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Abstract

This paper assumes that cause-effect relationships between random variables can be represented by a Gaussian linear
structural equation model and the corresponding directed acyclic graph. Under the situation where we observe a set of
random variables that satisfies the back-door criterion, when the ordinary least squares method is utilized to estimate
the total effect, we formulate the unbiased estimator of the causal effect on the variance (the estimated causal effect
on the variance) of the outcome variable with external intervention in which a treatment variable is set to a specified
constant value. In addition, we provide the variance formula of the estimated causal effect on the variance. The variance
formula proposed in this paper is exact, in contrast to those in most previous studies on estimating causal effects.
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1. Introduction

1.1. Backgound

Statistical causal inference using linear structural equation models (linear SEMs) has been widely used to clarify
cause-effect relationships between random variables in fields such as sociology, economics, and biology, and its origin
can be traced back to path analysis (Wright,1923,1934). Statistical causal inference has been re-developed as the theory
of structural causal models (Pearl, 2009).

When a linear SEM is given as a statistical model to describe cause-effect relationships between random variables,
the important aspects are direct, indirect, and total effects (Bollen, 1989). According to Bollen (1987, p.40), intuitively,
the direct effect is defined as “those influences unmediated by any other variable in the model," and the indirect effect is
defined as “those influences mediated by at least one intervening variable." Here, an “intervening variable" is a random
variable that could be affected by a treatment variable and have an effect on an outcome variable. The total effect is
defined as the sum of direct and indirect effects. In the framework of statistical causal inference using linear SEMs,
the total effect also means the amount of the change in the expected value of an outcome variable when a treatment
variable is changed by one unit due to external intervention. The causal understanding regarding the difference of
total, direct and indirect effects contributes to evaluating how much of the causal effect of a treatment variable on an
outcome variable is captured/ not captured by intervening variables. The statistical method for promoting such causal
understanding is called mediation analysis, which has its roots in the literature of linear SEMs, going back to path
analysis (Wright, 1923, 1934) and continuing in the social sciences through the works of Duncan (1975), Baron and
Kenny (1986) and Bollen (1989).

To evaluate the total effect, which this paper focuses on, statistical researchers in the field of linear SEMs have
provided various identification conditions and estimation methods (e.g., Brito, 2004; Chan and Kuroki, 2010; Chen,
2017; Henckel et al., 2019; Kuroki and Pearl, 2014; Maathuis and Colombo, 2015; Nandy et al., 2017; Pearl, 2009;

*Corresponding author. Email address:teduka-taiki-bs @ynu.jp

Preprint submitted to Journal of Multivariate Analysis November 30, 2022



Perkovié, 2018; Tian, 2004). Herein, “identifiable" indicates that the total effect can be uniquely determined based on
the variance-covariance parameters of observed variables.

When we wish to characterize the distributional change introduced by external intervention based on linear SEMs,
there is no reason to limit our causal understanding to the change in the expected value of an outcome variable. In fact,
Hernan and Robins (2022, p.7) stated

“the average causal effect, defined by a contrast of means of counterfactual outcomes, is the most commonly
used population causal effect. However, a population causal effect may also be defined as a contrast
of functionals, including medians, variances, hazards, or cdfs of counterfactual outcomes. In general,
a population causal effect can be defined as a contrast of any function of the marginal distributions of
counterfactual outcomes under different actions or treatment values. For example, the population causal
effect on the variance is defined as var(Y*=!) — var(Y¢=0)."

Actually, in practical science, it is important to estimate the change in the expected value of an outcome variable
due to external intervention (the causal effect on the mean). However, it is often necessary to evaluate the variation
(variance) of the outcome variable due to external intervention (the causal effect on the variance) as well. For example,
in the field of quality control, in order to suppress a defective rate of products effectively, it is necessary to bring the
outcome variable closer to the target value due to external intervention, thereby reducing the variation (or minimizing
the variance) of the outcome variable as much as possible. In quality control, Kuroki (2008, 2012) and Kuroki and
Miyakawa (1999ab) discussed what happens to the variance of the outcome variable when conducting the external
intervention. In addition, according to Gische et al. (2021), when treating hyperglycemia, the physician’s goal is
that the patient’s level of blood glucose will be maintained within the euglycemic range (acceptable range) after the
treatment (external intervention). Then, the variance of the outcome variable by the external intervention, together with
the physician’s knowledge, plays an important role in constructing the acceptable range to detect a threat to a patient’s
health.

Regarding the estimation accuracy (or, the variance) of the causal effect on the variance, when the ordinary least
squares method is utilized to estimate the total effect, Kuroki and Miyakawa (2003) discussed how the asymptotic
variance of the consistent estimator of the causal effect on the variance differs with different sets of random variables
that satisfy the back-door criterion (Pearl, 2009). In addition, Shan and Guo (2010) studied the results of Kuroki and
Miyakawa (2003) from the perspective of a particular type of external intervention using more than one treatment
variable. Shan and Guo (2012) also extended the variable selection criteria provided by Kuroki and Miyakawa (2003)
from a deterministic intervention to a stochastic intervention. Kuroki and Nanmo (2020) applied the results of Kuroki
and Miyakawa (2003) to predict future values of the outcome variable when conducting external intervention. Here, it
is noted that the existing estimators of the causal effect on the variance are the consistent but not unbiased estimators.
Estimation accuracy problems are essential issues related to statistical causal inference, and thus it is important to
formulate the unbiased estimator of the causal effect on the variance with the excat variance. This is because the
reliable evaluation of estimation accuracy of the causal effect on variance plays an important role in the success of
statistical data analysis, which aims to evaluate what would happen to the outcome variable when conducting external
intervention based on non-experimental data.

This paper assumes that cause-effect relationships between random variables can be represented by a Gaussian
linear SEM and the corresponding directed acyclic graph. Under the situation where we observe a set of random
variables that satisfies the back-door criterion, when the ordinary least squares method is utilized to estimate the total
effect, we formulate the unbiased estimator of the causal effect on the variance, i.e., the unbiased estimator of the
variance of the outcome variable with external intervention in which a treatment variable is set to a specified constant
value. In addition, we provide the variance formula of the unbiased estimator of the causal effect on the variance. The
variance formula proposed in this paper is exact, in contrast to those in most previous studies on estimating causal
effects.

