Advice Explanation in Complex Repeated Decision-Making Environments

Abstract

 Humans that need to make decisions repeatedly in complex environments can gain from advice given by an automated assisting agent. However, due to the complexity of the environment and the long- term effect of a given advice, the decision maker may dismiss the advice and not take full advantage of its benefits. Advice explanation may improve the satisfiability and trust of the decision maker in the advice. We consider an automated assisting agent that integrates two deep learning-based models, an upstream prediction and a downstream Q-learning- based policy. As both models influence the ad- vice, we propose to consider both when explain- ing it to the decision maker. We propose to reduce the state shown to the user, make the policy trans- parent through the precomputed policy, and com- pose them with an explanation of the upstream pre- diction model. We demonstrate our approach for idle taxi repositioning and show its effectiveness through computational experiments and a game- based user study. Although study participants do not follow the advice more often when compared to a baseline, they are significantly more satisfied, achieve a higher reward in the game, take less time to select an action, and use explanations of both ²⁶ models.

²⁷ 1 Introduction

 Making decisions repeatedly in a dynamic environment is very challenging. An intelligent agent could improve human decision-making by providing advice. We consider an agent that provides advice through a learned policy that integrates two deep learning-based models, an upstream prediction and a downstream Q-learning-based policy. Humans are, in gen- eral, quite often not following machine-learning-based advice [?] and in particular, when the advice is based on two levels of deep learning black box models. Providing explanations may improve their acceptance and trust in the advice [?].

 Most of the related work on eXplainable RL (XRL) focuses on the environment and algorithm-specific explanations, of- ten not necessarily targeted at the general public but rather aimed at domain experts or researchers [\[Heuillet](#page-9-0) *et al.*, 2021; ?]. Consequently, we focus on developing an explanation ap- ⁴² proach that is *generic* and *user-focused*. In particular, we pro- ⁴³ pose an explanation approach that consists of four parts and ⁴⁴ their composition. First, we propose to way to choose the up- ⁴⁵ stream prediction functions in a way that is closely related to 46 the advice. Then, we propose a condensed representation of 47 these functions to reduce the information load on the user. For 48 presenting the policy, we propose to present future expected ⁴⁹ actions to help the user understand the long-term effect of 50 his current advised action. Finally, we propose an explain 51 the upstream prediction model via a classical local post-hoc 52 perturbation-based eXplainable AI (XAI)-method like SHAP. ⁵³ Finally, we propose a visualization method to present all four 54 components to the user in an easy-to-follow GUI. ⁵⁵

In Section [4,](#page-2-0) we present our four component generaliz- 56 able and modular approach towards explaining multi-black 57 box Deep RL (DRL)-based systems to users. In Section [5,](#page-2-1) ⁵⁸ we apply it to idle taxi repositioning $-$ along with matching $-$ 59 and routing, one central function of ride-sharing. We select 60 this application area because (1) it is an advising system that 61 directly affects users – the drivers – (2) requires the latter 62 to make repositioning decisions repeatedly, (3) uses DRL or 63 [m](#page-9-1)ore specifically typically Deep Q-learning (DQN) [\[Farazi](#page-9-1) *et* ⁶⁴ $al., 2021$] – enables transferability to other cities and a longer 65 time-horizon for optimization [Qin *et al.*[, 2020\]](#page-9-2) – and (4) ad- 66 ditional upstream black-box models like a request estimator. 67 We demonstrate the effectiveness of our approach via compu- 68 tational experiments (Section [6\)](#page-4-0) and a game-based user study $\overline{69}$ (Section [7\)](#page-5-0). We discuss the major findings together with lim- ⁷⁰ itations and potential future work in Section [8.](#page-6-0) $\frac{1}{71}$

Motivating example. Given an idle driver in a taxi service 72 such as Uber or DiDi, a location advice might be provided to $\frac{73}{2}$ her: the service aims to redistribute its fleet proactively to fu-

⁷⁴ ture customers. To determine this advice, the taxi service can ⁷⁵ consider the future locations of its other taxi drivers – derived 76 from the known schedules. However, the number of requests 77 for each region can only be predicted via some potentially 78 black–box model based on previously collected data. Both, ⁷⁹ the number of taxis and requests per region, can be fed into 80 a DRL-based repositioner that computes the advice. As the 81 driver loses time and money on the way to the proposed loca- 82 tion and is not guaranteed to get a ride there, she might desire as an explanation of the advice. As both models – request esti- ⁸⁴ mator and repositioner – influence the advice, the explanation 85

⁸⁶ needs to consider both.

87 2 Related Work

 Although the field of Reinforcement Learning (RL) is hetero- geneous but established, the field of XRL is also the former, but not the latter. [\[Puiutta and Veith, 2020\]](#page-9-3) attempt to struc- ture the literature in XRL by introducing two dimensions: In the first dimension they differentiate whether an approach is intrinsically explainable by using a transparent model or is explainable post-hoc; in the second dimension they distin- guish approaches that explain locally or globally. As we ex- plain advice given to a user for an existing model, we focus on *local post-hoc* explanations. However, none of the ap- proaches included in [\[Puiutta and Veith, 2020\]](#page-9-3) is composed of several deep learning-based models or explanations.

 Very few works in XRL generate multiple explanations for one DRL agent. [\[Huber](#page-9-4) *et al.*, 2021] combine a local saliency map-based explanation with a global strategy summary ex- planation for an Atari agent. Both [\[Bayani and Mitsch, 2022\]](#page-9-5) and [\[Sreedharan](#page-9-6) *et al.*, 2020] explain users an agent via a preset answer of questions with varying levels of abstractions in the answers. While [\[Bayani and Mitsch, 2022\]](#page-9-5) explain [D](#page-9-6)RL-based agents acting in toy environments, [\[Sreedharan](#page-9-6) *et al.*[, 2020\]](#page-9-6) explain multiple non-DRL-based components for a loan approval application. Other non DRL-based ap- proaches that do generate multiple explanations are proposed by [Liao *et al.*[, 2021\]](#page-9-7); the authors use multiple XAI meth- ods such as feature importance to make the risk of hospital admission transparent and present their results side by side one another. To explain the recognition of vocal emotions, [\[Zhang and Lim, 2022\]](#page-9-8) build five additional deep learning models and apply multiple XAI techniques, such as show- ing a saliency map. The only work we found that provides [m](#page-9-9)ultiple explanations for multiple models is the one from [\[El-](#page-9-9) [Sappagh](#page-9-9) *et al.*, 2021]: The authors first predict whether a per- son has Alzheimer's disease and attach another model to pre- dict the stage of the disease; for explaining, they use SHAP, the feature importance of the underlying Random Forest (RF) models, and fuzzy rules to explain the predictions locally and globally.

