
Maurizio Petrelli

Machine Learning for Earth
Sciences

Using Python to Solve Geological Problems

December 26, 2022

Springer Nature

To my family and friends

Preface

“Machine Learning for the Earth Sciences” provides Earth Scientists with a pro-
gressive partway from zero to Machine learning, with examples in Python aimed at
the solution of geological problems. The book is devoted to Earth Scientists, at any
level, from students to academics and professionals who would like to be introduced
to Machine Learning. Basic knowledge of Python programming is demanded to suc-
cessfully benefit from this book. If you are a complete novice to Python, I suggest you
to start with Python introductory reads like “Introduction to Python in Earth Science
Data Analysis”1 or similar lectures. “Machine Learning for the Earth Sciences” is
divided into five parts and it attempts to be geologist friendly. Machine Learning
mathematics is gently provided and technical parts limited to the essentials. Part I
introduces the basics of machine learning with a geologist-friendly language. It starts
by introducing definitions, terminology, and fundamental concepts (e.g., the types of
learning paradigms). Then shows how to set up a Python environment for Machine
Learning applications and it finally describes the typical Machine Learning work-
flow. Part II and III are about unsupervised and supervised learning, respectively.
They start describing some widely-used algorithms. Then, they provide examples
of applications to Earth Sciences like the clustering and dimensionality reduction
in petro-volcanological applications, the clustering of multi-spectral data, well-log
data facies classification, and machine learning regression in petrology. Part IV deals
with the scaling of machine learning applications. When your PC starts suffering
from the dimension of the data set or the complexity of the model, you need scaling!
Finally, Part V introduces deep learning. It starts describing the PyTorch library and
it provides an example application to Earth Sciences. If you are working in Earth
Science and would like to start exploiting the power of Machine learning in your
projects, this is the right place for you.

Assisi, 17-12, 2022 Maurizio Petrelli

1 https://bit.ly/python-mp

vii

Acknowledgments

I would like to acknowledge all the people who encouraged me again when I decided
to start this new challenging adventure, arriving just after the end of a satisfying
but extremely strenuous one, i.e., the book titled “Introduction to Python in Earth
Science Data Analysis: From Descriptive Statistics to Machine Learning.” First,
I would like to thank my colleagues at the Department of Physics and Geology,
University of Perugia. Also, I thank the Erasmus Plus (E+) program that supported
my new foreign teaching excursions in Hungary, Azores, and Germany. Professor
Francois Holtz (Leibniz Universität Hannover), José Manuel Pacheco (Universidade
dos Açores), and Professor Szabolcs Harangi (Eötvös University Budapest) are also
kindly acknowledged for allowing me to run the “Introduction to Machine Learning”
courses at their institutions. In addition, I thank J. ZhangZhou (Zhejiang University)
and Kunfeng Qiu (China University of Geosciences) who invited me in making talks
and short courses on topics related to the application of Machine learning to Earth
Sciences. I also give my heartfelt thanks to my family, who, one more time, put up
with me as I wrote this book.

ix

Overview

Let me introduce myself

Hi and welcome. My name is Maurizio Petrelli and I currently work at the Depart-
ment of Physics and Geology, University of Perugia (UniPg). My research focuses
on the petrological characterization of volcanoes with an emphasis on the dynamics
and timescales of pre-eruptive events. For this work, I combine classical and uncon-
ventional techniques. Since 2002, I’ve worked intensely in the laboratory, mainly
focusing on the development UniPg’s faciltiy for Laser Ablation Inductively Cou-
pled Plasma Mass Spectrometry (LA-ICP-MS). In February 2006, I obtained my
Ph.D. degree with a thesis entitled “Nonlinear Dynamics in Magma Interaction Pro-
cesses and their Implications on Magma Hybridization.” Since December 2021, I
am Associate Professor at Department of Physics and Geology at UniPg. Currently,
I am developing a new line of research for applying Machine Learning techniques in
Geology. Finally, I also manage the LA-ICP-MS laboratory at UniPg.

Styling conventions

I use conventions throughout this book to identify different types of information. For
example, Python statements, commands, and variables used within the main body
of the text are set in italics. A block of Python code is highlighted as follows:

1 import numpy as np
2
3 def sum(a,b):
4 return a + b

5
6 c = sum(3,4)

xi

xii Overview

Shared codes

All code presented in this book is tested on the Anaconda Individual Edition
ver. 2020.11 (Python 3.8.5) and is available at my GitHub repository (� petrelli-m):

® http://bit.ly/ml earth sciences

Involvement and collaborations

I am always open to new collaborations worldwide. Feel free to contact me by mail
to discuss new ideas or propose a collaboration. You can also reach me through
my personal website or by Twitter. I love sharing the content of this book in short
courses everywhere. If you are interested, please contact me to organize a visit to
your institution.

Personal contacts:
Q maurizio.petrelli@unipg.it
7 @mauripetre
 https://www.mauriziopetrelli.info

Contents

Overview . xi

Part I Basic Concepts of Machine Learning for Earth Scientists

1 An Introduction to Machine Learning . 3
1.1 Machine Learning: definitions and terminology 3
1.2 The Learning Process . 4
1.3 Supervised Learning . 5
1.4 Unsupervised Learning . 7
1.5 Semi-Supervised Learning . 9

2 Setting Up your Python Environments for Machine Learning 11
2.1 Python Modules for Machine Learning . 11
2.2 A Local Python Environment for Machine Learning 11
2.3 ML Python Environments on Remote Linux Machines 13
2.4 Working with your Remote Instance . 19
2.5 Preparing Isolated Deep Learning Environments 21
2.6 Cloud Based Machine Learning Environments 23
2.7 Speed Up your ML Python Environment . 24

3 Machine Learning Workflow . 29
3.1 Machine Learning Step-by-Step . 29
3.2 Get your Data . 30
3.3 Data Pre-Processing . 33
3.4 Train a Model . 44
3.5 Model Validation and Testing . 48
3.6 Model Deploy and Persistence . 55

Part II Unsupervised Learning

xiii

xiv Contents

4 Unsupervised Machine Learning Methods . 61
4.1 Unsupervised Algorithms . 61
4.2 Principal component Analysis . 61
4.3 Manifold Learning . 62

4.3.1 Isometric Feature Mapping . 63
4.3.2 Locally Linear Embedding . 63
4.3.3 Laplacian Eigenmaps . 63
4.3.4 Hessian Eigenmaps . 64

4.4 Hierarchical Clustering . 64
4.5 DBSCAN . 65
4.6 Mean Shift . 65
4.7 K-Means . 66
4.8 Spectral Clustering . 66
4.9 Gaussian Mixture Models . 67

5 Clustering and Dimensionality Reduction in Petrology 69
5.1 Unveil the Chemical Record of a Volcanic Eruption 69
5.2 Geological Setting . 71
5.3 The investigated data set . 72
5.4 Data Pre-Processing . 72
5.5 Clustering analyses . 77
5.6 Dimensionality Reduction . 80

6 Clustering of Multi-Spectral Data . 83
6.1 Spectral Data from Earth-Observing Satellites 83
6.2 Import Multi-spectral Data in Python . 84
6.3 Descriptive Statistics . 88
6.4 Pre-processing and Clustering . 91

Part III Supervised Learning

7 Supervised Machine Learning Methods . 97
7.1 Supervised Algorithms . 97
7.2 Naive Bayes . 97
7.3 Quadratic and Linear Discriminant Analysis . 99
7.4 Linear and Nonlinear Models . 100
7.5 Loss Functions, Cost Functions, and Gradient Descent 102
7.6 Ridge Regression . 106
7.7 Least Absolute Shrinkage and Selection Operator (LASSO) 107
7.8 Elastic-Net . 107
7.9 Support Vector Machines . 108
7.10 Supervised Nearest Neighbors . 110
7.11 Trees Based Methods . 111

Contents xv

8 Well Log Data Facies Classification by Machine Learning 113
8.1 Motivation . 113
8.2 Inspection of the Data Sets and Pre-Processing 114
8.3 Model Selection and Training . 126
8.4 Final evaluation . 132

9 Machine Learning Regression in Petrology . 139
9.1 Motivation . 139
9.2 The LEPR data set and data pre processing . 139
9.3 Compositional data analysis . 147
9.4 Model training and error assessment . 151
9.5 Results Evaluation . 153

Part IV Scaling Your Machine Learning Models

10 Parallel Computing and Scaling with Dask . 159
10.1 Warming Up: Basic Definitions . 159
10.2 Basics of Dask . 160
10.3 ‘Eager’ computation Vs. ‘Lazy’ evaluation . 167
10.4 Diagnostic and feedback . 173

11 Scale Your Models in the Cloud . 175
11.1 How to Scale your environment in the Cloud . 175
11.2 Scaling in the Cloud: the Hard Way . 176
11.3 Scaling in the Cloud: the Easy Way . 178

Part V Next Step: Deep Learning

12 Introduction to Deep Learning . 189
12.1 What does Deep Learning mean? . 189
12.2 PyTorch . 191
12.3 PyTorch Tensors . 191
12.4 Structuring a feedforward network in PyTorch 194
12.5 How to train a feedforward network . 195

12.5.1 The universal approximation theorem 195
12.5.2 Loss Functions in PyTorch . 195
12.5.3 The Back-Propagation and its implementation in PyTorch . . 195
12.5.4 Optimization . 197
12.5.5 Network Architectures . 198

12.6 Example Application . 201

References and Further Readings . 206

Part I
Basic Concepts of Machine Learning for

Earth Scientists

Chapter 1
An Introduction to Machine Learning

1.1 Machine Learning: definitions and terminology

Shai and Shai (2014) define Machine Learning (ML) as “the automated detection of
meaningful patterns in data.” It is a broad definition, so I am going to constrain it
better by providing more definitions by different authors (e.g., Géron, 2017; Jordan
and Mitchell, 2015; Murphy, 2012; Samuel, 1959).

As an example, Murphy (2012) defines ML as the application of algorithms and
methods to detect patterns in large data sets and the use these patterns to predict
future trends, to classify, or to make other types of strategic decisions.

Deep Learning
Machine Learning

Artificial Intelligence

Fig. 1.1 Artificial Intelligence, Machine Learning, and Deep Learning.

In one of the earliest attempts, Samuel (1959) outlined one of the ML goals,
i.e., a computer that can learn how to solve a specific task, without being explicitly

3

4 1 An Introduction to Machine Learning

programmed. We can also take advantage of a more formal definition by Mitchell
(1997): “A computer program is said to learn from experience E with respect to some
task T and some performance measure P, if its performance on T, as measured by P,
improves with experience E.” But what is the experience for a computer program? In
Physical Sciences, the experience for a computer program almost always coincides
with data. As a consequence, we can reword the definition by Mitchell (1997) to: A
computer program is said to learn from data D with respect to some task T and some
performance measure P, if its performance on T, as measured by P, improves with
the analyses of D.

One shared feature of ML methods is that, in contrast to more traditional uses
of computers, in these cases, due to the complexity of the patterns that need to be
detected, a human programmer cannot provide an explicit, fine-detailed specification
of how such tasks should be executed (Shai & Shai, 2014).

Using the set theory, we can define ML as a subset of Artificial Intelligence (AI),
i.e., the effort to automate intellectual tasks normally performed by humans (Chollet,
2021). Please note that AI defines a broad domain retaining both machine learning
and deep learning. However, the AI set also includes many other different approaches
and techniques, some of those not involving the process of learning.

Summarizing, we can point to some key features of ML algorithms:

• ML is a subset of AI;
• ML methods try to extract meaningful patterns in your data set;
• ML algorithms are not explicitly programmed to solve a specific task;
• The learning process is a fundamental task in ML;
• ML methods learn from data;
• DL is a subset of ML.

When we start a new discipline, the first task consists in learning the basic concepts
and terminology. Table 1.1 reports a basic glossary, useful for a Geo-scientist. It is
minded to start familiarizing the “language” used by data scientists, which is often
difficult and sometimes misleading for a novice.

1.2 The Learning Process

As stated above, ML algorithms are not programmed to process a conceptual model
defined a priori but instead they attempt to uncover the complexities of large data
sets through a so-called learning process (Bishop, 2007; Shai & Shai, 2014). In other
words, the main goal of ML algorithms is to transform experience, i.e., data, into
“knowledge” (Shai & Shai, 2014).

To better understand, we can compare the learning process of ML algorithms to
that of humans.

For example, humans begin learning how to use the alphabet by observing the
world around them where they find sounds, written letters, words, or phrases. Then,
at school, they understand the significance of the alphabet and how to combine the

1.3 Supervised Learning 5

Table 1.1 ML, Basic terminology. For a detailed glossary, please refer to the online ML course by
Google𝑇𝑀 : https://bit.ly/mlglossary.

Term Description

Tensor A tensor is a multi-dimensional array.
Feature It is an input variable used by machine learning algorithms.
Attribute It is often used as synonym feature.
Label It consists of the correct “answer” or “result” for a specific input tensor.
Observation An observation is a synonym for instance and example. It is a row of

your data set, characterized by one or more features. In labeled data
sets, observations also contains a label. In a geo-chemical data set, an
observation consists of one sample.

Class A calss is a set of observations, characterized by the same label.
Prediction It is the output of a machine learning algorithms for a specific input

observation.
Model A model in machine learning is what a machine learning algorithm has

learned after the training.
Training a model The process of determining the best model. Is is a synonymous of

learning process.
Training data set The subset of the investigated data set used to train a model during the

learning process.
Validation data set The subset of the investigated data set used to validate a model during

the learning process.
Test data set An independent data set used to test a model after the validation process.

different letters. Similarly, ML algorithms use the training data to learn significant
patterns. Then, they use the learned expertise to provide an output (Shai & Shai,
2014). One of the ways to classify ML algorithms relies on the degree of “super-
vision”, i.e., supervised, unsupervised, and semi-supervised (i.e., Shai and Shai,
2014)

1.3 Supervised Learning

The training of ML methods, characterized by supervised learning, always provides
both the input data and the desired solutions, i.e. the label, to the algorithm. Examples
of applications of supervised learning are regression and classification.

In classification tasks (Fig. 1.2 A and B), ML algorithms try assigning a new
observation to a specific class, i.e., a set of instances characterized by the same
label (Lee, 2019). If you do not understand some terms, please refer to Table 1.1. In
regression problems (Fig. 1.2 C and D), ML algorithms try guessing the value for
one or more dependent variables, in response to an observation.

6 1 An Introduction to Machine Learning

We will discuss extensively the application of regression and classification tasks
in Earth Science problems later in the book. However, Fig. 1.2 provides an outline
of two geological examples of supervised learning in the field of classification and
regression. They are the identification of the volcanic source using glass shard com-
positions, i.e., a typical problem in tephrostratigraphy and tephrochronology (Lowe,
2011), and the retrieving of magma storage temperatures based on clinopyroxenes
chemistry (Petrelli et al., 2020), respectively.

Feature 1

Fe
at

ur
e

2

Volcanic Source 1

Volcanic Source 3

Volcanic Source 2

Feature 1

Fe
at

ur
e

2

Unknown
samples

Feature 1

Te
m

pe
ra

tu
re

Regression Model

Training
data

Classification
model

Training
data

Unknown
sample

Estimated
storage

temperature

Feature 1

Te
m

pe
ra

tu
re

T3

T2

T1

T3 T2 T1

zoned
crystal

A B

C D

Regression

Classification

Fig. 1.2 Supervised learning: classification (A, B) and regression (C, D).

1.4 Unsupervised Learning 7

Feature 1

C

Dimensionality Reduction

Feature 1

Fe
at

ur
e

2

A

Clustering

Feature 1

Fe
at

ur
e

2

B
Cluster 1

Cluster 2

Cluster 3

Fe
at

ur
e

2

Feature 3
Principal Component 1

Pr
in

ci
pa

l C
om

po
ne

nt
 2

Training data set

D

Fig. 1.3 Unsupervised learning: clustering (A, B) and Dimensionality Reduction (C, D).

1.4 Unsupervised Learning

The unsupervised learning process acts with unlabeled training data. Therefore,
the ML algorithm tries to exert significant patterns in the investigated data set,
without the external feeding of solutions, distinctive of supervised methods. Some
application fields of unsupervised learning are clustering, dimensionality reduction,
and the detection of outlier or novelty observations.

The clustering process consists of grouping “similar” observations into “homo-
geneous” groups (i.e., Fig. 1.3 A, B). It helps in discovering unknown patterns in
unlabeled data sets. In Earth Sciences, clustering has widespread applications in
seismology (e.g., Trugman and Shearer, 2017), remote sensing (e.g., Wang et al.,

8 1 An Introduction to Machine Learning

Feature 1

Fe
at

ur
e

2

A

Outlier Detection

Feature 1

Fe
at

ur
e

2

B

OutlierTraining data set

Feature 1

Fe
at

ur
e

2

C

Novelty Detection

Feature 1

Fe
at

ur
e

2
D

Anomaly

Training data set

Not an anomaly

Fig. 1.4 Unsupervised learning: outlier (A, B) and novelty (C, D) detection.

2018), volcanology (e.g., Caricchi et al., 2020), and geochemistry (e.g., Boujibar
et al., 2021) to cite a few.

The reduction of the dimensionality (Fig. 1.3 B and C) of a problem reduces the
number of features to deal with, allowing the visualization of high-dimensional data
sets (e.g., Morrison et al., 2017) or increasing the efficiency of a ML workflow by
reducing the time elapsed for the learning process or the complexity of the investi-
gated problem. Tenenbaum et al. (2000) provide a concise but effective definition of
dimensionality reduction: “finding meaningful low-dimensional structures hidden in
their high-dimensional observations.”

Finally, the detection of outlier or novelty observations (Fig. 1.4) deals with
deciding whether a new observation belongs to a single set, i.e., an inlier, or should
be considered as different, i.e., an outlier or a novelty. The main difference between

1.5 Semi-Supervised Learning 9

outlier or novelty detection relies in the learning process. In outlier detection (Fig. 1.4
A and B), training data contains both inliers and potential ouliers. Therefore, the
algorithm tries to define which are the observation deviating from the others. In
novelty detection (Fig. 1.4 C and D), the training data set contains inliers only.
Therefore, the algorithm aims to decide if a new observation is an outlier, i.e., a
novelty, or not.

1.5 Semi-Supervised Learning

As you can argue, semi-supervised learning is somehow in between supervised and
unsupervised training methods. Typically, semi-supervised algorithms learn by a
small portion of labeled data with a large quantity of unlabeled data (Zhu & Gold-
berg, 2009). In detail, semi-supervised learning algorithms use unlabeled data to
improve supervised learning tasks when the labeled data is scarce or expensive (Zhu
& Goldberg, 2009). To better understand, please look at Figure 1.5. In detail, Fig-
ure 1.5A reports a supervised classification model using two labeled observations as
training data set. Also, Figure 1.5 B displays a classification model resulting from
a semi-supervised learning using the same two labeled data of Figure 1.5 A, plus
several unlabeled observations.

Feature 1

Fe
at

ur
e

2

A

Semi-supervised learning

Fe
at

ur
e

2

B
classification model using
the supervised learning

Class 1

Class 2

Feature 1

classification model using
the semi-supervised learning

Labeled training observations: Class 1 - Class 2 | Unlabeled training observations:

Class 1

Class 2

Fig. 1.5 (A) a supervised classification model using two labeled observation as training data set;
(B) a semi-supervised classification model suing the same two labeled observations in (A) plus
many unlabeled instances.

Chapter 2
Setting Up your Python Environments for
Machine Learning

2.1 Python Modules for Machine Learning

Python is a widely-used programming language for ML. The development of A ML
model in Python bases on both general-purpose scientific libraries (e.g., NumPy,
ScyPy, and pandas) and specialized modules (e.g.,Scikit-learn1, PyTorch2, and Ten-
sorFlow3).

Scikit-learn: Scikit-learn is a Python module to solve ML problems of small- to
medium-scale (Pedregosa et al., 2011). It implements a wide range of state-of-the-art
machine learning algorithms, making it one of the best options to start learning ML
(Pedregosa et al., 2011).

PyTorch: PyTorch is a Python package that combines high-level features for
tensor management, neural network development, autograd computation and back-
propagation (Paszke et al., 2019). The PyTorch library grows up within Meta’s AI4
(formerly Facebook AI) research team. Also, it has a strong ecosystem and a large
user community support its development (Papa, 2021).

TensorFlow: TensorFlow begins at Google it has been open sourced in 2015.
It combines tools, libraries, and community resources to develop and deploy deep
learning models in Python (Bharath & Reza Bosagh, 2018).

2.2 A Local Python Environment for Machine Learning

The Individual Edition of the Anaconda Python Distribution5 provides an example
of a “ready-to-use” scientific Python environment to perform basic ML tasks by the

1 https://scikit-learn.org
2 https://pytorch.org
3 https://www.tensorflow.org
4 https://ai.facebook.com
5 https://www.anaconda.com

11

12 2 Setting Up your Python Environments for Machine Learning

scikit-learn module. Also, it allows advanced tasks like installing libraries that are
specifically developed for Deep Learning, e.g., PyTorch and TensorFlow. To install
the Individual Edition of the Anaconda Python distribution, I suggest following the
directives given in the official documentation6.

Fig. 2.1 Screenshot of Spider IDE. The text editor for writing code is on the left. The bottom-right
panel is the IPython interactive console, and the top-right panel is the Variable Explorer.

First, download and run the most recent stable installer for your Operating Sys-
tem (i.e., Windows OS, Mac OS, or Linux). For Windows and Mac OS, a graphical
installer is also available. The installation procedure using the graphical installer
is the same as for any other software application. The Anaconda installer automat-
ically installs the Python core and Anaconda Navigator, plus about 250 packages
defining a complete environment for scientific visualization, analysis, and modeling.
Over 7500 additional packages, including PyTorch and TensorFlow, can be installed
individually, as the need arises, from the Anaconda repository with the “conda”7

package management system. The basic tools to start learning and developing small-
to medium-scale ML projects are the same as those used for any scientific Python
Scientific project. As a consequence, I suggest using Spyder and JupyterLab.

Spyder8 is an Integrated Development Environment (IDE), combining a text
editor to write code, inspection tools for debugging, and interactive Python consoles
for code execution (Figure 2.1).

6 https://www.anaconda.com/products/individual/
7 https://docs.conda.io/
8 https://www.spyder-ide.org

2.3 ML Python Environments on Remote Linux Machines 13

Fig. 2.2 Screenshot of Jupyter Notebook combining narrative text, code, and visualizations.

JupyterLab9 is a web-based development environment to manage Jupyter Note-
books, web applications for creating and sharing computational documents (Fig-
ure 2.2)

2.3 ML Python Environments on Remote Linux Machines

Being able to access and work on remote computational infrastructures is mandatory
for large-scale and data intensive ML workflows. It is far beyond the scope of the
present book to provide a detailed description on how to develop High Performance
Computational (HPC) infrastructures. However, they are often constituted of a cluster
of Linux instances, i.e., virtual computing environments based on the Linux operating
system.

Therefore, the instructions on how to connect to and work with a remote Linux
instance deserve a description. In the present section, I am going to show you how
to setup a Debian instance on the Amazon Web Services𝑇𝑀 (AWS) facilities. Then,
I will show how to setup the Anaconda Individual Edition python environment on
your AWS Debian instance.

9 https://jupyter.org

14 2 Setting Up your Python Environments for Machine Learning

Fig. 2.3 Screenshot of the EC2 management console. the “Launch instance” button allows to start
a new instance.

Fig. 2.4 The first step consists of selecting the Amazon Machine Image (AMI).

Figure 2.3 shows the Amazon management console of the “Elastic Compute
Cloud” (EC2)10. From the EC2 management console, a new computational instance
can be launched by clicking the “Launch new instance” button. A guided step-
by-step procedure will follow, allowing you the definition of each detail (i.e., 1
chose the Amazon Machine Image , 2 choose instance type, 3 configure instance, 4

10 https://aws.amazon.com/ec2/

2.3 ML Python Environments on Remote Linux Machines 15

Fig. 2.5 The second step consists of selecting the “Instance Type”.

Fig. 2.6 Before launching a new instance you must select a “key pairs”.

16 2 Setting Up your Python Environments for Machine Learning

Fig. 2.7 Connecting to an instance.

add storage, 5 add Tags, 6 configure security group, 7 review and launch). At the
first step, i.e., choose an Amazon Machine Image (AMI; Figure 2.4), we select the
Debian 10 64-bit (x86) AMI. As instance type, we select the t2.micro that is eligible
as “Free Tier”. To note, very large instance types could be selected. As an example,
the g5.48xlarge instance type shares 192 virtual CPU, 768 GiB of memory, and a
network performance of 100 Gigabit. The amount of allowed power is only a matter
of the budget at your disposal. We can safely set all the other instance parameters,
i.e., steps from 3 to 6, to the default values and click on the “Review and Launch
button”. The last task consists of selecting an existing key pair or creating a new one.
A “key pair” defines the security credentials to prove your identity when connecting
to a remote instance. It consists of a “public key”, stored in the remote instance, and
a “private key”, hosted in your machine. Anyone who possesses the “private key”
of a specific “key pair“ can connect to the instance that stores the associated public
key. From your Linux and Unix OS (including Mac OS), you can create a “key pair”
using the ssh-keygen command. However, the EC2 management console allows you
to create and manage “key pairs with” a single click (Figure 2.6).

The last step consists of launching the instance that, after the initialization, will
appear in the EC2 management console (Figure 2.7). To access an instance, select
it in the EC2 management console and click on the “Connect” button (Figure 2.7).
It will open the “Connect to instance” window, showing all the available options to
access the instance (Figure 2.8). Our choice is to access by using the Secure Shell
(SSH) protocol (Figure 2.8). The SSH Protocol is a cryptographic communication
system for secure remote login and network services over an insecure network. It
allows you to “safely” connect and work on a remote instance from your desk or sofa.

2.3 ML Python Environments on Remote Linux Machines 17

To connect to the remote instance, we need a ssh client (e.g., the Mac OS Terminal
or PuTTY11) and digit the following command:

ssh -i local_path/aws.pem user@user_name@host

where ssh command initializes the ssh connection with the user account to the
host (i.e., an IP or a domain name) remote instance. the -i option selects a specific
private key, i.e., aws.pem to pair the public key in the host instance.

For the specific case reported in Figure 2.8, I digit:

ssh -i /Users/maurizio/.ssh/aws.pem admin@ec2 -52-91-26-146.

compute -1.amazonaws.com

I am now connected to the remote instance in one AWS computing facility
(Figure 2.9) and I am ready to install the Anaconda Python Individual Edition from
the command line.

Fig. 2.8 Accessing by a SSH client.

Before starting the install procedure for the Anaconda Python Individual edition,
I suggest upgrading Debian packages:

$ sudo apt-get update

$ sudo apt-get dist-upgrade

The sudo apt-get update command gets you an updated list of packages. Then the sudo
apt-get dist-upgrade will ‘intelligently’ upgrade these packages, without upgrading

11 https://www.putty.org

18 2 Setting Up your Python Environments for Machine Learning

Fig. 2.9 Well done! You are connected to your remote instance.

the current Debian release. Now download the last Anaconda Python distribution12

for Linux-x86 64 using curl:

$ curl -O https://repo.anaconda.com/archive/Anaconda3 -2021.11-

Linux-x86_64.sh

if curl does not work, install it:

$ sudo apt-get install curl

At this point, we need verifying the data integrity of the installer with cryptographic
hash verification through the SHA-256 checksum. We’ll use the sha256sum com-
mand along with the filename of the script:

$ sha256sum Anaconda3 -2021.11-Linux-x86_64.sh

The result, i.e.,

fedf9e340039557f7b5e8a8a86affa9d299f5e9820144bd7b92ae9f7ee08ac60

Anaconda3 -2021.11-Linux-x86_64.sh

must match the cryptographic hash verification code reported in the Anaconda
repository13 As final step, we can run the installation script:

$ bash Anaconda3 -2021.11-Linux-x86_64.sh

12 https://repo.anaconda.com/archive/
13 https://docs.anaconda.com/anaconda/install/hashes/lin-3-64/

2.4 Working with your Remote Instance 19

It will start a step-by-step guided procedure starting from:

Welcome to Anaconda3 2021.11

In order to continue the installation process, please review the

license

agreement.

Please, press ENTER to continue

Press ‘ENTER’ to proceed to access the license information and go ahead clicking
‘ENTER’ until you get the following question:

Do you approve the license terms? [yes|no]

Type ‘yes’ to get the next step, i.e., the selection of the location for the installation:

Anaconda3 will now be installed into this location:

/home/admin/anaconda3

- Press ENTER to confirm the location

- Press CTRL-C to abort the installation

- Or specify a different location below

I suggest pressing ‘ENTER’ to keep the default location. At the end of the installation,
you will receive the following output:

...

installation finished.

Do you wish the installer to initialize Anaconda3

by running conda init? [yes|no]

[no] >>>

Type ‘yes’, and digit:

$ source ˜/anaconda3/bin/activate

or restart the shell to activate the base conda environment, highlighted by (base) at
the beginning of the prompt command, e.g.:

(base) admin@ip -172-31-59-186:˜$

Now, the base environment for ML in Python is ready in your remote instance.

2.4 Working with your Remote Instance

Once connected with your remote instance, i.e., by:

$ ssh -i local_path/aws.pem user@user_name@host

the knowledge of the most basic command of a Linux OS is mandatory. However, a
detailed explanation of the architecture, commands, and operations of the Linux OS

20 2 Setting Up your Python Environments for Machine Learning

is far away from the scope of the present book. As a consequence, I suggest reading
specialized books (i.e., Negus, 2015; Ward, 2021) to acquire specific skills. Table 2.1
reports the most common command allowing you the file transfer between your local
machine and the remote instance. Also, it shows basic tools for file management in
a Linux environment.

Table 2.1 Basic Linux commands

Command Description

ls view the contents of a directory.
cd.. move one directory up.
cd folder name go to the folder named folder name
cp myfile.jpg /new folder copy myfile.jpg to the new folder path:
mv use mv to move files, the syntax is similar to cp
mkdir my folder create a new folder named my folder
rm delete directories and the contents within them. Take care with

rm!
tar archive multiple files into a compressed file
chmod allow you to change the read, write, and execute permissions of

files and directories.
top it will display a list of running processes, cpu and memory usage.
pwd print the current working directory, i.e., the one where you are in
sudo Ii is the abbreviation of “SuperUser Do”. It enables you to run

tasks requiring administrative permissions. Take great care with
sudo!

To copy a file from your local machine to the remote instance and vice versa I
suggest using the scp command, based on the SSH protocol. In detail:

$ scp -i local_path/aws.pem filename user@host:/home/user/

filename

will copy the file named ‘filename’ from the local machine to the folder /home/user/
of remote instance host. As we know (i.e., section 2.3) the aws.pem private key stores
the credentials to securely login to the host instance. To copy a file from your remote
instance to the local machine use:

$ scp -i local_path/aws.pem user@host:/home/user/filename /

localfolder/filename

finally, to launch a python script use the python command:

$ python myfile.py

to run multiple python files you could use a bash script, i.e., a text file named
my bash script.sh, then run it:

2.5 Preparing Isolated Deep Learning Environments 21

$ bash my_bash_script.sh

Here are two examples:

#!/bin/bash

/home/path_to_script/script1.py

/home/path_to_script/script2.py

/home/path_to_script/script3.py

/home/path_to_script/script4.py

and

#!/bin/bash

/home/path_to_script/script1.py &

/home/path_to_script/script2.py &

/home/path_to_script/script3.py &

/home/path_to_script/script4.py &

to run them sequentially and in parallel, respectively.
Note that, the Anaconda Individual Edition comes with scikit-learn as default

package. Deep learning packages like Tensorflow and PyTorch mus be installed
separately. To avoid conflicts, I suggest creating isolated Python environments to
work with PyTorch and TensorFlow, respectively.

2.5 Preparing Isolated Deep Learning Environments

Conda is an open-source package management system and environment manage-
ment developed by Anaconda14. It allows to installs and updates Python packages
and dependencies. Also, it allows managing isolated Python environments to avoid
conflicts. As an example, the following statement:

conda create --name env_ml python=3.9 spyder scikit-learn

will create a new Python 3.9 environment named env ml with spyder, scikit-learn,
and related dependencies installed. to activate the environment:

conda activate env_ml

to deactivate the current environment:

conda deactivate

to list the available environments:

conda info --envs

14 https://www.anaconda.com/

22 2 Setting Up your Python Environments for Machine Learning

in the resulting list, the active environment is highlighted by *. Also, the active
environment is typically reported at the beginning of the terminal prompt, e.g.,
(base):

(base) admin@ip -172-31-59-186:˜$

to remove an environment:

conda remove --name env_ml --all

the statment:

conda env export > env_ml.yml

will export all the information about the active environment to a file named
env ml.yml. Using env ml.yml, the environment can be easily shared with and
installed by others using the following command:

conda env create -f env_ml.yml

you will find more details on environment management within conda official docu-
mentation15. The following listing resume all the steps to create a ML environment
with deep learning functionalities based on PyTorch:

$ conda create --name env_pt python=3.9 spyder scikit-learn

$ conda activate env_pt

(env_pt)$ conda install pytorch torchvision torchaudio -c pytorch

the last command will install PyTorch, working on the cpu only, on my mac. To
find the right command for your hardware and operating system, please refer to the
PyTorch website16. Similarly, to create a ML environment based on scikit-learn with
Tensorflow deep learning functionalities, type the following command:

$ conda create --name env_tf --channel=conda-forge tensorflow

As you can see, I utilized a specific channel, i.e., conda-forge17, to download tensor-
flow and spyder. Now listing my conda environments I get:

$ conda info --envs

Output:

conda environments:

#

base * /opt/anaconda3

env_ml /opt/anaconda3/envs/env_ml

env_pt /opt/anaconda3/envs/env_pt

env_tf /opt/anaconda3/envs/env_tf

15 https://docs.conda.io/
16 https://pytorch.org/get-started/locally/
17 https://conda-forge.org

2.6 Cloud Based Machine Learning Environments 23

2.6 Cloud Based Machine Learning Environments

With Cloud based ML environments, I refer to Jupyter Notebooks based services
that are hosted in the Cloud. Examples are Google𝑇𝑀 Colaboratory, Kaggle, AWS
Sagemaker, and Saturn Cloud. The first two services, i.e., Google𝑇𝑀 Colaboratory
and Kaggle are both managed by Google𝑇𝑀 and offer a free plan with limited
computational resources. The AWS𝑇𝑀 Sagemaker, only offers a limited free trial.
Finally, Saturn Cloud offers a free plan with 30 hours of computations. They all
allow the online use of Jupyter Notebooks. Figures 2.10, 2.11, and 2.12 report
a quick look at the entry level notebooks Google𝑇𝑀 Colaboratory, Kaggle, and
AWS𝑇𝑀 Sagemaker, respectively. Also, Figures 2.10 and 2.11 highlight that both
Google𝑇𝑀 Colaboratory and Kaggle come with all scikit-learn, Tensorflow, and
PyTorch already installed and ready to use. However, Google𝑇𝑀 Colaboratory looks
updated to more recent versions. Finally, the most basic Sagemaker image, only
comes with a non recent, i.e., 0.22.1, scikit-learn version. Using Saturn Cloud𝑇𝑀 , a
new Jupyter instance can be launched by clicking the “New Jupyter” Server button
(Fig. 2.13. It will open a new window ((Fig. 2.14) where you can personalize the
instance. To note, the default configuration does not include neither PyTorch nor
Tensorflow. However, they can be added quickly in the Extra Packages section
(Fig. 2.14). As an example, Fig. 2.14 shows how to add PyTorch. Finally Fig. 2.15
domonstated that the resulting environments come with the lat released of both
Scikit-learn and PyTorch.

Although all the reported cloud based ML Jupyter environments are robust and
flexible solutions, I suggest the use of Google𝑇𝑀 Colaboratory or Saturn Cloud𝑇𝑀
as first choices for a novice.

Fig. 2.10 Google𝑇𝑀 Colaboratory.

24 2 Setting Up your Python Environments for Machine Learning

Fig. 2.11 Kaggle.

Fig. 2.12 AWS𝑇𝑀 Sagemaker.

2.7 Speed Up your ML Python Environment

It is a common argument by Python detractors that Python is slow when compared
with other establishes programming languages, e.g., C or FORTRAN. We all agree
with this statement but, in my opinion, this is not the point. In scientific computations,
Python relies on libraries developed in more performing languages, mainly in C/C++,
and parallel computing platforms, e.g. CUDA18. As an example NumPy, the core
Python library for scientific computing bases on “a well-optimized C code19. For
ML purposes, all scikit-learn, PyTorch and Tensorflow delivers a base version of

18 https://developer.nvidia.com/cuda-zone
19 https://numpy.org

2.7 Speed Up your ML Python Environment 25

Fig. 2.13 Saturn Cloud𝑇𝑀 .

the library that can be safely installed in any local machine for rapid prototyping
and little- to mid scale-problems. Also, optimized versions for computing intensive
applications are also available. As an example, the Intel𝑇𝑀 Extension for Scikit-
learn accelerates ML applications in Python for Intel-based hardware of a factor
10-100X20. To install the Intel𝑇𝑀 Extension for Scikit-learn can be easily installed
using conda. To prevent conflicts, I strongly recommend to create a new conda
environment,e.g., env ml intel:

$ conda create -n env_ml_intel -c conda-forge python=3.9 scikit-

learn-intelex scikit-learn rasterio matplotlib pandas spyder

scikit-image seaborn

Now, listing my local environments, I get:

$ conda info --envs

Output:

conda environments:

#

base * /opt/anaconda3

env_ml /opt/anaconda3/envs/env_ml

env_pt /opt/anaconda3/envs/env_pt

env_tf /opt/anaconda3/envs/env_tf

env_ml_intel /opt/anaconda3/envs/env_ml_intel

20 https://github.com/intel/scikit-learn-intelex

26 2 Setting Up your Python Environments for Machine Learning

Fig. 2.14 Starting a Jupyter Server, i.e., a machine to run Jupyter Notebooks, in Saturn Cloud𝑇𝑀 .

In detail, I left the base environment untouched. Then I create two general purpose
ML environmens, i.e., env ml and env ml intel, with the larrte optimized by Intel.
Finally, I created two deep learning environmets, i.e., env pt and env tf, based on
PyTorch and Tensorflow, respectively.

To note, deep learning libraries, e.g., PyTorch and Tensorflow, are highly opti-
mized to support GPU computing, e.g., CUDA21 and ROCm22. As an example a
Pytorch, CUDA optimized version for Linux OS can be easily installed by conda:

$ conda install pytorch torchvision torchaudio cudatoolkit=11.3 -

c pytorch

To provide a complete description on how to perform high performance computing
(HPC) ML application in Python is far away from the scope of the present book.
Therefore, please refer to the official documentation of each tool to get further details.

21 https://developer.nvidia.com/cuda-zone
22 https://rocmdocs.amd.com/en/latest/

2.7 Speed Up your ML Python Environment 27

Fig. 2.15 Runing a Jupyter Notebook in Saturn Cloud𝑇𝑀 .

Chapter 3
Machine Learning Workflow

3.1 Machine Learning Step-by-Step

Figure 3.1 reports a generalized workflow that is common to most ML projects. It
starts with getting the data. In Earth Sciences, data could come from-large scale
samplings of geological or geochemical features, remote sensing, well logs data,
and petrological experiments, to cite a few. The successive step is pre-processing. It
consists of all the operations required to prepare your data set for successive steps,
i.e., the training and validation. Training the model is about running ML algorithms,
i.e., the core business of a ML model. Then, the validation step aims at checking the
goodness of the training and ensuring the generalization capability of your model.
Steps 3 and 4 are often closely connected and iterated many times to improve the
quality of the results. The last step consists of deploying and securing your model.

Now we are going to evaluate each step providing insights to successfully run a
ML model in the field of the Earth Sciences.

GET DATA

1
PRE-PROCESSING

2
TRAIN MODEL

3
VALIDATE

4
DEPLOY

5

Fig. 3.1 Workflow of a ML model

29

30 3 Machine Learning Workflow

3.2 Get your Data

Your data set repository could assume many different aspects. The easiest ones are
tabular data stored in text (e.g., .csv) or Excel𝑇𝑀 files. Sometimes, a Structured
Query Language (SQL) database stores your data. Larger data sets could be stored in
the Hierarchical Data Format (HDF5)1, Optimized Row Columnar (ORC)2, Feather
(i.e., Arrow IPC columnar format)3 or Parquet4 Formats, to cite a few.

For data that fits into your Random Access Memory (RAM), pandas is probably
the best choice for data import and manipulation (e.g., slicing, filtering, etc) through
𝐷𝑎𝑡𝑎𝐹𝑟𝑎𝑚𝑒𝑠. Table 3.1 provide us with a description of the potentials of pandas
methods for input and output (I\O).

If the data set starts filling your RAM entirely, probably Dask5 is the library of
choice to manage your data and scale the Python libraries to parallel environments. In
detail, Dask is a library minded to deal with “Big Data” through parallel computing
in Python. Dask extend the concept of 𝐷𝑎𝑡𝑎𝐹𝑟𝑎𝑚𝑒 to Dask DataFrames, i.e., large
parallel 𝐷𝑎𝑡𝑎𝐹𝑟𝑎𝑚𝑒𝑠 composed of many smaller pandas 𝐷𝑎𝑡𝑎𝐹𝑟𝑎𝑚𝑒𝑠. We will
introduce Dask and parallel computing later in the book (i.e., chapters XX and XX).
In the meantime, we start importing our data sets for ML applications in the field of
Earth Sciences using pandas (code listing 3.1):

1 import pandas as pd
2
3 my_data = pd.read_excel("PGD_SiC_2021 -01-10.xlsx", sheet_name=’

PGD-SIC’)

4 print(my_data.info(memory_usage="deep"))
5
6 ’’’
7 Output:
8 <class ’pandas.core.frame.DataFrame’>
9 RangeIndex: 19978 entries, 0 to 19977

10 Columns: 123 entries, PGD ID to err[d(138Ba/136Ba)]
11 dtypes: float64(112), object(11)
12 memory usage: 29.4 MB
13 ’’’

Listing 3.1 Importing an Excel data set in Python.

I assume that you are already familiar with the read excel statement in pandas.
If it is not the case, I strongly suggest you to start with an introductory book
like “Introduction to Python in Earth Science Data Analysis” (Petrelli, 2021). The
statement at line 4 of code listing 3.1 tells you how much memory your data set

1 https://www.hdfgroup.org/solutions/hdf5/
2 https://orc.apache.org
3 https://arrow.apache.org/docs/python/feather.html
4 https://parquet.apache.org
5 https://dask.org

3.2 Get your Data 31

uses. In our case, the imported data set, consisting of ∼20000 rows and 123 columns,
consumes 24.4 MB, still far below the 32GB of my MacBook𝑇𝑀 pro.

Table 3.1 Pandas methods to import standard and state-of-the-art file formats for Machine Learning
applications

Method Description comment

read table() Read general delimited file slow, not for large data sets

read csv() Read comma-separated values (csv) files slow, not for large data sets

read excel() Read Excel files slow, not for large data sets

read sql() Read sql files slow, not for large data sets

read pickle() Read pickled objects fast, not for large data sets

read hdf() Read Hierarchical Data Format (HDF) files fast, good for large data sets

read feather() Read feather files fast, good for large data sets

read parquet() Read parquet files fast, good for large data sets

read orc() Read Optimized Row Columnar files fast, good for large data sets

Large data sets, i.e., approaching or exceeding tera (1012) or peta (1015) bytes
cannot be efficiently stored in text files (e.g., csv files) or in Excel. Standard relational
databases (e.g., PostgreSQL, MySQL, and MS-SQL) can store information at large
scale, but they are not efficient (i.e., fast enough) if compared with the state-of-the-
art high performance data software libraries and file formats to manage, process, and
store huge amounts of data. To note, the formal definition proposed by De Mauro
et al. (2016) involves all the concepts of volume, velocity, and variety: “Big Data
is the Information asset characterised by such a High Volume, Velocity and Variety
to require specific Technology and Analytical Methods for its transformation into
Value”. A detailed description of data storage and analysis frameworks for Big-
Data is far away from the aims of the present book and I refer to specific texts for
those interested (Panda et al., 2022; Pietsch, 2021). Here I limit to compare the
performances of pandas in writing and reading .csv and hdf files at GB scale on my
MacBook pro (2.3 GHz Quad-Core Intel Core i7, 32GB RAM). As an example, code
listing 3.2 generate a pandas DataFrame of ∼10GB named my data, composed of
random numbers hosted in 26 columns and 5 · 107 rows.

I utilized the my data.info(memory usage =“deep”) (code listing 3.3 to check
the real memory usage of my data, i.e., 9.7 GB.

