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Abstract

This paper assumes that cause-effect relationships between random variables can be represented by a Gaussian linear
structural equation model and the corresponding directed acyclic graph. Under the situation where we observe a set of
random variables that satisfies the back-door criterion, when the ordinary least squares method is utilized to estimate
the total effect, we formulate the unbiased estimator of the causal effect on the variance (the estimated causal effect
on the variance) of the outcome variable with external intervention in which a treatment variable is set to a specified
constant value. In addition, we provide the variance formula of the estimated causal effect on the variance. The variance
formula proposed in this paper is exact, in contrast to those in most previous studies on estimating causal effects.
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1. Introduction

1.1. Backgound

Statistical causal inference using linear structural equation models (linear SEMs) has been widely used to clarify
cause-effect relationships between random variables in fields such as sociology, economics, and biology, and its origin
can be traced back to path analysis (Wright,1923,1934). Statistical causal inference has been re-developed as the theory
of structural causal models (Pearl, 2009).

When a linear SEM is given as a statistical model to describe cause-effect relationships between random variables,
the important aspects are direct, indirect, and total effects (Bollen, 1989). According to Bollen (1987, p.40), intuitively,
the direct effect is defined as “those influences unmediated by any other variable in the model," and the indirect effect is
defined as “those influences mediated by at least one intervening variable." Here, an “intervening variable" is a random
variable that could be affected by a treatment variable and have an effect on an outcome variable. The total effect is
defined as the sum of direct and indirect effects. In the framework of statistical causal inference using linear SEMs,
the total effect also means the amount of the change in the expected value of an outcome variable when a treatment
variable is changed by one unit due to external intervention. The causal understanding regarding the difference of
total, direct and indirect effects contributes to evaluating how much of the causal effect of a treatment variable on an
outcome variable is captured/ not captured by intervening variables. The statistical method for promoting such causal
understanding is called mediation analysis, which has its roots in the literature of linear SEMs, going back to path
analysis (Wright, 1923, 1934) and continuing in the social sciences through the works of Duncan (1975), Baron and
Kenny (1986) and Bollen (1989).

To evaluate the total effect, which this paper focuses on, statistical researchers in the field of linear SEMs have
provided various identification conditions and estimation methods (e.g., Brito, 2004; Chan and Kuroki, 2010; Chen,
2017; Henckel et al., 2019; Kuroki and Pearl, 2014; Maathuis and Colombo, 2015; Nandy et al., 2017; Pearl, 2009;
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Perković, 2018; Tian, 2004). Herein, “identifiable" indicates that the total effect can be uniquely determined based on
the variance-covariance parameters of observed variables.

When we wish to characterize the distributional change introduced by external intervention based on linear SEMs,
there is no reason to limit our causal understanding to the change in the expected value of an outcome variable. In fact,
Hernán and Robins (2022, p.7) stated

“the average causal effect, defined by a contrast of means of counterfactual outcomes, is the most commonly
used population causal effect. However, a population causal effect may also be defined as a contrast
of functionals, including medians, variances, hazards, or cdfs of counterfactual outcomes. In general,
a population causal effect can be defined as a contrast of any function of the marginal distributions of
counterfactual outcomes under different actions or treatment values. For example, the population causal
effect on the variance is defined as var(Ya=1) − var(Ya=0)."

Actually, in practical science, it is important to estimate the change in the expected value of an outcome variable
due to external intervention (the causal effect on the mean). However, it is often necessary to evaluate the variation
(variance) of the outcome variable due to external intervention (the causal effect on the variance) as well. For example,
in the field of quality control, in order to suppress a defective rate of products effectively, it is necessary to bring the
outcome variable closer to the target value due to external intervention, thereby reducing the variation (or minimizing
the variance) of the outcome variable as much as possible. In quality control, Kuroki (2008, 2012) and Kuroki and
Miyakawa (1999ab) discussed what happens to the variance of the outcome variable when conducting the external
intervention. In addition, according to Gische et al. (2021), when treating hyperglycemia, the physician’s goal is
that the patient’s level of blood glucose will be maintained within the euglycemic range (acceptable range) after the
treatment (external intervention). Then, the variance of the outcome variable by the external intervention, together with
the physician’s knowledge, plays an important role in constructing the acceptable range to detect a threat to a patient’s
health.

Regarding the estimation accuracy (or, the variance) of the causal effect on the variance, when the ordinary least
squares method is utilized to estimate the total effect, Kuroki and Miyakawa (2003) discussed how the asymptotic
variance of the consistent estimator of the causal effect on the variance differs with different sets of random variables
that satisfy the back-door criterion (Pearl, 2009). In addition, Shan and Guo (2010) studied the results of Kuroki and
Miyakawa (2003) from the perspective of a particular type of external intervention using more than one treatment
variable. Shan and Guo (2012) also extended the variable selection criteria provided by Kuroki and Miyakawa (2003)
from a deterministic intervention to a stochastic intervention. Kuroki and Nanmo (2020) applied the results of Kuroki
and Miyakawa (2003) to predict future values of the outcome variable when conducting external intervention. Here, it
is noted that the existing estimators of the causal effect on the variance are the consistent but not unbiased estimators.
Estimation accuracy problems are essential issues related to statistical causal inference, and thus it is important to
formulate the unbiased estimator of the causal effect on the variance with the excat variance. This is because the
reliable evaluation of estimation accuracy of the causal effect on variance plays an important role in the success of
statistical data analysis, which aims to evaluate what would happen to the outcome variable when conducting external
intervention based on non-experimental data.

This paper assumes that cause-effect relationships between random variables can be represented by a Gaussian
linear SEM and the corresponding directed acyclic graph. Under the situation where we observe a set of random
variables that satisfies the back-door criterion, when the ordinary least squares method is utilized to estimate the total
effect, we formulate the unbiased estimator of the causal effect on the variance, i.e., the unbiased estimator of the
variance of the outcome variable with external intervention in which a treatment variable is set to a specified constant
value. In addition, we provide the variance formula of the unbiased estimator of the causal effect on the variance. The
variance formula proposed in this paper is exact, in contrast to those in most previous studies on estimating causal
effects.

1.2. Motivating Example
To motivate our problem, consider a case study of setting up coating conditions for car bodies, reported by Okuno

et al. (1986). According to Okuno et al. (1986), since car bodies are coated in order to increase both the rust protection
quality and the visual appearance, a certain level of the coating thickness must be ensured in the coating process. At that
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time, the coating process was conducted by operators who sprayed the car bodies with the paint. This was dependent
on operators’ skills and might cause low transfer efficiency. Okuno et al. (1986) collected non-experimental data in the
coating process in order to examine the process conditions and to increase the transfer efficiency, which were important
to establish the automated stable manufacturing process. The sample size is 38 and the observed variables of interest
are the following:

Coating Conditions: Dilution ratio (X1), Degree of viscosity (X2), Temperature of the paints (X8)

Spraying Conditions: Gun speed (X3), Spray-distance (X4), Air pressure (X5), Pattern width (X6), Fluid output (X7)

Environment Conditions: Temperature (X9), Degree of moisture (X10)

Response: Transfer efficiency (Y), which was defined as “the coated paint volume"/“the consumption of paints"×100%

According to Okuno et al. (1986), dilution ratio (X1) and spray-distance (X4) are easy to be controlled. Degree
of viscosity (X2), gun speed (X3), air pressure (X5) and pattern width (X6) are able to be controlled to some extent.
Fluid output (X7) and temperature of the paints (X8) are results from other factors and are difficult to be controlled.
Temperature (X9) and degree of moisture (X10) are environment conditions that cannot be controlled. In addition,
Okuno et al. (1986) also considered “wind speed" (environment condition), “solid content" (coating condition) and
others as factors which might have an effect on Transfer efficiency (Y). However, these factors were not observed,
because it seems to be sufficient to observe the ten variables above to achieve their aim, according to Okuno et al.
(1986).

Concerning the coating process, Okuno et al. (1986) provided the sample correlation matrix shown in Table 3.
By applying conventional stepwise regression analysis to Table 3 according to Okuno et al. (1986), the following
regression model is obtained:

Y = −0.636x4 − 0.465x6 + 0.189x7 − 0.372x8. (1)

It is seen from the regression model (1) that the transfer efficiency (Y) can be increased by controlling X4, X6, X7 and
X8 according to Okuno et al. (1986), but note that both the fluid output (X7) and the temparature of the paints (X8)
are difficult to be controlled actually. In addition, in order to establish stable manufacturing process, it is important to
understand how the variation of the transfer efficiency (Y) would change by external intervention, because the increase
in the variation of the transfer efficiency (Y) may lead to the construction of the unstable coating process. However,
from equation (1), it is difficult to understand how the variation in the transfer efficiency (Y) would change by external
intervention: the analysis should not be simply based on statistical aspects, but it is desirable to describe the cause-effect
relationships as a directed graph (which is called a causal path diagram) according to the analyst’s knowledge. Then,
combining the causal knowledge with statistical data, statistical causal inference using linear SEMs enables us to
evaluate the variation of the transfer efficiency (Y) due to external intervention through (non-experimental) statistical
data collected from the current coating process.

Here, to present our results, according to Kuroki (2008, 2012), assume that the cause-effect relationships in the
coating process are given in Figure 1. For example, intuitively, in Figure 1, a directed edge from X1 to X2 (X1 → X2)
means that X1 could cause X2 directly, and a directed path from X1 to X7 with a missing directed edge (X1 → X2 → X7)
means that the effect of X1 on X7 could be mediated by X2 but can not directly. Here, this paper will not discuss
statistical inference problem of Figure 1. Refer to Kuroki (2012) for details on this case study.

Here, under the assumption that X1, X2, ..., X10,Y follows the multivariate normal distribution with zero mean
vector and the variance-covariance matrix shown in Table 3, we evaluated unbiased estimators (17) and the consistent
estimators (22) of the causal effect on the variance of the transfer efficiency (Y) 5000 times based on the sample size
38. Table 3 reports the basic statistics of the unbiased estimators (17) and the consistent estimators (22) when a set of
variables given in ‘Variables’ rows are utilized to identify the causal effects.

Regarding the causal effect on the variance, from the “Estimates" rows of Table 2, although the consistent estimators
are different from the values of equation (11), the unbiased estimators are close to the values of equation (11) even
for the small sample sizes (n = 38). Especially, regarding the external intervention to dilution ratio (X1), the unbiased
estimators show that the external intervention could reduce the variation of transfer efficiency (Y), but the consistent
estimators imply that the external intervention does not reduce the variation of transfer efficiency (Y). Such difference
may lead to the serious practical judgments: to establish the stable manufacturing process increase the transfer efficiency,
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Table 1: The sample correlation matrix (Okuno et al. 1986)

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y
X1 1.000 -0.678 -0.215 0.230 0.040 0.116 0.338 0.002 0.145 -0.496 -0.198
X2 -0.678 1.000 0.241 -0.442 -0.024 0.005 -0.422 -0.590 -0.509 0.684 0.463
X3 -0.215 0.241 1.000 -0.201 0.004 -0.067 0.208 -0.007 -0.082 0.307 0.292
X4 0.230 -0.442 -0.201 1.000 0.191 -0.286 0.287 0.446 0.521 -0.477 -0.614
X5 0.040 -0.024 0.004 0.191 1.000 0.291 0.117 0.034 -0.048 0.010 -0.151
X6 0.116 0.005 -0.067 -0.286 0.291 1.000 0.057 -0.123 -0.147 0.178 -0.226
X7 0.338 -0.422 0.208 0.287 0.117 0.057 1.000 0.251 0.287 -0.122 -0.113
X8 0.002 -0.590 -0.007 0.446 0.034 -0.123 0.251 1.000 0.761 -0.342 -0.551
X9 0.145 -0.509 -0.082 0.521 -0.048 -0.147 0.287 0.761 1.000 -0.571 -0.431
X10 -0.496 0.684 0.307 -0.477 0.010 0.178 -0.122 -0.342 -0.571 1.000 0.282
Y -0.198 0.463 0.292 -0.614 -0.151 -0.226 -0.113 -0.551 -0.431 0.282 1.000

YX7

X2X1

X8

X3

X10

X9

X5 X6

X4

Figure 1: Causal path diagram of the coating process (Kuroki, 2012)
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Table 2: Basis statistics of the coating process

Treatment variable Dilution Ratio (X1) Spray Distance (X4)
Covariate X10 {X9, X10} X9 {X7, X8, X9} {X7, X8}

Equation(11) 0.975 0.963 0.629 0.631 0.640
Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 0.989 1.022 0.972 1.023 0.627 0.649 0.632 0.679 0.636 0.667

Equation(17)/(22) 0.055 0.052 0.052 0.049 0.023 0.021 0.023 0.022 0.024 0.023
var 0.056 0.060 0.053 0.058 0.022 0.023 0.023 0.026 0.023 0.024

Skewness 0.576 0.575 0.377 0.372 0.515 0.513 0.502 0.495 0.514 0.505
Kurtosis 3.722 3.724 3.034 3.038 3.453 3.450 3.429 3.411 3.535 3.513

Minimum 0.366 0.378 0.303 0.318 0.186 0.194 0.247 0.265 0.216 0.227
1st Quartile 0.822 0.851 0.808 0.852 0.521 0.540 0.525 0.565 0.531 0.558

Median 0.969 1.001 0.954 1.004 0.614 0.634 0.623 0.669 0.623 0.655
3rd Quartile 1.130 1.167 1.122 1.179 0.719 0.744 0.727 0.780 0.729 0.764
Maimimum 2.285 2.351 1.878 1.945 1.278 1.320 1.340 1.412 1.395 1.460

Unbiased: unbiased estimator; Consist: consistent estimator; Estimates: the sample mean from 50000 estimated
causal effects on the variance; Equation(11): the causal effect on the variance from equation (11) with Table 1;
Equation(17)/(22): the exact and asymptotic variances derived from equations (17) and (22) with Table 1; Var:
empirical variances from 50000 estimated causal effects on the variance.

the external intervention should be conducted from the viewpoint of the unbiased estimators, but not from the viewpoint
of the consistent estimators.

