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Abstract
Humans that need to make decisions repeatedly in1

complex environments can gain from advice given2

by an automated assisting agent. However, due to3

the complexity of the environment and the long-4

term effect of a given advice, the decision maker5

may dismiss the advice and not take full advantage6

of its benefits. Advice explanation may improve the7

satisfiability and trust of the decision maker in the8

advice. We consider an automated assisting agent9

that integrates two deep learning-based models, an10

upstream prediction and a downstream Q-learning-11

based policy. As both models influence the ad-12

vice, we propose to consider both when explain-13

ing it to the decision maker. We propose to reduce14

the state shown to the user, make the policy trans-15

parent through the precomputed policy, and com-16

pose them with an explanation of the upstream pre-17

diction model. We demonstrate our approach for18

idle taxi repositioning and show its effectiveness19

through computational experiments and a game-20

based user study. Although study participants do21

not follow the advice more often when compared22

to a baseline, they are significantly more satisfied,23

achieve a higher reward in the game, take less time24

to select an action, and use explanations of both25

models.26

1 Introduction27

Making decisions repeatedly in a dynamic environment is28

very challenging. An intelligent agent could improve human29

decision-making by providing advice. We consider an agent30

that provides advice through a learned policy that integrates31

two deep learning-based models, an upstream prediction and32

a downstream Q-learning-based policy. Humans are, in gen-33

eral, quite often not following machine-learning-based advice34

[?] and in particular, when the advice is based on two levels35

of deep learning black box models. Providing explanations36

may improve their acceptance and trust in the advice [?].37

Most of the related work on eXplainable RL (XRL) focuses38

on the environment and algorithm-specific explanations, of-39

ten not necessarily targeted at the general public but rather40

aimed at domain experts or researchers [Heuillet et al., 2021;41

?]. Consequently, we focus on developing an explanation ap- 42

proach that is generic and user-focused. In particular, we pro- 43

pose an explanation approach that consists of four parts and 44

their composition. First, we propose to way to choose the up- 45

stream prediction functions in a way that is closely related to 46

the advice. Then, we propose a condensed representation of 47

these functions to reduce the information load on the user. For 48

presenting the policy, we propose to present future expected 49

actions to help the user understand the long-term effect of 50

his current advised action. Finally, we propose an explain 51

the upstream prediction model via a classical local post-hoc 52

perturbation-based eXplainable AI (XAI)-method like SHAP. 53

Finally, we propose a visualization method to present all four 54

components to the user in an easy-to-follow GUI. 55

In Section 4, we present our four component generaliz- 56

able and modular approach towards explaining multi-black 57

box Deep RL (DRL)-based systems to users. In Section 5, 58

we apply it to idle taxi repositioning – along with matching 59

and routing, one central function of ride-sharing. We select 60

this application area because (1) it is an advising system that 61

directly affects users – the drivers – (2) requires the latter 62

to make repositioning decisions repeatedly, (3) uses DRL or 63

more specifically typically Deep Q-learning (DQN) [Farazi et 64

al., 2021] – enables transferability to other cities and a longer 65

time-horizon for optimization [Qin et al., 2020] – and (4) ad- 66

ditional upstream black-box models like a request estimator. 67

We demonstrate the effectiveness of our approach via compu- 68

tational experiments (Section 6) and a game-based user study 69

(Section 7). We discuss the major findings together with lim- 70

itations and potential future work in Section 8. 71

Motivating example. Given an idle driver in a taxi service 72

such as Uber or DiDi, a location advice might be provided to 73

her: the service aims to redistribute its fleet proactively to fu- 74

ture customers. To determine this advice, the taxi service can 75

consider the future locations of its other taxi drivers – derived 76

from the known schedules. However, the number of requests 77

for each region can only be predicted via some potentially 78

black–box model based on previously collected data. Both, 79

the number of taxis and requests per region, can be fed into 80

a DRL-based repositioner that computes the advice. As the 81

driver loses time and money on the way to the proposed loca- 82

tion and is not guaranteed to get a ride there, she might desire 83

an explanation of the advice. As both models – request esti- 84

mator and repositioner – influence the advice, the explanation 85



needs to consider both.86