Code listing 3.4 shows the execution time to write (In [1], In [2], and In [3]) and
read (In [4], In [5], and In [6]) a text file (.csv), a parquet, and hdf5, respectively.
Results show that saving a .csv file require about 25 minues, i.e., a quite long time! On
the contrary, saving parquet and hdf5 files need from 7 to 12 seconds, respectively.
Reading times are of the same order of magnitude, i.e., about 5 minutes for the .csv
and 30 seconds for both parquet and hdf5 files.

32 3 Machine Learning Workflow

1 import pandas as pd
2 import numpy as np
3 import string
4
5 my_data = pd.DataFrame(np.random.normal(size=(50000000, 26)),
6 columns=list(string.ascii_lowercase))

Listing 3.2 Generating a mid-size, data set of about 10 GB

1 In [1]: my_data.info(memory_usage="deep")
2 <class ’pandas.core.frame.DataFrame’>
3 RangeIndex: 50000000 entries, 0 to 49999999
4 Data columns (total 26 columns):
5 # Column Dtype

6 --- ------ -----

7 0 a float64

8 1 b float64

9 2 c float64

10 3 d float64

11 4 e float64

12 5 f float64

13 6 g float64

14 7 h float64

15 8 i float64

16 9 j float64

17 10 k float64

18 11 l float64

19 12 m float64

20 13 n float64

21 14 o float64

22 15 p float64

23 16 q float64

24 17 r float64

25 18 s float64

26 19 t float64

27 20 u float64

28 21 v float64

29 22 w float64

30 23 x float64

31 24 y float64

32 25 z float64

33 dtypes: float64(26)
34 memory usage: 9.7 GB

Listing 3.3 Checking the memory usage of our DataFrame

In light of the evidence reported in Code listing 3.4, I strongly suggest to discon-
tinue the use of text files to store and retrieve your data in favor of binary files like
hdf5 or parquet. This is particularly true when the dimension of the data set starts
increasing.

3.3 Data Pre-Processing 33

1 In [1]: %time my_data.to_csv(’out.csv’)
2 CPU times: user 22min 48s, sys: 55.8 s, total: 23min 44s
3 Wall time: 24min 16s
4
5 In [2]: %time my_data.to_parquet(’out.parquet’)
6 CPU times: user 13.1 s, sys: 2.71 s, total: 15.8 s
7 Wall time: 11.8 s
8
9 In [3]: %time my_data.to_hdf(’out.h5’, key="my_data", mode="w")

10 %time my_data.to_hdf(’out.h5’, key="my_data1", mode="w")
11 CPU times: user 39.2 ms, sys: 4.33 s, total: 4.37 s
12 Wall time: 6.59 s
13
14 In [4]: %time my_data_1 = pd.read_csv(’out.csv’)
15 CPU times: user 3min 28s, sys: 37.7 s, total: 4min 5s
16 Wall time: 4min 45s
17
18 In [5]: %time my_data1 = pd.read_parquet(’out.parquet’)
19 CPU times: user 12.7 s, sys: 26.3 s, total: 39 s
20 Wall time: 31 s
21
22 In [6]: %time my_data1 = pd.read_hdf(’out.h5’, key=’my_data’)
23 CPU times: user 10.2 s, sys: 12.7 s, total: 23 s
24 Wall time: 28.8 s

Listing 3.4 Generating a mid-size, data set of about

3.3 Data Pre-Processing

Pre-processing consists of all the operations required to prepare your data set for
successive steps, i.e., the training and validation (Maharana et al., 2022). It is a
crucial step since it makes raw data suitable to build your ML model. Probably,
during the development of a ML project, you will spend most of your time making
your data ready for the training. In detail, pre-processing refers to preparing (e.g.,
cleaning, organizing, normalizing) the raw data before moving to the training. Also,
it includes the preliminary steps to allow validation (e.g., train-test splitting).

Data Inspection

Data inspection allows familiarizing with your data set. It consists of a qualitative
investigation of your data. A fundamental task of data inspection is descriptive
statistics. It provides you with a clear idea about the “shape” and the structure of
your data set. How does it could help you. As an example, looking at the histogram
distributions, you could start evaluating if the methods that assume a Gaussian
distribution will fit your data.

34 3 Machine Learning Workflow

Code listing 3.5 shows how to perform a preliminary determination of the main
descriptive indexes of location (e.g., the mean and the median, i.e., 𝑝50 or 50%
percentile) and dispersion [e.g., the standard deviation, the range, i.e., (range = max
- min), or the interquartile range, i.e., (𝑖𝑞𝑟 = 𝑝75 − 𝑝25)]

1 In [1]: sub_data = my_data[[’12C/13C’, ’14N/15N’]]
2
3 In [2]: sub_data.describe().applymap("{0:.0f}".format)
4
5 Out[2]:
6 12C/13C 14N/15N

7 count 19581 2544

8 mean 66 1496

9 std 207 1901

10 min 1 4

11 25% 44 336

12 50% 55 833

13 75% 69 2006

14 max 21400 19023

Listing 3.5 Performing descriptive statistics in Python

100 101 102 103 104

12C/13C

101

102

103

104

14
N

/15
N

0 50 100 150 200 250
12C/13C

0.000

0.005

0.010

0.015

0.020

0.025

Pr
ob

ab
ilit

y
De

ns
ity

Fig. 3.2 Descriptive Statistics

Figure 3.2 and code listing 3.6 show how to perform a basic statistical visualization
in Python. As an example, Fig. 3.2 shows the distribution of data in the 14𝑁/15𝑁 Vs.
12𝐶/13𝐶 projection and the histogram distribution of 12𝐶/13𝐶 on the left and right
panels, respectively.

1 import matplotlib.pyplot as plt
2
3 fig = plt.figure(figsize=(9,4))

3.3 Data Pre-Processing 35

4 ax1 = fig.add_subplot(1,2,1)
5 ax1.plot(my_data[’12C/13C’], my_data[’14N/15N’],
6 marker=’o’, markeredgecolor=’k’,

7 markerfacecolor=’#BFD7EA’, linestyle=’’,

8 color=’#7d7d7d’,

9 markersize=6)

10 ax1.set_yscale(’log’)
11 ax1.set_xscale(’log’)
12 ax1.set_xlabel(r’$ˆ{12}C/ˆ{13}C$’)
13 ax1.set_ylabel(r’$ˆ{14}N/ˆ{15}N$’)
14
15 ax2 = fig.add_subplot(1,2,2)
16 ax2.hist(my_data[’12C/13C’], density=True, bins=’auto’,
17 histtype=’stepfilled’, color=’#BFD7EA’, edgecolor=’

black’,)

18 ax2.set_xlim(-1,250)
19 ax2.set_xlabel(r’$ˆ{12}C/ˆ{13}C$’)
20 ax2.set_ylabel(’Probability Density’)
21
22 fig.set_tight_layout(True)

Listing 3.6 Performing descriptive statistics in Python

Data Cleaning and Imputation

In real-world data sets, like geological ones, the occurrence of “unwanted” entries
is ubiquitous (Zhang, 2016). Examples are void (i.e., missing data), ‘Not a Number’
(NaN) entries or large outliers. The cleaning of your data set mainly consists of
removing “unwanted” entries. As an example the methods .dropna() and .fillna()
will help you when working with missing data, imported by pandas as NaN (code
listing 3.7):

1 import pandas as pd
2
3 cleaned_data = my_data.dropna(
4 subset=[’d(135Ba/136Ba)’, ’d(138Ba/136Ba)’])

5
6 print("Before cleaning: {} cols".format(my_data.shape[0]))
7 print("After cleaning: {} cols".format(cleaned_data.shape[0]))
8
9 ’’’

10 Output:
11 Before cleaning: 19978 cols
12 After cleaning: 206 cols
13 ’’’

Listing 3.7 Removing NaN values

36 3 Machine Learning Workflow

In detail, the .dropna() at line 3 removes all the rows where the isotopic value of
𝛿135𝐵𝑎136 [‰] or 𝛿138𝐵𝑎136 [‰] are missing.

Although appealing for its simplicity, the procedure of removing entries contain-
ing missing values has some drawbacks and the most significant is the information
loss (Zhang, 2016). In particular, when dealing with a large number of features, a
substantial number of observations can be removed due to the missing of a single
feature, potentially introducing large biases (Zhang, 2016). A possible solution is
data imputation, i.e., replacing missing values with imputed values. Several methods
and techniques have been developed for data imputation. The easiest approach con-
sists of replacing missing values with the mean, median, or mode of the investigated
feature (Zhang, 2016). In pandas, .fillna() allows replacing NaN entries with a text
or a specific value. Also, the SimpleImputer() in scikit-learn lets the imputation of
missing values with mean, median, or mode.

A more evolved strategy consists of data imputation with regression (Zhang,
2016). In this case you firstly need to fit a regression model (e.g. linear or polinomial)
and then use it for the imputation of missing values (Zhang, 2016). In scikit-learn,
the IterativeImputer() develops an imputation strategy based on the regression by
modelling each feature characterized by missing values as a function of other features.

Encoding categorical features

Most of the available machine learning algorithms do not support the use of cat-
egorical (i.e., nominal) features. Therefore, categorical data must be encoded, i.e.,
converted to a sequence of numbers. In scikit-learn, OrdinalEncoder() encodes cat-
egorical features as integers (i.e., 0 to n categories - 1).

Data Augmentation

Data augmentation aims at increasing the generalization capability of ML models
by increasing the amount of information in our data sets (Maharana et al., 2022).
It consists either adding modified copies (e.g., flipper or rotated images in the case
of image classification) of the available data or combining the existing features to
generate new ones. As an example, Maharana et al. (2022) reports six techniques
for data augmentation for image analysis by deep learning. They are (1) symbolic
augmentation, (2) rule-based augmentation, (3) graph-structured augmentation, (4)
mixup Augmentation, (5) feature space augmentation, and (6) neural augmentation
(Maharana et al., 2022). Going in deep details of feature augmentation is far beyond
the scope of the present book. However, we will take advantage of data augmentation
in Chapter 8, where I followed the strategy proposed by Bestagini et al. (2017). In
detail Bestagini et al. (2017) generated new features starting from the available ones,
to improve the generalization capability of the investigated data sets.

3.3 Data Pre-Processing 37

Data Scaling and transformation

The scaling and transformation of a data set is often a crucial step in ML workflows.
Many ML algorithms strongly benefit from a preliminary “standardization” of the
investigated data set. As an example, all the algorithms that use the euclidean distance
(there are many of them!) as fundamental metrics, may be significantly biased by
the introduction of features that are strongly different in magnitude.

Definition: in a standardized data set, all features are centered on zero and their
variance is of the same order.

If a feature has a variance that is orders of magnitude greater than the others, it
might play a dominant role and prevent the algorithm from correctly learning other
features.

The easiest way to standardize a data set is to subtract the mean and scale to unit
variance [Eq. (3.1)]:

𝑥𝑖𝑒 =
𝑥𝑖𝑒 − 𝜇𝑒
𝜎𝑒𝑝

, (3.1)

where 𝑥𝑖𝑒 and 𝑥𝑖𝑒 are the transformed and original components, respectively, belonging
to the sample distribution of the chemical analysis of element e (i.e., SiO2, TiO2,
etc.), which is characterized by a mean 𝜇𝑒 and a standard deviation 𝜎𝑒𝑝 .

Scikit-learn implements Eq. (3.1) in the sklearn.preprocessing.StandardScaler()
class, which is a set of methods (i.e., functions) to scale both the training data set
and unknown samples.

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
12C/13C

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pr
ob

ab
ilit

y
De

ns
ity

Unscaled

3 2 1 0 1 2 3
12C/13C

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
De

ns
ity

Standard Scaler

0.2 0.3 0.4 0.5 0.6
12C/13C

0

2

4

6

8

10

12

Pr
ob

ab
ilit

y
De

ns
ity

Min. Max. Scaler

6 4 2 0 2 4
12C/13C

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ilit

y
De

ns
ity

Robust Scaler

Fig. 3.3 Scaler and transformers, resulting from the code listing 3.3

38 3 Machine Learning Workflow

In addition, scikit-learn implements additional scalers and transformers. In scikit-
learn, scaler and transformers perform linear and nonlinear transformations, respec-
tively. For example, MinMaxScaler() scales all features belonging to the data set
between 0 and 1. Table 3.2 summarizes the main scalers and the transformers avail-
able in scikit-learn.

QuantileTransformer() provides nonlinear transformations that shrinks distances
between marginal outliers and inliers. Finally, PowerTransformer() provides nonlin-
ear transformations in which data are mapped to a normal distribution to stabilize
variance and minimize skewness.

Also, the presence of outliers could affect the outputs of your model. If outliers
are present in your data set, robust scalers or transformers are more appropriate. By
default RobustScaler() removes the median and scales the data according to the inter-
quartile range (IQR). Note that the RobustScaler() does not perform any removal of
the outliers.

If you are lucky and the uncertainties of your estimations are quantified, e.g.,
by one sigma or a standard error, a preliminary cleaning of your data set could be
applied to remove all data where the error exceeds a threshold of your preference.

Finally, making the logarithm of data sometimes helps in reducing the skewness of
your sample, under the assumption of a data set deriving by a log-normal distribution
(Corlett et al., 1957; Limpert et al., 2001).

Code listing 3.8 shows how to apply different scalers and transformers on the
log-tranformed 12𝐶/13𝐶 SiC data. Fig. 3.3 shows the results.

1 import matplotlib.pyplot as plt
2 import numpy as np
3 from sklearn.preprocessing import MinMaxScaler
4 from sklearn.preprocessing import StandardScaler
5 from sklearn.preprocessing import RobustScaler
6
7 X = np.log10(my_data[[’12C/13C’]].dropna().to_numpy())
8
9 scalers = [("Unscaled", X),

10 ("Standard Scaler", StandardScaler().fit_transform(X)

),

11 ("Min. Max. Scaler", MinMaxScaler().fit_transform(X))

,

12 ("Robust Scaler", RobustScaler().fit_transform(X))

13]

14
15 fig = plt.figure(figsize=(10,7))
16
17 for ix, my_scaler in enumerate(scalers):
18 ax = fig.add_subplot(2,2,ix+1)

19 scaled_X = my_scaler[1]

20 ax.set_title(my_scaler[0])

21 ax.hist(scaled_X , density=True, bins=’auto’,

22 histtype=’stepfilled’, color=’#BFD7EA’, edgecolor=’

black’)

23 ax.set_xlabel(r’$ˆ{12}C/ˆ{13}C$’)

3.3 Data Pre-Processing 39

24 ax.set_ylabel(’Probability Density’)

25 ax.set_xlim(np.percentile(scaled_X ,0.5),

26 np.percentile(scaled_X ,99.5))

27
28 fig.set_tight_layout(True)

Listing 3.8 Scalers and Trasformers

Table 3.2 Scalers and trasformers in Scikit-learn. Descriptions are taken from the official docu-
mentation of Scikit-learn.

Scaler Description

sklearn.preprocessing.StandardScaler() Standardize features by removing the mean and
scaling to unit variance [Eq. (3.1)].

sklearn.preprocessing.MinMaxScaler() Transform features by scaling each feature to a
given range. The default range is [0,1].

sklearn.preprocessing.RobustScaler() Scale features using statistics that are robust against
outliers. This scaler removes the median and scales
the data according to the quantile range. The default
quantile range is the inter-quartile range.

Tranformer Description

sklearn.preprocessing.PowerTransformer() Apply a power transform feature-wise to make data
more Gaussian-like.

sklearn.preprocessing.QuantileTransformer() Transform features using quantile information.
This method transforms features to follow a uni-
form or normal distribution. Therefore, for a given
feature, this transformation tends to spread out the
most frequent values.

Compositional Data Analysis (CoDA)

Before applying any statistical method, i.e., including ML algorithms, the underlying
assumptions must be always properly addressed. An example is the assumption of
normality behind many methods. Other assumptions may regard the topology of
the sample space. Geochemical determinations are an example of the, so-called,
compositional data (Aitchison, 1982; Aitchison & Egozcue, 2005; Razum et al.,
2023), i.e., samples of non-negative multivariate data that have been expressed

40 3 Machine Learning Workflow

relative to a fixed total (typically 1 or percentages summing to 100%). The analysis
of compositional data is named compositional data analysis (CoDA; Aitchison,
1984).

In compositional data, the sample space is represented by the Aitchison simplex
𝑠𝐷:

𝑠𝐷 =

{
𝑥 = [𝑥1, 𝑥,2 , ..., 𝑥𝐷] |𝑥𝑖 > 0, 𝑖 = 1, 2, ...𝐷;

𝐷∑︁
𝑖=1

𝑥𝑖 = 𝐶

}
. (3.2)

where 𝐶 is a constant, typically 1 or 100. Compositional data typically share two
characteristics: a) data are always positive and b) they are characterized by a constant
sum (i.e. they are not independent). These characteristics represent an obstacle in
the application of most common statistical methods since they often assume that
independent input samples ranging in the interval [−∞,∞]. From the topological
point of view, the simplex, i.e., the sample space for compositional vectors, is
radically different from the Euclidean space associated with unconstrained data
(Aitchison, 1982; Aitchison & Egozcue, 2005; Razum et al., 2023). Therefore, any
method relying on the Euclidean distance cannot be used with compositional data,
directly.

There are four established transformations that attempt to map the Aitchison
simplex to the euclidean space.

Pairwise log ratio transformation (𝑝𝑤𝑙𝑟) (Aitchison, 1982; Aitchison & Egozcue,
2005; Razum et al., 2023): The 𝑝𝑤𝑙𝑟 transformation isometrically maps a com-
position in the 𝐷-dimensional Aitchison-simplex to a 𝐷 (𝐷 − 1)/2 dimensional
space. In detail, it computes each possible log ratio, but accounting for the fact that
𝑙𝑜𝑔(𝐴/𝐵) = −𝑙𝑜𝑔(𝐵/𝐴), and therefore we need only one of them. On pairwise
log ratio transformed data, we can apply multivariate methods not relying on the
invertibility of the covariance function. The interpretation of 𝑝𝑤𝑙𝑟 transformed data
quite simple, since a each component results from a simple operation of division,
then transformed by a logarithm to reduce the skew of the resulting features.

The pairwise log ratio (𝑝𝑤𝑙𝑟) transformation is given by:

𝑝𝑤𝑙𝑟 (x) =
[
𝜉𝑖 𝑗 | 𝑖 < 𝑗 = 1, 2, ..., 𝐷

]
, (3.3)

where 𝜉𝑖 𝑗 = 𝑙𝑛(𝑐𝑖/𝑐 𝑗). It is noteworthy that the redundancy of the 𝑝𝑤𝑙𝑟 generated
𝐷 (𝐷 − 1)/2 features, i.e., and extremely high-dimensional space. Therefore and any
of additive log ratio transformation (𝑎𝑙𝑟), centered log ratio transformation (𝑐𝑙𝑟) or
isometric log ratio transformation (𝑖𝑙𝑟) transformations should be preferred in most
applications.

Additive log ratio transformation (𝑎𝑙𝑟) (Aitchison, 1982; Aitchison & Egozcue,
2005; Razum et al., 2023):

𝑎𝑙𝑟 (𝑥) =
[
𝑙𝑛
𝑥1
𝑥𝐷
, 𝑙𝑛

𝑥2
𝑥𝐷
, ..., 𝑙𝑛

𝑥𝐷−1
𝑥𝐷

]
. (3.4)

3.3 Data Pre-Processing 41

The 𝑎𝑙𝑟 transformation non-isometrically maps the vectors on the 𝐷-dimensional
Aitchison-simplex to a D-1 dimensional space. The 𝑎𝑙𝑟 transformed data can be
analysed by multivariate statistical tools not relying on the euclidean distance. As in
the case of 𝑝𝑤𝑙𝑟, the interpretation of 𝑎𝑙𝑟 data is quite simple, since they also derive
from a simple operation of division followed by a logarithm, to reduce the skew of
the resulting features.

Centred log ratio transformation (𝑐𝑙𝑟):

𝑐𝑙𝑟 (𝑥) =
[
𝑙𝑛

𝑥1
𝑔𝑚 (𝑥)

, 𝑙𝑛
𝑥2

𝑔𝑚 (𝑥)
, ..., 𝑙𝑛

𝑥𝐷

𝑔𝑚 (𝑥)

]
. (3.5)

where 𝑔𝑚 (𝑥) is the geometric mean of the components in 𝑥. The 𝑐𝑙𝑟 transfor-
mation isometrically maps the vectors in the 𝐷-dimensional Aitchison-simplex to
a 𝐷-dimensional euclidean space. The 𝑐𝑙𝑟 transformed data can be analysed by all
multivariate tools not relying on a full rank of the covariance (Aitchison, 1982;
Aitchison & Egozcue, 2005; Razum et al., 2023).

Orthonormal log ratio transformation (𝑜𝑙𝑟), also known as isometric log ratio
transformation (𝑖𝑙𝑟). The most practical way to define an 𝑜𝑙𝑟 transformation is by
using the concept of balances (Egozcue & Pawlowsky-Glahn, 2005) . A general
balance is defined as:

𝑏 =

√︂
𝑟𝑠

𝑟 + 𝑠 𝑙𝑛
(𝑥𝑖1 · 𝑥𝑖2 · ... · 𝑥𝑖𝑟)1/𝑟

(𝑥 𝑗1 · 𝑥 𝑗2 · ... · 𝑥 𝑗𝑠)1/𝑠 . (3.6)

where 𝑥𝑖 and 𝑥 𝑗 are components in the numerator and denominator, respectively,
while r is the number of components in the numerator and s in the denominator. In this
way, it is possible to model interpretable variables (e.g., Glahn2015ModelingData).
Each of the above-mentioned transformations has its unique properties which can
be utilized in the compositional data analysis. 𝐶𝑙𝑟 is often used for the construction
of compositional biplots and for cluster analysis (van den Boogaart & Tolosana-
Delgado, 2013). 𝐴𝑙𝑟 transformation can be safely used in multivariate statistics
whenever Mahalanobis distances are involved otherwise due to the oblique coordi-
nates its usage is somewhat limited. 𝑂𝑙𝑟 transformed data can be used safely for any
multivariate technique since it is related to the orthonormal basis of the simplex.

In Python both scikit-bio6 and pytolite7 provide us with methods in the framework
of CoDA.

A working example of data pre-processing

The code listings 3.9 and 3.10 show a step-by-step reproduction of data pre-
processing by Boujibar et al. (2021) for a study on the clustering of pre-solar silicon
carbide (SiC) grains. Does not matter if you cannot follow the specific astrophys-

6 http://scikit-bio.org
7 https://pyrolite.readthedocs.io

42 3 Machine Learning Workflow

ical problem investigated by (Boujibar et al., 2021). The aim of the example is to
highlight how to prepare a data set for ML investigations.

1 import pandas as pd
2 import matplotlib.pyplot as plt
3 import numpy as np
4 from sklearn.preprocessing import StandardScaler
5 from sklearn.preprocessing import RobustScaler
6
7 # Import Data
8 my_data = pd.read_excel("PGD_SiC_2021 -01-10.xlsx",
9 sheet_name=’PGD-SIC’)

10
11 # limit to features of interest
12 my_data = my_data[[’PGD ID’, ’PGD Type’, ’Meteorite’, ’12C/13C’,
13 ’err+[12C/13C]’, ’err-[12C/13C]’, ’14N/15N’,

14 ’err+[14N/15N]’, ’err-[14N/15N]’,

15 ’d(29Si/28Si)’, ’err[d(29Si/28Si)]’,

16 ’d(30Si/28Si)’, ’err[d(30Si/28Si)]’]]

17
18 # Drop NaN
19 my_data = my_data.dropna()
20
21 # Removing M grains with large Si errors
22 my_data = my_data[˜((my_data[’err[d(30Si/28Si)]’]>10) &
23 (my_data[’err[d(29Si/28Si)]’]>10) &

24 (my_data[’PGD Type’]== ’M’))]

25
26 # Excluding C and U grains
27 my_data = my_data[(my_data[’PGD Type’]==’X’) |
28 (my_data[’PGD Type’]==’N’) |

29 (my_data[’PGD Type’]==’AB’)|

30 (my_data[’PGD Type’]==’M’) |

31 (my_data[’PGD Type’]==’Y’) |

32 (my_data[’PGD Type’]==’Z’)]

33
34 # Excluding contaminated grains
35 my_data = my_data[˜(((my_data[’12C/13C’]<93.56) &
36 (my_data[’12C/13C’]>88.87)) &

37 ((my_data[’14N/15N’]<339.94) &

38 (my_data[’14N/15N’]>248)) &

39 ((my_data[’d(30Si/28Si)’]<50)&

40 (my_data[’d(30Si/28Si)’]>-50)) &

41 ((my_data[’d(29Si/28Si)’]<50)&

42 (my_data[’d(29Si/28Si)’]>-50))

43)]

Listing 3.9 Scalers and Trasformers

1 # Trasform silica isotopic delta to isotopic ratios

3.3 Data Pre-Processing 43

2 Si29_28_0 = 0.0506331
3 Si30_28_0 = 0.0334744
4 my_data[’30Si/28Si’] = ((my_data[’d(30Si/28Si)’]/1000)+1) *

Si30_28_0

5 my_data[’29Si/28Si’] = ((my_data[’d(29Si/28Si)’]/1000)+1) *
Si29_28_0

6
7 my_data[’log_12C/13C’] = np.log10(my_data[’12C/13C’])
8 my_data[’log_14N/15N’] = np.log10(my_data[’14N/15N’])
9 my_data[’log_30Si/28Si’] = np.log10(my_data[’30Si/28Si’])

10 my_data[’log_29Si/28Si’] = np.log10(my_data[’29Si/28Si’])
11
12 # Save to Excel
13 my_data.to_excel("sic_filtered_data.xlsx")
14
15 # Scvaling using StandardScaler() and RobustScaler()
16 X = my_data[[’log_12C/13C’,’log_14N/15N’,’log_30Si/28Si’,’

log_29Si/28Si’]].values

17
18 scalers =[("Unscaled", X),
19 ("Standard Scaler",StandardScaler().fit_transform(X)),

20 ("Robust Scaler",RobustScaler().fit_transform(X))

21]

22
23 # Make pictures
24 fig = plt.figure(figsize=(15,8))
25
26 for ix, my_scaler in enumerate(scalers):
27 scaled_X = my_scaler[1]

28 ax = fig.add_subplot(2,3,ix+1)

29 ax.set_title(my_scaler[0])

30 ax.scatter(scaled_X[:,0], scaled_X[:,1],

31 marker=’o’, edgecolor=’k’, color=’#db0f00’,

32 alpha=0.6, s=40)

33 ax.set_xlabel(r’$log_{10}[ˆ{12}C/ˆ{13}C]$’)

34 ax.set_ylabel(r’$log_{10}[ˆ{14}N/ˆ{15}N]$’)

35
36 ax1 = fig.add_subplot(2,3,ix+4)

37 ax1.set_title(my_scaler[0])

38 ax1.scatter(scaled_X[:,2], scaled_X[:,3],

39 marker=’o’, edgecolor=’k’, color=’#db0f00’,

40 alpha=0.6, s=40)

41 ax1.set_xlabel(r’$log_{10}[ˆ{30}Si/ˆ{28}Si]$’)

42 ax1.set_ylabel(r’$log_{10}[ˆ{29}Si/ˆ{28}Si]$’)

43
44 fig.set_tight_layout(True)

Listing 3.10 Scalers and Trasformers

In detail, code listing 3.9 starts with the importing of all the libraries and methods
needed to achieve your goal, i.e., pandas, matplotlib, numpy plus the StandardScaler
and RobustScaler from scikit-learn. Then the workflow starts. At line 8, we create
a pandas DataFrame, named my data, importing the data set of SiC analyses from

44 3 Machine Learning Workflow

Excel𝑇𝑀 . All the successive steps prepare 𝑚𝑦 𝑑𝑎𝑡𝑎 for the processing by a ML
algorithm.

To note, in code listing 3.9:
Line 12 Limits the features to the ones of interest.
Line 19 Removes non numerical data, i.e. Not a Number (NaN).
Line 22 Removes all the rows laneled by ‘M’ in the ‘PGD Type’ column and

characterized by large errors.
Line 27 Limits the data set to specific labels in the PGD Type columnn, i.e.,

specific SiC clases, i.e., X, N, AB, M, Y, and Z, in agreement with the
current classification (Stephan et al., 2021).

Line 34 Removes contaminated grains, i.e., characterized by an isotopic sig-
nature too much similar to the one of the Earth.

Then, in code listing 3.10:

Lines 2-5 Convert Silica values from 𝛿 notation to isotopic ratios.
Lines 7-10 Apply a log-normal transformation, in agreement with alr CoDA tran-

formation.
Line 13 Save my data to Excel𝑇𝑀 to have a record the results of pre-processing

before the scaling.
Line 16 Defines 𝑋 , a 4 features numpy array in the shape accepted by most

scikit-learn ML algorithms.
Line 18 Defines three scenarios: a) unscaled data; b) scaling with Standard-

Scaler(); c) scaling with RobustScaler().
Lines 25-42 Perform the scaling at line 27 and make the diagrams reported in

Fig. 3.4.

Fig. 3.4 shows the results of code listings 3.9 and 3.10. As expected, the ap-
plication of different scalers and tranformers does not change the structure of data.
However, they strongly affect the position and the spread of the investigated features.
As an example, the logarithm of 12𝐶/13𝐶 range from 0 and 4 when unscaled, with
a mean at about 1.7 (See Fig. 3.3 also). Both the Standard and the Robust Scalers
centres the data set to 0, using the mean and the median, respectively, and they
produces different spreads, since the Robust Scaler also account for the presence of
outliers. For symmetric distributions in the absence of outliers, we expect similar
results for the Standard and Robust Scalers.

3.4 Train a Model

Fig. 3.5 reports a cheat-sheet guiding us in model selection for the scikit-learn
library. Scikit-learn allows working in the fields of both unsupervised (i.e., clustering
and dimensionality reduction) and supervised (i.e., regression and classification)

3.4 Train a Model 45

0 1 2 3 4
log10[12C/13C]

1

2

3

4

lo
g 1

0[
14

N
/15

N
]

Unscaled

2.0 1.8 1.6 1.4 1.2
log10[30Si/28Si]

1.8

1.6

1.4

1.2

lo
g 1

0[
29

Si
/28

Si
]

Unscaled

2 0 2 4
log10[12C/13C]

2

0

2

lo
g 1

0[
14

N
/15

N
]

Standard Scaler

4 2 0 2
log10[30Si/28Si]

4

2

0

lo
g 1

0[
29

Si
/28

Si
]

Standard Scaler

2 1 0 1 2 3
log10[12C/13C]

2

1

0

1

lo
g 1

0[
14

N
/15

N
]

Robust Scaler

20 10 0 10
log10[30Si/28Si]

10

5

0

lo
g 1

0[
29

Si
/28

Si
]

Robust Scaler

Fig. 3.4 Scaling SiC data with Scikit-learn

learning. About supervised learning, examples of classification algorithms are the
Support Vector Classifier (SVC, cfr. par. 7.9) and the K-neighbors (cfr. par.7.10).
In the field of regression, examples are the Stochastic Gradient Descent (SGD),
the support vector (SVR) and the ensemble regressors. Examples of unsupervised
learning are the Locally linear embedding (LLE, cfr. par. 4.3) and the Principal
Component Analysis (PCA, cfr. par. 4.2) if we point to the dimensionality reduction.
For the clustering, examples are the K-means, Gaussian Mixture Models (GMM, cfr.
par. 4.9) and the spectral clustering. We will discuss in detail the details of the most
popular ML algorithms in chapters 7 and 4 dealing with supervised and unsupervised
learning, respectively.

In the following, I report a quick example about the training of an unsupervised
algorithm on the SiC analyses that we are using as a proxy for a scientific data set in

46 3 Machine Learning Workflow

START
HERE

> 50
SAMPLES

GET MORE
DATA

NO

PREDDICTING
A CATEGORY

PREDICTING
A QUANTITY

LABELED
DATA

JUST
LOOKING

PREDICTING
STRUCTURE

TOUGH
LUCK

YES

NO

CLASSIFICATION

CLUSTERING

REGRESSION

DIMENSIONALITY REDUCTION

<100K
SAMPLES

SGD
CLASSIFIER

LINEAR
SVC

TEXT
DATA

NAIVE
BAYES

KNEIGHBORS
CLASSIFIER

SVC or
ENSEMBLE

CLASSIFIERS

RIDGE REGR.
LINEAR SVR

FEW
FEATURES
SHOULD BE
IMPORTANT

RBF SVR or
ENSEMBLE

REGRESSORS
SGD

REGRESSOR

<100K
SAMPLES

LASSO or
ELASTIC NET

NUMBER OF
CLUSTERS

KNOWN (Yes/No)
or HIERARCHICAL

STRUCTURE

SPECTRAL
CLUSTERING
or GAUSSIAN

MIXTURES

<10K
SAMPLES KMEANS

MINIBATCH
KMEANS

OTHER
MANIFOLD
METHODS

RANDOMIZED
PCA

YES

NO

YES

NO

NO

YES

NOT
WORKING

NO

YES

YES

NO

NOT
WORKING

NO

YES

NOT
WORKING

NO

YES

NOT
WORKING

NO

YES

NO

YES

NOT
WORKING

MEAN SHIFT
or

DBSCAN

YES

LLE
ISOMAP or
SPECTRAL

EMBEDDING

NOT
WORKING

NOT
WORKING

HIERARCHICAL
CLUSTERING

HIERARCHICAL

Fig. 3.5 Scikit-learn algorithm cheat-sheet. Modified from the official documentation of scikit-
learn

3.4 Train a Model 47

the field of planetary sciences. Code listing 3.11 shows how to perform the clustering
by Gaussian Mixtures (crf. section. 4.9) algorithm on the SiC data pre-processed by
code listings 3.9 and 3.10. As you can note, the core of the training is at line 12,
where I parameterized the GaussianMixture() algorithm, i.e., defining 9 clusters and
fixing the random state of the pseudo random number generator to allow the reader
reproducing my results exactly.

Generally speaking, the .fit() method in scikit-learn launch the training of ML
algorithms. Then, using the .predict() method, we get the results or we transfer the
obtained knowledge to unknown data. Fig. 3.6 displays the result of the clustering
by GaussianMixture(), i.e., lines 16-29 of code listing 3.11.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from sklearn.preprocessing import StandardScaler
4 from sklearn.mixture import GaussianMixture as GMM
5
6 my_colors = [’#AF41A5’,’#0A3A54’,’#0F7F8B’,’#BFD7EA’,’#F15C61’,
7 ’#C82127’,’#ADADAD’,’#FFFFFF’, ’#EABD00’]

8
9 scaler = StandardScaler().fit(X)

10 scaled_X = scaler.transform(X)
11
12 my_model = GMM(n_components = 9, random_state=(42)).fit(scaled_X)
13
14 Y = my_model.predict(scaled_X)
15
16 fig, ax = plt.subplots()
17
18 for my_group in np.unique(Y):
19 i = np.where(Y == my_group)

20 ax.scatter(scaled_X[i,0], scaled_X[i,1],

21 color=my_colors[my_group],

22 label=my_group + 1 , edgecolor=’k’, alpha=0.8)

23
24 ax.legend(title=’Cluster’)
25
26 ax.set_xlabel(r’$log_{10}[ˆ{12}C/ˆ{13}C]$’)
27 ax.set_ylabel(r’$log_{10}[ˆ{14}N/ˆ{15}N]$’)
28
29 fig.tight_layout()

Listing 3.11 Application of the GaussianMixture() algorithm to SiC data.

48 3 Machine Learning Workflow

2 1 0 1 2 3 4
log10[12C/13C]

3

2

1

0

1

2

lo
g 1

0[
14

N
/15

N
]

Cluster
1
2
3
4
5
6
7
8
9

Fig. 3.6 The clustering resulting by the application of the GaussianMixture() algorithm to SiC
data, code listing 3.11

3.5 Model Validation and Testing

The validation and testing of a model is the third crucial step, i.e., after the pre-
processing and the training, in ML. They allow you to evaluate the “goodnees” of a
model.

Splitting the investigated data set in three portions

The approach of model validation and model testing by splitting the investigated data
set into three portions is clearly described by Hastie et al. (2017): the best approach
for model assessment in ML “is to randomly divide the data set into three parts: a
training set, a validation set, and a test set. The training set is used to fit the models;
the validation set is used to estimate prediction error for model selection; the test set
is used for assessment of the generalization error of the final chosen model.”

Typically, we use the training data set to train a selection of candidate mod-
els. Candidate models could be different algorithms, a single algorithm tuned with
different hyper-parameters (i.e., one or more variables that affect the behaviour on
an algorithm), or a combination of both. Then, we use the validation data set to
evaluate candidate models and chose the most performing one. Finally, we test the

3.5 Model Validation and Testing 49

selected model using the test data set. As an example, the train test split() method
in scikit-learn allows the random splitting of a data set into two portions, e.g., train
plus validation and test sets, respectively. Repeating the train test split() method on
the training plus validation set, will allow us to divide it further in the training and
validation set.

Original Data Set

TestTrain Validation

Fig. 3.7 Splitting the investigated data set in three portions

1 from sklearn import preprocessing
2 from sklearn.model_selection import train_test_split
3
4 le = preprocessing.LabelEncoder()
5 le.fit(my_data[’PGD Type’])
6 y = le.transform(my_data[’PGD Type’])
7
8 X_train_valid , X_test, y_train_valid , y_test = train_test_split(
9 X, y, test_size=0.20)

10
11 X_train, X_valid, y_train, y_valid = train_test_split(
12 X, y, test_size=0.25)

Listing 3.12 Scalers and Trasformers

To note, the statements of lines 4 to 6 in Code listing 3.12 simply convert the
labels referring to a specific SiC Class, i.e., PGD Types still present in my data after
the pre-processing, like M, Y, Z, X, AB, N to numbers from 0 to 5. It will allow
an easier management of labels during the execution of supervised methods in the
fields of regressions and classification.

Cross-Validation

The partitioning of the investigated data into three sets (i.e., train, validation, and
test) drastically reduces the number of samples exposed during the training. As a
consequence, the training process can be biased by the non-reliability of the training
set due, as an example, to the presence of borderline cases in the test data.

50 3 Machine Learning Workflow

The cross-validation (CV) procedure can overcome this limitation and, therefore,
can be minded as an evolution of the static division of the investigated set of data in
three parts.

Original Data Set

Test

Validation Train Train Train

Train Train Train

Validation

Validation

Validation

Train Train

Train Train

Train

Train

Test

Train and Validation

Validation process

Final Evaluation

Split 1

Split 3

Split 2

Split 4

Fig. 3.8 Example of k-fold cross-validation

In the cross-validation procedure, the initial set of data is initially split into two
portions, i.e., the test plus a joint training and validation sets.

1 from sklearn import svm
2 from sklearn import preprocessing
3 from sklearn.model_selection import cross_validate
4
5 le = preprocessing.LabelEncoder()
6 le.fit(my_data[’PGD Type’])
7 y = le.transform(my_data[’PGD Type’])
8
9 my_model = svm.SVC(kernel=’linear’, C=1, random_state=42)

10
11 cv_results = cross_validate(my_model , scaled_X , y, cv=5,
12 scoring=’accuracy’)

13
14 print(cv_results[’test_score’])
15
16 ’’’
17 Output:
18 [0.98529412 0.97785978 0.9704797 0.98154982 0.95940959]

19 ’’’
Listing 3.13 Application of a linear Support Vector Classifier to SiC data

3.5 Model Validation and Testing 51

Then, in the most basic strategy of cross-validation, named k-fold CV, the joint
training and validation set is split into k smaller batches.

The following steps consist of repeating the training and the validation for the
candidate model as follows: a) we use k-1 folds as the training set; b) the result of
the training is validated against the remaining k set of the data; c) we repeat the
procedure for the next split.

The performance of the candidate model can be estimated using the selected
metrics and averaging the obtained k results. As an example code listing 3.13 shows
how to perform the k-fold CV in scikit-learn using the cross validate() method. After
converting the 5 labels in the ‘PGD Type’ columns, i.e., M, Y, Z, X, AB, N to a
numeric index ranging from 0 to 5 (lines from 5 to 7), we define a linear Support
Vector Classifier (crf. sec. ??) characterized by a C hyper-parameter equal to 1 (line
9). Finally, we perform the k-fold CV dividing the data set in 5 folds and using the
accuracy as metrics. As expected, we obtain 5 estimations for the accuracy, one for
each split (Fig. 3.8).

Using the k-fold cross-validation, n-different candidate models can be evaluated
by repeating n-times the k-fold CV. As an example, the GridSearchCV() method in
scikit-learn performs an exhaustive search (i.e., evaluate all possible combinations
of the proposed parameters) over a range of parameter values for a specific estimator
(i.e., ML algorithm).

1 from sklearn import svm
2 from sklearn import preprocessing
3 from sklearn.model_selection import GridSearchCV
4
5 le = preprocessing.LabelEncoder()
6 le.fit(my_data[’PGD Type’])
7 y = le.transform(my_data[’PGD Type’])
8
9 parameters = {’kernel’:(’linear’, ’rbf’), ’C’:[0.1, 1, 10]}

10 my_model = svm.SVC()
11
12 my_grid_search = GridSearchCV(my_model , parameters ,
13 cv = 4, scoring=’accuracy’)

14
15 my_grid_search.fit(scaled_X , y)

Listing 3.14 Scalers and Trasformers

As an example, the GridSearchCV() can be used to evaluate the best choice for
the hyperparameters of an ML algorithm, such as the C parameter and the ’kernel
function’ of a Support Vector Machine (crf. par. 7.9). In detail, the code listing 3.14
shows how to define the grid for the selected hyperparameters at line 9. At line 10, we
define the model, i.e., a Support Vector Machine. At line 12, we define the grid search
for our SVC model, using the parametes defined at line 9, a 4-fold cross-validation,
and using the accuracy as metrics. Finally, at line 15 we physically perform the grid
search for all the combinations among the defined parameters. In detail, at line 9, we

52 3 Machine Learning Workflow

defined two Kernel functions and three values for C. Therefore, the grid search will
perform 6 cross-validations splitting, each time, the scaled X data set in 4 folds.

Code listing 3.15 shows how to get the results of a GridSearchCV(). In detail
the best estimator , best score , and cv results attributes provide us with the best
combination of hyperparameters, the best score, and a dictionary containing all the
results, respectively.

1 In [01]: my_grid_search.best_estimator_
2 Out[01]: SVC(C=10, kernel=’linear’)
3
4 In [02]: my_grid_search.best_score_
5 Out[02]: 0.9778761061946903
6
7 In [03]: my_grid_search.cv_results_
8 Out[03]:
9 {’mean_fit_time’: array([0.00605977, 0.02105349, 0.00482285,

10 0.01113951, 0.00554657, 0.00662667]),

11 ’std_fit_time’: array([3.7539e-04, 6.0314e-04, 2.1346e-04,

12 7.0395e-04, 5.5384e-04, 3.1989e-05]),

13 ’mean_score_time’: array([0.00242817, 0.01987976, 0.00181627,

14 0.00979179, 0.00133586,0.00618142]),

15 ’std_score_time’: array([7.4277e-05, 1.6316e-03, 1.6929e-04,

16 2.7074e-04, 2.2063e-04, 6.4881e-04]),

17 ’param_C’: masked_array(data=[0.1, 0.1, 1, 1, 10, 10],

18 mask=[False, False, False, False, False, False],

19 fill_value=’?’, dtype=object),

20 ’param_kernel’: masked_array(data=[’linear’, ’rbf’, ’linear’,

21 ’rbf’, ’linear’, ’rbf’],

22 mask=[False, False, False, False, False, False],

23 fill_value=’?’, dtype=object),

24 ’params’: [{’C’: 0.1, ’kernel’: ’linear’},

25 {’C’: 0.1, ’kernel’: ’rbf’},

26 {’C’: 1, ’kernel’: ’linear’},

27 {’C’: 1, ’kernel’: ’rbf’},

28 {’C’: 10, ’kernel’: ’linear’},

29 {’C’: 10, ’kernel’: ’rbf’}],

30 ’split0_test_score’: array([0.92330383, 0.8879056 , 0.98230088,

31 0.91150442, 0.97935103, 0.97050147]),

32 ’split1_test_score’: array([0.9380531 , 0.88495575, 0.97935103,

33 0.92625369, 0.98525074, 0.97935103]),

34 ’split2_test_score’: array([0.92330383, 0.89380531, 0.97345133,

35 0.91740413, 0.97640118, 0.96460177]),

36 ’split3_test_score’: array([0.91740413, 0.88495575, 0.96755162,

37 0.90560472, 0.97050147, 0.96460177]),

38 ’mean_test_score’: array([0.92551622, 0.8879056 , 0.97566372,

39 0.91519174, 0.97787611, 0.96976401]),

40 ’std_test_score’: array([0.00762838, 0.00361282, 0.00566456,

41 0.00762838, 0.00531792, 0.0060364]),

42 ’rank_test_score’: array([4, 6, 2, 5, 1, 3], dtype=int32)}

Listing 3.15 getting the results of a GridSearchCV()

3.5 Model Validation and Testing 53

To achieve the final validation, i.e., as reported in Fig. 3.8, we required a prelim-
inary splitting of scaled X in two portions, i.e., train plus validation and test sets
using the train test split() method.

