

1


	IU

	[bookmark: _CTVB001601fedcd583848ce91af12c1237e0e6d]Natural Language Processing

	DLMAIWNLPVA1
Tim Schlippe



Learning Objectives
Due to increasingly high-performance natural language processing (NLP) models, the field of NLP has become extremely popular—both in the private and in the business sector. There are a large number of applications and use cases where NLP offers great support to people. Currently, popular applications are e.g., voice assistants, chatbots, machine translation and sentiment analysis. The goal of this course is to give you an understanding of NLP in order to lay the foundations so that you can implement useful NLP applications like the ones mentioned.
Specifically, the goals of this course are to give a good overview of the topic NLP, of important challenges in NLP, of common algorithms and methods to address NLP problems, and of common use-case scenarios in which NLP techniques are applied.
You will begin the course Natural Language Processing with an introduction that explains how NLP is defined and how written and spoken language is structured, which is a prerequisite to understand the algorithms and methods. In the following units 2 and 3 you will learn traditional and state-of-the-art techniques used to process written and spoken language. Unit 4 is about popular application scenarios. Furthermore, you will learn which frameworks and libraries can support you in implementing your own NLP applications with Python. In the last Unit 5 you will get to know challenges that can arise in the development of NLP systems together with possible solutions.





Unit 1 – Introduction to NLP

Study Goals

On completion of this unit, you will be able to …

… define the term “natural language processing”.
… know the difference between syntax, semantics, and prosodics.
… understand what spoken language consists of and how it is produced.
… name metrics to evaluate natural language processing systems.

1. Introduction to NLP
Introduction Machine translation
Machine Translation is the task to of automatically translating “text or speech from one natural language to another” (Sinhal & Gupta, 2014).

Language is the most natural form of communication for humans. People learn to talk when they are babies and read and write when they are in elementary school. We write things down, google, chat, translate, dictate, etc.—all tasks in which we use and process language. In order to make our lives easier, more and more technologies have been developed in recent decades that process natural language and support us in our tasks—both in everyday work and in private life.
These technologies are getting better and better. For example, the translation quality of machine translation systems has become so good that in many cases little post-editing is required. For example, Facebook performed 6 billion automatic translations in 41 languages in 2019 alone (Ott et al., 2019) , and Google reported 100 billion translations in over 100 languages back in 2016 (Turovsky, 2016). Another example is the quality of modern automatic short answer grading systems, which automatically assign points to answers in exams. Here, the quality can outperform human graders and even score answers in languages where the system has not seen sample data (Schlippe & Sawatzki, 2022).Automatic Short Answer Grading
Automatic short answer grading automatically assigns quantitative feedback, e.g. in the form of scores, for the correctness of exam answers.

[bookmark: _Toc221687482]1.1 What is NLP?
Definition
Natural Language Processing (NLP) is the processing of written or spoken language by computers. It is an interdisciplinary field that comes from computer science and linguistics and can be seen as part of artificial intelligence. The processing of written language is called text processing and the processing of spoken language is called speech processing.  


Self-Check Questions
1. Please name two applications of natural language processing that have made great progress in recent years. 
Machine translation
Automatic short answer grading
[bookmark: _Toc221687504]
1.2 Syntax, Semantics and Prosodics
In written and spoken human language, the areas of syntax, semantics and prosodics play an important role. In order to bring human language closer to a computer, tasks have been developed that process syntax, semantics and prosodics. In this subsection we will define the three fields and introduce the corresponding tasks.
SyntaxSyntax
Syntax deals with syntactic features of language, e.g., word boundaries and categories or grammatical functions.

Syntax is about the composition of sentences. The meaning of the text is irrelevant. NLP tasks that analyze syntax automatically analyze individual words and rules for composition into sentences and phrases. Features that help these tasks in the analysis are word boundaries, categories, and grammatical functions, e.g., part-of-speech tags. We will now take a closer look at two tasks that deal with syntax: tokenization and part-of-speech tagging. 
Tokenization
Tokenization is used to split a text into individual sentences, words, or sub-word units. For example, the sentence “I study computer science, too” could be tokenized into the tokens 'I', 'study', ‘computer', 'science', ',' 'too', '.'. In many cases, the tokenized text serves as input in artificial neural networks. Word tokens can be found, for example, by using the whitespace character (white space tokenization) or punctuation marks (punctuation-based tokenization) as separators. However, there are also data-driven methods for tokenization, in which frequent character strings are separated as tokens.   
Part-of-Speech Tagging
[bookmark: _Hlk115093577]Part-of-speech tagging adds grammatical word functions and categories to a given text. The following figure demonstrates the result of applying part-of-speech tagging on the sentence “I love to study artificial intelligence”. In addition to the part-of-speech tags marked in orange, the grammatical dependencies are illustrated:
[image: ] 
In the sentence “I love to study artificial intelligence,” the word “love” appears as a verb (word category) taking the function of the predicate (word function). However, in the sentence “Love is in the air,” the word “love” is a noun (word category) in the function of the subject (word function). This example illustrates that context plays an important role in part-of-speech tagging.
POS tagging is helpful since helps in dealing with syntactic ambiguity, which is a major challenge in NLP. For example, assigning the correct category to a word can help in machine translation. But it can also be beneficial in speech synthesis since words are sometimes pronounced differently depending on the POS category.
Semantics
Semantics focuses on the meaning of words and phrases. NLP tasks that deal with semantics are for example sentiment analysis, question answering, topic identification and named entity recognition. 
Sentiment Analysis
Sentiment analysis is the process of automatically detecting a sentiment from textual information and then classifying the information into classes such as “negative“, “neutral“ or “positive“ (Wankhade, Rao, & Kulkarni, 2022). Here is an example of an Amazon customer review that would be labeled as “positive.”	Comment by Aguirre, A.: @External editing, blue highlight indicated citations that may be changed. 