2. Preliminaries

2.1. Graph Terminology

A directed graph is a pair G = (V, E), where V is a finite set of vertices E, which is a subset of V × V of pairs of
distinct vertices, is a set of directed edges (→). If (a, b) ∈ E for a, b ∈ V, then the G contains the directed edge from
vertex a to vertex b (denoted by a→ b). If there is a directed edge from a to b (a→ b), then a is said to be the parent
of b and b the child of a. Two vertices are adjacent if there exists a directed edge between them. A path between a
and b with the length m is a sequence a = a0, a1, · · · , b = am of distinct vertices such that ai−1 and ai are adjacent for
i = 1, 2, · · · ,m. A directed path from a to b with the length m is a sequence a = a0, a1, · · · , b = am of distinct vertices
such that ai−1 → ai for i = 1, 2, · · · ,m. If there exists a directed path from a to b, then a is said to be an ancestor of b
and b a descendant of a. Especially, (a, b) ∈ E for a, b ∈ V is a directed edge from a to b and the directed path from a
to b with the length 1 at the same time. a is a parent of b and an ancestor of b at the same time. b is a child of a and a
descendant of b at the same time.

When the set of descendants of a is denoted as de(a), the vertices in V\(de(a)∪{a}) are said to be the nondescendants
of a. A vertex is said to be a collider if it is a common child of the other two or more vertices; otherwise, it is said to be
a non-collider. A directed path from a to b, together with the directed edge from b to a, forms a directed cycle. If a
directed graph contains no directed cycles, then the graph is said to be a directed acyclic graph (DAG).

2.2. Linear Structural Equation Model

In this paper, it is assumed that cause-effect relationships between random variables can be represented by a
Gaussian linear structural equation model (linear SEM) and the corresponding directed acyclic graph (DAG). Such
a DAG is called a causal path diagram, which is defined as Definition 1. Here, we refer to vertices in the DAG and
random variables of the Gaussian linear SEM interchangeably.

Definition 1 (causal path diagram). Consider a DAG G = (V, E), for which a set V = {V1,V2, · · · ,Vp} of p continuous
random variables and a set E of directed edges are given. Then, the DAG G is called the causal path diagram if the
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V4V3

V2 V1

Figure 2: Causal path diagram

random variables are generated by a Gaussian linear SEM

Vi = αvi +
∑

V j∈pa(Vi)

αviv j V j + ϵvi , i = 1, 2, . . . , p, (2)

satisfying the constraints entailed by the DAG G. Here, pa(Vi) is a set of parents of Vi ∈ V in the DAG G. In addition,
letting 0p be an p-dimensional vector whose i-th element is zero for i = 1, 2, ..., p, ϵv = (ϵv1 , ϵv2 , . . . , ϵvp ) denotes a set
of random variables, which is assumed to follow the multivariate normal distribution with the mean vector 0p and the
positive diagonal variance–covariance matrix Σϵvϵv . In addition, the constant parameters αvi and αviv j for i, j = 1, 2, ..., p
(i , j) are referred to as the intercept of Vi and the causal path coefficient (or direct effect) of V j on Vi, respectively. □

As an example, consider the causal path diagram shown in Figure 2. From Figure 2, we can judge that: (1) V1 could
be a direct cause of V2 and V4, (2) V2 could be a direct cause of V3 and V4, and (3) V3 could be a direct cause of V4.
Then, the Gaussian linear SEM defined by Figure 2 is as

V1 = αv1 +ϵv1 , V2 = αv2 +αv2v1 V1+ϵv2 , V3 = αv3 +αv3v2 V2+ϵv3 , V4 = αv4 +αv4v1 V1+αv4v2 V2+αv4v3 V3+ϵv4 , (3)

where ϵv1 , ϵv2 , ϵv3 , ϵv4 follow the normal distribution with zero mean and non-zero variance independently.
The conditional independence induced by the Gaussian linear SEM (2) can be obtained from the causal path

diagram G through the d-separation (Pearl, 2009).

Definition 2 (d-separation). Let {X,Y} and Z be the disjoint sets of vertices in the DAG G. If Z blocks every path
between distinct vertices X and Y , then Z is said to d-separate X from Y in the DAG G. Here, the path p is said to be
blocked by (a possibly empty) set Z if either of the following conditions is satisfied:

(1) p contains at least one non-collider that is in Z;
(2) p contains at least one collider that is not in Z and has no descendant in Z. □

In Figure 2, both {V2} and {V2,V4} satisfy Condition (1) of Definition 2 on the path V1→V2→V3 since both sets
include a non-collider V2. However, a collider (V4) on the other paths is in {V2,V4} but not in {V2}. Thus, V2 d-separates
V1 from V3 but {V2,V4} does not.

If Z d-separates X from Y in the causal path diagram G, then X is conditionally independent of Y given Z in
the corresponding linear SEM (e.g., Pearl, 2009). For example, in Figure 2, since {V2} d-separates {V1} from {V3}

respectively, V1 is conditionally independent of V3 given V2.

2.3. Back-door Criterion
In this paper, for X,Y ∈ V (X , Y), consider the external intervention in which X is set to be the constant value

X = x in the Gaussian linear SEM (2), denoted by do(X = x). According to the framework of the structural causal
models (Pearl, 2009), do(X = x) indicates mathematically that the structural equation for X is replaced by X = x in the
Gaussian linear SEM (2).

Let V = {X,Y} ∪W be the set of random variables in the causal path diagram G, where {X,Y} and W are disjoint.
When f (x, y,w) and f (x|pa(x)) denote the joint probability distribution of (X,Y,W) = (x, y,w) and the conditional
probability distribution of X = x given pa(X) = pa(x), respectively, the causal effect of X on Y , which is denoted by
f (y|do(X = x)), is defined as

f (y|do(X = x)) =
∫

w

f (x, y,w)
f (x|pa(x))

dw (4)
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(Pearl, 2009). When equation (4) can be uniquely determined from the probability distribution of observed variables, it
is said to be identifiable: that is, it can be estimated consistently. Here, in this paper,

E(Y |do(X = x)) = µy|x =

∫
y

y f (y|do(X = x)) dy, var(Y |do(X = x)) = σyy|x =

∫
y
(y − µy|x)2 f (y|do(X = x)) dy (5)

are called the causal effect of do(X = x) on the mean of Y and the causal effect of do(X = x) on the variance of Y ,
respectively. E(Y |do(X = x)) and var(Y |do(X = x)) are also called the interventional mean and the interventional
variance, respectively, by Gische et al. (2021). Then, in the Gaussian linear SEM (2), the first derivative of E(Y |do(X =
x)) of Y , namely,

dE(Y |do(X = x))
dx

= τyx (6)

is called the total effect of X on Y . Graphically, the total effect τyx is interpreted as the total sum of the products of the
causal path coefficients on the sequence of directed edges along all directed paths from X to Y . If the total effect τyx can
be uniquely determined from the variance-covariance parameters of observed variables, then it is said to be identifiable;
that is, it can be estimated consistently. The interpretation of the total effects in the Gaussian linear SEM (2) via the
path analysis (Wright, 1923, 1934) is also discussed by Henckel et al. (2019) and Nandy et al. (2017) in detail.

Let GX be the directed graph obtained by deleting all the directed edges emerging from X in the DAG G. Then, the
back-door criterion is a well-known identification condition of the causal effect (Pearl, 2009).

Definition 3 (back-door criterion). Let {X,Y} and Z be the disjoint subsets of V in the DAG G. If Z satisfies the
following conditions relative to an ordered pair (X,Y) in the DAG G, then Z is said to satisfy the back-door criterion
relative to (X,Y):

1. no vertex in Z is a descendant of X;
2. Z d-separates X from Y in GX . □

Regarding other identification conditions of causal effects, for example, "the front door criterion" (Pearl, 2009) and
“the effect restoration" (Kuroki and Pearl, 2014) are known. However, this paper is only concerned with identification
of a causal effect using the back door criterion. As seen from the description of Definition 3, the back-door criterion is
not a statistical concept, and can not be tested through statistical data.

In Figure 2, both {V2} and {V1,V2} satisfy the back door criterion relative to (V3,V4). However, {V1} does not satisfy
the back door criterion relative to (V3,V4), since {V1} does not d-separate V3 from V4 in the graph GV3

derived from
Figure 2. For example, {V1} does not include any non-collider (V2) on the path V3 ← V2 → V4 and neither colliders nor
their descendants are not on the path.

When Z satisfies the back-door criterion relative to (X,Y) in the causal path diagram G, the causal effect of X on Y
is identifiable and is given by

f (y|do(X = x)) =
∫

z
f (y|x, z) f (z)dz (7)

(Pearl, 2009).
Here, we define some notations. For univariates X and Y and a set Z of random variables, let µx and µy be the

means of X and Y , respectively. In addition, let σxy, σxx and σyy be the covariance between X and Y , the variance of X
and the variance of Y , respectively. When the prime notation (′) represents the transpose of a vector or matrix, let Σxz,
Σyz and Σzz be the cross covariance vector between X and Z (Σzx = Σ

′
xz), the cross covariance vector between Y and Z

(Σzy = Σ
′
yz) and the variance–covariance matrix of Z, respectively. Then, consider the regression model of Y on X and

Z
Y = βy.xz + βyx.xzX + Byz.xzZ + ϵy.xz, (8)

where ϵy.xz is a random variable of the regression model (8) that has a normal distribution with mean zero and variance
σyy.xz, while βy.xz, βyx.xz, and Byz.xz are the regression intercept, the regression coefficient of X, and the regression
coefficient vector of Z in the regression model (8), respectively. Here, according to the standard assumption of linear
regression analysis, in the regression model (8), ϵy.xz is assumed to be independent of both X and Z. Then, for a
non-empty set Z, letting

σxy·z = σxy−ΣxzΣ
−1
zz Σzy, σxx.z = σxx−ΣxzΣ

−1
zz Σzx, Σzz.x = Σzz−

ΣzxΣxz

σxx
, Σyz.x = Σyz−

σxy

σxx
Σxz, Σzy.x = Σ

′
yz.x, (9)
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the regression coefficient of X and the regression coefficient vector of Z are given by βyx·xz = σxy·z/σxx·z and Byz·xz =

Σyz·xΣ
−1
zz·x, respectively, when σxx , 0, σxx.z , 0, and both Σzz and Σzz.x are positive definite matrices.

When a set Z of observed variables satisfies the back-door criterion relative to (X,Y), then the total effect τyx is
identifiable and is given by τyx = βyx.xz (Pearl, 2009). Then, according to equation (7), consider the regression model of

Y on X and Z, namely, equation (8). Then, letting σyy.z = σyy − ΣyzΣ
−1
zz Σzy and σyy.xz = σyy.z −

σ2
xy.z
σxx.z

, E(Y |do(X = x))
and var (Y |do(X = x)) are formulated as

E(Y |do(X = x)) = µy|x = µy + βyx.xz(x − µx) = µy + τyx(x − µx) (10)

and
var (Y |do(X = x)) = σyy|x = σyy.xz + Byz.xzΣzzB′yz.xz, (11)

respectively (Kuroki and Miyakawa, 1999ab, 2003). Here, equation (11) shows that Z behaves similarly to the random
variable such as ϵy.xz in equation (8) by conducting the external intervention do(X = x), and the external intervention
may not reduce the variation of the outcome variable Y (Kuroki, 2012).