Leave One Out Cross-Validation

The Leave One Out (or LOO) cross validation is a limit case of the k-fold CV. Using
the LOO approach, each train set is created by taking all the samples except one.
The test set is then created using the sample left out. In the LOO approach, the cross
validation typically performs over all the potential training sets, i.e., each sample of
the investigated data set. Code listing 3.16 highlights how to perform a LOO Cross-
Validation on the same study case reported in code listing 3.13. Fig. 3.9 reports the
results of the LOO Cross-Validation of code listing 3.16. In the specific case study,
code listing 3.13 cross-validates 1356 models, each considering one sample of the
investigated samples as test data set, with all the others utilized for the training.

1 import numpy as np
2 from sklearn import svm
3 from sklearn.model_selection import LeaveOneOut
4 from sklearn.model_selection import cross_validate
5 import matplotlib.pyplot as plt
6
7 loo = LeaveOneOut()
8
9 my_model = svm.SVC(kernel=’linear’, C=1, random_state=42)

10
11 cv_results = cross_validate(my_model , scaled_X , y, cv=loo,
12 scoring=’accuracy’)

13
14 fig, ax = plt.subplots()
15 my_x = [0,1]
16 my_height = [np.count_nonzero(cv_results[’test_score’] == 0),
17 np.count_nonzero(cv_results[’test_score’] == 1)]

18 my_bar = ax.bar(x = my_x, height=my_height , width=1,
19 color=[’#F15C61’, ’#BFD7EA’],

20 tick_label=[’wrongly classified’, ’correcty

classified’],

21 edgecolor=’k’)

22 ax.set_ylabel(’occurrences’)
23 ax.set_title(’LOO cross validation n = {}’.format(len(scaled_X)))
24 ax.bar_label(my_bar)
25 ax.set_ylim(0,1600)

Listing 3.16 Leave One Out Cross-Validation

54 3 Machine Learning Workflow

wrongly classified correcty classified
0

200

400

600

800

1000

1200

1400

1600

oc
cu

rre
nc

es

24

1332

LOO cross validation n = 1356

Fig. 3.9 Scikit-learn algorithm cheat-sheet. Modified from the official documentation of scikit-
learn

Metrics

As you have probably noticed, the validation process is based on a metric. As an
example, all the code listings 3.13, 3.13, 3.16 specify scoring=‘accuracy’. It means
that all the reported examples use accuracy as a metric to quantify the “goodness” of
a model. To note there are a plethora of metrics that you can potentially use to validate
a model. As an example, Tables 3.3, 3.4, and 3.5 report the metrics that are available
in scikit-learn for classification, regression and clustering, respectively8. To note,
all the metrics reported in Tables 3.3, 3.4, and 3.5 follow the same convention: the
goodness of the model increases with increasing the value returned by the selected
metric. In other words, higher values for a specific metric are better than lower ones.

8 https://scikit-learn.org/stable/modules/model evaluation.html

3.6 Model Deploy and Persistence 55

Table 3.3 Metrics and scoring for Classification

Method in metrics keywords Description Eq.

.accuracy score ‘accuracy’ Accuracy classification score [12]

.balanced accuracy score ‘balanced accuracy’ Compute the balanced accuracy [12]

.top k accuracy score ‘top k accuracy’ Top-k Accuracy classification [12]

.average precision score ‘average precision’ Compute the average precision [12]

.brier score loss ‘neg brier score’ Compute the Brier score loss [12]

.precision score ‘precision’ Compute the precision [12]
‘precision micro’
‘precision macro’
‘precision weighted’
‘precision samples’

.f1 score ‘f1’ Compute the F1 score [12]
‘f1 micro’
‘f1 macro’
‘f1 weighted’
‘f1 samples’

.recall score ‘recall’ Compute the recall [12]
‘recall micro’
‘recall macro’
‘recall weighted’
‘recall samples’

.jaccard score ‘jaccard’ Jaccard similarity coefficient [12]
‘jaccard micro’
‘jaccard macro’
‘jaccard weighted’
‘jaccard samples’

.roc auc score ‘roc auc’ Area Under the Receiver [12]
‘roc auc ovr’ Operating Characteristic
‘roc auc ovo’ Curve (ROC AUC)
‘roc auc ovr weighted’
‘roc auc ovo weighted’

Over-fitting and Under-fitting

Avoiding Data leakage

3.6 Model Deploy and Persistence

The deployment and persistence of a machine learning model is the last step of our
workflow. There are many options to secure the persistence of a model. Examples

56 3 Machine Learning Workflow

Table 3.4 Metrics and scoring for the Regression

Method in metrics keywords Description Eq.

.explained variance score ’explained variance’ Explained variance
regression score. [12]

.max error ‘max error’ Calculates the maximum
residual error. [12]

.mean absolute error ‘neg mean absolute error’ Mean absolute error
regression loss. [12]

.mean squared error ‘neg mean squared error’ Mean squared error
regression loss. [12]

‘neg root mean squared error’ Root mean squared error
regression loss.

.mean squared log error ‘neg mean squared log error’ Mean squared logarithmic
error regression loss. [12]

.median absolute error ‘neg median absolute error’ Median absolute error
regression loss. [12]

.r2 score ‘r2’ 𝑅2 - coefficient of
determination score. [12]

.mean poisson deviance ‘neg mean poisson deviance’ Mean Poisson deviance
regression loss. [12]

.mean gamma deviance ‘neg mean gamma deviance’ Mean Gamma deviance
regression loss. [12]

.mean absolute percentage error ‘neg mean absolute Mean absolute percentage
percentage error’ error regression loss. [12]

are the use of pickles, joblib’s pipelines, the Open Neural Network Exchange Format
(ONNX), and the Predictive Model Markup Language (PMML) format.

In detail, the pickle module allows the serializing and de-serializing of Python
object structures, like your ML models. Saving a model using pickles is straightfor-
ward. As an example, code listing XX show how to guarantee a model persistence
using pickles. When working with large sets of data, joblib’s pipelines are more
efficient than pickles (code listing xx).

To note, these two first approaches, i.e., pickle and joblib, share some maintain-
ability and security issues. As an example, pickle and joblib assume the deployment
of models in the same environment, i.e., the same version of libraries and Python
core, where they have been saved.

Due to the above-reported issues, I suggest using the ONNX and PMML formats.
They aim to improve model portability on different computing architectures and
long term archiving. As an example, code listing XX report how to secure your ML
model using ONNX.

3.6 Model Deploy and Persistence 57

Table 3.5 Metrics and scoring for the Clustering

Method in metrics keywords Description Eq.

.adjusted mutual info score ’adjusted mutual info score’ Adjusted Mutual Information [12]

between two clusterings [12]
.adjusted rand score ‘adjusted rand score’ Rand index adjusted for chance [12]

.completeness score ‘completeness score’ Completeness metric of a cluster [12]
labeling given a ground truth [12]

.fowlkes mallows score ’fowlkes mallows score’ Measure the similarity of two [12]
clusterings of a set of points [12]

.homogeneity score ‘homogeneity score’ Homogeneity metric of a cluster [12]
labeling given a ground truth [12]

.mutual info score ‘mutual info score’ Mutual Information [12]

between two clusterings [12]

.normalized mutual ‘normalized mutual Normalized Mutual Information [12]
info score info score’ between two clusterings [12]

.rand score ‘rand score’ Rand index

.v measure score ‘v measure score’ V-measure cluster labeling
given a ground truth

Part II
Unsupervised Learning

Chapter 4
Unsupervised Machine Learning Methods

4.1 Unsupervised Algorithms

As introduced in chapter 1, the unsupervised learning process acts with unlabeled
training data in the attempt of exerting significant patterns in the investigated data set.
In the present chapter, I am going to gently introduce the unsupervised algorithms for
dimensionality reduction and clustering reported in Fig.3.5. Finally, I will provide
some specific references to allow the readers in going deeper into the mathematics
governing these ML methods. In detail, I will start describing the algorithms for
dimensionality reduction. They are the Principal Component Analysis and methods
based on the Manifold Learning. Then, I will describe clustering methods, e.g.,
Hierarchical Clustering, DBSCAN, Mean Shift, K-Means, Spectral Clustering, and
Gaussian Mixtures Models.

4.2 Principal component Analysis

Principal component analysis (PCA) is a multivariate statistical method that attempts
to extract relevant information from a data set and represents it in a lower-dimensional
space (Jollife & Cadima, 2016). It aims at increasing the interpretability of a data
set by reducing the dimensionality of the problem but, at the same time, minimizing
information loss (Jollife & Cadima, 2016). In detail, it derives new uncorrelated
variables, named principal components, that maximize variance (Jollife & Cadima,
2016). Mathematically speaking, the PCA is an eigenvalue/eigenvector problem (Jol-
life & Cadima, 2016). Now consider a d-dimensional sample set 𝑋 = {x1, x2, ..., x𝑛}.
The sample set 𝑋 is equivalent to a 𝑛 × 𝑑 data matrix X, whose 𝑗 𝑡ℎ column is the
vector x 𝑗 of observations on the 𝑗 𝑡ℎ variable (Jollife & Cadima, 2016). We look for
a linear combination of the columns of matrix X with maximum variance (Jollife &
Cadima, 2016). Such linear combinations are given by:

61

62 4 Unsupervised Machine Learning Methods

𝑑∑︁
𝑗=1
𝑎 𝑗x 𝑗 = Xa, (4.1)

where a = {𝑎1, 𝑎2, ..., 𝑎𝑑} is a vector of constants (Jollife & Cadima, 2016). The
variance of any linear combination defined by the Eq. 4.1 is given by (Jollife &
Cadima, 2016):

𝑣𝑎𝑟 (Xa) = a𝑇Sa, (4.2)

where S is the sample covariance matrix associated with the data set (Jollife &
Cadima, 2016).

The solution of the problem,i.e., identifying the linear combination with max-
imum variance, consists of finding a d-dimensional vector 𝑚𝑎𝑡ℎ𝑏 𝑓 𝑎 which max-
imizes the quadratic form a𝑇Sa (Jollife & Cadima, 2016). To achieve a defined
solution, the most common restriction assumes working with unit-norm vectors, i.e.,
requiring a𝑇a = 1. Now the problem is equivalent to maximizing the following
relation (Jollife & Cadima, 2016):

a𝑇Sa − 𝜆
(
a𝑇a − 1

)
, (4.3)

After a differentiation with respect to the vector a, and equating to the null vector,
we have (Jollife & Cadima, 2016):

Sa = 𝜆a. (4.4)

In the Eq. 4.4, a is a unit-norm eigenvector and 𝜆 is the corresponding eigenvalue
of S (Jollife & Cadima, 2016). The full set of eigenvectors of S are the solutions to
the problem of obtaining up to 𝑑 new linear combinations Xa𝑘 =

∑𝑑
𝑗=1 𝑎 𝑗𝑘x 𝑗 , which

successively maximize variance, subject to uncorrelatedness with previous linear
combinations (Jollife & Cadima, 2016; Jolliffe, 2002).

4.3 Manifold Learning

The main idea behind Manifold Learning methods is that although natural data
sets are often depicted in very high-dimensional spaces, they can be successfully
described in lower dimensions since the processes generating the data are often char-
acterized by few degrees of freedom (Zheng & Xue, 2009). From the mathematical
point of view, Manifold Learning methods try modeling the data as “lying on or
near a low-dimensional manifold embedded in a higher-dimensional space (Zheng
& Xue, 2009)”. Describing in detail the mathematics behind Manifold Learning is
behind the scope of the present book. In the following, I will introduce the basic
concepts of Manifold Learning and I strongly encourage you in going into deeper
details if you intend use these techniques in your researches (Zheng & Xue, 2009).

4.3 Manifold Learning 63

Manifold: A d-dimensional manifoldM is a topological space that is locally home-
omorphic with respect to R𝑑 .

Homomorphism: a map from one algebraic structure to another of the same type
that preserves all the relevant structures.

Embedding: an embedding of a manifoldM into R𝑑 is a smooth homeomorphism
fromM to a subset of R𝑑 .

4.3.1 Isometric Feature Mapping

The isometric feature mapping (Isomap) is an ML algorithm that is “capable of dis-
covering the nonlinear degrees of freedom that underlie complex natural observations
Tenenbaum et al. (2000).” It consists of three main steps: 1) Construct a neighbor-
hood graph; 2) compute the shortest paths; 3) Construct d-dimensional embedding
Tenenbaum et al. (2000). In the practice, Isomap search for a lower-dimensional
embedding while maintaining geodesic distances between all points. In scikit-learn
the method Isomap() performs the Isometric Feature Mapping.

4.3.2 Locally Linear Embedding

Locally Linear Embedding (LLE) (Roweis & Saul, 2000), a ML algorithm that “com-
putes low-dimensional, neighborhood-preserving embeddings of high-dimensional
inputs (Roweis & Saul, 2000)”. In the practice, LLE maps the inputs into a single
global coordinate system of lower dimensionality (Roweis & Saul, 2000). Also, its
optimizations do not involve local minima (Roweis & Saul, 2000). In the practice,
LLE search for a lower-dimensional projection of the data while preserving the
distances within local neighborhoods. In scikit-learn the method LocallyLinearEm-
bedding() performs the LLE.

4.3.3 Laplacian Eigenmaps

A Laplacian Eigenmap (Belkin & Niyogi, 2003) first develops a graph incorporating
neighborhood information starting from a data set in RD. Then it utilizes the Lapla-
cian to compute a low-dimensional representation. Practically, Laplacian Eigenmaps
consists of three main steps: 1) Constructing the adjacency graph; 2) Choosing the
weights; 3) Computing Eigenmaps.

64 4 Unsupervised Machine Learning Methods

4.3.4 Hessian Eigenmaps

Hessian eigenmaps (Donoho & Grimes, 2003) are similar to Laplacian eigenmaps but
they replace the Laplacian operator with the Hessian. The main difference between
Laplacian and Hessian eigenmaps relies on the capability of Hessian eigenmaps to
overcome the convexity limitation of Laplacian eigenmaps (Zheng & Xue, 2009).
In sciki-learn Hessian eigenmaps can be performed with the LocallyLinearEmbed-
ding(), i.e., the same that we use for the LLE, but specifying method = ‘hessian’.

4.4 Hierarchical Clustering

Hierarchical clustering algorithms (Johnson, 1967) build a hierarchical representa-
tion of the data set structure, where clusters at each level of the hierarchy are assem-
bled by merging or splitting clusters at the next lower or upper level, respectively
(Hastie et al., 2017; Johnson, 1967). There are two main paradigms for hierarchical
clustering: agglomerative (i.e., bottom-up) and divisive (i.e., top-down). Agglomer-
ative strategies start from the bottom where every single observation forms a cluster
(Hastie et al., 2017; Johnson, 1967). Then, at each successive level, the algorithm
recursively merges a selected pair of clusters into a single cluster. The criterion for
merging, i.e., linkage, is based on a specific metric of dissimilarity (Hastie et al.,
2017; Johnson, 1967). On the contrary, the divisive approach starts from a single
cluster containing all the observations and, at each subsequent level, it recursively
splits one of the existent clusters into two new clusters using a metric of dissimilarity
(Hastie et al., 2017; Johnson, 1967). In scikit-learn, the method AgglomerativeClus-
tering() performs the agglomerative hierarchical clustering, i.e., using a bottom up
approach. To define the linkage criterion, that is based on the concept of dissimilar-
ity, please consider two set of observations, i.e. clusters, 𝐺 and 𝐻. The hierarchical
clustering clustering estimates the dissimilarity 𝑑 (𝐺, 𝐻) between 𝐺 and 𝐻 on the
set of pairwise observations dissimilarities 𝑑𝑖 𝑗 where one member of the pair 𝑖 is in
G and the other 𝑗 is in 𝐻 (Hastie et al., 2017). Using AgglomerativeClustering(), the
the linkage criterion could be: single, complete, group average or Ward (Table 4.1)

Table 4.1 linkage options in AgglomerativeClustering()

parameter Equation Note

linkage=‘single’ 𝑑𝑠𝑙 (𝐺, 𝐻) = min
𝑖∈𝐺
𝑗∈𝐻

𝑑𝑖 𝑗 uses the minimum of the distances be-
tween all observations of the two sets

linkage=‘complete’ 𝑑𝑐𝑙 (𝐺, 𝐻) = max
𝑖∈𝐺
𝑗∈𝐻

𝑑𝑖 𝑗 uses the maximum distances between all
observations of the two sets

linkage=‘average’ 𝑑𝑔𝑎 (𝐺, 𝐻) = 1
𝑛𝑔𝑛ℎ

∑︁
𝑖∈𝐺

∑︁
𝑗∈𝐻

𝑑𝑖 𝑗 uses the average of the distances of each
observation of the two sets

4.6 Mean Shift 65

Finally, the Ward’s linkage criterion (set as default in scikit-learn) states that the
distance between two clusters, G and H, is how much the sum of squares will increase
when we merge them:

Δ(𝐺, 𝐻) = |𝐺 | |𝐻 |
|𝐺 | + |𝐻 | ∥𝒎𝐺 + 𝒎𝐻 ∥2 , (4.5)

where Δ is the “merging cost” of combining the clusters G and H. Also, 𝒎, |𝐺 | and
|𝐻 | are the center of cluster and the cardinal of the set 𝐺 and 𝐻, respectively.

The dissimilarities 𝑑𝑖 𝑗 , can be estimated using different metrics. Using the method
AgglomerativeClustering(), they can be, among others, “euclidean” or “manhattan”.
In the case of “ward” linkage, the only accepted metric is “euclidean” (see Eq. 4.5).

4.5 DBSCAN

The Density-Based Spatial Clustering of Applications with Noise, i.e., DBSCAN,
algorithm relies on a “density-based notion of clusters which is designed to discover
clusters of arbitrary shape (Ester et al., 1996)”. Topologically, DBSCAN identifies
a core sample if there exist a pre-defined minimum number of other samples (i.e.,
neighbors of the core sample) within a distance of 𝜖 (Ester et al., 1996). A cluster is
a set of core samples plus their neighbors. Any sample that is neither a core sample
nor a neighbor, i.e., it is at least 𝜖 far from any core sample, is marked as an outlier
(Ester et al., 1996). The DBSCAN does not require the number of clusters to be
specified.

4.6 Mean Shift

The Mean Shift is a nonparametric technique for clustering analysis (Comaniciu &
Meer, 2002).

The Mean Shift algorithm starts performing a kernel density estimation in the
investigated d-dimensional feature space (Derpanis, 2005). As a result, the kernel
density estimation defines an empirical probability density function where “dense
regions” defines local maxima (i.e., modes) of the underlying distribution (Derpanis,
2005). Finally, the Mean Shift algorithm performs a gradient ascent procedure, i.e.,
it searches for these maxima in the empirical probability density function, until
convergence (Derpanis, 2005). In detail, The Mean Shift procedure for a given
observation x𝑖 is as follows (Comaniciu & Meer, 2002; Derpanis, 2005):

1. Compute the mean shift vector m(x𝑡
𝑖
);

2. Translate density estimation window: x𝑡+1
𝑖

= x𝑡
𝑖
+ 𝑚(x𝑡

𝑖
);

3. Iterate steps 1. and 2. until convergence.

The mean shift vector is defined as follow [Eq. 3 in Comaniciu and Meer (2002)]:

66 4 Unsupervised Machine Learning Methods

m(x𝑡𝑖) =

∑𝑛
𝑖=1 x𝑖𝑔

(x−x𝑖
ℎ

2
)

∑𝑛
𝑖=1 𝑔

(x−x𝑖
ℎ

2
) − x

 (4.6)

where the function 𝑔(𝑥) denotes the derivative of the selected kernel estimator and
h (i.e., the bandwidth parameter) defines the radius of kernel (Comaniciu & Meer,
2002).

In scikit-learn the MeanShift() method perform the mean shift clustering using
a flat kernel. Please note that the default scikit-learn parametrization of the mean
shift algorithm automatically sets the number of clusters and the optimal ℎ, i.e. the
bandwidth. However, ℎ can be manually adjusted using the bandwidth parameter.

4.7 K-Means

The clustering by K-Means consists of separating samples into different groups of
equal variance. Please note the K-Means algorithm requires the number of clusters
to be specified. Mathematically, the K-Means algorithm can be expressed as follow:
given an integer 𝑘 and a set of 𝑛 data points in R𝑑 , the goal is to choose 𝑘 centers
to minimize the total squared distance between each point and its closest center, i.e.,
the inertia (𝜙) (Arthur & Vassilvitskii, 2007):

𝜙 =
∑︁
x∈𝑋

min
c∈𝐶

∥x − c∥2 (4.7)

Usually, the K-Means implementation, e.g., in scikit-learn, refers to the solution
of the problem proposed by Lloyd (1982). In detail, the solution proposed by Arthur
and Vassilvitskii (2007) consists of four steps:

1. Arbitrarily choose an initial 𝑘 centers 𝐶 = {c1, c2, ..., c𝑘 , };
2. For each 𝑖 ∈ {1, ..., 𝑘}, set the cluster 𝑌𝑖 to be the set of points in 𝑋 that are

closer to c𝑖;
3. defines new centroids c𝑖 by averaging all the samples assigned to each previous

centroid;
4. Repeat Steps 2 and 3 until 𝐶 no longer changes.

In scikit-learn, the method KMeans() executes the K-Means clustering. Also,
The MiniBatchKMeans() implements a modification of the KMeans algorithm by
utilizing mini-batches to save computation time.

4.8 Spectral Clustering

Spectral Clustering (Von Luxburg, 2007) is a ML technique that combines cluster-
ing with dimensionality reduction (Sugiyama, 2015). In detail, Spectral Clustering

4.9 Gaussian Mixture Models 67

utilizes a kernel function to transform samples into a feature space. Then, it applies
locality preserving projection to reduce the dimensionality (Fig. 4.1), which has
the property that cluster structure of data tends to be preserved (Sugiyama, 2015).
Please note that a locality preserving projection in the feature space is equivalent
to the Laplacian eigenmap manifold method described in Section 4.3.3 (Sugiyama,
2015). In the practice the Spectral Clustering a low-dimension embedding of the
similarity (or affinity) matrix between samples (Von Luxburg, 2007). Finally, Spec-
tral Clustering utilizes a clustering method, e.g., K-Means, to obtain cluster labels
(Sugiyama, 2015; Von Luxburg, 2007).

In shikit-learn the SpectralClustering() method applies the Spectral Clustering. To
note, SpectralClustering() requires the number of clusters to be specified in advance.

Fig. 4.1 Locality preserving projection. It tries to maintain the cluster structure when reducing the
dimensionality of the problem. Modified from Sugiyama (2015)

4.9 Gaussian Mixture Models

Gaussian Mixture Models (GMMs) try reconstructing the probability density func-
tion that underlies the investigated data set as generated by a mixture of a finite
number of Gaussian distributions with unknown parameters.

Mathematically, consider a d-dimensional, i.e., characterized by 𝑑 variables or
features, sample set 𝑋 = {x1, x2, ..., x𝑛} of independent and identically distributed,
observations (McLachlan & Peel, 2000). Generally speaking, Finite Mixtures Models
(FMMs) assume that the observations x ∈ 𝑋 derive by a probability density function
described by a mixture of 𝑔 components (McLachlan & Peel, 2000; Scrucca et al.,
2016):

68 4 Unsupervised Machine Learning Methods

𝑓 (x, 𝜓) =
𝑔∑︁
𝑖=1

𝜋𝑖 𝑓𝑖 (x, 𝜽 𝑖) (4.8)

where 𝑔 and 𝜓 =
{
𝜋1, ..., 𝜋𝑔−1, 𝜽1, ..., 𝜽𝑔

}
are the number of mixture components

and the parameters of the model, respectively (Scrucca et al., 2016). Also, 𝑓𝑖 (x, 𝜽 𝑖)
is the 𝑖𝑡ℎ component density for the sample observation x and parametrized by the
vector 𝜽 𝑖 . Finally,

{
𝜋1, ..., 𝜋𝑔−1

}
are the mixing weights (Scrucca et al., 2016).

In many applications, the component densities 𝑓𝑖 (x, 𝜽 𝑖) are assumed to belong
to the same parametric family (McLachlan & Peel, 2000). In some applications, the
component densities are taken to be different. Gaussian mixtures models assume
𝑓𝑖 (x, 𝜽 𝑖) as multivariate normal (McLachlan & Peel, 2000).

The implementation of a finite gaussian mixtures model assumes 𝑓𝑖 (x, 𝜽 𝑖) as
multivariate normal, a fixed G, and consists of estimating the model parameters 𝜓
(McLachlan & Peel, 2000).

In scikit-learn the methods GaussianMixture() and BayesianGaussianMixture
implement the finite Gaussian Mixture model based on the expectation-maximization
[EM; Dempster et al. (1977)] and Variational Bayesian Inference (Blei & Jordan,
2006; Hastie et al., 2017), respectively. The Variational Bayesian Inference is similar
to the Expectation Maximization. However, it adds a regularization step by inte-
grating information from prior distributions (Blei & Jordan, 2006; Hastie et al.,
2017). The aim is to avoid pathological special cases, often found in expectation-
maximization solutions (Blei & Jordan, 2006).

Chapter 5
Clustering and Dimensionality Reduction in
Petrology

5.1 Unveil the Chemical Record of a Volcanic Eruption

Unsupervised machine learning methods can help us in decoding the chemical
record stored in the crystal cargo of a single eruption or multiple volcanic events
(Boschetty et al., 2022; Caricchi et al., 2020; Musu et al., 2022). This record often
includes the major element’s chemical composition, i.e., multivariate compositional
data (Aitchison, 1982, 1984; Aitchison & Egozcue, 2005; Boschetty et al., 2022),
of different crystal phases, e.g., olivine, clinopyroxene, ortopyroxene, amphibole,
plagioclase, garnet, and quartz. Each of these phases provides clues to unravel the
complex dynamics of a volcanic plumbing system (Ubide et al., 2021), and its
evolution (Costa et al., 2020; Petrelli & Zellmer, 2020).

During the crystallization process (Fig. 5.1), minerals grow and adapt the textural
aspect and chemistry to the melt compositions and the thermodynamic conditions of
the magmatic system (Ubide et al., 2021). As an example, concentric chemical zones
from the core to the rim of a crystal may reflect sequential changes in the magmatic
system through time (Fig. 5.1). Moderate to rapid growths at intermediate to high
degrees of undercooling (ΔT = T𝑙𝑖𝑞𝑢𝑖𝑑𝑢𝑠𝑇𝑐𝑟 𝑦𝑠𝑡𝑎𝑙𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛) may result in sector zoning
in euhedral crystals or skeletal to dendritic textures Fig. 5.1. In addition, diffusive
re-equilibration of compositional gradients can further modify the chemical patterns
within crystals (Costa et al., 2020; Petrelli & Zellmer, 2020).

At shallow crustal levels Figure 5.1), pre- and syn-eruptive dynamics cover a
complex range of processes, including magma fractionation, recharge, mixing, as-
similation, and degassing (Ubide et al., 2021). Interrogating the crystal cargo of an
eruption provides us the passport to unravel the complex dynamics occurring in a
volcanic plumbing system before and during eruptions (Ubide et al., 2021).

In the present chapter, I will focus on the data set reported by Musu et al. (2022).
It consists of clinopyroxene analyses (cpx) erupted by the South-East Crater of Mt.
Etna during the sequence of lava fountains in February-March 2021 (Musu et al.,
2022).

69

70 5 Clustering and Dimensionality Reduction in Petrology

MID to DEEP
CRUSTAL LEVELS

SHALLOW to MID
CRUSTAL LEVELS

DEEP
CRUSTAL LEVELS

SHALLOW
CRUSTAL LEVELS

eruption

0.7

0.5

1.0

0.2

~20

~15

~30

~7

Depth
km

Pressure
GPa

shallow

intermediate

deep

crystal

bubble

reservoirs

A

recharge crystals

resident crystals
eruption

melt and crystal cargo

Storage conditions:
- thermobarometry
- rock textures

Crystal timescales:
- di�usion
- dissolution
- growth

Crystal ages:
-radiometric dating

Increasing Magma Undercooling (ΔT)

Deviation from equilibrium

liquidus T

system T

solidus T

liquid

liquid +
crystals

crystallyne rockTe
m

pe
ra

tu
re

 In
cr

ea
se

ΔT

A - Making crystal archives

B & C - Dynamics of pre- and syn-eruptive events

B

C

Fig. 5.1 The architecture of a volcanic plumbing system and related pre- and syneruptive dynamics.
Modified from Petrelli and Zellmer (2020) and Ubide et al. (2021)

5.2 Geological Setting 71

Musu et al. (2022) focused on cpx’s analyses since 1) cpx is typically found in
mafic to intermediate magmas, 2) it crystallizes over a wide range of temperatures
(T) and pressures (P), 3) cpx chemistry is susceptible to changes in response to
magma composition, water content, pressure, and temperature variations (Musu et
al., 2022). All these properties make cpx a robust thermobarometer (Higgins et al.,
2021; Jorgenson et al., 2022; Petrelli et al., 2020; Putirka, 2008) and a fine recorder
of the chemical evolution of magmatic systems (Boschetty et al., 2022; Caricchi
et al., 2020; Ubide & Kamber, 2018).

5.2 Geological Setting

Mt. Etna is located in southern Italy, eastern Sicily (Italy; Fig. 5.2) and It is the
largest active volcano in Europe (Branca & Del Carlo, 2004). Also, Mt. Etna is one
of the most active volcanoes in the world (Cappello et al., 2013; Corsaro & Miraglia,
2022).

Italy

Fig. 5.2 The Etna volcano. Modified from Musu et al. (2022)

Mt. Etna volcano exhibits different eruptive behaviors, from effusive to explosive,
including strombolian and violent lava-fountaining occurrences (Branca & Del Carlo,
2004; Corsaro & Miraglia, 2022; Ferlito et al., 2014). Eruptions come from summit
craters and fissure vents placed along its flanks (Branca & Del Carlo, 2004; Di Renzo
et al., 2019; Musu et al., 2022). The summit area consists of four active vents, i.e.,

72 5 Clustering and Dimensionality Reduction in Petrology

Voragine (VOR), Bocca Nuova (BN), North-East Crater (NEC), and South-East
Crater (SEC). Among these, SEC is the youngest and the most active (Andronico &
Corsaro, 2011; Corsaro & Miraglia, 2022; Di Renzo et al., 2019).

A cyclical eruptive sequence started at the SEC on December 13, 2020. It gener-
ated 66 paroxysms up to February 21, 2022 (Andronico & Corsaro, 2011; Bonaccorso
et al., 2021; Marchese et al., 2021).

5.3 The investigated data set

The dataset consists of Major Element chemical analyses collected along rim-to-core
transects on clinopyroxenes with a point spacing of 2 𝜇𝑚 (Musu et al., 2022). The
total number of analyses is 1250 (Musu et al., 2022). The analyses were collected
using a JEOL 8200 Superprobe at the University of Geneva and a JEOL JXA-8530F
at the University of Lausanne (Musu et al., 2022). Clinopyroxene samples belong to
lapilli that were collected from the deposits of the 16𝑡ℎ, 19𝑡ℎ, and 28𝑡ℎ February and
2𝑛𝑑 and 10𝑡ℎ March 2021 lava fountains. Fig. 5.3 highlights the tabular structure of
the data set.

5.4 Data Pre-Processing

Code listings 5.1 and 5.2 report our data pre-processing strategy, including a final
step of data visualization. It consists of a preliminary step of data cleaning, followed
by a data transformation in agreement with CoDA, and a ‘robust’ normalization. The
resulting CoDA transformed and scaled data have been finally visualized.

Data Cleaning

Code listings 5.1 mainly defines a preliminary data cleaning procedure. In detail,
the function named calc cations on oxygen basis() (lines from 4 to 29) calculates
the number of cations deriving from a specific chemical analysis based on a fixed
number of oxygens on the chemical formula of a specific crystal phase. We are dealing
with clinopyroxene analyses, so the base chemical formula contains 6 oxygens and 4
cations (line 36). Also, we define a tolerance of 0.06. This means that we will discard
all the analyses that return less than 3.94 and more than 4.06 cations in the formula,
respectively. We are mainly discarding bad chemical analyses (e.g., affected by melt
or other contaminations, or other issues). If you do not understand this step, please
refer to an introductory text on mineralogy for further details (REF). Another test
for anhydrous crystal phases is to check for the closure, i.e., verifying that the sum
of the oxides is close enough to 100 wt. % (lines 32 and 33).

5.4 Data Pre-Processing 73

Fig. 5.3 The structure of the investigated data set.

74 5 Clustering and Dimensionality Reduction in Petrology

Now moving to the code listing 5.1 it starts with isolating from the data set, the
only chemical elements of interest for the successive statistical analyses (i.e., 𝑆𝑖𝑂2,
𝑇𝑖𝑂2, 𝐴𝑙2𝑂3, 𝐹𝑒𝑂, 𝑀𝑔𝑂, 𝐶𝑎𝑂, and 𝑁𝑎2𝑂; lines 7 to 10). The last stem of data
cleaning consist of removing all the rows containing data that are below or exceed
the 0.1 and 99.9 percentile, respectively (lines 12-14).

1 import numpy as np
2 import pandas as pd
3
4 def calc_cations_on_oxygen_basis(myData0, my_ph, my_el, n_ox):
5 Weights = {

6 ’SiO2’: [60.0843,1.0,2.0], ’TiO2’:[79.8788,1.0,2.0],

7 ’Al2O3’: [101.961,2.0,3.0],’FeO’:[71.8464,1.0,1.0],

8 ’MgO’:[40.3044,1.0,1.0], ’MnO’:[70.9375,1.0,1.0],

9 ’CaO’:[56.0774,1.0,1.0], ’Na2O’:[61.9789,2.0,1.0],

10 ’K2O’:[94.196,2.0,1.0], ’Cr2O3’:[151.9982,2.0,3.0],

11 ’P2O5’:[141.937,2.0,5.0], ’H2O’:[18.01388,2.0,1.0]}

12 myData = myData0.copy()

13 myData = myData.add_prefix(my_ph + ’_’)

14 for el in my_el: # Cation mole proportions

15 myData[el + ’_cat_mol_prop’] = myData[my_ph +

16 ’_’ + el] * Weights[el][1] / Weights[el][0]

17 for el in my_el: # Oxygen mole proportions

18 myData[el + ’_oxy_mol_prop’] = myData[my_ph +

19 ’_’ + el] * Weights[el][2] / Weights[el][0]

20 totals = np.zeros(len(myData.index)) # Ox mole prop tot

21 for el in my_el:

22 totals += myData[el + ’_oxy_mol_prop’]

23 myData[’tot_oxy_prop’] = totals

24 totals = np.zeros(len(myData.index)) # totcations

25 for el in my_el:

26 myData[el + ’_num_cat’] = n_ox * myData[el +

27 ’_cat_mol_prop’] / myData[’tot_oxy_prop’]

28 totals += myData[el + ’_num_cat’]

29 return totals

30
31 my_dataset = pd.read_table(’ETN21_cpx_all.txt’)
32 my_dataset = my_dataset[(my_dataset.Total >98) &
33 (my_dataset.Total <102)]

34 Elements = {’cpx’: [’SiO2’, ’TiO2’, ’Al2O3’,

35 ’FeO’, ’MgO’, ’MnO’, ’CaO’, ’Na2O’,’Cr2O3’]}

36 Cat_Ox_Tolerance = {’cpx’: [4,6,0.06]}

37 my_dataset[’Tot_cations’] = calc_cations_on_oxygen_basis(
38 myData0 = my_dataset ,

39 my_ph = ’cpx’,

40 my_el = Elements[’cpx’],

41 n_ox = Cat_Ox_Tolerance[’cpx’][1])

42
43 my_dataset = my_dataset[(
44 my_dataset[’Tot_cations’] < Cat_Ox_Tolerance[’cpx’][0] +

45 Cat_Ox_Tolerance[’cpx’][2])&(

46 my_dataset[’Tot_cations’] > Cat_Ox_Tolerance[’cpx’][0] -

5.4 Data Pre-Processing 75

47 Cat_Ox_Tolerance[’cpx’][2])]

Listing 5.1 Data pre-processing. Initial step.

Compositional Data Analysis (CoDA)

The study of a geochemical data set falls in the field of Compositional Data Analysis
(CoDA). In this context, the oxides are expressed as a percentage, so their nominal
sum is 100%, defining a ‘closed’, or ‘compositional data set’ (Aitchison, 1982, 1984;
Aitchison & Egozcue, 2005). Conducting statistical analysis directly on ‘closed data
sets’ can lead to issues (Aitchison, 1982, 1984; Aitchison & Egozcue, 2005) as some
statistical approaches require the data to be normally distributed and not constrained
to a constant total value (Boschetty et al., 2022).

1 from skbio.stats.composition import ilr
2 from sklearn.preprocessing import RobustScaler
3 import matplotlib.pyplot as plt
4 import seaborn as sns
5
6 elms_for_clustering = {’cpx’: [’SiO2’, ’TiO2’,

7 ’Al2O3’, ’FeO’, ’MgO’, ’CaO’, ’Na2O’]}

8
9 my_dataset = my_dataset[elms_for_clustering[’cpx’]]

10
11 my_dataset = my_dataset[˜((
12 my_dataset < my_dataset.quantile(0.001)) |

13 (my_dataset > my_dataset.quantile(0.999))).any(axis=1)]

14
15 my_dataset_ilr = ilr(my_dataset)
16
17 transformer = RobustScaler(
18 quantile_range=(25.0, 75.0)).fit(my_dataset_ilr)

19
20 my_dataset_ilr_scaled = transformer.transform(my_dataset_ilr)
21
22 fig = plt.figure(figsize=(8,8))
23
24 for i in range(0,6):
25 ax1 = fig.add_subplot(3, 2, i+1)

26 sns.kdeplot(my_dataset_ilr_scaled[:, i],fill=True,

27 color=’k’, facecolor=’#c7ddf4’, ax = ax1)

28 ax1.set_xlabel(’scaled ilr_’ + str(i+1))

29 fig.align_ylabels()
30 fig.tight_layout()

Listing 5.2 Compositional Data Analysis (CoDA)

76 5 Clustering and Dimensionality Reduction in Petrology

Performing multivariate statistical analysis ‘compositional data sets’ directly is
not formally correct and can lead to biases in the results or other unwanted issues
(Aitchison, 1982, 1984; Aitchison & Egozcue, 2005). Different data transformations
have been proposed to allow the application of standard and advanced statistical
methods to compositional data sets. Examples are the additive log-ratio (𝑎𝑙𝑟), the
centered log-ratio (𝑐𝑙𝑟), and the isometric log-ratio (𝑖𝑙𝑟) transformation, respectively
(Aitchison, 1982, 1984; Aitchison & Egozcue, 2005). The 𝑖𝑙𝑟 has been shown to work
effectively with geochemical data (Aitchison, 1982, 1984; Aitchison & Egozcue,
2005) mapping a compositional data set into a real Euclidean space (Aitchison,
1982, 1984; Aitchison & Egozcue, 2005). We briefly introduced CoDA analysis in
section 3.3, also reporting the related equations.

At line 16 of code listing 5.1, we apply the 𝑖𝑙𝑟 transformation to our data, then
scaling in agreement with the median and the inter-quartile range (lines 18-21), i.e.,
applying the RobustScaler(). Then we visualize the resulting features (Fig. 5.4).

2 1 0 1 2 3
scaled ilr_1

0.0

0.2

0.4

0.6

De
ns

ity

2 1 0 1 2 3 4
scaled ilr_2

0.0

0.2

0.4

0.6

De
ns

ity

4 3 2 1 0 1 2
scaled ilr_3

0.0

0.2

0.4

0.6

De
ns

ity

2 1 0 1 2
scaled ilr_4

0.0

0.2

0.4

0.6

0.8

De
ns

ity

3 2 1 0 1 2
scaled ilr_5

0.0

0.2

0.4

0.6

De
ns

ity

2 0 2 4
scaled ilr_6

0.0

0.1

0.2

0.3

0.4

0.5

De
ns

ity

Fig. 5.4 Inspecting 𝑖𝑙𝑟 tranformed data.

5.5 Clustering analyses 77

5.5 Clustering analyses

Code listing 5.3 shows how to develop a hierarchical clustering dendogram in Python
(Fig. 5.5). A dendrogram is a tree diagram used to report the result of a hierarchical
clustering estimation.

1 import numpy as np
2 from sklearn.cluster import AgglomerativeClustering
3 from scipy.cluster.hierarchy import dendrogram ,

set_link_color_palette

4
5 def plot_dendrogram(model, **kwargs):
6
7 counts = np.zeros(model.children_.shape[0])

8 n_samples = len(model.labels_)

9 for i, merge in enumerate(model.children_):

10 current_count = 0

11 for child_idx in merge:

12 if child_idx < n_samples:

13 current_count +=1

14 else:

15 current_count += counts[child_idx -n_samples]

16 counts[i] = current_count

17
18 linkage_matrix = np.column_stack([model.children_ ,

19 model.distances_ ,

20 counts]).astype(float)

21
22 dendrogram(linkage_matrix , **kwargs)

23
24 model = AgglomerativeClustering(linkage=’ward’,
25 affinity=’euclidean’,

26 distance_threshold = 0,

27 n_clusters=None)

28
29 model.fit(my_dataset_ilr_scaled)
30
31 fig, ax = plt.subplots(figsize = (10,6))
32 ax.set_title(’Hierarchical clustering dendrogram’)
33
34 plot_dendrogram(model, truncate_mode=’level’, p=5,
35 color_threshold=0,

36 above_threshold_color=’black’)

37
38 ax.set_xlabel(’Number of points in node’)
39 ax.set_ylabel(’Height’)

Listing 5.3 Developing a hierarchical clustering dendogram in Python

78 5 Clustering and Dimensionality Reduction in Petrology

The dendrogram can be oriented both vertically (e.g., Fig. 5.5) and horizontally.
The orientation can be easily changed in the dendrogram() function by the orientation
parameter (i.e., ‘top’, ‘bottom’, ‘left’, or ‘right’).

(1
0)

(1
3)

(1
1)

(1
9)

(2
0)

(2
7) (6
)

(1
2) (3
)

(8
)

(6
)

(6
)

(3
)

(1
2)

(1
2)

(1
2)

(2
0)

(2
2)

(4
8)

(5
2)

(2
0)

(3
0)

(6
8)

(4
6)

(1
8)

(4
9)

(9
7)

(7
6)

12
42 (2

)
(8

)
(2

3)
26

7 (3
)

(4
)

(6
)

24
1 (2
)

(6
)

(8
)

(3
)

(3
)

(5
)

(4
)

(1
0) (8
)

(6
)

(1
1) 95 98 97 (2
)

(5
6)

(6
0)

(4
5)

(3
1)

(2
0) (7
)

(3
3)

(4
7)

(2
0)

(3
2)

(1
4)

(3
3)

Number of points in node

0

10

20

30

40

50

60

He
ig

ht
Hierarchical clustering dendrogram

Fig. 5.5 A dendogram resulting from code listing 5.3.

1 th = 16.5
2 fig, ax = plt.subplots(figsize = (10,6))
3 ax.set_title("Hierarchical clustering dendrogram")
4 set_link_color_palette([’#000000’,’#C82127’, ’#0A3A54’,
5 ’#0F7F8B’, ’#BFD7EA’, ’#F15C61’, ’#E8BFE7’])

6
7 plot_dendrogram(model, truncate_mode=’level’, p=5,
8 color_threshold=th,

9 above_threshold_color=’grey’)

10
11 plt.axhline(y = th, color = "k", linestyle = "--", lw=1)
12 ax.set_xlabel("Number of points in node")
13
14 fig, ax = plt.subplots(figsize = (10,6))
15 ax.set_title("Hierarchical clustering dendrogram")
16 ax.set_ylabel(’Height’)
17
18 plot_dendrogram(model, truncate_mode=’lastp’, p=6,
19 color_threshold=0,

20 above_threshold_color=’k’)

21
22 ax.set_xlabel("Number of points in node")

Listing 5.4 Refining the dendogram.