2 Related Work87

Although the field of Reinforcement Learning (RL) is hetero-88

geneous but established, the field of XRL is also the former,89

but not the latter. [Puiutta and Veith, 2020] attempt to struc-90

ture the literature in XRL by introducing two dimensions: In91

the first dimension they differentiate whether an approach is92

intrinsically explainable by using a transparent model or is93

explainable post-hoc; in the second dimension they distin-94

guish approaches that explain locally or globally. As we ex-95

plain advice given to a user for an existing model, we focus96

on local post-hoc explanations. However, none of the ap-97

proaches included in [Puiutta and Veith, 2020] is composed98

of several deep learning-based models or explanations.99

Very few works in XRL generate multiple explanations for100

one DRL agent. [Huber et al., 2021] combine a local saliency101

map-based explanation with a global strategy summary ex-102

planation for an Atari agent. Both [Bayani and Mitsch, 2022]103

and [Sreedharan et al., 2020] explain users an agent via a104

preset answer of questions with varying levels of abstractions105

in the answers. While [Bayani and Mitsch, 2022] explain106

DRL-based agents acting in toy environments, [Sreedharan107

et al., 2020] explain multiple non-DRL-based components108

for a loan approval application. Other non DRL-based ap-109

proaches that do generate multiple explanations are proposed110

by [Liao et al., 2021]; the authors use multiple XAI meth-111

ods such as feature importance to make the risk of hospital112

admission transparent and present their results side by side113

one another. To explain the recognition of vocal emotions,114

[Zhang and Lim, 2022] build five additional deep learning115

models and apply multiple XAI techniques, such as show-116

ing a saliency map. The only work we found that provides117

multiple explanations for multiple models is the one from [El-118

Sappagh et al., 2021]: The authors first predict whether a per-119

son has Alzheimer’s disease and attach another model to pre-120

dict the stage of the disease; for explaining, they use SHAP,121

the feature importance of the underlying Random Forest (RF)122

models, and fuzzy rules to explain the predictions locally and123

globally.124

In general, the number of approaches that generate multi-125

ple explanations for one or multiple deep learning models is126

very limited and heterogeneous. While some works provide127

advice – [Liao et al., 2021; El-Sappagh et al., 2021] – the ma-128

jority explains some deep learning models not providing ad-129

vice to users – [Huber et al., 2021; Bayani and Mitsch, 2022;130

Sreedharan et al., 2020; Zhang and Lim, 2022]. Some131

focus on explaining for end users – [Huber et al., 2021;132

Sreedharan et al., 2020; Zhang and Lim, 2022] – and oth-133

ers target expert users – [Bayani and Mitsch, 2022; Liao134

et al., 2021; El-Sappagh et al., 2021]. While the ma-135

jority of the approaches considered evaluate the generated136

explanations without people – [Bayani and Mitsch, 2022;137

Sreedharan et al., 2020; Liao et al., 2021; El-Sappagh et al.,138

2021] – only two evaluate with people – [Huber et al., 2021;139

Zhang and Lim, 2022]. Also, most of the works focus on ex-140

plaining non-DRL-based agents – [Sreedharan et al., 2020;141

Liao et al., 2021; Zhang and Lim, 2022; El-Sappagh et al.,142

2021] – while two explain DRL-based agents – [Huber et al., 143

2021; Bayani and Mitsch, 2022]; these works also explain 144

agents in toy environments rather than those interacting in 145

real-world applications. 146

Consequently, we consider the explanation of an advising 147

system with DRL agent and one or more upstream deep learn- 148

ing models as an open research gap. To limit the scope of 149

this paper, we will focus on local post-hoc explanations for 150

real-world applications – like the idle taxi repositioning in 151

our motivating example – and end users – e.g., taxi drivers – 152

while developing our explanation approach. As regards the 153

DRL approach, we focus on DQN which is commonly used 154

for the repositioning of taxis [Farazi et al., 2021] and in the 155

field of autonomous driving. 156

3 Problem Definition 157

We consider a human user that can move in an undirected 158

graph G = (V,E) with V being a set of vertices and E a 159

set of edges. The human goal is to maximize a reward. At 160

every time step, the human is located at a location l ∈ V 161

and can take action a ∈ A attempting to move on the graph 162

G. A state s ∈ S is associated with the properties of the 163

entire environment and with the properties of the vertices in 164

V . We use the notation gi(s),∀s ∈ S for features that do 165

not depend on the vertices and fj(s, v),∀s ∈ S,∀v ∈ V for 166

features of the state that are relevant to a vertice v. l(s) ∈ V 167

indicates the location of the user in the state s. The state 168

transition function P (s, a, s′),∀s, s′ ∈ S, ∀a ∈ A from s to 169

s′ when taking action a is stochastic. The reward function 170