 In general, the number of approaches that generate multi- ple explanations for one or multiple deep learning models is very limited and heterogeneous. While some works provide advice – [Liao *et al.*[, 2021;](#page-9-7) [El-Sappagh](#page-9-9) *et al.*, 2021] – the ma- jority explains some deep learning models not providing ad- vice to users – [\[Huber](#page-9-4) *et al.*, 2021; [Bayani and Mitsch, 2022;](#page-9-5) [Sreedharan](#page-9-6) *et al.*, 2020; [Zhang and Lim, 2022\]](#page-9-8). Some focus on explaining for end users – [Huber *et al.*[, 2021;](#page-9-4) [Sreedharan](#page-9-6) *et al.*, 2020; [Zhang and Lim, 2022\]](#page-9-8) – and oth- [e](#page-9-7)rs target expert users – [\[Bayani and Mitsch, 2022;](#page-9-5) [Liao](#page-9-7) *et al.*[, 2021;](#page-9-7) [El-Sappagh](#page-9-9) *et al.*, 2021]. While the ma- jority of the approaches considered evaluate the generated explanations without people – [\[Bayani and Mitsch, 2022;](#page-9-5) [Sreedharan](#page-9-6) *et al.*, 2020; Liao *et al.*[, 2021;](#page-9-7) [El-Sappagh](#page-9-9) *et al.*, [2021\]](#page-9-9) – only two evaluate with people – [\[Huber](#page-9-4) *et al.*, 2021; [Zhang and Lim, 2022\]](#page-9-8). Also, most of the works focus on ex- plaining non-DRL-based agents – [\[Sreedharan](#page-9-6) *et al.*, 2020; [L](#page-9-9)iao *et al.*[, 2021;](#page-9-7) [Zhang and Lim, 2022;](#page-9-8) [El-Sappagh](#page-9-9) *et al.*, [2021\]](#page-9-9) – while two explain DRL-based agents – [\[Huber](#page-9-4) *et al.*, ¹⁴³ [2021;](#page-9-4) [Bayani and Mitsch, 2022\]](#page-9-5); these works also explain ¹⁴⁴ agents in toy environments rather than those interacting in ¹⁴⁵ real-world applications. 146

Consequently, we consider the explanation of an *advising* ¹⁴⁷ *system with DRL agent and one or more upstream deep learn-* ¹⁴⁸ *ing models* as an open research gap. To limit the scope of 149 this paper, we will focus on *local post-hoc explanations for* ¹⁵⁰ *real-world applications* – like the idle taxi repositioning in ¹⁵¹ our motivating example – and *end users* – e.g., taxi drivers – ¹⁵² while developing our explanation approach. As regards the 153 DRL approach, we focus on DQN which is commonly used 154 for the repositioning of taxis [Farazi *et al.*[, 2021\]](#page-9-1) and in the ¹⁵⁵ field of autonomous driving. 156

3 Problem Definition 157

We consider a human user that can move in an undirected 158 graph $G = (V, E)$ with V being a set of vertices and E a 159 set of edges. The human goal is to maximize a reward. At 160 every time step, the human is located at a location $l \in V$ 161 and can take action $a \in A$ attempting to move on the graph 162 G. A state $s \in S$ is associated with the properties of the 163 entire environment and with the properties of the vertices in 164 V. We use the notation $g_i(s), \forall s \in S$ for features that do 165 not depend on the vertices and $f_j(s, v), \forall s \in S, \forall v \in V$ for 166 features of the state that are relevant to a vertice v. $l(s) \in V$ 167 indicates the location of the user in the state s . The state $\overline{168}$ transition function $P(s, a, s'), \forall s, s' \in S, \forall a \in A$ from s to 169 s' when taking action a is stochastic. The reward function 170 $R(s, a, s'), \forall s, s' \in S, \forall a \in A$ depends on the state s, the 171 action a , and the new state s' . ¹⁷²

When considering the motivational example of idle taxi 173 repositioning, G represents the road map of a city. At ev- 174 ery point in time, the taxi driver selects a – like moving 175 south from $l(s)$; this decision can be based on the state 176 which is composed of a set of global features $\{g_1, g_2, ..., g_m\}$ 177 like the weekday and another set of location-dependent fea- 178 tures $\{f_1, f_2, ..., f_n\}$ such as the number of requests at the 179 vs around $l(s)$. When collecting a passenger, the taxi driver 180 receives a reward, e.g. 25 dollars.

To make a decision, the human can consider (1) its knowl- 182 edge of the current state $s \in S$ and (2) advice provided 183 through a learned policy $\pi : s \mapsto a, a \in A, \forall s \in S$ that maps 184 each state s to action a . In particular, the policy has two lev- 185 els: in the first level, there is a set of functions $\psi_i \in \Psi$; each 186 function, given a state s and a vertice v , associates v with 187 a value, that is, $\psi_i(s, v), \forall s \in S, \forall v \in V$. Some of these 188 functions are estimated using deep learning. On the second 189 level, the output of this first-level function is used by a Q_{190} value function that is learned via DRL: $Q_{\Psi}(s, l(s), a), \forall s \in \mathbb{I}$ $S, \forall l(s) \in V, \forall a \in A$. The advice given to the human is 192 $\arg \max_a Q_{\Psi}(s, l(s), a).$ 193

In idle taxi repositioning, we have two functions on the first 194 level: ψ_d that extracts the demand for taxis and ψ_r that estimates the number of requests based on the previous number 196 of requests via a neural network. Q_{Ψ} receives these outputs, 197 $l(s)$, and an a; it is learned via deep Q-learning. ¹⁹⁹ Explanation problem. Given the aforementioned sequen-200 tial human-decision making problem in which a user u re-201 ceives advice provided by a policy $\pi : s \mapsto a$, a user might 202 have less information available – e.g., Ψ is not known by the ²⁰³ user – or smaller computational capabilities. Consequently, 204 the user's policy results in $\pi^u : s \mapsto a^u$ with $a \neq a^u$. The ²⁰⁵ explanation problem tackled in this paper aims to produce an 206 explanation ε so that $\pi^u : s \stackrel{\varepsilon}{\rightarrow} a$.

²⁰⁷ 4 Explanation Approach

208 Understanding advice is challenging because (1) π is repre-209 sented via Q_{Ψ} and both, Q and at least a subset of Ψ , are ²¹⁰ deep learning models – which are often hard to understand 211 by users – (2) especially with a larger |V| the size of the state 212 |s| might be overwhelming for users, and (3) users need to ²¹³ make decisions with a potential long-term effect repeatedly. ²¹⁴ Thus, in the following, we propose an explanation approach ²¹⁵ that consists of four parts and their composition.