Sentiment Analysis
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
Question Answering
[bookmark: _Hlk115093626][bookmark: _Hlk115093849]Question answering is the task of automatically finding an answer to a given question. For example, an algorithm trained on this course book might display this paragraph if the user asks the question “What are examples of NLP tasks that deal with semantics?”.
Topic Identification
[bookmark: _Hlk115093707][bookmark: _Hlk119498355]Topic identification is the challenge to label a given text with a topic. For example, an algorithm could label newspaper articles with topics such as “sports,” “politics,” or “culture.” For example, the following text would be labeled as “sports”.
Topic Identification
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
Named Entity Recognition
Named entity recognition extracts entities such as “companies”, “locations”, and “persons” from a given text. In the following example, the named entity helped extract a date, person, cardinal number, nationality, and location from the sentence “Tomorrow Bill Gates will meet two German friends in Berlin.”
[image: ]
Prosodics
While phonemes in speech are units of sound that distinguish one word from another, prosodics refers to larger units of speech. It includes elements such as loudness, pitch or duration, which are also called suprasegmental properties of speech (Nooteboom, 1997).
Self-Check Questions
1. Which of the following NLP tasks does not deal with semantics?
· sentiment analysis
· part-of-speech tagging
· question answering
· topic identification
1.3 Phonetics and Speech Speech recognition
Automatic speech recognition (ASR) – also called speech-to-text (STT) – transcribes an audio stream of spoken language – also called speech – into text.

Phonetics means the “science or study of speech sounds and their production, transmission, and reception, and their analysis, classification, and transcription” (“Random House Webster's Unabridged Dictionary,” 2002). 
In order to process spoken language, e.g. in the context of speech recognition and speech synthesis, it is important to have knowledge of phonetics and to know how speech is produced. 
Subdisciplines of phonetics
[image: ] Speech synthesis
“Speech synthesis”, also called text-to-speech (TTS), “is the artificial production of human speech” (Hande, 2014).

Phonetics can be divided into three subdisciplines: 
· Articulatory phonetics describes the production of human speech analyzing how the physiological structures in the vocal tract interact. 
· Acoustic phonetics describes the physical aspects of human speech as a combination of acoustic waves. 
· Auditory phonetics describes the perception of human speech signals. 
Before we investigate further the three subdisciplines, let us begin with some basic terms and definitions. 
Phones and Phonemes 
Phonetics is based on phones. Phones are units of speech, regardless of whether important for the meaning of a word or not. However, phonemes correspond to the smallest sound unit which distinguishes two words from each other in a given language. While phones are usually written in square brackets (e.g., [p], or [b]), phonemes are written with slashes (e.g., /p/, or /b/). Phoneme
“A phoneme is the smallest contrastive unit in the phonology of a language” (O'Shaughnessy, 1987, p. 55)

A standardized written representation of speech sounds is given with the International Phonetic Alphabet (IPA). However, there are also other types of phonetic notations. For example, the ARPAbet provides a phonetic alphabet based on ASCII symbols to denote the subset of the IPA which is necessary to transcribe speech in American English (Jurafsky & Martin, 2022, p. 527).  
The following table shows some examples of phonemes in IPA and ARPAbet. 
Differences Between IPA and ARPAbet
	Word
	ARPAbet symbol
	IPA symbol

	thin
	[th]
	[θ]

	sing
	[ng]
	[ŋ]

	dish
	[sh]
	[ʃ]



For simplicity, all phonetic transcriptions in the following paragraphs are in ARPAbet unless otherwise noted. 
Articulatory PhoneticsVocal tract
The vocal tract is the area where the sound produced and filtered. In humans, it is located between nose and nasal cavity down to the vocal cords deep in the throat. 

Humans produce speech through the interaction of the physiological structures in the vocal tract. The vocal tract articulators and the places of articulation are illustrated in the following figure:
Vocal Tract Articulators and Places of Articulation
[image: Ein Bild, das Text, Licht, Vektorgrafiken enthält.

Automatisch generierte Beschreibung]
Depending on whether the airflow is blocked during sound production or not, sounds are divided into three different categories in articulatory phonetics: 
	Vowels 
e.g. [a], [e]
	· typically voiced, 
· longer and louder than consonants

	Consonants 
e.g. [p], [b]
	· produced by blocking the airflow
· can either be voiced or unvoiced

	Semivowels 
e.g. [y], [w]
	· in between vowels and consonants
· usually voiced 
· shorter, less syllabic than vowels



Vowels
In the production of vowels, the vocal tract is open which means that the airflow is not obstructed. How a vowel sounds depends on the position of the articulators, i.e., glottis, pharynx, velum, lips, and tongue. 
The tongue’s position can change while vowels are produced. If vowels have two different sounds in a single syllable, they are called diphthongs. A union of three vowels in one single syllable is denoted as a triphthong.
The following figure shows how vowels and diphthongs are produced with the help of the shape of the mouth (left) together with examples for the pronunciation (right). 
IPA English Vowels and Diphthongs with Examples
[image: Ein Bild, das Tisch enthält.

Automatisch generierte Beschreibung]Pulmonic consonants
Pulmonic consonants are produced by air pressure from the lungs, as opposed to ejective, implosive and click consonants.

Consonants
The sound of consonants strongly depends on the place where the airflow is blocked and the manner of articulation. The following IPA chart demonstrates all pulmonic consonants that are covered by most languages. The columns show the places where the airflow is blocked and the rows the manner of articulation. These are the places of articulation that you have already seen in the figure “Vocal Tract Articulators and Places of Articulation” above.

IPA Consonants
[image: ]
The following table explains some important columns representing the places where the airflow is blocked in English.
	Labial consonants
e.g. [p], [b]
	· lips are involved

	Dental consonants 
e.g. [th]
	· tongue is pressed against the teeth

	Alveolar consonants
e.g. [s], [z]
	· tongue is placed against the alveolar ridge

	Palatal consonants
e.g. [y]
	· produced at the palate (roof of the mouth)

	Velar consonants
e.g. [k], [g]
	· produced by blocking the air in the velum with the tongue (the roof of the mouth at the back)

	Glottal consonants
e.g. [q]
	· produced by closing the gap between the vocal folds



In the articulation of consonants, it is not only the place of articulation that is crucial but also the way in which the vowel tract is modified, i.e. narrowed or closed (Ladefoged & Johnson, 2011, p. 14). The most important manners of articulation in English are briefly described in the following table.
	Stops or plosives
e.g.
voiced: [b], [d], [g]
unvoiced: [k], [p], [t])
	· airflow in the oral vocal tract and nasal airflow is completely stopped briefly
· sound is produced when the air is released

	Nasals 
e.g. [m], [n]
	· oral vocal tract is completely closed, and air can only pass through the nose
· sound is produced when the velum is lowered in order to direct the air into the nasal cavity (Jurafsky & Martin, 2022, p. 530). 

