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Learning Objectives
 In this course, you will get an introduction to traditional approaches of Natural Language Processing (NLP) as well as state-of-the-art techniques. The course starts with an introduction to the historical developments of NLP as well as the basic terms and concepts. Moreover, you will learn, how language and speech are produced. The course will also give a comprehensive overview of the challenges which typically occur in NLP projects. Additionally, the most important techniques which are used in NLP are presented including some related topics. 
Finally, the course will introduce how NLP technologies can be successfully used in various applications such as machine translation, sentiment analysis, and chatbots. The course also provides an introduction to how python can be used to build NLP applications.



Unit 1 – Basic Terms and Concepts	Comment by Hernandez, Kelsey: Please do not edit unit titles.

Study Goals	Comment by Hernandez, Kelsey: Please do not edit study goals. 

On completion of this unit, you will be able to …
… classify NLP as a field of research
… distinguish between syntax and semantics
… explain the most important characteristics of prosodics
… understand the concepts of grammar

1. Basic Terms and Concepts
Introduction 	Comment by Hernandez, Kelsey: Please do not edit headings. 
Natural language processing (NLP) deals with the interaction between humans and computers. In the past decades, it has become one of the main drivers for research in the area of artificial intelligence (AI).  
In this unit, you will first learn what NLP is in general. This includes the historical developments of NLP as well as an introduction to the Turing test. As NLP has its origin in the intersection between computer science and linguistics, the concepts of syntax and semantics will be explained. While syntax deals with the rules how sentences are formed, semantics are about the meaning of a text. 
Subsequently, you will learn more about the prosodics of speech, i.d. those components of speech which are related to melody such as pitch, or intonation. The unit ends with the most important concepts regarding grammar. 
1.1 What is NLP?
Natural language processing is nowadays one of the most important areas of AI. It is an interdisciplinary field that has its origin at the intersection between linguistics and computer science.  The figure below illustrates, how the disciplines are related. 
[image: Diagram

Description automatically generated]NLP in Relation to Computer Science and Linguistics	Comment by Hernandez, Kelsey: Please do not edit graphics or their titles.

The more computers are integrated into our everyday lives, the more important it gets to make the interaction between humans and computers more natural. NLP plays a key role in achieving this goal. If a computer is able to interpret and use language in a way that is comparable to human communication, this can help to simplify the communication between humans and machines. However, human-computer interaction is not the only use case for NLP. Other areas of application such as automatic machine translation, automatic text summarization, or even automatic generation of text are also among current research topics. 
In general, there are three major subdomains in NLP: speech recognition, natural language understanding, and natural language generation. What these subdomains contain is summarized in the following figure. 
Major Subdomains of NLP
[image: Text
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Speech recognition, natural language understanding as well as natural language generation are built on methods that have their origin in the area of artificial intelligence. These three domains form the basis for all other application areas of NLP. 
Historical Developments
Early theoretical research in the area of NLP dates back as far as the 17th century. Based on Descartes concept of the “universal truth” Leibnitz did some first considerations towards the representation of the fundamental concepts of knowledge production. Leibnitz believed that if the underlying logical concepts of combining symbols such as letters, words, and sentences are fully understood, it should be possible to generate new thoughts (Schwartz, 2019). 
The development of NLP as a technical discipline has its origin in the fifties. It was driven by the geopolitical tension between the United States and the former Soviet Union. This tension led to a greater demand for translations from Russian into English and vice versa. Outsourcing the translation to machines seemed to be a good way to tackle this problem (Hutchins, 1997). 
The first results towards automatic machine translation seemed to be quite promising. However, in the end, it turned out that machine translation was much more complex than originally expected and the progress fell far short of expectations. Especially the handling of word ambiguity turned out to be a big challenge. One famous example was the translation of the English sentence “out of sight, out of mind” which ended up being translated into the Russian equivalent of “invisible idiot” (Hutchins, 1995).
As a consequence, in 1964 NLP technology was classified as hopeless by the Automatic Language Processing Advisory Committee. The funding of research in this area was temporarily stopped as it was neither regarded as faster or cheaper nor as accurate as human translation (Automatic Language Processing Advisory Committee, 1966). AI winter
An AI winter marks a period where funding, research and interest of AI technologies are significantly reduced. Those periods are usually based on expectations that are too high and cannot be met. 

The decreased interest – and therefore also the decrease of funding – in NLP research can be seen as one of the main reasons which caused the first AI winter. 
It took almost 20 years after the first AI winter that NLP started to regain interest. The major drivers for the renewed increase in research activities were the increase of computing power, a shift of paradigms in research approaches and the development of part-of-speech-tagging (POS). 
As predicted by Moore’s law, over the years the computing power had significantly increased. This increase allowed to use algorithms which are more computationally intensive paving the way towards new methods in NLP. Moreover, the higher computational power allowed it to process a bigger amount of data to train the algorithms. In combination with the growing amount of electronic literature, which could be used for training, this opened up great possibilities for the improvement of the available algorithms. 
Additionally, research approaches shifted from grammatical approaches towards statistical and decision-theoretic models. While early grammatical approaches were trying to address the complexity of everyday language based on the implementation of complex rule-based systems, more recent research started using models such as decision trees. Markov model
In a Markov model, the next state is only defined based on the current state and a set of transition probabilities. 

Finally, the development of POS-tagging was another crucial step towards more robust NLP algorithms. In POS-tagging a given text is divided into smaller units, i.e., sentences, words, or even sub-words. To these units, categories and word functions are added. A text can then be described using Markov models. Using this approach, it is no longer necessary to consider the whole history of a text which drastically reduces the complexity of the developed algorithms. 
These developments drastically increased the robustness of NLP algorithms, especially for unseen scenarios and constellations. 
NLP and the Turing-Test
The mathematician and computer scientist Alan Mathison Turing was one of the very early pioneers in AI. With his research he created an important theoretical foundation in the area of computer science. One of the major results of his research is the Turing test which can be used to verify the presence of artificial intelligence (Turing, 1950).  
In the Turing test, a human interrogator uses a computer program to talk to two different conversational partners. One of the conversational partners is a human, the other one a machine. During the conversation, both aim to convince the interrogator of being a human. A conversational agent passes the Turing test if the interrogator is not able to identify which of his conversational partners is human. 
According to Turing, if a machine passes the Turing test, this might allow the conclusion, that the intellectual capabilities of a machine are able to compete with those of the human brain. However, there has been much criticism of the Turing test as it is focused too much on functionality. The question, whether a machine is aware of its answers or not is not addressed. 
The computer program ELIZA, which has been developed by Josef Weizenbaum, was one of the early attempts to pass the Turing test. It can be seen as one of the first approaches to develop a system which is nowadays known as a chatbot or conversational AI. ELIZA simulates the conversation with a psychotherapist using rule-based pattern matching in combination with a thesaurus to process a sentence from an interrogator and generate an appropriate reply (Weizenbaum, 1966).Thesaurus
A thesaurus is a structured dictionary which consists of a systematical collection of terms that are thematically related to each other.  

In a dialogue, ELIZA will parse the input for a keyword which is contained in the thesaurus to look for synonyms or generic terms for this keyword. Based on the result, a phrase related to the term will be selected which will often be an invitation to continue talking. If the program does not find an appropriate key phrase it would reply with a general phrase pretending to not be sure if it understood correctly. 
A typical conversation with ELIZA could look as follows: 
Typical Conversation with ELIZA
ELIZA: How are you today? Tell me about your problems. 
Human: I am feeling depressed. 
ELIZA: Can you explain what made you depressed?
Human: I am not able to handle my workload. 
ELIZA: Why is it important to you to handle your workload?
Human: Because I want to pass my NLP exam. 
ELIZA: I am not sure if I have understood you correctly. 

When ELIZA was first published, it generated some remarkable enthusiasm in the AI community. However, the simplicity of Weizenbaum’s approach was quickly recognized and as expected ELIZA was not able to pass the Turing test. 
A more recent attempt to pass the Turing test was the chatbot ‘Eugene Goostman’. In 2014 this chatbot seemed to be the first system to be able to pass the Turing test. However, the chatbot used a trick pretending to be a 13-year-old Ukrainian boy. Being quite young and not being a native English speaker was used as an explanation that the bot made mistakes with the language and did not know everything. Due to this trick, the validity of this experiment was strongly questioned (Masnick, 2014). 
Self-Check Questions	Comment by Hernandez, Kelsey: Please do not edit self-check questions. 
1. Explain what the Turing test is and name an example how it can be used in NLP. 
The Turing test can be used to find out how far a computer is able to think like a human. 
Example in NLP: rate the ability of conversational agents. 
1.2 Syntax
Syntax in NLP deals with the study of patterns how to form sentences and phrases from single words as well as rules for the formation of grammatical sentences. Therefore, syntactical tasks are about features like word boundaries, categories, or grammatical functions. The meaning of a sentence is not considered in syntactical tasks. 
Typical tasks in NLP dealing with syntactical information are tokenization and Part-of-speech tagging (POS). 
Tokenization
In tokenization, a text is split into individual units which are called tokens (Russell & Norvig, 2022, p. 876). Those units can for instance be sentences, words, or sub-word units. The tokens which have been generated can be seen as discrete elements of a text and can be used to generate vectors which represent that document. 
Let us have a look at the sentence “I like natural language processing.” This sentence could be tokenized into [‘I’, ‘like’, ‘natural’, ‘language’, ‘processing’, ‘.’]. 
There are different ways to perform tokenization. Some examples for tokenization are: 
· White space tokenization: probably the simplest way to tokenize a text. As the name indicates, it uses the whitespaces within a string as a word delimiter. 
· Punctuation-based tokenization: splits a sentence into word tokens based on punctuations and whitespaces
· Treebank word tokenization: punctuation and symbols are separated from a text without interference of the textual context. This means that for example “aren’t” will be tokenized to [“are”, “n’t”]. 
Part-of-Speech Tagging
While tokenization is mainly about splitting a text into smaller subunits, POS tagging adds categories and grammatical word functions – often also referred to as lexical category or tag – to a given text. This can for instance be categories such as ‘noun’, ‘verb’, or ‘adjective’. (Russell & Norvig, 2022, p. 880)
The following figure shows an example for POS tagging. 
Example for Part-of-Speech Tagging
[image: Graphical user interface
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POS tagging is an important step towards handling syntactic ambiguity which is a big challenge in NLP. Syntactic ambiguity often makes it difficult to clearly assign a word to a category. If we look for instance at the word ‘present’, this could either be a verb and refer to a presentation or as a noun refer to a gift. Assigning the right category to a word can therefore not only help in machine translation. It can also be beneficial in tasks like speech synthesis as the word present will be pronounced differently depending on the POS category. 
Another commonly used example to illustrate syntactic ambiguity in a sentence is 
“Time flies like an arrow”
There are many different ways to interpret this sentence. Two of those interpretations are: 
1) There exists a particular arrow such that every time fly (insect) likes that arrow. 
2) Time passes as quickly as an arrow. 
In the first interpretation, the word ‘like’ is a verb while in the second interpretation ‘like’ is used as a comparative preposition. 
Self-Check Questions
1. Please mark the correct statements.
· Syntax deals with the meaning of a sentence. 
· Syntax refers to the pronunciation of a sentence. 
· Syntax is about the structure of a sentence. 
1.3 Semantics
Semantics deal with the study of the meaning of language while the syntax of a text is about providing the rules for a text. To solve semantical ambiguities of a sentence, we need external context, i.e., representations of the meaning of an expression. To create the meaning representations, we can use techniques like semantic parsing. 
In the following you will learn more about the reasons why meaning representation is crucial in NLP and especially in semantic analysis. 
Verifiability
Verifiability refers to the ability of a system to verify a statement based on a given model in a knowledge base (Jurafsky & Martin, 2022, p. 311). This can for instance be used in tasks like automatic question answering. 
To illustrate the concept, we want to have a look at the question 
“Is it possible to study Artificial Intelligence at IU?”
To be able to verify this question, we need a knowledge base which contains information about the possibilities what can be studied at different universities. The representation could for instance look like this: 

A system can then match the input against the knowledge base and answer the question with yes. If there is no appropriate answer in the knowledge base it either has to deny or reply with a message that it cannot reply based on the used knowledge base. 
Ambiguity and Vagueness
Ambiguity is a critical issue in NLP as different sentences can have different meanings depending on the context. Having unambiguous representations of a text is important for most NLP applications, otherwise a system will not be able to reason over the representation of a text. 
If we look at the sentence 
“I want to study Artificial Intelligence at IU.”
most people will immediately know that ‘Artificial Intelligence’ refers to the topic the speaker wants to study and ‘IU’ to the university. However, the sentence could also be interpreted in the way that the speaker wants to study the topic ‘Artificial Intelligence at IU’. 
Vagueness is another concept which is closely related to ambiguity. Vagueness occurs if parts of the meaning of a sentence are underspecified (Jurafsky & Martin, 2022, p. 307). 
The sentence 
“I want to study.”
gives enough information to find out, that the speaker wants to study in general. However, it remains underspecified what and where the speaker plans to study exactly. 
Canonical Forms
The same meaning of a statement can be formulated with different sentences. Our example sentence could for instance also be formulated as 
“Artificial Intelligence is what I want to learn at IU.”
If canonical forms are used it means that all inputs which describe the same thing have the same meaning representation in the knowledge base (Jurafsky & Martin, 2022, p. 307). 
Using canonical forms can help to simplify NLP applications that are related to reasoning as only one representation of a fact has to be stored in the knowledge database. However, canonical forms will also complicate semantic parsing tasks as the system has to be able to identify words or sentences which belong to the same thing.  
Inference and Variables
Inference in general refers to the ability of a system to draw a conclusion from various inputs based on a knowledge base even though these conclusions are not explicitly represented in the knowledge base. This is done by logically deriving the desired conclusions from the known propositions (Jurafsky & Martin, 2022, pp. 307–308). 
If for example a person asks the question
“Where can I study Artificial Intelligence?” 
this does not explicitly refer to any particular university. In this case, simple matching does not work as there is no specific university named. To answer the request, the system could use a representation such as 

Where  is a variable from the knowledge base which can be replaced in a way that the answer of the system will match the question. Being able to handle variables and use them for logical inference is important for systems which are able to handle open questions like the one in the example. First-order logic
First order logic can be used as a meaning representation language using a set of various atoms which can be used to compose larger units such as sentences.   

Expressiveness
The last important property in meaning representation is expressiveness. This means that a system has to be able to handle a large range of topics, ideally for every utterance. One approach to handle this challenge is first-order logic. 
Self-Check Questions
Name at least three reasons, why semantics are important in NLP
Ambiguity and Vagueness
Inference
Expressiveness
Verifiability
1.4 Prosodics
Prosodics refer to properties of speech which cannot be derived from segmental phonemes. While phonemes are a unit of sound that distinguishes one word from another, prosodics refer to larger units of speech and include elements such as loudness, pitch, or duration, which are also called suprasegmental properties of speech (Nooteboom, 1997, p. 640). The term prosody comes from the Greek word ‘prosodia’ which can either mean song or syllabic accent (Gibbon, 2017, p. 4). 

