STRENGTHEN
A closed-loop engineering framework for modeling and controlling human Emotion regulation and well-being

The question and importance:
Decades of studies of mood and emotions have shown their huge influence on multiple human functions: From our cognitive performance1–4, immune responses5–7, and to processes that were needed for our survival such as reward-based exploration and learning4,8–10. Yet despite the wealth of knowledge, there are many critical gaps in our understanding of mood. We know very little about the parameters underlying mood dynamics, individual differences in mood dynamics, and what are the neural mechanisms mediating these differences. These questions remain unanswered since existing lab experiments are limited in their capability to evoke different mood dynamics across individuals, and they strongly affected by experimental biases. I propose a control-based methodology to tackle these questions from an opposite unique direction, in which experiments are individualized in real-time to each individual and their mood state and sensitivity, which allows to modify mood dynamics across individuals and over time.

Individual differences in mood dynamics
Mood shows various dynamics over multiple time scales. From continuous emotional fluctuations along the day or even within a conversation2, to stable individual well-being that doesn’t change over years, even following the most dramatic life events11–15. The symptoms that individuals with clinical depression report is an example of extreme mood dynamics, as they consistently report their mood as being low regardless of positive stimuli16–18. These different possible mood dynamics, how they greatly differ between individuals, and the role of neural activity in this variability, are examples for the many open questions in our understanding of mood. Mood has been shown to be affected by positive and negative events, which have been represented in laboratory experiments by monetary rewards and losses2,17,19–21. This effect is due to mood guiding reward-based learning and mediating the changes in behavior according to previous experiences, such that we aim to maximize rewards and avoid unpleasant losses. A key parameter in this mood-based reinforcement relationship is the Prediction Error (PE): the difference between the outcome and the expectation we had for the outcome. Several studies showed that momentary mood changes are related to the PE values, such that mood increases when PE is positive (the outcome is more positive than what we expected to happen) and decreases if PE is negative (the outcome is worse than what we were expecting)8,20. In a recent computational model22, we presented the parameters of this relationship and the influence of previous events on mood reports (showing that the first events during a task are most dominant on mood rather than the most recent events as was assumed so far). This model pointed out several candidate parameters that appear to define and underlie individual mood dynamics, such as the initial baseline mood of individuals, the weighting of previous events, and identified the related neural activity in several reward-related brain regions (figures 1 and 2)	
This model could not have been proved and developed without using a novel closed-loop paradigm ewe developed, that enables to control mood- i.e., it adaptively maintains the influence of the experiment on mood over time and over different individuals to efficiently and parametrically change mood towards a wanted direction. Without using this novel Mood-Machine-Interface task (figure 3), individuals do not necessarily respond to the presented reward values (and therefore they don’t reach the mood dynamics we want to study), or they stop responding over time due to adaptation or disengagement with the task. We showed that this task manages to generate ongoing influence on mood with strong effect sizes of mood change. By combining this task with computational modelling and neurofeedback, we can uniquely test the underlying computational parameters of mood in different artificially generated mood states, measure how these mood transitions are related to neural activity, and how modifying the related neural activations causally shifts mood. There is multiple evidence to suggest that neural activity plays a key role in mediating individual difference in mood dynamics. We showed both a neural correlated activity with the computational model in the ACC region22 as well as a metanalytic finding that activity in the striatum is low in depression29. In a third recent study we showed that mood dynamics and mood-based learning models are encoded in a multi-regional network in the brain30, in a unique valence-based encoding regime31. 	 
Thus, we propose to integrate these findings, and the unique closed-loop mood-interface methodology, to advance the immense efforts that are being invested in trying to uncover the mechanisms of mood and in developing more effective treatments for depression, mood regulation, and suicidality. This methodology offers a robust way to finally overcome the challenges of non-linearity and variability in individual mood, which pose multiple analytic and experimental challenges in this field1,2.  The same life event will evoke different outcomes in different people, and even in the same person on different days. It will depend on preceding experiences, learning capability, environmental context, brain signals and more. As a result, typical experimental paradigms often only affect some individuals, address           qualitative stimuli exclusively, and are prone to demand effect biases (in which participants respond to satisfy the experimental goal)3,4.

 Proposed methodology and why was it selected: 
In this proposal we describe how it is possible to overcome these challenges by integrating a closed-loop methodology from engineering5 , which is widely used for characterizing other non-linear processes, from flight dynamics, to glucose homeostasis in human physiology6. In this closed-loop approach, a continuous feedback shifts the response of the systems to any required direction and state by tracking the response in real-time and modifying the required stimulus to the system. In this way, the closed-loop control 
circuit characterizes the input-output relations, the mechanisms underlying response dynamics and 

different response states, and also provides a way of applicative and efficient control over the response. 