1.2. Motivating Example

To motivate our problem, consider a case study of setting up coating conditions for car bodies, reported by Okuno
et al. (1986). According to Okuno et al. (1986), since car bodies are coated in order to increase both the rust protection
quality and the visual appearance, a certain level of the coating thickness must be ensured in the coating process. At that



time, the coating process was conducted by operators who sprayed the car bodies with the paint. This was dependent
on operators’ skills and might cause low transfer efficiency. Okuno et al. (1986) collected non-experimental data in the
coating process in order to examine the process conditions and to increase the transfer efficiency, which were important
to establish the automated stable manufacturing process. The sample size is 38 and the observed variables of interest
are the following:

Coating Conditions: Dilution ratio (X;), Degree of viscosity (X»), Temperature of the paints (Xg)

Spraying Conditions: Gun speed (X3), Spray-distance (X4), Air pressure (Xs), Pattern width (Xg), Fluid output (X7)
Environment Conditions: Temperature (Xy), Degree of moisture (Xjo)

Response: Transfer efficiency (Y), which was defined as “the coated paint volume"/*“the consumption of paints"x100%

According to Okuno et al. (1986), dilution ratio (X;) and spray-distance (X4) are easy to be controlled. Degree
of viscosity (X3), gun speed (X3), air pressure (Xs) and pattern width (X¢) are able to be controlled to some extent.
Fluid output (X7) and temperature of the paints (Xs) are results from other factors and are difficult to be controlled.
Temperature (X9) and degree of moisture (Xj() are environment conditions that cannot be controlled. In addition,
Okuno et al. (1986) also considered “wind speed"” (environment condition), “solid content" (coating condition) and
others as factors which might have an effect on Transfer efficiency (Y). However, these factors were not observed,
because it seems to be sufficient to observe the ten variables above to achieve their aim, according to Okuno et al.
(1986).

Concerning the coating process, Okuno et al. (1986) provided the sample correlation matrix shown in Table 3.
By applying conventional stepwise regression analysis to Table 3 according to Okuno et al. (1986), the following
regression model is obtained:

Y = -0.636x4 — 0.465x6 + 0.189x7 — 0.372x3. (N

It is seen from the regression model (I)) that the transfer efficiency (¥) can be increased by controlling X4, X6, X7 and
Xsg according to Okuno et al. (1986), but note that both the fluid output (X7) and the temparature of the paints (Xg)
are difficult to be controlled actually. In addition, in order to establish stable manufacturing process, it is important to
understand how the variation of the transfer efficiency (¥) would change by external intervention, because the increase
in the variation of the transfer efficiency (¥) may lead to the construction of the unstable coating process. However,
from equation (), it is difficult to understand how the variation in the transfer efficiency (¥) would change by external
intervention: the analysis should not be simply based on statistical aspects, but it is desirable to describe the cause-effect
relationships as a directed graph (which is called a causal path diagram) according to the analyst’s knowledge. Then,
combining the causal knowledge with statistical data, statistical causal inference using linear SEMs enables us to
evaluate the variation of the transfer efficiency (¥) due to external intervention through (non-experimental) statistical
data collected from the current coating process.

Here, to present our results, according to Kuroki (2008, 2012), assume that the cause-effect relationships in the
coating process are given in Figure 1. For example, intuitively, in Figure 1, a directed edge from X, to X, (X; — X>)
means that X; could cause X, directly, and a directed path from X; to X7 with a missing directed edge (X; — X» — X7)
means that the effect of X; on X7 could be mediated by X, but can not directly. Here, this paper will not discuss
statistical inference problem of Figure 1. Refer to Kuroki (2012) for details on this case study.

Here, under the assumption that X;, X», ..., X190, Y follows the multivariate normal distribution with zero mean
vector and the variance-covariance matrix shown in Table 3, we evaluated unbiased estimators (17) and the consistent
estimators (22) of the causal effect on the variance of the transfer efficiency (Y) 5000 times based on the sample size
38. Table 3 reports the basic statistics of the unbiased estimators (17) and the consistent estimators (22) when a set of
variables given in ‘Variables’ rows are utilized to identify the causal effects.

Regarding the causal effect on the variance, from the “Estimates" rows of Table 2, although the consistent estimators
are different from the values of equation (11), the unbiased estimators are close to the values of equation (11) even
for the small sample sizes (n = 38). Especially, regarding the external intervention to dilution ratio (X;), the unbiased
estimators show that the external intervention could reduce the variation of transfer efficiency (Y), but the consistent
estimators imply that the external intervention does not reduce the variation of transfer efficiency (Y). Such difference
may lead to the serious practical judgments: to establish the stable manufacturing process increase the transfer efficiency,
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Table 1: The sample correlation matrix (Okuno et al. 1986)

X X X3 Xy Xs Xs X7 X3 Xy X0 Y

X; | 1.000 | -0.678 | -0.215 | 0.230 | 0.040 | 0.116 | 0.338 | 0.002 | 0.145 | -0.496 | -0.198
X, | -0.678 | 1.000 | 0.241 | -0.442 | -0.024 | 0.005 | -0.422 | -0.590 | -0.509 | 0.684 | 0.463
X3 | -0.215 | 0.241 | 1.000 | -0.201 | 0.004 | -0.067 | 0.208 | -0.007 | -0.082 | 0.307 | 0.292
X4 | 0230 | -0.442 | -0.201 | 1.000 | 0.191 | -0.286 | 0.287 | 0.446 | 0.521 | -0.477 | -0.614
Xs | 0.040 | -0.024 | 0.004 | 0.191 | 1.000 | 0.291 | 0.117 | 0.034 | -0.048 | 0.010 | -0.151
Xs | 0.116 | 0.005 | -0.067 | -0.286 | 0.291 | 1.000 | 0.057 | -0.123 | -0.147 | 0.178 | -0.226
X; | 0338 | -0.422 | 0.208 | 0.287 | 0.117 | 0.057 | 1.000 | 0.251 | 0.287 | -0.122 | -0.113
X | 0.002 | -0.590 | -0.007 | 0.446 | 0.034 | -0.123 | 0.251 | 1.000 | 0.761 | -0.342 | -0.551
Xy | 0.145 | -0.509 | -0.082 | 0.521 | -0.048 | -0.147 | 0.287 | 0.761 | 1.000 | -0.571 | -0.431
Xjo | -0.496 | 0.684 | 0.307 | -0.477 | 0.010 | 0.178 | -0.122 | -0.342 | -0.571 | 1.000 | 0.282