Prosody is an essential part of speech as it can transport information which is not encoded in the pure sequence of words such as irony or sarcasm or the emotion of a speaker in general. It can therefore help to disambiguate aspects of a text which are not reflected in the transcripts. Taking prosodics into account can have a huge impact on the performance in speech recognition tasks (Waibel, 1988). 
There is a large number of prosodic features of speech which have a huge influence on how a word or sentence can be interpreted. However, there are huge differences in prosodics dependent on the underlying language. Therefore, we will limit the following illustrations to English. 
Prosodic Prominence 
There are several ways of emphasizing words in languages like English. A word could for instance be said slower or louder or the fundamental frequency F0 could be varied making a word higher or more variable.  Fundamental frequency
The frequency of the vibration of the vocal folds.  

Pitch Accents
Prominence can be represented by using pitch accents which are often also referred to as tone. Pitch accents refer to a specific melody which is applied to a word to add morphological functions or make phonemic distinctions (Gibbon, 2017, p. 3). Syllables or words which are more important can be emphasized by accenting them with a pitch.  
Stress
Stress refers to the emphasis, which is put on a sound, syllable, or word while speaking. Stress positions in English are usually indicated by pitch accent. If stress is put to single syllables of a word this is referred to as lexical stress. As the following example shows, the position where a word is stressed, can change the meaning of a word. 
Stress in Prosody
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In the same way, the stress on single words of a sentence can also change the meaning of the whole sentence. 
Prosodic Phrasing
In spoken sentences, some of the words will be grouped together naturally while between other words there will be noticeable breaks. Breaking up utterances into meaningful chunks is important to be able to understand a sentence, especially as prosodic and syntactic structures are often correlated (Bennett & Elfner, 2019). 
Typical signals for prosodic boundaries are for instance a final fall or rise, phrase- or utterance-final lengthening or a continuation rise. 
In Text-to-speech tasks automatic prediction of prosodic boundaries is an important field of research as it will help to make the results easier to understand. 
Intonation
The intonation of a voice refers to variations in the fundamental frequency F0 as well as variations of the speed of an utterance. It includes rhythms as well as melodies which occur in spoken language and normally refers to constructs that go beyond single words such as phrases or sentences. Intonation does not only include higher and lower melodic patterns but also acceleration and deceleration of the rhythmic patterns (Gibbon, 2017, p. 4). A rise of the pitch at the end of a sentence can for instance be seen as an indicator for a question. On the other hand, a final drop can indicate declarative information. 
The following example shows how different intonations and accenting can affect the meaning of a sentence. 
Example how prosody can affect the meaning of a sentence
[image: Text
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Self-Check Questions
1. Please mark the correct statements.
· Prosody refers to the melody of speech. 
· Prosody refers to a smaller unit of speech than phonemes. 
· Intonation is an example for prosodic information. 
1.5 Grammar
Natural languages are built in a multi-level way: they are based on an alphabet, i.e., a finite number of characters, which are then formed to single words. Words can be formed into sentences using a grammar. Therefore, a grammar is used to formally describe a language.  
Formally, a language can be described as follows: 
An Alphabet  is a finite number of symbols . A sequence  of symbols from the alphabet is called a word. A set of of words are called a language. The grammar of a language  is a set of rules, which can be used to generate the words of the language . 
Formal languages can be categorizes based on the way of how a language is composed based on a grammar. However, natural languages normally come with a lot of exceptions and are therefore too complex to be completely described by a formal grammar. There is normally no hard boundary between sentences which are allowed or not allowed and there is no definitive tree structure for the sentences. Nevertheless, hierarchical structures are very important in natural language in order to reduce ambiguity and to increase understanding of words and sentences. 
Noam Chomsky was the first to propose a formal definition of grammars. A formal grammar consists of the following elements (Chomsky, 1956): 
· A finite number of variables  which are called nonterminals
· A start symbol 
· An alphabet , i.e., a finite number of symbols which are also called terminals. A character cannot be a terminal and a nonterminal at the same time
· A finite number of production rules which have the form , where  and 
Nonterminals are symbols which are used to produce words, which have to be replaced by terminals in the end. Typical nonterminals would be elements like <sentence>, <subject>, <verb>, <object>, <article>, and <noun>. They are often indicated by < >. The words of a language consist only of terminals. As an example, we could define the following alphabet: {‘the’, ‘cat’, ‘eats’, ‘mouse’} 
Rules describe from left to right, how sentences can be formed using the rules. The * is the Kleene star operator and means that the symbols in the brackets can be repeated zero or more times. 
For our example, the set of rules could look like this: 
Example Grammar<sentence>		<subject><verb><object>
<subject>		<article><noun>
<object>		<article><noun>
<article>		the
<noun>		cat, mouse
<verb>			eats



We are now able to build a sentence using the above grammar: 
<sentence>
<subject><verb><object>
<subject><verb><article><noun>
<subject><verb><article> mouse
<subject><verb> the mouse
<subject>eats the mouse
<article><noun> eats the mouse
<article> cat eats the mouse
the cat eats the mouse
The example above could also be illustrated using a so-called parse tree. 
Parse Tree
[image: Diagram
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The simple grammar we used in our example allows us to build simple sentences as the sentence in the example. However, we can also build sentences which are wrong, such as “the cat eats the mouse”. 
For this reason, in formal grammars there are various limitations how rules can be constructed. Chomsky developed a hierarchy – the so-called Chomsky-hierarchy – to describe different grammars of formal languages which increase in complexity. 
The Chomsky hierarchy ranges from Type 0 grammar – also referred to as a phase structure grammar – that is recursively enumerable over context-sensitive (Type 1), and context-free (Type 2) grammars to regular grammars (Type 3). Each class is contained in the next class which is illustrated in the figure below. 
Chomsky’s Types of Grammars
[image: Diagram
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Type 0 grammars can be used to generate the most general language class. It includes all formal grammars without any additional restrictions. Type 3 grammars on the other hand are the most restrictive grammars and are included in all other types of grammars. 
Self-Check Questions
1. What is the main purpose of a grammar? 
To formally describe a language. 
Summary
Natural language processing is an interdisciplinary field of research at the intersection between computer science and linguistics. It can be divided in the three subdomains speech recognition, natural language understanding and natural language generation. Early research dates back as far as the 17th century. 
In NLP Syntax deals with the study of patterns how to form sentences and phrases from words while semantics deal with the meaning of language. Elements such as loudness, pitch or duration of speech are referred to as prosodics. Grammar can be used to formally describe the structure of a language.

Unit 2 – Language and Speech
Study Goals

On completion of this unit, you will be able to …
… illustrate how sound is produced in the human vocal apparatus
… understand the process of speech production
… explain the concepts of phonetics


2. Language and Speech
Introduction 
This unit deals with the production and perception of language and speech. The process of speaking involves several parts of the body, beginning with the lungs which are responsible for respiration, ranging over the voice production in the voice box until the articulation of sounds in the mouth. Therefore, you will first get an introduction of how the human vocal apparatus is structured and how articulation of sounds works. After that we will have a look at how language is created. The focus of this part will be at the cognitive processes which are involved into the process of speaking. 
The last part of the unit is about phonetics which involves the articulation of phones in the mouth, the process of how sounds can be digitalized and finally, how the process of hearing functions. 
2.1 Human Vocal Apparatus
When we speak, we use our lungs to produce an airstream which passes the mouth and the nose. Viewed as a whole, the vocal tract can be divided into three elements: respiratory, vocal, and articulating elements. The respiratory elements are responsible for producing the wind which passes the vocal elements. The vocal elements will then produce the voice which is in the last step shaped by the articulating elements. 
The figure below shows the human vocal tract. 
The Vocal Tract
[image: Diagram
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We will now go more into detail how the components work. 
Respiratory Mechanisms
The abdominal muscles, diaphragm, rib cage, and chest muscles cause the movement of the lungs. When we breath, this happens in two phases: 
· Inhalation: the diaphragm and the intercostal muscles will contract. This pulls down the lungs and the rib cage and fills the lungs with air as the volume of the lungs increases. 
· Exhalation: the intercostal muscles and the diaphragm relax. This causes the ribs to collapse and therefore decreases the ribcage capacity. Therefore, the air is pushed out of the lungs again. 
As the two steps of breathing illustrate, the lungs are not able to inflate by themselves. Instead, they are moved by the diaphragm and the intercostal muscles (Ratnovsky et al., 2008, pp. 82–83).
Voice Production
Once the airstream has been produced by the lungs, it will then flow through the windpipe (trachea), pass the voice box (larynx) as well as the back of the throat (pharynx). 
The voice box (larynx) contains two small muscles, the vocal folds, or vocal cords. Between the vocal cords there is a small space called glottis. Depending how close they are together, they will vibrate when air passes through. This vibration produces the sound waves. 
The figure below shows a top view of the larynx. When we eat, the epiglottis closes the larynx to avoid that liquids or food get into the trachea and the lungs. The larynx is protected by the laryngeal cartilages. 
Larynx (Top View)
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The closer the vocal folds are together, the more they will vibrate when air passes through. The vocal folds are important for voiced sounds such as [b], or [g] but also English vowels. When voiced sounds are produced, the vocal folds will be closely together while for unvoiced sounds such as [p], [t], or [k] they will be far apart and therefore not vibrate. 
Articulation
Once the sound waves have been generated, they will be modulated in the vocal tract. The vocal tract acts as a resonator and filter for the sound created by the vocal folds in the larynx. Larynx, nasal cavities, and the mouth act as resonators to amplify or attenuate the frequencies. The sound will then be modulated in the nasal and oral cavity. 
The oral cavity consists of several structures which help to shape the air to form different types of sounds. The roof of the mouth consists of the hard palate and the soft palate. Moreover, the position of tongue, teeth and lips play a significant role when it comes to articulating different sounds
The nose is only required for nasal sounds such as [m] and [n] while most sounds are formed in the oral tract.  Nasal sounds are produced when the airstream is directed outwards through the nasal cavity instead of the mouth. 

Self-Check Questions
1. Please complete the following sentence:
The respiratory elements are responsible for producing the wind which passes the vocal elements. The vocal elements produce the voice which is in the last step shaped by the articulating elements. 


2.2 Speech Production
Before words are articulated in the mouth, a number of cognitive processes are involved. The research area of speech production deals with the cognitive processes which are involved when thoughts are transformed into speech (Schriefers & Vigliocco, 2015, p. 255). 
According to Levelt (1999), the process of speech production can be broken down into three levels which are illustrated in the figure below. 
Levels of Speech Production
[image: Diagram
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In the conceptual preparation phase, the speaker decides which information should be transmitted and transforms the thoughts into a message which can be verbalized. As a result, we will have a preverbal message (Levelt, 1999, pp. 226–227). 
Once we have the intention to speak, the brain will select the relevant information from the memory which is required to create the preverbal message. In this process we decide, what we want to say. 
In the formulation phase, we give a verbal shape to the elementary messages from the conceptualization phase. Words are selected from the vocabulary and put into a correct syntactic order. The process of formulation is done in two steps: Morphology
Morphology deals with how the words are formed
Morphology
Morphology deals with how the words are formed

1. Grammatical encoding: selection of the content and forming the structure. A lemma which matches the preverbal message will be selected. The lemma represents the meaning of what we want to say but does not include any specific sounds. 
2. Morpho-phonological encoding: transforming the words into syllables based on morphological  and phonological structures (Levelt, 1999, pp. 229–230). Phonology
Phonology is about how sounds are organized

The third step deals with the articulation of a message. In this phase the syllables which are required for the words are produced and put together. When speaking, we receive the syllable programs from the syllable memory which is also referred to as mental syllabary (Levelt & Wheeldon, 1994, p. 239). After that the speech sounds can be produced by the vocal tract. 
Let us look at a practical example to understand the process. 
If someone asks how the weather will be tomorrow, in the conceptualization phase we will make a concept of what we can reply. The concept for our reply could look like this: 
Example for Conceptual Preparation
[image: ]
In the formulation phase the appropriate vocabulary for our concept will be selected and transferred to a syntactically correct sentence which could for instance be 
“The sun will be shining.”
Additionally, the syllables will be selected which are required to articulate the answer. Finally, in the articulation phase, the answer is transferred to speech. 
Self-Check Questions
1. Please complete the following sentence:
Speech production deals with the cognitive processes which are involved when thoughts are transformed into speech.


2.3 Phonetics
Phonetics deal with the production and perception of sound. It can be divided into three subdisciplines: articulatory, acoustic, and auditory phonetics. The figure below illustrates how these three subdisciplines link together. 
Subdisciplines of phonetics
[image: A picture containing timeline
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Articulatory phonetics deal with the process how humans produce speech by the interaction of the physiological structures. Acoustic phonetics refer to physical aspects of the speech sound such as amplitude or frequency. Auditory phonetics address the perception and understanding of linguistic signals. 
Before we have a deeper look into the three subdisciplines of phonetics we want to start with some basic terms and definitions. 
Phones & Phonemes 
Phonetics are based on phones. A phone can be seen as the smallest segmental unit of speech, no matter if it is important for the meaning of a word or not. Phonemes on the other hand belong to the area of phonology and represent the smallest sound unit which distinguishes two words from each other in a given language. 
To differ between phones and phonemes, phonetic transcription of speech sounds is written in square brackets (e.g., [p], or [b]) while phonemes are indicated with slashes (e.g., /p/, or /b/). 
The most commonly used system for phonetic notations is the International Phonetic Alphabet (IPA) which provides a standardized written representation of speech sounds. For American English, the ARPAbet provides a more simple phonetic alphabet based on ASCII symbols to represent the subset of the IPA which is required to transcribe speech in American English (Jurafsky & Martin, 2022, p. 527).  
The table below illustrates some examples of the differences between IPA and ARPAbet. 
Examples for Differences Between IPA and ARPAbet
	Word
	ARPAbet symbol
	IPA symbol

	thin
	[th]
	[​θ]

	sing
	[ng]
	[​ŋ]

	dish
	[sh]
	[​ʃ]