216 4.1 Model Choices for Ψ

 An important decision is to carefully choose the functions $\psi \in \Psi$. Previous approaches – like [Qin *et al.*[, 2020;](#page-9-2) [Haliem](#page-9-10) *et al.*, 2021] or the pipeline architecture described by [\[Grigorescu](#page-9-11) *et al.*, 2020] – compute the values of ψ simulta-221 neously for all $v \in V$. That is, the functions are of the form $\psi(f_1, \ldots, f_n)$ which results in values for all $v \in V$. In this case, it is difficult to extract the contribution of each feature 224 for the value associated with v. Thus, we propose to call ψ 225 separately for each v , select features that are understandable 226 by users, and make it return only one value for $v -$ that is, $\psi(g_1,\ldots,g_m,f_1,\ldots,f_n).$

 E.g., when [\[Haliem](#page-9-10) *et al.*, 2021] reposition idle taxis, they 229 make use of a function ψ to estimate the number of requests in the next time step in the whole city based on the previous demand. In this example, we propose to use an alternative ψ that estimates the number of requests on only one location based on fewer and more meaningful input features.

234 4.2 Condensed Representation of Ψ

235 Presenting all values that the functions $\psi_i \in \Psi$ associate with 236 each vertice $v \in V$ can be overwhelming. Thus, we propose 237 to integrate these values using some index I that compresses 238 the number of values for each vertice. That is, $I(s, v)$ = 239 $\rho(\psi_1(s, v), \ldots, \psi_{|\Psi|}(s, v)).$

240 For example, in idle taxi repositioning, ρ could be the dif-241 ference between the number of requests and taxis at v in state 242 s; identifying a v with an undersupply becomes easier via ρ .

²⁴³ 4.3 Transparent Policy

²⁴⁴ In order to reveal the long-term strategy of the policy, we pro-245 pose to present the advice at any location $v \in V$ and not 246 only at $l(s)$ to the user. Consequently, we compute the ad-247 vice $\hat{a} = \arg \max_a Q_{\Psi}(s, l(s), a)$ for each location $v \in V$ 248 and not only at $l(s)$. Similar to [\[Amir and Amir, 2018\]](#page-9-12) 249 we also make the certainty of the network in \hat{a} transpar-²⁵⁰ ent by computing the delta to the least promising action via

	request estimation [†]	Repositioning ^{\ddagger}
Haliem et al.*	1.22	6.85
Ours	1.26	7.24

∗ adapted; † MAE in trips per cell; ‡ mean reward per step

Table 1: Agents performance; while for both – the request estimator and the repositioner – the test data is used for evaluation, for the repositioner, the mean reward per step is calculated over 100 runs.

 \hat{a} – arg min_a $Q_{\Psi}(s, l(v), a)$. In addition, we compute a po- 251 tential future path of limited length for the agent when fol- ²⁵² lowing the advice while keeping everything in s fixed except 253 for $l(s)$. 254

Realizing this part of our explanation in idle taxi reposi- ²⁵⁵ tioning is relatively straightforward via showing the advices ²⁵⁶ via arrows for the whole city; the certainty of an advice can ²⁵⁷ be incorporated into the color of the arrows.

4.4 Explaining Ψ 259

Another important component of the advising system is the 260 subset of functions in Ψ that are represented via deep learn- 261 ing. For these ψ s, we propose to present those features of 262 s that contributed to ψ 's value at vertices v. This is possible, 263 given the way we defined ψ that outputs a value separately for 264 each v. Such function ψ can be explained via a classical lo- 265 cal post-hoc perturbation-based XAI-method like SHAP. We ²⁶⁶ recommend to limit the number of vs for which the corre- ²⁶⁷ sponding explanation is shown.

When we estimate the number of requests at a location v , 269 we can show the most contributing features to a user to make 270 the corresponding ψ more transparent 271

4.5 Compose the Explanation Parts 272

Besides carefully choosing Ψ , we present to the user of 273 the advising system three aspects of the underlying policy: ²⁷⁴ (1) the condensed representation of the ψ_i s together, (2) the 275 transparent policy, and (3) the explanations of the ψ_i s. We 276 propose to present (1) and (2) on the graph G ; the former via 277 $arrows - advice - with different color intensity - certainty - z78$ and color each v via the index $I(s, v)$. Further, we propose to 279 present the explanations of Ψ along the potential future path 280 computed in (2) to limit the explanation size $|\varepsilon|$ shown to the 281 user; the user can query only the locations available in this 282 path. ²⁸³

5 Explaining Idle Taxi Repositioning ²⁸⁴

Before explaining idle taxi repositioning, we rebuild a repo- 285 sitioning approach orientating on one from the literature. ²⁸⁶ Mostly, idle taxi repositioning is part of a system that also 287 incorporates matching, scheduling, and routing. We favor the ²⁸⁸ approach of [\[Haliem](#page-9-10) *et al.*, 2021] over others as it was de- ²⁸⁹ veloped over multiple papers, has – in contrast to most, like ²⁹⁰ [Qin *et al.*[, 2020\]](#page-9-2) – made (at least most of) its source code ²⁹¹ available, and uses an accessible dataset. We show the results ²⁹² of approach adapted to our environment and the one we mod- ²⁹³ ified for explanation in Table [1;](#page-2-2) details of the implementation ²⁹⁴ are described in Appendix [A.](#page-6-1) ²⁹⁵

²⁹⁶ 5.1 Rebuilding a Repositioning Agent

 Dataset. We select the NYC taxi dataset. After outlier re- moval, around 186M trips between January 2015 and June 2016 remain. We generalize the degree-based start and end locations of trips to the indices of a grid; in particular, a 500m square grid. We use 26K 10-minute time steps. We sepa- rate the last two months for testing and split the remaining 16 month for training and validation with an 80/20 ratio; the 304 latter two are split to enable learning Q based on Ψ .

 Environment. In our environment, a taxi agent moves 306 around in a city – represented as a 20×20 grid – aiming to serve requests. The taxi can move up to two cells in each direction or reside in its current location. The agent receives the state s which consists of the previous number of requests $r_{t-4:t}$ and the number of taxis d_{t+1} at every v as well as its location $l(s)$. Each episode lasts 54 ten-minute steps or a nine-hour shift. As regards the reward function R: When $r - t \geq 2$, the agent receives a reward of 20 (two passengers); $r - t = 1$ the reward is 10 (one passenger); if $r > 0$ and $r \leq d$ – the agent competes with other taxis – with a chance 316 of $\frac{r}{t}$ a reward of 10 is given; in case the agent does (not) move the agent receives a reward of -1 (0). Whenever the reward is $318 > 0$, the agent is relocated to location randomly chosen from the distribution of drop-off locations. In each episode, the taxi starts at a random location and time. Our implementation of the environment is inspired by the OpenAI taxi environment.