R(s, a, s′),∀s, s′ ∈ S,∀a ∈ A depends on the state s, the 171

action a, and the new state s′. 172

When considering the motivational example of idle taxi 173

repositioning, G represents the road map of a city. At ev- 174

ery point in time, the taxi driver selects a – like moving 175

south from l(s); this decision can be based on the state 176

which is composed of a set of global features {g1, g2, ..., gm} 177

like the weekday and another set of location-dependent fea- 178

tures {f1, f2, ..., fn} such as the number of requests at the 179

vs around l(s). When collecting a passenger, the taxi driver 180

receives a reward, e.g. 25 dollars. 181

To make a decision, the human can consider (1) its knowl- 182

edge of the current state s ∈ S and (2) advice provided 183

through a learned policy π : s 7→ a, a ∈ A,∀s ∈ S that maps 184

each state s to action a. In particular, the policy has two lev- 185

els: in the first level, there is a set of functions ψj ∈ Ψ; each 186

function, given a state s and a vertice v, associates v with 187

a value, that is, ψj(s, v),∀s ∈ S,∀v ∈ V . Some of these 188

functions are estimated using deep learning. On the second 189

level, the output of this first-level function is used by a Q 190

value function that is learned via DRL: QΨ(s, l(s), a),∀s ∈ 191

S, ∀l(s) ∈ V,∀a ∈ A. The advice given to the human is 192

argmaxaQΨ(s, l(s), a). 193

In idle taxi repositioning, we have two functions on the first 194

level: ψd that extracts the demand for taxis and ψr that esti- 195

mates the number of requests based on the previous number 196

of requests via a neural network. QΨ receives these outputs, 197

l(s), and an a; it is learned via deep Q-learning. 198



Explanation problem. Given the aforementioned sequen-199

tial human-decision making problem in which a user u re-200

ceives advice provided by a policy π : s 7→ a, a user might201

have less information available – e.g., Ψ is not known by the202

user – or smaller computational capabilities. Consequently,203

the user’s policy results in πu : s 7→ au with a ̸= au. The204

explanation problem tackled in this paper aims to produce an205

explanation ε so that πu : s
ε−→ a.206

4 Explanation Approach207

Understanding advice is challenging because (1) π is repre-208

sented via QΨ and both, Q and at least a subset of Ψ, are209

deep learning models – which are often hard to understand210

by users – (2) especially with a larger |V | the size of the state211

|s| might be overwhelming for users, and (3) users need to212

make decisions with a potential long-term effect repeatedly.213

Thus, in the following, we propose an explanation approach214

that consists of four parts and their composition.215

4.1 Model Choices for Ψ216

An important decision is to carefully choose the functions217

ψ ∈ Ψ. Previous approaches – like [Qin et al., 2020;218

Haliem et al., 2021] or the pipeline architecture described by219

[Grigorescu et al., 2020] – compute the values of ψ simulta-220

neously for all v ∈ V . That is, the functions are of the form221

ψ(f1, . . . , fn) which results in values for all v ∈ V . In this222

case, it is difficult to extract the contribution of each feature223

for the value associated with v. Thus, we propose to call ψ224

separately for each v, select features that are understandable225

by users, and make it return only one value for v – that is,226

ψ(g1, . . . , gm, f1, . . . , fn).227

E.g., when [Haliem et al., 2021] reposition idle taxis, they228

make use of a function ψ to estimate the number of requests229

in the next time step in the whole city based on the previous230

demand. In this example, we propose to use an alternative231

ψ that estimates the number of requests on only one location232

based on fewer and more meaningful input features.233

4.2 Condensed Representation of Ψ234

Presenting all values that the functions ψj ∈ Ψ associate with235

each vertice v ∈ V can be overwhelming. Thus, we propose236

to integrate these values using some index I that compresses237

the number of values for each vertice. That is, I(s, v) =238

ρ(ψ1(s, v), . . . , ψ|Ψ|(s, v)).239

For example, in idle taxi repositioning, ρ could be the dif-240

ference between the number of requests and taxis at v in state241

s; identifying a v with an undersupply becomes easier via ρ.242

4.3 Transparent Policy243

In order to reveal the long-term strategy of the policy, we pro-244

pose to present the advice at any location v ∈ V and not245

only at l(s) to the user. Consequently, we compute the ad-246

vice â = argmaxaQΨ(s, l(s), a) for each location v ∈ V247

and not only at l(s). Similar to [Amir and Amir, 2018]248

we also make the certainty of the network in â transpar-249

ent by computing the delta to the least promising action via250

request estimation† Repositioning‡

Haliem et al.∗ 1.22 6.85
Ours 1.26 7.24
∗ adapted; † MAE in trips per cell; ‡ mean reward per step

Table 1: Agents performance; while for both – the request estimator
and the repositioner – the test data is used for evaluation, for the
repositioner, the mean reward per step is calculated over 100 runs.