To proceed our discussion, we also consider the regression coefficient vector of Z in the regression model of X on
Z

X = βx.z + Bxz.zZ + ϵx.z, (12)

where ϵx.z is a random variable of the regression model (12) that has a normal distribution with mean zero and variance
σxx.z, while βx.z and Bxz.z are the regression intercept and the regression coefficient vector of Z in the regression model
(12), respectively. Here, ϵx.z is also assumed to be independent of Z. Then, the regression coefficient vector of Z is
denoted by Bxz·z = ΣxzΣ

−1
zz when Σzz is a positive definite matrix.

3. Results

Let µ̂x and µ̂y be the sample means of X and Y , respectively. In addition, let sxx, syy, sxy, S zz, S xz and S yz be the
sum-of-squares of X, the sum-of-squares of Y , the sum-of cross-products between X and Y , the sum-of-squares matrix
of Z, the sum-of-cross-products vector between X and Z (S zx = S ′xz), and the sum-of-cross-products vector between Y
and Z (S zy = S ′yz), respectively. Then, for non-empty set Z, letting

sxy.z = sxy−S xzS −1
zz S zy, sxx.z = sxx−S xzS −1

zz S zx, S zz.x = S zz−
S zxS xz

sxx
, S yz.x = S yz−

sxy

sxx
S xz, S zy.x = S ′yz.x, (13)

through the ordinary least squares method, the unbiased estimators of βyx.xz, Bxz.z and Byz.xz of equations (8) and (12)
are given by β̂yx.xz = sxy.z/sxx.z, B̂xz.z = S xzS −1

zz and B̂yz.xz = S yz.xS −1
zz.x, respectively, when sxx , 0, sxx.z , 0 and both S zz

and S zz.x are positive definite matrices. Here, letting n and q be the sample size and the number of random variables in
Z, respectively, for q < n − 2,

σ̂yy.xz =
syy.xz

n − q − 2
=

syy.z −
s2

xy.z
sxx.z

n − q − 2
, Σ̂zz =

1
n − 1

S zz (14)

are also unbiased estimators of σyy.xz and Σzz, respectively, where syy.z = syy − S yzS −1
zz S zy.

Under the random sampling, when the total effect τyx is estimated as τ̂yx = β̂yx·xz through the ordinary least squares
method in the regression model (8), the exact variance of β̂yx·xz is given by

var
(
β̂yx·xz

)
=

1
n − q − 3

σyy·xz

σxx·z
(15)

for q < n − 3 (e.g., Kuroki and Cai, 2004).
The following theorem holds:
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Theorem 1. Under the Gaussian linear SEM (2), suppose that Z satisfies the back-door criterion relative to (X,Y) in
the causal path diagram G. When the ordinary least squares method is utilized to evaluate the statistical parameters in
equations (10) and (11), the unbiased estimators of µy|x = E(Y |do(X = x)) and σyy|x = var (Y |do(X = x)) are given by

µ̂y|x = µ̂y + β̂yx.xz(x − µ̂x) (16)

σ̂yy|x = σ̂yy.xz

1 − 1
n − 1

q + B̂xz.zS zzB̂′xz.z

sxx.z

 + B̂yz.xzΣ̂zzB̂′yz.xz, (17)

respectively. µ̂y|x and σ̂yy|x are called the estimated causal effect of do(X = x) on the mean of Y and estimated causal
effect of do(X = x) on the variance of Y, respectively. In addition, for q < n − 5, the variances var(µ̂y|x) of µ̂y|x and
var(σ̂yy|x) of σ̂yy|x are given by

var
(
µ̂y|x

)
=

1
n

(
σyy.xz + Byz.xzΣzzB′yz.xz

)
+

σyy.xz

(n − q − 3)σxx.z

(
(x − µx)2 +

σxx

n

)
, (18)

var(σ̂yy|x) =
2(Byz.xzΣzzB′yz.xz)

2

n − 1
+

2σ2
yy.xz

n − q − 2

((
1 −

q
n − 1

)2
− 2

(
1 −

q
n − 1

) qσxx.z + (n − 1)Bxz.zΣzzB′xz.z

(n − 1)(n − q − 3)σxx.z

+E

 B̂xz.zS zzB̂′xz.z

(n − 1)sxx.z

2
 + 2σ2

yy.xz

(n − 1)2

q + 2
qσxx.z + (n − 1)Bxz.zΣzzB′xz.z

(n − q − 3)σxx.z
+ E

 B̂xz.zS zzB̂′xz.z

sxx.z

2


+
4σyy.xz

(n − 1)2

(n − 1)Byz.xzΣzzB′yz.xz + E
 (Byz.xzS zzB̂′xz.z)

2

sxx.z

 , (19)

respectively, where

E

 B̂xz.zS zzB̂′xz.z

sxx.z

2 = 2qσ2
xx.z + 4(n − 1)σxx.zBxz.zΣzzBxz.z

(n − q − 3)(n − q − 5)σ2
xx.z

+
2(n − 1)(Bxz.zΣzzBxz.z)2

(n − q − 3)(n − q − 5)σ2
xx.z

+
(qσxx.z + (n − 1)Bxz.zΣzzBxz.z)2

(n − q − 3)(n − q − 5)σ2
xx.z

(20)

E
 (Byz.xzS zzB̂′xz.z)

2

sxx.z

 = (n − 1)(n(Byz.xzΣzzB′xz.z)
2 + (Bxz.zΣzzB′xz.z)(Byz.xzB′xz.z)

2 + σxx.zByz.xzΣzzB′yz.xz)

(n − q − 3)σxx.z
. (21)

□

Both equations (16) and (18) are given by Kuroki and Nanmo (2020). The derivation of equations (17) and (19),
which are the new results, is provided in Appendix. Here, from Appendix, note that the assumption of Gaussian random
variables in equation (2) is not necessary to derive equations (17), but necessary to derive equation (19).

For a large sample size n such as n−1 >> n−2 ≈ 0, the consistent estimator σ̃yy|x of σyy|x can be given by

σ̃yy|x = σ̂yy.xz + B̂yz.xzΣ̂zzB̂′yz.xz, (22)

which shows that equation (22) is larger than equation (17). In addition, the asymptotic variance of σ̂yy|x, a.var(σ̂yy|x),
is given by

a.var(σ̂yy|x) =
2σ2

yy.xz

n
+

2(Byz.xzΣzzByz.xz)2

n
+

4σyy.xz

n

(
Byz.xzΣzzB′yz.xz +

(Byz.xzΣzzB′xz.z)
2

σxx.z

)
=

2
n

(
σyy.xz + Byz.xzΣzzB′yz.xz

)2
+

4σyy.xz

nσxx.z
(Byz.xzΣzzB′xz.z)

2. (23)

9



Here, when we let βyx.x = σxy/σxx, from βyx.x = τyx and Bxz.z = ΣxzΣ
−1
zz , the covariance between X and equation (8)

leads to
σxy = βyx.xzσxx + Byz.xzΣzx = τyxσxx + Byz.xzΣzx, (24)

which provides
Byz.xzΣzzB′xz.z = Byz.xzΣzx = (βyx.x − τyx)σxx (25)

and

σyy.xz + Byz.xzΣzzB′yz.xz = σyy.x − Byz.xzΣzz.xB′yz.xz + Byz.xzΣzzB′yz.xz = σyy.x +
(Byz.xzΣzx)2

σxx
= σyy.x + (βyx.x − τyx)2σxx. (26)

From equation (26), the first term of equation (22), which is equivalent to equation (11), does not depend on the
selection of the set Z of random variables that satisfies the back-door criterion (Kuroki, 2008, 2012). In addition, from
equation (25), Byz.xzΣzzB′xz.z in the second term of equation (23) does not depend on the selection of the set Z of random
variables. Thus, the difference between selected sets of random variables depends on σyy.xz/σxx.z in the second term of
equation (22). From this consideration, letting σ̂yy|x,z be the estimated causal effect of do(X = x) on the variance of Y to
emphasize that Z is utilized to estimate equation (11), the following theorem is the extension of the variable selection
criterion given by Kuroki and Miyakawa (2003), from the univariate case to the multivariate case.

Theorem 2. Under the Gaussian linear SEM (2), suppose that sets Z1 and Z2 of random variables satisfy the back-door
criterion relative to (X,Y) in the causal path diagram G. When the ordinary least squares method is utilized to evaluate
the statistical parameters in equations (10) and (11), if Z2 d-separates X from Z1, then

a.var(σ̂yy|x.z1,z2 ) ≤ a.var(σ̂yy|x.z2 ) (27)

holds, and if {X} ∪ Z1 d-separates Y from Z2, then

a.var(σ̂yy|x.z1 ) ≤ a.var(σ̂yy|x.z1,z2 ) (28)

holds. □

The proof of Theorem 2 is trivial from the following lemma given by Kuroki and Cai (2004):

Lemma 1. When {X,Y} ∪ Z1 ∪ Z2 follows a multivariate normal distribution, if X is conditionally independent of Z1
given Z2, then

σyy·xz1z2

σxx·z1z2

≤
σyy·xz2

σxx·z2

(29)

holds, and if Y is conditionally independent of Z2 given {X} ∪ Z1, then

σyy·xz1

σxx·z2

≤
σyy·xz1z2

σxx·z1z2

(30)

holds.

Intuitively, equation (27) shows that the estimation accuracy could be improved by adding Z1, because Z1 is not
correlated with X given Z2 and plays a role in decreasing the residual variance of Y . In contrast, equation (28) shows
that the estimation accuracy could be worse, because adding Z2 may cause the multicollinearity and increases the
residual variance of Y . In Figure 1, since V2 d-separates V1 from V3, from Theorem 2, we know

a.var(σ̂v4v4 |v3.v1v2 ) ≤ a.var(σ̂v4v4 |v3.v2 ) (31)

holds from the graph structure without statistical data.
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4. Numerical Experiments

This section will report numerical experiments conducted to examine statistical properties of the estimated causal
effect on the variance for sample sizes n = 10, 25, 50, 100, 500 and 1000. For simplicity, consider the DAG depicted in
Figure 3 and the Gaussian linear SEM in the form of

Y = αyxX + αyz1 Z1 + ϵy, X = αxz2 Z2 + ϵx, Z1 = αz1z2 Z2 + ϵz1 , Z2 = ϵz2 , (32)

where we assume the following two cases as the distribution with mean zero of ϵx, ϵy, ϵz1 and ϵz2 independently; (a)
a normal distribution, and (b) a uniform distribution. The matrices of the causal path coefficients of X, Y , Z1, and
Z2 shown in Table 3 are utilized for our purpose. In this situation, Z = {Z1}, {Z2} and {Z1,Z2} satisfy the back-door
criterion relative to (X,Y). Cases 1 and 2 represent situations where the empty set also satisfies the back-door criterion
relative to (X,Y). Because X is independent of {Z1,Z2} in Case 1, we obtain τyx = βyx.x = βyx.xz for Z, and this
information about Z would asymptotically improve the estimation accuracy of the total effect τyx (Kuroki and Cai,
2004). In Case 2, because Y is conditionally independent of Z given X, we also obtain τyx = βyx.x = βyx.xz. However,
this information about Z does not asymptotically improve the estimation accuracy of the total effect τyx (Kuroki and
Cai, 2004). Cases 3 and 4 represent situations in which Z satisfies the back-door criterion relative to (X,Y); however,
parametric cancellation occurs (Cox and Wermuth, 2014), where βyx.x = 0 and τyx = βyx.xz , 0 hold in Case 3, whereas
βyx.x , 0 and τyx = βyx.xz ≃ 0 hold in Case 4. Case 5 represents an extreme situation in which the simple regression
model of Y on X,

E(Y |X = x) = µy + βyx.x(x − µx),

is orthogonal to the causal effect on the mean

E(Y |do(X = x)) = µy + βyx.xz(x − µx),

i.e., βyx.xzβyx.x = τyxβyx.x ≃ −1 holds.
We simulated n random samples from a multivariate normal distribution of (X,Y,Z1,Z2) with a zero mean vector

and the correlation matrices generated from each case of Table 3. Then, regarding the causal effects on the variance,
we evaluated both the unbiased estimator (17) and the consistent estimator (22) 50000 times based on n = 10, 25, 50,
100, 500 and 1000. Tables 4 and 5 report the basic statistics of equations (17) and (22) when {Z1}, {Z2} and {Z1,Z2} are
utilized to identify the causal effects.