If not otherwise noted, the following transcriptions will be based on the ARPAbet. 
Articulatory Phonetics
In articulatory phonetics, sounds are divided into three different categories: 
· Vowels are phones which are normally voiced and longer and louder than consonants. 
· Consonants are produced by blocking the airflow. They can either be voiced or unvoiced. 
· Semivowels like [y], or [w] are in between vowels and consonants, they are usually voiced but shorter and less syllabic than vowels.  
Vowels
The sound of a vowel is characterized by the position of the articulators, namely glottis, pharynx, velum, lips and tongue. For vowels, the vocal tract is open which means that the airflow is not obstructed. 
The most relevant parameters to characterize vowels are (Jurafsky & Martin, 2022, p. 530): 
· Height of the highest part of the tongue
· Frontness or backness depending on if the highest part of the tongue is located more in the front or in the back
· Shape of the lips (rounded or not)
For some vowels, the position of the tongue changes while it is produced. These vowels are called diphthongs which comes from the Greek and means having two different sounds. 
The following figure illustrates how vowels and diphthongs can be characterized depending on the shape of the mouth (left) and gives some practical examples (right). 
IPA English Vowels and Diphtongs with Examples
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Consonants
The sound of consonants strongly depends on the place where the airflow is blocked. 
For labial consonants, the lips are involved. Consonants like [p], or [b], where both lips come together, are called bilabial while labiodental consonants such as [v], or [f] are produced by pressing the bottom lip against the upper teeth. Finally, for linguolabial consonants the tongue and the upper lip are involved (Ladefoged & Maddieson, 1996, p. 16). 
Dental consonants are produced by pressing the tip or blade of the tongue against the teeth. Dental consonants include for example the [th] in the word that. 
Alveolar consonants are produced in the part of the mouth which is located behind the upper teeth. Phones like [s], or [z] are made when the tip of the tongue is placed against the alveolar ridge. 
Palatal sounds are produced at the roof of the mouth which is also called palate. If the front of the tongue is placed close to the palate, this will produce sounds like the [y] in yak. Palato-alveolar phones such as the [sh] in the word ship can be produced when pressing the tongue against the back of the alveolar ridge. 
Velar sounds include sounds like [k], or [g] and are produced by using the tongue to block the air in the velum which is located at the roof of the mouth at the back. Velars often occur in coarticulation with vowels as both are produced using the tongue body. Similar to the vowel space, velar consonants can therefore be categorized into front, central and back velars (Ladefoged & Maddieson, 1996, pp. 33–34). 
The figure below illustrates where the positions in the mouth are located. 
Regions of the mouth
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Additional to the above-mentioned places, glottal consonants like [q] are produced by closing the gap between the vocal folds. Glottal stops can also occur between vowels. 
For consonants it is not only important to know the place of articulation but also the manner how the vocal tract is modified, narrowed or closed (Ladefoged & Johnson, 2011, p. 14). The most important manners in the English language will be explained in the following. 
· Stops or plosives occur when the air flow is completely stopped for a brief time. This means that not only the oral vocal tract is blocked but also the nasal air flow is stopped. The stop – also called closure – itself is completely silent. The sound is produced when the air is released. Plosives can be either voiced (e.g., [b], [d], or [g]) or unvoiced (e.g., [k], [p], or [t]). 
· When nasals are produced, the oral tract is completely closed, and air can only pass through the nose.  To produce nasal sounds, the velum is lowered in order to direct the air into the nasal cavity (Jurafsky & Martin, 2022, p. 530). Nasals are for instance the consonants [m], and [n]. 
· Fricatives – also referred to as spirants – are produced by a turbulent airflow (frication). To produce this sound the vocal tract is partly blocked. The sound of fricative is depending on the area where they are produced. To produce labiodental fricatives such as [f] and [v], the lower lip is pressed against the upper teeth. Dental fricatives like [th] are produced between tongue and teeth. (Ladefoged & Johnson, 2011, p. 14). The most common fricatives in English are [s] and [z] which are high-pitched fricatives where the tongue guides the airflow towards the teeth. Those fricatives are also called sibilants (Jurafsky & Martin, 2022, p. 530).  If a stop is directly followed by a fricative like the [ch] in child, the combination is called affricate. 
· Approximants are produced by bringing the articulators close together but still not that close that it causes a turbulent airstream. Examples for approximants are for example the [w] in wood, where the back of the tongue is moved close to the velum. 
· If the tongue is moved quickly against the top of the mouth, this is called tap or flap. 
The combination of the manner and the place of articulation will yield a unique consonant depending on how the sound is shaped. 
Acoustic Phonetics
Acoustic phonetics deal with the description of human sounds as a combination of waves. These waves are used to transfer the sound from a speaker to a listener. The waves can be modeled as periodic functions. Periodic functions repeat after a certain distance or time. 
The time  between two oscillations is called wavelength or period. From the period, the frequency  of a wave can be computed as the number of oscillations within one second: 

A sound with a frequency of 150 Hz means that the sound repeats itself 150 times within one second. The frequency of a sound wave reflects the pitch of a sound. The higher the frequency of a sound, the higher the pitch and vice versa. 
Another important characteristic of a sound is its amplitude . The amplitude indicates the intensity of a sound, i.e., how loud it is. If the amplitude is high, the produced sound will be loud while quiet sounds are characterized by a low amplitude. 
Digitalization of Speech
In order to be able to process a sound by a computer, the speech signal has to be transformed into a signal, which can be represented in a form the computer can understand. This is done by quantization and sampling. 
Quantization transfers a signal from an analog to a digital signal while sampling converts a continuous signal into a discrete signal. 
In the figure below the process of transforming an analog signal to a digital signal is illustrated. 
Analog-to-Digital Conversion of a Signal
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When a signal is sampled, the amplitude is measured at regular intervals. The number of samples per second is referred to as the sampling rate or sampling frequency. For the selection of the sampling rate, it is important to select a sampling rate at least twice as high as the maximum frequency which is to be reconstructed (Nyquist-Shannon sampling theorem). The maximum frequency is also referred to as Nyquist frequency and can be computed as follows: 

When the sampling rate is too low, aliasing will occur, which produces a distortion from which it is not possible to recover the original signal.  
For quantization, the y-axis is typically partitioned into a fixed number of equally sized intervals. The number of intervals  is typically a power of 2, such as . The signal of the quantized signal can only have values that are within the range of the intervals. Of course, the quantization adds noise to the signal, i.e., induces errors. For a signal which is in the range from  to  the average quantization error can be computed using the following equation: 




Time and Frequency Domain
Signals can either be analyzed in the time or in the frequency domain. Analysis of features like the amplitude or the pitch of a signal can be interpreted directly from the time domain. However, many algorithms in speech recognition are based on features from the frequency domain. Using methods like the Fourier Transform, a signal can be transferred from the time into the frequency domain. In the frequency domain the waves from different frequencies will be summed up. This representation is called a spectrum. Fourier Transform
The Fourier transform is a mathematical method, which can be used to decompose a function from the time domain into the frequency domain. 

Representation of a Signal in Time and Frequency Domain
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The figure shows an example of a signal which is transferred from the time to the frequency domain using fast Fourier transform (FFT). The signal on the top is generated by combining two sine functions: one sine function with an amplitude of 2 and a frequency of 1 Hz and another with an amplitude of 1 and a frequency of 10 Hz. The bottom signal shows the same signal in the frequency domain. As the amplitude of the 1 Hz signal is two times higher than the amplitude of the 10 Hz signal, the peak at 1 Hz is also two times as high as the peak at 10 Hz. 
Auditory Phonetics
Auditory phonetics deal with the perception and processing of sounds. 
When we hear a sound, we will perceive it with our ears. The ear consists of three parts: the outer ear, the middle ear and the inner ear. 
The anatomy of the human ear is shown in the figure below. 
Anatomy of the Human Ear
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The outer ear is located outside of the skull (1) and includes the ear canal (2) and the pinna (3). The most important function of the outer ear is to encode the spatial and temporal information of the sound it collects. 
The middle ear consists of the eardrum (tymphanum - 4), the fenestra ovalis, as well as three tiny bones (6, 7, 8) which are also called auditory ossicles. When the eardrum is moved by sound waves, it will move the hammer (malleus - 6). The hammer will then transmit the sound via the anvil (incus - 7) to the stirrup (stapes - 8) which will transfer the sound to the membrane of the fenestra ovalis which is the opening to the vestibule of the inner ear. 
The part of the inner ear which is involved in hearing is called cochlea (10). It is located in the bony labyrinth (9). The cochlea converts the sound into nerve impulses which can then be processed by the auditory nerve (11). 
A healthy human is normally able to perceive frequencies between 20 Hz and 20 kHz. However, the frequencies we are able to hear are strongly influenced by factors like age or gender. The older we get, the lower the highest frequencies we are able to hear, and the highest frequency gets as low as 12 kHz. 
Self-Check Questions
1. Please complete the following sentence:
Articulatory phonetics deal with speech production. Acoustic phonetics are about aspects of the speech sound. Auditory phonetics address perception and understanding of speech. 
Summary
Speech is produced using the vocal apparatus. The respiratory elements produce a wind which passes the vocal elements. These elements then produce the voice which can afterwards be shaped by the articulating elements of the vocal apparatus. 
Before speech can be produced, cognitive processes transform the thoughts from the brain to speech. 
Phonetics deal with the production and perception of sound. To transcribe phonetics, systems like IPA and ARPAbet can be used. Articulatory phonetics refer to the process how humans produce speech by the interaction of the physiological structures. Acoustic phonetics deal with the physical aspects of the speech sound such as amplitude or frequency. Auditory phonetics are about the perception and understanding of linguistic signals. 


Unit 3 – Challenges in NLP
Study Goals

On completion of this unit, you will be able to …

… describe what is important about data for NLP systems.
… compare different NLP systems. 
… explain the domain challenges for NLP systems.
… understand the difficulties of multilingual applications. 

3. Challenges in NLP
Introduction 
In the past decades, algorithms for NLP – be it for speech recognition, natural language understanding, or natural language generation – have become tremendously powerful. However, human language is extremely complex and subject to constant changes over time. This poses a lot of challenges to NLP which will be addressed in the following unit. 
We will start with an introduction to the most important challenges that arise when collecting data for NLP applications. Having a high-quality data corpus to build a model is key to developing new systems. Moreover, we will discuss, how NLP systems can be evaluated. The evaluation of NLP systems is an important step to find out which model works best for a certain task and compare different models.  Moreover, good evaluation metrics can also help optimize a given model’s parameters. 
Another important challenge in NLP is different application domains as language may vary depending on the domain. But there are also other factors that can influence language such as social groups or dialects. 
Finally, you will learn about the challenges in NLP when building multilingual applications. 
3.1 Data for NLP
NLP can be divided into three different subdomains: 
· Speech recognition deals with the recognition of words and sentences from spoken language and is therefore also referred to as speech-to-text processing. 
· Natural language understanding is about the identification of the meaning of words and sentences
· In natural language generation, the text is transformed into meaningful speech. 
All subdomains have in common that they require data to train and develop a model which suits the respective NLP task. 
In the early years of NLP, algorithms were limited by data storage capacities, computational power, and the available amount of publicly available data corpora. Nowadays this is no longer an issue as computers have become faster, storage has become cheaper and there has been a massive increase of data available for many different application scenarios. The importance of training data was underpinned by an experiment, where Banko and Brill (2001) showed, that the amount of training data has a higher influence on the performance of the model than the choice of the machine learning approach. 
The Risk of Biased Data
When a model is trained, it is important that the data fits the requirements of the desired application domain. Especially with the huge amount of data that is available nowadays, it is important to keep an eye on the quality of the data, as the quality of the data has a significant impact on the quality of the model. If a model is trained with data that is not appropriate for a certain purpose, the resulting model will most likely not perform well in this domain. This fact is often summarized by the term “garbage in, garbage out”. For instance, Buolamwini and Gebru (2018) found, that many data sets in machine learning are systematically biased on axes such as race, or gender. Likewise in NLP, data sets have been found to contain biases for instance toward the race of a speaker (Sap et al., 2019). 
Most NLP systems are limited to one single language. So far, most research is still done on the English language, and data from other languages is often ignored (Bender, 2009). This induces some major problems: especially when analyzing information from news, social media, or blogs, focusing on English will induce a bias to the results as there are many sources in other languages which are underrepresented in the analysis (Loginova et al., 2021). Looking at the number of native speakers, languages such as Spanish or Mandarin have more native speakers than English. 
Another challenge that comes with the over-representation of the English language compared to other languages is the curse of dimensionality. If a dataset is too wide, i.e., includes a large number of features compared to the sample size, this increases the chances overfitting. This means it is quite likely for a machine learning model, to find fake correlations which do not exist. Therefore, transferring high-dimensional NLP techniques based on English to smaller languages can yield to bad results (Johns, 2019). 
Data Challenges for Under-Resourced Languages
While data collection in general can already be a challenging task, so-called under-resourced languages induce further challenges for the generation of data corpora. Under-resourced languages are characterized by the following aspects (Besacier et al., 2014): 
· No stable orthography or unique writing system
· Limited or no presence on the internet
· No or only little linguistic expertise
· Limited electronic resources for NLP tasks like annotated (monolingual) data corpora, transcribed speech data, bilingual dictionaries, vocabulary lists, etc. 
Under-resourced languages are often also referred to as less-resourced languages, low-density languages, low-data languages, or resource-poor languages. It is important to differentiate between under-resourced languages and minority languages. The latter refers to languages which are only spoken by a minority of people but might still be well-resourced. One example of a minority language would for instance be the Catalan language. 
When collecting data, one major challenge for under-resourced languages is that there is usually a gap between language experts (i.e., the people who speak that language) and the technology experts (i.e., the people developing a system). In many cases, it can be very difficult to find native speakers who also have the technical skills to build an NLP system in their language. Another problem is that most under-resourced languages are not described well in linguistic literature. 
Due to the lack of resources, innovative methods for data collections are necessary, such as crowdsourcing (Gelas et al., 2011) or multilingual acoustic models (Le & Besacier, 2009; Schultz & Waibel, 2001) which share information between languages. To address the poor documentation of under-resourced languages in linguistic literature, one possible solution is to use knowledge and resources from similar languages and try to map for instance the phonetics from more resourced languages to the under-resourced language (Besacier et al., 2014). Crowdsourcing
In crowdsourcing, difficult tasks for computers are outsourced to a human crowd in the web. 

Data Transcription and Annotation
When NLP models are trained, one has to differ between supervised and unsupervised learning. In supervised learning, labeled data is used to train a model while in unsupervised learning there are no labels necessary. 
For supervised learning algorithms in NLP, we need labeled data. This means that depending on the NLP task, we need to transcribe and / or annotate the data set used to train a model with additional metadata. This process is necessary to make the data understandable to machines. 
In order to build a model for speech recognition, it is necessary to have a vast number of transcribed data available. Speech transcription is about the conversion of spoken words into text – be it orthographic or phonetic transcripts. 
In orthographic transcription, the standard spelling system of the target language is used to convert speech into text. In phonetic transcription, a text is transcribed into phones (i.e., speech sounds) using symbols like the international phonetic alphabet (IPA).  Nowadays, especially for languages like English, there are powerful speech-to-text models which can be used to transform spoken language into text. However, for other languages there is still a lack of fully transcribed data corpora. 
Text annotation refers to the process of adding labels to text files about their content. There are several types of text annotation. The most important types are illustrated in the figure below. 
Different Types of Text Annotations
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Sentiment analysis deals with the identification of the sentiments or emotions of a text. Therefore, in sentiment annotation a text is annotated according to the emotion it reflects. This information can for instance be used to analyzed data from social media or from customer reviews. 
Intent annotation is about finding out the intention behind a text. This could for instance be the classification of a customer request into categories such as request, confirmation, or command. According to the classification result, the request could automatically be routed to the responsible department. 
In entity annotation, different key phrases, parts of speech or named entities are identified. Key phrase extraction can help to quickly identify the content of a text or a document (Gollapalli et al., 2017). Part-of-speech (PoS) tagging deals with the identification of words according to their grammatical categories such as nouns, adjectives, verbs, or adverbs. Named entity recognition (NER) is about the identification of named entities such as locations, persons, dates, or organization names (Li et al., 2022). 
In text classification, a text is labeled according to its category. This can be done on a sentence level but also for whole paragraphs or documents. 
Linguistic annotations can be divided into three subcategories: discourse annotation, semantic annotation, and phonetic annotation. While discourse annotation deals with the identification of contextual knowledge, semantic annotation is about the annotation of word definitions. Phonetic annotation labels parameters such as stress, intonation and pauses in speech. 
Data Corpora & Toolkits
As NLP is an important field of research in the area of artificial intelligence, there is a large number of data corpora available which can be used to develop and train models and algorithms. 
Platforms like Kaggle (https://www.kaggle.com) provide data sets from different areas. NLP frameworks such as spaCy (https://spacy.io) provide fast statistical NER including a named entity visualizer. Using spaCy it is either possible to train your own model or to use a pretrained model which is included in the framework. The Natural Language Toolkit (NLTK) is another framework which provides for instance a pre-trained model for NER (Bird et al., 2009). Gensim (https://radimrehurek.com/gensim/) is another NLP framework which focusses on topic modeling. 
Self-Check Questions
1. Please complete the following sentence:
In NLP, the amount of training data has a higher influence on the model performance than the machine learning approach. 
3.2 Evaluation of NLP Systems
The importance of NLP systems in our everyday life is constantly increasing. Therefore, it is important to have systems, which are as reliable as possible. To make NLP systems more robust, it is important to keep continually improving the underlying models. The goal is, to find a model which is optimally able to fit future data. This means that the error rate of the predictions is minimized. 
Training, Validation, and Test Set
For a proper model evaluation, the data, which is used to develop and optimize a model, is randomly split into three distinct data sets: training, validation or development, and test set. In supervised learning the sample data consist of a pair of an input and an output vector where the output vector contains the label of the data set. 
The training data set is used while a model is trained. It contains sample data that is used during the training process to fit the model parameters. During the training, the model will be run with the training data (James, 2013, p. 176). The result of the model is compared to the label of the output vector. Depending on the result, the model will be adjusted accordingly. Besides the fitting of the model parameters, the training of a model can also include the selection of the variables which are suited best for the estimation of the target variable. 
In the next step, the validation set is used to further optimize the performance of the model developed based on the training data. It is important that the validation data has not been used for the training before to be able to obtain an unbiased evaluation of the model which has been developed during the training. Validation set
The validation set is often also referred to as development set. 