Y |-0.198 | 0.463 | 0.292 | -0.614 | -0.151 | -0.226 | -0.113 | -0.551 | -0.431 | 0.282 | 1.000

Figure 1: Causal path diagram of the coating process (Kuroki, 2012)
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Table 2: Basis statistics of the coating process

Treatment variable Dilution Ratio (X;) Spray Distance (X4)
Covariate X0 {Xo, X10} Xo {X7, X3, Xo} {X7, X3}
Equation(11) 0.975 0.963 0.629 0.631 0.640
Estimator unbiased consistent | unbiased consistent | unbiased consistent | unbiased consistent | unbiased consistent
Estimates 0.989 1.022 0.972 1.023 0.627 0.649 0.632 0.679 0.636 0.667
Equation(17)/(22) 0.055 0.052 0.052 0.049 0.023 0.021 0.023 0.022 0.024 0.023
var 0.056 0.060 0.053 0.058 0.022 0.023 0.023 0.026 0.023 0.024
Skewness 0.576 0.575 0.377 0.372 0.515 0.513 0.502 0.495 0.514 0.505
Kurtosis 3.722 3.724 3.034 3.038 3.453 3.450 3.429 3411 3.535 3.513
Minimum 0.366 0.378 0.303 0.318 0.186 0.194 0.247 0.265 0.216 0.227
1st Quartile 0.822 0.851 0.808 0.852 0.521 0.540 0.525 0.565 0.531 0.558
Median 0.969 1.001 0.954 1.004 0.614 0.634 0.623 0.669 0.623 0.655
3rd Quartile 1.130 1.167 1.122 1.179 0.719 0.744 0.727 0.780 0.729 0.764
Maimimum 2.285 2.351 1.878 1.945 1.278 1.320 1.340 1.412 1.395 1.460

Unbiased: unbiased estimator; Consist: consistent estimator; Estimates: the sample mean from 50000 estimated
causal effects on the variance; Equation(11): the causal effect on the variance from equation (11) with Table 1;
Equation(17)/(22): the exact and asymptotic variances derived from equations (17) and (22) with Table 1; Var:
empirical variances from 50000 estimated causal effects on the variance.

the external intervention should be conducted from the viewpoint of the unbiased estimators, but not from the viewpoint
of the consistent estimators.

2. Preliminaries

2.1. Graph Terminology

A directed graph is a pair G = (V, E), where V is a finite set of vertices E, which is a subset of V X V of pairs of
distinct vertices, is a set of directed edges (—). If (a,b) € E for a, b € V, then the G contains the directed edge from
vertex a to vertex b (denoted by a — b). If there is a directed edge from a to b (a — b), then a is said to be the parent
of b and b the child of a. Two vertices are adjacent if there exists a directed edge between them. A path between a

and b with the length m is a sequence a = ay, ay, - - -, b = a,, of distinct vertices such that a;_; and g; are adjacent for
i=1,2,---,m. A directed path from a to b with the length m is a sequence a = ay, ay, - - -, b = a,, of distinct vertices
such thata;_; — a; fori = 1,2, .- ,m. If there exists a directed path from a to b, then a is said to be an ancestor of b

and b a descendant of a. Especially, (a, b) € E for a,b € V is a directed edge from a to b and the directed path from a
to b with the length 1 at the same time. a is a parent of b and an ancestor of b at the same time. b is a child of a and a
descendant of b at the same time.

When the set of descendants of a is denoted as de(a), the vertices in V\(de(a)U{a}) are said to be the nondescendants
of a. A vertex is said to be a collider if it is a common child of the other two or more vertices; otherwise, it is said to be
a non-collider. A directed path from a to b, together with the directed edge from b to a, forms a directed cycle. If a
directed graph contains no directed cycles, then the graph is said to be a directed acyclic graph (DAG).

2.2. Linear Structural Equation Model

In this paper, it is assumed that cause-effect relationships between random variables can be represented by a
Gaussian linear structural equation model (linear SEM) and the corresponding directed acyclic graph (DAG). Such
a DAG is called a causal path diagram, which is defined as Definition 1. Here, we refer to vertices in the DAG and
random variables of the Gaussian linear SEM interchangeably.

Definition 1 (causal path diagram). Consider a DAG G = (V, E), for which aset V = {V{,V,,---,V,} of p continuous
random variables and a set E of directed edges are given. Then, the DAG G is called the causal path diagram if the



Figure 2: Causal path diagram

random variables are generated by a Gaussian linear SEM

Visay+ Y agVite, i=1,2,....p )
Vjepa(Vi)

satisfying the constraints entailed by the DAG G. Here, pa(V;) is a set of parents of V; € V in the DAG G. In addition,
letting 0, be an p-dimensional vector whose i-th element is zero fori = 1,2, ..., p, €, = (€, €y, . . ., €,,) denotes a set
of random variables, which is assumed to follow the multivariate normal distribution with the mean vector 0, and the
positive diagonal variance—covariance matrix X . In addition, the constant parameters a,, and yy; fori,j=1,2,..,p
(i # j) are referred to as the intercept of V; and the causal path coeflicient (or direct effect) of V; on V;, respectively. [

As an example, consider the causal path diagram shown in Figure 2. From Figure 2, we can judge that: (1) V; could
be a direct cause of V, and V4, (2) V5, could be a direct cause of V3 and V4, and (3) V3 could be a direct cause of V.
Then, the Gaussian linear SEM defined by Figure 2 is as

Vi=a,, +e,, Va=a,+ta,,Vite, Vi=a,+a,,Vote,, Vi=a,+a,,Vita,,Vota,.,Vi+e,, 3)

where €,,, €,,, €, €,, follow the normal distribution with zero mean and non-zero variance independently.
The conditional independence induced by the Gaussian linear SEM (2) can be obtained from the causal path
diagram G through the d-separation (Pearl, 2009).