322 **Request estimation.** [\[Haliem](#page-9-10) *et al.*, 2021] use ψ_d to extract 323 the number of taxi from s and ψ_r to estimate the number of 324 requests in 10 minutes at each v. ψ_r was learned via a three-³²⁵ layer convolutional neural network and achieved a Mean Ab-³²⁶ solute Error (MAE) of 1.22 trips per cell on the test data.

Repositioning. We train the repositioner via DRL in the repositioning environment. In particular, we use dueling dou- ble deep Q-learning as proposed by [Wang *et al.*[, 2016\]](#page-9-13) as it is closer to the state-of-the-art in RL than the double DQN approach used by [\[Haliem](#page-9-10) *et al.*, 2021]. After training, the 332 repositioner – consumes $\psi_d, \psi_r, l(s)$ – achieves an average reward of 6.85 per step on the test data.

³³⁴ 5.2 Explaining Repositioning Advice

 Here, we apply our *composed explanation* approach proposed in Section [4](#page-2-0) to explain advices in idle taxi repositioning to taxi drivers. Afterward, we also introduce a baseline explana- tion to which we compare ours. An example of both explana-tions is shown in Figure [1.](#page-4-1)

340 **Replacing** ψ_r . To explain the model ψ_r that estimates the 341 number of requests at every $v \in V$ one could use a common ³⁴² XAI methods like SHAP – see [\[Lundberg and Lee, 2017\]](#page-9-14) – 343 producing a explanation of size $|\varepsilon| = 4 \times 20 \times 20 \times 20 \times 20 =$ 344 640K. Besides being large, such explanation would be noisy ³⁴⁵ and far from what a user expects. Thus, we reduce the num-346 ber of output features heavily by making ψ_r only estimate the 347 number of requests for one v . Further, we replace the original 348 input features $r_{t-4:t}$ at every v by the location-dependent fea-349 tures index of v, $r_{t-4:t}$ at v, and the number of points of inter- 350 est at v as well as location-independent time-related features ³⁵¹ like the weekday and weather-related ones. Next, we replace the convolutional neural network with a feed-forward fully- ³⁵² connected one. Thereby, we achieve a MAE of 1.26 trips per 353 cell – which is only a slight increase of 0.04 – while reducing 354 input size of ψ_r from 1600 to 20, the output size from 400 to 355 1, and $|\varepsilon|$ when applying a XAI method like SHAP from 64K 356 to 20. After retraining the repositioner with the new ψ_r , the 357 mean reward increases to 7.24 per step. 358

RT-index. To reduce the size of the input in Q with an intuitive representation, we propose the request-taxi index (RT- ³⁶⁰ index). It combines the ratio between the estimated number of 361 requests ψ_r and the number of taxis ψ_d as the all taxi drivers 362 compete over the requests and the ratio between the mean ³⁶³ number of requests \bar{r} and ψ_r as the chance for getting a re- 364 quest is higher at locations with more requests. We weigh the 365 two ratios via $\alpha \in [0, 1]$. We set alpha to 0.75 even though 366 with another dataset a different value might be preferable. ³⁶⁷ The corresponding formula is: 368

$$
I_{\Psi}(s, v) = \psi_r(s, v) \left(\frac{\alpha}{\psi_d(s, v)} + \frac{1 - \alpha}{\bar{r}} \right)
$$
 for $\alpha = 0.75$

As a visual representation, we choose a heatmap that shows 369 the RT-index for each location on a color scheme from red for 370 0 to green for values > 3 . 371

Transparent policy. To make the policy transparent, we it-
372 erate over all possible taxi locations $l \in V$ and pass the cor- 373 responding location with s to $\arg \max_a Q_{\Psi}(s, l, a)$. Thus, 374 we collect the most promising action for each l . To visualize 375 these, we plot an arrow from each location with the length ³⁷⁶ and direction of the corresponding action. To incorporate the 377 certainty of the agent, we also collect 378

$$
\Delta_l = \max_a Q_{\Psi}(s,l,a) - \min_a Q_{\Psi}(s,l,a)
$$

for each l. As a visual representation, we select black for ar- ³⁷⁹ rows on top of the heatmap generated via the RT-index with a 380 high action certainty and let the color fade out with decreas-
s81 ing certainty. To make the color consistent over all locations, ³⁸² we use min-max normalization with Δ_l for the local and Δ_q 383 for the global delta: 384

$$
\frac{\Delta_l - \min \Delta_g}{\max \Delta_g - \min \Delta_g}
$$

Further, we compute a potential future path for up to five lo- 385 cations. The resulting locations are plotted on the map via ³⁸⁶ the letters $B, C, \ldots - A$ is reserved for the location of the taxi 387 – and selectable via buttons that update a table with the six ³⁸⁸ most important features. 389

Explaining ψ_r . After replacing ψ_r , we can simply apply 390 SHAP to the single-cell request estimation model. To reduce 391 the mental load of the users, list the six most important fea- ³⁹² tures as well as their order while omitting their actual values 393 and influence. We generate this explanation for each v along 394 the potential future path and offer the user to select one of the 395 corresponding explanations via buttons. 396

5.3 Baseline 397

In our composed explanation, we have a compositional view 398 of the advising system explaining each component of the ad- ³⁹⁹ vising system solely and then joining the explanations. In ⁴⁰⁰

Figure 1: We show the composed explanation without its request estimation part in (a) and the baseline explanation for the number of taxis in 10 minutes – the explanations for the request over the last 40 minutes are of a similar kind – in (b)

 contrast to our compositional view, related work generally has a one-model view that does not differentiate between $\psi_1, \psi_2, \dots, \psi_{|\Psi|}$ and Q but takes the whole system as one function. In the following, we describe the selection of such baseline XAI method, the configuration of the selected method, and our chosen visual representation. An example explanation via the baseline is shown in Figure [1.](#page-4-1)

 Selection. As we explain locally and post-hoc, we select a corresponding XAI method. Because our composed explana- tion is mainly visual, we select a corresponding baseline. As the state s is relatively big as well as image-like and others also use perturbation-based XAI methods to generate saliency maps for DRL – see e.g. [Huber *et al.*[, 2022\]](#page-9-15) – we select such. Based on the results of [\[Huber](#page-9-15) *et al.*, 2022] – who com- pare several potential XAI methods – we first tried Sarfa, a method proposed by [Puri *et al.*[, 2020\]](#page-9-16). Unfortunately, these 417 results were not reasonable with Q_{Ψ} . Another XAI method [i](#page-9-14)ncluded by [Huber *et al.*[, 2022\]](#page-9-15) is LIME – see [\[Lundberg](#page-9-14) [and Lee, 2017\]](#page-9-14). LIME allowed us to explain only the advice, produced more reasonable explanations than Sarfa, and takes reasonable time to explain.