We suggest using this control-based methodology and integrate engineering with behavioral-psychiatric sciences to a multidisciplinary study of human emotional regulation and well-being, in health and in psychopathology. The hope is that this study would map the relation between different environmental parameters and changes in mood.

The project utilizes the technological and methodological advancements in algorithms and computational modeling, to characterize mood dynamics and to move to analyzing it within more naturalistic settings26. Virtual reality settings, already shown to evoke a range of realistic responses in individuals27,28, will be also combined with the closed-loop Mood-machine-interface paradigm, to take the experimental strength and effect even much further. Implementing the task in a multi-modal virtual environment, will allow to add more positive and negative stimuli in parallel, and therefore create a context which can be made congruent or incongruent to the influence of the reward-based task, while measuring respective changes in neural activity. This novel experimental design will allow to characterize the relation of the identified mood parameters under realistic and complex conditions. In a preliminary study, we recently developed such an experimental setting, where participants reported their mood while making choices in a virtual park, with color, sound and weather changing in real-time between positive and negative values. Such a framework will allow us to identify how environmental modalities are integrated to different mood states, and the neural mediation of these processes.
[image: ]   










Figure 1: The development of a new model of mood, 	
where events have a strong primacy influence on mood
A


























Figure 2: The relation between our mood regulation model to neural activity







Figure 3: The Mood-Machine-Interface design (A), and how it can control mood between fluctuating to stable mood regulation patterns (B) 	B
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Steps to conduct the research:	

TA 1: Identify computational parameters that characterize individual mood dynamics	
There are several different tasks to study mood changes induced in response to positive and negative stimuli. From images, reading written statements, watching video clips, or receiving and losing monetary amounts, participants are exposed in such experiments to happy and sad stimuli and then they are rating how they feel. These tasks, however, typically have not been designed to generate repeatedly the same mood trajectory in participants, and even more so, to maintain a fixed mood value and clamp mood over time. Therefore, the question of the underlying parameters of different mood dynamics could not be experimentally studied or answered. A recent methodology we developed termed the Mood-Machine-Interface (MMI), was designed for these purposes exactly, enabling to create parametric mood changes with high effect-sizes across different individuals and within the same individual over time. The task was so far developed to recalculate in real-time individualized reward and loss and Prediction Error stimuli, such that they compensate for between-individual differences and adaptation of individuals along the experiment. To do this the task is built from a classic Proportional-Integral (PI) control algorithm, which generates consistent mood changes (Figure 3). 
Building on this knowledge and expertise, we will develop a control algorithm such that it will create additional trajectories of mood dynamics, from multiple frequent mood fluctuations to stable fixed mood clamp eliminating fluctuations, and moreover, this in virtual reality settings. The experimental design will include six different conditions: one of mood control to repeated mood changes upwards and downwards, one of control to stable trajectory of a fixed mood value, and then both these conditions will be repeated 3 times in participant over 3 different time intervals, several days, several weeks and several months (overall 24 within-subject repeats). The order between the different conditions, the fluctuating-unstable and the stable mood, will be randomized. In this task design (described in Figure 3), each trial consists of a choice phase (of three seconds) during which participants decide whether to gamble between two monetary values or to receive a non-gamble certain amount. Then a PE value is generated by modifying the values of the gamble possibilities and the outcome amount (showed after the choice for one second), and therefore the difference between them is being modified too (the prediction error value). Participants will provide their mood ratings every two-three gambling trials, by moving a cursor along a scale between unhappy and happy (four seconds). After each such mood report there is a delay of a jittered duration before the next trial of a blank screen with a fixation cross, during which the algorithm calculates the next PE value: this is done according to the difference between the mood report and the target mood value the task is set to reach. This mood error value is translated to the next PE value to be received in the next trial, by a proportional-integral (PI) control algorithm, that multiplies the error by a respective gain. PE will be increased by the algorithm when mood is lower than the target mood value, will become closer to zero when mood gets closer to the target, and will decrease to a more negative value when mood is too high. 	
We will measure the parameters of mood dynamics by extracting individual computational parameters from fitting the Primacy Mood Model to the task and mood ratings data. The initial version of the model considers a cumulative and discounted impact of the combination of the baseline mood, expectation term and prediction errors on mood. The expectation term is defined as a weighted average of all previous outcomes, with a stronger weight of earlier outcomes. From the model we will then receive individual weights of three parameters, extracted for each individual, telling us how dominant the influence of each parameter on mood reports of each individual is. To these parameters we will also add the Mean Squared Error and IQR values that will provide an estimation of the strength of the fit of the model to the data per individual. Then the stability and reliability of the individual weights of these parameters will be calculated using ICC and variability measures as follows: within mood trajectory condition (either controlled to stable or to unstable), between the different time points across short time delays and across the longer delays (is the parameter stable over time?); between the different mood conditions (is this parameter dominant only in certain mood dynamics?); and between individuals (is it a dominant parameter only in certain individuals?).  