	Fricatives
e.g. [f], [v], [th], [s], [z]
	· vocal tract is partly blocked
· sound is produced by a turbulent airflow (frication)

	Approximants
e.g. [w]
	· articulators are close together but still not that close that it causes a turbulent airstream



Acoustic Phonetics
Acoustic phonetics describes the physical aspects of human speech as a combination of acoustic waves. Sound is transmitted in acoustic waves from a speaker to a listener. These acoustic waves are modeled as periodic functions, i.e. functions that repeat after a certain distance or time. The number of occurrences of the repetition per second is called frequency and is expressed in hertz (Hz):

where  is the time between these repetitions denoted as wavelength or period. For example, a sound with a frequency of 100 Hz means that the sound repeats itself 100 times within one second. 
The frequency of a sound wave determines its pitch: Sounds with higher frequencies have a higher pitch. Sounds with lower frequencies have a lower pitch. The relative strength of a sound wave is called amplitude and determines the loudness or volume with which we perceive the sound. Sounds with higher amplitudes are louder than sounds with lower amplitudes.
Digitization of Speech
In order to process speech in a computer, its sound wave must be converted into a form that the computer can understand. This is done by quantization and sampling. The following figure demonstrates how to transform an analog signal into a time-discrete signal with the help of sampling and then into a digital signal with the help of quantization. 
Analog-to-Digital Conversion of a Signal
[image: ]
Source: Tim Schlippe (2022).
In the sampling process, the values of the amplitude are measured at regular intervals. The sampling rate or sampling frequency determines how many samples are stored per second. To be able to reconstruct the signal after sampling, it is important to follow the Nyquist-Shannon sampling theorem and select a sampling rate that is at least twice as high as the maximum frequency. When the sampling rate is lower than twice the maximum frequency, it is not possible to recover the original signal.
For the quantization process, the y-axis is typically divided into  equal intervals which are encoded by a certain number of bits. Consequently,  is typically a power of 2, e.g. . Assigning each correct amplitude value in the analog signal to one of the intervals encoded by the digital values induces errors. The average quantization error for a signal  between  and  can be calculated as follows: 

Time Domain and Frequency Domain
Speech signals can be evaluated in the time domain or the frequency domain. Features such as the amplitude or the pitch can be analyzed directly in the time domain. However, since frequency also provides a lot of information about the signal, many speech recognition algorithms use features from the frequency domain. A representation of a signal in the frequency domain is called a spectrum. A signal can be transferred from the time into the frequency domain using the Fourier Transform. Fourier Transform
The Fourier transform is a mathematical method, which can be used to decompose a function from the time domain into the frequency domain. 

Representation of a Signal in Time and Frequency Domain
[image: ]
Source: Tim Schlippe (2022).
The figure above demonstrates a signal which is transformed from the time domain into the frequency domain using the Fast Fourier transform (FFT). The signal was generated by the combination of two sine functions: The first function has an amplitude of 2 and a frequency of 1 Hz. The second function obtains an amplitude of 1 and a frequency of 10 Hz. In the frequency domain, the peaks at 1 and 10 illustrate the frequency of both functions. Furthermore, since the amplitude of the 1 Hz signal is 2x higher than the amplitude of the 10 Hz signal, the peak at 1 Hz is also 2x higher than the peak at 10 Hz. 
Auditory Phonetics
Auditory phonetics describes the perception of human speech signals. Hearing a sound means perceiving it with the ears. The human ear contains three parts: 
· outer ear: receives and encodes spatial and temporal information of a sound
· middle ear: transfers sound vibrations from the eardrum to the inner ear
· inner ear: converts sound into electrical impulses for the brain
The following figure reveals the anatomy of the human ear.
Anatomy of the Human Ear
	Outer ear
	1: skull
2: ear canal
3: pinna

	Middle ear
	4: eardrum
5: fenestra ovalis
6: hammer (malleus)
7: anvil (incus)
8: stirrup (stapes)

	Inner ear
	9: bony labyrinth
10: cochlea
11: auditory nerve


 [image: ]
Source: Tim Schlippe (2022)

Normally, a healthy person hears frequencies between 20 Hz and 20 kHz. The older we get, the fewer high frequencies we can hear. 
Speech
Speech is produced in the vocal tract. As you have already learned the human vocal is located between the nose and nasal cavity down to the vocal cords deep in the throat. The vocal tract can be divided into three elements that influence the airstream in the following order: 
1. Respiratory elements: produce the airstream by inhalation and exhalation
2. Vocal elements: produce the voice
3. Articulating elements: finally shape the sound with the articulating elements
Let’s now look at the vocal and articulatory elements in more detail with the following figure.
The Vocal Tract
[image: ]
Voice Production
After the airstream has been produced in the lungs by inhalation and exhalation, it passes the trachea (windpipe), the larynx (voice box) and the pharynx (back of the throat). Between the vocal cords, which are located in the larynx, is a small space called the glottis. When air passes through the glottis, the vocal cords vibrate which produces sound waves. 
Articulation
The sound waves produced by the vocal cords are amplified with the larynx, nasal cavity, and mouth and modulated in the nasal and oral cavities. 
The structures in the oral cavity help to shape the airflow differently, which produces different sounds. The structures in the oral cavity help to shape the airflow differently, which produces different sounds. The hard and soft palate at the roof of the mouth, as well as the position of the tongue, teeth and lips, play an important role in the articulation of different sounds. For the articulation of nasal sounds (e.g. [m], [n]), the airstream is directed outwards through the nasal cavity instead through the mouth. 

Self-Check Questions
1. Name the three elements which influence the airstream in the production of human sounds.
Respiratory elements
Vocal elements
Articulating elements