â − argminaQΨ(s, l(v), a). In addition, we compute a po- 251

tential future path of limited length for the agent when fol- 252

lowing the advice while keeping everything in s fixed except 253

for l(s). 254

Realizing this part of our explanation in idle taxi reposi- 255

tioning is relatively straightforward via showing the advices 256

via arrows for the whole city; the certainty of an advice can 257

be incorporated into the color of the arrows. 258

4.4 Explaining Ψ 259

Another important component of the advising system is the 260

subset of functions in Ψ that are represented via deep learn- 261

ing. For these ψs, we propose to present those features of 262

s that contributed to ψ’s value at vertices v. This is possible, 263

given the way we defined ψ that outputs a value separately for 264

each v. Such function ψ can be explained via a classical lo- 265

cal post-hoc perturbation-based XAI-method like SHAP. We 266

recommend to limit the number of vs for which the corre- 267

sponding explanation is shown. 268

When we estimate the number of requests at a location v, 269

we can show the most contributing features to a user to make 270

the corresponding ψ more transparent 271

4.5 Compose the Explanation Parts 272

Besides carefully choosing Ψ, we present to the user of 273

the advising system three aspects of the underlying policy: 274

(1) the condensed representation of the ψis together, (2) the 275

transparent policy, and (3) the explanations of the ψis. We 276

propose to present (1) and (2) on the graph G; the former via 277

arrows – advice – with different color intensity – certainty – 278

and color each v via the index I(s, v). Further, we propose to 279

present the explanations of Ψ along the potential future path 280

computed in (2) to limit the explanation size |ε| shown to the 281

user; the user can query only the locations available in this 282

path. 283

5 Explaining Idle Taxi Repositioning 284

Before explaining idle taxi repositioning, we rebuild a repo- 285

sitioning approach orientating on one from the literature. 286

Mostly, idle taxi repositioning is part of a system that also 287

incorporates matching, scheduling, and routing. We favor the 288

approach of [Haliem et al., 2021] over others as it was de- 289

veloped over multiple papers, has – in contrast to most, like 290

[Qin et al., 2020] – made (at least most of) its source code 291

available, and uses an accessible dataset. We show the results 292

of approach adapted to our environment and the one we mod- 293

ified for explanation in Table 1; details of the implementation 294

are described in Appendix A. 295



5.1 Rebuilding a Repositioning Agent296

Dataset. We select the NYC taxi dataset. After outlier re-297

moval, around 186M trips between January 2015 and June298

2016 remain. We generalize the degree-based start and end299

locations of trips to the indices of a grid; in particular, a 500m300

square grid. We use 26K 10-minute time steps. We sepa-301

rate the last two months for testing and split the remaining302

16 month for training and validation with an 80/20 ratio; the303

latter two are split to enable learning Q based on Ψ.304

Environment. In our environment, a taxi agent moves305

around in a city – represented as a 20 × 20 grid – aiming306

to serve requests. The taxi can move up to two cells in each307

direction or reside in its current location. The agent receives308

the state s which consists of the previous number of requests309

rt−4:t and the number of taxis dt+1 at every v as well as its310

location l(s). Each episode lasts 54 ten-minute steps or a311

nine-hour shift. As regards the reward function R: When312

r− t ≥ 2, the agent receives a reward of 20 (two passengers);313

r − t = 1 the reward is 10 (one passenger); if r > 0 and314

r ≤ d – the agent competes with other taxis – with a chance315

of r
t a reward of 10 is given; in case the agent does (not) move316

the agent receives a reward of -1 (0). Whenever the reward is317

> 0, the agent is relocated to location randomly chosen from318

the distribution of drop-off locations. In each episode, the taxi319

starts at a random location and time. Our implementation of320

the environment is inspired by the OpenAI taxi environment.321

Request estimation. [Haliem et al., 2021] use ψd to extract322

the number of taxi from s and ψr to estimate the number of323

requests in 10 minutes at each v. ψr was learned via a three-324

layer convolutional neural network and achieved a Mean Ab-325

solute Error (MAE) of 1.22 trips per cell on the test data.326

Repositioning. We train the repositioner via DRL in the327

repositioning environment. In particular, we use dueling dou-328

ble deep Q-learning as proposed by [Wang et al., 2016] as it329

is closer to the state-of-the-art in RL than the double DQN330

approach used by [Haliem et al., 2021]. After training, the331

repositioner – consumes ψd, ψr, l(s) – achieves an average332

reward of 6.85 per step on the test data.333

5.2 Explaining Repositioning Advice334

Here, we apply our composed explanation approach proposed335

in Section 4 to explain advices in idle taxi repositioning to336

taxi drivers. Afterward, we also introduce a baseline explana-337

tion to which we compare ours. An example of both explana-338

tions is shown in Figure 1.339

Replacing ψr. To explain the model ψr that estimates the340

number of requests at every v ∈ V one could use a common341

XAI methods like SHAP – see [Lundberg and Lee, 2017] –342

producing a explanation of size |ε| = 4×20×20×20×20 =343

640K. Besides being large, such explanation would be noisy344

and far from what a user expects. Thus, we reduce the num-345

ber of output features heavily by making ψr only estimate the346

number of requests for one v. Further, we replace the original347

input features rt−4:t at every v by the location-dependent fea-348

tures index of v, rt−4:t at v, and the number of points of inter-349

est at v as well as location-independent time-related features350

like the weekday and weather-related ones. Next, we replace351

the convolutional neural network with a feed-forward fully- 352

connected one. Thereby, we achieve a MAE of 1.26 trips per 353

cell – which is only a slight increase of 0.04 – while reducing 354

input size of ψr from 1600 to 20, the output size from 400 to 355

1, and |ε| when applying a XAI method like SHAP from 64K 356

to 20. After retraining the repositioner with the new ψr, the 357

mean reward increases to 7.24 per step. 358

RT-index. To reduce the size of the input in Q with an in- 359

tuitive representation, we propose the request-taxi index (RT- 360

index). It combines the ratio between the estimated number of 361

requests ψr and the number of taxis ψd as the all taxi drivers 362

compete over the requests and the ratio between the mean 363

number of requests r̄ and ψr as the chance for getting a re- 364

quest is higher at locations with more requests. We weigh the 365

two ratios via α ∈ [0, 1]. We set alpha to 0.75 even though 366

with another dataset a different value might be preferable. 367

The corresponding formula is: 368

IΨ(s, v) = ψr(s, v)