Definition 2 (d-separation). Let {X, Y} and Z be the disjoint sets of vertices in the DAG G. If Z blocks every path
between distinct vertices X and Y, then Z is said to d-separate X from Y in the DAG G. Here, the path p is said to be
blocked by (a possibly empty) set Z if either of the following conditions is satisfied:

(1) p contains at least one non-collider that is in Z;

(2) p contains at least one collider that is not in Z and has no descendant in Z. U

In Figure 2, both {V,} and {V,, V,} satisfy Condition (1) of Definition 2 on the path V;—V,—Vj since both sets
include a non-collider V,. However, a collider (V4) on the other paths is in {V>, V4} but not in {V,}. Thus, V, d-separates
V, from V3 but {V5, V,} does not.

If Z d-separates X from Y in the causal path diagram G, then X is conditionally independent of Y given Z in
the corresponding linear SEM (e.g., Pearl, 2009). For example, in Figure 2, since {V,} d-separates {V,} from {V3}
respectively, V| is conditionally independent of V3 given V.

2.3. Back-door Criterion

In this paper, for X, Y € V (X # Y), consider the external intervention in which X is set to be the constant value
X = x in the Gaussian linear SEM @, denoted by do(X = x). According to the framework of the structural causal
models (Pearl, 2009), do(X = x) indicates mathematically that the structural equation for X is replaced by X = x in the
Gaussian linear SEM (2).

Let V = {X, Y} U W be the set of random variables in the causal path diagram G, where {X, Y} and W are disjoint.
When f(x,y,w) and f(x|pa(x)) denote the joint probability distribution of (X, Y, W) = (x,y,w) and the conditional
probability distribution of X = x given pa(X) = pa(x), respectively, the causal effect of X on Y, which is denoted by
fldo(X = x)), is defined as

f(xy,w)
JOMAX =0= ] Ftpacoy ™
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(Pearl, 2009). When equation (@) can be uniquely determined from the probability distribution of observed variables, it
is said to be identifiable: that is, it can be estimated consistently. Here, in this paper,

E(Yldo(X = ) = oy = f FOIO(X = x))dy,  var(YIdo(X = x)) = oy = f O — i FOldo(X = ) dy  (5)
y y

are called the causal effect of do(X = x) on the mean of Y and the causal effect of do(X = x) on the variance of Y,
respectively. E(Y|do(X = x)) and var(Y|do(X = x)) are also called the interventional mean and the interventional
variance, respectively, by Gische et al. (2021). Then, in the Gaussian linear SEM @), the first derivative of E(Y|do(X =

x)) of ¥, namely, dE(Y|do(X = x))
o(X = Xx

I Vx (6)

is called the total effect of X on Y. Graphically, the total effect 7y, is interpreted as the total sum of the products of the
causal path coefficients on the sequence of directed edges along all directed paths from X to Y. If the total effect 7, can
be uniquely determined from the variance-covariance parameters of observed variables, then it is said to be identifiable;
that is, it can be estimated consistently. The interpretation of the total effects in the Gaussian linear SEM (2)) via the
path analysis (Wright, 1923, 1934) is also discussed by Henckel et al. (2019) and Nandy et al. (2017) in detail.

Let Gy be the directed graph obtained by deleting all the directed edges emerging from X in the DAG G. Then, the
back-door criterion is a well-known identification condition of the causal effect (Pearl, 2009).

Definition 3 (back-door criterion). Let {X, Y} and Z be the disjoint subsets of V in the DAG G. If Z satisfies the
following conditions relative to an ordered pair (X, Y) in the DAG G, then Z is said to satisfy the back-door criterion
relative to (X, Y):

1. no vertex in Z is a descendant of X

2. Z d-separates X from Y in Gy. g

Regarding other identification conditions of causal effects, for example, "the front door criterion" (Pearl, 2009) and
“the effect restoration" (Kuroki and Pearl, 2014) are known. However, this paper is only concerned with identification
of a causal effect using the back door criterion. As seen from the description of Definition 3, the back-door criterion is
not a statistical concept, and can not be tested through statistical data.

In Figure 2, both {V,} and {V;, V,} satisfy the back door criterion relative to (V3, V4). However, {V;} does not satisfy
the back door criterion relative to (V3, V4), since {V;} does not d-separate V3 from V4 in the graph ng derived from
Figure 2. For example, {V} does not include any non-collider (V>) on the path V3 « V, — V, and neither colliders nor
their descendants are not on the path.

When Z satisfies the back-door criterion relative to (X, Y) in the causal path diagram G, the causal effect of X on Y
is identifiable and is given by

f(yldo(X = x)) = f fOlx, 2)f(2)dz @)

(Pearl, 2009).

Here, we define some notations. For univariates X and Y and a set Z of random variables, let u, and u, be the
means of X and Y, respectively. In addition, let oy, oy, and o, be the covariance between X and Y, the variance of X
and the variance of Y, respectively. When the prime notation (") represents the transpose of a vector or matrix, let X,,,
X,. and X_; be the cross covariance vector between X and Z (X, = X,), the cross covariance vector between Y and Z
(Z;y = Z},) and the variance—covariance matrix of Z, respectively. Then, consider the regression model of ¥ on X and
Y/

Y = IByﬂ +:8yx.sz + Byz.sz t € .xzs (®

where €, ., is a random variable of the regression model (@) that has a normal distribution with mean zero and variance
Oyy.xz» While By -, Byrr:, and B, .. are the regression intercept, the regression coefficient of X, and the regression
coefficient vector of Z in the regression model (), respectively. Here, according to the standard assumption of linear
regression analysis, in the regression model (15_3'[), €.x; 1S assumed to be independent of both X and Z. Then, for a
non-empty set Z, letting

ZZXZXZ

T v
_ -1 _ -1 _ 4 _ Xy _ N/
ny-z - O-xy _Exzzzz Ezy’ Oxxz = Oxx _Exzzzz Zz,h zzz.x - zzz - P ) Eyz.x - z:yz - P sz’ zzy.x - Eyz,xa (9)
xx xx
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the regression coefficient of X and the regression coeflicient vector of Z are given by Byx.; = 0 xy.;/0 sz and By, =
POV XZZZ . respectively, when oy # 0, 07y, # 0, and both X, and X, , are positive definite matrices.
When a set Z of observed variables satisfies the back-door criterion relative to (X, Y), then the total effect 7,, is

identifiable and is given by 7,, = B, ., (Pearl, 2009). Then, according to equation , consider the regression model of
2

Oy
Y on X and Z, namely, equation (8). Then, letting oy, , = oy, — Z,,22' 2., and 0y ;= Oyyp — ﬁ’ E(Y|do(X = x))
and var (Y|do(X = x)) are formulated as