We expect to be able to identify the underlying overarching parameters that are related to both the stable and unstable mood dynamics, within and between individuals. Moreover, mood is represented here by a subjective mood report. While subjective mood reports are the basis for clinical diagnosis of mood disorders, clinical assessment of the treatment, and used in our daily social life, they bare limitations and biases of subjective reporting. However, we have shown before that these mood ratings significantly correspond to participant’s depressive symptoms scores, where we found a strong correlation of this mood estimate to the Mood and Feelings Questionnaire [MFQ] measure (CC = −0.62, p = 2.62e-8, CI = [−0.75,–0.44]). It also showed a strong concordance with the gold standard psychiatric interview (KSADS) by distinguishing between patients with depression and healthy volunteers (t = −3.36, df = 69, p = 0.0012, Cohen’s d effect size = 0.97). We have also tested and showed that this experimental paradigm protects from typical demand effect, where participants realize the aim of the task and respond to comply with the experimental goal (e.g., rating that they are happy following an explicit instruction to imagine happy memories). When asking participants whether the task was unfair with a follow-up questionnaire we found that more than 90% of participants were unaware of the control manipulation and rated the task as unrigged. This point will be validated again in the two new mood control regimes.
We have also already successfully implemented the task in a virtual park setting. Vrtual reality has been by now already used extensively for implementing behavioral experiments and have been shown to allow to measure responses which otherwise could not be evoked in laboratory settings28,35,36. For example, previous research has shown behavioral, endocrine, physiological, and neural responses to virtual experiences, resembling responses measured in real situations. In other fields, virtual reality experiments have already allowed researchers to experimentally study integration across modalities and identify how they are integrated to a unified experience35. We will therefore create a realistic immersive environment (Figure 4A) in which we can parametrically manipulate the different stimuli along a scale of positive to negative values. Participants will play the same decision-making game where they experience wins and losses, but in a virtual park where colors, sounds (birds versus crows), weather (sunny versus rainy and dark) and nature features (flowers leaflet trees and butterflies versus concrete and bare trees) can change. The virtual park features will be either congruent to the direction of mood change intended by the reward-based control algorithm (i.e., the features of the park described above appear in their positive values when control is aimed to increase mood); or incongruent to the direction of the mood controller (i.e., negative less happy value of the virtual features when the mood control is intended to increasing mood to a happier value). Each participant will repeat either of the designs and the two conditions will be compared across-individuals, as well as across time. 
[image: ]We would use the Virtualizer setup (Figure 4A), which allows a full 360 degrees movement on a smooth space while also tracking movement parameters. This unique device provides an unlimited walking possibility in the virtual space.	

Figure 4. (A) The upper image shows the setup which allows high immersion while freely walking and turning. Below is a single gambling trial in the virtual setting. (B) The mood ratings of 18 pilot participants completing the MMI virtual task, with positive and negative blocks.


TA1 developments and computational modelling will also open new directions for clinical interventions as addressed in TA2 below, first by directing towards the relevant parameters for measuring and predicting individual mood dynamics, and second, by moving towards individual modulation of these neural and behavioral parameters for improving mood and well-being. 	