First, from the “Estimates" rows of Tables 4 and 5, for each case, the consistent estimators are highly biased in the
smaller sample sizes but become less biased in the larger sample sizes. Especially, the bias reduction speed based on
the sample size depends on the correlation between X and Z: it seems that it is slower when X is highly correlated
with Z. In contrast, the unbiased estimators are close to the true values even for the small sample sizes. However, as
seen from the “Minimum" rows of Tables 4 and 5, when X is correlated with Z, the minimum values of the unbiased
estimators are negative for the smaller sample size, but not for the larger sample size; the consistent estimators do not
take negative values. In addition, from both the “Minimum" and “Maximum" rows of Tables 4 and 5, when X is highly
correlated with Z, the sample ranges of the unbiased estimators are wider than those of the consistent estimators in the
smaller sample sizes. However, they become close to those of the consistent estimators in the larger sample sizes. Here,
note that the sample ranges of the unbiased estimators are narrower than or close to those of the consistent estimators
when X is uncorrelated with Z.

Second, from the “(17)/(22)" rows of Tables 4 and 5, except for Case 2, for all sample sizes, equations (17) and
(22) when Z2 is selected are larger than when either Z1 or [Z1,Z2] are selected. Also, equations (17) and (22) when
[Z1,Z2] is selected are larger than when Z1 is selected. This implies that the relationships are consistent with the results
obtained by Theorem 2. In contrast, in Case 2 with the sample size n ≤ 25, equation (17) when {Z1,Z2} is selected is
larger than equation (17) when Z2 is selected, which shows that the relationships are different from the results obtained
by Theorem 2. Thus, it seems that the difference between the estimation accuracy by the selected variables depends
not only on the sample size but also on the multicollinearity between X and Z and the number of random variables
included in Z: Theorem 2 holds for large sample sizes even when X is highly correlated with Z.

Third, comparing the empirical variances with the variance formula, equation (17) is relatively close to the empirical
variances of the unbiased estimator for any sample size when ϵx, ϵy, ϵz1 and ϵz2 follow the normal distribution. In
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contrast, when ϵx, ϵy, ϵz1 and ϵz2 follow the uniform distribution, the differences between equation (17) and the empirical
variances of the unbiased estimator are more significant for the smaller sample size, but are not for the larger sample
size. In addition, when X is correlated with Z, the asymptotic variance (22) is not close to the empirical variances of the
consistent estimator for the small sample sizes in each case. Especially, the differences between the asymptotic variance
(22) and the empirical variances of the consistent estimator are significant when X is correlated with Z. However, the
differences between the variables becomes smaller as the sample size is larger.

Finally, for each case, it seems that both unbiased and consistent estimators are highly skewed and heavy-tailed
in the small sample size, but converge to the normal distributions slowly as the sample sizes are larger. Especially,
when X is correlated with Z, both unbiased and consistent estimators take large values in the small sample size, which
implies that these estimators are unstable under multicollinearity with the small sample size.

5. Conclusion

In this paper, when causal knowledge is available in the form of a Gaussian linear SEM with the corresponding
DAG, when the ordinary least squares method is utilized to estimate the total effect, we considered a situation where
the causal effect can be estimated based on the back-door criterion. Under this situation, we formulated the unbiased
estimator of the causal effect on the variance with the exact variance. The estimated causal effect on the variance
proposed by Kuroki and Miyakawa (2003) is consistent but not unbiased. Under the small sample size, the use of the
consistent estimator may lead to misleading findings in statistical causal inference. To avoid the problem, we showed
in Theorem 1 and numerical experiments that the variance estimator, equation (17), performs better than equation
(22) in small samples. Theorem 1 would help statistical practitioners to predict appropriately what would happen to
the variation of the outcome variable when conducting external intervention. In addition, Theorem 2 shows that the
asymptotic estimation accuracy of the estimated causal effect on the variance depends on the selection of random
variables that satisfies the back door criterion, and there are some situation where such a difference can be read-off
from the graph structure, before sampling statistical data.

Future work should involve extending our results to (i) a joint intervention that combines several single interventions
and (ii) an adaptive control in which the treatment variable is assigned a value based on some variables that are not
affected by the treatment variable. In addition, the numerical experiments show that the proposed unbiased estimator
has the drawback that it can take a negative value in the small sample size, when the statistical causal model is not
consistent with available data. One of our suggestions to solve the problem is to use max{0, σ̂yy|x} instead of σ̂yy|x to
evaluate the causal effect on the variance. However, max{0, σ̂yy|x} is not an unbiased estimator, and it is difficult to
formulate the truncated distribution of σ̂yy|x. Thus, it would also be future work to develop a more efficient estimator of
the causal effect on the variance based on the small sample size. Furthermore, the assumption of Gaussian random
variables may be strong. To derive the exact variance formula of the estimated causal effect on the variance under the
non-Gaussian random random variables, our idea is to assume the probability distribution whose exact moments of
reciprocal random variables can be derived as the explicit expressions, which is also future work. Finally, it would also
be necessary to discuss the extension of our result to non-parametric SEMs in the future.
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Table 3. Causal Path Coefficients

Case1 Case2 Case3
Y X Z1 Z2 Y X Z1 Z2 Y X Z1 Z2

Y - 0.7000 0.7000 0.0000 - 0.7000 0.0000 0.0000 - -0.3430 0.7000 0.0000
X - - 0.0000 0.0000 - - 0.0000 0.7000 - - 0.0000 0.7000
Z1 - - - 0.7000 - - - 0.7000 - - - 0.7000

Case4 Case5
Y X Z1 Z2 Y X Z1 Z2

Y - 0.0000 0.7000 0.0000 - -1.9697 2.5303 0.0000
X - - 0.0000 0.7000 - - 0.0000 0.9900
Z1 - - - 0.7000 - - - 0.9900

YX

Z2 Z1

Figure 3. Causal path diagram

Appendix: Proof of Theorem 1

Letting Dx and Dz denote the datasets of X and Z, respectively, from the law of total variance (Weiss et al., 2006,
pp.385-386), given Dx ∪ Dz, we have

var(σ̂yy|x) = var(E(σ̂yy|x|Dx,Dz)) + E(var(σ̂yy|x|Dx,Dz)), (33)

where E(·|Dx,Dz) and var(·|Dx,Dz) indicates conditional expectation and variance given Dx ∪ Dz, respectively. Then,
in order to derive the explicit expression of the exact variance formula of the estimated causal effect of do(X = x)
on the variance σ̂yy|x of Y , we calculate the first term var(E(σ̂yy|x|Dx,Dz)) and the second term E(var(σ̂yy|x|Dx,Dz)) of
equation (33) separately.

Step 1: Derivation of var(E(σ̂yy|x|Dx,Dz))
Regarding the second term of the right hand side of equation (33), note that we derive

E(B̂yz.xzΣ̂zzB̂′yz.xz|Dx,Dz) = E(tr(Σ̂zzB̂′yz.xzB̂yz.xz)|Dx,Dz) = tr
(
Σ̂zz(σyy.xzS −1

zz.x + B′yz.xzByz.xz)
)

= σyy.xztr(Σ̂zzS −1
zz.x) + Byz.xzΣ̂zzB′yz.xz (34)

by Mathai and Provost (1992, p.53) and the basic formula of the variance-covariance matrix

var(B̂yz.xz|Dx,Dz) = E(B̂′yz.xzB̂yz.xz|Dx,Dz) − E(B̂′yz.xz|Dx,Dz)E(B̂yz.xz|Dx,Dz) = E(B̂′yz.xzB̂yz.xz|Dx,Dz) − B′yz.xzByz.xz

= σyy.xzS −1
zz.x, (35)

where tr(A), which is the trace of a square matrix A, represents the total sum of elements on the main diagonal of the
square matrix A. Thus, noting that equation (14), σ̂yy.xz, is the unbiased estimator of σyy.xz, we have

E(σ̂yy|x|Dx,Dz) = E
σ̂yy.xz

1 − 1
n − 1

q + B̂xz.zS zzB̂′xz.z

sxx.z

 |Dx,Dz

 + E(B̂yz.xzΣ̂zzB̂′yz.xz|Dx,Dz)

= σyy.xz

1 − 1
n − 1

q + B̂xz.zS zzB̂′xz.z

sxx.z

 + tr(Σ̂zzS −1
zz.x)

 + Byz.xzΣ̂zzB′yz.xz. (36)
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Here, from the Sherman–Morrison formula (Sherman and Morrison, 1950), S −1
zz.x can be expressed as

S −1
zz.x =

(
S zz −

S zxS xz

sxx

)−1

= S −1
zz +

S −1
zz S zxS xzS −1

zz

sxx.z
. (37)

Thus, from equation (14), noting that Σ̂zz is the unbiased estimator of Σzz, we derive

tr(Σ̂zzS −1
zz.x) =

1
n − 1

tr(S zzS −1
zz.x) =

1
n − 1

tr
(
Iq,q +

S zxS xzS −1
zz

sxx.z

)
=

1
n − 1

(
q +

S xzS −1
zz S zx

sxx.z

)
=

1
n − 1

q + B̂xz.zS zzB̂′xz.z

sxx.z

 , (38)

where Iq,q is the q × q identity matrix. Thus, since we have

E(σ̂yy|x|Dx,Dz) = σyy.xz + Byz.xzΣ̂zzB′yz.xz (39)

from equation (34) together with equation (38), we derive

E(σ̂yy|x) = E(E(σ̂yy|x|Dx,Dz)) = σyy.xz + Byz.xzΣzzB′yz.xz (40)

and
var(E(σ̂yy|x|Dx,Dz)) = var(Byz.xzΣ̂zzB′yz.xz). (41)

Equation (40) shows that σ̂yy|x is the unbiased estimator of the causal effect of do(X = x) on the variance of Y .
Here, noting that (n − 1)Σ̂zz follows the Wishart distribution with the n − 1 degrees of freedom and parameter Σzz

and
(n − 1)Byz.xzΣ̂zzB′yz.xz

Byz.xzΣzzB′yz.xz
(42)

follows the chi-squared distribution with n − 1 degrees of freedom (Seber, 2008, p.466), the variance is given by

var

 (n − 1)Byz.xzΣ̂zzB′yz.xz

Byz.xzΣzzB′yz.xz

 = 2(n − 1), (43)

i.e., we have

var(E(σ̂yy|x|Dx,Dz)) = var
(
Byz.xzΣ̂zzB′yz.xz

)
=

2(Byz.xzΣzzB′yz.xz)
2

n − 1
. (44)

Step 2: Derivation of E(var(σ̂yy|x|Dx,Dz))
Noting that σ̂yy.xz and (β̂yx.xz, B̂′yz.xz)

′ are independent of each other given Dx and Dz (e.g., Mardia et al., 1979), since

(n − q − 2)σ̂yy.xz

σyy.xz
(45)

follows the chi-squared distribution with n − q − 2 degrees of freedom, we have

var(σ̂yy|x|Dx,Dz) = var(σ̂yy.xz|Dx,Dz)
1 − 1

n − 1

q + B̂xz.zS zzB̂′xz.z

sxx.z

2

+ var(B̂yz.xzΣ̂zzB̂′yz.xz|Dx,Dz)

=
2σ2

yy.xz

n − q − 2

1 − 1
n − 1

q + B̂xz.zS zzB̂′xz.z

sxx.z

2

+ var(B̂yz.xzΣ̂zzB̂′yz.xz|Dx,Dz)

=
2σ2

yy.xz

n − q − 2

(1 − q
n − 1

)2
− 2

(
1 −

q
n − 1

) B̂xz.zS zzB̂′xz.z

(n − 1)sxx.z
+

 B̂xz.zS zzB̂′xz.z

(n − 1)sxx.z

2 + var(B̂yz.xzΣ̂zzB̂′yz.xz|Dx,Dz). (46)
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Step 2-1: Derivation of E
(

B̂xz.zS zzB̂′xz.z
sxx.z

)
Regarding the first term of equation (46), since B̂xz.z and sxx.z are independent of each other given Dz (e.g., Mardia

et al, 1979), noting that sxx.z/σxx.z follows the chi-squared distribution with n − q − 1 degrees of freedom, we have

E
(

1
sxx.z
|Dz

)
=

1
(n − q − 3)σxx.z

. (47)

Thus, we have

E
 B̂xz.zS zzB̂′xz.z

sxx.z

 = E
E

 B̂xz.zS zzB̂′xz.z

sxx.z
|Dz

 = E
(
E(B̂xz.zS zzB̂′xz.z|Dz)E

(
1

sxx.z
|Dz

))
=
σxx.zE(tr(S zzS −1

zz )) + Bxz.zE(S zz)B′xz.z

(n − q − 3)σxx.z
=

qσxx.z + (n − 1)Bxz.zΣzzB′xz.z

(n − q − 3)σxx.z
(48)

from
var(B̂xz.z) = E(B̂′xz.zB̂xz.z) − B′xz.zBxz.z = σxx.zS −1

zz . (49)