5.5 Clustering analyses 79

(1
0)

(1
3)

(1
1)

(1
9)

(2
0)

(2
7) (6
)

(1
2) (3
)

(8
)

(6
)

(6
)

(3
)

(1
2)

(1
2)

(1
2)

(2
0)

(2
2)

(4
8)

(5
2)

(2
0)

(3
0)

(6
8)

(4
6)

(1
8)

(4
9)

(9
7)

(7
6)

12
42 (2

)
(8

)
(2

3)
26

7 (3
)

(4
)

(6
)

24
1 (2
)

(6
)

(8
)

(3
)

(3
)

(5
)

(4
)

(1
0) (8
)

(6
)

(1
1) 95 98 97 (2
)

(5
6)

(6
0)

(4
5)

(3
1)

(2
0) (7
)

(3
3)

(4
7)

(2
0)

(3
2)

(1
4)

(3
3)

Number of points in node

0

10

20

30

40

50

60

Hierarchical clustering dendrogram

Fig. 5.6 The dendogram resulting from code listing 5.4.

4 2 0 2 4
PC_1

3

2

1

0

1

2

3

4

5

PC
_2

Principal Component Analysys

Fig. 5.7 Scatter diagram of the the first two principal components.

80 5 Clustering and Dimensionality Reduction in Petrology

When oriented vertically, the vertical scale reports the measure of the distance
or the similarity among clusters. If we draw a horizontal line, the number of leaves
we intercept (e.g., Fig. 5.6) defines the number of clusters at that specific height.
Increasing the height, the number of clusters reduce. In our specific case, the fixing
of a threshold at 16.5 defines 6 clusters (code listing 5.4 and Fig. 5.6).

1 from sklearn.cluster import AgglomerativeClustering
2 from sklearn.decomposition import PCA
3 import numpy as np
4 import matplotlib.pyplot as plt
5
6 my_colors = {0:’#0A3A54’,
7 1:’#E08B48’,

8 2:’#BFBFBF’,

9 3:’#BD22C6’,

10 4:’#FD787B’,

11 5:’#67CF62’ }

12 #PCA
13 model_PCA = PCA()
14 model_PCA.fit(my_dataset_ilr_scaled)
15 my_PCA = model_PCA.transform(my_dataset_ilr_scaled)
16
17 fig, ax = plt.subplots()
18 ax.scatter(my_PCA[:,0], my_PCA[:,1],
19 alpha=0.6,

20 edgecolors=’k’)

21 ax.set_title(’Principal Component Analysys’)
22 ax.set_xlabel(’PC_1’)
23 ax.set_ylabel(’PC_2’)

Listing 5.5 Plotting the first two principal components

5.6 Dimensionality Reduction

The 𝑖𝑙𝑟 transformed data set consists of 6 features (Fig. 5.4). In the attempt of
visualizing the structure of our data, I performed the Principal Component Analysis
(PCA; section 4.2). It consists of a linear dimensionality reduction that uses a Singular
Value Decomposition of the data set to project it to a lower dimensional space.

Code listing 5.5 shows how to apply the Principal Component Analysis to our
data set. Also, it provides us with a binary diagram (Fig. 5.7) reporting the two first
principal components.

Visualizing the 6 clusters highlighted in Fig. 5.6 could be a benefit. Code listing 5.6
shows how to do that (Fig. 5.8). Also, Code listing 5.6 shows how to apply and
visualize (Fig. 5.9) the KMeans clustering (section 4.7).

5.6 Dimensionality Reduction 81

4 2 0 2 4
PC_1

3

2

1

0

1

2

3

4

5

PC
_2

Hierarchical Clustering

Fig. 5.8 Combining the Principal component analysis with the Hierarchical clustering

4 2 0 2 4
PC_1

3

2

1

0

1

2

3

4

5

PC
_2

KMeans

Fig. 5.9 Combining the Principal component analysis with the KMeans clustering

82 5 Clustering and Dimensionality Reduction in Petrology

1 #AgglomerativeClustering
2 model_AC = AgglomerativeClustering(linkage=’ward’,
3 affinity=’euclidean’,

4 n_clusters=6)

5 my_AC = model_AC.fit(my_dataset_ilr_scaled)
6
7 fig, ax = plt.subplots()
8 label_to_color = [my_colors[i] for i in my_AC.labels_]
9 ax.scatter(my_PCA[:,0], my_PCA[:,1],

10 c=label_to_color , alpha=0.6,

11 edgecolors=’k’)

12 ax.set_title(’Hierarchical Clustering’)
13 ax.set_xlabel(’PC_1’)
14 ax.set_ylabel(’PC_2’)
15 my_dataset[’cluster_HC’] = my_AC.labels_
16
17 #KMeans
18 from sklearn.cluster import KMeans
19 myKM = KMeans(n_clusters=6).fit(my_dataset_ilr_scaled)
20
21 fig, ax = plt.subplots()
22 label_to_color = [my_colors[i] for i in myKM.labels_]
23 ax.scatter(my_PCA[:,0], my_PCA[:,1],
24 c=label_to_color , alpha=0.6,

25 edgecolors=’k’)

26 ax.set_title(’KMeans’)
27 ax.set_xlabel(’PC_1’)
28 ax.set_ylabel(’PC_2’)
29 my_dataset[’cluster_KM’] = myKM.labels_

Listing 5.6 Combining the Principal component analysis with the Hierarchical and KMeans
clustering methods

Chapter 6
Clustering of Multi-Spectral Data

6.1 Spectral Data from Earth-Observing Satellites

Earth-Observing satellite missions like Sentinel1 and Landsat2 provide us with mul-
tispectral, hyperspectral and panchromatic data. Going into more details, the Sentinel
Earth-observing satellite missions are part of the Copernicus program, developed
by the European Space Agency (ESA)3, whereas the Landsat Program is jointly
managed by NASA and the U.S. Geological Survey2.

Spectral images are two-dimensional representations of surface reflectance or
radiation in different bands of the electromagnetic spectrum. Multi-spectral and
hyper-spectral data are acquired by multiple sensors, operating at wide and narrow
(sometimes quasi-continuous) wavelength ranges, respectively. Differently, panchro-
matic images derive from detectors covering the entire visible range.

Multi-spectral, hyper-spectral, and panchromatic data can be combined and mod-
ulated to produce new indexes (e.g., the Generalized Difference Vegetation Index or
the Normalized Difference Snow Index), able to highlight specific phenomena and
improve data interpretation (REF).

As an example, the SENTINEL-2 Multi-spectral Instrument (MSI) works on 13
spectral bands. Four bands (i.e., B2, B3, B4, and B8) have a spatial resolution of
10 meters, six bands (i.e., B5, B6, B7, B8a, B11, and B12) of 20 meters, and three
bands (i.e., B1, B9, and B10) of 60 meters (Fig. 6.1).

1 https://sentinels.copernicus.eu
2 https://landsat.gsfc.nasa.gov
3 https://www.esa.int

83

84 6 Clustering of Multi-Spectral Data

400

Sp
at

ia
l R

es
ol

ut
io

n
[m

]

Wavelength [nm]
1000 1600 2200

10

20

60

Visible NIR SWIR

B2 B3 B4 B8

B6

B5 B7 B8a

B9B1 B10

B11 B12

Fig. 6.1 Spectral bands of Sentinel2 satellites. Modified from Majidi Nezhad et al. (2021)

6.2 Import Multi-spectral Data in Python

There are a plethora of access points where download multispectral data. Examples
are the USGS Earth Explorer4, the Copernicus Open Access Hub5, and Theia6.

As an example, Figure 6.2 represents the recombination of the B4, B3, and B2
bands as RGB (i.e., Red, Green, and Blue) image of a SENTINEL2 acquisition
downloaded from the Theia portal. The location of the picture is the southern New
South Wales (Australia)7. Each side of the square picture measures about 110 km.

Figure 6.3 reports the data structure of a SENTINEL2 repository downloaded
from Theia. In detail, the repository follows the MUSCATE8 nomenclature and
contains: a metadata file, a quick-look file, many Geo-Tiff image files, and two sub-
repositories, i.e., MASKS and DATA, containing supplementary data. The naming
enable us to uniquely identify each product and it consists of many tags starting with
a platform identification (i.e., SENTINEL2B) followed by the date of acquisition in
the format YYYYMMDD-HHmmSS-sss (i.e., 20210621-001635-722), with YYYY
year, MM month, DD day, HH hour over 24 hours, mm minuets, SS seconds and sss
milliseconds. The subsequent tags refer to product level (i.e., L2A), geographical
zone (i.e., T55HDB C), and product version (i.e., V2-2), respectively. The letter L,
a number and a letter characterizes different product levels with the exception of
the level L0, i.e., compressed raw data, that is not followed by any letter. Levels
L1A, L1B, and L2A correspond to uncompressed raw data, radiometrically cor-
rected radiance data, and orthorectified Bottom-Of-Atmosphere (BOA) reflectance,

4

5 https://scihub.copernicus.eu
6 https://catalogue.theia-land.fr
7 https://bit.ly/ml geart
8 https://www.theia-land.fr/en/product/sentinel-2-surface-reflectance/

6.2 Import Multi-spectral Data in Python 85

Fig. 6.2 RGB composite image where the B4, B3, and B2 bands regulate the intensities of the Red,
Green, and Blue channels, respectively.

respectively9. Spectral Geo-tiff files also report an additional tag, i.e., SRE and
FRE, corresponding to the image in ground reflectance without the correction of
slope effects and image in ground reflectance with the correction of slope effects,
respectively. We will work on FRE data.

To import SENTINEL2 multispectral data, I suggest using Rasterio10. Rasterio
provides us a Python API based on Numpy and GeoJSON (i.e., an open standard
format designed for representing geographical features, along with their non-spatial
attributes) to read, write and manage Geo-Tiff data.

If you followed the instruction reported in Chapter 2, your Python machine learn-
ing environments named env ml and env ml intel contain Rasterio already. With
Rasterio, opening Geo-Tiff files is straightforward (code listing 6.1).

9 https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi
10 https://rasterio.readthedocs.io/

86 6 Clustering of Multi-Spectral Data

Fig. 6.3 Sentinel2 data structure.

1 import rasterio
2 import numpy as np
3
4 imagePath = ’SENTINEL2B_20210621 -001635-722_L2A_T55HDB_C_V2 -2/

SENTINEL2B_20210621 -001635-722_L2A_T55HDB_C_V2 -2_FRE_’

5
6 bands_to_be_inported = [’B2’, ’B3’, ’B4’, ’B8’]
7
8 bands_dict = {}
9 for band in bands_to_be_inported:

10 with rasterio.open(imagePath+ band +’.tif’, ’r’,

11 driver=’GTiff’) as my_band:

12 bands_dict[band] = my_band.read(1)

Listing 6.1 Importing Sentinel2 data in Python using rasterio.

The code listing 6.1 creates a dictionary of NumPy arrays, i.e., bands dict, con-
taining spectral information for the B2, B3, B4, and B, corresponding to the blue,
green, red and near-infrared band, respectively. In the code listing 6.1, we limit the
import to 4 bands, all acquired at the same spatial resolution (i.e. 10 m). How-
ever, the script can be easily extended to import a larger number of bands. It is
straightforward that the combination of data coming from bands acquired at differ-
ent resolutions (e.g., B2 at 10 m and B6 at 20 m) requires a preliminary re-sampling
to a common resolution.

Combining the data of bands dict dictionary, many different representations can
be achieved. As an example, Sovdat et al. (2019) reports how to perform the “natural
color” representation of Sentinel-2 data.

6.2 Import Multi-spectral Data in Python 87

The achievement of a perfectly balanced image with natural colors is beyond the
scope of the present book, therefore, we limit to combine the bands B2, B3, and
B4 which roughly correspond to blue, green, and red color perceived by our eyes,
respectively.

In detail, a bright, possibly overly saturated (Sovdat et al., 2019), image (i.e.,
r g b) can be easily derived and plotted (code listong 6.2; Fig. 6.2) starting from the
bands dict dictionary after a contrast stretching (lines from 11 to 17), and values scal-
ing in the interval [0,1]. This is the so called “true color” representation. Sometimes,
the bands B3 (i.e., red) and B4 (i.e., green are combined with B8 (i.e., near-infrared)
to achieve a “false color”’ representation. False color composite images are often
used to highlight plant density and health (e.g., Fig. 6.4). Code listing 6.3 reports
how to perform a “false color”’ representation (i.e., nir r g) of Sentinel2 data.

1 import numpy as np
2 from skimage import exposure , io
3 from skimage.transform import resize
4 import matplotlib.pyplot as plt
5
6 r_g_b = np.dstack([bands_dict[’B4’],
7 bands_dict[’B3’],

8 bands_dict[’B2’]])

9
10 # contrast stretching and rescaling between [0,1]
11 p2, p98 = np.percentile(r_g_b, (2,98))
12 r_g_b = exposure.rescale_intensity(r_g_b, in_range=(p2, p98))
13 r_g_b = r_g_b / r_g_b.max()
14
15 fig, ax = plt.subplots(figsize=(8, 8))
16 ax.imshow(r_g_b)
17 ax.axis(’off’)

Listing 6.2 Plotting a RGB image using the B4, B3, and B2 bands.

1 import numpy as np
2 from skimage import exposure , io
3 from skimage.transform import resize
4 import matplotlib.pyplot as plt
5
6 nir_r_g = np.dstack([bands_dict[’B8’],
7 bands_dict[’B4’],

8 bands_dict[’B3’]])

9
10 # contrast stretching and rescaling between [0,1]
11 p2, p98 = np.percentile(nir_r_g, (2,98))
12 nir_r_g = exposure.rescale_intensity(nir_r_g, in_range=(p2, p98))
13
14 fig, ax = plt.subplots(figsize=(8, 8))
15 ax.imshow(nir_r_g)

88 6 Clustering of Multi-Spectral Data

16 ax.axis(’off’)
Listing 6.3 Plotting a false-color RGB composite image using the B8, B4, and B3 bands.

Fig. 6.4 Image resulting by code listing 6.3.

6.3 Descriptive Statistics

One of the first steps of any ML workflow consists of descriptive statistics. For the
case of our Sentinel2 data set, code listing 6.5 describes how to perform descriptive
statistics with visualization of a four bands (i.e., B2, B3, B4, and B5) array derived
from Geo-Tiff data. In detail, at line 5, we create a (10980, 10980, 4) array (i.e.,

6.3 Descriptive Statistics 89

themy array 2d characterized by a width. height, and dept of 10980, 10980, and 4,
respectively) from the dictionary created in the code listing 6.1. In the next step, i.e.,
line 10, we create a new array (my array 1d) reshaping my array 2d from (10980,
10980, 4) to (120560400, 4). This is the typical aspect of an array that is ready for
ML processing in scikit-learn. Converting my array 1d to a pandas DataFrame (i.e.,
my array 1d pandas) facilitates the visualization (i.e., lines 18-46) and getting the
most basic descriptive statistics (i.e., listing 6.4). Looking at code listing 6.4, we can
derive basic information about the central position, dispersion and shape of our input
features. To note, Figure 6.5 shows that 99% of reflectance data for B2, B3, B4, and
B8 are in the range of 0.015-0.42. However, maximum values are always above 1,
i.e., the upper theoretical bound for reflectance data. Outliers at reflectance values
above 1 could be the result of specular effects on surface or clouds (Schaepman-Strub
et al., 2006).

0.1 0.0 0.1 0.2 0.3 0.4 0.5
Surface reflectance Value

B2

B3

B4

B8

Ba
nd

 N
am

e

0.0 0.1 0.2 0.3 0.4 0.5
Surface Reflectance Value

0

5

10

15

20

25

30

35

Pr
ob

ab
ilit

y
De

ns
ity

Band Name
B2
B3
B4
B8

Fig. 6.5 Descriptive statistics.

In [1]: my_array_1d_pandas.describe().applymap("{0:.3f}".format)

Out[1]:

B2 B3 B4 B8

count 120560400.000 120560400.000 120560400.000 120560400.000

mean 0.042 0.062 0.076 0.186

std 0.013 0.016 0.026 0.056

min 0.000 0.000 0.000 0.000

25% 0.035 0.053 0.061 0.151

50% 0.042 0.062 0.076 0.177

75% 0.049 0.070 0.091 0.210

max 1.443 1.304 1.277 1.201

Listing 6.4 Importing data from an Excel file into Python.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import pandas as pd

90 6 Clustering of Multi-Spectral Data

4
5 my_array_2d = np.dstack([bands_dict[’B2’],
6 bands_dict[’B3’],

7 bands_dict[’B4’],

8 bands_dict[’B8’]])

9
10 my_array_1d =my_array_2d[:,:,:4].reshape(
11 (my_array_2d.shape[0] * my_array_2d.shape[1],

12 my_array_2d.shape[2]))

13
14 my_array_1d_pandas = pd.DataFrame(my_array_1d ,
15 columns=[’B2’, ’B3’, ’B4’, ’B8’])

16
17
18 fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(7,3))
19 my_medianprops = dict(color=’#C82127’, linewidth = 1)
20 my_boxprops = dict(facecolor=’#BFD7EA’, edgecolor=’#000000’)
21 ax1.boxplot(my_array_1d_pandas , vert=False, whis=(0.5, 99.5),
22 showfliers=False, labels=my_array_1d_pandas.columns,

23 patch_artist=True, showcaps=False,

24 medianprops=my_medianprops , boxprops=my_boxprops)

25 ax1.set_xlim(-0.1,0.5)
26 ax1.set_xlabel(’Surface reflectance Value’)
27 ax1.set_ylabel(’Band Name’)
28 ax1.grid()
29 ax1.set_facecolor((0.94, 0.94, 0.94))
30
31 colors=[’#BFD7EA’,’#0F7F8B’,’#C82127’,’#F15C61’]
32 for band, color in zip(my_array_1d_pandas.columns, colors):
33 ax2.hist(my_array_1d_pandas[band], density=True,

34 bins=’doane’, range=(0,0.5), histtype=’step’,

35 linewidth=1, fill=True, color=color, alpha=0.6,

36 label=band)

37 ax2.hist(my_array_1d_pandas[band], density=True,

38 bins=’doane’, range=(0,0.5), histtype=’step’,

39 linewidth=0.5, fill=False, color=’k’)

40 ax2.legend(title=’Band Name’)
41 ax2.set_xlabel(’Surface Reflectance Value’)
42 ax2.set_ylabel(’Probability Density’)
43 ax2.xaxis.grid()
44 ax2.set_facecolor((0.94, 0.94, 0.94))
45 plt.tight_layout()
46 plt.savefig(’descr_stat_sat.pdf’)

Listing 6.5 Descriptive statistics using pandas describe().

The presence of large outliers could affect the results of your ML model if not
addressed correctly. As a consequence, I suggest defining a strategy to remove the
outliers based on robust statistics (e.g., Petrelli (2021)), or to applying a robust scaler.

6.4 Pre-processing and Clustering 91

6.4 Pre-processing and Clustering

In the following paragraphs, I report a simplified workflow to perform the clustering
of our Sentinel2 data. As input features, I used the my array 1d, i.e., reflectance
data coming form B2, B3, B4, and B8. Please note that many different strategies are
reported in the literature for the input feature selection. Examples are the use of band
ratios, specific indexes, or combinations among bands, band ratios and indexes (Ge
et al., 2020). Due to the presence of large outliers, I opted for the RobustScaler()
algorithm (line 6 of code listings 6.6 and 6.7) for scikit-learn (Immitzer et al., 2016).

For the first attempt of clustering (code listing 6.6), I selected the K-means
algorithm fixing the number of clusters to 5 (line 7). Then, I started the unsupervised
learning at line 8. Then, at lines 11 and 12, I collected the labels (i.e., a number from
0 to 4) assigned by the K-means algorithm to each element (i.e., each pixel of the
image) of the my array 1d and I reported them to the same 2-dimensional geometry
of the original image (i.e. Fig. 6.2), respectively. Finally, I plotted the clusters using
different colors (i.e. lines 14 to 17) in Fig. 6.6.

For the second attempt of clustering (code listing 6.7), I selected the Gaussian
Mixtures algorithm fixing the number of clusters to 5 (line 7). Figure 6.7 reports the
clustering result obtained by the Gaussian Mixtures algorithm.

1 from sklearn.preprocessing import RobustScaler

2 from sklearn import cluster
3 import matplotlib.colors as mc
4 import matplotlib.pyplot as plt
5
6 X = RobustScaler().fit_transform(my_array_1d)
7 my_ml_model = cluster.KMeans(n_clusters=5)
8 learning = my_ml_model.fit(X)
9 labels_1d = learning.labels_

10
11 labels_1d = my_ml_model.predict(X)
12 labels_2d = labels_1d.reshape(my_array_2d[:,:,0].shape)
13
14 cmap = mc.LinearSegmentedColormap.from_list("", ["black","red","

yellow", "green", "blue"])

15 fig, ax = plt.subplots(figsize=[18,18])
16 ax.imshow(labels_2d , cmap=cmap)
17 ax.axis(’off’)

Listing 6.6 Making KMeans clustering.

1 from sklearn.preprocessing import RobustScaler

2 from sklearn import mixture

3 import matplotlib.colors as mc
4 import matplotlib.pyplot as plt
5

92 6 Clustering of Multi-Spectral Data

6 X = RobustScaler().fit_transform(my_array_1d)
7 my_ml_model = mixture.GaussianMixture(n_components=5,

covariance_type="full")

8 labels_1d = my_ml_model.predict(X)
9

10 labels_2d = labels_1d.reshape(my_array_2d[:,:,0].shape)
11
12 cmap = mc.LinearSegmentedColormap.from_list("", ["black","red","

yellow", "green","blue"])

13 fig, ax = plt.subplots(figsize=[18,18])
14 ax.imshow(labels_2d , cmap=cmap)
15 ax.axis(’off’)

Listing 6.7 Making Gaussian Mixture Models clustering.

Fig. 6.6 KMeans clustering. Image resulting from code listing 6.6.

6.4 Pre-processing and Clustering 93

Fig. 6.7 Gaussian Mixture Models. Image resulting from code listing 6.7.

Part III
Supervised Learning

Chapter 7
Supervised Machine Learning Methods

7.1 Supervised Algorithms

Supervised algorithms use the labels of the training data set to learn. In the present
chapter, I am going to gently introduce the supervised algorithms for regression and
classification reported in Fig.3.5. Also, I will provide some specific references to
allow the readers in going deeper into the mathematics behind these ML methods.

7.2 Naive Bayes

Since Bayesian statistic is rarely introduced to geologists in Earth Science courses,
I think it could be useful providing an introduction to the Bayes Theorem before
describing how it is applied in Machine Learning (e.g., Naive Bayes).

Probabilities: Fig. 7.1 describes our study case where the total number of ele-
ments, 𝑛𝑡𝑜𝑡 , in the data set is 10. It consists of 6 porphyritic, 1 holocrystalline, and
3 aphyric igneous rocks. As an example, the probability of randomly picking a rock
containing olivines, 𝑃(𝑜𝑙), is 3/10. In the Bayesian statistical inference probability
𝑃(𝑜𝑙) assumes the name of prior probability. It is the probability of an event before
new data is collected.

Conditional Probabilities: Now assuming that we would like to know the prob-
ability of picking a rock containing olivines, if I picked a rock characterized by a
dark matrix. In this case, the conditional probability, 𝑃(𝑜𝑙 |𝑑𝑎𝑟𝑘), is equal to 1/3.

Joint Probabilities: Please take in mind that the term conditional probability is
not a synonym of joint probability and these two concepts should not be confused.
Also, take care of using the correct notation. In detail, in joint probability, the terms
are separated by commas, e.g., 𝑃(𝑜𝑙, 𝑑𝑎𝑟𝑘), whereas in conditional probability, the
terms are separated by a vertical bar, e.g., 𝑃(𝑜𝑙 |𝑑𝑎𝑟𝑘). To note, 𝑃(𝑜𝑙, 𝑑𝑎𝑟𝑘) indicates
the probability of randomly picking a rock that contains olivines and characterized
by a dark matrix, i.e., 𝑃(𝑜𝑙, 𝑑𝑎𝑟𝑘) = 1/10. On the contrary, 𝑃(𝑜𝑙 |𝑑𝑎𝑟𝑘) refers to

97

98 7 Supervised Machine Learning Methods

the occurrence of a a rock containing olivines among those that have a dark matrix,
𝑃(𝑜𝑙 |𝑑𝑎𝑟𝑘) = 1/3. Joint probabilities and conditional probabilities are related by
the following relation:

𝑃(𝑜𝑙, 𝑑𝑎𝑟𝑘) = 𝑃(𝑜𝑙 |𝑑𝑎𝑟𝑘) · 𝑃(𝑑𝑎𝑟𝑘). (7.1)

light gray matrix

intermediate gray matrix

dark matrix

holocrystalline texture

white crystal (e.g., leucite)

Olivine

Clinopyroxene

P(dark)P(ol) P(ol|dark)

Fig. 7.1 Understanding conditional probabilities and Bayes formulation.

Deriving the Bayes formulation: Similarly to the Eq. 7.1, we could write:

𝑃(𝑑𝑎𝑟𝑘, 𝑜𝑙) = 𝑃(𝑑𝑎𝑟𝑘 |𝑜𝑙) · 𝑃(𝑜𝑙). (7.2)

Since 𝑃(𝑑𝑎𝑟𝑘, 𝑜𝑙) = 𝑃(𝑜𝑙, 𝑑𝑎𝑟𝑘), the right terms of the Eqs. 7.1 and 7.2, must be
equal:

𝑃(𝑑𝑎𝑟𝑘 |𝑜𝑙) · 𝑃(𝑜𝑙) = 𝑃(𝑜𝑙 |𝑑𝑎𝑟𝑘) · 𝑃(𝑑𝑎𝑟𝑘). (7.3)

Dividing both sides of of the Eq. 7.3 by 𝑃(𝑜𝑙), we get Bayes formula for our specific
case:

𝑃(𝑑𝑎𝑟𝑘 |𝑜𝑙) = 𝑃(𝑜𝑙 |𝑑𝑎𝑟𝑘) · 𝑃(𝑑𝑎𝑟𝑘)
𝑃(𝑜𝑙) . (7.4)

7.3 Quadratic and Linear Discriminant Analysis 99

Generalizing the Eq. 7.4, we get the well know Bayes equation:

𝑃(𝐴|𝐵) = 𝑃(𝐵|𝐴) · 𝑃(𝐴)
𝑃(𝐵) . (7.5)

Naive Bayes for classification To understand the Naive Bayes ML algorithm, I
propose the same workflow described in zempty citation Zhang (2004). Assume
that the observation you would like to classify is a vector 𝑋 = (𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑛).
Also, 𝑐 is the label of your class. For simplicity, I assume that 𝑐 could be only positive
(+) or negative (-), i.e., we have two classes only. In this case, the Bayes formula has
the following form:

𝑃(𝑐 |𝑋) = 𝑃(𝑋 |𝑐) · 𝑃(𝑐)
𝑃(𝑋) . (7.6)

X is classified as the class c = + if and only if

𝑓𝑏 (𝑋) =
𝑃(𝑐 = +|𝑋)
𝑃(𝑐 = −|𝑋) ≥ 1, (7.7)

where 𝑓𝑏 (𝑋) is the Bayesian classifier.
Now assume that all the features are independent, i.e., naive assumption, we can

write:

𝑃(𝑋 |𝑐) = 𝑃(𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑛 |𝑐) =
𝑛∏
𝑖=1

𝑃(𝑥𝑖 |𝑐), (7.8)

The resulting classifier [𝑓𝑛𝑏 (𝑋)], i.e., naive Bayesian classifier, or simply naive
Bayes can be written as:

𝑓𝑛𝑏 (𝑋) =
𝑃(𝑐 = +)
𝑃(𝑐 = −)

𝑛∏
𝑖=1

𝑃(𝑥𝑖 |𝑐 = +)
𝑃(𝑥𝑖 |𝑐 = −) . (7.9)

Please note that the naive assumption is a strong constraint for the applicability
of the method. In Earth Sciences, attribute interdependence is often violated. In this
case, we have two options. The first is to find a way to estimate 𝑃(𝑋 |𝑐) avoiding the
naive assumption (Kubat, 2017). However this first option will inevitably increase
the complexity of the problem (Kubat, 2017). More pragmatically, i.e., option 2, we
could try reducing the feature dependence by appropriate data pre-processing. As
suggested by Kubat (2017), a starting point is to avoid using redundant features.

In scikit-learn the GaussianNB() method implements the Gaussian Naive Bayes
algorithm for classification with 𝑃(𝑋 |𝑐) assumed to be Gaussian.

7.3 Quadratic and Linear Discriminant Analysis

Like Naive Bayes, Quadratic and Linear Discriminant Analysis (i.e., QDA and
LDA, respectively) rely on the Bayes theorem. Now, assume that 𝑓𝑐 (𝑥) is the class-

100 7 Supervised Machine Learning Methods

conditional density of 𝑋 in class 𝑐, and let 𝜋𝑐 as the prior probability of class 𝑐,
with

∑𝐾
𝑐=1 = 1, where 𝐾 is the number of classes. The Bayes theorem states (Kubat,

2017):
𝑃(𝑐 |𝑋) = 𝑓𝑐 (𝑥)𝜋𝑐∑𝐾

𝑙=1 𝑓𝑙 (𝑥)𝜋𝑙
. (7.10)

Now modelling each class density as multivariate Gaussian:

𝑓𝑐 (𝑥) =
1

(2𝜋) 𝑝/2
��∑
𝑐

��1/2
𝑒−

1
2 (𝑥−𝜇𝑐)𝑇

∑−1
𝑐 (𝑥−𝜇𝑐)

, (7.11)

we define the QDA. The LDA constitutes a special case of QDA when assuming that
the classes have a common covariance matrix, i.e.,

∑
𝑐 =

∑∀𝑐. The main difference
between LDA and QDA relies on the resulting decision boundaries, being linear and
quadratic functions, respectively.

The algorithms for LDA and QDA are similar, except that separate covariance ma-
trices must be estimated for each class in QDA. When the number of features is large,
it implies a dramatic increase in computed parameters. To note considering 𝐾 classes
an 𝑝 features, LDA and QDA compute [(𝐾−1)𝑥(𝑝+1)] and {(𝐾−1)𝑥 [𝑝(𝑝+3)/2+1]}
parameters, respectively. In scikit-learn, the methods LinearDiscriminantAnalysis()
and QuadraticDiscriminantAnalysis() perform the LDA and QDA, respectively.

7.4 Linear and Nonlinear Models

Sugiyama (2015) defines d-dimensional linear-in-parameter models as:

𝑓𝜽 (𝒙) =
𝑏∑︁
𝑗=𝑖

𝜃 𝑗𝜙 𝑗 (𝒙) = 𝜽𝑇𝝓(𝒙), (7.12)

where 𝒙, 𝝓, and 𝜽 are a d-dimensional input vector, a basis function and its param-
eters, respectively. Also, b denotes the number of basis functions. As an example,
considering a one-dimensional input, the Eq.7.12 reduces to:

𝑓𝜽 (𝑥) =
𝑏∑︁
𝑗=𝑖

𝜃 𝑗𝜙 𝑗 (𝑥) = 𝜽𝑇𝝓(𝑥), (7.13)

where:
𝝓(𝑥) = (𝜙1 (𝑥), ..., 𝜙𝑏 (𝑥))𝑇 , (7.14)

and
𝜽 = (𝜃1, ..., 𝜃𝑏)𝑇 . (7.15)

To note, linear-in-parameter models are linear in terms of 𝜽 , and they can handle
straight lines, i.e., linear-in-input models (e.g., code listing 7.1 and Fig. 7.2):

7.4 Linear and Nonlinear Models 101

𝝓(𝑥) = (1, 𝑥)𝑇 , (7.16)

𝜽 = (𝜃1, 𝜃2)𝑇 , (7.17)

but they can also manage nonlinear functions, e.g., polynomials (e.g., code listing 7.1
and Fig. 7.2):

𝝓(𝑥) = (1, 𝑥, 𝑥2, ..., 𝑥𝑏−1)𝑇 , (7.18)

𝜽 = (𝜃1, 𝜃2, ..., 𝜃𝑏)𝑇 . (7.19)

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 x = np.arange(1,6)
5 y = np.array([0,1,2,9,9])
6
7 fig, ax = plt.subplots()
8 ax.scatter(x, y, marker = ’o’, s = 100, color = ’#c7ddf4’,

edgecolor = ’k’)

9
10 orders = np.array([1,2,4])
11 colors =[’#ff464a’,’#342a77’,’#4881e9’]
12 linestiles = [’-’,’--’,’-.’]
13
14 for order, color, linestile in zip(orders, colors, linestiles):
15 betas = np.polyfit(x, y, order)

16 func = np.poly1d(betas)

17 x1 = np.linspace(0.5,5.5, 1000)

18 y1 = func(x1)

19 ax.plot(x1, y1, color=color, linestyle=linestile , label="

Linear-in-parameters model of order " + str(order))

20
21 ax.legend()
22 ax.set_xlabel(’A quantity relevant in geology\n(e.g., time)’)
23 ax.set_ylabel(’A quantity relevant in geology\n(e.g., spring flow

rate)’)

24 fig.tight_layout()
Listing 7.1 Polynomial regression as example if linear-in-parameters modelling.

Considering a p-values input vector 𝒙, linear-in-parameter models are still able
to manage linear-in-input problems, i.e., managing hyper-planes:

𝝓(𝒙) = (1, 𝑥1, 𝑥2, ..., 𝑥𝑝)𝑇 , (7.20)

𝜽 = (𝜃1, 𝜃2, ..., 𝜃𝑏)𝑇 . (7.21)

In this case, the number of the basis functions corresponds to the dimension of
the input vector plus one, i.e., 𝑏 = 𝑝 + 1. Some authors prefer reporting the first term
of 𝜽 separately, naming it bias (i.e., 𝜃0), and reshaping the formulation as follow:

102 7 Supervised Machine Learning Methods

1 2 3 4 5
A quantity relevant in geology

(e.g., time)

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

12.5

A
qu

an
tit

y
re

le
va

nt
 in

 g
eo

lo
gy

(e
.g

.,
sp

rin
g

flo
w

ra
te

)

Linear-in-parameters model of order 1
Linear-in-parameters model of order 2
Linear-in-parameters model of order 4

Fig. 7.2 Result of code listing 7.1.

𝝓(𝒙) = (𝑥1, 𝑥2, ..., 𝑥𝑏=𝑝)𝑇 , (7.22)

𝜽 = (𝛽0, 𝜷), (7.23)

with:
𝜷 = (𝛽1, 𝛽2, ..., 𝛽𝑏=𝑝 ,)𝑇 , (7.24)

All the 𝑓𝜽 (𝒙) models that cannot be expressed as linear, in terms of parameters,
fall in the field of nonlinear modelling (Sugiyama, 2015).

7.5 Loss Functions, Cost Functions, and Gradient Descent

Most ML algorithms involve the optimization of our model (e.g., 𝑓𝜽 (𝒙) in Eq. 7.13).
For the purposes of the present book, the term optimization refers to adjusting model
parameters 𝜽 to minimize or maximize a function that measures the agreement
between the model and the training data.

As a general term, the function we want to minimize or maximize is named
the objective function (empty citation). In the case of minimization, the objective
function takes names like cost function, loss function, and error function. These
terms are often interchangeable Goodfellow et al. (2016), but sometimes the authors
use a specific term, e.g., loss or cost function, to describe a specific task.

7.5 Loss Functions, Cost Functions, and Gradient Descent 103

As an example, some authors use the term loss function to measure how well a
model agrees with a single label in the training data set (Goodfellow et al., 2016).
The square loss could be an example of a loss function:

𝐿 (𝜽) = [𝑦𝑖 − 𝑓𝜽 (x𝑖)]2, (7.25)

where 𝑦𝑖 and 𝑓𝜽 (x𝑖) are the labeled (i.e., true or measured) values and those
predicted by our model, respectively. Also, x and 𝜽 are the inputs and the parameters
governing the model, respectively.

Similarly, the cost function evaluates the loss function over the entire data set and
helps in evaluating the overall performance of a model (Goodfellow et al., 2016).
The mean squared-error is an example of cost functions:

𝐶 (𝜽) = 1
𝑛

𝑛∑︁
𝑖=1

[𝑦𝑖 , 𝑓𝜽 (x𝑖)]2, (7.26)

where 𝑛 in the number of elements in the training data set.
Typically, our aim is to minimize the cost function, i.e., 𝐶 (𝜽), and the Gradient

Descent (GD) is a method to achieve our goal. In detail, GD works by updating the
parameters (in our case 𝜽) governing our model, i.e., 𝑓𝜽 (x), in the opposite direction
of the cost function gradient (Sugiyama, 2015), i.e., ▽𝐶 (𝜽):

𝜽 𝑡+1 = 𝜽 𝑡 − 𝛾 ▽ 𝐶 [𝜽] . (7.27)

In the simplest example of linear regression with x in R:

𝑓𝜽 (x) = 𝜃1 + 𝜃2 · 𝑥, (7.28)

the mean squared-error cost function can be written as:

𝐶 (𝜽) = 1
𝑛

𝑛∑︁
𝑖=1

[𝑦𝑖 − (𝜃1 + 𝜃2 · 𝑥𝑖)]2, (7.29)

Note that the simple linear example in R can be easily generalized to R𝑑 . Also,
note that the example of linear regression proposed here has a well known and easy
to apply least squares analytical solution in the case of linearity (i.e., the relationship
between 𝒙 and the mean of 𝒚 is linear), independence (i.e., the observations are
independent of each other), and normality (for any fixed value of 𝒙, 𝒚 is normally
distributed (Petrelli, 2021). However, it provides a self explanatory example of how
GD does work.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 line_colors = [’#F15C61’,’#0F7F8B’,’#0A3A54’,’#C82127’]
4
5 # linear data set with noise

104 7 Supervised Machine Learning Methods

6 n = 100
7 theta_1, theta_2 = 3, 1 # target value for theta_1 & theta_2
8 x = np.linspace(-10, 10, n)
9 np.random.seed(40)

10 noise = np.random.normal(loc=0.0, scale=1.0, size=n)
11 y = theta_1 + theta_2 * x + noise
12 fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(6, 12))
13 ax1.scatter(x, y, c=’#BFD7EA’, edgecolor=’k’)

14
15 my_theta_1 , my_theta_2 = 0, 0 # arbitrary initial values

16 gamma = 0.0005 # learning rate
17 t_final = 10001 # umber of itrations
18 n = len(x)
19 to_plot, cost_function = [1, 25, 500, 10000], []

20 # Gradient Descent
21 for i in range(t_final):
22 #Eq. 4.30

23 D_theta_1 = (-2/n)*np.sum(y-(my_theta_1 + my_theta_2*x))

24 #Eq. 4.31

25 D_theta_2 = (-2/n)*np.sum(x*(y-(my_theta_1+my_theta_2*x)))

26
27 my_theta_1 = my_theta_1 - gamma * D_theta_1 #Eq. 4.32

28 my_theta_2 = my_theta_2 - gamma * D_theta_2 #Eq. 4.33

29 cost_function.append((1/n) * np.sum(y - (my_theta_1 +

my_theta_2 * x))**2)

30
31 if i in to_plot:

32 color_index = to_plot.index(i)

33 my_y = my_theta_1 + my_theta_2 * x

34 ax1.plot(x,my_y, color=line_colors[color_index],

35 label=’iter: {:.0f}’.format(i) + ’ - ’ +

36 r’$\theta_1 = $’ + ’{:.2f}’.format(my_theta_1) +

37 ’ - ’ +

38 r’$\theta_2 = $’ + ’{:.2f}’.format(my_theta_2))

39 ax1.set_xlabel(’x’)
40 ax1.set_ylabel(’y’)
41 ax1.legend()
42 cost_function = np.array(cost_function)
43 iterations = range(t_final)
44 ax2.plot(iterations ,cost_function , color=’#C82127’,
45 label=’mean squared-error cost function Eq.4.29’)

46 ax2.set_xlabel(’Iteration’)
47 ax2.set_ylabel(’Cost Function Value’)
48 ax2.legend()
49 fig.tight_layout()

Listing 7.2 A simple example of Gradient Descent in Python.

To develop a GD, the first step consists of computing the partial derivative of
𝐶 (𝜽) respect 𝜃1 and 𝜃2, respectively. Therefore we can write:

7.5 Loss Functions, Cost Functions, and Gradient Descent 105

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

5

0

5

10

15

y

iter: 1 - 1 = 0.01 - 2 = 0.07
iter: 25 - 1 = 0.08 - 2 = 0.58
iter: 500 - 1 = 1.17 - 2 = 0.98
iter: 10000 - 1 = 2.98 - 2 = 0.98

0 2000 4000 6000 8000 10000
Iteration

0

200

400

600

800

Co
st

 Fu
nc

tio
n

Va
lu

e

mean squared-error cost function Eq.4.29

Fig. 7.3 Linear fitting estimates and cost function evolution resulting from code listing 7.2.

𝐷 𝜃1 =
−2
𝑛

𝑛∑︁
𝑖=1

·[𝑦𝑖 − (𝜃1 + 𝜃2 · 𝑥𝑖)] (7.30)

𝐷 𝜃2 =
−2
𝑛

𝑛∑︁
𝑖=1

·[𝑦𝑖 − (𝜃1 + 𝜃2 · 𝑥𝑖)] · 𝑥𝑖 (7.31)

Then the GD optimizes the parameters of our model, with an iterative approach:

𝜃𝑡+1
1 = 𝜃𝑡1 − 𝛾𝐷 𝜃1 , (7.32)

𝜃𝑡+1
2 = 𝜃𝑡2 − 𝛾𝐷 𝜃2 , (7.33)

106 7 Supervised Machine Learning Methods

where 𝛾 is an adequately chosen learning rate. The code listing 7.2 and Fig. 7.3
report how to develop the GD optimization described by Eq.7.28-7.32.

The Stochastic Gradient Descent (SGD) algorithm (Bottou, 2012) simplifies the
GD by estimating the gradient of 𝐶 (𝜽) on the basis of a single, randomly picked,
example 𝑓𝜽𝒕 (𝒙𝑡):

𝜽 𝑡+1 = 𝜽 𝑡 − 𝛾 ▽ 𝐶 [𝑦, 𝑓𝜽𝒕 (𝒙𝑡)] . (7.34)

The SGDClassifier() and SGDRegressor() in sklearn.linear model allow the ex-
ecution of a SGD in the field of classification and regression, respectively. Often,
we use an approach that is something in between GD and SGD by estimating the
gradient using a small random portion of the training data set. This approach takes
the name of mini-batch GD.

To summarize, GD always uses the whole learning data set. Differently to GD,
SGD and mini-batches GD compute the gradient using a single sample and a small
portion of the training data set, respectively.

SGD and mini-batches GD work better than GD for error surfaces characterized
by many local maxima and minima. In this case, the GD will stop at the first local
minimum whereas SGD and mini-batches GD, being much noisier than GD, will
tend to explore neighbour areas of the gradient hopefully finding better solutions.
To note, the pure SGD is really noisy, whereas mini-batches GD tends to average
the computed gradient, resulting more stable than SGD. In ML, the use of SGD and
mini-batches GD largely exceeds the GD because it is too much computationally
expensive, with a minimum gain in accuracy for convex problems. In the case of
many local maxima and minima, SGD and mini-batches GD are also more efficient
than GD in terms of accuracy, being able to “jump” over local minima, hopefully
finding better solutions.

7.6 Ridge Regression

Ridge Regression is a least squares method that shrinks the regression coefficients
with a penalty on their size (Hastie et al., 2017). Mathematically, with the labeled
data set (x𝑖 , 𝑦𝑖), where 𝑦𝑖 are the labels and x𝑖 the predictor variables, i.e., the inputs,
with x𝑖 = (𝑥𝑖1, 𝑥𝑖2, ..., 𝑥𝑖 𝑝)𝑇 (Hastie et al., 2017; Tibshirani, 1996).

The cost function in Ridge Regression can be expressed as (Hastie et al., 2017;
Tibshirani, 1996):

𝐶 (𝛽0, 𝜷) =
1

2𝑛

𝑛∑︁
𝑖=1

©«𝑦𝑖 − 𝛽0 −
𝑝∑︁
𝑗=1
𝑥𝑖 𝑗 𝛽 𝑗

ª®¬
2

+ 𝜆
𝑝∑︁
𝑗=1
𝜃2
𝑗 . (7.35)

where the 𝜆 parameter is named regularization penalty. The ridge regression
performs the so-called L2-norm regularization by adding a penalty equivalent to the
square of the magnitude of coefficients, i.e., the second term of Eq. 7.35.

7.8 Elastic-Net 107

In the limit case 𝜆 = 0, we go back to Ordinary Least Square. A correct choice of
𝜆will help you in avoiding over-fitting issues. On the contrary, if 𝜆 starts approaching
very large values, you are probably experiencing under-fitting issues.