Finally, the test set is the data set that is used to evaluate the performance of the final model. It is important that the samples in the test set are not used during training and optimization of the model to obtain an unbiased result of the final evaluation. The test set is used only once. In case the results which are produced by the test set do not match the expectations, a completely new test set has to be used if the process of model training is repeated. 
To obtain a robust model, it is crucial to have data sets that follow a similar probability distribution and are independent of each other. 
Evaluation Metrics
When algorithms are developed and tuned, we will need some metrics to evaluate the developed models and compare them to other systems. 
For binary classification tasks, commonly used metrics for model evaluation are precision and recall, the F-Score, and accuracy. 
To understand those metrics, we want to have a look at credit scoring. Credit risk scoring is a typical binary classification problem, where AI is commonly used to decide, if a customer is creditworthy or not. 
Depending on how a decision for the creditworthiness of a customer is made, the results can be categorized as follows: 
· If a customer is classified as creditworthy and turns out to be creditworthy this is called a true positive (TP), i.e., the prediction of the algorithm of a positive outcome was correct. 
· If a customer is classified as creditworthy but turns out not to be (e.g., because of failure to pay), this is called a false positive (FP). In this case, the algorithm had predicted a positive outcome, but the outcome turned out to be negative. 
· If an algorithm predicts a customer to not be creditworthy and it turns out that the customer actually goes bankrupt, it is called a true negative (TN) meaning that the prediction of the algorithm of a negative outcome was correct. 
· In case a customer is considered to not be creditworthy but would have been in the end, we call it a false negative (FN), i.e., the algorithm has predicted a negative outcome even though it would have been positive. 
The results of the classification can be represented in a contingency table which is called confusion matrix or error matrix. The confusion matrix has two dimensions, one for the predicted and one for the actual outcome. 
The table below shows what the confusion matrix looks like and how the above-mentioned classification results can be displayed in the matrix. 
The Confusion Matrix
	
	
	Predicted result

	
	
	True
	False

	Actual result
	True
	TP
	FN

	
	False
	FP
	TN



Once we have the classification results, the above-mentioned evaluation metrics can be computed. 
Accuracy
Accuracy is probably the performance measure which is the easiest to understand and interpret. It is defined as the ratio of those samples which have been correctly classified in relation to the total number of samples: 

For the credit risk assessment, it would be computed by taking the number of decisions that have been correctly made by dividing them by the total number of decisions about the credit risk. 
While the accuracy is a very straightforward performance measure, it comes with the disadvantage, that it is not very robust towards unbalanced data, i.e., if there are large differences in the number of samples for each class. For credit risk assessment, for example, it is quite likely that the number of positive decisions exceeds the number of negative decisions. 
Precision
Precision reflects how many positive samples have been classified correctly with regard to the total number of samples in this class: 

In our example with the credit risk assessment, this would be the number of customers who have been identified as creditworthy and paid back their credit in relation to the total number of customers who have been identified as creditworthy no matter if they were able to pay back their credit or not. 
Recall
Recall denotes the number of positive samples which have been identified correctly in relation to the total number of samples which should have been predicted to be positive: 

If we look at the prediction of the creditworthiness this would be the number of customers who have correctly been identified to be creditworthy in relation to the total number of customers who would have been creditworthy. 
F-Score
The F-Score is a score which combines precision and recall in one single number using the harmonic mean: 

The F-Score can range from 0 to 1. A value of 1 or close to 1 is correlated with high values of precision and recall which means very accurate classification results. A value of 0 means that either the value of precision or recall is zero. 
The ROC Curve
If we look at classification tasks, most algorithms will return a percentage, how likely it is, that a sample belongs to a different class. If we have for instance a look at a sentiment analysis task, this could be the decision, if a customer review is classified as positive or negative. Therefore, we need to set a threshold or cutoff value, which indicates when a sample is classified to a certain category. Setting this threshold to 75 percent could for instance mean, that all model outputs from our sentiment analysis task with an output value higher than 75 percent would be classified as positive. 
To find the optimal threshold, the receiver operator characteristic (ROC) curve can be used. For every possible cutoff value, the ROC curve shows the trade-off between the true positive (TP) and the false positive (FP) rate. Therefore, the shape of the ROC curve indicates, how strongly the classes distinguish when the cutoff value is varied (Kulkarni et al., 2021, p. 9). Ideally, the TP rate should be 100 percent and the FP rate 0 percent. However, as this is normally not the case, the ROC curve can help to find the cutoff value which maximizes the TP rate while minimizing the FP rate. TP and FP rate can be computed as follows: 



The TP rate and the FP rate form the axes of the ROC curve. The computation of the ROC curve can be done with the following steps: 
1. Set the cutoff value to a value between 0 and 100 percent.
2. Compute TP, TN, FP and FN values for the testing set according to the classes defined by the cutoff value.
3. Calculate TP rate and FP rate.
4. Enter the resulting point on the ROC curve.
5. Set a new cutoff value and continue with step 2. 
The following figure shows an example of a ROC curve. 
The ROC Curve
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The closer the curve is to the left upper corner, the better is the predictive power of the model. To measure this, the area under the curve (AUC) can be calculated. 
In the figure below, different shapes of the ROC curve are illustrated. 
Different Shapes of the ROC Curve
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For an ideal model, the AUC would be 1 while for a random model, the AUC would be 0.5. In reality, the value ranges somewhere in between. 
Evaluation of Machine Translation
Early evaluations of MT were normally done manually by evaluating metrics such as fluency and adequacy. 
When fluency is evaluated, the person evaluating the system has to be fluent in the target language to be able to judge if the output is fluent or not. The Accuracy of the translation of the source words is not analyzed. 
Adequacy on the other hand does not analyze how fluent a text is written but evaluates how good the information from the source is contained in the system output. For this purpose, the annotator must know both languages, even though it is not necessary that he is fluent in both languages. 
Both metrics are normally measured separately for each sentence and evaluated on a five or seven point scale (Przybocki et al., 2009). These scores can also be averadged to have only one single score for the system evaluation (Snover et al., 2006). 
Evaluating the results of MT by humans is a time consuming – and therefore also expensive – task. Moreover, manual metrics often lack repeatability and subjectivity as the output strongly depends on human judgements. For this reason, automated metrics can help to evaluate the results of the translation. The most popular metric for MT is the bilingual evaluation understudy (BLEU) which rates the quality of a translation based on how good a machine translation corresponds to a human translation. The basic idea is, that a machine translation is better, the closer it is to a professional human translation (Papineni et al., 2001, p. 311).  
The BLEU score can be computed by comparing “n-grams of the candidate with the n-grams of the reference translation and count the number of matches. These matches are position independent. The more matches, the better the candidate translation” (Papineni et al., 2001, p. 312). The calculations are based on n-grams at a word level, meaning a sequence of n words. The resulting score will be a number between 0 and 1. The score can be seen as a similarity measure between the hypothesis and the reference text. The closer a value is to 1, the higher the similarity between both texts. As “systems have been known to generate more words than are in a reference text” (Celikyilmaz et al., 2018, p. 71), a modified form of precision is used for BLEU. 
BLEU can also be used to evaluate other NLP tasks such as text summarization or language generation. 
Self-Check Questions
1. Name the three data sets, which are used to develop and evaluate NLP models. 
- Training set
- Validation set
- Test set
3.3 Domain Challenges
When NLP is used to solve a task, it is important to take the specific domain and / or setting of the input data – be it text or speech – into account. 
Variations of application domain
Different words and phrases can have different meanings depending on the application domain. This phenomenon is also referred to as domain mismatch. The best performance can be achieved, if a system is adapted to the domain which best matches the respective use case. If for instance a dictation software is trained for lawyers, it might not perform well when being used by a reporter trying to dictate an article about sports. In the same way, a sentiment analysis task which has been trained on tweets might not necessarily have the same performance on customer reviews. A system for automatic short answer grading which has been designed for questions from business administration might have a bad performance on math exams. 
The quality of the outcome highly depends on the quality of the text corpora which are used for training. If a text corpus from the wrong domain is used for training, the model will most likely have a poor performance in the domain for which it has been designed. In general, the level of diversity of the data used as an input for a system has a great influence on the generalization and abstraction abilities of a model. A model will perform better in a specific domain if it is trained with a more domain-specific input. However, this will reduce the ability to generalize and to perform on common topics. 
The figure below illustrates an example of how a word can have different meanings depending on the domain in which it is used. 
Different Meanings of One Word
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Chu et al. (2017) used for example a Chinese-English machine translation system that was originally developed and trained for texts in the patent domain. Without any adaption, this system performed poorly when trying to translate TED talks. After a domain-specific adaption with texts from other TED talks, it was possible to improve the performance of the system seven times. 
In statistical machine translation (SMT) the domain adaption is usually done by adapting the entries in the language model and the phrase table (Jinsong Su et al., 2012). 
Looking at neural machine translation (NMT), a popular method for domain adaption is to first train a system for a general domain, and after that perform a training on domain-specific data for some of the epochs (Freitag & Al-Onaizan, 2016; Koehn & Knowles, 2017a). 
Language Variations
Language can vary depending on the environment and the circumstances. On the phone we will communicate different than when writing an email, when talking to a customer we will talk different than when we talk to friends. 
There are four dimensions of language variation: diaphasic, diatopic, diachronic, and diastratic variation (Zampieri et al., 2020). 
Dimensions of Language Variations
[image: ]
Diaphasic variations are related to the situation where communication happens. This means the variation is related to the communication medium or setting. This can for instance be the difference between oral and written communication or different degrees of formality of a language. In Japanese for instance there are four different levels of formality. While the vocabulary of the lower levels is quite similar, the politest level uses different vocabulary for some of the words. 
Diatopic variations refer to the linguistic area which can for instance be variations in race, different dialects, or also national varieties of the same languages as American versus British English. 
One challenge about data dealing with dialects is that they are typically underrepresented in written resources. Therefore, when analyzing dialects, new text corpora have to be produced by transcribing speech. Depending on the dialect this can either be done automatically (e.g. Ali et al. (2015)) or manually (e.g. Scherrer et al. (2019)).  
For variations of the same languages like for instance British and American English, diatopic variations are less challenging as both have their own written standards and sometimes even use different words such as rubbish in British and garbage in American English (Zampieri et al., 2020). 
Diachronic variations are about the variations of language over time. This includes for instance old-fashioned and obsolete words but also changes in terminology in the recent vocabulary. One example how the meaning of a word can change over time is the German word ‘Querdenker’ which was before 2020 used as a term for someone who thinks in an unconventional way and mostly perceived in a positive way. After the start of Covid-19 it started to become a synonym for someone who denies Covid and the associated measures and is nowadays mostly connotated in a negative way. 
Diastratic variations of language relate to the variations in languages which can be traced back to social groups such as age or gender (Zampieri et al., 2020). For example, the sentence “This is no good” could also be expressed as “This ain’t no good”. 
Self-Check Questions
1. Please complete the following sentence:
Diaphasic variations are related to the communication medium. Diatopic variations refer to the linguistic area. Diachronic variations refer to variations of language over time. Diastratic variations are about variations to social groups. 
3.4 Multilingual Application
Multilingual applications in NLP are a big challenge. Besides the bias induced by most research being done in English, under-resourced languages are another big challenge in NLP, especially when it comes to multilingual applications. 
In the following we will have a closer look on the challenges which are induced by multilingual applications 
Code Switching
Code switching refers to the process when a speaker or writer changes the language (i.e., the code) while speaking / writing. This can happen within a dialogue, between sentences or even within a part of a sentence. Code switching commonly happens in multilingual communities when people with different language and / or cultural backgrounds communicate (Auer, 2001). As most speech recognition systems are limited to one single language – code switching is an important topic to be addressed in multicultural settings. 
To handle code-switches in spoken language, the position in an utterance where the switch happens has to be detected. Most code-switches occur at positions, where the syntactical rules of the languages involved are not violated (Bokamba, 1989). The most frequent points for switches are between verb and object noun phrases and between determiners and nouns (Adel et al., 2013). 
Features which can be used to predict code-switching points include for instance Part-of-Speech tags, language identity, or word form (Solorio & Liu, 2008). 
Multilingual Sentiment Analysis
In the past decades, sentiment analysis, i.e. the detection of emotions based on language, has become an important research area in NLP (Wankhade et al., 2022). In multilingual sentiment analysis sentiments are detected and classified based on information from texts which are written in multiple languages. While there has been lots of research on well-resourced languages like English or Chinese, low-resourced languages are still underrepresented. Further developments of NLP technologies for those languages are therefore limited. Especially when it comes to research about NLP and socio-cultural and multicultural factors, there have been limited insights from past research (Lo et al., 2017). 
Machine Translation
Machine translation (MT) is another example of multilingual applications where under-resourced languages can be a challenge. In MT speech or text are translated from one language to another in an automated way. The research field dealing of the automatic translation of under resourced languages is called low-resource MT. In low-resource MT there are no large bilingual text corpora of source and target language available. 
To avoid the problem of data scarcity when training the MT system, a commonly used approach is using pivot MT (Yunsu Kim et al., 2019; Wu & Wang, 2009). Pivot MT tackles the problem by using a so-called pivot language to close the gap between source and target language (Deng & Liu, 2018, pp. 147–183). 
The figure below illustrates the translation process for the example of translating from Khmer to Zulu. 
Example for Pivot Machine Translation
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In the example two cascading systems are used instead of using only one single direct system. A text is first translated from the source language (Khmer) into the pivot language (English). After that the second system continues the translation from the pivot language into the target language Zulu. 
This approach has the advantage that there is significantly more data in the language pairs Khmer – English and Zulu – English than we would have using a direct language model for Khmer – Zulu. 
Self-Check Questions
1. Please complete the following sentence:
In pivot machine translation a source language is translated into a target language using a pivot language. 
Summary
One of the key elements to develop a proper NLP model is the availability of reliable data to train the system. One of the problems you have to face when collecting data is that biased data and factors like under-resourced languages can make it difficult to find a data corpus which is suitable for a certain task. 
To develop an NLP system, data is split into training, validation, and test data. Moreover, it is important to be able to compare the system to other systems and to have metrics for a good parameter optimization. For this purpose, metrics like accuracy, precision, recall and the F-score can be used. 
Variations of the application domain and variation in language pose a further challenge for NLP systems. When developing multilingual applications, phenomena like code switching or under-resourced languages are problems which have to be dealt with. 