 Configuration. The explanation size is 2000 as we have one value for the number of taxis and four for the number 424 of requests at each $v \in V$ and fix the taxi location as well as the advice. We select the number of perturbation samples considered for explaining to 1000 as this produces reasonable 427 explanations in a decent time $-$ Mean (M) of 10.35 seconds. The background data is taken from the dataset used for train- ing and we select 25 samples at a similar hour and day as the time that shall be explained.

 Visual representation. When using saliency maps, many approaches plot those on top of the state. As the saliency values would make the state invisible, we present the expla- nations beside the state. We decided to exclude the actual influence values and show a scale from *negative* to *positive* influence instead to reduce the mental load of the user; while 436 a negative/positive value refers to a negative/positive influ- ⁴³⁷ ence of the corresponding state value on taking the advice 438 when being at the given location. 439

6 Experimental Results ⁴⁴⁰

Here, we report the size of the networks – request estima- ⁴⁴¹ tor and repositioner – the number of input features given to 442 the explanation models, the explanation size, and the execu- ⁴⁴³ tion time with several variants of the environment for idle taxi ⁴⁴⁴ repositioning. In particular, we vary the size of the city in the ⁴⁴⁵ environment and thereby indirectly the number of states $|S|$. 446 As $|S| = 150^{10^2 \times 2} \approx 1.65 * 10^4 35$ for $|V| = 100$, we only 447 report the number of nodes |V| instead of $|S|$. The highest 448 $|V|$ we consider is 6400 which would corresponds to a grid 449 cell size of 125m when we consider the same area. The sec- ⁴⁵⁰ ond variation of the environment is the modification of the ⁴⁵¹ action size |A|. While $|A| = 9$ refers to the agent's ability to 452 move one cell in each direction, $|A| = 25$ refers to moving 453 up to two cells in each direction. ⁴⁵⁴

Network size, #input features, and explanation size. As 455 shown in Table [2,](#page-5-1) the network size is primarly influenced 456 by |V| and neither by the explanation setting – composed or 457 baseline – nor |A|. As the baseline uses a whole-city request 458 estimator, the network size is slightly larger compared to the 459 single-cell case. As the influence of $|A|$ on the network size 460 is small and there is none on the number of input features 461 and the explanation size, we do not list |A| for $|V| > 100$ 462 in Table [2.](#page-5-1) Obviously, the number of input features and the 463 explanation size increases linearly with $|V|$. The size of the 464 composed explanation is always smaller than that of the base- ⁴⁶⁵ line. In all composed settings, the size is mainly driven by the 466 RT-Index and the arrows – the table-based explanation of the 467 upstream request estimator has a low influence on the num- ⁴⁶⁸ ber of input features and the explanation size. These results 469

		Network size		#input features		Explanation size	
V	А	Composed	Baseline	Composed	Baseline	Composed	Baseline
100	9	3.31M	3.35M	0.32K(0.20K, 0.20K, 0.12K)	0.50K	0.24K(0.10K, 0.10K, 36)	0.50K
100	25	3.33M	3.37M	0.32K(0.20K, 0.20K, 0.12K)	0.50K	0.24K(0.10K, 0.10K, 36)	0.50K
400	9	21.14M	21.18M	0.52K(0.80K, 0.80K, 0.12K)	2K	$0.84K$ (0.40K, 0.40K, 36)	2K
1600	9	120.23M	120.27M	$3.32K$ (3.20K, 3.20K, 0.12K)	8K	3.24K $(1.60K, 1.60K, 36)$	8K
6400	9	361.14M	361.18M	$12.92K$ (12.8K, 12.8K, 0.12K)	32K	12.84K $(6.40K, 6.40K, 36)$	32K

Table 2: Network size, number of input features given to the explanation approach, and size of the explanation depending on the number of nodes $|V|$ and actions $|A|$ in the environment; for the number of input features and the explanation size, we show the values for the RT-index, the arrows, and the table separately in the brackets.

IV	l Al	Composed $(M\pm SD)$	Baseline $(M\pm SD)$
100	9	0.87 ± 0.44	7.20 ± 0.86
100	25	$0.98 + 0.27$	7.42 ± 0.52
400	9	$1.30 + 0.36$	10.00 ± 0.71
1600	9	$5.89 + 0.31$	18.28 ± 0.68
6400	Q	$25.51 + 1.91$	41.18 ± 1.13

Table 3: Execution time in seconds with varying number of nodes $|V|$ and actions $|A|$ for the composed and baseline explanation; M is the mean execution time in seconds over 10 runs and SD the corresponding standard deviation.

 are limited because in reality the performance of an agent also depends on the network architecture; a larger state space might require more trainable parameters and therefore a net-work size larger than the one listed in the table.

Execution time. As shown in Table $3(1)$ our approach can be applied to different environments, (2) its execution time is lower than that of the baseline in all considered cases, and (3) the size of our composed explanation is in all cases less than half compared to that of the baseline explanation. The execution time of the baseline depends on the number of sam- ples considered for perturbation – 1000 in our case; the larger this number is chosen, the larger is the execution time of the 482 baseline. Similar to before we omit more options for $|A|$ as 483 the number of actions does only slightly depend on $|A|$.

⁴⁸⁴ 7 Game-Based User Study with Questionnaire

⁴⁸⁵ 7.1 Study Design

 When designed appropriately, explanations have the potential to increase properties like the satisfaction of a user that inter- acts with an AI-based system. To evaluate the effectiveness of our explanation approach, we developed a game – see Fig- ure [4](#page-8-0) – in which participants of our study can drive through a city aiming to maximize their reward as taxi drivers. In this game, the participants receive advices provided by an agent 493 that has learned Q_{Ψ} and an explanation – either ours or the baseline. At each time step a participant can either follow the advice or select one of the other actions. Besides observ- ing the achieved reward, the degree to which advices are fol- lowed, and the time taken to select an action, we conduct a questionnaire with 31 questions.