1.4 Evaluation of NLP Systems
How can we evaluate the performance of NLP systems and make sure that we develop an NLP model that makes as few errors as possible in the required task? Depending on the use case, different evaluation metrics are important. In the following sections, we will first describe how to divide data into training, validation, and test sets to continuously improve a model. Then we will look at the most commonly used evaluation metrics for NLP systems.
Training, Validation, and Test Set
When developing a machine learning system with data, e.g. for classification, regression or prediction, the existing data is usually divided into 3 sets:
· Training set
· Validation set (also called development set)
· Test set
Often the division is 80% for the training set, 10% for the validation and 10% for the test set. But there are also other divisions. To obtain a robust model, it is important that enough sample data is used for training and that the model is tested on a representative amount of data that allows us to estimate the performance for the real use case. To have balanced and representative data sets, it may also make sense to shuffle the data sets before dividing them into the three sets.
Machine learning approaches are traditionally split into supervised learning, unsupervised and reinforcement learning. But for the sake of simplicity, we will explain the use of the individual data sets with examples from supervised learning. In supervised learning, the data contains both the inputs and the desired outputs. 
During training, a portion of the training set is iteratively used as input to the model and based on a comparison between the model output and the labels in the training set, the model parameters are iteratively adjusted with the goal of minimizing the deviation. 
To further optimize the model’s performance after training with the training set, the validation set (also called the development set) is used in the next step. In order to have an unbiased evaluation of the model, the samples in validation data must be unseen, i.e. have not been used for training before. Sometimes the validation set consists of data even closer to the real use case than the training set. 
In the last step, the performance of the final model is evaluated on the test set. Here it is crucial again that the samples in the test set are unseen, i.e. have not been used during training and optimization of the model. Otherwise, the results of this final test would be better that in a real-world scenario.
Evaluation Metrics
When algorithms are developed and tuned, we will need some metrics to evaluate the developed models and compare them to other systems. Accuracy, precision, recall, and F-score are used metrics used in many NLP task where a classification or prediction is done. 
To explain these metrics, let’s evaluate a text classification example where newspaper articles are given containing articles where a crime is the topic and articles with other topics and the task is to determine if an article belongs to the class “CRIME” (positive class) or the class “NOT CRIME” (negative class). The confusion matrix displays the 4 possible outcomes of such a classification task. It has two dimensions: While the columns show the actual result, the rows show the predicted result of the classification system. 


The Confusion Matrix
	
	
	Predicted result

	
	
	True
	False

	Actual result
	True
	TP
	FN

	
	False
	FP
	TN


Source: Tim Schlippe (2022).
If the classification is correct, a true positive or a true negative is predicted:
· True positive (TP): If the model predicts “CRIME” and the article’s correct class is the same. 
· True negative (TN): If the model predicts “NOT CRIME” and the article’s correct class is the same. 
If the classification is incorrect, a false positive or a false negative is predicted:
· False positive (fp): If the model predicts “CRIME” and the article’s correct class is “NOT CRIME.” 
· False negative (fn): If the model predicts “NOT CRIME” and the article’s correct class is “CRIME.”
Once we have the numbers of TP, TN, FP and FN, the evaluation metrics which we will describe in the following paragraphs can be calculated. 
Accuracy
Let’s start with accuracy, which is probably the easiest to understand and interpret. Accuracy is defined as the ratio of correctly classified samples (in our example correctly classified articles) to the total number of samples and computed as follows:

Accuracy is a very straightforward performance metric but has the following drawback: If the data is unbalanced, i.e. there are significantly more samples for one class than for another, the performance of the class that occurs more frequently has a greater influence and the class with fewer samples has little influence on the final accuracy. But in some applications, it is important to be able to assess the less represented classes well because their confusion has very bad effects, e.g. in medical decisions or credit risk assessment. For such cases it is also necessary to know the precision and the recall.
Precision
Precision indicates how many positive classes were correctly detected relative to the total number of samples that were predicted to be in the positive class: 

In our topic classification example, precision would be the number of articles which have been correctly identified as “CRIME” in relation to the total number of all articles identified as “CRIME” no matter if they really belong to the class “CRIME” or not. Consequently, precision answers the question “How many of our positive predictions were correct?”
Recall
Recall indicates how many positive classes were correctly detected relative to the total number of samples that should have been predicted to be positive: 

In our topic classification example, recall would be the number of articles which have been correctly identified as “CRIME” in relation to the total number of articles that really belong to the class “CRIME”. Consequently, precision answers the question “How many of the actual positive classes were correctly predicted?”
F-Score
F-Score combines precision and recall in one single number using the harmonic mean: 

All three metrics range between 0 and 1. The closer to 1, the better the performance of our model. Often, these metrics are presented as percentages.
Note: Precision, recall and F-score can be used on binary classification tasks only. To use them on a multi-class news article classification problem with further classes like “sports”, “weather”, etc., we need to transform our problem to many binary classification problems: We compute the metric for each of our news article classes (as described with “CRIME”) and average these values to get a single metric for all classes.
ROC Curve
In classification tasks, most algorithms give a percentage indicating how likely it is that a sample belongs to a class. Since these algorithms do not output clear class assignments, we need to set a threshold or cutoff value that indicates when a sample is classified in a particular class. If we for example set this threshold to 80% in our exemplary newspaper article classification task, only predictions of the class “CRIME” with an output value of more than 80% would be classified as “CRIME”, otherwise as “NOT CRIME”
The ROC curve can help to find this threshold, which maximizes the true positives (TP) rate while minimizing the false positives (FP) rate which are computed as follows: 


As demonstrate the ROC curve visualizes the tradeoff between TP and FP rates with different thresholds. 
The ROC Curve
[image: ]
Hinweis: Appears in DLBAIINLP
The closer the curve is to the upper left corner, the better the predictive power of the model since then the TP rate is high, but the FP rate is low. To measure this, the area under the curve (AUC) can be calculated. The different shapes of the ROC curve are depicted in the following figure. For a model with the highest predictive power, the AUC would be 1. A model that randomly predicts classes has an AUC of 0.5. In real systems, the value is somewhere between 0.5 and 1.


Different Shapes of the ROC Curve
[image: ]
Hinweis: Appears in DLBAIINLP

Self-Check Questions
1. Name 3 evaluation metrics for machine learning systems.
precision
recall
F-score

Summary
Natural Language Processing (NLP) is the processing of written or spoken language by computers. It is an interdisciplinary field that comes from computer science and linguistics and can be seen as part of artificial intelligence. The processing of written language is called text processing and the processing of spoken language is called speech processing. 
Syntax is about the composition of sentences. The meaning of the text is irrelevant. Semantics focuses on the meaning of words and phrases. Prosodics deals with units of speech larger than words such as loudness, pitch or duration, which are also called suprasegmental properties of speech (Nooteboom, 1997).
Phonetics means the “science or study of speech sounds and their production, transmission, and reception, and their analysis, classification, and transcription” (“Random House Webster's Unabridged Dictionary,” 2002).
When developing a machine learning system with data, the existing data is usually divided into 3 sets: Training set, validation set, and test set. During training, a portion of the training set is iteratively used as input to the model and based on a comparison between the model output and the labels in the training set, the model parameters are iteratively adjusted with the goal of minimizing the deviation. To further optimize the model’s performance after training with the training set, the validation set is used in the next step. In the last step, the performance of the final model is evaluated on the test set.
Accuracy, precision, recall, and F-score are metrics used to evaluate a text classification model. The ROC curve can help to find the cutoff value (i.e. percentage, how likely it is, that a sample belongs to a different class), which maximizes the true positives rate while minimizing the false positives rate. 