(
α

ψd(s, v)
+

1− α

r̄

)
for α = 0.75

As a visual representation, we choose a heatmap that shows 369

the RT-index for each location on a color scheme from red for 370

0 to green for values ≥ 3. 371

Transparent policy. To make the policy transparent, we it- 372

erate over all possible taxi locations l ∈ V and pass the cor- 373

responding location with s to argmaxaQΨ(s, l, a). Thus, 374

we collect the most promising action for each l. To visualize 375

these, we plot an arrow from each location with the length 376

and direction of the corresponding action. To incorporate the 377

certainty of the agent, we also collect 378

∆l = max
a

QΨ(s, l, a)−min
a
QΨ(s, l, a)

for each l. As a visual representation, we select black for ar- 379

rows on top of the heatmap generated via the RT-index with a 380

high action certainty and let the color fade out with decreas- 381

ing certainty. To make the color consistent over all locations, 382

we use min-max normalization with ∆l for the local and ∆g 383

for the global delta: 384

∆l −min∆g

max∆g −min∆g

Further, we compute a potential future path for up to five lo- 385

cations. The resulting locations are plotted on the map via 386

the lettersB,C, . . . –A is reserved for the location of the taxi 387

– and selectable via buttons that update a table with the six 388

most important features. 389

Explaining ψr. After replacing ψr, we can simply apply 390

SHAP to the single-cell request estimation model. To reduce 391

the mental load of the users, list the six most important fea- 392

tures as well as their order while omitting their actual values 393

and influence. We generate this explanation for each v along 394

the potential future path and offer the user to select one of the 395

corresponding explanations via buttons. 396

5.3 Baseline 397

In our composed explanation, we have a compositional view 398

of the advising system explaining each component of the ad- 399

vising system solely and then joining the explanations. In 400



(a) Composed explanation (b) Baseline explanation

Figure 1: We show the composed explanation without its request estimation part in (a) and the baseline explanation for the number of taxis
in 10 minutes – the explanations for the request over the last 40 minutes are of a similar kind – in (b)