7.7 Least Absolute Shrinkage and Selection Operator (LASSO)

The “Least Absolute Shrinkage and Selection Operator,” also known as the LASSO,
is a method to solve linear problems by minimizing the residual sum of squares
subject to the sum of the absolute value of the coefficients being less than a constant
(Tibshirani, 1996). The main characteristic of LASSO relies on the tendency to prefer
solutions with fewer non-zero coefficients, thus reducing the number of features of
the solution. The LASSO cost function can be expressed as (Tibshirani, 1996):

𝐶 (𝛽0, 𝜷) =
1

2𝑛

𝑛∑︁
𝑖=1

©«𝑦𝑖 − 𝛽0 −
𝑝∑︁
𝑗=1
𝑥𝑖 𝑗 𝛽 𝑗

ª®¬
2

+ 𝜆
𝑝∑︁
𝑗=1

��𝛽 𝑗 ��. (7.36)

Differently from the ridge regression, the LASSO algorithm performs the so-
called L1-norm regularization by adding a penalty equivalent to the sum of coeffi-
cients absolute values, i.e., the second term of Eq. 7.36.

To note, the LASSO makes dimensionality reduction, i.e., it reduces the number
of features of the solution, and shrinkage, whereas ridge regression, in contrast, only
shrinks (Hastie et al., 2017; Tibshirani, 1996).

7.8 Elastic-Net

The Elastic-Net (H. Zou & Hastie, 2005) is a linear regression model that performs
both L1- and L2-norm regularization (Friedman et al., 2010):

𝐶 (𝛽0, 𝜷) =
1

2𝑛

𝑛∑︁
𝑖=1

©«𝑦𝑖 − 𝛽0 −
𝑝∑︁
𝑗=1
𝑥𝑖 𝑗 𝛽 𝑗

ª®¬
2

+ 𝜆
𝑝∑︁
𝑗=1

[
1 − 𝛼

2
𝛽2
𝑗 + 𝛼

��𝛽 𝑗 ��] . (7.37)

In the case of 𝛼 = 1, Elastic-net is the same as LASSO. Also, for 𝛼 = 0, Elastic-net
approaches ridge regression. For 0 < 𝛼 < 1, the penalty term (i.e., the second term
of Eq. 7.37) is between the L1- and L2-norm regularization.

108 7 Supervised Machine Learning Methods

7.9 Support Vector Machines

Support Vector Machines (SVMs) are a set of supervised ML algorithms that works
remarkably well in the context of classification (Cortes & Vapnik, 1995). The strength
of SVMs mainly relies on these three features: (1) SVMs are efficient in high-
dimensional spaces; (2) SVMs effectively model real-world problems; (3) SVMs
perform well on data sets with many attributes, even in the case of a low number
of cases which might be available to train the model (Cortes & Vapnik, 1995).
SVMs numerically implement the following idea: inputs are mapped to a some high-
dimension feature space F by some non-linear mapping (Cortes & Vapnik, 1995). In
the space Z a linear decision surface is then constructed (Cortes & Vapnik, 1995).

To start, consider a labeled training data set (𝑦𝑖 , 𝒙𝒊) where 𝒙𝒊 is p-dimensional,
i.e., 𝒙𝒊 = (𝑥1𝑖 , 𝑥2𝑖 , ..., 𝑥𝑝𝑖), with i=1,2,...,n where n is the number of samples. Also
assume that the label 𝑦𝑖 is equal to 1 for the first class and -1 for the second class,
defining a two classes classification problem, i.e., 𝑦𝑖 ∈ {−1, 1}.

Also, define a linear classifier, based on the following linear-in-inputs discriminant
function:

𝑓 (𝒙) = w𝑇 · 𝒙 + 𝑏, (7.38)

The decision boundary between the two classes, i.e., regions classified as positive
and negative, that is defined by Eq. 7.38 is an hyperplane.

The two classes are linearly separable if there exist a vector 𝒘 and a scalar 𝑏, such
that:

(w𝑇x𝑖 + 𝑏)𝑦𝑖 ≥ 1, ∀𝑖 = 1, 2, ..., 𝑛. (7.39)

It means that we are able to correctly classify all samples. It follows the definition
of the optimal hyperplane as the one which separates the training data set with a
maximal margin, i.e., 𝑚(w):

𝑚(w) = 1
∥w∥ (7.40)

Finally, the maximum-margin classifier, i.e. hard margin support vector machine, is
the discriminant function that maximizes 𝑚(w), which is equivalent to minimizing
∥w∥2:

min
w,𝑏

1
2
∥w∥2 (7.41)

subject to:
(w𝑇x𝑖 + 𝑏)𝑦𝑖 ≥ 1, ∀𝑖 = 1, 2, ..., 𝑛 (7.42)

The hard margin support vector machine requires a strong assumption, i.e., the
linear separability of classes, which can be considered as an exception, not the rule.
To allow errors, i.e., 𝜉 = (𝜉1, 𝜉2, ..., 𝜉𝑛), we can introduce the concept of soft margin
support vector machine:

min
w,𝑏, 𝜉

[
1
2
∥w∥2 + 𝐶

𝑛∑︁
𝑖=1

𝜉𝑖

]
(7.43)

7.9 Support Vector Machines 109

subject to
(w𝑇x𝑖 + 𝑏)𝑦𝑖 ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ⩾ 0, ∀𝑖 = 1, 2, ..., 𝑛 (7.44)

where 𝐶 > 0 is a tunable parameter that controls the margin errors. The linear
classifier defined by Eq. 7.38 can be generalized to non linear inputs by defining the
discriminant function as (Cortes & Vapnik, 1995):

𝑓 (x) = w𝑇 · 𝜙(x) + 𝑏 (7.45)

where 𝜙(x) is a function that maps non linearly separable inputs x to a feature space 𝐹
of higher dimension. Now, if we express the weight vector w as a linear combination
of the training examples, i.e., w =

∑𝑛
𝑖=1 𝛼𝑖x𝑖 , it follows that, in the feature space 𝐹,

we have:

𝑓 (x) =
𝑛∑︁
𝑖=1

𝛼𝑖𝜙(xi)𝑇𝜙(x) + 𝑏 (7.46)

The idea behind Eq. 7.45 and Eq. 7.46 is to map a non linear classification function
to a feature space 𝐹 of higher dimension where the classification function is linear
Fig. 7.4. Now defining a kernel function 𝐾 (xi, x) as:

𝐾 (xi, x) = 𝜙(xi)𝑇𝜙(x) (7.47)

we have:

𝑓 (x) =
𝑛∑︁
𝑖=1

𝛼𝑖𝐾 (xi, x) + 𝑏 (7.48)

please note: using the kernel function, we do not need to know or compute 𝜙(),
allowing a linear transformation to the problem at higher dimension. The scikit-
learn implementation of support vector machines, e.g., SVC() and SVR() allow the
use of linear, polynomial, sigmoid, and radial Basis kernel Functions [𝐾 (xi, x),
Table 7.1].

Table 7.1 Kernel functions in scikit-learn for the SVC() and SVR() methods

Kernel Function Equation Identifier

linear 𝐾 (xi, x) = (xi · x′) kernel=‘linear’

polynomial 𝐾 (xi, x) = (xi · x′ + 𝑟)𝑑 kernel=‘poly’

sigmoid 𝐾 (xi, x) = 𝑡𝑎𝑛ℎ (xi · x′ + 𝑟) kernel=‘sigmoid’

radial basis function 𝐾 (xi, x) = 𝑒𝑥𝑝 (−𝜆 ∥xi − x′ ∥2) kernel=‘rbf’

110 7 Supervised Machine Learning Methods

A

Support Vector Machines

margin

w

b

B

C D

maximum
margin

Hard Margin Classification Soft Margin Classification

E

φ(x)
Non-linear trasform

Input space Feature space

Decision Function

Fig. 7.4 Support Vector Machines. Redrawn from (Sugiyama, 2015)

7.10 Supervised Nearest Neighbors

The supervised 𝑘-nearest neighbors is a ML algorithm that uses similarities, such
as distance functions (Bentley, 1975) to fulfill regression and classification tasks. In
detail, the 𝑘-nearest neighbors method predicts numerical targets using a metric that
is typically the inverse-distance-weighted average of 𝑘-nearest neighbors (Bentley,
1975). The weights can be uniform or calculated by a kernel function. The Euclidean
distance metric is commonly used to measure the distance between two instances,

7.11 Trees Based Methods 111

but other metrics are available (See Table 7.2). Please note that Minkowski distance
reduces to the Manhattan and Euclidean distance when 𝑝 is equal to 1 an 2, respec-
tively. Bentley (1975) reports an extensive and detailed description of the 𝑘-nearest
neighbors algorithm.

In scikit-learn the KNeighborsClassifier() and KNeighborsRegressor() methods
perform classification and regression tasks based on k-nearest neighbors, respec-
tively.

Table 7.2 Selected distance metrics that can be used in Supervised Nearest Neighbors and other
ML algorithms

Distance Identifier Arguments Equation

Euclidean ‘euclidean’ none
√︃∑𝐷

𝑗=1
��𝑥 𝑗 − 𝑦 𝑗 ��2

Manhattan ‘manhattan’ none
∑𝐷

𝑗=1
��𝑥 𝑗 − 𝑦 𝑗 ��

Chebyshev ‘chebyshev’ none max
��𝑥 𝑗 − 𝑦 𝑗 ��

Minkowski ‘minkowski’ 𝑝, (𝑤 = 1)
(∑𝐷

𝑗=1 𝑤
��𝑥 𝑗 − 𝑦 𝑗 ��𝑝)1/𝑝

7.11 Trees Based Methods

Decision Trees. Before start describing how decision trees work let me introduce
few definitions highlighted in Fig. 7.5. Root Node: The starting node of a decision
tree. It contains the entire data set involved in the process. Parent Node: A node that
gets split into sub-nodes is defined as Parent Node. Child Node: sub-nodes deriving
by a parent node are defined as Child Nodes. Leaf or Terminal Nodes: Nodes that
terminate the tree and that are not split to generate additional child nodes are defined
as Terminal or Leaf Nodes.

The decision tree (Breiman et al., 1984) algorithm and its modifications (e.g.,
Random Forests and Extra Trees) split the input space into sub-regions allowing
regression and classification tasks [Kubat (2017); Fig. 7.5]. In detail, each node
maps a region in the input space, which is further divided within the node into sub-
regions using splitting criteria. Therefore, the workflow of a decision tree consists of
progressively splitting the input space by a sequence of decisions (i.e., splittings) into
non-overlapping regions, with a one-to-one correspondence between leaf nodes and
input regions (Kubat, 2017). The decision tree algorithm, despite its attractiveness
due to the simplicity of the algorithm formulation and the easy interpretation of
the results, it is often prone to over-fitting and under-fitting issues (cf. section 3.5),
making it less accurate than other predictors (Song & Lu, 2015). Also, it does not

112 7 Supervised Machine Learning Methods

work effectively in the presence of highly-correlated input features (Song & Lu,
2015).

SiO2

SiO2 > 50 wt%SiO2 ≤ 50 wt%

TiO2

TiO2 ≤ 0.5 wt% TiO2 > 0.5 wt% Al2O3 ≤ 16 wt% Al2O3 > 16 wt%

Al2O3

Root node
Branch

Child node

(...) (...) (...) (...)

Fig. 7.5 The Decision Tree algorithm.

To avoid over-fitting and under-fitting issues, a more robust algorithm, named
ensemble predictors, have been developed. Examples are random forest, gradient
boosting regression, and extremely randomized tree methods. More details on the
single decision tree model are available in (Breiman et al., 1984).

Random Forest. The Random Forest algorithm (Breiman, 2001) is based on the
“bagging”, i.e., bootstrap aggregation, a technique that averages the prediction over a
collection of bootstrap samples, thereby reducing its variance (Hastie et al., 2017). In
detail, the random forest uses the bagging for creating multiple versions of a predictor,
i.e., multiples trees, then evaluated to obtain an aggregated predictor (Hastie et al.,
2017). Specifically, for a given training data set with sample size 𝑛, the bagging
produces 𝑘 new training sets, each with sample size 𝑛, by uniformly sampling from
the original training data set with replacement, i.e., by bootstrapping (Hastie et al.,
2017). Then, 𝑘 decision trees are trained by using the 𝑘 newly created training
sets and coupled by averaging for regression or majority voting for classification,
respectively (Hastie et al., 2017). A detailed description of the Random Forest
algorithm is available in the literature (Breiman, 2001; Hastie et al., 2017).

Extremely Randomized Trees. The Extremely Randomized Trees algorithm
(Geurts et al., 2006) is similar to the Random Forest with two main differences: (1)
it splits nodes by choosing fully random cut points and (2) it uses the entire learning
sample rather than a bootstrapped replica to grow the trees (Geurts et al., 2006). The
predictions of the trees are aggregated to yield the final prediction by majority vote in
the classification and by arithmetic averaging in the regression (Geurts et al., 2006).
A complete description of the Extremely Randomized Trees algorithm is given in
(Geurts et al., 2006).

Chapter 8
Well Log Data Facies Classification by Machine
Learning

8.1 Motivation

Facies recognition in wells by well-log data analysis is a common task in many
geological fields like trap reservoir characterization, sedimentology analyses, and
depositional-environment interpretations (Hernandez-Martinez et al., 2013; Wood,
2021). I started conceiving this chapter when I discovered the FORCE 20201 Machine
Learning competition (Bormann) and the SEG 20162 ML contest (M. Hall & Hall,
2017). In these two contests, students and early career researchers have been involved
in the attempt of identifying correct lithofacies in a blind data set of well-log data (i.e.,
gamma-ray, resistivity, photoelectric effect, etc...) using an ML algorithm of their
selection to be trained on a labeled data set made available for all the competitors.
The competitors of the 2016 edition have been supported by a tutorial by Brendon
Hall (B. Hall, 2016) and Hall and Hall (M. Hall & Hall, 2017). Also, (Bestagini
et al., 2017), in a pleasant paper, describe a strategy to achieve the final goal for
the 2016 edition. It is worth noticing that the starter notebook3 of the FORCE 2020
Machine Learning competition contains all you need to begin. In detail, it shows
how to import the training data set, perform the inspection of the imported data set,
and start developing a model based on the Random Forest algorithm.

Here, I will focus on the FORCE 2020 Machine Learning competition. In detail,
I will progressively develop a ML workflow (i.e., descriptive statistics, algorithm
selection, model optimization, training of the selected model, and application to the
blind data set) discussing each step and aiming at making everything as much easy
as possible.

1 https://github.com/bolgebrygg/Force-2020-Machine-Learning-competition
2 https://github.com/seg/2016-ml-contest
3 https://bit.ly/force2020 ml start

113

114 8 Well Log Data Facies Classification by Machine Learning

8.2 Inspection of the Data Sets and Pre-Processing

For the FORCE 2020 Machine Learning competition4, a starter Jupyter Note-
book has been made available on GitHub together with a labeled train dataset
(i.e., the compressed train.zip file containing a single file: train.csv) and two
tests (i.e., leaderboard test features.csv and hidden test.csv)5. Nowadays, all three
files are labeled, i.e., they also contain the correct solution either in a column
named FORCE 2020 LITHOFACIES LITHOLOGY or in a separate file. The
above data set contains well-log data for more than 90 wells from offshore Nor-
way (Hall2016FaciesLearning; Bormann2020FORCECompetition).

We start importing the three data sets using pandas and looking at the spatial
distribution of the investigated wells (code listing 8.1; Fig. 8.1).

1 import pandas as pd
2 import matplotlib.pyplot as plt
3
4 data_sets = [’train.csv’, ’hidden_test.csv’, ’

leaderboard_test_features.csv’]

5 labels = [’Train data’, ’Hidden test data’, ’Leaderboard test
data’]

6 colors = [’#BFD7EA’,’#0A3A54’,’#C82127’]
7
8 fig, ax = plt.subplots()
9

10 for my_data_set , my_color, my_label in zip(data_sets , colors,
labels):

11
12 my_data = pd.read_csv(my_data_set , sep=’;’)

13 my_Weels = my_data.drop_duplicates(subset=[’WELL’])

14 my_Weels = my_Weels[[’X_LOC’, ’Y_LOC’]].dropna() / 100000

15
16 ax.scatter(my_Weels[’X_LOC’], my_Weels[’Y_LOC’],

17 label=my_label, s=80, color=my_color,

18 edgecolor=’k’, alpha=0.8)

19
20 ax.set_xlabel(’X_LOC’)
21 ax.set_ylabel(’Y_LOC’)
22 ax.set_xlim(4,6)
23 ax.set_ylim(63,70)
24 ax.legend(ncol=3)
25 plt.tight_layout()

Listing 8.1 Spatial distribution of the investigated wells.

Observing Fig. 8.1, it emerges that the distribution of the wells seems to define
three main clusters. As a geologist, I could expect that closer wells may show similar

4 https://xeek.ai/challenges/force-well-logs/overview
5 https://bit.ly/force2020 ml data

8.2 Inspection of the Data Sets and Pre-Processing 115

4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00
X_LOC

63

64

65

66

67

68

69

70

Y_
LO

C

Train data Hidden test data Leaderboard test data

Fig. 8.1 Result of code listing 8.1. Spatial distribution of the investigated wells.

lithofacies distributions. Therefore, the position of the well could have a significant
role in the training of our ML model. To include the spatial distribution of the wells
in a ML model, many different strategies could be adopted. Among these, including
X LOC and Y LOC as model features is the easiest one. More refined strategies may
include a preliminary clustering of wells spatial distribution and a learning approach
based on the result of the clustering. Keeping in mind that we would like to develop a
smart and simple workflow, I opted for the first option, i.e., simply including X LOC
and Y LOC as model features.

Going ahead and looking at Fig. 8.2 (the result of code listing 8.2), two main
characteristics of the investigated data sets clearly appear.

The first relates to feature persistence. Many features, e.g., SGR, DTS, RMIC,
and ROPA, contain more than 60% of missing values (i.e., upper panel of Fig. 8.2).
As a consequence, a strategy to deal with missing values is mandatory. In agreement
with the aim of simplicity of the ML workflow presented in the present chapter, I
decided to use only the features containing less than 40% of missing values. Also,
within them, I decided to replace missing values with the average of each feature.
In statistics, the procedure of substituting missing values with substituted values is
named feature imputation (Q. Zou et al., 2015). In scikit-learn, SimpleImputer() and
IterativeImputer() may help in feature imputation.

116 8 Well Log Data Facies Classification by Machine Learning

1 import pandas as pd
2 import numpy as np
3 import matplotlib.pyplot as plt
4
5 lithology_keys = {30000: ’Sandstone’,
6 65030: ’Sandstone/Shale’,

7 65000: ’Shale’,

8 80000: ’Marl’,

9 74000: ’Dolomite’,

10 70000: ’Limestone’,

11 70032: ’Chalk’,

12 88000: ’Halite’,

13 86000: ’Anhydrite’,

14 99000: ’Tuff’,

15 90000: ’Coal’,

16 93000: ’Basement’}

17
18 train_data = pd.read_csv(’train.csv’, sep=’;’)
19
20 class_abundance = np.vectorize(lithology_keys.get)(
21 train_data[’FORCE_2020_LITHOFACIES_LITHOLOGY’].values)

22 unique, counts = np.unique(class_abundance , return_counts=True)
23
24 my_colors = [’#0F7F8B’] * len(unique)
25 my_colors[np.argmax(counts)] = ’#C82127’
26 my_colors[np.argmin(counts)] = ’#0A3A54’
27
28 fig, (ax1, ax2) = plt.subplots(2,1, figsize=(7,14))
29
30 ax2.barh(unique,counts, color=my_colors)
31 ax2.set_xscale("log")
32 ax2.set_xlim(1e1,1e6)
33 ax2.set_xlabel(’Number of Occurrences’)
34 ax2.set_title(’Class Inspection’)
35
36 Feature_presence = train_data.isna().sum()/train_data.shape

[0]*100

37
38 Feature_presence =Feature_presence.drop(
39 labels=[’FORCE_2020_LITHOFACIES_LITHOLOGY’,

40 ’FORCE_2020_LITHOFACIES_CONFIDENCE’, ’WELL

’])

41
42 Feature_presence.sort_values().plot.barh(color=’#0F7F8B’,ax=ax1)
43 ax1.axvline(40, color=’#C82127’, linestyle=’--’)
44 ax1.set_xlabel(’Percentage of Missing Values’)
45 ax1.set_title(’Feature Inspection’)
46
47 plt.tight_layout()

Listing 8.2 Inspect feature persistence and class balancing.

8.2 Inspection of the Data Sets and Pre-Processing 117

0 20 40 60 80
Percentage of Missing Values

DEPTH_MD
GR

GROUP
X_LOC
Y_LOC
Z_LOC
RDEP
RMED

DTC
CALI

FORMATION
RHOB
DRHO

SP
NPHI

BS
PEF

RSHA
ROP
RXO

MUDWEIGHT
DCAL
ROPA
RMIC
DTS
SGR

Feature Inspection

101 102 103 104 105 106

Number of Occurrences

Anhydrite

Basement

Chalk

Coal

Dolomite

Halite

Limestone

Marl

Sandstone

Sandstone/Shale

Shale

Tuff

Class Inspection

Fig. 8.2 Result of code listing 8.2. Inspect feature persistence and class balancing.

118 8 Well Log Data Facies Classification by Machine Learning

The second key characteristic of the investigated data set is straightforward when
observing the class distribution (i.e., lower panel of Fig. 8.2): the training data set
is highly imbalanced with some classes exceeding 105 occurrences and others, like
Anhydrite and Basement only occurring 103 or 102 times, respectively. As strategy
to account for the imbalance of training data set is also mandatory.

Some ML algorithms, such as the one reported in the present chapter, can try ac-
counting the imbalanced nature of training data sets by tuning their hyper-parameters.
More refined strategies may involve (a) under-sampling majority classes, (b) over-
sampling minority classes, (c) combining over- and under-sampling methods, and
(d) create ensemble balanced sets (Lemaı̂tre et al., 2017).

1 import numpy as np
2
3 fig = plt.figure(figsize=(8,4))
4
5 train_data[’log_RDEP’] = np.log10(train_data[’RDEP’])
6
7 to_be_plotted = [’RDEP’, ’log_RDEP’]
8
9 for index, my_feature in enumerate(to_be_plotted):

10 ax = fig.add_subplot(1,2,index+1)

11 min_val = np.nanpercentile(train_data[my_feature],1)

12 max_val = np.nanpercentile(train_data[my_feature],99)

13 my_bins = np.linspace(min_val,max_val ,30)

14 ax.hist(train_data[my_feature], bins=my_bins,

15 density = True, color=’#BFD7EA’,

16 edgecolor=’k’)

17 ax.set_ylabel(’Probability Density’)

18 ax.set_xlabel(my_feature)

19
20 plt.tight_layout()

Listing 8.3 Inspect feature persistence and class balancing.

Looking at the histogram distribution of the selected features (code listing 8.3
and Fig. 8.3), it appears that selected features are highly skewed. It could be a
problem for some ML algorithms, e.g., the ones assuming a normal distribution for
the investigated futures. As a consequence, I decided to apply a log-transformation
to selected features to reduce the amount of skewness (e.g., Fig. 8.3, right panel).

As reported in section 3.3, data augmentation aims at increasing the generalization
capability of ML models by increasing the amount of information in our data sets. It
consists of adding modified copies (e.g., flipper or rotated images in the case of image
classification) of the available data or combining the existing features to generate new
ones. As an example, Bestagini et al. (2017) suggest three different approach foe data
augmentation, i.e., applying quadratic expansion to the feature vector, considering
second order interaction terms, and defining the augmented gradient feature vector. In
the attempt to partially mimic the data augmentation strategy proposed by Bestagini

8.2 Inspection of the Data Sets and Pre-Processing 119

0 10 20 30 40 50
RDEP

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ilit

y
De

ns
ity

0.0 0.5 1.0 1.5
log_RDEP

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pr
ob

ab
ilit

y
De

ns
ity

Fig. 8.3 Result of code listing 8.3. Log-transformation of selected features.

et al. (2017), I defined a function to calculate the augmented gradient feature vector
(code listing 8.4):

1 def calculate_delta(dataFrame):
2 delta_features = [’CALI’, ’log_RMED’, ’log_RDEP’, ’RHOB’, ’

DTC’, ’DRHO’, ’log_GR’ , ’NPHI’, ’log_PEF’, ’SP’]

3 wells = dataFrame[’WELL’].unique()

4 for my_feature in delta_features:

5 values = []

6 for well in wells:

7 col_values = dataFrame[dataFrame[’WELL’] == well][

my_feature].values

8 col_values_ = np.array([col_values[0]]+list(

col_values[:-1]))

9 delta_col_values = col_values -col_values_

10 values = values + list(delta_col_values)

11 dataFrame[’Delta_’ + my_feature] = values

12 return dataFrame

Listing 8.4 Function to calculate the augmented gradient feature vector.

Summarizing, our pre-processing strategy starts with: (a) selecting the features
characterized by missing values below 40%; (b) replacing missing values with the av-
erage value of each feature within each data set; (c) performing a log-transformation
of the features showing a highly skewed distribution; (d) performing data augmen-
tation. For the steps from a to d, I prepared a bunch of functions (code listing 8.5)
and I combined them in a pandas pipe() chain to automate the pre-processing (code
listing 8.6). Also, the pre processing pipeline() function (code listing 8.6) stores the
imported .csv files in a single HDF5 file. As quickly introduced in the section 3.3,
HDF5, i.e., Hierarchical Data Format version 5, is a high performance library to

120 8 Well Log Data Facies Classification by Machine Learning

manage, process, and store your heterogeneous data. Using the HDF5, I store all the
data sets of interest as pandas DataFrames, ready for fast reading and writing (I/O).
In detail, at lines 2 to 5, the function check if the output file exists. In this case, the
function removes the existing file. Then, at line 15, it appends each processed data
set to a newly created file.

1 import os
2 import pandas as pd
3 import numpy as np
4
5 def replace_inf(dataFrame):
6 to_be_replaced = [np.inf,-np.inf]

7 for replace_me in to_be_replaced:

8 dataFrame = dataFrame.replace(replace_me , np.nan)

9 return dataFrame

10
11 def log_transform(dataFrame):
12 log_features = [’RDEP’,’RMED’,’PEF’,’GR’]

13 for my_feature in log_features:

14 dataFrame.loc[dataFrame[my_feature] < 0, my_feature] =

dataFrame[dataFrame[my_feature] > 0].RDEP.min()

15 dataFrame[’log_’+ my_feature] = np.log10(dataFrame[

my_feature])

16 return dataFrame

17
18 def calculate_delta(dataFrame):
19 delta_features = [’CALI’, ’log_RMED’, ’log_RDEP’, ’RHOB’,

20 ’DTC’, ’DRHO’, ’log_GR’ , ’NPHI’,

21 ’log_PEF’, ’SP’]

22 wells = dataFrame[’WELL’].unique()

23 for my_feature in delta_features:

24 values = []

25 for well in wells:

26 my_val = dataFrame[dataFrame[’WELL’] == well][

my_feature].values

27 my_val_ = np.array([my_val[0]] +

28 list(my_val[:-1]))

29 delta_my_val = my_val-my_val_

30 values = values + list(delta_my_val)

31 dataFrame[’Delta_’ + my_feature] = values

32 return dataFrame

33
34 def feature_selection(dataFrame):
35 features = [’CALI’, ’Delta_CALI’, ’log_RMED’,

36 ’Delta_log_RMED’, ’log_RDEP’,

37 ’Delta_log_RDEP’, ’RHOB’, ’Delta_RHOB’,

38 ’SP’, ’Delta_SP’, ’DTC’, ’Delta_DTC’,

39 ’DRHO’, ’Delta_DRHO’, ’log_GR’, ’Delta_log_GR’,

40 ’NPHI’, ’Delta_NPHI’, ’log_PEF’, ’Delta_log_PEF’]

41 dataFrame = dataFrame[features]

42 return dataFrame

8.2 Inspection of the Data Sets and Pre-Processing 121

Listing 8.5 Defining the pre-processing functions.

10 20
CALI

0.00

0.15

0.29

0.44

Pr
ob

ab
ilit

y
De

ns
ity

0.5 0.0 0.5
Delta_CALI

0

4

9

13

0 1
log_RMED

0.0

0.5

1.0

1.5

0.1 0.0 0.1
Delta_log_RMED

0

15

29

44

0 1
log_RDEP

0.0

0.5

1.0

1.5

Pr
ob

ab
ilit

y
De

ns
ity

0.05 0.00 0.05
Delta_log_RDEP

0

19

37

56

2.0 2.5
RHOB

0.0

0.8

1.6

2.4

0.05 0.00 0.05
Delta_RHOB

0

14

28

42

200 0 200
SP

0.00

0.010.01

0.02

Pr
ob

ab
ilit

y
De

ns
ity

2.5 0.0 2.5
Delta_SP

0.0

0.4

0.7

1.1

100 150
DTC

0.00

0.010.01

0.02

5 0 5
Delta_DTC

0.00

0.20

0.41

0.61

0.0 0.2
DRHO

0

8

16

24

Pr
ob

ab
ilit

y
De

ns
ity

0.025 0.000 0.025
Delta_DRHO

0

37

74

111

1.0 1.5 2.0
log_GR

0.0

0.8

1.6

2.4

0.05 0.00 0.05
Delta_log_GR

0

11

22

33

0.25 0.50
NPHI

0.0

1.3

2.6

4.0

Pr
ob

ab
ilit

y
De

ns
ity

0.05 0.00 0.05
Delta_NPHI

0

16

32

48

0.5 1.0 1.5
log_PEF

0.0

0.9

1.8

2.7

0.1 0.0 0.1
Delta_log_PEF

0

10

20

30

Fig. 8.4 Result of code listing 8.7. Log-transformation of selected features.

Fig. 8.4 shows the results of code listing 8.7 and it describes most of the numerical
features that we will use during the training. They derive by the application of the
pre-processing strategy developed within code listings 8.5 and 8.6. All the features
reported in Fig. 8.4 are of continuous numerical nature. However, the investigated
data sets also contain categorical features, e.g., GROUP and FORMATIONS.

As reported in section 3.3, most of ML algorithms support the use of categorical
features, but only after an encoding to their numerical counterparts. Code listing 8.8

122 8 Well Log Data Facies Classification by Machine Learning

reports the pipe() chain of code listing 8.6, i.e., pre processing pipeline(), with
the addition of a categorical encoder to make the FORMATIONS ready for the
investigation by a ML algorithm.

1 def pre_processing_pipeline(input_files , out_file):
2
3 try:

4 os.remove(out_file)

5 except OSError:

6 pass

7
8 for ix, my_file in enumerate(input_files):

9 my_dataset = pd.read_csv(my_file, sep=’;’)

10
11 try:

12 my_dataset[’FORCE_2020_LITHOFACIES_LITHOLOGY’].to_hdf

(

13 out_file , key=my_file[:-4] + ’_target’)

14 except:

15 my_target = pd.read_csv(’leaderboard_test_target.csv’

, sep=’;’)

16 my_target[’FORCE_2020_LITHOFACIES_LITHOLOGY’].to_hdf(

17 out_file , key=my_file[:-4] + ’_target’)

18
19 if ix==0:

20 # Fitting the categorical encoders

21 my_encoder = OrdinalEncoder()

22 my_encoder.set_params(handle_unknown=’

use_encoded_value’,

23 unknown_value=-1,

24 encoded_missing_value=-1).fit(

25 my_dataset[[’FORMATION’]])

26
27 my_dataset = (my_dataset.

28 pipe(replace_inf).

29 pipe(log_transform).

30 pipe(calculate_delta).

31 pipe(feature_selection))

32 my_dataset.to_hdf(out_file , key=my_file[:-4])

33
34 my_dataset.to_hdf(out_file , key= my_file[:-4])

35
36 my_files = [’train.csv’, ’leaderboard_test_features.csv’, ’

hidden_test.csv’]

37
38 pre_processing_pipeline(input_files=my_files , out_file=’ml_data.

h5’)

Listing 8.6 Combining the pre-processing functions in a pandas pipe().

In detail I used the OrdinalEncoder() method, available in scikit-learn. Also,
Code listing 8.8 reports a modified version of the feature selection() function to

8.2 Inspection of the Data Sets and Pre-Processing 123

include the encoded feature FORMATION. Now, since many ML algorithms are
sensitive to differences in magnitude among the features and because they have been
developed to work with standard (i.e., centered to zero and with unit variance) nor-
mally distributed data set, our pre-processing strategy only needs an additional step:
data standardization. To standardize our features, I opted for the StandardScaler()
method in scikit-learn. As reported in section 3.3, the StandardScaler() removes the
mean for each feature and scales it to unit variance. Code listing 8.8, develops our
final pre-processing strategy that includes data standardization. Then, the proposed
pre-processing strategy is applied to the three main data sets utilized in the present
chapter, i.e., tain, leaderboard test, and hidden test, respectively (lines .

1 import pandas as pd
2 import numpy as np
3 import matplotlib.pyplot as plt
4
5 train_data = pd.read_hdf(’ml_data.h5’, ’train’)
6 test_data = pd.read_hdf(’ml_data.h5’, ’leaderboard_test_features’

)

7
8 show_axes = [1,5,9,13,17]
9 fig = plt.figure(figsize=(9, 15))

10
11 for i, my_feature in enumerate(train_data.columns[0:20], start=1)

:

12 ax = fig.add_subplot(5,4,i)

13 min_val = np.nanpercentile(train_data[my_feature],1)

14 max_val = np.nanpercentile(train_data[my_feature],99)

15 my_bins = np.linspace(min_val,max_val ,30)

16 ax.hist(train_data[my_feature], bins=my_bins, density = True,

17 histtype=’step’, color=’#0A3A54’)

18 ax.hist(test_data[my_feature], bins=my_bins, density = True,

19 histtype=’step’, color=’#C82127’, linestyle=’--’)

20 ax.set_xlabel(my_feature)

21 ymin, ymax = ax.get_ylim()

22 if ymax >=10:

23 ax.set_yticks(np.round(np.linspace(ymin, ymax, 4), 0))

24 elif ((ymax <10)&(ymax>1)):

25 ax.set_yticks(np.round(np.linspace(ymin, ymax, 4), 1))

26 else:

27 ax.set_yticks(np.round(np.linspace(ymin, ymax, 4), 2))

28
29 if i in show_axes:

30 ax.set_ylabel(’Probability Density’)

31
32 plt.tight_layout()
33 fig.align_ylabels()

Listing 8.7 Descriptive statistics.

124 8 Well Log Data Facies Classification by Machine Learning

1 import os
2 import pandas as pd
3 import numpy as np
4 from sklearn.preprocessing import OrdinalEncoder
5 from sklearn.impute import SimpleImputer
6
7 def replace_inf(dataFrame):
8 to_be_replaced = [np.inf,-np.inf]

9 for replace_me in to_be_replaced:

10 dataFrame = dataFrame.replace(replace_me , np.nan)

11 return dataFrame

12
13 def log_transform(dataFrame):
14 log_features = [’RDEP’,’RMED’,’PEF’,’GR’]

15 for my_feature in log_features:

16 dataFrame.loc[dataFrame[my_feature] < 0, my_feature] =

dataFrame[

17 dataFrame[my_feature] > 0].RDEP.min()

18 dataFrame[’log_’+ my_feature] = np.log10(dataFrame[

my_feature])

19 return dataFrame

20
21 def calculate_delta(dataFrame):
22 delta_features = [’CALI’, ’log_RMED’, ’log_RDEP’, ’RHOB’,

23 ’DTC’, ’DRHO’, ’log_GR’ , ’NPHI’,

24 ’log_PEF’, ’SP’, ’BS’]

25 wells = dataFrame[’WELL’].unique()

26 for my_feature in delta_features:

27 values = []

28 for well in wells:

29 my_val = dataFrame[dataFrame[’WELL’] == well][

my_feature].values

30 my_val_ = np.array([my_val[0]] +

31 list(my_val[:-1]))

32 delta_my_val = my_val-my_val_

33 values = values + list(delta_my_val)

34 dataFrame[’Delta_’ + my_feature] = values

35 return dataFrame

36
37 def categorical_encoder(dataFrame , my_encoder , cols):
38 dataFrame[cols] = my_encoder.transform(dataFrame[cols])

39 return dataFrame

40
41 def feature_selection(dataFrame):
42 features = [’CALI’, ’Delta_CALI’, ’log_RMED’, ’

Delta_log_RMED’,

43 ’log_RDEP’,’Delta_log_RDEP’, ’RHOB’, ’Delta_RHOB’

,

44 ’SP’, ’Delta_SP’, ’DTC’, ’Delta_DTC’, ’DRHO’, ’

Delta_DRHO’,

45 ’log_GR’, ’Delta_log_GR’, ’NPHI’, ’Delta_NPHI’,

46 ’log_PEF’, ’Delta_log_PEF’, ’BS’, ’Delta_BS’,

47 ’FORMATION’, ’X_LOC’,’Y_LOC’, ’DEPTH_MD’]

48 dataFrame = dataFrame[features]

8.2 Inspection of the Data Sets and Pre-Processing 125

49 return dataFrame

50
51 def pre_processing_pipeline(input_files , out_file):
52
53 try:

54 os.remove(out_file)

55 except OSError:

56 pass

57
58 for ix, my_file in enumerate(input_files):

59 my_dataset = pd.read_csv(my_file, sep=’;’)

60
61 try:

62 my_dataset[’FORCE_2020_LITHOFACIES_LITHOLOGY’].to_hdf

(

63 out_file , key=my_file[:-4] + ’_target’)

64 except:

65 my_target = pd.read_csv(’leaderboard_test_target.csv’

, sep=’;’)

66 my_target[’FORCE_2020_LITHOFACIES_LITHOLOGY’].to_hdf(

67 out_file , key=my_file[:-4] + ’_target’)

68
69 if ix==0:

70 # Fitting the categorical encoders

71 my_encoder = OrdinalEncoder()

72 my_encoder.set_params(handle_unknown=’

use_encoded_value’,

73 unknown_value=-1,

74 encoded_missing_value=-1).fit(

75 my_dataset[[’FORMATION’]])

76
77 my_dataset = (my_dataset.

78 pipe(replace_inf).

79 pipe(log_transform).

80 pipe(calculate_delta).

81 pipe(categorical_encoder ,

82 my_encoder=my_encoder , cols=[’

FORMATION’]).

83 pipe(feature_selection))

84 my_dataset.to_hdf(out_file , key=my_file[:-4])

85
86 imputer = SimpleImputer(missing_values=np.nan, strategy=’

mean’)

87 imputer = imputer.fit(my_dataset[my_dataset.columns])

88 my_dataset[my_dataset.columns] = imputer.transform(

89 my_dataset[my_dataset.columns])

90 my_dataset.to_hdf(out_file , key= my_file[:-4])

91
92 my_files = [’train.csv’, ’leaderboard_test_features.csv’, ’

hidden_test.csv’]

93
94 pre_processing_pipeline(input_files=my_files , out_file=’ml_data.

h5’)

126 8 Well Log Data Facies Classification by Machine Learning

Listing 8.8 Pre processing pipe() chain, including the categorical features.

8.3 Model Selection and Training

After data pre-processing, the next fundamental step is model selection, optimization
and training. I remember the reader that we are dealing with a classification problem,
therefore we will select among supervised algorithms. In the following we will test
the Extremely Randomized Trees algorithm, i.e., ExtraTreesClassifier() in scikit-
learn. Selecting the ExtraTreesClassifier() is an arbitrary choice and I invite the
reader to also explore different ML methods like, such an example, Support Vector
Machines.

In our specific case, the ExtraTreesClassifier() depends on many hyper-parameters
like, e.g., the number of trees, the number of investigated features, and the criterion
of splitting.

1 import pandas as pd
2 from sklearn.ensemble import ExtraTreesClassifier
3 from sklearn.model_selection import train_test_split
4 from sklearn.model_selection import GridSearchCV
5 import joblib as jb
6 from sklearn.preprocessing import StandardScaler
7
8 X = pd.read_hdf(’ml_data.h5’, ’train’).values
9 y = pd.read_hdf(’ml_data.h5’, ’train_target’).values

10
11 X_train, X_test, y_train, y_test = train_test_split(
12 X, y, test_size=0.2, random_state=10, stratify=y)

13
14 scaler = StandardScaler()
15 X_train = scaler.fit_transform(X_train)
16
17 param_grid = {
18 ’criterion’: [’entropy’, ’gini’],

19 ’min_samples_split’: [2, 5, 8, 10],

20 ’max_features’: [’sqrt’, ’log2’, None],

21 ’class_weight’: [’balanced’, None]

22 }

23
24 classifier = ExtraTreesClassifier(n_estimators=250,
25 n_jobs=-1)

26
27 CV_rfc = GridSearchCV(estimator=classifier , param_grid=param_grid

, cv= 3, verbose=10)

28 CV_rfc.fit(X_train, y_train)
29
30 jb.dump(CV_rfc, ’ETC_grid_search_results_rev_2.pkl’)

8.3 Model Selection and Training 127

Listing 8.9 Grid search using GridSearchCV().

Table 8.1 Hyper-parameters utilized in the grid search to optimize the ExtraTreesClassifier()
algorithm. Descriptions are from scikit-learn documentation.

parameter Description6 values

criterion The function to measure the quality of a
split.

[’entropy’, ’gini’]

min samples split The minimum number of samples required
to split an internal node

[2, 5, 8, 10]

max features The number of features to consider when
looking for the best split

[’sqrt’, ’log2’, None]

class weight Weights associated with classes [’balanced’, None]

All these hyper-parameters may assume different values which may positively or
negatively affect the classification capability of the model. To find the best combina-
tion for the investigated hyper-parameters, the easiest approach is to perform a grid
search. It consists of defining the most relevant values for each hyper-parameter, then
training and evaluating the models resulting for all possible combinations. Table 8.1
reports the hyper-parameters I selected for the grid search. Also, Table 8.1 highlights
the values that I selected for the grid search. To perform the grid search in python,
I used the GridSearchCV() method in scikit-learn (code listing 8.9). In detail, after
the importing of all required libraries (lines from 1 to 6), in code listing 8.9, I import
the pre-processed training data set (line 8) with labels (line 9). Then, I split the
training data set into two, i.e., a portion for the training and validation within the grid
search, i.e., X train, and a portion, never involved during the training, i.e., X test, to
test the results obtained during the grid search and further testing against potential
issues like the over-fitting. The next step (lines 14 and 15) consists of scaling the
data set involved in the grid search to zero mean and unit variance. From lines 17
to 22, I defined the set of parameters involved in the grid search. The combination
of the selected hyper-parameters results in a grid of 48 models, each repeated three
times (cv=3 at line 27) through cross validation (see section 3.5) for a total of 144
attempts. Running the code listing 8.9 in my MacBook pro, equipped wit a 2.3 2.3
GHz Quad-Core Intel™ Core i7 and 32GB of RAM, lasted about 8 hours. The top
panel of Fig. 8.5 displays the accuracy scores of all the 48 models, ordered by their
ranking (code listing 8.10), and it highlights that best performing models achieve
accuracy scores larger than 0.95. The achievement of such high performances may
suggest that we are over-fitting the training data set, therefore, as a first step, I used
the three best performing models (code listing 8.10) on the test data set, i.e., X test.
The bottom panel of Fig. 8.5 highlights that the accuracy scores on X test are of the
same order of those resulting from the grid search cross validation, i.e. ∼0.96, not
supporting the idea of strong over-fitting.

128 8 Well Log Data Facies Classification by Machine Learning

Also, I run the three best performing models to predict our unknowns samples, i.e.,
the leaderboard and the hidden test data sets, respectively. Looking at the accuracy
scores (Fig. 8.6) on the leaderboard and hidden test data sets, i.e. from 0.79 to 0.81
as accuracy scores, we highlight that our ML models still perform in a satisfactory
fashion on independent test data sets, and therefore we move to the next section
where we will check our models in light of the evaluation criteria of the FORCE2020
challenge.

15913172125293337414549
Model ranking

0.940

0.945

0.950

0.955

Ac
cu

ra
cy

 sc
or

es

Grid Search Results

1 2 3
Model ranking

0.0

0.5

1.0

1.5

Ac
cu

ra
cy

 sc
or

es

0.96 0.96 0.960.96 0.96 0.96

Validation data set
Test data set

Fig. 8.5 Result of code listing 8.10.

