pathway within a tissue. 
To detect coordinated systems in tissues we will use the Clique Percolation Method (CPM) 29 algorithm for k-clique community detection. A community is a group of nodes that are densely connected to each other. A k-clique is a complete subgraph of size k, where an edge connects each node to the other k-1 nodes. A community 29, or more precisely, a k-clique community is defined as the union of all k-cliques that can be reached from each other through a series of adjacent k-cliques (where adjacency means sharing k-1 nodes). The community analysis defines interconnected cliques, each of size k between any k nodes in the community. Thus, a community’s members can be reached through well-connected subsets of nodes and a single node can belong to several communities. We define a node as an eigengene of a co-expression network/biological pathway. We define an edge, edge.weight = 1, as a statistically significant (adjusted p-value < 0.05) correlation coefficients’ values between each two nodes. We use Spearman’s correlation coefficient 30. We will calibrate the analysis and generate communities that include the recommended29 cliques size of k = 3 or k = 4. We define the edges as undirected (correlation coefficient absolute values) but maintain information on the sign of the eigengene-to-eigengene coefficients information. Too low tissue-tissue individual overlap (size <15) will be assigned the value 0 (edge.weight = 0). 
Validation
To study the statistical significance of the size of the resulting coordinated communities, we will generate Monte Carlo randomization tests27. We will calculate the p-value for the largest metabolic community. We randomly sampled a number of modules equal to the total number of metabolic modules from all the modules generated across all tested tissues and calculated the number and size of communities formed. We already showed such significant behavior using metabolic modules calculated with the community parameters, k=3; and for edges, we used a significant correlation coefficient > 0.4. We repeated the analysis 1000 times to generate the p-values of the results. 
Step 2. Pattern detection algorithm: In this step, we detect the nodes with similar coordination patterns within a community. We will consider the sign of edges (positive/negative), i.e.,  consider positive and negative correlation coefficients between annotated nodes within a community. We will divide each community graph into clusters of sub-graphs, so each sub-graph includes nodes with positive relations, and  negative/positive relations connect sub-graphs. This way, we detect clusters of positively and negatively co-regulated modules. We suggest using cluster analysis applied to the nodes in the communities generated in the previous step 1. We will use the community graph representation by adjacency matrix A, where each matrix cell named aij represents the edge value between row i (node i) and column j (node j). Each row/column represents the nodes (system within a tissue), and the matrix cell aij represents the type of association, aij = 1 for a statistically significant positive Spearman’s correlation coefficient between node i and node j and aij  = -1 for significant negative, aij = 0 for no significant associations. To detect clusters of positively/negatively-coregulated nodes within each community, we will assess the similarity of node correlations to connected nodes using the Jaccard index (see Fig. 6A exemplifying the method). We then explore the annotation and the genes included in each module/pathway to decipher the pattern.  
Data: We will apply our methodology to human and mice bulk and single-cell transcriptome data (Table 1) to test the general patterns across cell types and detect specific cell-autonomous expression coordination within particular cell types. 
Validation
We will verify the detected synchronization patterns for known patterns and experimentally validate new patterns with the assistance of the Mikl lab for c. elegance.
3.2.3 Preliminary results: We automatically computed communities of metabolic modules and compared them with 100 random communities to show the statistical significance of whole-body metabolic coordination (p-value < 0.05). We then manually detected a community of 12 metabolic nodes presenting a feedback loop at the brain-body axis (see Fig. 6B,C). The pattern detected a brain module negatively correlated to all 11 metabolic modules (that are positively correlated) across the body. Their adjacency matric and clustering are represented in Fig. 6A. We also present the enrichment analysis of the brain module (Fig, 6). Our method will automate pattern detection.
3.2.4 Pitfalls:  At the gene level, the community graphs algorithm will be massive and contain many nodes and edges. The current graph algorithm needs considerable computation power and processing time on such large-scale graphs. We will need to reduce the graph size by conducting more pre-processing steps and using high-performance cloud-distributed computation solutions provided by the Haifa university. In addition, we chose to use the module and pathway-level eigengenes as nodes to reduce node size. Another issue is that we may detect inconsistent patterns within a community. We will eliminate these inconsistencies and investigate consistent patterns.
3.2.5 Expected results: We expect to enrich the tissues-cross talk axes’ current knowledge with new patterns detected using our approach. We will generate a comprehensive catalog of coordination patterns at the tissues-axis in a dedicated database for the usage of the scientific community.