E(Y|do(X = x)) = Mylx = My +,8yx.xz(x — M) = My + Tyx(x — M) (10)

and
var (Ydo(X = x)) = Oyyix = Oyyxz + ByzxcZ; B;& s an

respectively (Kuroki and Miyakawa, 1999ab, 2003). Here, equation (IT)) shows that Z behaves similarly to the random
variable such as €, ., in equation (8) by conducting the external intervention do(X = x), and the external intervention
may not reduce the variation of the outcome variable Y (Kuroki, 2012).
To proceed our discussion, we also consider the regression coefficient vector of Z in the regression model of X on
VA
X =By, + By, Z + €, (12)

where €, , is a random variable of the regression model @I) that has a normal distribution with mean zero and variance
O xxz» While B, and B, are the regression intercept and the regression coefficient vector of Z in the regression model
(T2), respectively. Here, ex . is also assumed to be independent of Z. Then, the regression coefficient vector of Z is
denoted by B,,., = ZMZ when X, is a positive definite matrix.

3. Results

Let fi, and f1, be the sample means of X and Y, respectively. In addition, let sy, Syy, Sxy, Szz, Sz and S, be the
sum-of-squares of X, the sum-of-squares of Y, the sum-of cross-products between X and Y, the sum-of-squares matrix
of Z, the sum-of-cross-products vector between X and Z (S = S'.), and the sum-of-cross-products vector between Y
andZ (S, =S ;Z), respectively. Then, for non-empty set Z, letting

S S Sxy
= -1 — -1 _ XM xz _ Xy ,
sxy.z - sxy_SX"SZZ Szys Sxxz = sxx_szSzz Szx’ Szz.x - Szz_ s Syz.x = Syz_ sz: Szyr - S}zx’ (13)

- SXX XX
through the ordlnary least squares method, the unbiased estimators of 8, ;, By . and By .. of equations (8] and (12] .
are given by ﬁyx xz = Sxyz/Sxxzs va = SXZS7Z and Byz = Snyzz . respectively, when sy, # 0, sy, # 0 and both S,
and S ., are positive definite matrices. Here, letting n and g be the sample size and the number of random variables in
Z, respectively, for g < n -2,

2

s Syyz = X 1
A yy.xzZ < Sxx.z <

= = , 2.=——35 14
O-.V)JCZ l’l—q—2 n—q—2 2z n—1 22 ( )

are also unbiased estimators of oy, ., and Z.,, respectively, where s,y . = sy, — S, 'S ).
Under the random sampling, when the total effect 7, is estimated as 7,, = .., through the ordinary least squares
method in the regression model , the exact variance of f..,; is given by

1 Tyyxz

var (Ayx.xz) = (15)

n—q—3 O

for g < n — 3 (e.g., Kuroki and Cai, 2004).
The following theorem holds:



Theorem 1. Under the Gaussian linear SEM (2)), suppose that Z satisfies the back-door criterion relative to (X, Y) in
the causal path diagram G. When the ordinary least squares method is utilized to evaluate the statistical parameters in
equations (I0) and (T1), the unbiased estimators of ), = E(Y|do(X = x)) and oy, = var (Y|do(X = x)) are given by

ﬂylx = ﬁy +3yx.xz(x - fiy) (16)
R R 1 B...S.B, I
0-)')‘\)( = O—Y)’JCZ (1 - (6] + S e )) + Byz.xzzzszz.xzv (17)
n—1 Sxxz

respectively. fi,. and &y, are called the estimated causal effect of do(X = x) on the mean of Y and estimated causal
effect of do(X = x) on the variance of Y, respectively. In addition, for g < n — 5, the variances var(fly) of fi,. and
var(Gyyx) of Oyyx are given by

, ) + Oyy.xz

~ 1 O-Xx
var (/lylx) = ; ( Oyyxz + By x: 2By, (n—q-3) ( (x - ﬂx)z + ), (18)
xx.2

n

var(Gyyx) =

n—1

2(BYZ~XZZZZB;Z.XZ)2 + 20-2)’)’~xz ((] _ q )2 _ 2(1 _ q )qo—xx.z + (n - 1)sz.zzzzB;cz.z
n—1

n-1 n—q-2 (n=1)(n-q—=3)0;

N N’ 2 ’ N N’ 2
E By..S zszz,z + 2(7-§y.)cz g+ zqo'xx.z +(n - I)sz.zzzszz.z +E By..S zszz,z
(n—=1D)syy; (n - 1)2 (n—q—3)0; Sxx.z

40'yy.xz , (Byz.sz ZZE;C . )2
+ 17 (n— I)Byz.xzzzszz,xz +E TZZ , (19)
respectively, where
o A2
E (sz.zs zszz.z] _ 2q0—,2vx.z +4(n — )0y Byy 27 By + 2(n - 1)(Bxuzzszz.z)2
Sxxz (n-q=3)n-q-50%, (n-q=3)n-q->50%,
(qOxxz+ (n— I)sz‘zzzzB;cz.z)2 (20)
(n—q-3)n—-q-5)07%,,

E ((Byz.xzszzg;z.z)z] = (n— 1)(”(Byz.xzzzzB;z.z)2 + (sz.zzzzB;cz.z)(B)’ZJZB;z.z)Z + O-XX-ZByZ-XZEZZB;z.xz) 2D

Sirz (n—q =30z '
O

Both equations (T6) and (T8) are given by Kuroki and Nanmo (2020). The derivation of equations (T7) and (T9),
which are the new results, is provided in Appendix. Here, from Appendix, note that the assumption of Gaussian random
variables in equation (2) is not necessary to derive equations (I7), but necessary to derive equation (19).