Unit 2 – Text Processing

Study Goals

On completion of this unit, you will be able to …

… define the term “natural language processing”.
… know the difference between syntax, semantics, and prosodics.
… understand what spoken language consists of and how it is produced.
… name metrics to evaluate natural language processing systems.

2. Text Processing
Introduction 
In this unit, you will learn how computers can process text. We will show methods to vectorize text, which is often used as a pre-processing step in NLP. You will also learn how to use regular expressions to find and replace terms in a text. After that, we will cover statistical NLP approaches, recurrent neural network-based approaches, and finally modern Transformer based approaches.
2.1 Word Vectors and Word Embeddings
Machine learning algorithms accept numbers as inputs. How can we extract semantic information from unstructured text and convert it into a numerical input vector that the computer can process? In this section, we introduce methods to embed words and sentences into a semantic vector space. We start with the simple and intuitive bag-of-words approach and then shift our focus to the more powerful neural word and sentence vectors. These are crucial since state-of-the-art NLP models use these embeddings of words to make their predictions. 
Bag-of-Words
[bookmark: _uhdy9haem3f2]Let's start with bag-of-words, a simple approach to turning textual information into numbers. In this approach, text is represented as a “bag” (multiset) of its words, i.e. a vector containing the word count of that text. Let us understand the bag-of-words approach with the help of the following sentences:
1) Federer is one of the greatest tennis players of all time.
2) Federer has won twenty grand slam titles to date.
In the first step, all unique words are extracted from both sentences:
Federer, is, one, of, the, greatest, tennis, players, all, 
time, has, won, twenty, grand, slam, titles, to, date
In the next step, for each sentence we calculate the frequency of each word:
For the first sentence “Federer is one of the greatest tennis players of all time”, the frequencies are:
Federer: 1, is: 1, one: 1, of: 2, the: 1, greatest: 1, tennis: 1, players: 1, all: 1,
time: 1, has: 0, won: 0, twenty: 0, grand: 0, slam: 0, titles: 0, till: 0, date: 0
For the second sentence “Federer has won twenty grand slam titles to date” the frequencies are:
Federer: 1, is: 0, one: 0, of: 0, the: 0, greatest: 0, tennis: 0 , players: 0 , all: 0
 time: 0, has: 1, won: 1, twenty: 1, grand: 1, slam: 1, titles: 1, to: 1, date: 1
In the end, we represent each sentence based on these word counts as a bag-of-words: 
[1,1,1,2,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
 [1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
Limitations
Since bag-of-words is a simple model, it has some major disadvantages:
· For large texts, this bag-of-words approach leads to sparse vectors containing many entries with 0, since only a small subset of the unique words occurs in the sentences.
· The bag-of-words model assumes that all words are independent and does not consider word order, context, or meaning. Therefore, this approach does not perform well for sentences with ambiguous words and where words depend on preceding words.
[bookmark: _eg1a8pk8wsdn]Word Vectors
More recent approaches represent words as word vectors embedded in a semantic vector space. These word vectors which are also called word embeddings are built based on their context. Representing the words with their context in such a semantic vector space has the benefit that linear operations can be applied in this vector space. For example, word analogies can be found based on the cosine similarity of their vectors. Moreover, these vector representations, which encode the word context, serve as input for machine learning models such as linear classifiers or artificial neural networks. 
Word vectors with usually up to several hundreds of dimensions can be projected to a lower dimension with the principal component analysis (PCA). The following figure illustrates word embeddings of terms that name food items or beverages projected into a 2-dimensional scatterplot. Despite the dimensionality reduction, the scatterplot reveals well that the model has learned to discriminate food and drinks: The linear separability which is a characteristic feature of word and sentence embeddings produced by neural networks is illustrated with the blue line in the figure. 







[image: ]
Several embedding techniques exist. Examples are Google’s Word2vec (Mikolov et al., 2013), Stanford University’s GloVe (Pennington, Socher, & Manning, 2014), and Facebook’s fastText (Mikolov, Chen, Corrado, & Dean, 2013). Let’s now look at Word2vec. 
For generating word embeddings, the Word2vec model uses a simple feed-forward neural network with only one hidden layer. Its input is the one-hot vector of a considered word. This one-hot vector is created using the bag-of-word approach. In this vector all indexes are set to 0, only the index of the input word is set to 1. 
For training Word2vec’s neural network, a word window of fixed length N (usually N = 5 or N = 10) is slid over a large corpus, e.g., a Wikipedia dump. 
As demonstrated in the following figure, there are two different models to learn word embeddings: Continuous Bag-of-words (CBOW) and Skip-gram.
Comparison of CBOW and Skip-Gram
[image: ]
Source: Tim Schlippe (2022)