Unit 4 – Techniques 
Study Goals

On completion of this unit, you will be able to …
… differ between rule-based and statistical-based systems. 
… work with regular expressions. 
… know the basics of n-grams.
… understand the vectorization of data.
… explain the concept of NLP models. 


4. Techniques
Introduction 
Early NLP systems were mostly based on rule-based techniques. In the meantime, systems have shifted towards statistical models. Therefore, this unit starts with an introduction to the difference between both kind of systems. Afterwards, the concept of regular expressions is introduced which are a powerful tool to search for instance for a specific term in a given text. 
To be able to determine the meaning of a whole text, it is important to not only look at single words, but also at the combination of words. Therefore, the concept of N-grams will be introduced. After that we will have a look at different techniques how data can be vectorized. We will first start with the simple bag-of-words approach and afterwards have a look at neural models to build word and sentence vectors. 
The unit closes with an overview of how NLP models can be used for text processing. We will start with the most important steps for text preprocessing as this is an important part of the pipeline when using pre-trained models. Afterwards you will get an overview about the underlying concepts of statistical models and neural models. 
4.1 Rules vs. Statistics
In early NLP systems, rule-based systems were applied on linguistic structures. In most cases, these rules were hand-written for a specific domain which made it hard to transfer a system from one domain to another. 
Nowadays there has been a shift towards systems, which are based on statistical methods from machine learning which has helped to make these systems more powerful. 
In the following we will look closer into the details of rule-based and statistical systems for NLP. 
Rule-Based Systems
In rule-based systems for NLP a given problem is addressed using a set of predefined rules. The rules used in those kinds of systems are built in a way that they try to reproduce the way humans construct sentences.  
To illustrate how rule-based systems work, we will have a look at the very simple example of a system which extracts single words from a text. This can be done by using only one single rule which divides a given text at every blank space. On the first sight this might look like a very simple and good solution to the problem. However, if we look at terms like “Los Angeles” this already illustrates, that the problem is more complicated than one might have originally thought. Therefore, mor complex systems are required which use formal grammars and are based on linguistic structures. 
Development of rule-based systems usually involves human knowledge to build the system. This brings us to one of the major advantages of rule-based systems: the explainability. Explainability is about the ability to make it unambiguously comprehensible how a system came to a certain solution. This makes it easier for humans to locate errors and to understand how a specific task has been processed. 
Another advantage of rule-based systems is that they can be developed and improved in a very flexible way. When rules are changed or added this does not necessarily mean changes to the core of the application. Moreover, the development of rule-based systems requires a comparatively small amount of training data. 
However, one of the major drawbacks of rule-based systems is their lack of flexibility when it comes to the application domain. Being built for a specific domain makes it difficult to use those systems in a domain which differs from the domain it has been designed for. Additionally setting up the rules for a rule-based systems requires human experts to build the rules. 
Statistical-Based Systems
In the past decades, computational power has significantly increased. This paved the way for statistical methods. Statistical methods are often summarized under the term machine learning. Nowadays, those systems have replaced most of the rule-based systems. 
Statistical methods follow a data driven approach. To generate a model in statistical-based methods, a huge amount of training data is used for a given task. Once a model is trained, it can be used to make predictions for an unknown set of data. 
One of the major differences to rule-based systems is that statistical-based systems to not require a human expert with domain knowledge to set up the rules. This comes of course at the expense of the explainability of the systems. 
Statistical-based systems can be set up quite easily based on existing systems by adapting them with appropriate data. Additionally, it is much easier to transfer a model from one domain to another than for a rule-based system. 
Self-Check Questions
1. Please complete the following sentence:
Early systems in NLP were mostly based on rules while nowadays most systems are based on statistics. 


4.2 Regular Expressions
One common task in NLP is to search for a specific pattern in a given text or string. A powerful tool to tackle this problem is to use regular expressions (also referred to as “RegEx”). Most programming languages like Python, JavaScript or Perl and even shell scripts or the UNIX command line are able to handle regular expressions. Also, some editors like Vim or Emacs are able to work with regular expressions for operations like search and replace. 
In rule-based NLP techniques, regular expressions are commonly used to perform tasks like extracting data from text. This can help above all if well-defined patterns like times, prices or dates have to be identified and extracted. 
Basic Concepts of Regular Expressions
In the following we want to introduce the basic concepts of regular expressions.
There are some metacharacters which often occur in regular expressions: \, ^, $, ., |, ?, *, +, (, ), [, ], {, and }. If some of these characters are used as a literal, they have to be escaped with a backslash. Otherwise, they will be executed as a regular expression. 
Anchors
Anchors are used to mark a position in a string: 
· ^ marks the start of a string
· $ indicates the end of a string
Examples: 
· ^Apple will match the string “Apples are no pears”	Comment by Hernandez, Kelsey: Please do not edit anything in code font.
· apple$ will match the string “I want to eat an apple” but not “Apples are no pears”. 
· ^Apple$ will only match the string “Apple” but not the other two sample sentences. 
Character Classes and Disjunctions
Disjunctions represent a logical OR. Disjunctions are either separated using the pipe sign | or written in squared brackets []. 
Examples: 
· The expressions pe[aeu]r, pe(a|e|u)r, or pear|peer|peur would all match the words “pear”, “peer”, and “peur”
Character classes are used to represent a certain group of characters in a regular expression: 
· \d or [0-9] will match with any digit
· \w or [0-9_A-Za-z] will match with alphanumeric characters and the underscore
· \s will match all white spaces
· . will match any arbitrary character
Character classes and disjunctions can be negated using ^. For example, \^d would mean that a character is no digit. 
Quantification
Quantifiers make it possible to define repetitions of preceding elements. In regular expressions, the following quantifiers are used: 
· ? indicates that the preceding element occurs zero or one time
· * marks zero or more occurrences of a character 
· + marks one or more occurrences 
· {n} indicates that the preceding element occurs exactly n times
· {n,} indicates that the preceding element occurs at least n times
· {n,m} indicates that the preceding element occurs at least n and at maximum m times. 
· {,m} indicates that the preceding element occurs at maximum m times. 
Examples: 
· ap{1,3}le will match aple, apple, and appple. 
· app?le will match aple, or apple. 
· a[p]+le will match aple, apple, appple, and so forth. 
Combinations of Regular Expressions
The regular expressions introduced above can be combined in various ways to search for specific terms in a text. 
If we want to find for instance all prices in a given document, this could be done using the following regular expression: 
€[0-9]+

This expression would return all whole number prices. However, if a price has decimals, only the whole number would be returned. 
Therefore, we need to extend the expression in the following way: 
	€[0-9]+.[0-9][0-9] 

Using this pattern also prices with decimal digits can be detected. However, this expression will not be able to detect whole number prices anymore. Therefore, we need to make the cent digits optional: 
	€[0-9]+(.[0-9][0-9])?

Now all prices in the document can be detected correctly. 
Self-Check Questions
1. Please complete the following sentence:
Anchors are used to mark a position in a string. Logical ORs are represented by disjunctions. Character classes are used to represent a certain group of characters. Repetitions of preceding elements can be defined by quantifiers.


4.3 N-Grams
So far, we have learnt a lot about the identification of single words. However, when we only look at single words, we will not be able to determine the meaning of a whole text. Therefore, it is important to not only look at the occurrence of single words but also at the combination of different words. This can be done using language models. Language model
A language model is used to model a probability distribution for a sequence of words. 

To understand the concept why we need language models, let us start with a simple example illustrated in the figure below. 
Example for the Use of Language Models
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A good language model will most likely be able to identify that it is more likely that a person wants to go to the beach while being on holiday than wanting to go to the office and therefore complete the sequence of words accordingly. Completing the sequence from the example with the word peach will have the lowest probability as the sentence does not make sense. 
N-grams are the simplest language model and can be used to assign probabilities to a sequence of words, or sentences.  In general, a sequence of n words is called an n-gram. For example, a sequence of two words will be called a 2-gram (also known as bigram). This could for instance be “hello world”. The sentence “how are you” would be called a 3-gram (or trigram). 
N-grams can be used to estimate the probability of the last word of a sequence of n words based on the previous words. The task is therefore to predict the probability  of a word  based on the history : 

For the example above it could look like this: 


The easiest way to estimate this probability is to use the frequency counts  based on a large data corpus such as the internet: 

Looking at our example we will receive the following equations:


In summer 2022 the count for the sequence “I like to go to the beach” on Google was more than 8.5 Mio while the count for the sequence “I like to go to the peach” was zero. The word sequence “I like to go to the” occurred more than 63 Mio times. In probabilities this means: 

The example illustrates how n-grams can help for instance in speech recognition as both sentences might sound quite similar in spoken language. However, it is more likely that the last word of the sentence is beach instead of peach. 
In our example we looked at the whole history of a word. In a bigram language model, we would only analyze a sequence of 2 words (i.e. ‘the beach’ vs. ‘the peach’), in a trigram language model a sequence of 3 words and so forth. The higher n, the more accurate the predictions can be. However, it also increases the computational power and the risk of sparse data. 
Working with the counts of a word sequence is a very straightforward way. Nevertheless, it comes with some disadvantages. As the example already illustrated, even for large data corpora it can happen, that the count of a sentence is zero. This will lead to a probability of zero even though the probability might be larger than zero. Moreover, when wanting to predict the probability of a sequence of words, the number of counts can get very large if we want to compare it to all possible sequences of that length which will consume a lot of resources. 
Self-Check Questions
1. Please complete the following sentence:
When working with N-grams, a sequence of two words will be called a bigram. A sequence of 3 words is called trigram. 



4.4 Vectorizing Data
The input data for machine learning algorithms has to be in a numerical format. Therefore, information from unstructured text has to be represented in a way which enables the computer to process that text. To transfer a text in a numerical format, we need to find a way how to embed words in a semantic vector space.
In the following you will learn more about how a text can be vectorized using simple approaches like bag-of-words but also other concepts to vectorize words and sentences. 
Bag-of-Words
The so-called bag-of-words (BoW) model is one of the easiest approaches when converting information from text into numbers. BoW represents a text as a vector which contains information about how often a word occurs in a given text. All words from a text are put in one unique set of words – referred to as ‘bag’. During this process, information about the word order or the structure of this text gets lost. 
Let us have a look at an example to illustrate the BoW approach. For the example we will use the following sentences: 
1. I like to drink coffee
2. I do not like tea
3. Tea is not like coffee
First, we have to extract all unique words from the sentences. This can be done using tokenization. 
We will receive the following words for the above sentences: 
	I, like, to, drink, coffee, do, not, tea, is
Using the words, we can build a word vector. For our example we will receive a vector with a length of 9. Using this vector, we can perform a scoring for the words in the respective sentences. 
For the sentences from our example, the word vectors will look like this: 
1. [1, 1, 1, 1, 1, 0, 0, 0, 0]
2. [1, 1, 0, 0, 0, 1, 1, 1, 0]
3. [0, 1, 0, 0, 1, 0, 1, 1, 1]
To summarize the scores of the BoW model, different approaches can be used. In a Boolean representation the resulting vector is a simple indicator if a word occurs in a sentence of not. In our example, the vector summarizing all three sentences would look like this: 
	[1, 1, 1, 1, 1, 1, 1, 1, 1]
Using the count of words approach, the resulting vector will reflect the number of occurrences of a word in a given text, which would in our example look as follows: 
	[2, 3, 1, 1, 2, 1, 2, 2, 1]
Both representations have in common, that the information about the word order in the text gets completely lost. 
Being a very simple approach, the BoW model comes with some major disadvantages: 
· It is important to select the vocabulary carefully to find the right balance between the number of words and sparsity. When the size of the model increases, this will also increase sparsity of the BoW vectors. Higher sparsity of the model can also increase computational costs. 
· The meaning of the words can get lost when BoW is used as neither context nor word order or sense are analyzed. If we look at our example, we will notice that the way how the word ‘like’ is interpreted in the respective sentences strongly depends on the context – once it is used as a verb, the other time as a preposition. To differ between two meanings of a word, BoW does not perform well. 
Word Vectors
To be able to use words as an input for models in machine learning like linear classifiers or artificial neural networks, the words need to be transformed into word vectors. This will allow to embed the words in a semantic vector space. Once the words have been transformed, similarities and word analogies can easily be found applying linear operations. In order to do so, methods like the cosine similarity can be used. The cosine similarity measures the similarity between two vectors based on the cosine of the angle between those two vectors. The cosine similarity can be computed as the dot product of the vectors divided by the product of the vector lengths: 


The cosine similarity can have values between -1 and 1. A value of 0 means that both vectors are orthogonal, i.e. independent from each other. A value of -1 means that both vectors are opposite while +1 means that they are pointing into the same direction. When word vectors are built based on word frequencies, the value of the cosine similarity will range from 0 to 1 as the underlying word frequencies can not be negative.   
We now want to have a look at some methods for word vectorization: Word2Vec, the TD-IDF algorithm and GloVe. 
Word2Vec
The Word2Vec model is a rather simple approach which is based on a neural network. When Google Research first published Word2Vec, this denoted an important progress in NLP research. The neural network uses one single hidden layer to generate word embeddings (Mikolov et al., 2013). The neural network in Word2Vec expects a one-hot vector as an input. This one-hot vector is built using BoW. In order to build the vector, all values of that vector are set to 0. Only the index of the word which is being analyzed is set to 1. 
To obtain a proper model for Word2Vec, a large text corpus – for instance a Wikipedia dump – is required. To train the model, a sliding window with a fixed length of  is moved over the text. Typical sizes of the sliding window would for instance be  or . 
There are two different models which are used for predictions: Continuous Bag-of-words (CBOW) and Skip-gram. 
CBOW is used if we have a sentence of length  and want to predict a missing word based on the context of the  other words of the sentence. The input vector can be constructed using either the sum or the average of the one-hot-vector. 
Skip-gram on the other hand uses one single word in a fixed window of length  to predict the other  context words. 
The figure below illustrates the difference between both models. 
Comparison of CBOW and Skip-Gram
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In CBOW, the order of the context words does not influence the outcome of the prediction. In skip-gram on the other hand, the context words which are closer to the input word get more weight than context words which are more distant. While for infrequent word, the skip-gram architecture is suited better, CBOW will perform faster to predict words. 
The goal when training Word2Vec for a sample from the data corpus is the maximization of the probabilities of the words which appear in the fixed window. As a result, we will receive a function which is called the objective function. 
Term frequency – inverse document frequency
If we use BoW to analyze a given document, all words have the same weight. The word vectors only reflect which words are contained in the text. To get more information about the importance of a word, approaches like term frequency – inverse document frequency (TF-IDF) can be used. TF-IDF is a statistical measure which comes from information retrieval (Beel et al., 2016). To get information about the relevance of a word, term frequency (TF) and inverse document frequency (IDF) are combined. 
The computation of TF-IDF is based on the following parameters: 
· The term frequency (TF) reflects the number of occurrences of a term  in a document  in relation to the total number of words in the document. It will increase the more often a term occurs in a given document:

· The document frequency (DF) gives information how many documents include the term  with respect to the total number of documents . The document frequency indicates how important a text is in relation to other documents:



· The inverse document frequency (IDF) reflects how relevant a term is. It is the logarithmically scaled inverse of the document frequency:

To compute the final TF-IDF-score the term frequency is multiplied with the inverse document frequency. 