For a large sample size n such as n™! >> n=2 ~ 0, the consistent estimator 0 yyx Of 07yyx can be given by

Fyyle = Oyyre + Byex 2By s (22)
which shows that equation @ is larger than equation (17). In addition, the asymptotic variance of &y, a.var(&yx),
is given by

203, . 2(ByEuBy..)? 4o B,...2..B. )
a.var(é'mx) _ :ly.xz + ( Vz.XZ nzz )z.xz) + yy.xZ (Byz.xzﬁzzB;z.xz+( )z.xzo_zz xz.z) )
xx.2
2 . 2 4oy, ,
= ; (O—yy.xz + Byz.xzzzszz,xz) + e Byz.xzzzszz_z)z- (23)

XX.Z



-1

. » the covariance between X and equation (8)

Here, when we let By, = 0, /0xy, from B, = Ty and By, = L2

leads to
Oxy = ﬂyx.xza—xx + Byz.xzzzx = TyxOxx + Byz.xzzzx, (24)
which provides
Byz.xzzzzB:\cz.z = Byz.xzzzx = (ﬂyx.x - Tyx)o—xx (25)
and
, , , (Byz.xzz:zx)2 )
Oyyx; T Byz.xzzzszz,xz =Oyyx — ByZ.XZEZZ.XByz,xz + Byz.xzzzszz,xz =Oyyx t+ O'—)cx =Oyyx t (ﬂyx.x - Tyx) Oy (26)

From equation (26), the first term of equation (22), which is equivalent to equation (11), does not depend on the
selection of the set Z of random variables that satisfies the back-door criterion (Kuroki, 2008, 2012). In addition, from
equation (25), By, ,.X.. B, in the second term of equation does not depend on the selection of the set Z of random
variables. Thus, the difference between selected sets of random variables depends on oy, .. /0y ; in the second term of
equation (22). From this consideration, letting &y, . be the estimated causal effect of do(X = x) on the variance of Y to
emphasize that Z is utilized to estimate equation (IT), the following theorem is the extension of the variable selection

criterion given by Kuroki and Miyakawa (2003), from the univariate case to the multivariate case.

Theorem 2. Under the Gaussian linear SEM (2), suppose that sets Z | and Z of random variables satisfy the back-door
criterion relative to (X, Y) in the causal path diagram G. When the ordinary least squares method is utilized to evaluate
the statistical parameters in equations (I0) and (I1), if Z, d-separates X from Z, then

avar(Gyyxz z) < a.var(Gyyxz,) 27
holds, and if {X} U Z| d-separates Y from Z,, then
avar(Gyycz,) < avar(Gyyxz, z) (28)
holds. (]
The proof of Theorem 2 is trivial from the following lemma given by Kuroki and Cai (2004):
Lemma 1. When {X,Y} U Z| U Z, follows a multivariate normal distribution, if X is conditionally independent of Z

given Z,, then
Oyyxz122 <0—yy-xzz

< (29)
Oxxzizz Oxxz
holds, and if Y is conditionally independent of Z, given {X} U Z, then
Oyy-xz <0—yy~x21zz (30)

Oxxz,  Oxxziz
holds.

Intuitively, equation (27) shows that the estimation accuracy could be improved by adding Z;, because Z; is not
correlated with X given Z, and plays a role in decreasing the residual variance of Y. In contrast, equation (28) shows
that the estimation accuracy could be worse, because adding Z, may cause the multicollinearity and increases the
residual variance of Y. In Figure 1, since V, d-separates V; from V3, from Theorem 2, we know

a'Var(é\-w;VﬂV}.V[Vz) S a'Var(é\-VAVﬂV_;.Vz) (3 1)

holds from the graph structure without statistical data.
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4. Numerical Experiments

This section will report numerical experiments conducted to examine statistical properties of the estimated causal
effect on the variance for sample sizes n = 10, 25, 50, 100, 500 and 1000. For simplicity, consider the DAG depicted in
Figure 3 and the Gaussian linear SEM in the form of

Y=o, X+ay,Zi+e, X=ay,lr+e, Zi=a,,L+te, Z)=¢,, (32)

where we assume the following two cases as the distribution with mean zero of €,, €, €, and ¢, independently; (a)
a normal distribution, and (b) a uniform distribution. The matrices of the causal path coefficients of X, ¥, Z;, and
Z, shown in Table 3 are utilized for our purpose. In this situation, Z = {Z,}, {Z,} and {Z,, Z,} satisfy the back-door
criterion relative to (X, Y). Cases 1 and 2 represent situations where the empty set also satisfies the back-door criterion
relative to (X,Y). Because X is independent of {Z;,Z,} in Case 1, we obtain 7y, = By, = Byxx for Z, and this
information about Z would asymptotically improve the estimation accuracy of the total effect 7, (Kuroki and Cai,
2004). In Case 2, because Y is conditionally independent of Z given X, we also obtain 7, = By, = Byr.x,. However,
this information about Z does not asymptotically improve the estimation accuracy of the total effect 7, (Kuroki and
Cai, 2004). Cases 3 and 4 represent situations in which Z satisfies the back-door criterion relative to (X, Y); however,
parametric cancellation occurs (Cox and Wermuth, 2014), where g, , = 0 and 7, = ). ,; # 0 hold in Case 3, whereas
PByxx # 0 and 7, = By, = 0 hold in Case 4. Case 5 represents an extreme situation in which the simple regression
model of Y on X,

E(Y|X =x)= My +Byx.x(x - ﬂx),

is orthogonal to the causal effect on the mean
E(Y|do(X = x)) = Hy +Byx.xz(x = Hx),

i.e., ByrxByxx = Tyfyxx = —1 holds.

We simulated n random samples from a multivariate normal distribution of (X, Y, Z;, Z,) with a zero mean vector
and the correlation matrices generated from each case of Table 3. Then, regarding the causal effects on the variance,
we evaluated both the unbiased estimator (17) and the consistent estimator (22) 50000 times based on n = 10, 25, 50,
100, 500 and 1000. Tables 4 and 5 report the basic statistics of equations (17) and (22) when {Z,}, {Z,} and {Z,, Z,} are
utilized to identify the causal effects.

First, from the “Estimates" rows of Tables 4 and 5, for each case, the consistent estimators are highly biased in the
smaller sample sizes but become less biased in the larger sample sizes. Especially, the bias reduction speed based on
the sample size depends on the correlation between X and Z: it seems that it is slower when X is highly correlated
with Z. In contrast, the unbiased estimators are close to the true values even for the small sample sizes. However, as
seen from the “Minimum" rows of Tables 4 and 5, when X is correlated with Z, the minimum values of the unbiased
estimators are negative for the smaller sample size, but not for the larger sample size; the consistent estimators do not
take negative values. In addition, from both the “Minimum" and “Maximum" rows of Tables 4 and 5, when X is highly
correlated with Z, the sample ranges of the unbiased estimators are wider than those of the consistent estimators in the
smaller sample sizes. However, they become close to those of the consistent estimators in the larger sample sizes. Here,
note that the sample ranges of the unbiased estimators are narrower than or close to those of the consistent estimators
when X is uncorrelated with Z.