Step 2-2: Derivation of E

( B̂xz.zS zzB̂′xz.z
sxx.z

)2
Similar to Step 2-1, from

E
(

1
s2

xx.z

)
=

1
(n − q − 3)(n − q − 5)σ2

xx.z
, (50)

since B̂xz.z and σ̂xx.z are independent of each other given Dz (e.g., Mardia et al., 1979), we derive

E

 B̂xz.zS zzB̂′xz.z

sxx.z

2 = E

E

 B̂xz.zS zzB̂′xz.z

sxx.z

2

|Dz


 = E

(
E((B̂xz.zS zzB̂′xz.z)

2|Dz)E
(

1
s2

xx.z
|Dz

))

=
E

(
E((B̂xz.zS zzB̂′xz.z)

2|Dz)
)

(n − q − 3)(n − q − 5)σ2
xx.z
=

E
(
var

(
B̂xz.zS zzB̂′xz.z|Dz)

))
(n − q − 3)(n − q − 5)σ2

xx.z
+

E(E(B̂xz.zS zzB̂′xz.z|Dz)2)
(n − q − 3)(n − q − 5)σ2

xx.z
. (51)

From Seber (2008, p.438), E
(
var

(
B̂xz.zS zzB̂′xz.z|Dz

))
is given by

E
(
var

(
B̂xz.zS zzB̂′xz.z|Dz)

))
= 2σ2

xx.zE(tr(S zzS −1
zz S zzS −1

zz )) + 4E(σxx.zBxz.zS zzS −1
zz S zzB′xz.z)

= 2qσ2
xx.z + 4(n − 1)σxx.zBxz.zΣzzB′xz.z. (52)

Again, from
var(Bxz.zS zzB′xz.z) = 2(n − 1)(Bxz.zΣzzB′xz.z)

2 (53)

by Seber (2008, p.466), we have

E

 B̂xz.zS zzB̂′xz.z

sxx.z

2 = E

E

 B̂xz.zS zzB̂′xz.z

sxx.z

2

|Dz




=
2qσ2

xx.z + 4(n − 1)σxx.zBxz.zΣzzB′xz.z

(n − q − 3)(n − q − 5)σ2
xx.z

+
E((qσxx.z + Bxz.zS zzB′xz.z)

2)
(n − q − 3)(n − q − 5)σ2

xx.z

=
2qσ2

xx.z + 4(n − 1)σxx.zBxz.zΣzzB′xz.z

(n − q − 3)(n − q − 5)σ2
xx.z

+
var(Bxz.zS zzB′xz.z)

(n − q − 3)(n − q − 5)σ2
xx.z
+

E(qσxx.z + Bxz.zS zzB′xz.z)
2

(n − q − 3)(n − q − 5)σ2
xx.z

=
2qσ2

xx.z + 4(n − 1)σxx.zBxz.zΣzzB′xz.z

(n − q − 3)(n − q − 5)σ2
xx.z

+
2(n − 1)(Bxz.zΣzzB′xz.z)

2

(n − q − 3)(n − q − 5)σ2
xx.z
+

(qσxx.z + (n − 1)Bxz.zΣzzB′xz.z)
2

(n − q − 3)(n − q − 5)σ2
xx.z
. (54)
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Step 2-3: Derivation of var(B̂yz.xzΣ̂zzB̂′yz.xz|Dx,Dz)
Regarding the second term of equation (46), from Mathai and Provost (1992, p.53), we have

var(B̂yz.xzΣ̂zzB̂′yz.xz|Dx,Dz) =
2σ2

yy.xz

(n − 1)2 tr(S zzS −1
zz.xS zzS −1

zz.x) +
4σyy.xz

(n − 1)2 Byz.xzS zzS −1
zz.xS zzB′yz.xz. (55)

From equation (37) and B̂xz.z = S xzS −1
zz , we have

E(var(B̂yz.xzΣ̂zzB̂′yz.xz|Dx,Dz)) = E

 2σ2
yy.xz

(n − 1)2 tr
((

S zz +
S zxS xz

sxx.z

)
S −1

zz.x

) + 4σyy.xz

(n − 1)2 Byz.xzE
(
S zz +

S zxS xz

sxx.z

)
B′yz.xz

=
2σ2

yy.xz

(n − 1)2

q + 2E
 B̂xz.zS zzB̂′xz.z

sxx.z

 + E

 B̂xz.zS zzB̂′xz.z

sxx.z

2


+
4σyy.xz

(n − 1)2

(n − 1)Byz.xzΣzzB′yz.xz + E
 (Byz.xzS zzB̂′xz.z)

2

sxx.z

 (56)

Here, from the law of total variance (Weiss et al, 2006, pp.385-386), we have

E
(
E

(
(Byz.xzS zzB̂′xz.z)

2|Dz

))
= E

(
var

(
Byz.xzS zzB̂′xz.z|Dz

)
+ E

(
(Byz.xzS zzB̂′xz.z)|Dz

)2
)

= σxx.zByz.xzE(S zz)B′yz.xz + E((Byz.xzS zzB′xz.z)
2) = (n − 1)σxx.zByz.xzΣzzB′yz.xz + E((Byz.xzS zzB′xz.z)

2) (57)

Finally, from Seber (2008,p.467), we have

E((Byz.xzS zzB′xz.z)
2) = Byz.xzE(S zzB′xz.zBxz.zS zz)B′yz.xz

= ((n − 1) + (n − 1)2)(Byz.xzΣzzB′xz.z)
2 + (n − 1)(Bxz.zΣzzB′xz.z)(Byz.xzB′xz.z)

2. (58)

Based on the above derivation, we derive the exact variance formula of the estimated causal effect of do(X = x) on the
variance of Y .
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[26] Perković, E. (2018). Graphical characterizations of adjustment sets. Ph.D. Thesis, Department of Mathematics, ETH Zurich.
[27] Seber, G. A. (2008). A Matrix Handbook for Statisticians, John Wiley & Sons.
[28] Shan, N. and Guo, J. (2010). Covariate selection for identifying the effects of a particular type of conditional plan using causal networks.

Frontiers of Mathematics in China, 5, 687-700.
[29] Shan, N. and Guo, J. (2012). Covariate selection for identifying the causal effects of stochastic interventions using causal networks. Journal of

Statistical Planning and Inference, 142, 212-220.
[30] Sherman, J. and Morrison, W. J. (1950). Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Annals of

Mathematical Statistics, 21, 124-127.
[31] Tian, J. (2004). Identifying linear causal effects. Proceeding of the 19th National Conference on Artificial Intelligence, 104-111.
[32] Weiss, N. A., Holmes, P. T. and Hardy, M. (2006). A Course in Probability. Pearson Addison Wesley.
[33] Wright, S. (1923). The theory of path coefficients: A reply to Niles’ criticism. Genetics, 8, 239-255.
[34] Wright, S.(1934). The method of path coefficients. Annals of Mathematical Statistics, 5, 161-215.

17



Table 4. Numerical Experiments -Normal Distribution-.

Case 1:σyy|x = 0.510
Sample size 10 25

Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}

Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 0.509 0.511 0.509 0.544 0.509 0.514 0.510 0.511 0.510 0.522 0.510 0.511

Equation (17)/(22) 0.059 0.052 0.065 0.052 0.059 0.052 0.022 0.021 0.022 0.021 0.022 0.021
var 0.058 0.058 0.064 0.069 0.058 0.058 0.022 0.022 0.023 0.023 0.022 0.022

Skewness 0.937 0.936 1.038 1.000 0.937 0.936 0.570 0.570 0.576 0.566 0.571 0.570
Kurtosis 4.326 4.325 4.908 4.780 4.328 4.327 3.490 3.490 3.481 3.463 3.492 3.492

Minimum 0.016 0.017 0.016 0.018 0.016 0.019 0.102 0.103 0.105 0.108 0.100 0.102
1st Quartile 0.333 0.335 0.324 0.352 0.333 0.338 0.404 0.405 0.402 0.413 0.404 0.406

Median 0.472 0.474 0.467 0.501 0.472 0.477 0.496 0.497 0.495 0.507 0.495 0.497
3rd Quartile 0.644 0.647 0.649 0.691 0.644 0.650 0.601 0.601 0.603 0.615 0.601 0.603
Maximum 2.053 2.056 2.995 3.071 2.052 2.057 1.344 1.345 1.371 1.387 1.344 1.346

Sample size 50 100
Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}

Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 0.511 0.511 0.511 0.516 0.511 0.511 0.509 0.510 0.509 0.512 0.509 0.510

Equation (17)/(22) 0.011 0.010 0.011 0.010 0.011 0.010 0.005 0.005 0.005 0.005 0.005 0.005
var 0.011 0.011 0.011 0.011 0.011 0.011 0.005 0.005 0.005 0.005 0.005 0.005

Skewness 0.407 0.407 0.411 0.407 0.408 0.407 0.300 0.300 0.301 0.300 0.300 0.300
Kurtosis 3.237 3.237 3.238 3.233 3.239 3.239 3.110 3.110 3.115 3.114 3.110 3.110

Minimum 0.210 0.211 0.205 0.209 0.210 0.211 0.265 0.265 0.266 0.268 0.265 0.265
1st Quartile 0.438 0.438 0.437 0.442 0.438 0.438 0.459 0.459 0.459 0.461 0.459 0.459

Median 0.504 0.504 0.504 0.509 0.504 0.504 0.506 0.506 0.506 0.508 0.506 0.506
3rd Quartile 0.576 0.576 0.576 0.582 0.576 0.577 0.557 0.557 0.557 0.559 0.557 0.557
Maximum 1.034 1.035 1.044 1.053 1.035 1.035 0.867 0.867 0.876 0.880 0.867 0.867

Sample size 500 1000
Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}

Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 0.510 0.510 0.510 0.510 0.510 0.510 0.510 0.510 0.510 0.510 0.510 0.510

Equation (17)/(22) 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
var 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000

Skewness 0.075 0.075 0.075 0.075 0.075 0.075 0.052 0.052 0.052 0.052 0.052 0.052
Kurtosis 3.041 3.041 3.037 3.037 3.041 3.041 3.030 3.030 3.030 3.030 3.030 3.030

Minimum 0.392 0.392 0.393 0.393 0.392 0.392 0.432 0.432 0.432 0.432 0.432 0.432
1st Quartile 0.491 0.491 0.491 0.492 0.491 0.491 0.497 0.497 0.497 0.497 0.497 0.497

Median 0.510 0.510 0.510 0.510 0.510 0.510 0.510 0.510 0.510 0.510 0.510 0.510
3rd Quartile 0.528 0.528 0.528 0.529 0.528 0.528 0.523 0.523 0.523 0.523 0.523 0.523
Maximum 0.651 0.651 0.652 0.652 0.651 0.651 0.593 0.593 0.594 0.594 0.593 0.593

Unbiased: unbiased estimator; Consist: consistent estimator; Estimates: the sample mean from 50000 estimated causal
effects on the variance; (17)/(22): the exact and asymptotic variances derived from equations (17) and (22) with Table
3; Var: empirical variances from 50000 estimated causal effects on the variance.
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Table 4. Numerical Experiments -Normal Distribution-.