If the value of TF-IDF is high, this is an indicator for a word which occurs frequently in a document while the total number of documents which include that term is relatively small in comparison to the total number of documents. Therefore, more specific requests will get a higher weight. TF-IDF can therefore be used to identify those terms in a document which are most important in a given text. 
Global Vectors for Word Representation 
Another vectorization method which is commonly used in NLP is global vectors for word representation (GloVe). In contrast to Word2Vec, GloVe works in an unsupervised way. It is based on the word counts in a text. GloVe was developed in order to obtain a model which – in contrast to skip-gram – also considers statistical information about word co-occurrences. For this reason, Pennington et al. (2014) combined skip-gram with matrix factorization. In the GloVe approach a co-occurrence matrix is used, which reflects information about the context of a word. Especially for similarity tasks and named entity recognition GloVe has been proven to outperform other related models (Pennington et al., 2014). Matrix factorization
A method to simplify complex matrix operations by reducing a matrix into its components. 

Sentence Vectors
Converting words into vectors a machine is able to process is an important step in NLP applications. However, in tasks like sentiment analysis or question answering it is not enough to analyze a single word. Instead, it is necessary to look at whole sentences or paragraphs. This requires methods to transform a sequence of words in a format that can be understood by the learning algorithm. 
There are various approaches to handle text snippets of various length in NLP algorithms. In the following, we will present a selection of the most prominent approaches. In the descriptions, the term “sentence” will not be used in a strict grammatical way but to represent a whole text paragraph. 
Skip-thought
The skip-thought vectors approach (Kiros et al., 2015) transfers the skip-gram architecture from Word2Vec form a word to a sentence level. 
Similarly to Word2Vec, a large text corpus is necessary to train the model. While Word2Vec uses a sliding word window, in skip-thought the analysis window comprises a triple of three consecutive sentences. As a result, we will get a model which follows a typical encoder-decoder architecture. The encoder uses the middle sentence from the triple as an input. Based on this input it will produce an output and send it to the decoder. The model can be further optimized by using the decoder to selectively predict the previous or the next sentence. 
For NLP tasks where no prediction model is required, once the model has been trained, the decoder part can be discarded. The resulting output vector from the encoder can be used as the vector representation of the sentence. 
It is possible to use the model to predict only the previous or the following sentence. The resulting vector is then called uni-skip vector. If two uni-skip vectors are concatenated in a way that one predicts the next and the other one predicts the previous sentence, the result is called a bi-skip vector. When n-dimensional bi-skip vectors are combined with n-dimensional uni-skip vectors, the resulting vector is referred to as a combine-skip vector. In a comparison the combine-skip model produced slightly better results than the other skip-thought models (Kiros et al., 2015).  
For English there is a pre-trained model publicly available which is based on the BookCorpus dataset (Zhu et al., 2015). 
Universal Sentence Encoder 
The universal sentence encoder (USE) was developed by Google Research (Cer et al., 2018). USE provides a model family for sentence embedding which are available in two different variations: either based on a deep averaging network (DAN) or based on a transformer model. While the DAN based variant is faster than the transformer-based model, it is less accurate. 
As well as for skip-thought, there are pre-trained models available, one multilingual and on English model which are both based on the DAN architecture (Chidambaram et al., 2018). 
Bidirectional Encoder Representations From Transformers
The bidirectional encoder representations from transformers (BERT) is based on the transformer architecture (Devlin et al., 2018). This model was also developed by Google Research and made available open source. The model has been pre-trained using a big text corpus using two different unsupervised and combined ways: next sentence prediction and with a masked language model. 
When next sentence prediction is used for training, the model is trained with a pair of two sentences. The goal of the model will be, to predict if the second sentence follows the first sentence. The focus of the resulting model is therefore on the relation between the sentence pairs. 
Using a masked language model, about 15 percent of the words from a training set are masked. This could for instance look like this: 
“The most [mask1] thing in the morning is to [mask2] a good cup of coffee.”
In the example the words “important” and “drink” have been masked. When the model is trained, the goal is to predict the words which are missing in the sentence. This helps the model to understand the context of the words. 
Both models were trained together using unlabeled data from the BookCorpus. 
Self-Check Questions
1. Please complete the following sentence: 
Input data for machine learning algorithms has to be in a numerical format. Therefore, unstructured text has to be transferred into a numerical format to embed words in a semantic vector space. 



4.5 NLP Models
Many NLP applications use unstructured data which has to be analyzed. In order to obtain a vectorized representation of the unstructured text, pre-trained NLP models can be used. The models provide labels for a text which are either extracted from the text data or predetermined. Using those models makes it possible to quickly build NLP applications without having to train a model yourself. 
There is a large number of NLP models which employ different methods for prediction and classification tasks.  The models can be categorized in two different groups: statistical and neural supervised learning models. 
To be able to use pre-trained models, the input data has to be prepared in a way the model can understand. Therefore, you will first get an overview about the most important text preprocessing techniques before we dive deeper into NLP models. 
Text Preprocessing
Before NLP models can be used, the data – which is usually provided as a human readable text – has to be converted in a format which can be used as an input by the models. Depending on the model which will be used, this requires different preprocessing steps. Some typical preprocessing steps will be described in the following. 
Tokenization is used to split a text into smaller sub-units which are also referred to as tokens. The tokenization can for instance be done using whitespaces and punctuations. 
Stop word removal removes words which have no impact for a specific NLP task. Typical stop words are articles and pronouns. There are hand-curated word lists for different languages which contain words which occur frequently across different text corpuses. 
Using lemmatization, the words of a text are converted to their base form which is called lemma. For instance, the words ‘going’ and ‘went’ would all be converted to the word ‘go’, the word ‘stories’ would be lemmatized to ‘story’. Lemmatization often requires look-up tables and can therefore be computationally intensive. 
Stemming is another method to convert words to their base form. However, in contrast to lemmatization, in stemming only the suffix (i.e., the last few characters) from a word is removed which can sometimes lead to incorrect results. If we look for instance at the word ‘caring’, lemmatization will correctly return the word ‘care’ while stemming would return ‘car’. However, especially for large datasets using stemming can be beneficial if it comes to performance. 
In order to perform the preprocessing, toolkits like SpaCy (https://spacy.io) or NLTK (https://www.nltk.org) provide a bunch of methods to be used for this purpose. 
Statistical Models
Statistical language models are based on a statistical probability distribution over strings on a given alphabet. Most commonly, those models work at a word level. Knowing the statistical distribution of words can for instance be used for auto-completion tasks or the detection of spelling errors but also in tasks like named-entity One of the simplest examples for statistical NLP models are n-grams which we covered in one of the previous sections. 
Statistical models like n-grams are based on the Markov assumption, meaning that the given a present word, the following words are independent of the past words. Therefore, the probability of a word is calculated only on the probability of a (limited) history of words. 
The advantage of statistical model is that they are comparatively easy to train given a large data corpus. However, samples which have not been observed in the training data will be assigned with zero probabilities if they occur in a document. Moreover, statistical models lack generalization abilities compared to neural models.  
Neural Models
In the past years, neural models for NLP have become more and more popular. Neural NLP models are based on deep learning strategies such as recurrent neural networks (RNN) or convolutional neural networks (CNN). 
The architecture of CNNs is based on several convolution kernels. For every layer, the convolution kernel is slid over the input matrix to generate a feature map, i.e., a filtered version of the input matrix. In the subsampling layers the dimensionality of the feature maps is further reduced until in the last layers we receive a feature representation which is reduced on a very high level. This feature representation can then be passed by the so-called fully connected layer to a layer of artificial neurons. These neurons learn how these high-level features can be mapped to the output classes. CNNs are mainly applied in computer vision tasks (Valueva et al., 2020). However, for NLP tasks they have for instance shown to be perform well when used for learning different n-gram patterns from a word-embedding matrix in sentence classification (Yoon Kim, 2014). 
In RNNs connections between nodes allow that the output of certain nodes affects the subsequent input into the same node. This makes it possible to model temporal correlations. RNNs have an internal memory which allows them to process input sequences of a variable length (Tealab, 2018). In contrast to CNNs, RNNs are therefore able to preserve the sequential order of a text which makes them more suitable for most NLP tasks. The major drawback of RNNs compared to CNNs is that computations cannot be parallelized which might slow the training down (Shankar & Parsana, 2022). 
Many deep learning models are based on an encoder-decoder architecture. In an encoder-decoder architecture the encoder converts the input text into a vector, which encapsulates all important information from the input sequence. The decoder then takes the information from the encoded vector and converts it back to the original representation. In most cases, the decoder will use the same network structure as the encoder (e.g., RNNs) just in the opposite direction. The figure below shows a simplified version of a typical encoder-decoder architecture. 
Simplified Encoder-Decoder Architecture
[image: Chart, diagram
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If we look for instance at an example from machine translation where a sentence has to be translated from English to German, the encoder will first encode the English sentence to a feature vector which holds all information about the original sentence. In the next step output from the encoder is passed to the decoder which will then translate the information to German. 
In an encoder-decoder architecture, it is possible to train the encoder with the output of the decoder. For this purpose, the output of the decoder is compared to the input of the encoder. This automatic way to train the model is referred to as autoencoder architecture (Hubens, 2018). 
In 2017 Google introduced transformer models which are currently the most powerful models for NLP tasks. Transformer models are based on an encoder-decoder architecture. In contrast to traditional encoder-decoder models, they rely on self-attention mechanisms instead of using CNNs or RNNs (Vaswani et al., 2017). Self-attention 
The concept of self-attention in NLP relates to the relationship between different positions of a word sequence when computing a representation of a sentence. 

To understand the concept of self-attention, let us look at the following example sentences: 
	“I moved from Munich to Berlin because I like it there.”
In this sentence we know that ‘it’ refers to Berlin while in the following sentence ‘it’ refers to Munich. 
	“I moved from Munich to Berlin because I did not like it there.” 
The example illustrates, how important it is to identify the correct relationships between the parts of a sentence for a correct comprehension. 
Transformer models are not only significantly faster to train than RNN- and CNN-based models, they also outperform those models if it comes to accuracy in tasks like machine translation (Vaswani et al., 2017).   
Nowadays there is a large number of pre-trained models available which are based on the transformer architecture such as BERT (Bidirectional Encoder Representation from Transformers, Devlin et al., 2018), RoBERTa (a Robustly optimized BERT pretraining Approach, Liu et al., 2019), DistilBERT (Sanh et al., 2019) or XLNet (Yang et al., 2019). 
Self-Check Questions
1. Please complete the following sentence:
In text preprocessing, the text is split into smaller sub-units using tokenization. The process of removing of sub-units which have no impact for an NLP task is called stop word removal. 


Summary
Over the years, a large number of techniques have been developed for NLP tasks. Early systems were built on a set of rules which tried to reproduce the way how humans produce sentences. Later, statistical-based systems came up which follow a more data driven approach. 
Regular expressions are a powerful tool which can be used in a large number of NLP tasks such as preprocessing or pattern matching in search queries. Combining regular expressions can help to answer complex search queries. 
An important approach if it comes to text understanding is the use of N-grams which can help to determine the meaning of a whole text. 
To be able to process data by a computer, data vectorization is an important step. The simplest approach is the BoW model. However, the BoW model does not perform well for more complex tasks. Therefore, approaches like Word2Vec, or TF-IDF can be used to build word vectors. To build sentence vectors, there exist approaches like Skip-thought or USE. 
Nowadays, there is a large number of pre-trained NLP models available. For text preprocessing the most popular models are spaCY and NLTK. Statistical models are built on probability distributions while neural modals use more sophisticated approaches such as autoencoder architectures. 



Unit 5 – Application Scenarios


Study Goals

On completion of this unit, you will be able to …
… describe typical tasks and challenges in automatic speech recognition and speech synthesis
… explain how machine translation works
… tell about the most important techniques for information extraction
… explain how NLP can be used for sentiment analysis and chatbots
… know the most important libraries for NLP in Python



5. Application Scenarios
Introduction 
This unit introduces some areas of application of NLP. We will start with speech recognition and synthesis which are the basis for many NLP tasks. After that, you will learn more about machine translation. 
In the following, you will learn about the most important concepts of information extraction – the process of automatically extracting structured information from a text. In this context, you will learn more about named entity recognition, relationship extraction, and coreference resolution. 
In the following section, we will have a look at the basics of sentiment analysis and the challenges you have to face when trying to extract emotional information from a text. The last application area we are going to focus on is chatbots – a domain that has been massively growing over the past years, as chatbots can bring many potential savings across all industries. 
The unit closes with an introduction, on how you can build your own NLP project in Python. For this purpose, you will also get to know NLTK and spaCy which are commonly used frameworks for NLP projects. Finally, we will give some examples of how to implement selected NLP concepts. 
5.1 Speech Recognition & Synthesis
Speech recognition and synthesis are important parts of NLP applications. Therefore, we now want to dive deeper into automatic speech recognition (ASR) – also known as speech-to-text (STT) – and speech synthesis, which is often also referred to as text-to-speech (TTS). 
Speech Recognition
Using speech for communication – be it with other people or with machines – is much more intuitive than using text. Not only can we use our hands for other activities while speaking – speech actually on average transports information three times faster than typing (Ruan et al., 2018). ASR can be used to transcribe spoken language (i.e., speech) into text. Being a subfield at the intersection of computer science and computational linguistics (Soni, 2019, p. 257) it offers a wide range of application scenarios such as text dictation or using speech to control voice assistants. 
In the past decades, there have been a lot of improvements in ASR. Therefore, it is nowadays not only used in the professional but also in the private environment. Even though the quality of transcription does still not compare to the quality of human transcribers, it is normally faster to first use ASR and then perform manual post-processing instead of transcribing everything manually. This semi-automated process of speech transcription can save a lot of time and money. 
Like in all other areas of AI, the quality of the training data has a massive influence on the quality of the transcribed speech. The best quality can still be achieved when using domain-specific monolingual text corpora. 
In the past, ASR systems typically combined an acoustic model, a pronunciation dictionary, and a language model. In the past years, end-to-end systems for ASR which are based on deep learning have become increasingly popular. End-to-end in the context of ASR means, that a system directly maps an input sequence of acoustic features which have been derived from the speech signal to a sequence of words or graphemes (Wang & Li, 2019). Grapheme
In written language a grapheme is the smallest meaningful unit which differs between words. 