Second, from the “(17)/(22)" rows of Tables 4 and 5, except for Case 2, for all sample sizes, equations (17) and
(22) when Z, is selected are larger than when either Z; or [Z, Z,] are selected. Also, equations (17) and (22) when
[Z,,7Z,] is selected are larger than when Z; is selected. This implies that the relationships are consistent with the results
obtained by Theorem 2. In contrast, in Case 2 with the sample size n < 25, equation (17) when {Z;, Z,} is selected is
larger than equation (17) when Z, is selected, which shows that the relationships are different from the results obtained
by Theorem 2. Thus, it seems that the difference between the estimation accuracy by the selected variables depends
not only on the sample size but also on the multicollinearity between X and Z and the number of random variables
included in Z: Theorem 2 holds for large sample sizes even when X is highly correlated with Z.

Third, comparing the empirical variances with the variance formula, equation (17) is relatively close to the empirical
variances of the unbiased estimator for any sample size when ¢, €,, €, and ¢, follow the normal distribution. In
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contrast, when €, €, €, and €, follow the uniform distribution, the differences between equation (17) and the empirical
variances of the unbiased estimator are more significant for the smaller sample size, but are not for the larger sample
size. In addition, when X is correlated with Z, the asymptotic variance (22) is not close to the empirical variances of the
consistent estimator for the small sample sizes in each case. Especially, the differences between the asymptotic variance
(22) and the empirical variances of the consistent estimator are significant when X is correlated with Z. However, the
differences between the variables becomes smaller as the sample size is larger.

Finally, for each case, it seems that both unbiased and consistent estimators are highly skewed and heavy-tailed
in the small sample size, but converge to the normal distributions slowly as the sample sizes are larger. Especially,
when X is correlated with Z, both unbiased and consistent estimators take large values in the small sample size, which
implies that these estimators are unstable under multicollinearity with the small sample size.

5. Conclusion

In this paper, when causal knowledge is available in the form of a Gaussian linear SEM with the corresponding
DAG, when the ordinary least squares method is utilized to estimate the total effect, we considered a situation where
the causal effect can be estimated based on the back-door criterion. Under this situation, we formulated the unbiased
estimator of the causal effect on the variance with the exact variance. The estimated causal effect on the variance
proposed by Kuroki and Miyakawa (2003) is consistent but not unbiased. Under the small sample size, the use of the
consistent estimator may lead to misleading findings in statistical causal inference. To avoid the problem, we showed
in Theorem 1 and numerical experiments that the variance estimator, equation (17), performs better than equation
(22) in small samples. Theorem 1 would help statistical practitioners to predict appropriately what would happen to
the variation of the outcome variable when conducting external intervention. In addition, Theorem 2 shows that the
asymptotic estimation accuracy of the estimated causal effect on the variance depends on the selection of random
variables that satisfies the back door criterion, and there are some situation where such a difference can be read-off
from the graph structure, before sampling statistical data.

Future work should involve extending our results to (i) a joint intervention that combines several single interventions
and (ii) an adaptive control in which the treatment variable is assigned a value based on some variables that are not
affected by the treatment variable. In addition, the numerical experiments show that the proposed unbiased estimator
has the drawback that it can take a negative value in the small sample size, when the statistical causal model is not
consistent with available data. One of our suggestions to solve the problem is to use max{0, &,,} instead of &y, to
evaluate the causal effect on the variance. However, max{0, &y} is not an unbiased estimator, and it is difficult to
formulate the truncated distribution of &, Thus, it would also be future work to develop a more efficient estimator of
the causal effect on the variance based on the small sample size. Furthermore, the assumption of Gaussian random
variables may be strong. To derive the exact variance formula of the estimated causal effect on the variance under the
non-Gaussian random random variables, our idea is to assume the probability distribution whose exact moments of
reciprocal random variables can be derived as the explicit expressions, which is also future work. Finally, it would also
be necessary to discuss the extension of our result to non-parametric SEMs in the future.
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Table 3. Causal Path Coefficients

Casel Case2 Case3
Y X Z 7> Y X Z 7> Y X Z 7>
Y | - 0.7000 0.7000 0.0000 | - 0.7000 0.0000 0.0000 | - -0.3430 0.7000 0.0000
X | - - 0.0000 0.0000 | - - 0.0000 0.7000 | - - 0.0000 0.7000
Z | - - - 0.7000 | - - - 0.7000 | - - - 0.7000
Case4 Case5

Y X Z 7> Y X Z 7>

Y | - 0.0000 0.7000 0.0000 | - -1.9697 2.5303 0.0000

X | - - 0.0000 0.7000 | - - 0.0000 0.9900

Z | - - - 0.7000 | - - - 0.9900

Figure 3. Causal path diagram

Appendix: Proof of Theorem 1

Letting D, and D, denote the datasets of X and Z, respectively, from the law of total variance (Weiss et al., 2006,
pp-385-386), given D, U D,, we have
var(Gyy) =  Var(E(GyylDy, D;)) + E(var(6y:|Dy, D)), (33)

where E(-|D,, D) and var(-|D,, D,) indicates conditional expectation and variance given D, U D_, respectively. Then,
in order to derive the explicit expression of the exact variance formula of the estimated causal effect of do(X = x)
on the variance &y, of Y, we calculate the first term var(E(Gyy|Dx, D;)) and the second term E(var(&yy Dy, D)) of
equation (33) separately.