How does each approach work?
1. CBOW: In this approach, a model is learned to predict a missing word given all the other N − 1 words in the word context. The input vector for this prediction can be the sum or the average of the one-hot vectors. The word order is not coded.
2. Skip-gram: In this approach, a model is learned to predict the N − 1 words of the context given a word. Usually, the given word is at the center position of the window. The input vector of this prediction consists of the one-hot vector of the word whose context shall be predicted. The word order is considered and weighted.
During the training process, the weights in the hidden layer are optimized for exactly those words that appeared in the word window of the considered training sample from the corpus. 
After the training Word2Vec is not used for the task, it was trained on, i.e., predicting missing words. But the hidden vector, i.e. the vector consisting of the weights in the hidden layer, can be regarded as a feature representation of the input text at a high abstraction level. Therefore, the one-hot vector of a word is used as input of the trained network and then its hidden vector is used as the embedding vector. 
[bookmark: _shi59rneqbjt]Sentence Vectors
In numerous NLP tasks (e.g., sentiment analysis, question answering, text summarization), the model’s input is not only a single word, but a complete sentence or a paragraph. But how can we encode text snippets to process them in a machine learning algorithm? A possible solution would be to average the word vectors of the words in the paragraph. However, this solution would lead to a loss of the semantic information given by the order of the words. Check out the sentences “The cat eats the mouse” and “The mouse eats the cat”. Both sentences consist of the same words, but the different word order results in a completely different meaning. 
To deal with the problem of vectorizing text of variable length, researchers have developed various methods for sentence embedding. Even though the literature uses the term "sentence embedding", in this context it does not necessarily mean a sentence in the strict grammatical sense, but it may also be a short phrase or even a whole paragraph of text. 
Let’s now look at three well-known methods for sentence embeddings in the semantic vector space: skip-thought, universal sentence encoder (USE), and bidirectional encoder representations from transformers (BERT). 
Skip-thought Vectors
The concept of skip-thought vectors (Kiros et al., 2015) leverages the idea of the skip-gram approach, used by Word2vec at the word level, to the sentence level. The skip-thought model is implemented in an encoder-decoder architecture.
As with Word2vec, the skip-through vectors approach requires a lot of text for training. However, instead of sliding a word window over the text, a triple of three consecutive sentences is considered as follows: The encoder’s input is the sentence in the middle of the three sentences. The encoder’s output is connected to the decoder. During training, the entire model is optimized in such a way that the decoder predicts the next or the previous sentence, as illustrated in the following figure.
[image: ]
In NLP tasks where the prediction model is not needed, the decoder part can be discarded after training. This is also the case here. Since the encoder’s output vector encodes the sentence optimally, it is used as the embedding vector of the sentence.
A unidirectional embedding vector trained to predict either the previous sentence or the next sentence is denoted as a uni-skip vector. If we concatenate two uni-skip vectors, one predicting the next sentence and the other predicting the previous sentence, the result is called a bi-skip vector. For several NLP tasks, the combination of n-dimensional bi-skip vectors with n-dimensional uni-skip vectors performs better than the other skip-thought models (Kiros et al., 2015).
A pre-trained skip-through model for English which was trained on the BookCorpus dataset is publicly available (Zhu et al., 2015). 
[bookmark: _xylq67hucoro]Universal Sentence Encoder
[bookmark: _Hlk119964339]The Universal Sentence Encoder (Cer et al., 2018) is a family of models for sentence embedding developed by Google Research. There are two architecture variants: The first Universal Sentence Encoder variant uses a deep averaging network (DAN) (Iyyer et al., 2015). The second variant, which performs better, is based on a transformer model.
A pre-trained Universal Sentence Encoder model for English and a multilingual model (Chidambaram et al., 2018), based on the DAN architecture, are provided by Google Research. 
[bookmark: _qwasfeqd7mws]Bidirectional Encoder Representations from TransformersTransformer
A transformer is a deep learning model that leverages the attention mechanism, i.e. differentially weighting the significance of each part of the input data. 

Another model which can be used for sentence embedding is Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al., 2018).  BERT is also a model developed by Google Research which as the name suggests, is based on a Transformer architecture. To overcome the shortcomings of a directional approach that limits context learning, BERT trained two training strategies together, with the goal of minimizing the combined loss function of the two strategies.:
1. Masked language model: 15% of the words in an input sentence are masked, and the goal of the training is to predict the masked words.  For example, input is the sentence "Peter [MASK1] a bank and runs away with the stolen [MASK2]" and the model learns to correctly predict the words “robbed” and “money” based on the context of the other words in the sentence. 
2. Next sentence prediction: The model receives two sentences, and the goal of the training is to predict if the second sentence is the subsequent sentence in the original text. Thus, in this training method, the model learns the relationship between two sentences.
[bookmark: _kupvw7gkml2u][bookmark: _xcuumvg0za46]Limitations
As you have learned, one limitation is that in some vector space representations, e.g., bag-of-words, information about word order is discarded assuming all words are independent of each other. But as you see by comparing the sentences “The cat eats the mouse” and “The mouse eats the cat”, the word order often has an effect on the meaning.  Consequently, vector space representations which do not keep the information of the word order are not appropriate for some NLP tasks. 
Another limitation is that some models, e.g., Transformer models like BERT, only allow a limited input length (e.g. 512 word tokens). To overcome this problem, the text is often decomposed into smaller parts. Then their embedding vectors are computed. Finally, the vectors are averaged to obtain a single vector. Unfortunately, the approach is associated with information loss.

Self-Check Questions
1. Please define “bag-of-words”.
Bag-of-words is a simple approach to turn textual information into numbers. In this approach, text is represented as a "bag" (multiset) of its words, i.e. a vector containing the word count of that text. 

2.2 Regular Expressions
A common task in NLP is to look for a specific pattern in a given text or string. Regular expressions (also called "RegEx") are a powerful tool for searching and replacing strings. Many programming languages (e.g., Python, JavaScript, Perl) and even shell scripts or the UNIX command line support working with regular expressions. Furthermore, some editors like Vim or Emacs allow the use of regular expressions to search and replace strings in text. 
In rule-based NLP techniques, regular expressions are often used to identify and extract specific text patterns such as times, prices, or dates. 
Basic Concepts
Metacharacters like \, ^, $, ., |, ?, *, +, (, ), [, ], {, and } often occur in regular expressions. Used as a literal, they must be escaped by a backslash. Otherwise, they are executed as a regular expression. The following tables give an overview of the most important basic concepts of regular expressions.


Anchors
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]


Disjunctions
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]



Character classes
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
Tasks, Applications, and Tools
Regular expressions can be used for text normalization. For example, they can remove extra spaces or blank lines. Also, they can help normalize numeric values in texts with search and replace operations. Text editors such as Vim, Emacs, or Notepad++ can be used to find and optionally replace text with the help of regular expressions. For example, the strings 200 dollars and USD 200.0 would be normalized to $200.00 using the following regular expressions in Notepad++:
Regular Expressions in Notepad++
[image: ]
At the command line or in shell scripts, programs like sed or grep help to perform operations with regular expressions: 

[image: Ein Bild, das Tisch enthält.

Automatisch generierte Beschreibung]

Regular expressions are available in all major programming languages. Let’s look at some examples:
· In Perl, we can execute a search and replace operation on a string: 
$data =~ s/banana/test/; 
This replaces the word “banana” in the string $data with the word “test.”
· In Python, the re module helps to deal with regular expressions. For example, the Python expression re.match(r”banana$”, input) would return True if the string stored in the variable input ends with “banana”, otherwise it would return False.
· In JavaScript, this example looks like this: input.match(/banana$/)
[bookmark: _wx08l0oy2vue]Challenges
As we have seen, regular expressions can be used to build rule-based systems for text-processing applications. However, when these rule-based systems need to cover a large number of cases and exceptions, defining these rules can be a tedious process. Besides the complexity of the rules and the exceptions, we have to take into consideration that the execution order of the regular expressions has an impact on the result and that one rule can have an impact on other rules. Furthermore, texts often have spelling errors which also have to be handled by the rules.
[bookmark: _esk03xgi0mx3]
Self-Check Questions
1. Please complete the following sentence:
Anchors are used to mark a position in a string. Logical ORs are represented by disjunctions. Character classes are used to represent a certain group of characters. Repetitions of preceding elements can be defined by quantifiers.