contrast to our compositional view, related work generally401

has a one-model view that does not differentiate between402

ψ1, ψ2, . . . , ψ|Ψ| and Q but takes the whole system as one403

function. In the following, we describe the selection of404

such baseline XAI method, the configuration of the selected405

method, and our chosen visual representation. An example406

explanation via the baseline is shown in Figure 1.407

Selection. As we explain locally and post-hoc, we select a408

corresponding XAI method. Because our composed explana-409

tion is mainly visual, we select a corresponding baseline. As410

the state s is relatively big as well as image-like and others411

also use perturbation-based XAI methods to generate saliency412

maps for DRL – see e.g. [Huber et al., 2022] – we select413

such. Based on the results of [Huber et al., 2022] – who com-414

pare several potential XAI methods – we first tried Sarfa, a415

method proposed by [Puri et al., 2020]. Unfortunately, these416

results were not reasonable with QΨ. Another XAI method417

included by [Huber et al., 2022] is LIME – see [Lundberg418

and Lee, 2017]. LIME allowed us to explain only the advice,419

produced more reasonable explanations than Sarfa, and takes420

reasonable time to explain.421

Configuration. The explanation size is 2000 as we have422

one value for the number of taxis and four for the number423

of requests at each v ∈ V and fix the taxi location as well424

as the advice. We select the number of perturbation samples425

considered for explaining to 1000 as this produces reasonable426

explanations in a decent time – Mean (M) of 10.35 seconds.427

The background data is taken from the dataset used for train-428

ing and we select 25 samples at a similar hour and day as the429

time that shall be explained.430

Visual representation. When using saliency maps, many431

approaches plot those on top of the state. As the saliency432

values would make the state invisible, we present the expla-433

nations beside the state. We decided to exclude the actual434

influence values and show a scale from negative to positive435

influence instead to reduce the mental load of the user; while 436

a negative/positive value refers to a negative/positive influ- 437

ence of the corresponding state value on taking the advice 438

when being at the given location. 439

6 Experimental Results 440

Here, we report the size of the networks – request estima- 441

tor and repositioner – the number of input features given to 442

the explanation models, the explanation size, and the execu- 443

tion time with several variants of the environment for idle taxi 444

repositioning. In particular, we vary the size of the city in the 445

environment and thereby indirectly the number of states |S|. 446

As |S| = 15010
2×2 ≈ 1.65 ∗ 10435 for |V | = 100, we only 447

report the number of nodes |V | instead of |S|. The highest 448

|V | we consider is 6400 which would corresponds to a grid 449

cell size of 125m when we consider the same area. The sec- 450

ond variation of the environment is the modification of the 451

action size |A|. While |A| = 9 refers to the agent’s ability to 452

move one cell in each direction, |A| = 25 refers to moving 453

up to two cells in each direction. 454

Network size, #input features, and explanation size. As 455

shown in Table 2, the network size is primarly influenced 456

by |V | and neither by the explanation setting – composed or 457

baseline – nor |A|. As the baseline uses a whole-city request 458

estimator, the network size is slightly larger compared to the 459

single-cell case. As the influence of |A| on the network size 460

is small and there is none on the number of input features 461

and the explanation size, we do not list |A| for |V | > 100 462

in Table 2. Obviously, the number of input features and the 463

explanation size increases linearly with |V |. The size of the 464

composed explanation is always smaller than that of the base- 465

line. In all composed settings, the size is mainly driven by the 466

RT-Index and the arrows – the table-based explanation of the 467

upstream request estimator has a low influence on the num- 468

ber of input features and the explanation size. These results 469



Network size #input features Explanation size

|V | |A| Composed Baseline Composed Baseline Composed Baseline

100 9 3.31M 3.35M 0.32K (0.20K, 0.20K, 0.12K) 0.50K 0.24K (0.10K, 0.10K, 36) 0.50K
100 25 3.33M 3.37M 0.32K (0.20K, 0.20K, 0.12K) 0.50K 0.24K (0.10K, 0.10K, 36) 0.50K
400 9 21.14M 21.18M 0.52K (0.80K, 0.80K, 0.12K) 2K 0.84K (0.40K, 0.40K, 36) 2K
1600 9 120.23M 120.27M 3.32K (3.20K, 3.20K, 0.12K) 8K 3.24K (1.60K, 1.60K, 36) 8K
6400 9 361.14M 361.18M 12.92K (12.8K, 12.8K, 0.12K) 32K 12.84K (6.40K, 6.40K, 36) 32K

Table 2: Network size, number of input features given to the explanation approach, and size of the explanation depending on the number of
nodes |V | and actions |A| in the environment; for the number of input features and the explanation size, we show the values for the RT-index,
the arrows, and the table separately in the brackets.

|V | |A| Composed (M±SD) Baseline (M±SD)

100 9 0.87±0.44 7.20±0.86
100 25 0.98±0.27 7.42±0.52
400 9 1.30±0.36 10.00±0.71
1600 9 5.89±0.31 18.28±0.68
6400 9 25.51±1.91 41.18±1.13

Table 3: Execution time in seconds with varying number of nodes
|V | and actions |A| for the composed and baseline explanation; M
is the mean execution time in seconds over 10 runs and SD the cor-
responding standard deviation.