1 from joblib import load
2 import numpy as np
3 import matplotlib.pyplot as plt
4 import pandas as pd
5 from sklearn.ensemble import ExtraTreesClassifier
6 from sklearn.model_selection import train_test_split
7 from sklearn.preprocessing import StandardScaler
8
9 CV_rfc = load(’ETC_grid_search_results_rev_2.pkl’)

10
11 my_results = pd.DataFrame.from_dict(CV_rfc.cv_results_)
12 my_results = my_results.sort_values(by=[’rank_test_score’])
13
14 # Plot the results of the GridSearch
15 fig = plt.figure()

8.3 Model Selection and Training 129

16 ax1 = fig.add_subplot(2,1,1)
17 ax1.plot(my_results[’rank_test_score’], my_results[’

mean_test_score’], marker=’o’,

18 markeredgecolor=’#0A3A54’, markerfacecolor=’#C82127’,

color=’#0A3A54’,

19 label=’Grid Search Results’)

20 ax1.set_xticks(np.arange(1,50,4))
21 ax1.invert_xaxis()
22 ax1.set_xlabel(’Model ranking’)
23 ax1.set_ylabel(’Accuracy scores’)
24 ax1.legend()
25
26 # Selecting the best three performing models
27 my_results = my_results[my_results[’mean_test_score’]>0.956]
28
29 # Load and scaling
30 X = pd.read_hdf(’ml_data.h5’, ’train’).values
31 y = pd.read_hdf(’ml_data.h5’, ’train_target’).values
32
33 X_train, X_test, y_train, y_test = train_test_split(
34 X, y, test_size=0.2, random_state=10, stratify=y)

35
36 scaler = StandardScaler()
37 X_train = scaler.fit_transform(X_train)
38 X_test = scaler.transform(X_test)
39
40 leaderboard_test_features = pd.read_hdf(’ml_data.h5’, ’

leaderboard_test_features’).values

41 hidden_test = pd.read_hdf(’ml_data.h5’, ’hidden_test’).values
42
43 leaderboard_test_features_scaled = scaler.transform(

leaderboard_test_features)

44 hidden_test_scaled = scaler.transform(hidden_test)
45
46 # Apply the three best performing model on the test dataset and

on the unknowns

47 leaderboard_test_res = {}
48 hidden_test_res = {}

49 test_score = []

50 rank_model = []

51 for index, row in my_results.iterrows():
52 classifier = ExtraTreesClassifier(n_estimators=250, n_jobs=8,

random_state=64, **row[’params’])

53 classifier.fit(X_train, y_train)

54 my_score = classifier.score(X_test,y_test)

55 test_score.append(my_score)

56 rank_model.append(row[’rank_test_score’])

57
58 my_leaderboard_test_res = classifier.predict(

leaderboard_test_features_scaled)

59 my_hidden_test_res = classifier.predict(hidden_test_scaled)

60 leaderboard_test_res[’model_ranked_’ + str(row[’

rank_test_score’])] = my_leaderboard_test_res

130 8 Well Log Data Facies Classification by Machine Learning

61 hidden_test_res[’model_ranked_’ + str(row[’rank_test_score’])

] = my_hidden_test_res

62
63 leaderboard_test_res_pd = pd.DataFrame.from_dict(

leaderboard_test_res)

64 hidden_test_res_pd = pd.DataFrame.from_dict(hidden_test_res)
65 leaderboard_test_res_pd.to_hdf(’ml_data.h5’, key= ’

leaderboard_test_res’)

66 hidden_test_res_pd.to_hdf(’ml_data.h5’, key= ’hidden_test_res’)
67
68 # plot the resultson the test dataset
69 ax2 = fig.add_subplot(2,1,2)
70 labels = my_results[’rank_test_score’]
71 validation_res = np.around(my_results[’mean_test_score’], 2)
72 test_res = np.around(np.array(test_score),2)
73 x = np.arange(len(labels))
74 width = 0.35
75 rects1 = ax2.bar(x - width/2, validation_res , width, label=’

Validation data set’, color=’#C82127’)

76 rects2 = ax2.bar(x + width/2, test_res, width, label=’Test data
set’, color=’#0A3A54’)

77 ax2.set_ylabel(’Accuracy scores’)
78 ax2.set_xlabel(’Model ranking’)
79 ax2.set_ylim(0,1.7)
80 ax2.set_xticks(x, labels)
81 ax2.legend()
82 ax2.bar_label(rects1, padding=3)
83 ax2.bar_label(rects2, padding=3)
84 fig.align_ylabels()
85 fig.tight_layout()

Listing 8.10 Applying the three best performing model on the test data set and on unknown
samples.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from sklearn.metrics import accuracy_score
4 import pandas as pd
5
6 leaderboard_test_res= pd.read_hdf(’ml_data.h5’, ’

leaderboard_test_res’)

7 hidden_test_res = pd.read_hdf(’ml_data.h5’, ’hidden_test_res’)
8
9 leaderboard_test_target = pd.read_hdf(’ml_data.h5’, ’

leaderboard_test_features_target’).values

10 hidden_test_target = pd.read_hdf(’ml_data.h5’, ’
hidden_test_target’).values

11
12 leaderboard_accuracy_scores = []
13 hidden_accuracy_scores = []
14

8.3 Model Selection and Training 131

model_ranked_1 model_ranked_2 model_ranked_3
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 sc
or

es

0.8 0.8 0.790.81 0.81 0.79

Leaderboard test data set
Hidden test est data set

Fig. 8.6 Result of code listing 8.11.

15 for (leaderboard_column , leaderboard_data), (hidden_column ,
hidden_data) in zip(leaderboard_test_res.iteritems(),

hidden_test_res.iteritems()):

16
17 leaderboard_accuracy_scores.append(np.around(accuracy_score(

leaderboard_data , leaderboard_test_target),2))

18 hidden_accuracy_scores.append(np.around(accuracy_score(

hidden_data , hidden_test_target),2))

19
20
21 # plot the resultson the test dataset
22 plt, ax1 = plt.subplots()
23 labels = leaderboard_test_res.columns
24 x = np.arange(len(labels))
25 width = 0.35
26 rects1 = ax1.bar(x - width/2, leaderboard_accuracy_scores , width,

label=’Leaderboard test data set’, color=’#C82127’)

27 rects2 = ax1.bar(x + width/2, hidden_accuracy_scores , width,
label=’Hidden test est data set’, color=’#0A3A54’)

28 ax1.set_ylabel(’Accuracy scores’)
29 #ax1.set_xlabel(’Model ranking’)
30 ax1.set_ylim(0,1.1)
31 ax1.set_xticks(x, labels)
32 ax1.legend()
33 ax1.bar_label(rects1, padding=3)
34 ax1.bar_label(rects2, padding=3)

Listing 8.11 Plotting the results obtained on the Leaderboard and on the hidden test data sets.

132 8 Well Log Data Facies Classification by Machine Learning

8.4 Final evaluation

To evaluate the goodness of each model, the FORCE2020 challenge utilized a custom
scoring strategy based no penalty matrix (code listing 8.12).

1 import numpy as np
2
3 A = np.load(’penalty_matrix.npy’)
4 def score(y_true, y_pred):
5 S = 0.0

6 y_true = y_true.astype(int)

7 y_pred = y_pred.astype(int)

8 for i in range(0, y_true.shape[0]):

9 S -= A[y_true[i], y_pred[i]]

10 return S/y_true.shape[0]

Listing 8.12 Custom scoring function.

In code listing 8.12, y true and y pred are the expected,i.e., correct, and the
predicted values, respectively, converted into integer indexes ranging from 0 to 11,
as reported in Table 8.2.

Table 8.2 connecting the labeling in the target files with litofacies names and the indexing of the
score function

Label Lithofacies Index

30000 ‘Sandstone’ 0

65030 ‘Sandstone/Shale’ 1

65000 ‘Shale’ 2

80000 ‘Marl’ 3

74000 ‘Dolomite’ 4

70000 ‘Limestone’ 5

70032 ‘Chalk’ 6

88000 ‘Halite’ 7

86000 ‘Anhydrite’ 8

99000 ‘Tuff’ 9

90000 ‘Coal’ 10

93000 ‘Basement’ 11

8.4 Final evaluation 133

Sa
nd

st
on

e

Sa
nd

st
on

e/
Sh

al
e

Sh
al

e

M
ar

l

Do
lo

m
ite

Lim
es

to
ne

Ch
al

k

Ha
lit

e

An
hy

dr
ite Tu
ff

Co
al

Ba
se

m
en

t

Sandstone

Sandstone/Shale

Shale

Marl

Dolomite

Limestone

Chalk

Halite

Anhydrite

Tuff

Coal

Basement

0 2 3.5 3 3.8 3.5 3.5 4 4 2.5 3.9 3.2

2 0 2.4 2.8 4 3.8 3.8 3.9 4 3 3.8 3

3.5 2.4 0 2 3.5 3.5 3.8 4 4 2.8 3.2 3

3 2.8 2 0 2.5 2 2.2 4 4 3.4 3.8 3.2

3.8 4 3.5 2.5 0 2.6 2.9 3.8 3.2 3 4 3.6

3.5 3.8 3.5 2 2.6 0 1.4 4 3.8 3.5 4 3.6

3.5 3.8 3.8 2.2 2.9 1.4 0 4 3.8 3.1 4 3.8

4 3.9 4 4 3.8 4 4 0 2.8 3.8 3.8 4

4 4 4 4 3.2 3.8 3.8 2.8 0 4 4 3.9

2.5 3 2.8 3.4 3 3.5 3.1 3.8 4 0 2.5 3.2

3.9 3.8 3.2 3.8 4 4 4 3.8 4 2.5 0 4

3.2 3 3 3.2 3.6 3.6 3.8 4 3.9 3.2 4 0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Fig. 8.7 Result of code listing 8.13.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import seaborn as sns
4
5 A = np.load(’penalty_matrix.npy’)
6
7 my_labels = [’Sandstone’,’Sandstone/Shale’,’Shale’,’Marl’, ’

Dolomite’,

8 ’Limestone’,’Chalk’,’Halite’,’Anhydrite’,’Tuff’,’

Coal’,’Basement’]

9
10 fig, ax = plt.subplots(figsize=(15, 12))
11 ax.imshow(A)
12 ax = sns.heatmap(A, annot=True, xticklabels = my_labels ,

yticklabels = my_labels)

13 fig.tight_layout()
Listing 8.13 the penalty matrix.

The main objective is to strongly penalize the errors made on easy to recognize
lithologies, and than those on lithologies that are difficult. To achieve this goal, the

134 8 Well Log Data Facies Classification by Machine Learning

score() function weight each true-valueprediction pair using the penalty matrix (code
listing 8.13) reported in Fig. 8.7. In detail, the score() function return the value of
the penalty matrix corresponding to each true-valueprediction pair (e.g., 4 if you
confuse a Halite for a Sandtone; Fig. 8.7). Then, it sums all the scoring values and
it finally calculates an ‘average’ score dividing the resulting value by the number of
predictions.

1 import numpy as np
2 import pandas as pd
3
4 A = np.load(’penalty_matrix.npy’)
5 def score(y_true, y_pred):
6 S = 0.0

7 y_true = y_true.astype(int)

8 y_pred = y_pred.astype(int)

9 for i in range(0, y_true.shape[0]):

10 S -= A[y_true[i], y_pred[i]]

11 return S/y_true.shape[0]

12
13 target = np.full(1000, 5) # Limestone
14 predicted = np.full(1000, 5) # Limestone

15 print("Case 1: " + str(score(target, predicted)))
16
17 predicted = np.full(1000, 6) # Chalk

18 print("Case 2: " + str(score(target, predicted)))
19
20 predicted = np.full(1000, 7) # Halite
21 print("Case 3: " + str(score(target, predicted)))
22
23 hidden_test_target = pd.read_hdf(’ml_data.h5’,
24 ’hidden_test_target’).values

25 predicted = np.random.randint(0, high=12,
26 size=1000) # Random predictions

27 print("Case 4: " + str(score(target, predicted)))
28
29 ’’’ Output:
30
31 Case 1: 0.0
32 Case 2: -1.375
33 Case 3: -4.0
34 Case 4: -3.04625
35
36 ’’’

Listing 8.14 Custom scoring function.

Looking at Fig. 8.7 and code listing 8.12, we can argue that when the prediction
is correct, the contribution to the score is equal to zero. Therefore, if you correctly
guess all the predictions, the score function return a value equal to zero (e.g., code
listing 8.14 - Case 1). On the contrary, systematically predicting Chalk on a data

8.4 Final evaluation 135

set of limestone samples will return -1.375 (code listing 8.14 - Case 2). Finally,
systematically predicting Halyte on a data set of limestone samples will return -
4.0 (code listing 8.14 - Case 3), much more penalized than the Case 2. Finally,
considering the hidden test data set, a dummy model providing random predictions,
will obtain a score close to -3 (code listing 8.14 - Case 4).

Fig. 8.8 displays the application of the scoring strategy described above on the
leaderboard and hidden test, respectively. Despite the simplicity of the model, the best
two performing models derived by the grid search of code listing 8.9 are comparable
with those on the top three (<-0.50) of the FORCE2020 challenge7 on the hidden test
data set. For the leaderboard test data set, the results are still satisfactory. However,
they should rank within the 30𝑡ℎ and the 40𝑡ℎ position.

model_ranked_1 model_ranked_2 model_ranked_3

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Ac
cu

ra
cy

 sc
or

es

-0.5267 -0.5273
-0.5512

-0.4822 -0.4811
-0.5312

Leaderboard test data set
Hidden test est data set

Fig. 8.8 Result of code listing 8.15.

1 import matplotlib.pyplot as plt
2 import pandas as pd
3 import numpy as np
4
5 A = np.load(’penalty_matrix.npy’)
6 def score(y_true, y_pred):
7 S = 0.0

8 y_true = y_true.astype(int)

9 y_pred = y_pred.astype(int)

7 https://github.com/bolgebrygg/Force-2020-Machine-Learning-competition

136 8 Well Log Data Facies Classification by Machine Learning

10 for i in range(0, y_true.shape[0]):

11 S -= A[y_true[i], y_pred[i]]

12 return S/y_true.shape[0]

13
14 lithology_numbers = {30000: 0, 65030: 1, 65000: 2, 80000: 3,

74000: 4, 70000: 5,

15 70032: 6, 88000: 7, 86000: 8, 99000: 9,

90000: 10, 93000: 11}

16
17 # Load test data
18 leaderboard_test_res = pd.read_hdf(’ml_data.h5’, ’

leaderboard_test_res’)

19 hidden_test_res = pd.read_hdf(’ml_data.h5’, ’hidden_test_res’)
20
21 leaderboard_test_target = pd.read_hdf(’ml_data.h5’, ’

leaderboard_test_features_target’).values

22 leaderboard_test_target = np.vectorize(lithology_numbers.get)(

leaderboard_test_target)

23 hidden_test_target = pd.read_hdf(’ml_data.h5’, ’
hidden_test_target’).values

24 hidden_test_target = np.vectorize(lithology_numbers.get)(

hidden_test_target)

25
26 leaderboard_accuracy_scores = []
27 hidden_accuracy_scores = []
28 for (leaderboard_column , leaderboard_data), (hidden_column ,

hidden_data) in zip(leaderboard_test_res.iteritems(),

hidden_test_res.iteritems()):

29
30 leaderboard_data = np.vectorize(lithology_numbers.get)(

leaderboard_data)

31 leaderboard_accuracy_scores.append(np.around(score(

leaderboard_data , leaderboard_test_target),4))

32 hidden_data = np.vectorize(lithology_numbers.get)(

hidden_data)

33 hidden_accuracy_scores.append(np.around(score(hidden_data ,

hidden_test_target),4))

34
35 # plot the results
36 plt, ax1 = plt.subplots()
37 labels = leaderboard_test_res.columns
38 x = np.arange(len(labels))
39 width = 0.35
40 rects1 = ax1.bar(x - width/2, leaderboard_accuracy_scores , width,

label=’Leaderboard test data set’, color=’#C82127’)

41 rects2 = ax1.bar(x + width/2, hidden_accuracy_scores , width,
label=’Hidden test est data set’, color=’#0A3A54’)

42 ax1.set_ylabel(’Accuracy scores’)
43 ax1.set_ylim(0,-0.7)
44 ax1.set_xticks(x, labels)
45 ax1.legend()
46 ax1.bar_label(rects1, padding=-12)
47 ax1.bar_label(rects2, padding=-12)

8.4 Final evaluation 137

Listing 8.15 Final scoring on the leaderbord and hidden test data set

Chapter 9
Machine Learning Regression in Petrology

9.1 Motivation

Dechypering magma storage depths and temperatures in feeding systems of active
volcanoes is a central issue in volcanology and petrology (e.g., Putirka, 2008). As
an example, the depiction of magma storage depths helps the characterization of
volcanic plumbing systems (e.g., Petrelli et al., 2018; Ubide and Kamber, 2018;
Ubide et al., 2021). Also, magma temperature estimates are mandatory for the ap-
plication of diffusion-based geo-chronometers (e.g., Costa et al., 2020). To date,
the development of a geo-barometer or a geo-thermometer is mainly based on en-
tropy and volume changes during equilibrium reactions between melts and crystals
(Putirka, 2008). It is a robust and widely applied strategy (Putirka, 2008, and ref-
erences therein). As an example, the calibration process for a cpx thermometer or
a barometer consists of five main steps: (a) determine chemical equilibria associ-
ated with significant changes in entropy and volume, respectively (Putirka, 2008);
(b) get a suitable experimental data set where T and P are known (e.g., the LEPR
data set; Hirschmann et al., 2008); (c) compute the components of the crystal phase
from chemical analyses;(d) choose the regression strategy; and finally (e) validate
your model (Putirka, 2008). Recently, many authors demonstrated the potential of
machine learning (ML) thermo-barometry (e.g., Jorgenson et al., 2022; Petrelli et
al., 2020). Differently form Petrelli et al. (2020), I will focus on ortopyroxenes in
equilibrium with the melt phase and orthopyroxenes alone.

9.2 The LEPR data set and data pre processing

LEPR (Hirschmann et al., 2008) is the acronym of the Library of Experimental Phase
Relations. It includes a large number of petrological experiments (>5000) simulating
igneous systems at temperatures between 500 and 2500C and pressures up to >25

139

140 9 Machine Learning Regression in Petrology

GPa. The LEPR data set can be easily downloaded from a dedicated portal1. The
entries corresponding to each experiment in the data set include both experimental
data (i.e., the composition of starting materials, the temperature and pressure of the
experiments, the phases present at the end of the experiments and related composi-
tions) and metadata (e.g., author, laboratory, device, oxygen fugacity, etc...). From
the LEPR portal, I downloaded an ExcelTM file, i.e., LEPR download.xls, contain-
ing all the experiments. Within the ExcelTM file, the sheet named ‘Experiments’
contains all meta data and relevant information like the composition of starting ma-
terials, the temperature and pressure of the experiments, and the phases present at
the end of the experiments. The sheets named with the name of a phase (e.g., Liquid,
Clinopyroxene, Olivine, etc...) contain the chemical composition for that specific
phase in the different experiments. An index characterizes each experiment, linking
the information in the different sheets.

As pre-processing strategy, I decided to proceed as follow (code listing 9.1):
1) define all the required functions (lines from 5 to 95); 2) define a function
for the pre-processing (i.e., data pre processing() (lines from 98 to 161). The
data pre processing() function includes: a) the import of the LEPR data set from
ExcelTM (lines 11 and 121), 2) create a pandas pipe() for basic operations like ad-
justing column names, convert all Iron data as 𝐹𝑒𝑜𝑡𝑜𝑡 , filtering the features, and
imputing NaN to zero (lines from 124 to 124); 3) start storing phase information in
a .hd5 file (line 132, 134, and 135); 4) combine all relevant data in a single pandas
DataFrame (lines from 137 t o139); 5) make some filtering based on 𝑆𝑖𝑂2, pressure
[𝑃(𝐺𝑃𝑎)], and temperature [𝑇 (𝐶)], respectively (lines from 141 to 147); 6) remove
the entries characterized by chemical analysis that don’t fit the chemical formula of
the orthopyroxene (lines from 149 to 151) 7) shuffle the data set (lines 153-154; 7)
separate the labels from the input features (lines 156-157); 8) store everything in a
.hd5 file (lines 159-160).

The statement starting at line 163 triggers the data pre-processing to develop
a thermometer or a barometer based on the liquid-orthopyroxene equilibrium.
The result is a hdf5 file named ml data.h5 containing a DataFrame named ‘Liq-
uid Orthopyroxene’ containing the pre-processed experimental data from LEPR.
Also, it stores the labels, i.e., T and P, in DataFrame named ‘labels’. Finally, it
contains all the original data of our interest in three DataFrames named ‘Liquid’,
‘Orthopyroxene’, and ‘starting material’, respectively.

Figs. 9.1 and 9.2 show the probability densities for the different chemical elements
in the melt (Fig. 9.1) and orthopyroxene (Fig. 9.2) phases, respectively, based on
kernel densities estimates (Code listing 9.2). In detail, the code listing 9.2 imports
‘Liquid Orthopyroxene’ DataFrame form the hdf5 file named ml data.h5 (line 5).
Then it plots two figures (i.e., Fig. 9.1) and Fig. 9.2) to highlight the univariate
distribution of each feature that we are going to ‘squeeze’ to develop our ML model.
To note, the investigated features are of compositional nature (i.e., they always close
to 100 wt.%), a significant characteristic that deserves additional discussion.

1 https://lepr.earthchem.org/

9.2 The LEPR data set and data pre processing 141

1 import os
2 import pandas as pd
3 import numpy as np
4
5 Elements = {

6 ’Liquid’: [’SiO2’, ’TiO2’, ’Al2O3’, ’FeOtot’, ’MgO’,

7 ’MnO’, ’CaO’, ’Na2O’, ’K2O’],

8 ’Orthopyroxene’: [’SiO2’, ’TiO2’, ’Al2O3’, ’FeOtot’,

9 ’MgO’, ’MnO’, ’CaO’, ’Na2O’, ’Cr2O3’]}

10
11 def calculate_cations_on_oxygen_basis(
12 myData0, myphase, myElements , n_oxygens):

13
14 Weights = {’SiO2’: [60.0843,1.0,2.0],

15 ’TiO2’:[79.8788,1.0,2.0],

16 ’Al2O3’: [101.961,2.0,3.0],

17 ’FeOtot’:[71.8464,1.0,1.0],

18 ’MgO’:[40.3044,1.0,1.0],

19 ’MnO’:[70.9375,1.0,1.0],

20 ’CaO’:[56.0774,1.0,1.0],

21 ’Na2O’:[61.9789,2.0,1.0],

22 ’K2O’:[94.196,2.0,1.0],

23 ’Cr2O3’:[151.9982,2.0,3.0],

24 ’P2O5’:[141.937,2.0,5.0],

25 ’H2O’:[18.01388,2.0,1.0]}

26
27 myData = myData0.copy()

28 # Cation mole proportions

29 for el in myElements:

30 myData[el + ’_cat_mol_prop’] = myData[myphase +

31 ’_’ + el] * Weights[el][1] / Weights[el][0]

32 # Oxygen mole proportions

33 for el in myElements:

34 myData[el + ’_oxy_mol_prop’] = myData[myphase +

35 ’_’ + el] * Weights[el][2] / Weights[el][0]

36 # Oxigen mole proportions totals

37 totals = np.zeros(len(myData.index))

38 for el in myElements:

39 totals += myData[el + ’_oxy_mol_prop’]

40 myData[’tot_oxy_prop’] = totals

41 # totcations

42 totals = np.zeros(len(myData.index))

43 for el in myElements:

44 myData[el + ’_num_cat’] = n_oxygens * myData[el +

45 ’_cat_mol_prop’] / myData[’tot_oxy_prop’]

46 totals += myData[el + ’_num_cat’]

47 return totals

48
49 def filter_by_cryst_formula(dataFrame , myphase, myElements):
50
51 c_o_Tolerance = {’Orthopyroxene’: [4,6,0.025]}

52
53 dataFrame[’Tot_cations’] = calculate_cations_on_oxygen_basis(

54 myData0 = dataFrame , myphase = myphase,

142 9 Machine Learning Regression in Petrology

55 myElements = myElements ,

56 n_oxygens = c_o_Tolerance[myphase][1])

57
58 dataFrame = dataFrame[

59 (dataFrame[’Tot_cations’] < c_o_Tolerance[myphase][0]

60 + c_o_Tolerance[myphase][2]) &

61 (dataFrame[’Tot_cations’] > c_o_Tolerance[myphase][0]

62 - c_o_Tolerance[myphase][2])]

63
64 dataFrame = dataFrame.drop(columns=[’Tot_cations’])

65 return dataFrame

66
67 def adjustFeOtot(dataFrame):
68 for i in range(len(dataFrame.index)):

69 try:

70 if pd.to_numeric(dataFrame.Fe2O3[i])>0:

71 dataFrame.loc[i,’FeOtot’] = (

72 pd.to_numeric(dataFrame.FeO[i]) + 0.8998 *

73 pd.to_numeric(dataFrame.Fe2O3[i]))

74 else:

75 dataFrame.loc[i,

76 ’FeOtot’] = pd.to_numeric(dataFrame.FeO[i])

77 except:

78 dataFrame.loc[i,’FeOtot’] = 0

79 return dataFrame

80
81 def adjust_column_names(dataFrame):
82 dataFrame.columns = [c.replace(’Wt: ’, ’’)

83 for c in dataFrame.columns]

84 dataFrame.columns = [c.replace(’ ’, ’’)

85 for c in dataFrame.columns]

86 return dataFrame

87
88 def select_base_features(dataFrame , my_elements):
89 dataFrame = dataFrame[my_elements]

90 return dataFrame

91
92 def data_imputation(dataFrame):
93 dataFrame = dataFrame.fillna(0)

94 return dataFrame

95
96 def data_pre_processing(phase_1, phase_2, out_file):
97
98 try:

99 os.remove(out_file)

100 except OSError:

101 pass

102
103 starting = pd.read_excel(’LEPR_download.xls’,

104 sheet_name=’Experiment’)

105 starting= adjust_column_names(starting)

106 starting.name = ’’

107 starting = starting[[’Index’, ’T(C)’,’P(GPa)’]]

108 starting.to_hdf(out_file, key=’starting_material’)

9.2 The LEPR data set and data pre processing 143

109
110 phases = [phase_1, phase_2]

111
112 for ix, my_phase in enumerate(phases):

113 my_dataset = pd.read_excel(’LEPR_download.xls’,

114 sheet_name = my_phase)

115 my_dataset = (my_dataset.

116 pipe(adjust_column_names).

117 pipe(adjustFeOtot).

118 pipe(select_base_features ,

119 my_elements= Elements[my_phase]).

120 pipe(data_imputation))

121
122 my_dataset = my_dataset.add_prefix(my_phase + ’_’)

123 my_dataset.to_hdf(out_file , key=my_phase)

124
125 my_phase_1 = pd.read_hdf(out_file , phase_1)

126 my_phase_2 = pd.read_hdf(out_file , phase_2)

127
128 my_dataset = pd.concat([starting ,

129 my_phase_1 ,

130 my_phase_2], axis=1)

131
132 my_dataset = my_dataset[(my_dataset[’Liquid_SiO2’] > 35)&

133 (my_dataset[’Liquid_SiO2’] < 80)]

134
135 my_dataset = my_dataset[(

136 my_dataset[’Orthopyroxene_SiO2’] > 0)]

137
138 my_dataset = my_dataset[(my_dataset[’P(GPa)’] <= 2)]

139
140 my_dataset = my_dataset[(my_dataset[’T(C)’] >= 650)&

141 (my_dataset[’T(C)’] <= 1800)]

142
143 my_dataset = filter_by_cryst_formula(dataFrame = my_dataset ,

144 myphase = phase_2,

145 myElements = Elements[phase_2])

146
147 my_dataset = my_dataset.sample(frac=1,

148 random_state=50).reset_index(drop=True)

149
150 my_labels = my_dataset[[’Index’, ’T(C)’, ’P(GPa)’]]

151 my_dataset = my_dataset.drop(columns=[’T(C)’,’P(GPa)’])

152
153 my_labels.to_hdf(out_file, key=’labels’)

154 my_dataset.to_hdf(out_file ,

155 key= phase_1 + ’_’ + phase_2)

156
157 data_pre_processing(phase_1=’Liquid’ ,
158 phase_2=’Orthopyroxene’,

159 out_file=’ml_data.h5’)

Listing 9.1 Implementation of our pre-processing strategy.

144 9 Machine Learning Regression in Petrology

1 import pandas as pd
2 import matplotlib.pyplot as plt
3 import seaborn as sns
4
5 my_dataset = pd.read_hdf(’ml_data.h5’, ’Liquid_Orthopyroxene’)
6
7 Elements = {

8 ’Liquid’: [’SiO2’, ’TiO2’, ’Al2O3’, ’FeOtot’, ’MgO’,

9 ’MnO’, ’CaO’, ’Na2O’, ’K2O’, ’H2O’],

10 ’Orthopyroxene’: [’SiO2’, ’TiO2’, ’Al2O3’, ’FeOtot’,

11 ’MgO’, ’MnO’, ’CaO’, ’Na2O’, ’K2O’, ’Cr2O3’]}

12
13 fig = plt.figure(figsize=(7,9))
14 x_labels_melt = [r’SiO$_2$’, r’TiO$_2$’, r’Al$_2$O$_3$’,
15 r’FeO$_t$’, r’MnO’, r’MgO’, r’CaO’,

16 r’Na$_2O$’, r’K$_2$O’, r’H$_2$O’]

17 for i, col in enumerate(Elements[’Liquid’]):
18 ax1 = fig.add_subplot(5, 2, i+1)

19 sns.kdeplot(my_dataset[’Liquid_’ + col], fill=True,

20 color=’k’, facecolor=’#BFD7EA’, ax = ax1)

21 ax1.set_xlabel(x_labels_melt[i] + ’ [wt. %] the melt’)

22 if i in [0,2,4,6,8]:

23 ax1.set_ylabel(’Prob. Density’)

24 else:

25 ax1.set(ylabel=None)

26
27 fig.align_ylabels()
28 fig.tight_layout()
29
30 fig1 = plt.figure(figsize=(7,9))
31 x_labels_cpx = [r’SiO$_2$’, r’TiO$_2$’, r’Al$_2$O$_3$’,
32 r’FeO$_t$’, r’MnO’, r’MgO’, r’CaO’,

33 r’Na$_2O$’, r’K$_2$O’, r’Cr$_2$O$_3$’]

34 for i, col in enumerate(Elements[’Orthopyroxene’]):
35 ax2 = fig1.add_subplot(5, 2, i+1)

36 sns.kdeplot(my_dataset[’Orthopyroxene_’ + col], fill=True,

37 color=’k’, facecolor=’#BFD7EA’, ax = ax2)

38 ax2.set_xlabel(x_labels_cpx[i] + ’ [wt. %] in opx’)

39 if i in [0,2,4,6,8]:

40 ax2.set_ylabel(’Prob. Density’)

41 else:

42 ax2.set(ylabel=None)

43
44 fig1.align_ylabels()
45 fig1.tight_layout()

Listing 9.2 Descriptive statistics applied to our orthopyroxenes.

9.2 The LEPR data set and data pre processing 145

40 60 80
SiO2 [wt. %] the melt

0.00

0.02

0.04

0.06

Pr
ob

. D
en

sit
y

0 5 10 15 20
TiO2 [wt. %] the melt

0.0

0.2

0.4

0.6

5 10 15 20 25
Al2O3 [wt. %] the melt

0.00

0.05

0.10

Pr
ob

. D
en

sit
y

0 5 10 15 20
FeOt [wt. %] the melt

0.00

0.05

0.10

0 10 20 30
MnO [wt. %] the melt

0.00

0.02

0.04

0.06

Pr
ob

. D
en

sit
y

0 2 4 6
MgO [wt. %] the melt

0

1

2

3

0 5 10 15
CaO [wt. %] the melt

0.000

0.025

0.050

0.075

Pr
ob

. D
en

sit
y

0.0 2.5 5.0 7.5 10.0
Na2O [wt. %] the melt

0.0

0.1

0.2

0.0 2.5 5.0 7.5 10.0
K2O [wt. %] the melt

0.0

0.2

0.4

Pr
ob

. D
en

sit
y

0 5 10 15
H2O [wt. %] the melt

0.0

0.1

0.2

0.3

Fig. 9.1 Result of code listing 9.2. Descriptive statistics on the melt phase.

146 9 Machine Learning Regression in Petrology

45 50 55 60
SiO2 [wt. %] in opx

0.0

0.1

0.2

Pr
ob

. D
en

sit
y

0.0 0.5 1.0 1.5 2.0
TiO2 [wt. %] in opx

0

1

2

0 5 10 15
Al2O3 [wt. %] in opx

0.00

0.05

0.10

0.15

Pr
ob

. D
en

sit
y

0 10 20 30 40
FeOt [wt. %] in opx

0.000

0.025

0.050

0.075

10 20 30 40
MnO [wt. %] in opx

0.00

0.05

0.10

Pr
ob

. D
en

sit
y

0.0 0.5 1.0 1.5
MgO [wt. %] in opx

0

1

2

0 5 10
CaO [wt. %] in opx

0.0

0.2

0.4

Pr
ob

. D
en

sit
y

0.0 0.5 1.0 1.5 2.0 2.5
Na2O [wt. %] in opx

0

2

4

6

0.00 0.05 0.10 0.15 0.20 0.25
K2O [wt. %] in opx

0

20

40

60

Pr
ob

. D
en

sit
y

0 1 2
Cr2O3 [wt. %] in opx

0.0

0.5

1.0

Fig. 9.2 Result of code listing 9.2. Descriptive statistics on the opx phase.

9.3 Compositional data analysis 147

9.3 Compositional data analysis

In section 3.3, we introduced the basic concepts of compositional data analysis.
Also, in section 3.3, we discussed why most of the advanced statistical techniques
cannot be applied to compositional data without a proper transformation. Indeed,
they assume to deal with independent data in the range form− inf to inf. Intrinsically,
compositional features are in the range form 0 to 100 (or from 0 to 1) and they are not
independent, since changing the value of one element will automatically affect the
abundance of the other components (Aitchison, 1982). Decision tree ensembles like
Random Forest (Song & Lu, 2015) and Extremely Randomized Trees (Geurts et al.,
2006) do not have any specific assumption on the data structure. Therefore, they can
be applied to un-transformed data (Aitchison, 1982). However, recent studies reports
that tree ensembles experience an improvement in the performances when they
are applied to log-ratio pairwise transformed data (Tolosana-Delgado et al., 2019).
Although tree based ensembles does not strictly require a CoDA transformation,
they benefit from the introduction of new features (i.e., pairwise log-ratios) derived
from the existing ones (i.e., the augmentation of the feature input space). It results
in a reduction of the overfitting leading to an improved generalization capability.
In the present chapter, we will compare the results of the Extremely Randomized
Trees algorithm on both un-transformed and un-transformed plus log-ratio pairwise
transformed data, as suggested by Tolosana-Delgado et al. (2019). To introduce the
log-ratio pairwise transformation in our pre-processing strategy, we simply need the
addition of a new function to code listing 9.1, and then call it within pre-processing
function. The code listing 9.3 reports the final version of our pre-processing strategy,
now including the log-ratio pairwise transformation.

1 import os
2 import pandas as pd
3 import numpy as np
4
5 Elements = {

6 ’Liquid’: [’SiO2’, ’TiO2’, ’Al2O3’, ’FeOtot’, ’MgO’,

7 ’MnO’, ’CaO’, ’Na2O’, ’K2O’],

8 ’Orthopyroxene’: [’SiO2’, ’TiO2’, ’Al2O3’, ’FeOtot’,

9 ’MgO’, ’MnO’, ’CaO’, ’Na2O’, ’Cr2O3’]}

10
11 def calculate_cations_on_oxygen_basis(
12 myData0, myphase, myElements , n_oxygens):

13
14 Weights = {’SiO2’: [60.0843,1.0,2.0],

15 ’TiO2’:[79.8788,1.0,2.0],

16 ’Al2O3’: [101.961,2.0,3.0],

17 ’FeOtot’:[71.8464,1.0,1.0],

18 ’MgO’:[40.3044,1.0,1.0],

19 ’MnO’:[70.9375,1.0,1.0],

20 ’CaO’:[56.0774,1.0,1.0],

21 ’Na2O’:[61.9789,2.0,1.0],

22 ’K2O’:[94.196,2.0,1.0],

148 9 Machine Learning Regression in Petrology

23 ’Cr2O3’:[151.9982,2.0,3.0],

24 ’P2O5’:[141.937,2.0,5.0],

25 ’H2O’:[18.01388,2.0,1.0]}

26
27 myData = myData0.copy()

28 # Cation mole proportions

29 for el in myElements:

30 myData[el + ’_cat_mol_prop’] = myData[myphase +

31 ’_’ + el] * Weights[el][1] / Weights[el][0]

32 # Oxygen mole proportions

33 for el in myElements:

34 myData[el + ’_oxy_mol_prop’] = myData[myphase +

35 ’_’ + el] * Weights[el][2] / Weights[el][0]

36 # Oxigen mole proportions totals

37 totals = np.zeros(len(myData.index))

38 for el in myElements:

39 totals += myData[el + ’_oxy_mol_prop’]

40 myData[’tot_oxy_prop’] = totals

41 # totcations

42 totals = np.zeros(len(myData.index))

43 for el in myElements:

44 myData[el + ’_num_cat’] = n_oxygens * myData[el +

45 ’_cat_mol_prop’] / myData[’tot_oxy_prop’]

46 totals += myData[el + ’_num_cat’]

47 return totals

48
49 def filter_by_cryst_formula(dataFrame , myphase, myElements):
50
51 c_o_Tolerance = {’Orthopyroxene’: [4,6,0.025]}

52
53 dataFrame[’Tot_cations’] = calculate_cations_on_oxygen_basis(

54 myData0 = dataFrame , myphase = myphase,

55 myElements = myElements ,

56 n_oxygens = c_o_Tolerance[myphase][1])

57
58 dataFrame = dataFrame[

59 (dataFrame[’Tot_cations’] < c_o_Tolerance[myphase][0]

60 + c_o_Tolerance[myphase][2]) &

61 (dataFrame[’Tot_cations’] > c_o_Tolerance[myphase][0]

62 - c_o_Tolerance[myphase][2])]

63
64 dataFrame = dataFrame.drop(columns=[’Tot_cations’])

65 return dataFrame

66
67 def adjustFeOtot(dataFrame):
68 for i in range(len(dataFrame.index)):

69 try:

70 if pd.to_numeric(dataFrame.Fe2O3[i])>0:

71 dataFrame.loc[i,’FeOtot’] = (

72 pd.to_numeric(dataFrame.FeO[i]) + 0.8998 *

73 pd.to_numeric(dataFrame.Fe2O3[i]))

74 else:

75 dataFrame.loc[i,

76 ’FeOtot’] = pd.to_numeric(dataFrame.FeO[i])

9.3 Compositional data analysis 149

77 except:

78 dataFrame.loc[i,’FeOtot’] = 0

79 return dataFrame

80
81 def adjust_column_names(dataFrame):
82 dataFrame.columns = [c.replace(’Wt: ’, ’’)

83 for c in dataFrame.columns]

84 dataFrame.columns = [c.replace(’ ’, ’’)

85 for c in dataFrame.columns]

86 return dataFrame

87
88 def select_base_features(dataFrame , my_elements):
89 dataFrame = dataFrame[my_elements]

90 return dataFrame

91
92 def data_imputation(dataFrame):
93 dataFrame = dataFrame.fillna(0)

94 return dataFrame

95
96 def pwlr(dataFrame , my_phases):
97
98 for my_pahase in my_phases:

99 my_indexes = []

100 column_list = Elements[my_pahase]

101
102 for col in column_list:

103 col = my_pahase + ’_’ + col

104 my_indexes.append(dataFrame.columns.get_loc(col))

105 my_min = dataFrame[col][dataFrame[col] > 0].min()

106 dataFrame.loc[dataFrame[col] == 0,

107 col] = dataFrame[col].apply(

108 lambda x: np.random.uniform(

109 np.nextafter(0.0, 1.0),my_min))

110
111 for ix in range(len(column_list)):

112 for jx in range(ix+1, len(column_list)):

113 col_name = ’log_’ + dataFrame.columns[

114 my_indexes[jx]] + ’_’ + dataFrame.columns[

115 my_indexes[ix]]

116 dataFrame.loc[:,col_name] = np.log(

117 dataFrame[dataFrame.columns[my_indexes[jx]]]/ \

118 dataFrame[dataFrame.columns[my_indexes[ix]]])

119 return dataFrame

120
121 def data_pre_processing(phase_1, phase_2, out_file):
122
123 try:

124 os.remove(out_file)

125 except OSError:

126 pass

127
128 starting = pd.read_excel(’LEPR_download.xls’,

129 sheet_name=’Experiment’)

130 starting= adjust_column_names(starting)

150 9 Machine Learning Regression in Petrology

131 starting.name = ’’

132 starting = starting[[’Index’, ’T(C)’,’P(GPa)’]]

133 starting.to_hdf(out_file, key=’starting_material’)

134
135 phases = [phase_1, phase_2]

136
137 for ix, my_phase in enumerate(phases):

138 my_dataset = pd.read_excel(’LEPR_download.xls’,

139 sheet_name = my_phase)

140
141 my_dataset = (my_dataset.

142 pipe(adjust_column_names).

143 pipe(adjustFeOtot).

144 pipe(select_base_features ,

145 my_elements= Elements[my_phase]).

146 pipe(data_imputation))

147
148 my_dataset = my_dataset.add_prefix(my_phase + ’_’)

149 my_dataset.to_hdf(out_file , key=my_phase)

150
151 my_phase_1 = pd.read_hdf(out_file , phase_1)

152 my_phase_2 = pd.read_hdf(out_file , phase_2)

153
154 my_dataset = pd.concat([starting ,

155 my_phase_1 ,

156 my_phase_2], axis=1)

157
158 my_dataset = my_dataset[(my_dataset[’Liquid_SiO2’] > 35)&

159 (my_dataset[’Liquid_SiO2’] < 80)]

160
161 my_dataset = my_dataset[(

162 my_dataset[’Orthopyroxene_SiO2’] > 0)]

163
164 my_dataset = my_dataset[(my_dataset[’P(GPa)’] <= 2)]

165
166 my_dataset = my_dataset[(my_dataset[’T(C)’] >= 650)&

167 (my_dataset[’T(C)’] <= 1800)]

168
169 my_dataset = filter_by_cryst_formula(dataFrame = my_dataset ,

170 myphase = phase_2,

171 myElements = Elements[phase_2])

172
173 my_dataset = my_dataset.sample(frac=1,

174 random_state=50).reset_index(drop=True)

175
176 my_labels = my_dataset[[’Index’, ’T(C)’, ’P(GPa)’]]

177 my_dataset = my_dataset.drop(columns=[’T(C)’,’P(GPa)’])

178
179 my_labels.to_hdf(out_file, key=’labels’)

180 my_dataset.to_hdf(out_file , key= phase_1 + ’_’ + phase_2)

181
182 my_dataset = pwlr(my_dataset ,

183 my_phases= [phase_1, phase_2])

184 my_dataset.to_hdf(out_file ,

9.4 Model training and error assessment 151

185 key= phase_1 + ’_’ + phase_2 + ’_lrpwt’)

186
187 data_pre_processing(phase_1=’Liquid’ ,
188 phase_2=’Orthopyroxene’,

189 out_file=’ml_data.h5’)

Listing 9.3 Final implementation of our pre-processing strategy.

9.4 Model training and error assessment

In agreement with Petrelli et al. (2020) , we train the Extremely Randomized Trees
algorithm on the pre-processed data set. Also, we will use a Monte Carlo simulation
to propagate the errors and asses the goodness of the model. The strategy of the
Monte Carlo approach consist of repeating many times the: 1) random splitting
of the data set; 2) the training of the algorithm starting from a different random
seeding. The code listing 9.4 shows the implementation of the Monte Carlo strategy.
It consists of defining a function named monte carlo simulation() (line 9). Within
the monte carlo simulation() function, we repeat n times the procedures of train-
validation splitting (lines from 16 to 18), normalization to zero mean and unit
variance (lines from 20 to 22), training (lines from 24 to 26), prediction (line 27),
error assessment (lines from 29 to 35), and the storing of the results (lines from 36 to
42). Starting from line 45, I then perform four Monte Carlo simulations, two (Liquid
plus opx and opx only, respectively) with the raw data, and two with the transformed
ones.