Step 1: Derivation of var(E(Gy.|Dy, D.))
Regarding the second term of the right hand side of equation (33), note that we derive

E(By..3::B), Dy, D) = E(w(C..B), By )IDy, Do) = tr($e(0yyeS 7, + By, Bye)
) + By 1.2 B, 34

Vz.XZ

_ 3 -1
- O'yy.xz tr(ZZZS 27.X

by Mathai and Provost (1992, p.53) and the basic formula of the variance-covariance matrix

Var(Byz.xz|Dx’ Dz) = E(B;z,ngyz.leDx, Dz) - E(B;z,leDXa Dz)E(Byz.xz|Dx7 Dz) = E(B;z,ngyz.leDxa Dz) - B;Z,szyz.xz
= O-yy.szz_zl,xs (35)

where tr(A), which is the trace of a square matrix A, represents the total sum of elements on the main diagonal of the
square matrix A. Thus, noting that equation (14), &y .., is the unbiased estimator of oy, ,;, we have

1 (q + sz.ZSZZB;z.z

E(6yuDy, D) = E (&W [1 - J) D,, DZ) + E(B,, .2..B,. .|D\,D,)

n—1 Syrz yZ.xZ
1 B...S.B, . .
= O-Y)’-XZ (1 - n— 1 (6] + Zs = ~.Z) + tr(zzzs z;x)] + B}’Z-XZZZZB)'Z.XZ' (36)
XX.Z
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Here, from the Sherman-Morrison formula (Sherman and Morrison, 1950), SZ!, can be expressed as

S8\ S8 .8 .S
s;;)cz(szz——z ) =S 22 =F 37
” Sxx - Sxx.z
Thus, from equation , noting that ¥, is the unbiased estimator of 2., we derive
1 SaSxS 1 SSIS .
rEL52) = —u(SLST) = —u (Iq,q = = ) =— (q + S;;
1 B,..S..B.
= (q+ — ] (38)
n—1 Sxx.z
where /1,4 is the g X g identity matrix. Thus, since we have
E(O-w\x|Dx, D,) = Oyyxz T Byz XZZ«.ZByZ Xz 39)
from equation (34) together with equation (38)), we derive
E(O-yy\x) = E(E(‘Tyylx|Dx’ Dz)) = Oyyxz + B}z xZZZZBym (40)
and
var(E(G yy x| Dy, D;)) = var(By;, XZEZZBW o) 1)

Equation @) shows that & Ty is the unbiased estimator of the causal effect of do(X = x) on the variance of Y.
Here, noting that (n — 1)3_. follows the Wishart distribution with the n — 1 degrees of freedom and parameter 2.
and
(n—1)By,, XZEZZB

yZ.XZ (42)
By, 2./ B,

VZ.X2Z

follows the chi-squared distribution with n — 1 degrees of freedom (Seber, 2008, p.466), the variance is given by

(n—1)B,, XZZZ,BW o
=2(n-1), 43
var BT B, n-1) (43)

yZ.XZ

i.e., we have
2(B xz B, x7)
yZ.xZ yz. ) ( )

var(E(GyulDs. D2)) = var (By: 2B ) = ———

Step 2: Derivation of E(var(6y.|Dy, D.))

Noting that &y, and (Byx_xz, l?;z_xz)’ are independent of each other given D, and D, (e.g., Mardia et al., 1979), since
n—q—2)0.x
( q ) yy.xz (45)

Oyy.xz

follows the chi-squared distribution with n — g — 2 degrees of freedom, we have

1 B...S.B,
Var(Gry x| Dy, Dz):var(o“yy,xz|Dx,DZ)(l— _1(q+ it

Sxx.z

]) wvar(B.E. B, ID.. D.)

Vz.XZ

2
zo-zyy.xz 1 BXZ ZS 2™ x:
= agz\U T aonlt T msl| var(By. «.2..B. .|Dy. D.)
20252 g \ q \B.:S:B, . (B..S.B,
= = ) (1 i ) -2 (1 - ) e ])SXXZ: + e 1)SXXZZZ + var(B,, xzzzszzxADx’Dz)' (46)
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A ~,
BXZ.ZS ZZsz,z

Step 2-1: Derivation of E (

|

Sxx.z

Regarding the first term of equation (46), since B,. . and s, . are independent of each other given D,

(e.g., Mardia

et al, 1979), noting that s,, /0, follows the chi-squared distribution with n — g — 1 degrees of freedom, we have

1 1
E|—ID,|z ——M . 47
(Sxx.z| Z) (I’l —-q- S)O-xxz ( )
Thus, we have
B,..S..B. B,..S..B. . N 1
E[s—] = E(E(s—u:))] = E(E(sz.szBﬂ,ADZ)E( |Dz))
XX.Z XX.Z XX.Z
O'xx.zE(tr(SzzS;zl)) + sz.zE(Szz)B;cz,z GO xxz + (0 — 1)sz.zzzzB;z.z
= (48)
(n—q—3)0x; (n—q—3)0
from
var(B, ;) = E(B;ziszz.z) - B;z.szz.z = O xxsS Z_Zl (49)
Be.S.B..\
Step 2-2: Derivation of E [(%ﬁm) ]
Similar to Step 2-1, from
1 1
E|l—|= , 50
(S)%x.z) (n—q—3)(n—q—5)0'§x_z 0
since B,., and &, are independent of each other given D, (e.g., Mardia et al., 1979), we derive
By..S.B._ Y By..S.B._ Y 1
E [[M) ] -E [E (u} |Dz]] - E (E((sz.zSzzé;z_z)lez)E (Z—IDZ))
Sxx.z Sxx.z ' Skxz
 E(E(BeiS<B"ID))  E(var(BuoSzB. D)) . _EEBSB. D)) s
(n-q-3)n-q-502, m-qg-3)n-qg-503, @n-qg-3)n-qg-50%,
From Seber (2008, p.438), E (var (sz.zs ZZB;Z‘ADZ)) is given by
E(var(By..S..B, D)) = 207 E(t(S.S7'S..S7") + 4E(0 1B S 2 S 2Bl )
= 2q0n., +4n— 10w B 2B, (52)
Again, from
var(By; .S B, ) = 2(n — 1)(By.:2.B, )’ (53)
by Seber (2008, p.466), we have
N L2 N PPN
E [( sz.zSzszz.z ) ] - E [E [( BXZ.ZSZZBXZ.Z) IDZ]]
SXX.Z SXX.Z
2907 + 4= 10w B 2B, . E(q0u:+ BiS2By.)?)
(n-q=3)n-q-5)0%,, (n-q=3)n-q->50%,
2907, +4(n—1)0 B B, var(By: .S B ) E(qO vz + By:2S 2B, )
(n-q=3)n-q->5)0%, (n-q=-3)n-q-50%, @n-q-3)n-q-503,
_ zqo—yzcx.z + 4(” - l)o-xx.szz.zzzZB;cz.z 2(” - 1)(BXZ.ZEZZB;z_z)2 (qo—xx.z + (” - I)sz.zzzzB;z.z)