2.3 Statistical Approaches
In the beginning of NLP, rule-based systems were developed. However, as you have learned in the previous subsection, rule-based systems have the drawback that they need to cover a large number of cases and exceptions and defining these rules can be a tedious process. The significant increase in computing power in recent decades paved the way for statistical approaches. 
The advantage of statistical-based systems is that they do not require human experts with domain knowledge to set up the rules. In contrast, statistical methods follow a data-driven approach: The idea is to derive statistics for the model from a large amount of training data, and then use this model to make predictions for an unknown data set. Another advantage of statistical systems over rule-based systems is that they can be easily ported to new domains or tasks with appropriate data. 
Well-known statistical approaches are, for example, statistical machine translation and statistical language models. Statistical language models are based on a statistical probability distribution over string tokens in a given alphabet. In many NLP tasks, these tokens are word tokens or characters. With the knowledge of the statistical distribution of words and characters, tasks like auto-completion, spelling error detection, named entity recognition or topic modeling can be implemented. In the next subsections, we will first look at statistical n-grams which model the probability of words based on their frequency and the frequency of the preceding words. Then we will learn how TF-IDF works which stands for term frequency-inverse document frequency and can be used in information retrieval tasks, e.g., in topic modeling. bi-gram
A bi-gram (also bigram or 2-gram) at word level is a sequence of two words.

N-Grams
[bookmark: _8r03cx36j9]n-grams can be used to assign probabilities to a sequence of characters, subwords, words, or sentences. In general, a sequence of n words is called an n-gram. For example, “Cristiano Ronaldo” is a 2-gram, also called a bi-gram. “Cristiano Ronaldo plays soccer” is a 4-gram.
Areas of application for n-grams include statistical language models for spell checkers, auto-completion, speech recognition, optical character recognition (OCR), handwriting recognition, and plagiarism detection. Toolkits to create and evaluate n-gram language models are the SRI Language Modeling Toolkit, CMU SLM Toolkit, and MIT Language Modeling Toolkit.Statistical language models
A statistical language model models a probability distribution over sequences of words.

In speech recognition, for example, language models provide context to discriminate similar-sounding sentences and words. Different statistical language models exist depending on the type of n-grams used, e.g., uni-gram models, bi-gram models or general n-gram models.
Basic Concept
n-grams can be used to estimate the probability of the last word of a sequence of  words based on the history of the previous words . The goal is to predict the probability  of a word  based on the history : 

The simplest way to estimate this probability is to use the frequency counts  from a large text corpus: 

As you can see, we get a probability of  given the history  by counting the occurrence of  and normalizing the word count by dividing it by the count of the previous words . 
That means in a bi-gram where the model considers only the occurrence of two words , the history  consists only of the previous word , leading to the following formula for the probability  of a word :

Let’s assume we have an auto-completion task that uses a bi-gram model to predict and suggest the next word. The bi-gram model is trained with a text corpus containing only the following five sentences:
	1. I am extremely grateful for your help.

	2. I am extremely pleased with your performance so far.

	3. I am extremely happy that you could make it to the ceremony.

	4. When are you available for a phone call?

	5. What are your hobbies?



Let’s now assume we have typed the words “I am extremely” into our smartphone and the auto-completion algorithm should predict and suggest the next word. From our small corpus, we learn that after the word “extremely”, the words “grateful,” “pleased,” or “happy” can occur. 
With the help of our small corpus, the probabilities of the bi-grams “extremely grateful”, “extremely pleased” and “extremely happy” are calculated as follows:
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
Since all three bi-grams “extremely grateful”, “extremely pleased” and “extremely happy” have the same probability of 0.33, our auto-completion algorithm would suggest all three words “grateful,” “pleased,” or “happy” as the next word. As the word “sad” has (like all other words) a probability of 0, it would not be suggested. Of course, the probability is not 0 that the word "sad" appears after the word "extremely" in a real-world scenario. But since our small corpus lacks an example of the word sequence "extremely sad", the probability is 0.
Another fact is that in our small corpus the words "I am" are always followed by the word "extremely" and therefore . Consequently, our auto-completion system would always predict the word "extremely" when we type "I am". 
From this we can see that it is important to use significantly more example sentences for estimating the probabilities. In general, the more domain-specific text data is used to calculate the probabilities, the better the prediction in this domain.
Smoothing
As we have seen, probability estimates from a small text corpus can be imprecise.  Words that would occur frequently in a real scenario are given a probability of 0 because they are not included in the training corpus. In addition, when one factor in a multiplication is 0, the probability of 0 affects the whole outcome. Smoothing is a technique to deal with the problem of the sparsity of training data by adding or adjusting the probability mass distribution of words. It can be used in many machine learning algorithms for text processing that involve the calculation of probabilities. 
One example of smoothing is Laplace smoothing, where we “hallucinate” that every word appears at least one time in a corpus with a vocabulary size  as follows:
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
Other smoothing methods such as Good-Turing and Kneser-Ney smoothing also use such tricks so that the conditional probabilities approach 0 but never become 0.
Challenges
In general, n-grams must deal with the following three challenges: 
· unknown words
· overfitting
· sparsity
Unknown or out-of-vocabulary words are words that are not defined in the vocabulary of the model, usually because they did not occur in the training data. The percentage of out-of-vocabulary words that appear in a test set is called the out-of-vocabulary (OOV) rate. To deal with out-of-vocabulary words, their probabilities are usually estimated in the training of an n-gram language model as follows:
1. Define the fixed input vocabulary of the language model using a domain-specific word list. 
2. Convert each out-of-vocabulary word that is not in the fixed input vocabulary to the unknown word class <UNK>.
3. Estimate the probabilities for the <UNK> class in the same way as for known words.
[bookmark: _xkgfa3cplchy]Overfitting happens when a model predicts the word probability well in the training set but not in the test set. This means that the model did not learn to generalize. 
Data sparsity means that there is not enough training data to get an NLP model, e.g., a language model, that accurately predicts probabilities of word sequences in a test set. 
A possible solution against overfitting and sparsity are smoothing techniques.
A drawback compared to neural models is that statistical models lack generalization abilities, i.e., the ability to adapt properly to new, previously unseen data.
[bookmark: _wgdomn6kax5j]Evaluation
The evaluation of an n-gram language model can be done by using it in a real-world task, such as our auto-completion task, and then evaluating it using evaluation metrics specific to the task. This is called extrinsic evaluation. Intrinsic evaluation
The evaluation is decoupled from a concrete task.