TA2: Control the identified neural correlates of mood dynamics parameters
We will continue from determining the neural correlates of the mood parameters in TA1, using a model-based neural analysis, followed by a reliability analysis of these correlations across two visits in a within-individual design, to a neurofeedback closed-loop modification of these neural correlates to influence mood. The sample size for data collection will be based on the effect size and reliability of the behavioral and computational parameters in the preceding aim, but we will recruit a minimal sample of at least 70 participants from each population, under risk and depressed. Participants will complete the closed-loop mood control task during an fMRI scan in its unstable mood version where the control algorithm generates repeated mood fluctuations or stable mood pattern. In the virtual setting wireless EEG will be used to measure neural activity. Moreover, physiological signals will be continuously measured with Empatica watches (heart rate, skin conductance, temperature). After the neural and physiological mechanisms underlying changes in mood will be identified, while controlling mood using the closed-loop controller, neural activity would be modified with a non-invasive reward-based neuro-feedback protocol. 
First, we will measure and extract the correlation between average activations (whole-brain and also an ROI analysis based on the three Regions-Of-Interest that we and others previously found to relate to subjective mood and to encoding positive and negative PE values, the ACC the Insula and the Striatum), and the observed mood dynamics parameters. Moreover, we will measure the connectivity between regions which is reflected by the correlation between different regions2. We will conduct this analysis first in an ROI approach. Then we will also run a whole-brain level connectivity analysis without restricting it to specific regions a priori. We will correlate these to the weights of the computational mood model parameters. We will also zoom in to test the correlations at a trial-wise level, as well as zoom out to test correlations with connectivity measures across several predefined regions and across the whole brain.  	
We hypothesize to find stable and reliable neural connectivity, across the frontal ACC region that was previously found to be related to computational changes in subjective mood, and also in the two regions previously shown by us to encode positive and negative PE values (striatum and insula). We also expect that the connectivity between these regions will be found to be mediating the influence of characteristic individual parameters that underlie mood dynamics. 
This will allow two important developments, that will become feasible only due to the completion of this part of the project : First, studying the neural correlates of mood dynamics while completing the virtual task including the congruent and incongruent backgrounds in the scanner (in a reduced 2D setting); And second, we would repeat the neural analyses as described above with a mobile EEG neural recording, simultaneously to doing the task and moving in the full virtual reality environment.	
Finally, our goal is to establish the neural modification of participants using a widely used neurofeedback protocol, but specifically targeted on the mood related neural networks. We will assess the respective changes to mood while the networks change their activity and connectivity in neurofeedback.
This multi-modal closed-loop feedback approach first for mood states, and then followed by non-invasive perturbation of specific brain networks, will allow to finally test the causal relationship between the identified neural networks and different mood dynamics and transitions. This neural perturbational will provide direct evidence regarding the function of these neural networks and mood states. This will allow to test new avenues for clinical intervention, using either fMRI or EEG, and establish a general framework for improving mood in a first neurofeedback in virtual settings. The clinically importance is huge, developing the potential to model, integrate, and modulate these processes, can be critical for depression and suicidality, diagnosis and treatment. 
We will be using the two-point connectivity neurofeedback training method reported in previous papers. A control region will be selected where feedback will be uncorrelated to the targets. Participants will complete the assessment battery for depression, prior to beginning neurofeedback training. They will then undergo a baseline scan, four neurofeedback training sessions, and two follow-up scans 1 week and 3 months following the end of training. We will assess the change in mood dynamics during the training with respect to the change in both the trained networks and untrained networks for each group.

All the described experiments will be approved by the IRB board at Bar-Ilan University and all participants will give written informed consent. 

This research plan is based on our extensive interdisciplinary research experience, which spans from electrophysiology and neural networks control to human-machine-interfaces and fMRI in health and in patients with clinical depression. 	

This study will uniquely address and tackle one of the fundamental challenges in understanding human mood and well-being - individual variability. Measuring and identifying the parameters that define mood dynamics and their representation in the brain is a crucial step to understanding what in our environment and neural responses underlies individual differences in mood regulation and well-being. Our unique closed-loop approach will allow to generate different mood patterns, repeatedly quantitatively and parametrically, which will enable to test the mood parameters across different mood dynamics, and across different virtual contexts. With this approach it is feasible to directly measure the consistency and repeatability of parameters of mood dynamics, both from the subjective feeling and from the neural activity aspects. 
Implementing a closed-loop control strategy in human mood and behavioral studies brings a conceptual shift to current experimental paradigms and research by creating individualized and dynamic experiments that can uniquely expose the full individual response range and its boundaries. Therefore, this proposed research plan provides a new and crucial direction for studying human mood and mental health and a novel type for medical devices and individualized treatments of mental disorders.