1 import pandas as pd
2 import numpy as np
3 from sklearn.preprocessing import StandardScaler
4 from sklearn.ensemble import ExtraTreesRegressor
5 from sklearn.model_selection import train_test_split
6 from sklearn.metrics import r2_score
7 from sklearn.metrics import mean_squared_error
8
9 def monte_carlo_simulation(X, y, indexes, n, key_res):

10
11 r2 = []

12 RMSE = []

13
14 for i in range(n):

15 my_res = {}

16 X_train, X_valid, y_train, y_valid, \

17 indexes_train , indexes_valid = train_test_split(

18 X, y.ravel(), indexes, test_size=0.2)

19
20 scaler = StandardScaler().fit(X_train)

21 X_train = scaler.transform(X_train)

152 9 Machine Learning Regression in Petrology

22 X_valid = scaler.transform(X_valid)

23
24 regressor = ExtraTreesRegressor(n_estimators=450,

25 max_features=1).fit(

26 X_train, y_train)

27 my_prediction = regressor.predict(X_valid)

28
29 my_res = {’indexes_valid’: indexes_valid ,

30 ’prediction’: my_prediction}

31
32 my_res_pd = pd.DataFrame.from_dict(my_res)

33 r2.append(r2_score(y_valid, my_prediction))

34 RMSE.append(np.sqrt(mean_squared_error(y_valid,

35 my_prediction)))

36 my_res_pd.to_hdf(’ml_data.h5’,

37 key= key_res + ’_res_’ + str(i))

38
39 my_scores = {’r2_score’: r2,

40 ’root_mean_squared_error’: RMSE}

41 my_scores_pd = pd.DataFrame.from_dict(my_scores)

42 my_scores_pd.to_hdf(’ml_data.h5’, key = key_res + ’_scores’)

43
44
45 my_keys = [’Liquid_Orthopyroxene’, ’Liquid_Orthopyroxene_lrpwt’]
46
47 for my_key in my_keys:
48
49 # Liquid plus opx calibration

50 liquid_opx = pd.read_hdf(’ml_data.h5’, my_key)

51 print(liquid_opx.columns)

52 X_liquid_opx = liquid_opx.values

53 my_labels = pd.read_hdf(’ml_data.h5’, ’labels’)

54 my_y = my_labels[’T(C)’].values

55 my_indexes = my_labels[’Index’].values

56 monte_carlo_simulation(X = X_liquid_opx , y = my_y,

57 indexes = my_indexes ,

58 n =1000, key_res = my_key)

59
60 # opx only calibration

61 opx = liquid_opx.loc[:,

62 ˜liquid_opx.columns.str.startswith(’Liquid’)]

63 X_opx = opx.values

64 my_key = my_key.replace("Liquid_", "")

65 monte_carlo_simulation(X = X_opx,

66 y = my_y, indexes = my_indexes ,

67 n =1000, key_res = my_key)

Listing 9.4 Training of the model in a Monte Carlo simulation.

9.5 Results Evaluation 153

9.5 Results Evaluation

Figures 9.3 and 9.4 show the results of the Monte Carlo simulations (deriving from
the code listing 9.5). In detail, in both figures 9.3 and 9.4, the upper panels refer to
raw data, whereas the lower panels display the results on raw data plus the features
deriving from the log-ratio pairwise transformation.

It is noteworthy that the addition of the features deriving from the log-ratio
pairwise transformation strongly improves the performance of the orthopyroxene
only calibration of the thermometer (Fig. 9.3). In this case, both the Root Mean
Squared Error and the 𝑟2 improves by 14° and 0.4, respectively.

30 40 50 60
Root Mean Squared Error

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Pr
ob

. D
en

sit
y

Hist. distribution
Median: 60 °C

0.88 0.90 0.92 0.94 0.96 0.98 1.00
r2 score

0

5

10

15

20

25

Pr
ob

. D
en

sit
y

Hist. distribution
Median: 0.90

Orthopyroxene

30 40 50 60
Root Mean Squared Error

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Pr
ob

. D
en

sit
y

Hist. distribution
Median: 46 °C

0.88 0.90 0.92 0.94 0.96 0.98 1.00
r2 score

0

5

10

15

20

25

30

Pr
ob

. D
en

sit
y

Hist. distribution
Median: 0.94

Orthopyroxene log-ratio pairwise transformation

Fig. 9.3 Result of code listing 9.5, i.e., the Monte Carlo simulation the orthopyroxene only system.

Differently form the orthopyroxene only calibration, It seems that the Liquid plus
orthopyroxene system does not benefit by the addition of the features deriving from

154 9 Machine Learning Regression in Petrology

the log-ratio pairwise transformation (Fig. 9.4). In this case, both the Root Mean
Squared Error only differ by 4°C and the 𝑟2 is stable to 0.95.

30 40 50 60
Root Mean Squared Error

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Pr
ob

. D
en

sit
y

Hist. distribution
Median: 41 °C

0.88 0.90 0.92 0.94 0.96 0.98 1.00
r2 score

0

5

10

15

20

25

30

35

Pr
ob

. D
en

sit
y

Hist. distribution
Median: 0.95

Liquid-Orthopyroxene

30 40 50 60
Root Mean Squared Error

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Pr
ob

. D
en

sit
y

Hist. distribution
Median: 44 °C

0.88 0.90 0.92 0.94 0.96 0.98 1.00
r2 score

0

5

10

15

20

25

30

35

Pr
ob

. D
en

sit
y

Hist. distribution
Median: 0.95

Liquid-Orthopyroxene log-ratio pairwise transformation

Fig. 9.4 Result of code listing 9.5, i.e., the Monte Carlo simulation for the liquid-orthopyroxene
system.

1 import pandas as pd
2 import numpy as np
3 import matplotlib.pyplot as plt
4
5 for my_key in [’Orthopyroxene’, ’Liquid_Orthopyroxene’]:
6
7 fig = plt.figure(figsize=(8,8),constrained_layout=True)

8 subfigs = fig.subfigures(nrows=2, ncols=1)

9 for j, (trans, my_title) in enumerate(zip([’’, ’_lrpwt’],

10 [my_key, my_key+’ log-ratio pairwise transformation’])):

9.5 Results Evaluation 155

11 my_scores = pd.read_hdf(’ml_data.h5’,

12 my_key + trans + ’_scores’)

13
14 RMSE_ML_valid_median_T = np.median(

15 my_scores[’root_mean_squared_error’])

16 R2_valid_median_T = np.median(my_scores[’r2_score’])

17
18 subfigs[j].suptitle(my_title.replace(’_’, ’-’))

19
20 # left panel

21 ax = subfigs[j].add_subplot(1, 2,1)

22 bins = np.arange(30, 70, 2)

23 ax.hist(my_scores[’root_mean_squared_error’], bins=bins,

24 density = True, color = ’#BFD7EA’,

25 edgecolor = ’k’,

26 label=’Hist. distribution’)

27 ax.axvline(RMSE_ML_valid_median_T ,

28 color=’#C82127’,

29 label=’Median: {:.0f} C ’.format(

30 RMSE_ML_valid_median_T))

31 ax.set_xlabel(’Root Mean Squared Error’)

32 ax.set_ylabel(’Prob. Density’)

33 ax.legend()

34
35 # right panel

36 ax = subfigs[j].add_subplot(1, 2, 2)

37 bins = np.arange(0.875, 1, 0.005)

38 ax.hist(my_scores[’r2_score’], bins = bins,

39 density = True, color = ’#BFD7EA’,

40 edgecolor=’k’,

41 label=’Hist. distribution’)

42 ax.axvline(R2_valid_median_T , color=’#C82127’,

43 label=’Median: {:.2f}’.format(

44 R2_valid_median_T))

45 ax.set_xlabel(r’r$ˆ2$ score’)

46 ax.set_ylabel(’Prob. Density’)

47 ax.legend()

Listing 9.5 Plotting the results of the Monte Carlo simulation.

Part IV
Scaling Your Machine Learning Models

Chapter 10
Parallel Computing and Scaling with Dask

10.1 Warming Up: Basic Definitions

Processor, CPU, core: the traditional definition of processor and Central Processing
Unit (CPU) can be expressed as (Caesar Wu, 2015): “a microprocessor chip that
sequentially (i.e., one by one) executes a series of basic processing tasks based on
an input”. Modern CPUs largely exceed the traditional definition. They integrate
many components and also host a cache memory. In modern CPUs, the very basic
processing tasks can be duplicated and executed by self-contained execution blocks
that fit the traditional definition of a processor (Caesar Wu, 2015). These self-
contained execution blocks are typically named “cores” (Caesar Wu, 2015).

Multi-core processors and parallel hardware: Multi-core processors, chip multi-
processor (CMP), and parallel hardware are often used as synonyms (Peter Pacheco,
2020). A CMP incorporate many processors and cache memory on a chip. Parallel
hardware is nowadays ubiquitous since it is almost impossible to find a modern
laptop, desktop, or server that doesn’t use a multicore processor (Peter Pacheco,
2020).

Graphics processing unit (GPU): “GPUs are multi-core processing units made of
massively parallel, smaller, and more specialized cores than those generally found
in high-performance CPUs. GPU architecture efficiently processes vector data (an
array of numbers) and is often referred to as vector architecture.”1.

Field programmable gate arrays (FPGA): “FPGAs are integrated circuits with
a programmable hardware fabric. Unlike CPUs and GPUs, which are software-
programmable fixed architectures, FPGAs are reconfigurable. When writing software
targeting an FPGA, compiled instructions become hardware components that are laid
out on the FPGA fabric in space, and those components can all execute in parallel.”2

Distributed computing: “A computer system consisting of a multiplicity of pro-
cessors, each with its own local memory, connected via a network. Loading or store

1 https://intel.ly/39XimzH
2 https://intel.ly/39XimzH

159

160 10 Parallel Computing and Scaling with Dask

instructions issued by a processor can only address the local memory and different
mechanisms are provided for global communication.” (Padua David, 2011).

Serial programs: Serial programs are those that were conceived and written to
run on a single processor (Peter Pacheco, 2020). If you run it in the presence of
multiple processors or a distributed architecture, the performance will not improve
magically, since the instructions will be executed, sequentially, within one of the
available cores.

Parallel computing: Parallel computing is a type of computation in which many
calculations or processes are carried out simultaneously (Peter Pacheco, 2020).
Parallel computing takes advantage form multiple processors (i.e., CMP, GPU, and
FPGA) or a distributed architecture (Peter Pacheco, 2020).

10.2 Basics of Dask

Dask3 aims at overcoming single-machine restrictions by adding object scalability
to Python scientific libraries like pandas, NumPy, and scikit-learn (Daniel, 2019).
It consists of three main layers: 1) scheduler, 2) low-level APIs, and 3) high-level
APIs (Fig. 10.1). We will mainly interact with the high-level APIs that governs Dask
arrays, Dask DataFrames, and Dask ML, allowing us to scale NumPy, pandas, and
scikit-learn objects, respectively. In detail, our main goal is to allow single machines
to work with medium data sets and deploy clusters to elaborate large data sets or
large models.

High-level APIs

Low-level APIs

Dask subsystem

Dask Array
Parallel NumPy

Dask Bag
Parallel lists

Dask DataFrame
Parallel Pandas

Dask ML
Parallel scikit-learn

Dask Delayed
Lazy parallel objects

Dask Futures
Eager parallel objects

Scheduler
Creates and manages DAGs
Distributes tasks to workers

Fig. 10.1 Dask fundamentals, modified from (Daniel, 2019)

3 https://www.dask.org

10.2 Basics of Dask 161

Dask Array

Dask arrays combine many NumPy arrays, arranged into chunks (i.e., a single NumPy
array) within a grid (Fig. 10.2).

NumPy
Array

Dask
Array

Fig. 10.2 Dask Arrays, modified from https://examples.dask.org/array.html

Fig. 10.3 Defining a Dask array

Dask arrays allow most NumPy operations and allow parallelizing current codes
easily. Defining a Dask array is the same as defining a NumPy array, with the only
difference that you need to import dask.array instead of NumPy (Fig. 10.3). As an
example, Fig. 10.3 shows how to create a 105𝑥105 Dask array, made of random
numbers. Optionally, you can also define the dimension of the chunks, i.e., the
NumPy arrays that constitute the building blocks of the Dask array. Please note that
in Jupyter Noteboooks, you can get many information on the Dask array you created.

162 10 Parallel Computing and Scaling with Dask

As an example, Fig. 10.3 shows that the total size of 𝑥 will be 74.51 GiB (i.e.,
Gibibytes, GiB, with 1 GiB ∼ 1.074 GB). Also, the size of a single chunk will be
7.63 MiB. I’m using the future tense since 𝑥 has not been fully generated yet, but
only ‘lazy’ evaluated (see section 10.3 for further details)

Dask Data Frame

A Dask DataFrame is the parallel counterpart of a pandas Dataframe (Fig. 10.4).

pandas
DataFrame

Dask
DataFrameindex

Fig. 10.4 Dask Arrays, modified from https://examples.dask.org/dataframe.html

Fig. 10.5 Importing a pandas DataFrame stored in an HDF5 files as Dask DataFrame

10.2 Basics of Dask 163

Table 10.1 Dask methods to import and create a Dask DataFrame. Please note that most of them
are equivalent to pandas methods, i.e., Tab. 3.1 (modified from https://docs.dask.org/en/stable/
dataframe-api.html).

Method Description

read table() Read general delimited file

read csv() Read comma-separated values (csv) files

read fwf() Read fixed-width files

read parquet() Read parquet files

read hdf() Read Hierarchical Data Format (HDF) files

read json() Create a Dask DataFrame from a set of JSON files

read orc() Create a Dask DataFrame from ORC file(s)

read sql table() Read SQL database table

read sql query() Read SQL query

read sql() Read SQL query or database table

from array() Read any sliceable array

from bcolz() Read BColz CTable

from dask array() Create a Dask DataFrame from a Dask Array

from delayed() Create a Dask DataFrame from many Dask Delayed objects

from map() Create a Dask DataFrame collection from a custom function map

from pandas() Construct a Dask DataFrame from a Pandas DataFrame

from dict() Construct a Dask DataFrame from a Python Dictionary

Bag to dataframe() Create Dask Dataframe from a Dask Bag

In detail, Dask DataFrames are composed of many smaller pandas DataFrames,
split along an index. A Dask DataFrames may live on a local disk for medium data
sets, or in a cluster in the case of large data sets. One Dask DataFrame operation
triggers many operations on the constituent pandas DataFrames.

As an example, we could import the data set that we developed in Chapter 8 and
that we saved as HDF5. Fig. 10.5 shows a portion of Jupyter Notebook highlighting
how to generate a Dask DataFrame from the file named ml data.h5. Please note that
the procedure is not dissimilar from that in pandas. The only difference consists of
importing a dask.DataFrame instead of a pandas.DataFrame. Also note that Dask
decided to split the DataFrame into two portions and that instead of the real values,
all rows are filled with ellipsis (. . .). This is because the data set was evaluated
only lazily (please refer to section 10.3 for further details). The physically import
train dataset, Dask requires an additional step, i.e., the use of the compute() method
(Fig. 10.6)

164 10 Parallel Computing and Scaling with Dask

Fig. 10.6 Physically importing a pandas DataFrame stored in an HDF5 files as Dask DataFrame

Dask ML

By model scaling, we could solve two common issues related to 2) data size and
1) model size (Tab. 10.2, Fig. 10.7). Regarding the size of your data set, when it
comfortably fits the free RAM of the computing environment, i.e., you are working
with a small data set (Tab. 10.2), pandas, NumPy, and scikit-learn are the libraries
of choice to develop a ML strategy. In this case the scaling along the x-dimension of
Fig. 10.7 is not required and not recommended.

Table 10.2 Data set classification in function of the size range. Modified from Daniel (2019)

Data set Size Approximate Size Range Fits in RAM? Fits on local disk?

Small data set Less than the free RAM on
your system [e.g., 16 GB]

Yes Yes

Medium data set Larger than the free RAM
on your system and less
than capability of the local
disk [e.g., 2 TB]

No Yes

Large data set Larger than the capability
of the local disk

No No

10.2 Basics of Dask 165

Dimension of Scale

Data Size

M
od

el
 S

iz
e

Hard Computation
(compute and memery bounds)

Compute Bound
(too long computation times)

Memory Bound
(out of memory issues)

Fits in RAM

Fig. 10.7 Dimension of scale, modified from https://ml.dask.org

Fig. 10.8 Working with a small data set, i.e., well-fitting your RAM budget

166 10 Parallel Computing and Scaling with Dask

As an example, code listing 10.8 shows how to use Numpy to define (line 2)
a small set of data (i.e, my data) composed of 108 normally distributed pseudo-
random numbers, characterized by a mean value and standard deviation equal to 1
and 2, respectively. Then, lines 3 and 4 simply check that the mean and the standard
deviation of my data are 1 and 2, respectively. Finally, line 5 estimated the memory
usage of my data, resulting equal to about 0.745 GiB.

However, when the size of the data set reaches the upper bound of the RAM
(including any virtual memory generated using the hard disk), memory errors start
occurring (code listing 10.9). As an example, increasing the size of my data to
2.5 · 109, in a Linux system with 16GB of free memory, I got a ‘Memory error’
since the operating system was ‘Unable to allocate 18.6 GiB for an array with shape
(2500000000,) and data type float64’. I was clearly experiencing a data size issue
since I generated a ‘medium data set’ (Tab. 10.2).

Fig. 10.9 When you exceed the free memory, you get a ‘Memory error.’

The use of Dask arrays allows overcoming the problem with minimal changes in
our code. As an example, code listing 10.10 uses Dask Arrays, i.e., the parallel mimic
of NumPy Arrays to complete, within a Lunix Os with 16GB of free ram, the simple
operations that were previously impossible using NumPy (i.e., code listing 10.9).

When the problem is the size of the model, i.e., it is growing too much, or it
starts being too complex, all computations take too long times. As an example, the
grid search I performed in chapter 8 took some hours to complete. Waiting of a few
hours is not a big problem, usually. However, simply increasing the dimension of
the grid search (e.g., increasing the number of the investigated hyper-parameters and
densifying the grid) or the complexity of the decision tree ensemble (e.g., increasing
the number of estimators), the execution time will drastically increase, up to days or
weeks. Now, if you need to optimize several ML models, the total time required to
complete your tasks easily reaches the time span of months or eventually years.

10.3 ‘Eager’ computation Vs. ‘Lazy’ evaluation 167

Fig. 10.10 Using Dask to work with medium size data set

The main aim of Dask ML is to provide scalable machine learning in Python
for popular machine learning libraries like scikit-Learn(Pedregosa et al., 2011) ,
XGBoost, and others.

10.3 ‘Eager’ computation Vs. ‘Lazy’ evaluation

Usually, in Python, we deal with the so-called ‘Eager’ computation. It simply means
that Python performs each operation, e.g, transformations and calculations, imme-
diately upon being called. As an example, Fig. 10.12 reports the definition of an
‘Eager’ function, i.e. simple lithopress() at line 2, to estimate the lithostatic pressure
when assuming both the density and acceleration due to gravity as constants. We
disclose the ‘Eager’ nature of the function at lines 3 and 4, since simple lithopress()
returns a computed value as soon as we call it in the code workflow, i.e., it performs
calculations immediately.

Fig. 10.11 Defining the ‘Eager’ function named simple lithopress()

Similarly, if we perform a Monte Carlo error propagation combining NumPy
arrays and the simple lithopress() function, we get an immediate execution lasting
less than one second, generating an array made of 107 elements and consuming about
76 MB.

168 10 Parallel Computing and Scaling with Dask

Fig. 10.12 Performing a Monte Carlo error propagation using the ‘Eager’ simple lithopress()

To be aware of what we are doing, Fig. 10.13 shows the histogram distribution
of the computed pressures, resulting from depth, density, and acceleration due to
gravity estimations, taking into account also the error estimates.

1 import matplotlib.pyplot as plt
2
3 my_pressure_mean = np.mean(my_pressure_dist)
4 my_pressure_std = np.std(my_pressure_dist)
5
6 fig, ax = plt.subplots()
7 ax.hist(my_pressure_dist , density=True, bins=’auto’,
8 color=’#0F7F8B’, label=’Pressure estimates’)

9 ax.axvline(my_pressure_mean , color=’#C82127’, label=’mean value’)
10 ax.axvspan(my_pressure_mean - my_pressure_std ,
11 my_pressure_mean + my_pressure_std ,

12 color=’#F15C61’, alpha=0.4,

13 label=r’1σ estimate’)

14 ax.set_xlabel(’Pressure [MPa]’)
15 ax.set_ylabel(’Probability Density’)
16 ax.legend()
17 plt.show()

Listing 10.1 Plotting the results of the Monte Carlo error propagation.

The ‘lazy’ evaluation operates differently from the ‘Eager’ computation. For the
‘lazy’ evaluation, Dask prepares a Directed Acyclic Graph (i.e., DAG) for the involved
functions, operations, and transformations, but it does not perform any computation.
DAGs are mathematical objects that are governed by graph theory. Describing the
theory behind DAGs and graph theory is far beyond the scope of the present book.
Please refer to specialized references to go deep into details about DAGs (Fiore &
Campos, 2013; Maurer, 2013; Xu, 2003).

In this section, we are mainly interested in learning the main benefits of using
DAGs for our computations. Among them, one of the most effective is the chance

10.3 ‘Eager’ computation Vs. ‘Lazy’ evaluation 169

20 40 60 80 100
Pressure [MPa]

0.00

0.01

0.02

0.03

0.04

0.05

Pr
ob

ab
ilit

y
De

ns
ity

Pressure estimates
mean value
1 estimate

Fig. 10.13 Result of code listing 10.13

Fig. 10.14 Result of code listing 10.14

of evaluating and visualizing the structure and the complexity of our computations
before running them. This opportunity comes with many advantages. As an example,
you can evaluate the complexity and heaviness of the computations, allowing you
to decide if performing them in a single machine, a small cluster, or a High Perfor-
mance (HPC). As example Fig. 10.14 shows how to perform a ‘lazy’ evaluation of
the Monte Carlo error propagation performed in Fig. 10.12. The resulting DAG is
displayed in Fig. 10.15. It is a simple structure showing that, after generating three
normal distributions for the depth, density, and acceleration due to gravity, the sim-
ple litohpress() function uses them as input and generates an output. If we increase
the size of the three input arrays from 107 to 108, the structure of the DAG changes

170 10 Parallel Computing and Scaling with Dask

simple_lithopress

normal

0

finalize

normal

0

finalize

normal

0

finalize

Fig. 10.15 Result of code listing 10.15

Fig. 10.16 ‘Embarassingly parallel’ workload

(Fig. 10.17). In detail, we defined a so-called ‘embarassingly parallel’ workload. It
is the optimal case since the problem results perfectly parallelizable.

10.4 Diagnostic and feedback 171

si
m
p
le
_
lit
h
o
p
re
ss

0

0
0

0

si
m
p
le
_
lit
h
o
p
re
ss

1

1
1

1

si
m
p
le
_
lit
h
o
p
re
ss

2

2
2

2

si
m
p
le
_
lit
h
o
p
re
ss

3

3
3

3

si
m
p
le
_
lit
h
o
p
re
ss

4

4
4

4

si
m
p
le
_
lit
h
o
p
re
ss

5

5
5

5

si
m
p
le
_
lit
h
o
p
re
ss

6

6
6

6

si
m
p
le
_
lit
h
o
p
re
ss

7

7
7

7

n
o
rm
a
l

n
o
rm
a
l

n
o
rm
a
l

n
o
rm
a
l

n
o
rm
a
l

n
o
rm
a
l

n
o
rm
a
l

n
o
rm
a
l

n
o
rm
a
l

n
o
rm
a
l

n
o
rm
a
l

n
o
rm
a
l

n
o
rm
a
l

n
o
rm
a
l

n
o
rm
a
l

n
o
rm
a
l

n
o
rm
a
l

n
o
rm
a
l

n
o
rm
a
l

n
o
rm
a
l

n
o
rm
a
l

n
o
rm
a
l

n
o
rm
a
l

n
o
rm
a
l

Fig. 10.17 Result of code listing 10.17

172 10 Parallel Computing and Scaling with Dask

Fig. 10.18 Dask Interactive dashboard

10.4 Diagnostic and feedback 173

10.4 Diagnostic and feedback

The Dask distributed scheduler, i.e., the one utilized to interact with clusters, pro-
vides us with an effective interactive dashboard. It consists of a rich ecosystem of
monitoring and profiling tools and can be accessed by a web browser (Fig. 10.18).
As an example, Fig. 10.18 displays a monitor divided into two portions where the
left panel and right panel contain a Jupyter Notebook and the Dask interactive dash-
board, respectively. The Jupyter Notebook starts the Dask client and its interactive
dashboard at line 2. Then, it defines (lines 3-4), evaluates (line 5), and finally triggers
(line 6, in progress and therefore displayed as *) the computations. The right portion
of the monitor shows the Dask interactive dashboard during the ongoing process
triggered at line 6 of the Jupyter Notebook.

Chapter 11
Scale Your Models in the Cloud

11.1 How to Scale your environment in the Cloud

Generally speaking, the term scalability refers to the ability of a system to manage
a growing amount of work. As stated in the previous chapter, the achievement
of compute or memory bounds when handling ML models requires scaling. Now
moving to a cloud computing facility, the term scaling points to the ability to quickly
and efficiently increase (or decrease) the capability of a computational resource
to handle a model, that does not fit anymore the current resources (e.g., RAM,
CPUs, and storage capabilities). In detail, the computational infrastructure could
scale following two main strategies, i.e., scale up or scale out (ref).

Scale Up

Fig. 11.1 Scaling Up

175

176 11 Scale Your Models in the Cloud

Scale Up

Scaling up, or vertical scaling, consists of replacing the current computational in-
stance with something more powerful (Fig. 11.1).

As an example, we could increase the number of cores, the amount of memory,
and the capability of the storage (Fig. 11.2).

Scale Up

Scale Down

Compute Optimized Istances by Amazon Web Services

Fig. 11.2 Scaling Up

Scale Out

Scaling out, or horizontal scaling, consists of increasing the computational capability
by replicating the instances and allowing them to work in parallel (Fig. 11.3).

11.2 Scaling in the Cloud: the Hard Way

For the scaling, the hard way consists of taking care of all the configurations and
technical steps in either Amazon Web Services (AWS), Google Compute Engine
(GCE), Microsoft Azure (MA), and other providers. Explaining how to master the
scaling procedures in the cloud is far beyond the scope of the present book. Here I

11.2 Scaling in the Cloud: the Hard Way 177

Scale Out

Fig. 11.3 Scaling Out

will briefly report some of the best practices and the reference go in deeper details
if interests.

Scaling up is quite easy with all cloud providers. It simply consists of selecting
larger or smaller instances to scale up and down (Fig. 11.2), respectively. Also, some
providers offer specific services for Auto Scaling, e.g., “AWS Auto Scaling monitors
your applications and automatically adjusts capacity to maintain steady, predictable
performance at the lowest possible cost. Using AWS Auto Scaling, it’s easy to setup
application scaling for multiple resources across multiple services in minutes. The
service provides a simple, powerful user interface that lets you build scaling plans
for resources including Amazon EC2 instances...”1

On the contrary, the scaling out is not as straightforward as scaling up. Looking at
the Dask documentation, they suggest the use of Kubernetes and Helm solutions. Ku-
bernetes is “a portable, extensible, open source platform for managing containerized
workloads and services, that facilitates both declarative configuration and automa-
tion.”2 Helm is “an open source package manager for Kubernetes. It provides the
ability to provide, share, and use software built for Kubernetes.”3. As reported in
the Dask documentation, “it is easy to launch a Dask cluster and a Jupyter notebook
server on cloud resources using Kubernetes and Helm.”4. I could agree, however, the

1 https://aws.amazon.com/autoscaling/
2 https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
3 https://helm.sh/docs/
4 https://docs.dask.org/en/stable/deploying-kubernetes-helm.html

178 11 Scale Your Models in the Cloud

instructions reported in the Dask documentation assume that a Kubernetes cluster
and Helm have been already installed and ready for use. The setup of a Kubernetes
cluster and helm is not straightforward for a novice. You can find detailed instructions
for many cloud providers, in the guide “Zero to JupyterHub.”5

11.3 Scaling in the Cloud: the Easy Way

Saturn Cloud

Saturn Cloud6 is a cloud based platform designed to support data scientists working
with Python7, R8, Julia9, and other programming languages. Resources (Fig. 11.4)
are the building blocks of the Saturn Cloud platform. In detail, the term resource refers
to a complete computational and coding environment. Each resource is independent,
so you can split out the different types of activities you’re doing. Saturn Cloud hosted
solutions10 are a pay as you go services. It means that you will pay computational
resources per hour. As an example, during the writing of the present book, Medium
(2 vCPU and 4 GB of RAM) and V100-16XLarge (64 vCPU, 8 vGPU, and 488 GB
of RAM) cost 0.06 $ and 34.24 $ per hour, respectively. A free hosted plan also exists
with limited resources. In the next sections, we will benefit from the free hosted plan
for the first step of scaling up. Then, I will show you the results on a Hosted Pro
Plan, also providing you the details about the costs, in case you intend reproduce my
findings.

Speed up GridSearchCV on Saturn Cloud

In section 8.3, we performed a GridSearchCV, i.e., an extensive search within the
hyper-parameters governing the Extremely Randomized Trees (see code listing 8.9
and Tab. 8.1). The aim was finding the combination of hyper-parameters, providing
the highest degree of accuracy. The combination of the selected hyper-parameters
resulted in a grid of 48 models, each repeated three times through cross validation,
for a total of 144 attempts. To note, running the code listing 8.9 in my MacBook pro,
equipped with a 2.3 GHz Quad-Core Intel™ i7 and 32GB of RAM, lasted about 8
hours.

In Saturn Cloud, the free hosted plan allows a slight scaling up of the hardware
supporting my MacBook pro using the 2X Large instance (i.e., 8 Cores and 64GB of

5 https://zero-to-jupyterhub.readthedocs.io/en/latest/kubernetes/
6 https://saturncloud.io
7 https://www.python.org
8 https://www.r-project.org
9 https://julialang.org
10 https://saturncloud.io/plans/hosted/

11.3 Scaling in the Cloud: the Easy Way 179

Fig. 11.4 Saturn Cloud computing templates

RAM). So let’s try setting up a 2X Large instance and running the code listing 8.9. To
start, register to Saturn Cloud and click on the New Python Server button (Fig. 11.5).
It will start a guided procedure that allows the configuration of a new instance, ready
for basic Python data analysis, machine learning, and, possibly, parallel processing
with Dask.

Figures 11.6 and 11.7 show all the steps to configure the new instance. I sug-
gest using a self-explanatory name, e.g., scale GridSearchCV Joblib, 100Gi of disk
space, and the 2Xlarge instance. Also, remember to add pytables as extra package,
installed using Conda Install. Pytables allow the manipulation, i.e., reading and
saving, of HDF5 files. Leave all the other options untouched, and click Create.

The instance is now ready (Fig. 11.8). The next steps consist of starting the in-
stances, create a new Jupyter Notebook, and upload the HDF5 file named ml data.h5
(Fig. 11.9). Finally, we are ready to replicate the code listing 8.9 in a 2Xlarge instance
(Fig. 11.10), in Saturn Cloud. Note that the second block of code in (Fig. 11.10),
simply reports the outputs on a log file named data.log. Figure 11.10 shows that the
fitting, i.e., the block number 5, lasted 5 hours and 15 minutes, significantly better
than the 8 hours of my MacBook pro.

Then, I activate a Hosted Pro Plan11 and progressively scaled up the code reported
in Fig. 11.10 to 8XLarge (i.e., 32 Cores and 256GB of RAM at the cost of 3.30 $/hour)

11 https://saturncloud.io/plans/hosted/

180 11 Scale Your Models in the Cloud

Fig. 11.5 Starting a New Python Server

and 16XLarge (i.e., 64 Cores and 512GB of RAM at the cost of 6.59 $/hour) instances,
improving the performances to ∼2 hours and ∼1 hour, respectively.

As a final step, I attempted to scaling out the code reported in Fig. 11.10. To achieve
my goal, I created a dask cluster, i.e., by clicking New Dask Cluster (Fig. 11.8).
It opens the Cluster configuration window (Fig. 11.11). In detail, I opted for a
16XLarge (i.e., 64 Cores and 512GB of RAM) scheduler and 4 8XLarge (i.e., 32
Cores and 256GB of RAM) workers. To run the GridSearchCV in the newly created
Dask Cluster, the code reported in Fig. 11.10, only requyred minimal changes, all
reported in Fig. 11.12 . In detail, I imported the SaturnCluster from dask saturn
(block 1), allowed n jobs=-1 (i.e., nested parallelism) for both ExtraTreesClassifier
and GridSearchCV (Block 4), defined the SaturnCluster client (Block 5), and run
Joblib with dask as engine for the fitting (Block 6). In this final case, fitting the
GridSearchCV lasted less than 30 minutes!

11.3 Scaling in the Cloud: the Easy Way 181

Fig. 11.6 Setting-up the Python Server parameters

182 11 Scale Your Models in the Cloud

Fig. 11.7 Setting-up the Python Server parameters

Fig. 11.8 Starting the Python Server

11.3 Scaling in the Cloud: the Easy Way 183

Fig. 11.9 Uploading a hdf5 file

Fig. 11.10 Scaling Up the GridSearchCV

184 11 Scale Your Models in the Cloud

Fig. 11.11 Setting-up a new Dask Cluster

11.3 Scaling in the Cloud: the Easy Way 185

Fig. 11.12 Scaling Out the GridSearchCV

Part V
Next Step: Deep Learning

Chapter 12
Introduction to Deep Learning

12.1 What does Deep Learning mean?

As we introduced in chapter 1, machine learning algorithms earn knowledge by
extracting patterns from data.

River Lake Woodland

Fig. 12.1 Illustration of a deep learning, multilayer perceptron model. Modified from Goodfellow
et al. (2016). The image comes from Copernicus Sentinel-1 mission and shows the Amazon River
meandering.2

2 https://www.esa.int/ESA Multimedia/Images/2020/09/Amazon River

189

190 12 Introduction to Deep Learning

In other words, they try to map the representation provided by the investigated
features to produce an output (Goodfellow et al., 2016).

Therefore, features are central in ML since they provide the information to build
a representation. However, simply mapping a representation to deliver an output is,
often, not enough. Therefore, we need training machine learning systems to discover
not only the mapping from representation to output but also the representation itself
(Goodfellow et al., 2016). This approach is known as representation learning. In
complex problems (e.g., characterized by many features or extremely large data
sets), successfully applying the representation learning is not straightforward.

“Deep learning solves this central problem in representation learning by introduc-
ing representations that are expressed in terms of other, simpler representations. Deep
learning enables the computer to build complex concepts out of simpler concepts”
(Goodfellow et al., 2016).

A typical example of deep learning is the multilayer perceptron, i.e, a mathemat-
ical function that maps a set of inputs to output values (Goodfellow et al., 2016).
The function is formed by composing many simpler functions (Fig. 12.1). In detail,
Figure 12.1 depicts how a deep learning method can represent the concept of an
image by combining simpler notions, such as corners and contours, which are in
turn defined in terms of edges (Goodfellow et al., 2016). In Fig. 12.1, the input feeds
the visible layer. Then a series of hidden layers progressively extract and elaborate
abstract features from the initial inputs. The final layer provides the output, e.g., the
result of mapping the representation that has been developed during the learning
process (Goodfellow et al., 2016).

y = f(3)(θ3;f(2)(θ2;f(1)(θ1;x)))
output

y

output

input
x

input

model parameters that vary during the learning

Layer Layer Layer

Fig. 12.2 Example of 3 layer feedforward networks or multilayer perceptrons.

12.3 PyTorch Tensors 191

From the mathematical point of view, deep feedforward networks (or multilayer
perceptrons) aim at approximating some function 𝑓 ∗ (Goodfellow et al., 2016). In
detail, it defines a mapping y = 𝑓 (x; 𝜽) and learns the value of the parameters
𝜽 that result in the best function approximation (Goodfellow et al., 2016). Why
feedforward? Because data flow through the function from the input x, through the
intermediate computations used to define 𝑓 , and finally to the output y. Why net-
works? Because they are typically expressed by combining many different functions.
For example, we might combine three functions 𝑓 (1) , 𝑓 (2) , and 𝑓 (3) in a chain to
define 𝑓 (𝑥) = 𝑓 (3) (𝑓 (2) (𝑓 (1) (𝑥))) (Goodfellow et al., 2016). In detail, 𝑓 (1) is the
first layer of the network, 𝑓 (2) is the second layer, and so on (Goodfellow et al., 2016).
The overall length of the chain defines the depth of the model. That’s why they are
deep. The final layer of a feedforward network provides us with the output. During
the training process, we adjust 𝜽 parameters in 𝑓 (x; 𝜽) to match 𝑓 ∗ (x) (Goodfellow
et al., 2016).

12.2 PyTorch

“PyTorch is an optimized tensor library for deep learning using GPUs and CPUs.”3

Tensors, i.e., multidimensional arrays, are at the base of PyTorch. Also, PyTorch hosts
the autograd engine (i.e., torch.autograd). It has the ability to effectively compute
derivatives, even providing complex data structures. The other PyTorch modules
mainly bases on tensors and on the autograd engine. As an example, the torch.nn
module provides common neural network layers and other architectural components.
The torch.optim implements state of the art optimization strategies for the learning
process (Imambi et al., 2021).

12.3 PyTorch Tensors

4
4
2
1

4
2
1

9
6
0

5
8
3

4
2
1

9
6
0

5
8
3

0 D 1 D 2 D 3 D

scalar vector matrix 3 D tensor

Fig. 12.3 Vectors, matrices, tensors.

3 https://pytorch.org/docs/stable/index.html

192 12 Introduction to Deep Learning

Fig. 12.4 Vectors, matrices, tensors.

12.3 PyTorch Tensors 193

PyTorch tensors are multidimensional arrays (Fig. 12.3). They are not conceptu-
ally different from those in NumPy. However, differently than NumPy arrays, they
can: a) perform accelerated operations on graphical processing units (GPUs), b) na-
tively works on distributed environments, and c) keep track of the graph of operations
that created them (Imambi et al., 2021). The initialization of PyTorch tensors mim-
ics those in NumPy, and Numpy arrays can be easily imported as PyTorch tensors
(Fig. 12.4).

Fig. 12.5 Vectors, matrices, tensors.

By default, PyTorch tensors live on the CPU. However, they can be easily defined
on the GPU, if available (block 2 of Fig. 12.5), by using the device parameter (i.e.,
device=‘cuda’, block 3 of Fig. 12.5). To note, blocks 3 to 6 in Fig. 12.5 simply
highlight that the power operation performed on the ‘cuda’, i.e., GPU, device lasts
7 ms only. Much faster than the ∼3 seconds required to execute the same operation
in the CPU device. Please keep in your mind that cross-GPU operations are not
allowed by default, with the exception of copy () and other methods with copy-like
functionality.

194 12 Introduction to Deep Learning

12.4 Structuring a feedforward network in PyTorch

Figure 12.6 shows how to develop the feedforward neural networks, i.e., a multilayer
perceptron, depicted in Fig. 12.2 in PyTorch.

Fig. 12.6 Developing a multilayer perceptron in PyTorch

In detail, it consists of an input layer (i.e., layer 1) accepting input vectors with
four features. ReLu functions processes the input features and forward the results to
a hidden layer (i.e., layer 2) characterized by the same number of neurons (i.e., 4) as
input vectors and the same activation function (i.e., the ReLu function). Finally, the
output layer returns a scalar, i.e., a number, as output.

12.5 How to train a feedforward network 195

Programmatically, a neural network in PyTorch is a module with a nested structure.
In other words, it consists of a module that contains other modules (i.e., layers). The
model can live either in the CPU or in the GPU (Blocks 3 and 4 in Fig. 12.6), if
available.

12.5 How to train a feedforward network

12.5.1 The universal approximation theorem

The universal approximation theorem (Hornik et al., 1989; Cybenko, 1989) states
that feedforward networks with a linear output layer and at least one hidden layer
can approximate any continuous function on a closed and bounded subset of R𝑛
(Goodfellow et al., 2016). It means that we can state that feedforward networks with
hidden layers are universal approximators (Goodfellow et al., 2016). In other words,
“the universal approximation theorem means that regardless of what function we are
trying to learn, we know that a large MLP will be able to represent this function
(Goodfellow et al., 2016).” However, despite what is affirmed by the universal
approximation theorem, we are not ensured that the training process will be able
to correctly learn the target function (Goodfellow et al., 2016). As an example, the
optimization algorithm used for training may not be able to find the correct values
for the theta-parameters that describe the desired function. Also, the training process
might choose a wrong function because of the occurrence of overfitting (Goodfellow
et al., 2016). To avoid these issues, we need to do our best to find: 1) a robust
loss function 𝐿 (𝜽); 2) a strategy to compute the gradient with respect to model
parameters, i.e., Δ𝜽𝐿 (𝜽), of 𝐿 (𝜽); 3) an efficient optimization algorithm to descend
Δ𝜽𝐿 (𝜽) and find the minimum of 𝐿 (𝜽).

12.5.2 Loss Functions in PyTorch

A loss function (or cost function) computes a numerical value that the learning
process will attempt to minimize. Typically, a loss function compare (e.g., by sub-
traction) the desired outputs (i.e., the labels) and the current outputs of our model
(Stevens et al., 2020). Table 12.1 report the loss function available in PyTorch.

12.5.3 The Back-Propagation and its implementation in PyTorch

In feedforward neural networks, the information starts from the input x, flows through
the hidden layers, and finally produces an output y (Goodfellow et al., 2016). The
name of this process is forward propagation. At the beginning of the training, the

196 12 Introduction to Deep Learning

Table 12.1 Loss functions in PyTorch: https://bit.ly/pyt-loss-functions.

Loss Function Description

nn.L1Loss Loss function based on the mean absolute error (MAE)
nn.MSELoss Loss function based on the mean squared error (squared

L2 norm)
nn.CrossEntropyLoss It computes the cross entropy loss between input and target
nn.CTCLoss Connectionist Temporal Classification loss
nn.NLLLoss The negative log likelihood loss
nn.PoissonNLLLoss Negative log likelihood loss with Poisson distribution of

target
nn.GaussianNLLLoss Gaussian negative log likelihood loss
nn.KLDivLoss The Kullback-Leibler divergence loss
nn.BCELoss Binary Cross Entropy between the target and the input

probabilities
nn.BCEWithLogitsLoss It combines a Sigmoid layer and the BCELoss in one single

class
nn.MarginRankingLoss It measures the loss given inputs 𝑥1, 𝑥2, two 1𝐷mini-batch

or 0𝐷 Tensors, and a label 1𝐷 mini-batch or 0𝐷 Tensor 𝑦
(containing 1 or -1)

nn.HingeEmbeddingLoss It measures the loss given an input tensor 𝑥 and a labels
tensor 𝑦 (containing 1 or -1)

nn.MultiLabelMarginLoss It optimizes a multi-class multi-classification hinge loss
(margin-based loss)

nn.HuberLoss It creates a criterion that uses a squared term if the absolute
element-wise error falls below delta and a delta-scaled L1
term otherwise

nn.SmoothL1Loss It creates a criterion that uses a squared term if the abso-
lute element-wise error falls below beta and an L1 term
otherwise

nn.SoftMarginLoss It creates a criterion that optimizes a two-class classifica-
tion logistic loss between input tensor 𝑥 and target tensor
𝑦 (containing 1 or -1)

nn.MultiLabelSoftMarginLoss It optimizes a multi-label one-versus-all loss based on max-
entropy, between input 𝑥 and target 𝑦 of size (𝑁, 𝐶).

nn.CosineEmbeddingLoss It measures the loss given input tensors 𝑥1, 𝑥2 and a Tensor
label 𝑦 with values 1 or -1.

nn.MultiMarginLoss It Creates optimizes a multi-class classification hinge loss
(margin-based loss)

nn.TripletMarginLoss It measures the triplet loss given an input tensors 𝑥1, 𝑥2,
𝑥3 and a margin with a value greater than 0

nn.TripletMarginWithDistanceLoss It measures the triplet loss given input tensors 𝑎, 𝑝, and 𝑛
(representing anchor, positive, and negative examples, re-
spectively), and a nonnegative, real-valued function (‘dis-
tance function’) used to compute the relationship between
the anchor and positive example (‘positive distance’) and
the anchor and negative example (‘negative distance’)

12.5 How to train a feedforward network 197

forward propagation produces an output y and an associated cost function 𝐽 (𝜽) that
relies on non-optimized 𝜃 parameters (Goodfellow et al., 2016).

The back-propagation algorithm allows computing the gradient of 𝐿 (𝜽) by prop-
agating the information from the output, i.e., the cost function, backward through the
network (Goodfellow et al., 2016). Please note that the back-propagation only allows
the definition of the gradient of 𝐿 (𝜽). Then we need an optimization algorithm,
e.g., the Stochastic Gradient Descent (section 7.5), to perform the learning along
this gradient (Goodfellow et al., 2016). Describing in detail the back-propagation
algorithm is beyond the scope of the present book. Please refer to Goodfellow et al.
(2016) or other specialized books for further details.