Structure. During the study, participants go through the 499 following steps: (1) Introduction of the study and the 500 game, (2) ten steps of playing with one explanation method, 501 (3) questions related to the subjective usage of the adivces, ⁵⁰² (4) ten steps of playing with the other explanation method, ⁵⁰³ (5) questions related to the subjective usage of the adivces, ⁵⁰⁴ (6) questions related to the explanations provided, and (7) demographic questions To ensure data quality, after the descrip- 506 tion of the game, we incorporate three attention-check ques- ⁵⁰⁷ tions about a participant's understanding of the environment. ⁵⁰⁸

Participants. We run our study with 27 participants that are 509 fluent in English, over the age of 18, and do not have color 510 blindness – the latter might affect their ability to see the gen- 511 erated explanations correctly. The M age of the participants 512 is 28.81 years with a Standard Deviation (SD) of 8.39 years. ⁵¹³ 41% of the participants reported are female, 59% are male. ⁵¹⁴ 87% of the participants reported living in Germany. The ⁵¹⁵ study was conducted in December 2022 and January 2023. 516

Independent variables. Our within-subject study shows 517 two explanation settings in one scenario – starting date and 518 time of the day – to each participant. Consequently, each par-
519 ticipant plays twice in the game before answering questions 520 about both explanation settings. To half of the participants, ⁵²¹ the explanation is shown first and the baseline variant sec- ⁵²² ond; for the other half, the order is reversed. To gain better 523 insights into the behavior of participants, we ask them to rate 524 how confident they were to choose better than the provided 525 advice and what their strategy was. 526

Dependent measures. Based on [\[Hoffman](#page-9-17) *et al.*, 2019], we 527 evaluate the generated explanations via the *satisfaction* with 528 each explanation presented, composed of *understanding*, *sat-* ⁵²⁹ *isfaction*, *detail*, *completeness*, *usage*, *usefulness*, *accuracy*, ⁵³⁰ and *trust*. We ask the participants to rate all questions related 531 to explanation satisfaction on a five-point Likert scale. Fur- ⁵³² ther, we measure the achieved *reward*, the degree to which the 533 participants *followed the advices*, and how much time they 534 took to perform a step. Since as shown in Section [6](#page-4-0) the exe- ⁵³⁵ cution time for creating the baseline explanation is on average 536 9.21 seconds higher than that of the composed one, we subtract $10.35-1.14 = 9.21$ seconds to enable a fair comparison 538 between the two explanation settings. 539

Hypothesis. With the described study, we investigate the ⁵⁴⁰ following hypotheses: 541

Figure 2: Questionnaire results for dimensions of the satisfaction scale by [\[Hoffman](#page-9-17) *et al.*, 2019] as boxplot for our composed explanation (pink) and the baseline (blue) – the median is represented via a gold line, the mean via a triangle; ** indicates $0.001 < p \le 0.01$ and *** indicates $p \leq 0.001$.

- ⁵⁴² H1: The proposed composed explanation for reposition-⁵⁴³ ing achieves a *higher satisfaction* (see [\[Hoffman](#page-9-17) *et al.*, ⁵⁴⁴ [2019\]](#page-9-17)) than the baseline alternative.
- ⁵⁴⁵ H2: Compared to the baseline explanation of reposition-⁵⁴⁶ ing, taxi drivers achieve a *higher reward* with the com-⁵⁴⁷ posed explanation.
- ⁵⁴⁸ H3: Taxi drivers who are presented the composed ex-⁵⁴⁹ planation *follow the advices to a higher degree*, when ⁵⁵⁰ compared to the baseline explanations.
- ⁵⁵¹ H4: Taxi drivers require *less time* when taking actions ⁵⁵² with the composed explanation compared to the baseline ⁵⁵³ alternative.

⁵⁵⁴ 7.2 Result Analysis

 To investigate H1, we select a Wilcoxon signed-rank test; for H2 to H4, we select a paired sample t-test. For all tests, we 557 set the significance level α to 0.05 because our sample size is relatively small.

 H1 – Satisfaction. As shown in Figure [2,](#page-6-2) the null hypoth- esis of the tests can be rejected for all dimensions of the used satisfaction scale – highest p-value for trust with 0.0029. *Therefore, the data supports H1.*

 H2 – Reward. While the participants achieved a M reward of around 89.89 with an SD of around 18.41 with the baseline explanation, they achieved a M reward of 97.78 (SD of 13.26) – the difference was higher when the participants first played with the composed setting. However, the difference was not 568 statistically significant ($t = -1.7315$, $p = 0.0952$). As M is higher with the composed explanation, the SD is lower, and the difference is not significant, we argue that *the data partially supports H2.*

 H3 – Degree of following. From the 27 participants, 13 fol- lowed more when presented with the baseline, ten more with the composed explanation, and four participants followed to the same degree in both settings. As the mean of following between baseline and composed also only slightly differs – 46% of following compared to 42% – the corresponding test could not underline the difference via statistical significance $(t = 0.9777, p = 0.3372)$. *Consequently, the data does not support H3.*

H4 – Less time. On average, participants took less time to 581 take actions when the composed explanation was provided 582 $(M = 38.61, SD = 16.18)$ compared to the baseline expla- 583 nation ($M = 53.77$, $SD = 27.78$). This difference is also 584 statistically significant ($t = 3.121$, $p = 0.0044$). *Thus, the* 585 *data supports H4.* 586

Usage of explanation of upstream black-box. Overall, ⁵⁸⁷ 70% of the participants used the explanation of the upstream 588 black box or table. The usage spans over 20% of all game 589 steps taken in the study. 41% of the participants used the table more than once. One person requested to see the table for 591 more locations. 592

7.3 Discussion 593

Based on the satisfaction scale, people clearly favored our 594 composed explanation over the baseline alternative. Even ⁵⁹⁵ though with the former explanation, they achieved on aver- ⁵⁹⁶ age a higher reward, this result is not statistically significant. ⁵⁹⁷ However, the comparison is slightly unfair as for the baseline 598 the state is directly visible; this would be unrealistic as a taxi ⁵⁹⁹ service is unlikely to want to disclose this knowledge to its 600 taxi drivers. Most likely, not showing the state would change 601 the results in favor of H2. Further, the reward does heavily $\epsilon_{0.02}$ dependent on a stochastic function. 603

The interpretation of the results as regards the degree of 604 following the advices is not straightforward. On the one hand, 605 the results might be blurred by the stochastic reward function \cos leading to people following less/more based on the achieved 607 reward. On the other hand, people might feel comfortable 608 with the provided information and decide to make decisions 609 on their own. The other way around this could mean that peo- ⁶¹⁰ ple feeling overwhelmed by the baseline follow the advices to 611 reduce their mental load. This claim is in line with the fact 612 that participants required more time to select an action with 613 the baseline explanation. However, the aforementioned argu- ⁶¹⁴ mentation is weakened as the time required to take an action 615 is only a proxy for the mental load of participants.

The results as regards the usage of the explanation for the 617 upstream request estimation model indicate that making such 618 explanations optionable – for instance by selecting which $ex-$ 619 planation aspect shall be shown – for each user. Another po- 620 tential reason why the table-based explanation was not used 621 more might be that the participants played so less that their 622 mind was occupied by the other explanation aspects. Conse- 623 quently, the table-based explanation might be more relevant ⁶²⁴ once people are familiar with the game.