are limited because in reality the performance of an agent470

also depends on the network architecture; a larger state space471

might require more trainable parameters and therefore a net-472

work size larger than the one listed in the table.473

Execution time. As shown in Table 3 (1) our approach can474

be applied to different environments, (2) its execution time475

is lower than that of the baseline in all considered cases, and476

(3) the size of our composed explanation is in all cases less477

than half compared to that of the baseline explanation. The478

execution time of the baseline depends on the number of sam-479

ples considered for perturbation – 1000 in our case; the larger480

this number is chosen, the larger is the execution time of the481

baseline. Similar to before we omit more options for |A| as482

the number of actions does only slightly depend on |A|.483

7 Game-Based User Study with Questionnaire484

7.1 Study Design485

When designed appropriately, explanations have the potential486

to increase properties like the satisfaction of a user that inter-487

acts with an AI-based system. To evaluate the effectiveness488

of our explanation approach, we developed a game – see Fig-489

ure 4 – in which participants of our study can drive through a490

city aiming to maximize their reward as taxi drivers. In this491

game, the participants receive advices provided by an agent492

that has learned QΨ and an explanation – either ours or the493

baseline. At each time step a participant can either follow494

the advice or select one of the other actions. Besides observ-495

ing the achieved reward, the degree to which advices are fol-496

lowed, and the time taken to select an action, we conduct a497

questionnaire with 31 questions.498

Structure. During the study, participants go through the 499

following steps: (1) Introduction of the study and the 500

game, (2) ten steps of playing with one explanation method, 501

(3) questions related to the subjective usage of the adivces, 502

(4) ten steps of playing with the other explanation method, 503

(5) questions related to the subjective usage of the adivces, 504

(6) questions related to the explanations provided, and (7) de- 505

mographic questions To ensure data quality, after the descrip- 506

tion of the game, we incorporate three attention-check ques- 507

tions about a participant’s understanding of the environment. 508

Participants. We run our study with 27 participants that are 509

fluent in English, over the age of 18, and do not have color 510

blindness – the latter might affect their ability to see the gen- 511

erated explanations correctly. The M age of the participants 512

is 28.81 years with a Standard Deviation (SD) of 8.39 years. 513

41% of the participants reported are female, 59% are male. 514

87% of the participants reported living in Germany. The 515

study was conducted in December 2022 and January 2023. 516

Independent variables. Our within-subject study shows 517

two explanation settings in one scenario – starting date and 518

time of the day – to each participant. Consequently, each par- 519

ticipant plays twice in the game before answering questions 520

about both explanation settings. To half of the participants, 521

the explanation is shown first and the baseline variant sec- 522

ond; for the other half, the order is reversed. To gain better 523

insights into the behavior of participants, we ask them to rate 524

how confident they were to choose better than the provided 525

advice and what their strategy was. 526

Dependent measures. Based on [Hoffman et al., 2019], we 527

evaluate the generated explanations via the satisfaction with 528

each explanation presented, composed of understanding, sat- 529

isfaction, detail, completeness, usage, usefulness, accuracy, 530

and trust. We ask the participants to rate all questions related 531

to explanation satisfaction on a five-point Likert scale. Fur- 532

ther, we measure the achieved reward, the degree to which the 533

participants followed the advices, and how much time they 534

took to perform a step. Since as shown in Section 6 the exe- 535

cution time for creating the baseline explanation is on average 536

9.21 seconds higher than that of the composed one, we sub- 537

tract 10.35−1.14 = 9.21 seconds to enable a fair comparison 538

between the two explanation settings. 539

Hypothesis. With the described study, we investigate the 540

following hypotheses: 541



Figure 2: Questionnaire results for dimensions of the satisfaction
scale by [Hoffman et al., 2019] as boxplot for our composed expla-
nation (pink) and the baseline (blue) – the median is represented via
a gold line, the mean via a triangle; ∗∗ indicates 0.001 < p ≤ 0.01
and ∗∗∗ indicates p ≤ 0.001.