The torch.autograd is PyTorch’s automatic differentiation engine. It defines a
directed acyclic graph whose leaves are the input tensors and roots are the output
tensors. That way, it allows the computation of gradients using the chain rule.

12.5.4 Optimization

Once defined The optim submodule of torch (i.e. torch.optim) stores the optimization
algorithms (Table 12.2).

Table 12.2 Optimization Algorithms in PyTorch: https://bit.ly/pytorch-optim.

Optimization Algorithm Description

Adadelta Implements Adadelta algorithm
Adagrad Implements Adagrad algorithm
Adam Implements Adam algorithm
AdamW Implements AdamW algorithm
SparseAdam Implements lazy version of Adam algorithm suitable for

sparse tensors
Adamax Implements Adamax algorithm (a variant of Adam based

on infinity norm)
ASGD Implements Averaged Stochastic Gradient Descent
LBFGS Implements L-BFGS algorithm, heavily inspired by

minFunc
NAdam Implements NAdam algorithm
RAdam Implements RAdam algorithm
RMSprop Implements RMSprop algorithm
Rprop Implements the resilient backpropagation algorithm
SGD Implements stochastic gradient descent (optionally with

momentum)

198 12 Introduction to Deep Learning

12.5.5 Network Architectures

In this section, I provide a quick overview of some popular neural network architec-
tures.

Multilayer Perceptron

It is the neural network structure depicted in Fig. 12.2. It consists of fully connected
layers of perceptrons (i.e., artificial neurons). Selecting the optimal number of hidden
layers is not always straightforward. It is commonly driven by background knowledge
and experimentation (Hastie et al., 2017). Hastie et al. (2017) report that “it is better
to have too many hidden units than too few. With too few hidden units, the model
might not have enough flexibility to capture the nonlinearities in the data; with
too many hidden units, the extra weights can be shrunk toward zero if appropriate
regularization is used”. For common applications, the number of hidden layers
typically ranges between 5 and 100 (Hastie et al., 2017). It is notable that most of
the machine learning models described in Chapter 7, e.g., support vector machines
or the logistic regression, can be simulated with multilayer perceptrons containing
one or two layers, only (Aggarwal, 2018).

Radial Basis Function Networks

Radial basis function (RBF) networks consist of shallow, i.e., two layers only, neural
networks where the first and the second layers are unsupervised and supervised,
respectively (Aggarwal, 2018). In detail, RBF networks are based on Cover’s theo-
rem on the separability of patterns (Cover, 1965), stating that pattern classification
problems are more likely to be linearly separable when cast into a high-dimensional
space with a nonlinear transformation. The idea behind RBF networks is close to that
of nearest-neighbor classifiers with the addition of a supervised step in the second
layer (Aggarwal, 2018). Also, they are similar to support vector machines trained
with radial basis functions as the kernel. However, RBF networks are more general
than kernel support vector machines (Aggarwal, 2018).

Restricted Boltzmann Machines

Restricted Boltzmann machines (RBMs) are unsupervised neural network architec-
tures relying on the concept of energy minimization (Fischer & Igel, 2012). RBMs
have been introduced in the 1980s (Aggarwal, 2018). However, the increase in
computational power and the development of new learning strategies made RBMs
significantly more appealing in recent times than in the 1980s (Fischer & Igel, 2012).
RBMs are notably effective for creating generative models (Fischer & Igel, 2012),
and they are nearly related to probabilistic graphical models (koller & Friedman,

12.5 How to train a feedforward network 199

2009). Also, RBMs have been proposed as building blocks of the so-called deep be-
lief networks (DBNs, Hinton et al., 2006). The training of an RBM is rather different
from that of a feed-forward network since it cannot use backpropagation (Fischer &
Igel, 2012). On the contrary, RBMs rely on Monte Carlo sampling to perform the
training (Fischer & Igel, 2012).

Recurrent Neural Networks

Recurrent neural networks (RNNs) aim at investigating sequential data like text sen-
tences, time series, and additional discrete sequences (Abraham and Tyagi, 2022).
An important point about RNNs is that they account for the potential dependence of
subsequent inputs from previous ones, making them well-suitable, for example, time
series forecasting or speech recognition (Aggarwal, 2018; Kumar & Abraham, 2022).
They use a specific backpropagation algorithm named backpropagation through time
(BPTT; Aggarwal, 2018). It accounts for sharing and temporal length when updat-
ing the weights during the learning process. As a drawback, the optimization and
training processes of RNNs are not straightforward, making them difficult to access,
especially for novices (Aggarwal, 2018; Kumar & Abraham, 2022). Specialized
variants of the recurrent neural network architecture have also been proposed to
solve specific problems, such as the handling of long-term dependencies using long
short-term memory (LSTM) networks (Hochreiter & Schmidhuber, 1997).

Convolutional Neural Networks

Convolutional neural networks (CNNs) are biologically inspired networks finding
applications in video and speech recognition, recommendation systems, image clas-
sification and segmentation, natural language processing, and time series forecasting
(e.g., Yamashita et al., 2018). A CNN mimics the visual cortex functionalities of
animals (Fukushima, 1980) and aims at “automatically and adaptively learn spatial
hierarchies of features through backpropagation by using multiple building blocks,
such as convolution layers, pooling layers, and fully connected layers” (Fukushima,
1980).

CNNs are well suited to process grid-shaped data, like RGB images or spectral
maps, by using three main categories of layers: convolution, pooling, and fully con-
nected layers (Fukushima, 1980). The first two layers, i.e., convolution and pooling,
fulfill feature extraction, and the third, i.e., fully connected layers, map the extracted
features into the final output. Convolution layers play a fundamental role in CNNs
(Yamashita et al., 2018).

Convolutional layers are the places where the majority of computation occurs.
They typically consist of three components: input data, a filter (or kernel), and
a feature map (Yamashita et al., 2018). To better understand, please consider the
example reported in Fig. 12.7, where the input and the kernel are a 6x6 and 3x3
array, respectively. The output, i.e., a 4x4 array named feature map, activation map,

200 12 Introduction to Deep Learning

or convolved feature, derives by the systematic application of the filter, i.e. a dot
product, to different portions of the input. After each convolution, the CNN applies
an activation function, e.g., a Rectified Linear Unit (ReLU) to the output, and then
moves to the next layer (Yamashita et al., 2018).

1 2 1 0 1 0
1 0 1 2 1 2
2 1 0 2 1 1
0 1 1 2 1 1
1 0 1 0 1 1
1 1 2 1 2 1

0

0
0 01
1 1

1 1

4

1 2 1 0 1 0
1 0 1 2 1 2
2 1 0 2 1 1
0 1 1 2 1 1
1 0 1 0 1 1
1 1 2 1 2 1

0

0
0 01
1 1

1 1

4 6

1 2 1 0 1 0
1 0 1 2 1 2
2 1 0 2 1 1
0 1 1 2 1 1
1 0 1 0 1 1
1 1 2 1 2 1

0

0
0 01
1 1

1 1

4 6 5 4
4 5 6 8
5 4 5 5
4 6 6 6

Input Tensor Kernel
(sum up)

Feature Map

Fig. 12.7 Example of Convolution

Pooling layers perform a dimensionality reduction (or downsampling) step, re-
ducing the number of parameters of their input. They typically consist of a filter that
applies an aggregation function, e.g., the max or the average pooling (Fukushima,
1980). The max pooling selects the pixel with the maximum value of the filter and
sends it to the output array. Similarly, the average pooling calculates the average value
within the filter and sends it to the output array. If you complain that a huge amount
of information is lost in pooling layers, you are right. However, they help in reducing
the complexity of the model, improve its efficiency, and limit the risk of overfitting

12.6 Example Application 201

(Fukushima, 1980). Finally, fully connected layers mimic a multilayer perceptron,
allowing many ML tasks. As example, CNNs have been largely used in semantic
image segmentation Badrinarayanan et al., 2017; Long et al., 2015; Milletari et al.,
2016. Semantic image segmentation consists of identifying the areas, i.e., the pixels,
of the image occupied by a specific subject, e.g., a person as in the case of Fig. 12.8.

Fig. 12.8 Convolutional Neural Networks for image segmentation. Modified from Long et al., 2015

12.6 Example Application

The problem

As example application of deep learning potentials in the Earth Sciences, I report
the training and validation of a CNN to identify building footprints from satellite
records.

The problem falls in the specific sub-field of ML classification named semantic
image segmentation (e.g., Fig. 12.8. In this specific case, we aim at identifying
the areas, i.e., the pixels, of the image occupied by buildings in the Aerial Image
Labeling data set (Maggiori et al., 2017) (e.g., Fig. 12.9 - left panel). In detail,
Fig. 12.9 (right panel) shows the solution to the problem as mask where the withe
and black colors define building and non-building areas, respectively. The question
is: Can we train a CNN to achieve the solution reported in Fig. 12.9 (right panel)? To
attempt a simplified solution, I will train the U-Net CNN (Ronneberger et al., 2015)
using PyTorch.

202 12 Introduction to Deep Learning

Fig. 12.9 The Aerial Image Labeling data set (Maggiori et al., 2017)

The Dat aset and Pre-Processing

As a starting point, I downloaded the Aerial Image Labeling data set (Maggiori
et al., 2017). It consists of 360 orthorectified RGB images, linked to official cadastral
records (Maggiori et al., 2017). The whole data set covers several areas, for example,
Austin (USA), Chicago (USA), Vienna (Austria), East and West Tyrol (Austria), San
Francisco (USA), and Innsbruck (Austria). The lateral resolution is 0.3 m, and each
tile is 5000x5000 pixels (Maggiori et al., 2017). For 180 tiles, a mask containing two
semantic classes, i.e., building and not-building, is also provided (Maggiori et al.,
2017). For the case study provided in the present section, I selected 10 tiles from
Austin. For each tiles, I also collected the associated masks to train and validate the
model. From each tile, I extracted 25 images, i.e., 1000x1000 pixels each, dividing
it with a 5x5 grid. I executed the same operation for each mask. The resulting data
set consists of 245 images and 245 masks. Then, I split the data set into two parts
used for the training (220) and the validation (25), respectively.

The U-Net Architecture

The U-Net is a “fully convolutional network” (FCN; Long et al., 2015). The main con-
cept behind FCNs is to take an input of arbitrary size and produce correspondingly-
sized output with efficient inference and learning (Long et al., 2015).

Fig. 12.10 depicts the U-Net architecture. It consists of a contracting network
(left side), followed by an expansive path (right side; Ronneberger et al., 2015). The
contracting path applies a sequence of two 3x3 convolutions, each followed by a
rectified linear unit (ReLU) and a 2x2 max pooling (Ronneberger et al., 2015). Then,
in the expansive path, the U-Net performs an upsampling of the feature map, followed
by a 2x2 convolution (‘up-convolution’), and two 3x3 convolutions, each followed by
a ReLU (Ronneberger et al., 2015). The final layer applies a 1x1 convolution to map

12.6 Example Application 203

each 64-component feature vector to the desired number of classes (Ronneberger
et al., 2015). The code listing 12.1 shows a PyTorch implementation of the U-Net.

1 """ Full assembly of the parts to form the complete network """
2
3 from .unet_parts import *
4
5
6 class UNet(nn.Module):
7 def __init__(self, n_channels , n_classes , bilinear=False):

8 super(UNet, self).__init__()

9 self.n_channels = n_channels

10 self.n_classes = n_classes

11 self.bilinear = bilinear

12
13 self.inc = DoubleConv(n_channels , 64)

14 self.down1 = Down(64, 128)

15 self.down2 = Down(128, 256)

16 self.down3 = Down(256, 512)

17 factor = 2 if bilinear else 1

18 self.down4 = Down(512, 1024 // factor)

19 self.up1 = Up(1024, 512 // factor, bilinear)

20 self.up2 = Up(512, 256 // factor, bilinear)

21 self.up3 = Up(256, 128 // factor, bilinear)

22 self.up4 = Up(128, 64, bilinear)

23 self.outc = OutConv(64, n_classes)

24
25 def forward(self, x):

26 x1 = self.inc(x)

27 x2 = self.down1(x1)

28 x3 = self.down2(x2)

29 x4 = self.down3(x3)

30 x5 = self.down4(x4)

31 x = self.up1(x5, x4)

32 x = self.up2(x, x3)

33 x = self.up3(x, x2)

34 x = self.up4(x, x1)

35 logits = self.outc(x)

36 return logits

Listing 12.1 Plotting the results of the Monte Carlo simulation.

Results

Figure 12.11 shows the application of the trained model (1260 epochs) to one of
the 25 validation images extracted from the original data set. In detail, the top-right
panel of Fig. 12.11 shows the original image, i.e., the input RGB matrix. Also, the
top-left panel reports the building/non-building mask. Please take in mind that we

204 12 Introduction to Deep Learning

input
image

tile

output
segmentation
map

conv 3x3, ReLU
copy and crop

max pool 2x2

up-conv 2x2
conv 1x1

Fig. 12.10 Architecture of the U-Net convolutional neural network (modified from Ronneberger
et al., 2015)

Original Image Building/ non-building mask

predicted mask Original image + predicted mask

Fig. 12.11 Semantic image segmentation using the U-Net (Ronneberger et al., 2015)

12.6 Example Application 205

use building/non-building masks to educate the model during the training and as
quality control during the validation. The bottom-right panel of Fig. 12.11 reports
the predicted mask. Finally, in the bottom-left panel, I over-imposed the predicted
mask to the original image to highlight the goodness of the results.

Going in deeper details of the application of semantic image segmentation to Earth
Sciences is far behond the scopes of the present book. If interested in improving your
knowledge on this topic, I strogngly suggest to start looking at the TorchGeo4 library
(Stewart et al., 2021).

4 https://pytorch.org/blog/geospatial-deep-learning-with-torchgeo/

Further Readings

Part I: Basic Concepts of Machine Learning in Python for Earth
Scientist

Aitchison, J. (1982). The Statistical Analysis of Compositional Data. Journal of the
Royal Statistical Society. Series B (Methodological), 44(2), 139–177.

Aitchison, J. (1984). The statistical analysis of geochemical compositions. Math.
Geol., 16(6), 531–564.

Aitchison, J., & Egozcue, J. J. (2005). Compositional Data Analysis: Where Are
We and Where Should We Be Heading? Mathematical Geology 2005 37:7,
37(7), 829–850. https://doi.org/10.1007/S11004-005-7383-7

Bestagini, P., Lipari, V., & Tubaro, S. (2017). A Machine Learning Approach to
Facies Classification Using Well Logs. SEG Technical Program Expanded
Abstracts, 2137–2142. https://doi.org/10.1190/SEGAM2017-17729805.1

Bharath, R., & Reza Bosagh, Z. (2018). TensorFlow for Deep Learning [Book].
O’Reilly.

Bishop, C. (2007). Pattern recognition and machine learning. Springer Verlag.
Boujibar, A., Howell, S., Zhang, S., Hystad, G., Prabhu, A., Liu, N., Stephan, T.,

Narkar, S., Eleish, A., Morrison, S. M., Hazen, R. M., & Nittler, L. R.
(2021). Cluster Analysis of Presolar Silicon Carbide Grains: Evaluation
of Their Classification and Astrophysical Implications. The astrophysical
journal. Letters, 907(2), L39. https://doi.org/10.3847/2041-8213/ABD102

Caricchi, L., Petrelli, M., Bali, E., Sheldrake, T., Pioli, L., & Simpson, G. (2020). A
Data Driven Approach to Investigate the Chemical Variability of Clinopy-
roxenes From the 2014–2015 Holuhraun–Bárdarbunga Eruption (Iceland).
Frontiers in Earth Science, 8. https://doi.org/10.3389/feart.2020.00018

Chollet, F. (2021). Deep Learning with Python (Second Edi). Manning.
Corlett, W. J., Aitchison, J., & Brown, J. A. C. (1957). The Lognormal Distribution,

With Special Reference to Its Uses in Economics. Applied Statistics, 6(3),
228. https://doi.org/10.2307/2985613

De Mauro, A., Greco, M., & Grimaldi, M. (2016). A formal definition of Big Data
based on its essential features. Library Review, 65(3), 122–135. https :
//doi.org/10.1108/LR-06-2015-0061/FULL/XML

Egozcue, J. J., & Pawlowsky-Glahn, V. (2005). Groups of Parts and Their Balances
in Compositional Data Analysis. Mathematical Geology 2005 37:7, 37(7),
795–828. https://doi.org/10.1007/S11004-005-7381-9

Géron, A. (2017). Hands-on machine learning with Scikit-Learn and TensorFlow :
concepts, tools, and techniques to build intelligent systems. O’Reilly Media,
Inc.

Hastie, T., Tibshirani, R., & Friedman, J. (2017). The Elements of Statistical Learning
(Second Edi). Springer.

206

PART I: BASIC CONCEPTS OF MACHINE LEARNING IN PYTHON FOR EARTH SCIENTIST207

Jordan, M., & Mitchell, T. (2015). Machine learning: Trends, perspectives, and
prospects. Science, 349(6245), 255–260. https://doi.org/10.1126/science.
aaa8415

Lee, W.-M. (2019). Phyton Machine Learning. John Wiley & Sons Inc.
Limpert, E., Stahel, W. A., & Abbt, M. (2001). Log-normal distributions across

the sciences: Keys and clues. https://doi.org/10.1641/0006-3568(2001)
051[0341:LNDATS]2.0.CO;2

Lowe, D. J. (2011). Tephrochronology and its application: A review. Quaternary
Geochronology, 6(2), 107–153. https://doi.org/10.1016/j.quageo.2010.08.
003

Maharana, K., Mondal, S., & Nemade, B. (2022). A Review: Data Pre-Processing
and Data Augmentation Techniques. Global Transitions Proceedings. https:
//doi.org/10.1016/J.GLTP.2022.04.020

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill.
Morrison, S., Liu, C., Eleish, A., Prabhu, A., Li, C., Ralph, J., Downs, R., Golden, J.,

Fox, P., Hummer, D., Meyer, M., & Hazen, R. (2017). Network analysis of
mineralogical systems. American Mineralogist, 102(8), 1588–1596. https:
//doi.org/10.2138/am-2017-6104CCBYNCND

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. The MIT
Press.

Negus, C. (2015). Linux Bible (9th Edition, Vol. 112). John Wiley & Sons, Inc.
Panda, D. K., Lu, X. (o. c. s., & Shankar, D. (2022). High-performance big data

computing. MIT Press.
Papa, J. (2021). PyTorch Pocket Reference. O’Reilly Media, Inc.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,

Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E.,
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
. . . Chintala, S. (2019). PyTorch: An imperative style, high-performance
deep learning library. Advances in Neural Information Processing Systems,
32.

Pedregosa, F., Varoquaux, G. G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É.
(2011). Scikit-learn: Machine Learning in Python. Journal of Machine
Learning Research, 12, 2825–2830.

Petrelli, M., Caricchi, L., & Perugini, D. (2020). Machine Learning Thermo-
Barometry: Application to Clinopyroxene-Bearing Magmas. Journal of
Geophysical Research: Solid Earth, 125(9). https : / / doi . org / 10 . 1029 /
2020JB020130

Petrelli, M. (2021). Introduction to Python in Earth Science Data Analysis. Springer
International Publishing. https://doi.org/10.1007/978-3-030-78055-5

Pietsch, W. (2021). Big Data. Cambridge University Press. https://doi.org/10.1017/
9781108588676

Razum, I., Ilijanić, N., Petrelli, M., Pawlowsky-Glahn, V., Miko, S., Moska, P.,
& Giaccio, B. (2023). Statistically coherent approach involving log-ratio

208 PART II: UNSUPERVISED LEARNING

transformation of geochemical data enabled tephra correlations of two late
Pleistocene tephra from the eastern Adriatic shelf. Quaternary Geochronol-
ogy, 74, 101416. https://doi.org/10.1016/J.QUAGEO.2022.101416

Samuel, A. L. (1959). Some Studies in Machine Learning Using the Game of
Checkers. IBM J. Res. Dev., 3, 210–229.

Shai, S.-S., & Shai, B.-D. (2014). Understanding Machine Learning: From Theory
to Algorithms. Cambridge University Press.

Stephan, T., Bose, M., Boujibar, A., Davis, A. M., Gyngard, F., Hoppe, P., Hynes,
K. M., Liu, N., Nittler, L. R., Ogliore, R. C., & Trappitsch, R. (2021).
The Presolar Grain Database for silicon carbide—grain type assignments
(abstract). Lunar Planet. Sci, 52, 2358.

Tenenbaum, J. B., De Silva, V., & Langford, J. C. (2000). A Global Geometric
Framework for Nonlinear Dimensionality Reduction. Science, 290(5500),
2319–2323. https://doi.org/10.1126/SCIENCE.290.5500.2319

Trugman, D., & Shearer, P. (2017). GrowClust: A Hierarchical clustering algorithm
for relative earthquake relocation, with application to the Spanish Springs
and Sheldon, Nevada, earthquake sequences. Seismological Research Let-
ters, 88(2), 379–391. https://doi.org/10.1785/0220160188

van den Boogaart, K. G., & Tolosana-Delgado, R. (2013). Analyzing compositional
data with R. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-
642-36809-7/COVER

Wang, Q., Zhang, F., & Li, X. (2018). Optimal Clustering Framework for Hyper-
spectral Band Selection. IEEE Transactions on Geoscience and Remote
Sensing, 56(10), 5910–5922. https://doi.org/10.1109/TGRS.2018.2828161

Ward, B. (2021). How Linux Works, 3rd Edition: What Every Superuser Should
Know. No Starch Press, Inc.

Zhang, Z. (2016). Missing data imputation: focusing on single imputation. Annals
of Translational Medicine, 4(1), 9. https://doi.org/10.3978/J.ISSN.2305-
5839.2015.12.38

Zhu, X., & Goldberg, A. B. (2009). Introduction to Semi-Supervised Learning.
Morgan; Claypool Publishers.

Part II: Unsupervised Learning

Aitchison, J. (1982). The Statistical Analysis of Compositional Data. Journal of the
Royal Statistical Society. Series B (Methodological), 44(2), 139–177.

Aitchison, J. (1984). The statistical analysis of geochemical compositions. Math.
Geol., 16(6), 531–564.

Aitchison, J., & Egozcue, J. J. (2005). Compositional Data Analysis: Where Are
We and Where Should We Be Heading? Mathematical Geology 2005 37:7,
37(7), 829–850. https://doi.org/10.1007/S11004-005-7383-7

Andronico, D., & Corsaro, R. A. (2011). Lava fountains during the episodic erup-
tion of South-East Crater (Mt. Etna), 2000: Insights into magma-gas dy-

PART II: UNSUPERVISED LEARNING 209

namics within the shallow volcano plumbing system. Bulletin of Volcanol-
ogy, 73(9), 1165–1178. https : / / doi . org / 10 . 1007 / S00445 - 011 - 0467 -
Y/FIGURES/8

Arthur, D., & Vassilvitskii, S. (2007). K-Means++: The Advantages of Careful
Seeding. Proceedings of the Eighteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, 1027–1035.

Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction
and data representation. Neural computation, 15(6), 1373–1396.

Blei, D. M., & Jordan, M. I. (2006). Variational inference for Dirichlet process
mixtures. Bayesian Analysis, 1(1), 121–143. https://doi.org/10.1214/06-
BA104

Bonaccorso, A., Carleo, L., Currenti, G., & Sicali, A. (2021). Magma Migration at
Shallower Levels and Lava Fountains Sequence as Revealed by Borehole
Dilatometers on Etna Volcano. Frontiers in Earth Science, 9, 800. https:
//doi.org/10.3389/FEART.2021.740505/BIBTEX

Boschetty, F. O., Ferguson, D. J., Cortés, J. A., Morgado, E., Ebmeier, S. K., Morgan,
D. J., Romero, J. E., & Silva Parejas, C. (2022). Insights Into Magma
Storage Beneath a Frequently Erupting Arc Volcano (Villarrica, Chile)
From Unsupervised Machine Learning Analysis of Mineral Compositions.
Geochemistry, Geophysics, Geosystems, 23(4), e2022GC010333. https :
//doi.org/10.1029/2022GC010333

Branca, S., & Del Carlo, P. (2004). Eruptions of Mt. Etna During the Past 3,200
Years: a Revised Compilation Integrating the Historical and Stratigraphic
Records. Geophysical Monograph Series, 143, 1–27. https://doi.org/10.
1029/143GM02

Cappello, A., Bilotta, G., Neri, M., & Negro, C. D. (2013). Probabilistic modeling of
future volcanic eruptions at Mount Etna. Journal of Geophysical Research:
Solid Earth, 118(5), 1925–1935. https://doi.org/10.1002/JGRB.50190

Caricchi, L., Petrelli, M., Bali, E., Sheldrake, T., Pioli, L., & Simpson, G. (2020). A
Data Driven Approach to Investigate the Chemical Variability of Clinopy-
roxenes From the 2014–2015 Holuhraun–Bárdarbunga Eruption (Iceland).
Frontiers in Earth Science, 8. https://doi.org/10.3389/feart.2020.00018

Comaniciu, D., & Meer, P. (2002). Mean shift: A robust approach toward feature
space analysis. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 24(5), 603–619. https://doi.org/10.1109/34.1000236

Corsaro, R. A., & Miraglia, L. (2022). Near Real-Time Petrologic Monitoring on
Volcanic Glass to Infer Magmatic Processes During the February–April
2021 Paroxysms of the South-East Crater, Etna. Frontiers in Earth Science,
10, 222. https://doi.org/10.3389/FEART.2022.828026/BIBTEX

Costa, F., Shea, T., & Ubide, T. (2020). Diffusion chronometry and the timescales of
magmatic processes. Nature Reviews Earth and Environment, 1(4), 201–
214. https://doi.org/10.1038/s43017-020-0038-x

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum Likelihood from
Incomplete Data Via the EM Algorithm. Journal of the Royal Statistical

210 PART II: UNSUPERVISED LEARNING

Society: Series B (Methodological), 39(1), 1–22. https://doi.org/10.1111/J.
2517-6161.1977.TB01600.X

Derpanis, K. G. (2005). Mean shift clustering. Lecture Notes, 32.
Di Renzo, V., Corsaro, R. A., Miraglia, L., Pompilio, M., & Civetta, L. (2019).

Long and short-term magma differentiation at Mt. Etna as revealed by Sr-
Nd isotopes and geochemical data. Earth-Science Reviews, 190, 112–130.
https://doi.org/10.1016/J.EARSCIREV.2018.12.008

Donoho, D. L., & Grimes, C. (2003). Hessian eigenmaps: Locally linear embedding
techniques for high-dimensional data. Proceedings of the National Academy
of Sciences, 100(10), 5591–5596.

Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. (1996). A density-based algorithm
for discovering clusters in large spatial databases with noise. kdd, 96(34),
226–231.

Ferlito, C., Coltorti, M., Lanzafame, G., & Giacomoni, P. P. (2014). The volatile
flushing triggers eruptions at open conduit volcanoes: Evidence from Mount
Etna volcano (Italy). Lithos, 184-187, 447–455. https://doi.org/10.1016/J.
LITHOS.2013.10.030

Ge, W., Cheng, Q., Jing, L., Wang, F., Zhao, M., & Ding, H. (2020). Assessment of
the Capability of Sentinel-2 Imagery for Iron-Bearing Minerals Mapping:
A Case Study in the Cuprite Area, Nevada. Remote Sensing 2020, Vol. 12,
Page 3028, 12(18), 3028. https://doi.org/10.3390/RS12183028

Hastie, T., Tibshirani, R., & Friedman, J. (2017). The Elements of Statistical Learning
(Second Edi). Springer.

Higgins, O., Sheldrake, T., & Caricchi, L. (2021). Machine learning thermobarom-
etry and chemometry using amphibole and clinopyroxene: a window into
the roots of an arc volcano (Mount Liamuiga, Saint Kitts). Contributions
to Mineralogy and Petrology 2021 177:1, 177(1), 1–22. https://doi.org/10.
1007/S00410-021-01874-6

Immitzer, M., Vuolo, F., Atzberger, C., Sarathi Roy, P., & Thenkabail, P. S. (2016).
First Experience with Sentinel-2 Data for Crop and Tree Species Classifi-
cations in Central Europe. Remote Sensing 2016, Vol. 8, Page 166, 8(3),
166. https://doi.org/10.3390/RS8030166

Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32(3), 241–
254.

Jollife, I. T., & Cadima, J. (2016). Principal component analysis: a review and
recent developments. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 374(2065). https://doi.
org/10.1098/RSTA.2015.0202

Jolliffe, I. T. (2002). Principal Component Analysis. Springer-Verlag. https://doi.
org/10.1007/B98835

Jorgenson, C., Higgins, O., Petrelli, M., Bégué, F., & Caricchi, L. (2022). A Machine
Learning-Based Approach to Clinopyroxene Thermobarometry: Model Op-
timization and Distribution for Use in Earth Sciences. Journal of Geophys-
ical Research: Solid Earth, 127(4), e2021JB022904. https://doi.org/10.
1029/2021JB022904

PART II: UNSUPERVISED LEARNING 211

Lloyd, S. (1982). Least squares quantization in PCM. IEEE Transactions on Informa-
tion Theory, 28(2), 129–137. https://doi.org/10.1109/TIT.1982.1056489

Majidi Nezhad, M., Heydari, A., Pirshayan, E., Groppi, D., & Astiaso Garcia, D.
(2021). A novel forecasting model for wind speed assessment using sentinel
family satellites images and machine learning method. Renewable Energy,
179, 2198–2211. https://doi.org/10.1016/J.RENENE.2021.08.013

Marchese, F., Filizzola, C., Lacava, T., Falconieri, A., Faruolo, M., Genzano, N.,
Mazzeo, G., Pietrapertosa, C., Pergola, N., Tramutoli, V., & Neri, M.
(2021). Mt. Etna Paroxysms of February–April 2021 Monitored and Quan-
tified through a Multi-Platform Satellite Observing System. Remote Sens-
ing 2021, Vol. 13, Page 3074, 13(16), 3074. https : / / doi . org / 10 .3390 /
RS13163074

McLachlan, G. J., & Peel, D. (2000). Finite mixture models. Wiley.
Musu, A., Corsaro, R. A., Higgins, O., Jorgenson, C., Petrelli, M., & Caricchi, L.

(2022). The magmatic evolution of South-East Crater (Mt. Etna) during the
February-March 2021 sequence of lava fountains from a mineral chemistry
perspective. Bulletin of Volcanology.

Petrelli, M., Caricchi, L., & Perugini, D. (2020). Machine Learning Thermo-
Barometry: Application to Clinopyroxene-Bearing Magmas. Journal of
Geophysical Research: Solid Earth, 125(9). https : / / doi . org / 10 . 1029 /
2020JB020130

Petrelli, M., & Zellmer, G. (2020). Rates and Timescales of Magma Transfer, Storage,
Emplacement, and Eruption. https://doi.org/10.1002/9781119521143.ch1

Petrelli, M. (2021). Introduction to Python in Earth Science Data Analysis. Springer
International Publishing. https://doi.org/10.1007/978-3-030-78055-5

Putirka, K. (2008). Thermometers and barometers for volcanic systems. https://doi.
org/10.2138/rmg.2008.69.3

Roweis, S. T., & Saul, L. K. (2000). Nonlinear Dimensionality Reduction by Locally
Linear Embedding. Science, 290(5500), 2323–2326. https://doi.org/10.
1126/SCIENCE.290.5500.2323

Schaepman-Strub, G., Schaepman, M. E., Painter, T. H., Dangel, S., & Martonchik,
J. V. (2006). Reflectance quantities in optical remote sensing—definitions
and case studies. Remote Sensing of Environment, 103(1), 27–42. https:
//doi.org/10.1016/J.RSE.2006.03.002

Scrucca, L., Fop, M., Murphy, T. B., & Raftery, A. E. (2016). mclust 5: Clustering,
Classification and Density Estimation Using Gaussian Finite Mixture Mod-
els. The R Journal, 8(1), 289–317. https://doi.org/10.32614/RJ-2016-021

Sovdat, B., Kadunc, M., Batič, M., & Milčinski, G. (2019). Natural color represen-
tation of Sentinel-2 data. Remote Sensing of Environment, 225, 392–402.
https://doi.org/10.1016/J.RSE.2019.01.036

Sugiyama, M. (2015). Introduction to Statistical Machine Learning. Elsevier Inc.
https://doi.org/10.1016/C2014-0-01992-2

Tenenbaum, J. B., De Silva, V., & Langford, J. C. (2000). A Global Geometric
Framework for Nonlinear Dimensionality Reduction. Science, 290(5500),
2319–2323. https://doi.org/10.1126/SCIENCE.290.5500.2319

212 PART III: SUPERVISED LEARNING

Ubide, T., & Kamber, B. (2018). Volcanic crystals as time capsules of eruption
history. Nature Communications, 9(1). https://doi.org/10.1038/s41467-
017-02274-w

Ubide, T., Neave, D., Petrelli, M., & Longpré, M.-A. (2021). Editorial: Crystal
Archives of Magmatic Processes. Frontiers in Earth Science, 9. https :
//doi.org/10.3389/feart.2021.749100

Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and computing,
17(4), 395–416.

Zheng, N., & Xue, J. (2009). Manifold Learning. In Statistical learning and pattern
analysis for image and video processing (pp. 87–119). Springer, London.
https://doi.org/10.1007/978-1-84882-312-9{\ }4

Part III: Supervised Learning

Aitchison, J. (1982). The Statistical Analysis of Compositional Data. Journal of the
Royal Statistical Society. Series B (Methodological), 44(2), 139–177.

Bentley, J. L. (1975). Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9), 509–517. https://doi.org/
10.1145/361002.361007

Bestagini, P., Lipari, V., & Tubaro, S. (2017). A Machine Learning Approach to
Facies Classification Using Well Logs. SEG Technical Program Expanded
Abstracts, 2137–2142. https://doi.org/10.1190/SEGAM2017-17729805.1

Bottou, L. (2012). Stochastic Gradient Descent Tricks. In G. Montavon, G. B. Orr,
& K.-R. Müller (Eds.), Neural networks: Tricks of the trade: Second edition
(pp. 421–436). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-
642-35289-8{\ }25

Breiman, L. (2001). Random Forests. Machine Learning 2001 45:1, 45(1), 5–32.
https://doi.org/10.1023/A:1010933404324

Breiman, L., Friedman, J. H. (H., Olshen, R. A., & Stone, C. J. (1984). Classification
and regression trees. Chapman; Hall/CRC.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3),
273–297. https://doi.org/10.1007/BF00994018

Costa, F., Shea, T., & Ubide, T. (2020). Diffusion chronometry and the timescales of
magmatic processes. Nature Reviews Earth and Environment, 1(4), 201–
214. https://doi.org/10.1038/s43017-020-0038-x

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization Paths for General-
ized Linear Models via Coordinate Descent. Journal of statistical software,
33(1), 1. https://doi.org/10.18637/jss.v033.i01

Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine
Learning 2006 63:1, 63(1), 3–42. https://doi.org/10.1007/S10994-006-
6226-1

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning (Vol. 29). MIT
Press.

PART III: SUPERVISED LEARNING 213

Hall, B. (2016). Facies classification using machine learning. Leading Edge, 35(10),
906–909. https: / /doi .org/10.1190/TLE35100906.1/ASSET/IMAGES/
LARGE/TLE35100906.1{\ }FIG2.JPEG

Hall, M., & Hall, B. (2017). Distributed collaborative prediction: Results of the
machine learning contest. The Leading Edge, 36(3), 267–269. https://doi.
org/10.1190/TLE36030267.1

Hastie, T., Tibshirani, R., & Friedman, J. (2017). The Elements of Statistical Learning
(Second Edi). Springer.

Hernandez-Martinez, E., Perez-Muñoz, T., Velasco-Hernandez, J. X., Altamira-
Areyan, A., & Velasquillo-Martinez, L. (2013). Facies Recognition Using
Multifractal Hurst Analysis: Applications to Well-Log Data. Mathematical
Geosciences, 45(4), 471–486. https://doi.org/10.1007/S11004-013-9445-
6/FIGURES/9

Hirschmann, M., Ghiorso, M., Davis, F., Gordon, S., Mukherjee, S., Grove, T.,
Krawczynski, M., . Medard, E., & Till, C. (2008). Library of Experimental
Phase Relations (LEPR): A database and Web portal for experimental mag-
matic phase equilibria data. Geochemistry, Geophysics, Geosystems, 9(3).
https://doi.org/10.1029/2007GC001894

Jorgenson, C., Higgins, O., Petrelli, M., Bégué, F., & Caricchi, L. (2022). A Machine
Learning-Based Approach to Clinopyroxene Thermobarometry: Model Op-
timization and Distribution for Use in Earth Sciences. Journal of Geophys-
ical Research: Solid Earth, 127(4), e2021JB022904. https://doi.org/10.
1029/2021JB022904

Kubat, M. (2017). An Introduction to Machine Learning. Springer International
Publishing. https://doi.org/10.1007/978-3-319-63913-0

Lemaı̂tre, G., Nogueira, F., & Aridas, C. K. (2017). Imbalanced-learn: A Python
Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning.
Journal of Machine Learning Research, 18(17), 1–5.

Petrelli, M., Caricchi, L., & Perugini, D. (2020). Machine Learning Thermo-
Barometry: Application to Clinopyroxene-Bearing Magmas. Journal of
Geophysical Research: Solid Earth, 125(9). https : / / doi . org / 10 . 1029 /
2020JB020130

Petrelli, M., El Omari, K., Spina, L., Le Guer, Y., La Spina, G., & Perugini, D.
(2018). Timescales of water accumulation in magmas and implications for
short warning times of explosive eruptions. Nature Communications, 9(1).
https://doi.org/10.1038/s41467-018-02987-6

Petrelli, M. (2021). Introduction to Python in Earth Science Data Analysis. Springer
International Publishing. https://doi.org/10.1007/978-3-030-78055-5

Putirka, K. (2008). Thermometers and barometers for volcanic systems. https://doi.
org/10.2138/rmg.2008.69.3

Song, Y. Y., & Lu, Y. (2015). Decision tree methods: applications for classification
and prediction. Shanghai Archives of Psychiatry, 27(2), 130. https://doi.
org/10.11919/J.ISSN.1002-0829.215044

Sugiyama, M. (2015). Introduction to Statistical Machine Learning. Elsevier Inc.
https://doi.org/10.1016/C2014-0-01992-2

214 PART IV: SCALING YOUR MACHINE LEARNING MODELS

Tibshirani, R. (1996). Regression Shrinkage and Selection Via the Lasso. Journal of
the Royal Statistical Society: Series B (Methodological), 58(1), 267–288.
https://doi.org/10.1111/J.2517-6161.1996.TB02080.X

Tolosana-Delgado, R., Talebi, H., Khodadadzadeh, M., & Boogaart, K. (2019). On
machine learning algorithms and compositional data.

Ubide, T., & Kamber, B. (2018). Volcanic crystals as time capsules of eruption
history. Nature Communications, 9(1). https://doi.org/10.1038/s41467-
017-02274-w

Ubide, T., Neave, D., Petrelli, M., & Longpré, M.-A. (2021). Editorial: Crystal
Archives of Magmatic Processes. Frontiers in Earth Science, 9. https :
//doi.org/10.3389/feart.2021.749100

Wood, D. A. (2021). Enhancing lithofacies machine learning predictions with
gamma-ray attributes for boreholes with limited diversity of recorded well
logs. Artificial Intelligence in Geosciences, 2, 148–164. https://doi.org/10.
1016/J.AIIG.2022.02.007

Zhang, H. (2004). The Optimality of Naive Bayes. The Florida AI Research Society.
Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net.

Journal of the Royal Statistical Society: Series B (Statistical Methodology),
67(2), 301–320. https://doi.org/10.1111/J.1467-9868.2005.00503.X

Zou, Q., Ni, L., Zhang, T., & Wang, Q. (2015). Deep Learning Based Feature
Selection for Remote Sensing Scene Classification. IEEE Geoscience and
Remote Sensing Letters, 12(11), 2321–2325. https : / / doi . org / 10 . 1109 /
LGRS.2015.2475299

Part IV: Scaling your Machine Learning Models

Caesar Wu, R. B. (2015). Cloud Data Centers and Cost Modeling: A Complete
Guide To Planning, Designing and Building a Cloud Data Center (1st ed.).
Morgan Kaufmann.

Daniel, J. C. (2019). Data Science with Python DASK. Manning Publications Co.
Fiore, M., & Campos, M. D. (2013). The algebra of directed acyclic graphs. In Lecture

notes in computer science (including subseries lecture notes in artificial
intelligence and lecture notes in bioinformatics) (pp. 37–51). Springer,
Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38164-5{\ }4/
COVER/

Maurer, S. B. (2013). Directed Acyclic Graphs. Routledge Handbooks Online. https:
//doi.org/10.1201/B16132-10

Padua David. (2011). Encyclopedia of Parallel Computing. Springer US. https :
//doi.org/10.1007/978-0-387-09766-4

Pedregosa, F., Varoquaux, G. G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É.

PART V: NEXT STEP: DEEP LEARNING 215

(2011). Scikit-learn: Machine Learning in Python. Journal of Machine
Learning Research, 12, 2825–2830.

Peter Pacheco, M. M. (2020). An Introduction to Parallel Programming (2nd ed.).
Morgan Kaufmann.

Xu, J. (2003). Theory and Application of Graphs (Vol. 10). Springer US. https :
//doi.org/10.1007/978-1-4419-8698-6

Part V: Next Step: Deep Learning

Aggarwal, C. C. (2018). Neural Networks and Deep Learning. Springer International
Publishing. https://doi.org/10.1007/978-3-319-94463-0

Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). SegNet: A Deep Convolu-
tional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 39(12), 2481–2495.
https://doi.org/10.1109/TPAMI.2016.2644615

Cover, T. M. (1965). Geometrical and Statistical Properties of Systems of Linear
Inequalities with Applications in Pattern Recognition. IEEE Transactions
on Electronic Computers, EC-14(3), 326–334. https://doi.org/10.1109/
PGEC.1965.264137

Fischer, A., & Igel, C. (2012). An introduction to restricted Boltzmann machines.
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 7441 LNCS,
14–36. https://doi.org/10.1007/978-3-642-33275-3{\ }2/COVER

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for
a mechanism of pattern recognition unaffected by shift in position. Bio-
logical Cybernetics 1980 36:4, 36(4), 193–202. https://doi.org/10.1007/
BF00344251

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning (Vol. 29). MIT
Press.

Hastie, T., Tibshirani, R., & Friedman, J. (2017). The Elements of Statistical Learning
(Second Edi). Springer.

Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A Fast Learning Algorithm for
Deep Belief Nets. Neural Computation, 18(7), 1527–1554. https://doi.org/
10.1162/NECO.2006.18.7.1527

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural compu-
tation, 9(8), 1735–1780. https://doi.org/10.1162/NECO.1997.9.8.1735

Imambi, S., Prakash, K. B., & Kanagachidambaresan, G. R. (2021). Deep leanring
with PyTorch. Manning.

koller, D., & Friedman, N. (2009). Probabilistic Graphical Models. MIT Press.
Kumar, T. A., & Abraham, A. (2022). Recurrent neural networks : concepts and

applications. CRC Press.
Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for

semantic segmentation. 2015 IEEE Conference on Computer Vision and

216 PART V: NEXT STEP: DEEP LEARNING

Pattern Recognition (CVPR), 3431–3440. https://doi.org/10.1109/CVPR.
2015.7298965

Maggiori, E., Tarabalka, Y., Charpiat, G., & Alliez, P. (2017). Can semantic label-
ing methods generalize to any city? the inria aerial image labeling bench-
mark. International Geoscience and Remote Sensing Symposium (IGARSS),
3226–3229. https://doi.org/10.1109/IGARSS.2017.8127684

Milletari, F., Navab, N., & Ahmadi, S. A. (2016). V-Net: Fully convolutional neural
networks for volumetric medical image segmentation. Proceedings - 2016
4th International Conference on 3D Vision, 3DV 2016, 565–571. https :
//doi.org/10.1109/3DV.2016.79

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks
for biomedical image segmentation. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 9351, 234–241. https://doi.org/10.1007/978-3-
319-24574-4{\ }28/COVER

Stevens, E., Antiga, L., & Viehmann, T. (2020). Deep leanring with PyTorch. Man-
ning.

Stewart, A. J., Robinson, C., Corley, I. A., Ortiz, A., Ferres, J. M. L., & Banerjee, A.
(2021). TorchGeo: Deep Learning With Geospatial Data. https://doi.org/
10.48550/arxiv.2111.08872

Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural
networks: an overview and application in radiology. Insights into Imaging,
9(4), 611–629. https://doi.org/10.1007/S13244-018-0639-9/FIGURES/15