8 Conclusion and Future Work 626

A Details of Repositioning Agent 627

A.1 Dataset 628

A.2 Request Estimation 629

[O](#page-9-10)riginal. The request estimator proposed by [\[Haliem](#page-9-10) *et al.*, ⁶³⁰ [2021\]](#page-9-10) consists of three convolutional layers that transform the 631 previous number of requests per grid cell for the last four time 632 steps – input shape of $4 \times 20 \times 20$ – into a prediction of the 633 number of requests for taxis in the next 10 minutes – output 634

Figure 3: Distribution of the number of taxi trips in the NYC yellow taxi trip dataset in 2015 and 2016 visualized on a logarithmic scale via a 500m square grid.

635 shape of 20×20 . The kernel sizes are 3, 5, and 7; the num- ber of channels is set to 32 and 64. With a learning rate of 0.01 and 30 epochs of training, the request estimation model achieves a MAE of 1.22 trips per cell on our test data.

 Modified. This request estimator consists of five fully- connected layers with 20, 128, 64, 32, and 16 neurons. With a learning rate of 0.001 and 15 epochs of training, we achieved a MAE of 1.26 trips per cell. As input features, we used: 643 (1) x-index at v, (2) y-index at v, (3) #requests 30 minutes 644 ago at v, (4) #requests 20 minutes ago at v, (5) #requests 10 645 minutes ago at v, (6) #requests now at v, (7) #points of inter-646 ests at v , (8) hour, (9) minute, (10) weekday, (11) month, (12) temperature, (13) wind, (14) humidity, (15) air pres- sure, (16) view, (17) snow, (18) precipitation, (19) cloudy, and (20) holiday.

⁶⁵⁰ A.3 Repositioning

 We train the repositioner in the taxi repositioning environ- [m](#page-9-10)ent via reinforcement learning. Similar to [\[Haliem](#page-9-10) *et al.*, [2021\]](#page-9-10) and related work in taxi repositioning, we use model- free off-policy Q-learning to train the repositioner in our en- vironment. In particular, we use dueling double deep Q- learning as proposed by [Wang *et al.*[, 2016\]](#page-9-13) as it is closer to the state-of-the-art in RL than the double DQN approach used by [\[Haliem](#page-9-10) *et al.*, 2021]. Both networks – the policy and target one – consist of three convolutional layers with corre- sponding kernel sizes of 5, 5, and 3; the number of filters is set to 16, 32, and 64. The next layer is a fully connected one with 662 64 $*$ 12 $*$ 12 + 2 = 9218 input and 1024 output neurons. Both the value and advantage layers receive this as input. As we do not aim to outperform other repositioning approaches but to enable explaining them, we tune the hyperparameter man- ually, resulting in (1) a learning rate of 0.001, (2) a gamma of 0.99, (3) an episode decay of 675 to adjust the exploration– exploitation trade-off, (4) a target network update rate of 11,

Category	Content	Overall $(n = 27)$	
		n	$\%$
Gender	Female	11	41
	Male	16	59
	No gender		
	No answer		
Age	< 21	3	11
	21 to 30	17	63
	31 to 40	4	15
	41 to 50	1	4
	51 to 60		
	>60	1	4
	No answer	1	4
Education	No training yet		
	Secondary school	1	4
	High school diploma	3	11
	Vocational training	$\overline{2}$	7
	Bachelor degree	8	30
	Master degree	10	37
	Doctorates	3	11
	Other		
	No answer		
Country	Germany	17	63
	Israel	6	22
	United States	$\,3$	11
	Finland	1	4
	No answer		

Table 4: Profile of respondents

 (5) and a replay memory size of 15K transitions. As shown in 669 the first row of Table [1,](#page-2-2) the repositioner achieves an average 670 reward of 6.85 per step. 671

B Details of User Study 672

B.1 Profile of Respondents 673

See Table [4.](#page-7-0) 674

B.2 Description of Game Given to Participants 675

Before each participant starts to play the game, we describe 676 that he/she is a taxi driver that aims to maximize his/her re- ⁶⁷⁷ ward. Further, we describe the following aspects: (1) the cur- 678 rent location – yellow square – the advice – blue square – ⁶⁷⁹ and the last location – black square – (2) that at each step 680 a movement of up to two cells or staying at the current loca- ⁶⁸¹ tion is possible via the action buttons, (3) the reward function, 682 (4) the available information fields like the accumulated re- ⁶⁸³ ward, (5) the usage of the webpage – minimizing/maximizing 684 of graphics and description pane – and (6) the description of 685 the explanation configuration. 686

B.3 GUI of Game 687

Ethical Statement 688

This study described in Section [7](#page-5-0) and Appendix [B](#page-7-1) was approved by the internal review board of Bar-Ilan University ⁶⁹⁰ prior to conducting our study. 691

RT-Index

The RT-Index (short for Request-Taxi-Index) combines the #taxis and the estimated #requests in one grid cell. It is calculated via two things: (1) The ratio between the estimated #requests and the #taxis as well as (2) the ratio between the estimated #requests and the mean #requests to include how much is going on in a cell.

 \times

Arrows

The arrows show the most promising advice from the repositioners perspective for each possible location in the grid. The darker the arrow, the more certain the repositioner
is, that this is the best of the 25 potential advices.

Table

As the #request per cell is not known in the next 10 minutes, it is estimated via a mo-
del. The features influencing the estimation the most, are shown in the table.

Previous, current taxi location, and advice

The previous location is marked with a black rectangle, the current one with a yellow one, and the advice with a blue one.

Taxi Repositioning Game

Please select one of the actions by clicking on the corresponding button!

The blue button is the advice; the yellow your current location.

The button $'-1,0'$ refers to moving one cell to the left or -1 steps on the x-axis and 0 steps on the y-axis.