3.3 Aim 3. Define age-related inter-tissue transcriptome coordination changes and develop a measure for each individual inter-tissue-coordination level to predict chronological age
3.3.1 Working hypothesis and rationale: 
We propose that gene expression coordination of whole-body biological systems declines with the aging process, along with the functionality decline. A single-tissue coordination level between single genes and single cells was tested in distinct tissues31,32 and was shown to decline with age. We suggest extending our developed framework and whole-body coordination measures (objectives 1 and 2) to aging and to generate a global view of age-related inter-tissue coordination changes at the transcriptional level which will allow us to define the systems in which coordination patterns change during aging. We also conjecture that inter-tissue coordination measures can predict the chronological age of individuals and suggest developing a novel metric per each individual (the features), to represent its genomic inter-tissue coordination. This coordination score will be fed into machine learning classifiers to predict aging and can be further used for inferring the actual biological age and the individual’s health state.
3.3.2 Experimental design and methods: 
The data will be pre-processed and corrected for confounding factors with multivariate linear regression. The correction includes using the residuals as the expression data while retaining the coefficient that accounts for age differences (to keep the age signal in the data).
Coordination changes in aging: We will use our new measures (objectives 1,2) to test whole-body coordination changes in aging. We already demonstrated that older individuals exhibit weaker and fewer inter-tissue coordination levels using 1200 metabolic genes applied to three tissue-tissue pairs and using eigengenes of metabolic co-expression networks (see Fig. 5). Since the sample size is smaller for young/old cohorts (which might affect the correlation accuracy) and coordination changes might be subtle, we will initially test the changes of the global inter-tissue coordination pattern of multiple genes, i.e., at the gene-to-gene levels. We will divide the dataset into young and old groups and compare their global whole-body coordination for aging humans and mice (see datasets in Table 1). We will apply statistical tests such as the t-test and monte-carlo randomization test to evaluate the significance of the changes in coordination and annotate the pathways in which coordination change with age, using enrichment analysis. 
Coordination scores (features) for predicting age: We will develop novel inter-tissue coordination scores for each individual. In general, the score will represent similar ranked variations across tissues for each individual and will be based on evaluating each individual ranking on the gene level for each tissue. More specifically, an individual’s maximal tissuei-tissuej coordination for gene x level will exhibit for example the highest gene x level (across individuals) in tissue i and the highest level of this gene x in tissue j. Then we compute for individual k the tissuei-tissuej pairwise distance dijk between the ranks for each gene when dxijk = 0 represents a high tissue-tissue coordination for this gene x and individual k. Finally, each individual will have a feature space of its pairwise tissue-tissue synchronicity distance. These scores will be fed into machine learning classifiers to classify old/young humans/mice. Feature analysis will be used to represent the mostly dis-coordinated marker genes (annotated to biological pathways) across human/mice tissues that are the highest predictors of aging. See our preliminary results in Fig. 5 showing the weaker and fewer inter-tissue associations in the old cohort when compared to the young, as demonstrated for 3 tissue-tissue pairs, between metabolic networks, and between 1200 metabolic genes.
Age prediction with machine learning models: We will generate a binary classifier for age prediction (old/young) by several methods including: distributed gradient boosting framework xGBoost33; support vector machine classifier (SVM); random forest; and logistic regression classifier. In our first set of experiments, we will train and test the models within each dataset. We will use a 60/20/20% split of the data to generate the training/validation/test sets, relying on several different splitting approaches, e.g., 1) random split, 2) proportional representation of each age group. Classifiers’ performance will be compared using 10-fold cross-validation.
Identifying key features in each dataset: We will estimate feature importance from the trained predictive models, identify key features (age-related most coordinated marker genes/pathways) for each organism, and compare these features among humans and mice.  We will employ our best cross-validated model for SHapley Additive exPlanations (SHAP)32 to explain the output of the machine learning model and find the most predictive features, i.e., a combination of marker genes or pathways which inter-tissue coordination changes with age. These SHAP values of each feature represent the feature’s impact on the model output/classification of age (see example in Fig. 6 of SHAP analysis that we did for predicting age from epigenetic data).
Comparing organisms and developing better predictive models: We will compare the most predictive features between humans and mice and develop and test new models: combine the data from different organisms; reduce the feature set to core features that are ranked as important in all datasets.  
Experimental validation: We will experimentally validate age-related inter-tissue coordination-marker genes on longed lived animal models compared to short-lived animal models in a collaboration already established with the Atzmon lab (see attached letter, the budget is out of the scope of this proposal).
Data: We will apply our approach to bulk and single-cell data (Table 1) to detect changes in general and specific coordination of particular cell types. 