Typical Tasks in ASR
Considered in itself, ASR is only about the automatic transcription of speech signals. However, there are many tasks that include ASR as a part of another – more complex – task. This can for instance be speech-to-speech translation, voice assistants, speaker recognition, or other related tasks such as speaker diarization. 
In speaker recognition, speaker-specific information which is included in the speech waves is used to recognize who is currently speaking (Zhang, 2000, p. 179). Speaker diarization automatically determines in an audio or video recording, who has been speaking at what time (Anguera Miro et al., 2012, p. 356). 
Let us now have a look at the automatic transcription of speech. Nowadays, speech-to-text services are commonly used, not only by organizations but also by individuals. The dictation capability many systems nowadays provide is probably one of the most important advantages as they allow a user to easily insert text into documents or control devices. Recent speech recognition technology is able to convert speech into text as fast as the words are spoken which can massively increase the process of writing documents – even though in most cases it is still necessary to manually post-process the produced text. 
Voice assistants are another steadily growing application area for ASR.  Nowadays they are integrated into almost every smartphone, in smart speakers as well as in modern cars. Especially when driving a car using a voice assistant can be very helpful as the driver does not have to remove the hands from the steering wheel. 
Challenges in ASR
As every person speaks differently and we are not always in a quiet environment, there are numerous challenges in ASR. These challenges include for instance noise and channel variability, speaker anatomy and gender, accented and non-native speech and homophones. 
Noise and channel variability refers to effects such as echo, or other background noises such as music. Therefore, algorithms can be applied, which focus on the frequency bands of the speech signal. 
The speaker anatomy and the gender have a considerable influence on how speech sounds. For instance, men have longer vocal tracts than women or children which therefore leads to a lower fundamental frequency in their speech signal. To address this issue, vocal tract length normalization can be used (Garau et al., 2005). If vocal tract length normalization is used, a parameter which transfers the spectrum towards the spectrum of an average vocal tract is applied to the speech signal (Saheer et al., 2012, p. 2135). 
Non-native and accented speech can cause a shift of parameters in the feature space. Commonly used methods to tackle this challenge are maximum a posteriori (MAP) adaption and maximum likelihood linear regression (MLLR).  In MAP adaptation “adapted model parameters are estimated separately for each of the ‘styles’ of speaking, and then interpolated using a global interpolation weight” (Tomokiyo & Waibel, 2001, p. 3). “In MLLR adaptation, transformation classes are defined, and model parameters of the entire class are shifted in the same direction” (Tomokiyo & Waibel, 2001, p. 4).
Homophones are words which are pronounced similarly but are spelled in a different way and also have a different meaning. For example, the words ‘rows’ and ‘rose’ are pronounced in a similar way. As it is not possible to distinguish homophones at an acoustic level, language models are required which contain contextual information to be able to identify which orthographic form of a word is correct. 
Speech Synthesis
Speech synthesis or text-to-speech (TTS) is about producing human speech in an artificial way based on a given text (Tan et al., 2021), i.e. a written text is transformed into spoken language. In speech synthesis, several disciplines are combined: computer science, linguistics, acoustics, and signal processing (Ning et al., 2019). Nowadays, TTS is integrated into many applications of our everyday life – be it voice assistants, navigation apps, speech-to-speech translation or news readers. TTS can also be used to assist people with reading disabilities or vision impairment by reading a written text (Isewon et al., 2014) and enable people to communicate despite restrictions in speaking – Stephen Hawking being a prominent example of this application scenario (Medeiros, 2015). 
Typical Tasks in Speech Synthesis
The most common applications for TTS are voice assistants and speech-to-speech translation. 
A speech-to-speech translation system needs both: ASR and speech synthesis. The ASR component first needs to convert the speech into text before a machine translation system can translate the text. The output of the machine translation process will again be a text which has to be converted into a speech signal. Since computational power has been increasing massively in the past years, speech-to-speech translation can nowadays be done almost in real-time. 
Also, digital voice assistants include ASR as well as speech synthesis. The figure below illustrates, how a voice assistant can be constructed. 
ASR and Speech Synthesis in a Voice Assistant
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Typically, a user will speak a voice command which will be converted into text by an ASR component. A natural language understanding component processes the text and passes it to the dialogue management component. The dialogue management component will produce an appropriate reaction, if for instance the user asks a question, the dialogue management component can look for an appropriate answer. In the next step, the response generation component will generate an answer in a textual representation which will then be transformed into speech by the TTS component. 
Challenges in Speech Synthesis
When techniques like parametric speech synthesis or concatenative speech synthesis are used, a grapheme-to-phoneme conversion is necessary. This will convert every word into its corresponding pronunciation, i.e., the phonetic transcription. 
Parametric speech synthesis simulates the process how speech is produced in the human vocal tract to approximate the parameters that generate speech (Ning et al., 2019). Those parameters can for instance be the duration, the fundamental frequency F0 or the magnitude spectrum. In concatenative speech synthesis, waveforms are directly concatenated from a speech waveform database to output a continuous speech stream speech (Ning et al., 2019). 
For grapheme-to-phoneme conversion the pronunciation can be looked up in a dictionary. In the past, these dictionaries have often been generated manually which has been a time-consuming process. Data-driven grapheme-to-phoneme converters which are trained on existing word-pronunciation pairs can help to tackle this issue by directly providing pronunciations for words (Schlippe et al., 2014). There exist open source tools such as Sequiter G2P (Bisani & Ney, 2008) which can be used for the conversion. 
Evaluation of Speech Synthesis Systems
There are different aspects which can be evaluated for TTS systems: Intelligibility, naturalness, preference, and comprehension. 
Intelligibility reflects how accurate every word is produced. Naturalness refers to the quality of the generated speech signal if it comes to pronunciation, timing, and emotions. Preference is about the choice of a listener which speech synthesis. Finally, comprehension deals with the degree how good a message is understood. 
Self-Check Questions
1. Please complete the following sentence:
Automatic speech recognition is about converting speech into text while speech synthesis is about generating speech based on a given text. 
5.2 Machine Translation
Machine translation (MT) has always been an important subfield of NLP starting with early attempts of translation from Russian to English during the second world war. The goal of MT is to automatically translate text or speech from one language to another language. 
Even though there have been significant advances in MT in the past decades, the quality of MT does not compare to the quality of human translations, especially when it comes to understanding context or cultural connotations. Nevertheless, it has nowadays become faster to combine MT with manual post-processing by a human expert than to have the whole text translated by a human. Moreover, the output quality of the translation depends strongly on the quality of the data which is used for training. Like in any other area of NLP the results will be better if the model is trained with domain-specific data. Statistical machine translation
In SMT translations are made based on statistical models which have usually been built on bilingual text corpora.

Early MT approaches were based on rule-based translation. However, these models did not perform well. Only as statistical machine translation (SMT) came up, MT started to regain interest. In the past years, neural machine translation (NMT) made rapid progress. Therefore NMT has recently become the most commonly used method (Koehn & Knowles, 2017b). 
MT contains both: text-to-text as well as speech-to-speech translations. Text-to-text translation can help to translate websites or text documents, or to accelerate the translation process by professional translators. By extending text-to-text translation by a component for automatic speech recognition and text-to-speech synthesis, a speech-to-speech translation system can be created. Neural machine translation
In NMT artificial neural networks are used to model a sequence of words.  

The following figure illustrates how text-to-text translation and speech-to-speech translation are connected. 
Connection between Text-to-text Translation and Speech-to-Speech Translation
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Both, text-to-text as well as speech-to-speech translation have gained increasing significance in the past years. The increasing amount of video chats and virtual conferences has accelerated the whole process additionally. By using applications such as the Skype translator, MT can help to bridge language barriers amongst speakers. Domain mismatch
Depending on the domain words and sentences can have different meanings and therefore translations. .  

Two of the biggest challenges MT has to deal with today are domain mismatch and under-resourced languages. Therefore, domain adaption is an important step when a MT system is developed for a specific use case. To deal with under-resourced languages, techniques such as pivot MT can be used. Pivot MT
Using a pivot language to bridge the gap between source and target language.  

Self-Check Questions
1. Please complete the following sentence:
The speech-to-speech translation pipeline starts with a component for automatic speech recognition. The output of this component is processed by a text-to-text translation component which is followed by a text-to-speech synthesis. 


5.3 Information Extraction
The goal of information extraction (IE) in NLP is to automatically extract structured information from a given text (Adnan & Akbar, 2019). It is closely related to information retrieval (IR) and both terms are often used synonymously. However, there is a main difference between both: while for IE the relevant facts which are of interest are specified beforehand, IR is about discovering information or documents which contain facts of interest which are not known in advance (Bach & Badaskar, 2007, p. 1).  
Typical IE tasks include for example named entity recognition (NER), relationship extraction, and coreference resolution. Those tasks are often key for more complex NLP tasks such as natural language understanding, question answering, digital assistants, or text summarization (Singh, 2018). NER deals with the classification of named entities from an unstructured text into categories such as date or location (Li et al., 2022, p. 50). Relationship extraction – which is also often referred to as relation extraction – deals with the identification of semantic relations between the entities of a text (Bach & Badaskar, 2007, p. 1). Coreference resolution is used to identify words in a text which refer to the same entity (Clark & Manning, 2016). 
In the following sections we will have a deeper look at those tasks. 
Named Entity Recognition
As previously mentioned, the main goal of NER is to locate named entities in an unstructured text and assign them to categories such as time & date expressions, locations, organizations, quantities, names, and many more. It has been shown that in some cases, NER can help to improve the results of machine translation (Babych & Hartley, 2003). It is also commonly used in tasks where it is important to understand the content of a text. Therefore, for tasks like data organization and text analysis, NER is often the first step towards further analyses. 
In the figure below, you can see an example sentence where NER is used to identify entities such as person and location from a given sentence. 
Example for Named Entity Recognition 
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In the example, the following types of entities are identified: 
· Date: Monday
· Time: afternoon
· Person: Paul Green
· Location: library
There are different ways how named entities can be labeled. A commonly used format is the BIO prefix scheme as described by Ramshaw and Marcus (1995). The BIO labels (sometimes also referred to as IOB) indicate the following positions of a named entity: 
· Beginning (B): beginning of an entity 
· Inside (I): continuation of an entity
· Outside (O): token that does not belong to an entity
One commonly used NER corpus is the CoNLL-2003 Shared Task corpus (Tjong Kim Sang & Meulder, 2003). This corpus is based on a set of news articles from Reuters which have been annotated by hand. The following labels are used in the CoNLL dataset: 
[“B-LOC”, “I-LOC”, “B-MISC”, “I-MISC”, “B-PER”, “I-PER”, “B-ORG”, “I-ORG”, “O”]
B, I, and O refer to the BIO prefix scheme while the other tokens have the following meaning: 
· LOC: location
· MISC: miscellaneous name
· PER: person
· ORG: organization
For our above example the annotation would look like this: 
CoNLL Annotation Example 
	On
	O

	Monday
	O

	afternoon
	O

	I
	B-PER

	will
	O

	meet
	O

	Paul
	B-PER

	Green
	I-PER

	at 
	O

	the
	O

	library
	B-LOC



Using the BIO scheme prefixes we are able to distinguish if we have one person (Paul Green) or two persons (Paul and Green) based on the annotations. The word tokens which do not belong to any of the four named entity categories are labeled with “O”. 
Examples for NER include all domains where it is useful to organize text in categories. This can for instance be the categorization of tickets in customer support according to their topics. Depending on the categorization, tickets can then be automatically forwarded to the responsible expert. Another example would be the anonymization of data according to privacy regulations. If personal data is automatically identified and reduced, this can help to save costs. If the quality of the data is high enough, it is no longer necessary to manually cleanup the data. NER can also help to reduce the workload of HR in application processes by automatically extracting information from the applicants’ resumes (Zimmermann et al., 2016). 
One of the biggest challenges in NER is that a large amount of annotated data is required for training. Moreover, the model will later be limited to the specific task it has been trained on. 
Relationship Extraction 
In relationship extraction the goal is to extract semantic relations between the entities of a text (Bach & Badaskar, 2007, p. 1). The extracted relations are usually binary such as “FATHER-OF (Darth Vader, Luke Skywalker)” or “LOCATED-IN (International University, Germany)”. 
One important application domain for relationship extraction is question answering. If a system receives for example the question “What is the capital of France?” the system might search for a relational tuple which matches the pattern “CAPITAL-OF (France, ???)”. 
Coreference Resolution
In coreference resolution, words that refer to the same entity are identified (Clark & Manning, 2016). This is important to properly understand the context of a text. For instance, in the sentence “Paul has a car and he likes driving it”, the word ‘he’ refers to the entity Paul and the word ‘it’ refers to the car. The figure below illustrates the relationship between those entities. 
Coreference Resolution
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Self-Check Questions
1. Please complete the following sentence:
Named entity recognition, relationship extraction and coreference resolution are typical examples for information extraction tasks. 


5.4 Sentiment Analysis
So far, we have mostly been dealing with the objective aspects of text and speech such as the recognition of single words or the translation translate a text from one language to another. As everybody knows from human interaction, besides the actual vocabulary and grammar, a text contains much more information, which is often expressed “between the lines”. This is where sentiment analysis comes into play. Sentiment analysis deals with the analysis of the subjective aspects of a text (Nasukawa & Yi, 2003). This can for instance be the mood of an author or of a tweed on Twitter. Like in topic identification, sentiment analysis is a typical text classification problem. However, while topic identification is about the identification of objective aspects of a text, sentiment analysis deals with subjective features such as emotions or moods.  There is a wide range of possible applications for sentiment analysis. One field which has recently become the focus of much attention is customer sentiment analysis. Being able to track how the customers feel about a certain product over time can for instance help to reflect how people react to a change of the product or a service. Moreover, sentiment analysis makes it possible to analyze, how external factors like a global crisis or relevant news influence the perception of the customers. 
Using social networks such as Twitter, Instagram, or Facebook, it is easy to collect a huge amount of data about a certain product. If a company is able to gain a better understanding of the needs of its customers, products and services can be modified accordingly. 
Types of Emotions
There are different ways how emotions can be categorized. The two basic ways are categorical models and dimensional models. While categorical models assume a clearly defined set of so-called basic emotions such as anger, joy, or fear (Ekman, 1992), dimensional models represent emotions as points in a multidimensional space. The advantage of the dimensional representation is, that – in contrast to the categorical models – the emotions do not have to be classified within predefined boundaries but rather in a continuous space within the emotion dimensions. 
According to Bradley and Lang (1994), the dimentions of emotions can be defined as follows: 
· Arousal: quantitative degree of activation (calm vs. excited)
· Valence: quality of the emotion (negative vs. positive)
· Dominance: degree of control a person has over a situation (weak vs. strong)
The most frequently used dimensions are arousal and valance as dominance has a comparatively small influence for most of the variance on emotional scales (Russell, 1979). 
Sentiment Analysis Tasks
A common task in sentiment analysis is the polarity detection. Polarity detection refers to the valence dimension of emotions and usually categorizes a text in being positive or negative. The number of categories ranges from two categories being only positive or negative (e.g., Turney, 2002) to up to 5 star ratings (Snyder & Barzilay, 2007). There is also research towards the identification of categorical emotions such as anger, sadness, disgust, enjoyment, fear, or surprise (Ho et al., 2019). 
Another common task is the identification of subjectivity / objectivity of a text (Pang & Lee, 2008). This task can sometimes be even more challenging than polarity detection (Mihalcea et al., 2007). One of the big challenges for this task is the question, how subjectivity is defined. Nevertheless, removing objective sentences from a text or document can help to increase the accuracy of polarity detection (Pang & Lee, 2004). 
Intensity ranking is another sub-discipline of sentiment analysis and refers to the intensity with wich an emotion is expressed in a text. Depending on how intense an emotion is expressed in a text, a sentence can significantly vary (Sharma et al., 2017). Therfore, analyzing not only the polarity of an emotion but also the intensity can add meaningful information to sentiment analysis.  
Challenges
As sentiment analysis and emotion detection work with user-generated content, there are some big challenges we have to face when trying to identify the user state: 
· Negation, 
· Irony / sarcasm, and
· Multipolarity. 
When detecting the sentiment of a statement negation is a big challenge as it can invert the meaning of a whole statement. One problem is that negation can not only be explicit using words like ‘not’ but also implicit using prefixes like ‘non-‘, or ‘dis-‘ or suffixes like ‘-less’.  Moreover, language constructs like double negation can be easily misinterpreted. While in mathematics double negatives cancel out, depending on the concept double negation might even make the negation more intense. Therefore, it is important to consider negation in the model when performing a sentiment analysis to increase the accuracy of the system (Sharif et al., 2016). 
Sarcasm and irony pose another challenge to sentiment analysis. Especially in the context of social media, sarcasm is quite common. Even for humans, it is sometimes challenging to properly recognize sarcasm. Therefore, for a machine, it can be even more difficult. 
As an example, we want to have a look at the following sentence: 
	“Wow, you have an iPhone 5?”
If we look only a few years back to the year 2012 when the iPhone 5 was released, this statement would have been quite excited and therefore non-sarcastic. Nevertheless, if you hear this statement nowadays, it will be easy to tell for a human hat this statement is intended to be ironic. This example illustrates, why dealing with sarcasm still remains a challenging task, even though there recently been some success when applying methods from deep learning for sarcasm detection (Ghosh & Veale, 2016). 
Multipolarity of text is another big challenge. Multipolarity means that one text can consist of parts with different polarities, i.e., the sentiment of some parts can be positive while other parts are negative. To illustrate multipolarity let us have a look on the customer review in the figure below. 
Multipolarity Example
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The first sentence is neutral. In the next sentence, the first part about the display is very positive while the second part about the audio quality is negative. There are several approaches to handle reviews like this. For instance, we could simply calculate the average of the sentiment. However, this will in any case lead to a loss of information. Therefore, a better approach would be to split the review into several parts and analyze the parts of the sentence separately. 
Evaluation of Sentiment Analysis tasks
One major challenge when it comes to the evaluation of algorithms for sentiment analysis is, that the classification of the subjective elements of a text is – as the name already says – a subjective task. While for tasks like information extraction there is an objective ground truth for training and evaluation of the task, this is more difficult with subjective aspects. The classification of emotions can even be a challenging task for humans. Therefore, accuracies close to 100% are not realistic as even amongst humans there would be a disagreement of about 20% (Roebuck, 2012).  
Self-Check Questions
1. Please complete the following sentence:
Sentiment analysis and topic identification are both text classification problems. However, sentiment analysis deals with the subjective aspects of a text while topic identification is about the objective aspects. 