Figure 4: GUI of the game with the composed explanation method

⁶⁹² Acknowledgments

⁶⁹³ References

- ⁶⁹⁴ [Amir and Amir, 2018] Dan Amir and Ofra Amir. HIGH-⁶⁹⁵ LIGHTS: Summarizing agent behavior to people. In ⁶⁹⁶ *Proceedings of the 17th International Conference on* ⁶⁹⁷ *Autonomous Agents and MultiAgent Systems*, AAMAS
- ⁶⁹⁸ '18, pages 1168–1176, Richland, SC, 2018. International ⁶⁹⁹ Foundation for Autonomous Agents and Multiagent Sys-
- ⁷⁰⁰ tems.
- ⁷⁰¹ [Bayani and Mitsch, 2022] David Bayani and Stefan Mitsch.
- ⁷⁰² Fanoos: Multi-resolution, multi-strength, interactive ex-
- ⁷⁰³ planations for learned systems. In *Lecture Notes in Com-*
- ⁷⁰⁴ *puter Science*, pages 43–68. Springer International Pub-⁷⁰⁵ lishing, 2022.
- ⁷⁰⁶ [El-Sappagh *et al.*, 2021] Shaker El-Sappagh, Jose M. ⁷⁰⁷ Alonso, S. M. Riazul Islam, Ahmad M. Sultan, and ⁷⁰⁸ Kyung Sup Kwak. A multilayer multimodal detection ⁷⁰⁹ and prediction model based on explainable artificial ⁷¹⁰ intelligence for Alzheimer's disease. *Scientific Reports*,
- 711 11(1), January 2021.
- ⁷¹² [Farazi *et al.*, 2021] Nahid Parvez Farazi, Bo Zou, Tanvir ⁷¹³ Ahamed, and Limon Barua. Deep reinforcement learning ⁷¹⁴ in transportation research: A review. *Transportation Re-*⁷¹⁵ *search Interdisciplinary Perspectives*, 11:100425, Septem-⁷¹⁶ ber 2021.
- ⁷¹⁷ [Grigorescu *et al.*, 2020] Sorin Grigorescu, Bogdan Trasnea, ⁷¹⁸ Tiberiu Cocias, and Gigel Macesanu. A survey of deep ⁷¹⁹ learning techniques for autonomous driving. *Journal of* ⁷²⁰ *Field Robotics*, 37(3):362–386, April 2020.
- ⁷²¹ [Haliem *et al.*, 2021] Marina Haliem, Ganapathy Mani, Va-⁷²² neet Aggarwal, and Bharat Bhargava. A Distributed ⁷²³ Model-Free Ride-Sharing Approach for Joint Match-⁷²⁴ ing, Pricing, and Dispatching Using Deep Reinforcement ⁷²⁵ Learning. *IEEE Transactions on Intelligent Transporta-*
- ⁷²⁶ *tion Systems*, 22(12):7931–7942, December 2021.
- ⁷²⁷ [Heuillet *et al.*, 2021] Alexandre Heuillet, Fabien 728 Couthouis, and Natalia Díaz-Rodríguez. Explain-⁷²⁹ ability in deep reinforcement learning. *Knowledge-Based* ⁷³⁰ *Systems*, 214:106685, February 2021.
- ⁷³¹ [Hoffman *et al.*, 2019] Robert R. Hoffman, Shane T. ⁷³² Mueller, Gary Klein, and Jordan Litman. Metrics for ⁷³³ Explainable AI: Challenges and Prospects, February ⁷³⁴ 2019.
- ⁷³⁵ [Huber *et al.*, 2021] Tobias Huber, Katharina Weitz, Elisa-⁷³⁶ beth Andre, and Ofra Amir. Local and global explana- ´
- ⁷³⁷ tions of agent behavior: Integrating strategy summaries
- ⁷³⁸ with saliency maps. *Artificial Intelligence*, 301:103571, ⁷³⁹ December 2021.
- ⁷⁴⁰ [Huber *et al.*, 2022] Tobias Huber, Benedikt Limmer, and ⁷⁴¹ Elisabeth Andre. Benchmarking Perturbation-Based ´
- ⁷⁴² Saliency Maps for Explaining Atari Agents. *Frontiers in* ⁷⁴³ *Artificial Intelligence*, 5:903875, July 2022.
- ⁷⁴⁴ [Liao *et al.*, 2021] Q. Vera Liao, Milena Pribic, Jaesik Han, ´ ⁷⁴⁵ Sarah Miller, and Daby Sow. Question-driven design pro-
- ⁷⁴⁶ cess for explainable AI user experiences. April 2021.
- [Lundberg and Lee, 2017] Scott M. Lundberg and Su-In ⁷⁴⁷ Lee. A unified approach to interpreting model predic- ⁷⁴⁸ tions. In *Proceedings of the 31st International Confer-* ⁷⁴⁹ *ence on Neural Information Processing Systems*, NIPS'17, ⁷⁵⁰ pages 4768–4777, Red Hook, NY, USA, 2017. Curran As- ⁷⁵¹ sociates Inc. 752
- [Puiutta and Veith, 2020] Erika Puiutta and Eric M. S. P. ⁷⁵³ Veith. Explainable reinforcement learning: A survey. In ⁷⁵⁴ Lecture Notes in Computer Science, pages 77–95. Springer 755 International Publishing, 2020.
- [Puri *et al.*, 2020] Nikaash Puri, Sukriti Verma, Piyush ⁷⁵⁷ Gupta, Dhruv Kayastha, Shripad Deshmukh, Balaji Krish- ⁷⁵⁸ namurthy, and Sameer Singh. Explain your move: Under- ⁷⁵⁹ standing agent actions using specific and relevant feature 760 attribution. In *International Conference on Learning Rep-* ⁷⁶¹ *resentations*, 2020.
- [Qin *et al.*, 2020] Zhiwei (Tony) Qin, Xiaocheng Tang, Yan 763 Jiao, Fan Zhang, Zhe Xu, Hongtu Zhu, and Jieping Ye. ⁷⁶⁴ Ride-Hailing Order Dispatching at DiDi via Reinforce- ⁷⁶⁵ ment Learning. *INFORMS Journal on Applied Analytics*, ⁷⁶⁶ 50(5):272–286, September 2020. 767
- [Sreedharan *et al.*, 2020] Sarath Sreedharan, Tathagata ⁷⁶⁸ Chakraborti, Yara Rizk, and Yasaman Khazaeni. Explain- ⁷⁶⁹ able composition of aggregated assistants. November 770 2020. ⁷⁷¹
- [Wang et al., 2016] Ziyu Wang, Tom Schaul, Matteo Hes- 772 sel, Hado Van Hasselt, Marc Lanctot, and Nando De Fre- ⁷⁷³ itas. Dueling network architectures for deep reinforcement 774 learning. In *Proceedings of the 33rd International Confer-* ⁷⁷⁵ *ence on International Conference on Machine Learning -* ⁷⁷⁶ *Volume 48*, ICML'16, pages 1995–2003, New York, NY, ⁷⁷⁷ USA, 2016. JMLR.org. 778
- [Zhang and Lim, 2022] Wencan Zhang and Brian Y Lim. ⁷⁷⁹ Towards Relatable Explainable AI with the Perceptual ⁷⁸⁰ Process. In *CHI Conference on Human Factors in Com-* ⁷⁸¹ *puting Systems*, pages 1–24, New Orleans LA USA, April ⁷⁸² 2022. ACM. 783