3.3.3 Preliminary results: We already studied age-related changes in inter-tissue transcriptome coordination and showed that inter-tissue transcription coordination deteriorates with age, at the gene levels for three representative tissue-tissue pairs, and network levels for two representative tissues. We used the GTEx datasets of 2 tissues, adipose subcutaneous and adipose visceral, and split the datasets proportionally into young and old cohorts. We performed co-expression networks per each group, annotated the networks, and calculated their eigengenes and inter-tissue calculations for the metabolic networks. Fig. 5A-F demonstrated the age-related deterioration of metabolic network–level coordination between adipose subcutaneous and adipose visceral. Fig. 5C presents a heatmap of the old and Fig. 5D the young network-eigengenes correlation coefficients for subcutaneous adipose-to-adipose visceral, which shows that the old age group has significantly fewer and weaker inter-tissue metabolic coordination. In Fig. 5A, 5B show heatmaps at a single-gene level using ~1200 metabolic genes. It can be seen that the old age group has lesser and weaker inter-tissue gene-to-gene correlation coefficients. Fig5. E-G quantifies the number of inter-tissue correlation coefficients under correlation coefficient cutoffs of 0.4, 0.5 and 0.6 and demonstrates that across 3 tissue-tissue pairs the young human cohort has significantly more inter-tissue correlations than the old human cohort.
3.3.4 Pitfalls: It is possible that the initial training set will be too small for training a classifier due to (1) low inter-tissue overlap between individuals (we filter donors that have samples for each tissue pairwise calculation) and (2) we use the significantly lower sized fast death group (as opposed to the slow and ventilated death types). Thus, we will try the following solutions: 1) use different splits for age and 2) use different death type group filtration or combine the groups for humans. We also will try to add samples from the high-sized ventilation group (relatively healthy individuals that were on ventilation prior to death) choosing the samples carefully of individuals who were not on ventilation for a long duration. In addition, tissues with a small number of samples overlap will be omitted from the analysis as a small sample size may lead to biased results. There is an imbalance in the number of old and young cohorts in the GTEx datasets [Fig. 5], with a higher number of old individuals, which may influence our ability to compare the results. To account for that, we will use state-of-the-art oversampling methods including generative models. For the mouse datasets, we will use meta-analysis approaches to combine multiple datasets following a batch correction or combine the results of the classifiers to yield the general performance. To handle the too large feature size in a case of too small sample size we will reduce the feature size by using state-of-the-art feature selection methods such as the Lasso approach and will use the XGBoost classifiers which are appropriate for such conditions. 
We have already shown coordination differences between the age groups (Fig. 5). Nevertheless, in case the suggested new scores will not discriminate between the young/old groups will try another approach inspired by the method presented for single-cell coordination in distinct tissues 31. We will calculate the general average correlation between randomly chosen genes between every two tissues, per individual, to give a correlation score for each individual.
3.3.5 Expected results: The proposed pipeline be automated for defining the molecular coordination changes with age, and predicting biological age based on global inter-tissue transcriptomic coordination. In addition, by conducting feature analysis we expect to detect marker genes and pathways whose coordination changes are associated and drive the prediction of the chronological age.
4  Conditions available for the research
Resources: The Department of Information Systems Engineering at the University of Haifa has provided me with high-performance computing of GPUs and CPUs and storage clusters to perform the proposed research. For long-term use, I asked for a budget to buy additional servers. 
Experimental validation of some of the newly detected patterns (Aim 2) and age marker genes (Aim 3) will be performed by the Mikl and Atzmon lab. 
Expertise: During my PhD I have developed an executable simulation approach for modeling molecular biology systems of gene expression 34,35. During my Postdoc training and during my 4 years as a faculty member, I worked on many aspects of high-throughput sequencing data and gained expertise in a variety of computational approaches that produce a large repertoire of biological data. In particular, I developed a methodology using executable models to explore disease comorbidities36, combined simulations with gene expression analysis named dynamic pathway enrichment analysis32, used deconvolution algorithms to infer cell proportions from bulk RNA-seq data37, developed a method to recover noise in biological RNA-seq data without losing the biological signal13, developed an approach for predicting the tissue-specific roles of receptors using RNA-seq GTEx data38 combined with machine learning classification and network analysis and enrichment analysis. From my PhD studies where I combined systems engineering and molecular biology, I was interested with understanding the holistic view of systems and I am highly fascinated to study how the human system operates as a whole system and co-regulate. Since my PhD I have studied a broad spectrum of computational approaches that can enhance my research that uses a plethora of methods to study computational systems biology questions. My expertise includes comparative genomics, computational prediction using machine learning and feature construction of new functions of genes and receptors, and analysis of complex gene networks. I have established 4 years ago my own research group, and now together with my students we aim to develop a suite of resources and tools to study transcription coordination patterns from a system-level perspective.