5.5 Chatbots
Chatbots – often also referred to as conversational AI – are dialog systems which are based on textual communication. Chatbots make it possible to interact with a computer using a text in natural language. Depending on the input, the user will receive a reply which is also in natural language. Some chatbots mimic a certain personality or character in combination with an avatar or image. A popular example for a chatbot was ELIZA (Weizenbaum, 1966) which simulated to be a psychotherapist. 
Chatbots often appear in messenger apps such as Facebook or website chats. Moreover, digital assistants such as Siri, Alexa or Google assistant are based on chatbots. 
Levels of AI Assistants
Chatbots are an important part of AI assistants which can be categorized into five levels (Nichol, 2018). The five levels are illustrated in the figure below. 
Five Levels of AI Assistants
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Notification assistants (Level 1) interact with the user only in a unidirectional way. Typically, they are used for tasks likes notifications about updates or events. 
In contrast to notification assistants, FAQ Assistants (Level 2) are able to interact bi-directionally with a user. If the user asks a question, they can interpret the request and find an appropriate answer from a knowledge base.
Contextual assistants (Level 3) extend the communication by being context-aware of the conversational history with the user. For instance, they might remember your past purchases in an online shop. 
Personalized assistants (Level 4) get to know the user over time. They will for instance know based on the context when there’s a good time to interact. Moreover, personalized assistants are able to learn the user preferences and will therefore be able to provide a personalized interface. 
Finally, autonomous organizations of assistants (Level 5) are a group of assistants who have information about every customer personally. The are able to independently run wide parts of an organization such as sales, marketing, or lead generation. 
At the moment most assistants are still on the level of notification assistants. However, there are already few applications such as the Google assistant which can be categorized as contextual assistants. It is quite likely, that in the future further levels of chatbots will evolve.  
Components of Chatbots
In general, chatbots consist of three components which are illustrated in the figure below. 
Components of a Chatbot
[image: Ein Bild, das Text enthält.
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Techniques
The implementation of chatbots can either be rule-based or statistical-based. We will have a look on both techniques in the following. 
Rule-based Chatbots
Rule-based chatbots parse the textual input using a set of regular expressions. Based on the regular expressions, the intent of a user can be determined. A commonly used way to specify conversation rules in a rule-based way is AIML (Artificial Intelligence Markup Language). AIML is based on XML and available open-source. There exist AIML interpreters for a large variety of programming languages. 
Here is an example how a conversation rule in AIML can look like: 
Example for AIML
[image: Ein Bild, das Text enthält.
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The tags of this conversation rule are specified as follows: 
· <category>: container for the conversation rule
· <pattern>: text pattern of the user query. The * represents a sequence of characters. 
· <template>: specifies the answer. 
· <star/>: is replaced by the text from the user query
In our example the system might receive the request “WHAT IS ARTIFICIAL INTELLIGENCE”. The input will first be normalized by removing interpunctions and ignoring the case. When the question matches the pattern, the answer can be displayed as specified in the template. The template in our example will first print the text “Here you can find information about artificial intelligence” replacing the <star/> tag by the text which matched the pattern. Additionally, it wil show a button which will redirect to the related Wikipedia article.  
Statistical-based Chatbots
Chatbots can also be built using statistical machine learning techniques to train the chatbot using example conversations.
To illustrate statistical-based approaches, we will now have a look at the conversational AI toolkit Rasa (Bocklisch et al., 2017) which is available open source. 
The first phase is the intent classification which is about determining the user intent. For instance, “Hi” or “Good evening” can be seen as an indicaor for a greeting. We could call this intent greeting. The intent behind questions like “How are you?” or “How are you feeling today?” is to know how a person feels. This intent could therefore be classified as feeling. A reply like “not so well” or “sad” could then be mapped to the intent negative_mood while a reply like “I am great” or fine could be mapped to positive_mood. 
A representation of this conversation in Rasa can be modeled as follows: 
## intent:greeting
- hi
- good morning
- good evening

## intent:feeling
- how are you
- how are you feeling today
- are you ok

## intent:negative_mood
- sad
- not so well
- unhappy

##intent:positive_mood
- fine
- i am great
- awesome

The intent classification is the base of the dialog component of our system. Actions ar another important concept. Actions define, how – once the intent of a user has been identified – the chatbot will react. They can range from simple replies to more complex answers like getting data from a knowledge base or external service such as wikipedia or a news website. 
For our example, we will define different actions for the bot. The first action utter_greet will make the chatbot reply to a greeting of a user with the sentence “Hi, how are you?”. The second action models a reaction to the user’s reply depending on if it’s positive or negative: utter_sad will be “Sorry to hear” while utter_happy will be “Happy to hear”. 
Now that we have defined the answers, we need to model the dialog management which connects intents and actions. The training of the dialog management model in Rasa is done using sample conversations which are referred to as stories. A story could for instance look like the following conversation: 
User: Hi
Chatbot: Hi, how are you?
User: I am great 
Chatbot: Happy to hear

If we represent the story as a set of intents and actions, the story could look as follows: 
## positive conversation
* greeting
- utter_greet
* positive_mood
- utter_happy

Based on a sequence of intents the dialog management module will be trained to predict the next action. In contextual assistants, not only the last intent will be analyzed but also the history of for instance the last five intents. In the example above, as an input we have the features greeting and positive_mood. The output we expect in this situation is utter_happy. 
Of course, the chatbot can also use named entity recognition to extract information like dates, locations, or names from the input data. This technique is referred to as slot filling. 
Use Cases
Use cases for chatbots are increasing continuously as using chatbots comes with a lot of advantages. To integrate chatbots in the communication can save a lot of time and also money as chatbots are normally available 7 days a week, 24 hours a day at comparatively low costs. If it is necessary, they can easily be scaled. 
If conversational agents are used in customer service, they can help by for instance reply to the requests of the customers. They can improve customer experience by giving personalized product recommendations according to the needs of a user. If an artificial agent gets a request which is too complicated to handle, a request can still be forwarded to a human support team. 
If we look at company websites, many companies have nowadays integrated chatbots for asking sales-related questions to the visitors which would otherwise remain anonymous. If a customer uses the chat, the chatbot can for instance present information about special offers or new products or even provide guidance through the navigation of the website. 
In general, using chatbots can help to reduce efforts of human support staff which can allow them to deal with more complex tasks. 
Self-Check Questions
1. Please complete the following sentence:
Chatbots consist of three components: a component for natural language understanding, a dialog management component, and a component for message generation. 



5.6 NLP with Python
Now that you have learned the most important aspects about NLP and the related techniques, it is time to have a look about how to practically develop NLP applications. Therefore, in this section you will learn more about how to use Python as a programming language, Jupyter Notebooks (Randles et al., 2017) and the most important NLP frameworks such as the Natural Language Toolkit (NLTK) (Bird et al., 2009) or spaCy (Honnibal & Montani, 2018). 
NLP & Python
Python is a general-purpose, high-level interpreted programming language. It is possible to use Python for a large number of purposes – be it software development, web development, or data science. The syntax rules are quite simple which makes it easy to obtain a code base which is easy to read. 
There is a large number of data science libraries available which are well-written. This has made Python very popular for everybody who wants to start in the field of machine learning or data science. 
There is a large number of integrated development environments (IDEs) available for Python such as PyCharm, Sublime Text, or Spyder. Moreover, Jupyter notebooks offer an excellent interactive IDE for software development in Python. 
A Quick Start to Jupyter Notebooks
Jupyter notebooks are often used for machine learning or data science projects. A Jupyter notebooks provide a web-based interactive development environment for Python. The web application is provided open-source and can not only contain code but also narrative text, equations, and visualizations.  The interpreter is web-based and makes it easy to structure the code into cells. Each of these cells can be run individually. Moreover, it is possible to add comments between the cells and run each cell individually. This makes it easy to debug the code, generate visualizations, or apply changes to the code.
In this section you will get a brief introduction about how to install Jupyter notebook, create a notebook and write codes and comments in that notebook.  
To install Jupyter notebook, we can use the related PIP package. For this purpose we have to run the following command: 
Pip install jupyter notebook

Once, the installation is complete, the Jupyter notebook can be launched with the following command: 
Jupyter notebook

The Jupyter notebook will then open in the default browser. You can create a new notebook by selecting the ‘New’ dropdown on the top right of the window. 
Creating a New Notebook
[image: Ein Bild, das Text enthält.
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 Initially, the new notebook will contain one single empty code cell. 
The New Notebook
[image: Ein Bild, das Text enthält.
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In the Code cell you can then enter your code and execute the code by pressing Shift + Return. 
If we start with a simple ‘Hello World’ example, the result will look as shown in the following figure. 
Hello World Example
[image: Ein Bild, das Text enthält.
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If you want to add markdown to your code, you can do this by changing the cell type to ‘markdown’. To change the cell type you can either use the menu bar at the top or one of the many shortcuts. A list of shortcuts can be found I the top menu under Help > Keyboard Shortcuts. 
Using the markdown you can add useful information about your application to your notebook to document and explain your work. 
Markdown Example
[image: Graphical user interface, application

Description automatically generated]Additionally, when using Jupyter notebooks, you can also export your code to any other format, such as HTML or Python script (.py). If you want to export your code, you can do this by selecting the option ‘Download as’ from the ‘File’ tab in the top menu bar. 
Introduction to NLTK and spaCy
There exist several frameworks for NLP. The most popular frameworks are NLTK and spaCy because of their ease of use and their functionalities. They can be useful for the implementation of a huge number of tasks, be it chatbots, sentiment analysis, text summarization, or entity extraction. 
To install the packages, the Python package manager PIP can be used with the following commands: 
pip install nltk

and 
pip install spacy

Additionally, both frameworks use external resources. NLTK uses task specific data sets while SpaCy provides a complete language model which are available in different sizes for multiple languages. These resources have to be downloaded separately. 
There are a few differences between both frameworks. First of all, in NLTK for a particular problem there is a vast number of algorithms from which you can choose while in spaCy for a particular problem you will only find the best state-of-the art algorithm according to the developers of spaCy. Moreover, input and output in spaCy is based on an object-oriented model which is centered around the corresponding document object. On the other hand, in NLTK strings are used as input and output for the respective functions. Another important difference is that NLTK does not support word embeddings while in spaCy vector-based word embeddings are used. 
Implementing Selected NLP Concepts with spaCy
We now want to have a look at selected concepts from NLP and how they can be implemented in Python using spaCy. 
In our example we want to work with the small English language model which can be installed using the following command: 
python -m spacy download en_core_web_sm

Tokenization
Tokenization is often the first steps which is performed in NLP tasks. Using spaCy, word and sentence tokenization can be implemented in the following steps: 
1. Create a spaCy document: In the first line we import the spacy library. The English model is loaded in line 2 and in line 3 we create a document.
Creating a spaCy Document
[image: Ein Bild, das Text enthält.
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2. Extract the word tokens: In the first line the word tokens are accessed by iterating over the document object. In line 2 the tokens are printed. 
Tokenization in spaCy
[image: Graphical user interface, application
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3. Extract the sentence tokens: similarly, to the extraction of the word tokens in line 1 the tokens are accessed and then printed in line 2. 
Sentence Tokenization with spaCy
[image: Ein Bild, das Text enthält.
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Part-of-Speech Tagging
In the next step we want to use our example to perform POS tagging. Again, we will initialize our program with step 1 from the last example. To perform POS tagging we will iterate over the document object doc (line 1) and print the POS attribute for every token (line 2). 
Part-of-Speech Tagging with spaCy
[image: Ein Bild, das Text enthält.
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Named Entity Recognition
Extracting named entity labels from a text using spaCy is also remarkably simple. For this purpose, we have to iterate over the entities from our document and in the next step for every token print the label attribute. 
Named Entity Recognition with spaCy
[image: Ein Bild, das Text enthält.
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Additionally to the label information it is possible to print an explanation why a certain word has been assigned to a certain entity. 
Self-Check Questions
1. Name two commonly used Python frameworks to build NLP systems
spaCy
NLTK


Summary
Speech recognition and synthesis are important components for systems which interact with humans via spoken language – be it in machine translation or when using voice assistants. 
Using machine translation, a text or speech signal can automatically be translated into another language. 
In order to properly process a text, relevant information has to be extracted. This can be done using techniques such as named entity recognition, relationship extraction, or coreference resolution. 
Sentiment analysis is an important field of research in NLP which deals with the task of extracting the emotions of a user from a given text or speech signal. Another important area of application are chatbots which are getting increasingly important. 
NLP systems are often implemented using Python which provides a large set of libraries to solve common problems. NLTK and spaCy are two toolkits which provide a huge set of algorithms and techniques which can be useful for all sort of NLP tasks. 
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