Case 2:σyy|x = 0.510
Sample size 10 25

Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}

Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 0.510 0.603 0.510 0.658 0.511 0.744 0.511 0.541 0.511 0.556 0.511 0.580

Equation (17)/(22) 0.073 0.052 0.107 0.052 0.145 0.052 0.023 0.021 0.024 0.021 0.025 0.021
var 0.073 0.099 0.110 0.155 0.145 0.221 0.023 0.026 0.024 0.028 0.025 0.031

Skewness 1.478 1.531 4.255 4.000 4.826 4.528 0.620 0.617 0.709 0.697 0.748 0.714
Kurtosis 10.112 11.673 87.363 74.588 94.755 74.449 3.688 3.673 3.964 3.932 4.234 4.070

Minimum -0.814 0.022 -2.621 0.022 -5.144 0.026 0.108 0.113 0.107 0.115 0.107 0.120
1st Quartile 0.318 0.377 0.300 0.400 0.288 0.446 0.403 0.427 0.400 0.436 0.399 0.455

Median 0.464 0.548 0.450 0.585 0.443 0.655 0.496 0.525 0.494 0.538 0.494 0.561
3rd Quartile 0.652 0.769 0.646 0.827 0.648 0.935 0.602 0.637 0.602 0.655 0.602 0.683
Maximum 5.069 6.851 13.617 15.156 13.302 15.291 1.624 1.706 1.653 1.756 1.940 2.073

Sample size 50 100
Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}

Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 0.510 0.524 0.510 0.531 0.510 0.542 0.510 0.517 0.510 0.520 0.510 0.525

Equation (17)/(22) 0.011 0.010 0.011 0.010 0.011 0.010 0.005 0.005 0.005 0.005 0.005 0.005
var 0.011 0.011 0.011 0.012 0.011 0.012 0.005 0.005 0.005 0.006 0.005 0.006

Skewness 0.390 0.391 0.416 0.414 0.423 0.418 0.300 0.300 0.310 0.309 0.310 0.308
Kurtosis 3.206 3.207 3.270 3.267 3.297 3.288 3.152 3.152 3.187 3.185 3.185 3.183

Minimum 0.193 0.198 0.186 0.196 0.186 0.199 0.247 0.250 0.245 0.250 0.245 0.253
1st Quartile 0.436 0.448 0.435 0.454 0.435 0.463 0.459 0.465 0.458 0.468 0.458 0.472

Median 0.503 0.516 0.502 0.523 0.502 0.534 0.506 0.513 0.506 0.516 0.506 0.522
3rd Quartile 0.576 0.592 0.577 0.601 0.577 0.613 0.557 0.565 0.557 0.568 0.557 0.574
Maximum 0.994 1.026 1.071 1.113 1.110 1.171 0.898 0.910 1.010 1.030 1.009 1.037

Sample size 500 1000
Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}

Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 0.510 0.511 0.510 0.512 0.510 0.513 0.510 0.511 0.510 0.511 0.510 0.512

Equation (17)/(22) 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
var 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Skewness 0.028 0.028 0.029 0.029 0.029 0.029 0.024 0.024 0.025 0.025 0.025 0.025
Kurtosis 2.981 2.981 2.981 2.980 2.980 2.980 3.001 3.001 2.999 2.999 3.000 2.999

Minimum 0.427 0.428 0.427 0.428 0.427 0.429 0.455 0.455 0.455 0.455 0.455 0.456
1st Quartile 0.496 0.497 0.496 0.498 0.496 0.499 0.500 0.501 0.500 0.501 0.500 0.502

Median 0.510 0.511 0.510 0.512 0.510 0.513 0.510 0.511 0.510 0.511 0.510 0.511
3rd Quartile 0.524 0.525 0.524 0.526 0.524 0.527 0.520 0.521 0.520 0.521 0.520 0.521
Maximum 0.601 0.603 0.600 0.603 0.600 0.604 0.577 0.578 0.577 0.578 0.577 0.578

Unbiased: unbiased estimator; Consist: consistent estimator; Estimates: the sample mean from 50000 estimated causal
effects on the variance; (17)/(22): the exact and asymptotic variances derived from equations (17) and (22) with Table
3; Var: empirical variances from 50000 estimated causal effects on the variance.
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Table 4. Numerical Experiments -Normal Distribution-.

Case 3:σyy|x = 1.118
Sample size 10 25

Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}

Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 1.119 1.234 1.119 1.373 1.120 1.409 1.116 1.153 1.118 1.196 1.117 1.202

Equation (17)/(22) 0.397 0.289 0.596 0.331 0.566 0.308 0.128 0.115 0.154 0.132 0.141 0.123
var 0.408 0.457 0.584 0.725 0.595 0.721 0.130 0.135 0.157 0.171 0.145 0.156

Skewness 1.837 1.873 2.391 2.328 2.678 2.774 0.751 0.745 1.040 1.006 0.895 0.867
Kurtosis 14.121 15.044 15.610 14.888 24.310 24.522 4.008 4.012 5.210 5.073 4.491 4.418

Minimum -0.420 0.043 -2.802 0.043 -8.253 0.051 0.161 0.179 0.168 0.184 0.161 0.191
1st Quartile 0.668 0.758 0.617 0.804 0.620 0.849 0.860 0.892 0.838 0.903 0.846 0.921

Median 0.999 1.108 0.952 1.194 0.964 1.238 1.074 1.110 1.060 1.138 1.065 1.149
3rd Quartile 1.433 1.568 1.421 1.721 1.427 1.756 1.328 1.370 1.333 1.422 1.331 1.425
Maximum 13.817 14.935 12.257 13.943 17.465 18.915 3.792 3.959 4.504 4.658 4.427 4.560

Sample size 50 100
Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}

Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 1.117 1.134 1.117 1.153 1.117 1.156 1.119 1.127 1.119 1.136 1.119 1.138

Equation (17)/(22) 0.061 0.058 0.071 0.066 0.065 0.062 0.030 0.029 0.034 0.033 0.032 0.031
var 0.061 0.062 0.071 0.074 0.066 0.069 0.030 0.030 0.034 0.035 0.032 0.032

Skewness 0.516 0.513 0.679 0.670 0.611 0.600 0.337 0.336 0.443 0.439 0.392 0.388
Kurtosis 3.461 3.457 3.898 3.881 3.718 3.697 3.184 3.184 3.342 3.337 3.277 3.273

Minimum 0.337 0.344 0.340 0.360 0.332 0.357 0.561 0.567 0.555 0.568 0.575 0.586
1st Quartile 0.943 0.959 0.929 0.962 0.935 0.971 0.998 1.006 0.988 1.005 0.993 1.011

Median 1.096 1.114 1.088 1.125 1.092 1.132 1.110 1.118 1.105 1.123 1.108 1.127
3rd Quartile 1.269 1.288 1.274 1.314 1.272 1.315 1.229 1.238 1.234 1.253 1.231 1.251
Maximum 2.435 2.470 3.173 3.241 2.545 2.609 2.075 2.091 2.111 2.133 2.071 2.092

Sample size 500 1000
Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}

Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 1.117 1.119 1.118 1.121 1.117 1.121 1.118 1.118 1.118 1.119 1.118 1.120

Equation (17)/(22) 0.006 0.006 0.007 0.007 0.006 0.006 0.003 0.003 0.003 0.003 0.003 0.003
var 0.005 0.005 0.005 0.005 0.005 0.005 0.002 0.002 0.003 0.003 0.002 0.002

Skewness 0.100 0.100 0.155 0.154 0.129 0.128 0.097 0.097 0.117 0.117 0.111 0.111
Kurtosis 2.994 2.994 3.001 3.001 2.993 2.993 3.026 3.026 3.053 3.053 3.040 3.040

Minimum 0.860 0.861 0.844 0.847 0.848 0.852 0.932 0.933 0.909 0.911 0.922 0.923
1st Quartile 1.071 1.073 1.066 1.070 1.069 1.073 1.085 1.086 1.082 1.084 1.084 1.085

Median 1.116 1.118 1.116 1.119 1.116 1.120 1.117 1.118 1.116 1.118 1.117 1.119
3rd Quartile 1.163 1.164 1.166 1.170 1.164 1.168 1.149 1.150 1.152 1.154 1.151 1.153
Maximum 1.416 1.418 1.482 1.486 1.434 1.438 1.316 1.316 1.348 1.350 1.342 1.344

Unbiased: unbiased estimator; Consist: consistent estimator; Estimates: the sample mean from 50000 estimated causal
effects on the variance; (17)/(22): the exact and asymptotic variances derived from equations (17) and (22) with Table
3; Var: empirical variances from 50000 estimated causal effects on the variance.
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Table 4. Numerical Experiments -Normal Distribution-.

Case 4:σyy|x = 1.000
Sample size 10 25

Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}

Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 1.001 1.094 0.999 1.220 0.999 1.233 1.000 1.030 0.999 1.067 1.000 1.069

Equation (17)/(22) 0.316 0.232 0.481 0.270 0.436 0.247 0.102 0.093 0.126 0.108 0.113 0.099
var 0.317 0.349 0.483 0.593 0.463 0.526 0.102 0.105 0.124 0.135 0.113 0.120

Skewness 1.444 1.449 3.284 3.150 0.595 2.589 0.731 0.726 1.016 0.988 0.861 0.840
Kurtosis 7.138 7.186 39.242 34.466 96.540 22.520 3.903 3.899 5.103 5.015 4.351 4.314

Minimum -2.116 0.038 -3.755 0.040 -29.146 0.051 0.164 0.170 0.161 0.175 0.157 0.176
1st Quartile 0.603 0.678 0.553 0.718 0.563 0.753 0.770 0.797 0.749 0.806 0.760 0.821

Median 0.897 0.985 0.851 1.061 0.868 1.092 0.964 0.993 0.948 1.015 0.955 1.024
3rd Quartile 1.278 1.384 1.270 1.529 1.276 1.539 1.189 1.222 1.193 1.270 1.191 1.268
Maximum 7.246 7.902 18.483 19.766 13.702 15.580 3.042 3.114 4.030 4.203 3.577 3.719

Sample size 50 100
Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}

Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 1.000 1.015 1.000 1.032 1.001 1.033 1.000 1.007 1.000 1.015 1.000 1.016

Equation (17)/(22) 0.049 0.046 0.058 0.054 0.052 0.049 0.024 0.023 0.028 0.027 0.025 0.025
var 0.049 0.050 0.059 0.061 0.054 0.055 0.024 0.024 0.028 0.029 0.026 0.026

Skewness 0.515 0.512 0.677 0.669 0.601 0.592 0.360 0.359 0.461 0.457 0.412 0.409
Kurtosis 3.500 3.498 3.871 3.854 3.709 3.690 3.240 3.239 3.407 3.402 3.324 3.321

Minimum 0.324 0.330 0.313 0.329 0.312 0.330 0.505 0.510 0.481 0.490 0.488 0.499
1st Quartile 0.844 0.857 0.829 0.857 0.837 0.867 0.892 0.898 0.881 0.895 0.887 0.902

Median 0.981 0.995 0.975 1.006 0.979 1.011 0.991 0.998 0.988 1.003 0.989 1.005
3rd Quartile 1.139 1.154 1.144 1.179 1.141 1.176 1.099 1.107 1.105 1.122 1.102 1.118
Maximum 2.508 2.532 2.559 2.590 2.419 2.447 1.803 1.814 2.020 2.044 1.877 1.895

Sample size 500 1000
Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}

Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 1.000 1.001 1.000 1.003 1.000 1.003 1.000 1.001 1.000 1.002 1.000 1.002

Equation (17)/(22) 0.005 0.005 0.005 0.005 0.005 0.005 0.002 0.002 0.003 0.003 0.002 0.002
var 0.004 0.004 0.004 0.004 0.004 0.004 0.002 0.002 0.002 0.002 0.002 0.002

Skewness 0.125 0.125 0.173 0.173 0.142 0.141 0.089 0.089 0.123 0.123 0.107 0.107
Kurtosis 3.052 3.052 3.063 3.063 3.050 3.050 2.982 2.982 3.023 3.023 3.005 3.005

Minimum 0.773 0.774 0.752 0.754 0.768 0.770 0.825 0.825 0.797 0.799 0.815 0.816
1st Quartile 0.958 0.960 0.954 0.957 0.956 0.959 0.970 0.971 0.967 0.969 0.969 0.970

Median 0.999 1.000 0.998 1.001 0.998 1.001 0.999 1.000 0.999 1.000 0.999 1.001
3rd Quartile 1.040 1.041 1.043 1.046 1.042 1.045 1.029 1.030 1.031 1.033 1.030 1.031
Maximum 1.285 1.287 1.299 1.303 1.291 1.294 1.191 1.191 1.235 1.236 1.224 1.225

Unbiased: unbiased estimator; Consist: consistent estimator; Estimates: the sample mean from 50000 estimated causal
effects on the variance; (17)/(22): the exact and asymptotic variances derived from equations (17) and (22) with Table
3; Var: empirical variances from 50000 estimated causal effects on the variance.

21



Table 4. Numerical Experiments -Normal Distribution-.