Preliminary results
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Figure 1. Schematic view of the methodology in the planned research.
Data Pre-processing and correcting for technical artefacts
Data pre-processing includes filtering, normalizing and adjusting each tissue dataset for batch effects. Normalized count values were log2-transformed, scaled to unit variance and centered by subtracting the mean, leaving us with 19,208 protein-coding genes. We remove outlier samples and quantile normalized genes within a tissue (to remove background and sample effects). To detect sample outliers, we calculated the distances between the samples, standardized them, and flagged as outliers the samples with high negative standardized distance SD <-3 (more than three standard deviations (SD) from the mean). Genes with zero variance or missing samples were excluded from the calculation. For a given tissue, genes having at least 0.1 RPKM in 80% or more of the samples were retained. We conducted our analysis on the fast death group (samples that were graded 1 or 2 on the Hardy scale, i.e., fast or relatively fast death). Fig. 6 includes an analysis using GTEx V6 where all brain tissues (excluding the cerebellum and the cerebellar hemisphere) were aggregated into one “Brain” tissue. The aggregation was required because the sample size per each sub-brain tissue was insufficient, given that our analysis required correlating samples between two tissues per the same donor. Brain samples are preserved either with PAXgene Tissue Fix or using fresh frozen methods; the latter do not have ischemic time available. Thus, for brain tissue, we did not correct the ischemic time. Our previous work 13 showed that using some common methods for adjusting the GTEx expression data for hidden confounding factors (e.g., using principle components) filters out many of the biological signals—which is relevant here. Thus, we executed ComBat 39 using the ‘sva’ R package 40 to adjust for the known confounding factors—death type, experimental batch, ischemic time, age, and gender. Because of the discrete nature of ComBat, the continuous ischemic time values were discretized into five bins, labeled 1 through 5, by partitioning these time values into 300-minute intervals. Age covered the 20–80-year range and is partitioned into 10-year intervals (embedded in the GTEx dataset). We removed genes with zero variance per batch group and type. We removed batches with one sample within a batch. Since ComBat 39 is not designed to correct for multiple batch effects simultaneously, we adjusted each batch iteratively, accounting for the yet unadjusted confounding factors in each iteration. Tissues having too small sample sizes in each batch were eliminated from this analysis. A total of 25 tissues for V6 and 31 tissues for V8 were corrected this way with ComBat.
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Figure 2. Performance evaluation of five batch correction methods and the raw data applied to six gene expression tissues datasets derived from the GTEx project [52]. The performance was based on a-priori high confidence gene-gene associations derived from an external reference. Abbreviations: LR – linear regression-based adjustment, PCA – principal component-based adjustment, ComBat – using the combat algorithm, PEER – using the PEER Algorithm, PCA_opt – optimized principal components approach. ROC curves and their corresponding AUC values are presented. ROC curves are graphical representations of both specificity and sensitivity that compares the gene-gene co-expression of each adjusted dataset against a gold standard, a-priori knowledge of true and false gene-gene associations derived from an external reference. (A) Performance evaluation of Adipose Subcutaneous tissue dataset. Performance was evaluated using 2,975 gold standard edges. (B) Performance evaluation of Skin Suprapubic dataset. Performance was evaluated using 2986 gold standard edges. (C) Plot summarizing the AUC values for six tissue datasets (x-axis) and five adjustment methods and raw data. It can be seen that LR (linear regression-based adjustment for known confounders) and Combat outperforms the other adjustment methods.  
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Figure 3. Modules annotation, explained variation analysis and tissues overlap. A. B. Exemplifies the death type differences for a representative gene and the erroneous correction when we use multiple linear regression to correct for death type. Thus we conduct the analysis separately for the ventilation group and the fast death group (correction is elaborated in our work 22) C. Pathway enrichment analysis of demonstrative metabolically annotated modules across 19 human tissues. A heatmap of log-transformed p-values (adjusted for multiple corrections) of the KEGG pathways’ enrichment is presented. Metabolic pathways are highlighted in the annotation rows to the left in turquoise and corresponding to the KEGG BRITE “Metabolism” hierarchical classification. It can bee since enrichment of metabolic pathways. D. Eigengenes variance explained for co-expression modules and their annotation for adipose subcutaneous. E. Variation and annotation for adipose visceral.  It can be seen that the variance explained varies between 0.2 to 0.7 for the co-expression modules. 
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Figure 4. Whole-body global metabolic transcriptome coordination pattern. 