I am planning to approach two main collaborators to be mentioned as co-PIs (or collaborators, or advisors, depending on the regulations of this study)- Yael Niv from Princeton for part 1 of the modeling, and Talma Hendler from Tel-Aviv University for part 2 of neural modulation.  
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Important and relevant details and descriptions provided by the grant call: 
STRENGTHEN aims to build on recent advances in neuroscience and clinical practice to increase wellbeing, and prevent and mitigate the effects of traumatic stress leading to behavioral health disorders and suicidality in warfighter and civilian populations. STRENGTHEN will accomplish this goal through enhancing the behavioral health protective factors of cognitive flexibility (CF) and emotion regulation (ER).
STRENGTHEN will strive to optimize the protective mechanisms of CF and ER through two goals:
· Development of individualized brain network models of CF and ER.
· Design of hybrid interventions to induce adaptive neuroplastic change in the functional connectivity and/or structure of CF and ER brain networks to optimize an individual’s CF and ER.
The problem: 
The brain regions responsible for CF and ER are widespread and implicated in numerous interrelated executive control and emotion processes. It is difficult to isolate and measure the neural mechanisms of CF and ER with ecological and construct validity. 
In addition, research indicates a high degree of individual variability of neurobehavioral network activation patterns, which means population-based studies are inadequate for individualized treatments. Furthermore, it remains unknown how changes in specific neural mechanisms of CF and ER within an individual lead to improved mental health outcomes. CF and ER are complicated, dynamic functions, which presents challenges both for their measurement, as well as for identifying the constituents of CF and ER that are most likely to lead to improved mental health outcomes
TA1: Neuro-Mechanistic Models: Performers will develop individualized brain network models of CF and ER.
TA2: Neuroplastic Interventions: Performers will design hybrid interventions to induce neuroplastic change in the functional connectivity and/or structure of CF and ER brain networks to optimize an individual’s CF and ER.

A grant that identifies individual-specific CF and ER brain networks using validated psychometric testing and neuroimaging (e.g., resting state or task-activated functional connectivity). 
That develops individualized neurobehavioral models linking brain network activity and connectivity with CF and ER behavioral outcomes (e.g., error rates and response). 
That designs hybrid interventions targeting individualized neurobehavioral models to improve CF and ER behavioral outcomes via neuroplastic changes to brain networks that support CF/ER. That establishes dose response, time to onset, and effect duration curves linking changes in CF and ER behavioral outcomes to Impact Assessments of validated measures of wellbeing (e.g., Emotional Scale Questionnaire), clinical symptoms (e.g., Clinician Administered Post Traumatic Stress Disorder for DSM-5 Scale, Beck Depression Index), and suicidality (e.g., Self-Injurious Thoughts and Behaviors Interview) in low risk, at risk, and high risk for suicide populations.

That develops and validates novel multi-dimensional models of CF and ER in longitudinal studies to assess the relationship between these models and behavioral outcomes. Data collection for longitudinal studies should, at a minimum, be throughout each phase.

That assesses CF and ER as a function of the Triple Network Model.

Individualized brain networks should be activated and imaged to capture individual brain network activation patterns

That describes brain imaging methodology and technology, including equipment and scan time

Uses decoding and analytic methodology to model brain networks and measure neuroprotective mechanisms of CF and ER.
Describes how it will iteratively refine the model to achieve greater predictive precision across the phases. 
How it will ensure and/or assess generalizability of developed brain network models relative to human diversity (e.g., race, ethnicity, age, gender, disability, language).

The questions it should answer:
What neurocognitive tests (1) are most strongly associated with trauma-related symptoms and/or wellbeing, (2) activate the targeted networks during imaging, and (3) have greatest potential for transition to clinical use? 
 What aspects of CF (salience detection and attention, working memory, inhibition, task switching) would have the greatest protective, transdiagnostic, and well-being impact? 
 Optimization of which networks of CF (shifting, updating, inhibition) would have the greatest protective impacts on wellbeing across behavioral health disorders? 
 What set of C2E2MU intervention techniques will target specific interrelated networks associated with cognitive rigidity and/or repetitive negative thinking (mid-cinguloinsular, medial, and lateral frontoparietal)? 
 What combination of spatial temporal neuroimaging techniques best balances targeting and scalability for low risk, at risk, high risk, of suicide populations?

 Proposals must include methodology for developing dose response curves as impact assessments. The dose response curve must quantify the relationship between CF and ER neurobehavioral models and the following three behavioral health outcome categories: 
o Psychological wellbeing (e.g., measures of mental resilience such as the emotional styles questionnaire [ESQ]) 
o Suicide and self-injurious thoughts and behaviors (e.g., as captured by the selfinjurious thoughts and behaviors interview [SITBI]) 
o Mental health distress, symptoms, and/or diagnoses (e.g., measures of specific relevant diagnoses like the beck depression inventory [BDI] or validated, comprehensive assessment of behavioral health) 
 Proposers should clearly identify measures for each category of behavioral health outcomes and provide justification for their choice of measures.

TA2:
Description of each C2E2MU intervention that will be included through Phases 1 and 2, and are anticipated to continue in Phase 3, including a description of the specific brain network impacts targeted by each intervention. 
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