Case 5:σyy|x = 6.890
Sample size 10 25

Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}

Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 6.889 8.935 6.846 11.998 6.818 11.758 6.891 7.478 6.839 8.310 6.849 8.093

Equation (17)/(22) 89.284 39.921 273.079 85.493 258.651 69.743 20.461 15.968 48.386 34.197 39.017 27.897
var 89.195 96.603 269.086 288.518 261.860 276.373 20.314 20.997 48.615 50.410 39.916 41.375

Skewness 3.174 3.590 3.751 4.816 3.909 5.284 1.404 1.435 1.944 2.010 1.797 1.864
Kurtosis 27.518 32.126 45.247 57.833 50.464 69.849 6.565 6.677 10.115 10.369 9.068 9.359

Minimum -41.487 0.043 -217.754 0.057 -209.358 0.047 -1.922 0.227 -7.491 0.217 -6.815 0.241
1st Quartile 1.233 2.735 -1.117 2.227 -0.831 2.314 3.679 4.201 1.922 3.255 2.389 3.519

Median 4.427 6.001 2.666 6.404 2.911 6.363 5.996 6.543 5.160 6.467 5.372 6.531
3rd Quartile 9.754 11.656 10.415 14.959 10.489 14.655 9.120 9.719 9.769 11.290 9.641 10.861
Maximum 227.310 249.270 458.364 521.416 428.839 538.489 48.157 49.007 87.847 91.660 85.278 88.653

Sample size 50 100
Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}

Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 6.907 7.176 6.916 7.589 6.910 7.466 6.886 7.015 6.879 7.200 6.889 7.152

Equation (17)/(22) 8.971 7.984 20.098 17.099 16.240 13.949 4.225 3.992 9.245 8.549 7.501 6.974
var 9.001 9.149 20.271 20.664 16.558 16.865 4.206 4.241 9.205 9.290 7.575 7.643

Skewness 0.916 0.925 1.248 1.270 1.137 1.156 0.615 0.617 0.820 0.825 0.767 0.772
Kurtosis 4.414 4.427 5.743 5.808 5.190 5.245 3.591 3.593 4.037 4.042 3.878 3.882

Minimum 0.162 0.406 -1.882 0.327 -1.062 0.364 1.473 1.617 0.203 0.443 0.326 0.613
1st Quartile 4.758 5.004 3.666 4.310 3.981 4.494 5.426 5.546 4.696 4.999 4.906 5.156

Median 6.487 6.751 6.093 6.739 6.213 6.751 6.674 6.801 6.467 6.781 6.547 6.802
3rd Quartile 8.574 8.852 9.264 9.949 9.050 9.623 8.135 8.269 8.616 8.947 8.497 8.768
Maximum 27.249 27.699 44.779 46.374 39.581 40.831 19.980 20.117 25.766 26.199 22.501 22.832

Sample size 500 1000
Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}

Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 6.889 6.914 6.890 6.952 6.893 6.943 6.889 6.902 6.892 6.923 6.892 6.917

Equation (17)/(22) 0.807 0.798 1.736 1.710 1.415 1.395 0.401 0.399 0.861 0.855 0.702 0.697
var 0.710 0.710 1.618 1.619 1.309 1.310 0.352 0.352 0.815 0.815 0.654 0.655

Skewness 0.227 0.227 0.301 0.301 0.281 0.281 0.174 0.174 0.245 0.245 0.214 0.214
Kurtosis 3.106 3.106 3.148 3.148 3.114 3.114 3.041 3.041 3.089 3.089 3.059 3.059

Minimum 3.987 4.011 2.650 2.716 2.966 3.016 4.867 4.880 3.770 3.796 4.135 4.160
1st Quartile 6.311 6.336 5.997 6.058 6.096 6.146 6.482 6.494 6.266 6.297 6.332 6.357

Median 6.855 6.879 6.828 6.891 6.837 6.887 6.871 6.883 6.857 6.888 6.866 6.891
3rd Quartile 7.437 7.462 7.710 7.772 7.628 7.679 7.282 7.294 7.480 7.512 7.421 7.447
Maximum 10.770 10.797 13.431 13.498 13.226 13.273 9.556 9.569 10.954 10.983 10.449 10.476

Unbiased: unbiased estimator; Consist: consistent estimator; Estimates: the sample mean from 50000 estimated causal
effects on the variance; (17)/(22): the exact and asymptotic variances derived from equations (17) and (22) with Table
3; Var: empirical variances from 50000 estimated causal effects on the variance.
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Table 5. Numerical Experiments -Uniform Distribution-.

Case 1:σyy|x = 0.510
Sample size 10 25

Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}

Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 0.510 0.513 0.510 0.545 0.510 0.515 0.510 0.511 0.510 0.521 0.510 0.511

Equation (17)/(22) 0.059 0.052 0.065 0.052 0.059 0.052 0.022 0.021 0.022 0.021 0.022 0.021
var 0.044 0.044 0.051 0.054 0.044 0.044 0.016 0.016 0.017 0.017 0.016 0.016

Skewness 0.596 0.596 0.762 0.722 0.597 0.596 0.328 0.328 0.337 0.324 0.328 0.328
Kurtosis 3.376 3.375 4.638 4.628 3.368 3.366 3.111 3.111 3.116 3.105 3.113 3.113

Minimum 0.033 0.034 -0.066 0.030 0.031 0.036 0.098 0.098 0.089 0.093 0.097 0.099
1st Quartile 0.357 0.360 0.346 0.377 0.357 0.362 0.421 0.422 0.419 0.430 0.421 0.423

Median 0.488 0.490 0.485 0.521 0.488 0.493 0.503 0.504 0.502 0.514 0.503 0.505
3rd Quartile 0.641 0.643 0.646 0.687 0.640 0.646 0.591 0.592 0.593 0.605 0.591 0.593
Maximum 1.613 1.614 3.778 3.951 1.617 1.620 1.205 1.206 1.177 1.192 1.214 1.217

Sample size 50 100
Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}

Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 0.510 0.511 0.510 0.516 0.510 0.511 0.510 0.510 0.510 0.512 0.510 0.510

Equation (17)/(22) 0.011 0.010 0.011 0.010 0.011 0.010 0.005 0.005 0.005 0.005 0.005 0.005
var 0.008 0.008 0.008 0.008 0.008 0.008 0.004 0.004 0.004 0.004 0.004 0.004

Skewness 0.231 0.230 0.235 0.230 0.230 0.230 0.170 0.170 0.173 0.172 0.170 0.170
Kurtosis 3.061 3.061 3.071 3.068 3.061 3.061 3.006 3.006 3.010 3.009 3.006 3.006

Minimum 0.196 0.196 0.187 0.189 0.195 0.196 0.257 0.258 0.249 0.251 0.258 0.258
1st Quartile 0.450 0.450 0.449 0.455 0.450 0.451 0.467 0.467 0.467 0.469 0.467 0.467

Median 0.506 0.507 0.506 0.512 0.506 0.507 0.508 0.508 0.508 0.510 0.508 0.508
3rd Quartile 0.568 0.568 0.568 0.574 0.568 0.568 0.551 0.551 0.551 0.554 0.551 0.551
Maximum 0.932 0.933 0.934 0.941 0.932 0.933 0.798 0.798 0.793 0.796 0.798 0.798

Sample size 500 1000
Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}

Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 0.510 0.510 0.510 0.511 0.510 0.510 0.510 0.510 0.510 0.510 0.510 0.510

Equation (17)/(22) 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
var 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Skewness 0.140 0.140 0.141 0.141 0.141 0.141 0.087 0.087 0.088 0.088 0.087 0.087
Kurtosis 3.025 3.025 3.028 3.028 3.025 3.025 3.063 3.063 3.063 3.063 3.063 3.063

Minimum 0.389 0.389 0.389 0.389 0.389 0.389 0.412 0.412 0.412 0.412 0.412 0.412
1st Quartile 0.488 0.488 0.488 0.488 0.488 0.488 0.494 0.494 0.494 0.495 0.494 0.494

Median 0.509 0.509 0.509 0.510 0.509 0.509 0.509 0.509 0.509 0.510 0.509 0.510
3rd Quartile 0.532 0.532 0.532 0.532 0.532 0.532 0.525 0.525 0.525 0.525 0.525 0.525
Maximum 0.664 0.664 0.665 0.666 0.664 0.664 0.616 0.616 0.616 0.616 0.616 0.616

Unbiased: unbiased estimator; Consist: consistent estimator; Estimates: the sample mean from 50000 estimated causal
effects on the variance; (17)/(22): the exact and asymptotic variances derived from equations (17) and (22) with Table
3; Var: empirical variances from 50000 estimated causal effects on the variance.
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Table 5. Numerical Experiments -Uniform Distribution-.

Case 2:σyy|x = 0.510
Sample size 10 25

Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}

Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 0.509 0.599 0.509 0.647 0.508 0.731 0.510 0.540 0.510 0.555 0.510 0.578

Equation (17)/(22) 0.073 0.052 0.107 0.052 0.145 0.052 0.023 0.021 0.024 0.021 0.025 0.021
var 0.038 0.051 0.058 0.078 0.083 0.116 0.010 0.011 0.011 0.013 0.012 0.014

Skewness 0.714 0.813 2.428 2.593 3.456 3.531 0.168 0.165 0.386 0.361 0.445 0.379
Kurtosis 6.253 6.574 41.824 39.565 90.701 58.000 3.052 3.044 3.768 3.702 3.988 3.767

Minimum -1.852 0.003 -3.606 0.003 -7.368 0.004 0.153 0.162 0.154 0.169 0.153 0.173
1st Quartile 0.371 0.439 0.354 0.462 0.341 0.514 0.440 0.466 0.437 0.476 0.437 0.496

Median 0.494 0.582 0.482 0.618 0.474 0.690 0.507 0.537 0.506 0.550 0.505 0.574
3rd Quartile 0.629 0.739 0.628 0.788 0.629 0.887 0.576 0.610 0.577 0.627 0.577 0.654
Maximum 2.946 3.659 8.443 9.805 11.662 12.334 1.056 1.096 1.396 1.458 1.366 1.476

Sample size 50 100
Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}

Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 0.510 0.524 0.510 0.531 0.510 0.542 0.510 0.517 0.510 0.520 0.510 0.526

Equation (17)/(22) 0.011 0.010 0.011 0.010 0.011 0.010 0.005 0.005 0.005 0.005 0.005 0.005
var 0.005 0.005 0.005 0.005 0.005 0.005 0.002 0.002 0.002 0.002 0.002 0.002

Skewness 0.106 0.106 0.168 0.163 0.177 0.165 0.068 0.068 0.084 0.083 0.085 0.083
Kurtosis 3.006 3.005 3.117 3.107 3.129 3.105 3.018 3.018 3.024 3.025 3.024 3.025

Minimum 0.252 0.262 0.257 0.268 0.255 0.273 0.314 0.318 0.317 0.323 0.317 0.326
1st Quartile 0.464 0.476 0.462 0.482 0.462 0.492 0.478 0.485 0.478 0.488 0.478 0.493

Median 0.509 0.523 0.509 0.530 0.508 0.540 0.509 0.516 0.509 0.520 0.509 0.525
3rd Quartile 0.555 0.571 0.555 0.578 0.556 0.590 0.541 0.549 0.542 0.552 0.542 0.558
Maximum 0.825 0.849 0.942 0.969 0.942 0.981 0.709 0.720 0.757 0.776 0.765 0.791

Sample size 500 1000
Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}

Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 0.510 0.511 0.510 0.512 0.510 0.513 0.510 0.511 0.510 0.511 0.510 0.511

Equation (17)/(22) 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
var 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Skewness 0.139 0.139 0.140 0.140 0.140 0.140 0.086 0.085 0.086 0.086 0.086 0.086
Kurtosis 3.034 3.033 3.036 3.036 3.036 3.036 3.025 3.025 3.024 3.024 3.024 3.024

Minimum 0.373 0.374 0.373 0.374 0.373 0.375 0.420 0.420 0.419 0.420 0.419 0.421
1st Quartile 0.488 0.489 0.488 0.490 0.488 0.491 0.494 0.495 0.494 0.495 0.494 0.496

Median 0.509 0.511 0.509 0.511 0.509 0.512 0.510 0.510 0.510 0.511 0.510 0.511
3rd Quartile 0.531 0.533 0.531 0.533 0.531 0.535 0.525 0.526 0.525 0.526 0.525 0.527
Maximum 0.643 0.645 0.645 0.647 0.644 0.648 0.613 0.613 0.612 0.614 0.612 0.614

Unbiased: unbiased estimator; Consist: consistent estimator; Estimates: the sample mean from 50000 estimated causal
effects on the variance; (17)/(22): the exact and asymptotic variances derived from equations (17) and (22) with Table
3; Var: empirical variances from 50000 estimated causal effects on the variance.
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Table 5. Numerical Experiments -Uniform Distribution-.