A. A heatmap contains 609 co-expression networks pairwise correlation coefficient p-values derived from 19 human tissues. The co-expression networks (modules) are annotated and classified into 8 types using the KEGG BRITE classification (p-value greater than 0.2 are truncated to 0.2).  The y-axis bar to the left colored the types of network annotations (e.g., The 40 metabolic modules are colored on the left bar in red) and the tissue types are colored on the x-axis top bar. B. Number of pairwise samples overlap between donors. It can be seen that the sample size includes more than 50 samples (red) and many more than 100 (blue) per each tissue-tissue pair and size varies across pairs. C. The chart presents the number of pairwise metabolic correlation coefficients (Pearson’s) that exceed a given correlation threshold. In total, we had a total of 780 pairwise metabolic correlations (751 module-nodule inter-tissue associations) from 40 cross-tissue metabolic networks from 19 tissues. The line colored in dark green represents the number of metabolic positive pairwise correlations exceeding the threshold. The dark red represents the number of negatively correlated metabolic pairwise correlations meeting or exceeding the given threshold. The light green line represents the number of average positive pairwise correlations from a random module sample repeated 1000 times, with the same representative proportion of tissues as the 40 metabolic modules across tissues. The light red line represents the average negative correlation for a given threshold. The dashed turquoise line represents the fifth percentile the positive correlations between inter-tissue metabolic modules are significantly larger (p-value < 0.05) than the random values. D. The same analysis as in C at the p-values level. The chart presents the number of pairwise metabolic adjusted p-values of the correlation coefficients that exceed a given correlation threshold. The black dotted line represents the proportion of instances expected to exceed a given threshold if the randomly selected co-expression contained no synchronization patterns. We observe that throughout the p-value thresholds of 0.25% to 5%, what we refer to as random networks also contain synchronization patterns.  E. Positive to negative ratio perspective based on graph D. For a given p-value ratio the dark blue line shows us the average ratio of positive to the negative instance with a pair-wise correlation p-value threshold at the given level. The dashed blue line shows us the 95% percentile of the positive-to-negative ratio and the green line shows us the actual positive-to-negative ratio of the metabolic network given a specified p-value. This graph demonstrates that metabolic co-expression networks tend to have more than twice more (p.value < 0.01) positive than negative inter-tissue relations and this ratio is statistically significant (exceeds the 95% percentile).
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Figure 5. Example of a cross-tissue metabolic coordination pattern. 
A. A metabolic meta-community of 13 nodes in 9 representative tissues represents metabolic coordination in these tissues. Each node represents a metabolic module in a tissue. Grey nodes represent modules not included in the community while red/blue nodes are included in the community. The edges represent the strength and type (red for positive and blue for negative) of Spearman’s correlation coefficient. It can be seen that all community nodes are positively correlated except for one of two brain modules. Module number 4 in the brain is negatively correlated to the nodes in the community and module number 2 in the brain is positively correlated. 13 out of 32 metabolic networks in these 9 tissues form a densely interconnected community. The plots include statistically significant edges (adjusted p-value < 0.05). B. Simplification of the representation in A shows that Module 4 is negatively correlated to other nodes in the community. C. Enrichment analysis of brain module 2. D. enrichment analysis of brain module 4.
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Figure 6. Inter-tissue coordination changes with age. It can be seen that inter-tissue gene-level correlation coefficients are weaker with age, i.e., the inter-tissue has fewer connections that are less strong with aging. 
A. Old cohort age 60-80 (53 samples). Heatmap of clustered absolute values of Pearson’s correlation coefficients of 1200 metabolic genes (derived from KEGG metabolic pathways). B. Young cohort age 20-49 (69 samples). C. D. E. F. G. H. I. J. The bar plots emphasize the changes of coordination between young and old across 6 representative tissue-tissue pairs. The names of the pairs are written at the title of each plot. The bar plots represent the percentage of inter-tissue positive/negative correlation coefficients (green/red bars) across 0.4, 0.5 and 0.6 cutoffs. It can be seen the same trend that in all 6 tissue-tissue pairs (except one pair in plot J) the coordination is stronger at the young cohort when compared to the old.  For example, plot C demonstrates that the young group at the correlation threshold of 0.4 have 10 times more the percentage of inter-tissue connectivity. The percentage was calculated separately for positive/negative inter-tissue associations by dividing the number of correlations by the total number of associations (i.e., 1,440,000 associations from 1200*1200 metabolic genes). 
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Figure 7. Prediction of phenotypes based on EPIC data. Random Forest ML classifier results (10-fold cross-validation), using 53 phenotyped individuals, show good performance predicting: ELLI vs. controls (~0.89). The Shapley Additive exPlanations (SHAP) importance plots provide the impact of the individual CGs on model prediction output (red: high, blue: low
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