• H1: The proposed composed explanation for reposition-542

ing achieves a higher satisfaction (see [Hoffman et al.,543

2019]) than the baseline alternative.544

• H2: Compared to the baseline explanation of reposition-545

ing, taxi drivers achieve a higher reward with the com-546

posed explanation.547

• H3: Taxi drivers who are presented the composed ex-548

planation follow the advices to a higher degree, when549

compared to the baseline explanations.550

• H4: Taxi drivers require less time when taking actions551

with the composed explanation compared to the baseline552

alternative.553

7.2 Result Analysis554

To investigate H1, we select a Wilcoxon signed-rank test; for555

H2 to H4, we select a paired sample t-test. For all tests, we556

set the significance level α to 0.05 because our sample size is557

relatively small.558

H1 – Satisfaction. As shown in Figure 2, the null hypoth-559

esis of the tests can be rejected for all dimensions of the560

used satisfaction scale – highest p-value for trust with 0.0029.561

Therefore, the data supports H1.562

H2 – Reward. While the participants achieved a M reward563

of around 89.89 with an SD of around 18.41 with the baseline564

explanation, they achieved a M reward of 97.78 (SD of 13.26)565

– the difference was higher when the participants first played566

with the composed setting. However, the difference was not567

statistically significant (t = −1.7315, p = 0.0952). As M568

is higher with the composed explanation, the SD is lower,569

and the difference is not significant, we argue that the data570

partially supports H2.571

H3 – Degree of following. From the 27 participants, 13 fol-572

lowed more when presented with the baseline, ten more with573

the composed explanation, and four participants followed to574

the same degree in both settings. As the mean of following575

between baseline and composed also only slightly differs –576

46% of following compared to 42% – the corresponding test577

could not underline the difference via statistical significance578

(t = 0.9777, p = 0.3372). Consequently, the data does not579

support H3.580

H4 – Less time. On average, participants took less time to 581

take actions when the composed explanation was provided 582

(M = 38.61, SD = 16.18) compared to the baseline expla- 583

nation (M = 53.77, SD = 27.78). This difference is also 584

statistically significant (t = 3.121, p = 0.0044). Thus, the 585

data supports H4. 586

Usage of explanation of upstream black-box. Overall, 587

70% of the participants used the explanation of the upstream 588

black box or table. The usage spans over 20% of all game 589

steps taken in the study. 41% of the participants used the ta- 590

ble more than once. One person requested to see the table for 591

more locations. 592

7.3 Discussion 593

Based on the satisfaction scale, people clearly favored our 594

composed explanation over the baseline alternative. Even 595

though with the former explanation, they achieved on aver- 596

age a higher reward, this result is not statistically significant. 597

However, the comparison is slightly unfair as for the baseline 598

the state is directly visible; this would be unrealistic as a taxi 599

service is unlikely to want to disclose this knowledge to its 600

taxi drivers. Most likely, not showing the state would change 601

the results in favor of H2. Further, the reward does heavily 602

dependent on a stochastic function. 603

The interpretation of the results as regards the degree of 604

following the advices is not straightforward. On the one hand, 605

the results might be blurred by the stochastic reward function 606

leading to people following less/more based on the achieved 607

reward. On the other hand, people might feel comfortable 608

with the provided information and decide to make decisions 609

on their own. The other way around this could mean that peo- 610

ple feeling overwhelmed by the baseline follow the advices to 611

reduce their mental load. This claim is in line with the fact 612

that participants required more time to select an action with 613

the baseline explanation. However, the aforementioned argu- 614

mentation is weakened as the time required to take an action 615

is only a proxy for the mental load of participants. 616

The results as regards the usage of the explanation for the 617

upstream request estimation model indicate that making such 618

explanations optionable – for instance by selecting which ex- 619

planation aspect shall be shown – for each user. Another po- 620

tential reason why the table-based explanation was not used 621

more might be that the participants played so less that their 622

mind was occupied by the other explanation aspects. Conse- 623

quently, the table-based explanation might be more relevant 624

once people are familiar with the game. 625

8 Conclusion and Future Work 626

A Details of Repositioning Agent 627

A.1 Dataset 628

A.2 Request Estimation 629

Original. The request estimator proposed by [Haliem et al., 630

2021] consists of three convolutional layers that transform the 631

previous number of requests per grid cell for the last four time 632

steps – input shape of 4 × 20 × 20 – into a prediction of the 633

number of requests for taxis in the next 10 minutes – output 634



Figure 3: Distribution of the number of taxi trips in the NYC yellow
taxi trip dataset in 2015 and 2016 visualized on a logarithmic scale
via a 500m square grid.

shape of 20 × 20. The kernel sizes are 3, 5, and 7; the num-635

ber of channels is set to 32 and 64. With a learning rate of636

0.01 and 30 epochs of training, the request estimation model637

achieves a MAE of 1.22 trips per cell on our test data.638

Modified. This request estimator consists of five fully-639

connected layers with 20, 128, 64, 32, and 16 neurons. With a640

learning rate of 0.001 and 15 epochs of training, we achieved641

a MAE of 1.26 trips per cell. As input features, we used:642

(1) x-index at v, (2) y-index at v, (3) #requests 30 minutes643

ago at v, (4) #requests 20 minutes ago at v, (5) #requests 10644

minutes ago at v, (6) #requests now at v, (7) #points of inter-645

ests at v, (8) hour, (9) minute, (10) weekday, (11) month,646

(12) temperature, (13) wind, (14) humidity, (15) air pres-647

sure, (16) view, (17) snow, (18) precipitation, (19) cloudy,648

and (20) holiday.649

A.3 Repositioning650

We train the repositioner in the taxi repositioning environ-651

ment via reinforcement learning. Similar to [Haliem et al.,652

2021] and related work in taxi repositioning, we use model-653

free off-policy Q-learning to train the repositioner in our en-654

vironment. In particular, we use dueling double deep Q-655

learning as proposed by [Wang et al., 2016] as it is closer656

to the state-of-the-art in RL than the double DQN approach657

used by [Haliem et al., 2021]. Both networks – the policy and658

target one – consist of three convolutional layers with corre-659

sponding kernel sizes of 5, 5, and 3; the number of filters is set660

to 16, 32, and 64. The next layer is a fully connected one with661

64 * 12 * 12 + 2 = 9218 input and 1024 output neurons. Both662

the value and advantage layers receive this as input. As we663

do not aim to outperform other repositioning approaches but664

to enable explaining them, we tune the hyperparameter man-665

ually, resulting in (1) a learning rate of 0.001, (2) a gamma of666

0.99, (3) an episode decay of 675 to adjust the exploration–667

exploitation trade-off, (4) a target network update rate of 11,668

Category Content Overall (n = 27)
n %

Gender Female 11 41
Male 16 59
No gender - -
No answer - -

Age < 21 3 11
21 to 30 17 63
31 to 40 4 15
41 to 50 1 4
51 to 60 - -
> 60 1 4
No answer 1 4

Education No training yet - -
Secondary school 1 4
High school diploma 3 11
Vocational training 2 7
Bachelor degree 8 30
Master degree 10 37
Doctorates 3 11
Other - -
No answer - -

Country Germany 17 63
Israel 6 22
United States 3 11
Finland 1 4
No answer - -

Table 4: Profile of respondents

(5) and a replay memory size of 15K transitions. As shown in 669

the first row of Table 1, the repositioner achieves an average 670

reward of 6.85 per step. 671

B Details of User Study 672

B.1 Profile of Respondents 673

See Table 4. 674

B.2 Description of Game Given to Participants 675

Before each participant starts to play the game, we describe 676

that he/she is a taxi driver that aims to maximize his/her re- 677

ward. Further, we describe the following aspects: (1) the cur- 678

rent location – yellow square – the advice – blue square – 679

and the last location – black square – (2) that at each step 680

a movement of up to two cells or staying at the current loca- 681

tion is possible via the action buttons, (3) the reward function, 682

(4) the available information fields like the accumulated re- 683

ward, (5) the usage of the webpage – minimizing/maximizing 684

of graphics and description pane – and (6) the description of 685

the explanation configuration. 686

B.3 GUI of Game 687

Ethical Statement 688

This study described in Section 7 and Appendix B was ap- 689

proved by the internal review board of Bar-Ilan University 690

prior to conducting our study. 691



Figure 4: GUI of the game with the composed explanation method
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