Case 3:σyy|x = 1.118
Sample size 10 25

Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}

Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 1.115 1.225 1.114 1.352 1.115 1.389 1.117 1.153 1.118 1.194 1.117 1.200

Equation (17)/(22) 0.397 0.289 0.596 0.331 0.566 0.308 0.128 0.115 0.154 0.132 0.141 0.123
var 0.328 0.354 0.468 0.559 0.456 0.518 0.102 0.105 0.126 0.135 0.115 0.120

Skewness 1.505 1.502 2.207 2.202 2.133 2.265 0.570 0.557 0.850 0.815 0.724 0.687
Kurtosis 14.641 15.279 16.858 16.258 19.287 21.102 3.562 3.549 4.391 4.313 4.023 3.963

Minimum -0.946 0.046 -6.136 0.047 -3.885 0.050 0.179 0.188 0.177 0.190 0.177 0.197
1st Quartile 0.702 0.799 0.658 0.849 0.660 0.905 0.889 0.923 0.866 0.934 0.876 0.956

Median 1.025 1.138 0.978 1.216 0.994 1.272 1.089 1.125 1.071 1.149 1.080 1.165
3rd Quartile 1.425 1.549 1.409 1.689 1.428 1.725 1.312 1.351 1.321 1.405 1.316 1.406
Maximum 15.633 16.584 13.776 14.530 16.626 18.175 3.128 3.184 3.789 4.023 3.433 3.531

Sample size 50 100
Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}

Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 1.119 1.136 1.119 1.155 1.119 1.158 1.117 1.126 1.117 1.135 1.117 1.136

Equation (17)/(22) 0.061 0.058 0.071 0.066 0.065 0.062 0.030 0.029 0.034 0.033 0.032 0.031
var 0.048 0.049 0.058 0.060 0.053 0.054 0.023 0.023 0.028 0.028 0.025 0.026

Skewness 0.396 0.392 0.580 0.566 0.500 0.486 0.258 0.256 0.375 0.370 0.323 0.319
Kurtosis 3.257 3.254 3.624 3.606 3.473 3.462 3.100 3.099 3.233 3.227 3.182 3.179

Minimum 0.385 0.396 0.374 0.391 0.386 0.409 0.601 0.609 0.569 0.581 0.581 0.596
1st Quartile 0.965 0.981 0.949 0.982 0.956 0.995 1.011 1.019 1.000 1.017 1.006 1.024

Median 1.105 1.122 1.097 1.133 1.100 1.140 1.111 1.119 1.107 1.125 1.109 1.128
3rd Quartile 1.257 1.275 1.265 1.304 1.262 1.303 1.216 1.225 1.222 1.241 1.220 1.239
Maximum 2.289 2.307 2.573 2.628 2.436 2.477 1.930 1.941 1.912 1.935 1.954 1.977

Sample size 500 1000
Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}

Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 1.118 1.120 1.118 1.121 1.118 1.122 1.118 1.119 1.118 1.120 1.118 1.120

Equation (17)/(22) 0.006 0.006 0.007 0.007 0.006 0.006 0.003 0.003 0.003 0.003 0.003 0.003
var 0.006 0.006 0.007 0.007 0.006 0.006 0.003 0.003 0.003 0.003 0.003 0.003

Skewness 0.162 0.162 0.209 0.209 0.185 0.184 0.108 0.108 0.134 0.134 0.117 0.117
Kurtosis 3.013 3.013 3.077 3.077 3.041 3.041 3.048 3.048 3.062 3.061 3.052 3.052

Minimum 0.842 0.844 0.832 0.835 0.831 0.834 0.908 0.908 0.889 0.891 0.909 0.911
1st Quartile 1.065 1.067 1.062 1.065 1.063 1.067 1.081 1.082 1.079 1.081 1.080 1.082

Median 1.116 1.118 1.115 1.119 1.115 1.119 1.117 1.118 1.117 1.119 1.117 1.119
3rd Quartile 1.169 1.170 1.172 1.175 1.170 1.174 1.153 1.154 1.156 1.158 1.154 1.156
Maximum 1.513 1.514 1.533 1.537 1.542 1.546 1.378 1.379 1.366 1.368 1.370 1.372

Unbiased: unbiased estimator; Consist: consistent estimator; Estimates: the sample mean from 50000 estimated causal
effects on the variance; (17)/(22): the exact and asymptotic variances derived from equations (17) and (22) with Table
3; Var: empirical variances from 50000 estimated causal effects on the variance.
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Table 5. Numerical Experiments -Uniform Distribution-.

Case 4:σyy|x = 1.000
Sample size 10 25

Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}

Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 1.001 1.091 1.000 1.206 1.000 1.223 0.999 1.029 0.998 1.064 0.999 1.067

Equation (17)/(22) 0.316 0.232 0.481 0.270 0.436 0.247 0.102 0.093 0.126 0.108 0.113 0.099
var 0.264 0.282 0.379 0.452 0.362 0.405 0.083 0.085 0.104 0.111 0.093 0.097

Skewness 1.174 1.164 2.124 2.164 2.103 2.265 0.590 0.580 0.899 0.865 0.745 0.712
Kurtosis 5.852 5.955 15.041 16.253 17.794 20.338 3.690 3.674 4.593 4.522 4.306 4.241

Minimum -0.584 0.047 -3.721 0.046 -2.829 0.054 0.180 0.190 0.180 0.190 0.180 0.199
1st Quartile 0.631 0.709 0.585 0.750 0.594 0.794 0.795 0.823 0.768 0.827 0.781 0.847

Median 0.920 1.011 0.872 1.081 0.890 1.118 0.973 1.003 0.956 1.022 0.967 1.036
3rd Quartile 1.278 1.378 1.271 1.515 1.278 1.521 1.176 1.207 1.178 1.252 1.177 1.250
Maximum 5.910 6.216 10.743 13.037 13.002 14.269 2.977 3.034 3.134 3.304 4.450 4.548

Sample size 50 100
Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}

Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 0.999 1.013 0.999 1.030 0.999 1.030 1.000 1.007 1.000 1.016 1.000 1.016

Equation (17)/(22) 0.049 0.046 0.058 0.054 0.052 0.049 0.024 0.023 0.028 0.027 0.025 0.025
var 0.039 0.040 0.048 0.049 0.043 0.044 0.019 0.019 0.023 0.024 0.021 0.021

Skewness 0.410 0.406 0.575 0.563 0.489 0.478 0.269 0.267 0.383 0.379 0.323 0.319
Kurtosis 3.272 3.271 3.546 3.528 3.433 3.424 3.136 3.136 3.260 3.256 3.195 3.193

Minimum 0.411 0.419 0.398 0.417 0.399 0.423 0.534 0.540 0.506 0.517 0.516 0.529
1st Quartile 0.859 0.872 0.844 0.873 0.853 0.884 0.904 0.911 0.893 0.908 0.899 0.914

Median 0.986 1.000 0.978 1.009 0.981 1.014 0.994 1.001 0.991 1.006 0.993 1.008
3rd Quartile 1.125 1.139 1.133 1.167 1.127 1.160 1.090 1.097 1.097 1.113 1.093 1.108
Maximum 2.107 2.124 2.383 2.423 2.206 2.258 1.660 1.669 1.796 1.815 1.792 1.809

Sample size 500 1000
Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}

Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 1.000 1.001 1.000 1.003 1.000 1.003 1.000 1.001 1.000 1.001 1.000 1.001

Equation (17)/(22) 0.005 0.005 0.005 0.005 0.005 0.005 0.002 0.002 0.003 0.003 0.002 0.002
var 0.005 0.005 0.005 0.005 0.005 0.005 0.002 0.002 0.003 0.003 0.002 0.002

Skewness 0.167 0.166 0.208 0.207 0.182 0.182 0.117 0.117 0.141 0.141 0.132 0.132
Kurtosis 3.075 3.075 3.094 3.094 3.079 3.079 3.071 3.071 3.063 3.063 3.072 3.072

Minimum 0.759 0.760 0.732 0.734 0.745 0.748 0.826 0.826 0.809 0.810 0.810 0.811
1st Quartile 0.953 0.954 0.949 0.952 0.952 0.955 0.967 0.968 0.964 0.966 0.966 0.967

Median 0.998 1.000 0.997 1.000 0.998 1.001 0.999 1.000 0.999 1.000 0.999 1.000
3rd Quartile 1.045 1.046 1.048 1.051 1.046 1.049 1.032 1.033 1.034 1.036 1.033 1.034
Maximum 1.318 1.319 1.351 1.355 1.321 1.324 1.214 1.215 1.243 1.245 1.234 1.236

Unbiased: unbiased estimator; Consist: consistent estimator; Estimates: the sample mean from 50000 estimated causal
effects on the variance; (17)/(22): the exact and asymptotic variances derived from equations (17) and (22) with Table
3; Var: empirical variances from 50000 estimated causal effects on the variance.
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Table 5. Numerical Experiments -Uniform Distribution-.

Case 5:σyy|x = 6.890
Sample size 10 25

Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}

Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 6.886 8.826 6.914 11.437 6.948 11.304 6.887 7.460 6.871 8.269 6.880 8.064

Equation (17)/(22) 89.284 39.921 273.079 85.493 255.709 69.743 20.461 15.968 48.386 34.197 39.013 27.897
var 73.274 76.123 189.405 194.614 188.836 194.565 17.568 17.847 41.738 42.406 34.538 35.049

Skewness 2.759 3.012 2.518 3.008 3.165 3.946 1.092 1.105 1.493 1.515 1.374 1.389
Kurtosis 23.382 25.464 16.877 18.783 31.337 46.078 4.870 4.905 6.484 6.576 5.769 5.820

Minimum -29.946 0.020 -204.962 0.044 -135.808 0.085 -1.136 0.232 -3.933 0.172 -3.418 0.181
1st Quartile 1.244 2.876 -1.183 2.255 -0.891 2.354 3.833 4.380 2.098 3.428 2.524 3.670

Median 4.734 6.445 2.855 6.685 3.075 6.710 6.159 6.723 5.340 6.715 5.569 6.724
3rd Quartile 10.096 11.981 11.158 15.365 11.081 15.100 9.150 9.727 9.972 11.356 9.786 11.001
Maximum 161.940 167.812 179.531 203.065 370.455 460.304 39.672 40.183 78.119 80.845 53.620 56.525

Sample size 50 100
Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}

Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 6.893 7.158 6.908 7.563 6.912 7.453 6.900 7.028 6.896 7.214 6.896 7.155

Equation (17)/(22) 8.971 7.984 20.098 17.099 16.240 13.949 4.225 3.992 9.245 8.549 7.501 6.974
var 7.738 7.796 18.267 18.403 14.919 15.022 3.722 3.737 8.604 8.641 6.948 6.975

Skewness 0.737 0.739 1.012 1.016 0.936 0.937 0.512 0.513 0.738 0.739 0.664 0.664
Kurtosis 3.858 3.859 4.484 4.491 4.262 4.260 3.383 3.383 3.820 3.821 3.638 3.638

Minimum 0.201 0.411 -0.649 0.356 -0.319 0.466 1.036 1.161 0.209 0.505 0.285 0.491
1st Quartile 4.886 5.147 3.765 4.407 4.079 4.608 5.525 5.652 4.789 5.100 4.999 5.256

Median 6.547 6.814 6.195 6.837 6.314 6.855 6.738 6.865 6.537 6.855 6.613 6.870
3rd Quartile 8.548 8.820 9.300 9.963 9.105 9.660 8.090 8.221 8.629 8.950 8.475 8.737
Maximum 29.321 29.573 36.865 37.688 32.626 33.335 17.138 17.308 24.775 25.115 21.457 21.745

Sample size 500 1000
Variables Z1 Z2 {Z1,Z2} Z1 Z2 {Z1,Z2}

Estimator unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent unbiased consistent
Estimates 6.887 6.912 6.898 6.961 6.895 6.945 6.890 6.903 6.893 6.924 6.892 6.917

Equation (17)/(22) 0.807 0.798 1.736 1.710 1.415 1.395 0.401 0.399 0.861 0.855 0.702 0.697
var 0.817 0.819 1.748 1.751 1.429 1.432 0.400 0.400 0.856 0.857 0.700 0.701

Skewness 0.279 0.280 0.358 0.359 0.336 0.336 0.181 0.181 0.242 0.242 0.238 0.238
Kurtosis 3.143 3.143 3.191 3.191 3.189 3.189 3.068 3.068 3.100 3.100 3.078 3.078

Minimum 3.589 3.610 2.812 2.870 3.026 3.077 4.681 4.692 3.533 3.563 3.975 3.999
1st Quartile 6.264 6.289 5.969 6.032 6.054 6.103 6.452 6.464 6.253 6.285 6.310 6.335

Median 6.842 6.867 6.822 6.882 6.833 6.882 6.872 6.884 6.855 6.886 6.858 6.883
3rd Quartile 7.471 7.497 7.744 7.807 7.662 7.712 7.308 7.321 7.495 7.527 7.437 7.463
Maximum 11.430 11.455 13.691 13.760 13.156 13.217 10.122 10.135 11.468 11.504 10.926 10.956

Unbiased: unbiased estimator; Consist: consistent estimator; Estimates: the sample mean from 50000 estimated causal
effects on the variance; (17)/(22): the exact and asymptotic variances derived from equations (17) and (22) with Table
3; Var: empirical variances from 50000 estimated causal effects on the variance.
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