If we do not have the time and resources for such an extrinsic evaluation, we can use an intrinsic evaluation. An evaluation metric for the intrinsic evaluation of n-gram language models is perplexity. The perplexity   of a model on a text  with   words is computed as the inverse probability of the test set, normalized by the number of words:
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
The lower the perplexity, the better the model. The perplexity indicates the weighted branching factor: A perplexity of 120 means that whenever the model is trying to predict the next word, it is as confused as if it had to select between 120 words.
TF-IDF
The second statistical approach we want to look at is frequency–inverse document frequency (TF-IDF). TF-IDF is a statistical measure used to define the mathematical relevance of words in documents (Aizawa, 2003). The approach comes from information retrieval (Beel, Gipp, Langer, & Breitinger, 2016). To compute a TF-IDF value of a term (i.e., usually a unique word), a combination of term frequency (TF) and inverse document frequency (IDF) is computed. In addition to topic modeling by using the relevant words in documents, TF-IDF is used for word and sentence vectorization similar to one-hot vectorization. But compared to one-hot vectorization where the vector entries representing an existing word have the value of 1, the value corresponding to the existing word is assigned its TF-IDF value. The benefit of TF-IDF is that it does not only focus on the frequency of words in the corpus but also delivers the significance of the “words”.(Schlippe & Sawatzki, 2022)
Basic Concept
Computing a TF-IDF includes the following parameters: 
· Term frequency (TF) indicates the number of occurrences of a term  in a document  relative to the total number of words in the document. TF increases the more frequently a term appears in a given document:

· The document frequency (DF) indicates how many documents contain the term , relative to the total number of documents . The document frequency indicates how important a text is relative to other documents:



· The inverse document frequency (IDF) indicates how relevant a term is. It is the logarithmically scaled inverse of the document frequency:

To calculate the final TF-IDF-score, TF is multiplied by the IDF: 

A high TF-IDF value is an indicator of a word that occurs frequently in one document, whereas the total number of documents containing that term is relatively low compared to the total number of documents. Thus, more specific words are given a higher weight.
Let’s look at an example that shows how to find the TF-IDF values for 3 documents consisting of 1 sentence.
	Document 1: 
	They are pirates

	Document 2: 
	They are robots

	Document 3: 
	They aren’t kings and queens



“They” occurs in all three documents. “are” is used in two documents, and “and” is only in one document. Furthermore, the terms “pirates”, “robots”, “kings” and “queens” appear only once each. 
The following tables show TF, DF, IDF and the final TF-IDF values of the words in each document:
	Document 1
	
	

	Term
	
	
	
	

	They
	
	
	
	

	are
	
	
	
	

	pirates
	
	
	
	


 
Source: Tim Schlippe (2022)

	Document 2
	
	

	Term
	
	
	
	

	They
	
	
	
	

	are
	
	
	
	

	robots
	
	
	
	



Source: Tim Schlippe (2022)

	Document 3
	
	

	Term
	
	
	
	

	They
	
	
	
	

	aren’t
	
	
	
	

	kings
	
	
	
	

	and
	
	
	
	

	queens
	
	
	
	


Source: Tim Schlippe (2022)
From those numbers, we learn that the most relevant terms are “pirates” and “robots” in document 1 and document 2, represented by a TF-IDF value of 0.16. The most important terms ins sentence 3 are “aren’t”, “kings”, “and” and “queens”, indicated by a TF-IDF of 0.1.
Vectorization
Let’s continue with this example and see how sentence vectors can be created based on these TF-IDF values. If vectorization is created with these TF-IDF values, initially all unique words are extracted from the three documents:
They, are, pirates, robots, aren’t, kings, and, queens
Now for each document the next step would be to add the TF-IDF values of each word existing in the document and the value of 0 for terms missing in the document. However, that way we would not be able to distinguish if the value 0 was used because its TF-IDF value was 0 or because the term did not occur in the document. To avoid such an information loss, smoothing is applied to give terms with a TF-IDF value of 0 a higher value. Usually, 1 is added to all TF-IDF values:
Thus, for the first sentence “They are pirates”, the values are:
[bookmark: _Hlk120236765]They: 1, are:1.06, pirates: 1.16, robots: 0, aren’t: 0, kings: 0, and: 0, queens: 0
For the second sentence “They are robots”, the values are:
They: 1, are:1.06, pirates: 0, robots: 1.16, aren’t: 0, kings: 0, and: 0, queens: 0
Finally, for the third sentence “They aren’t kings and queens”, the values are:
They: 1, are:0, pirates: 0, robots: 0, aren’t: 1.10, kings: 1.10, and: 1.10, queens: 1.10
In the end, we represent each sentence based on these values as a vector: 
[1.00,1.06,1.16,0.00,0.00,0.00,0.00,0.00]
[1.00,1.06,0.00,1.16,0.00,0.00,0.00,0.00]
[1.00,0.00,0.00,0.00,0.10,0.10,0.10,0.10]
Self-Check Questions
1. Please complete the following sentence.
When NLP scientists work with N-grams, they call a sequence of two words a bigram. A sequence of 3 words is called a trigram. 
2.4 Recurrent Neural Network-based ApproachesConvolutional layers
In the convolutional layers, the activity of each neuron is calculated by a convolution.

In recent years, neural NLP models have become more and more common. They are based on deep learning strategies and built as recurrent neural networks (RNNs) or convolutional neural networks (CNN). 
Convolutional Neural Networks
The CNNs’ architecture is based on various convolutional layers or kernels. For each layer, the convolution kernel is slid over the input matrix to generate a feature map, i.e., a filtered version of the input matrix. In the pooling layers (also called subsampling layers) the dimensionality of the feature maps is further reduced until in the last layers, we receive a feature representation that is reduced on a very high level. This feature representation can then be passed from the so-called fully connected layer to a layer of artificial neurons. which learn to assign these high-level features to the output classes. Usually, CNNs are used in computer vision tasks (Valueva, Nagornov, Lyakhov, Valuev, & Chervyakov, 2020). But for NLP tasks they can be used in sentiment classification (Kim, 2014) as demonstrated in the following figure. Pooling layers
In the pooling layer, the dimension of the data us reduced discarding superfluous information.

[bookmark: _Hlk85778978]CNN Architecture (based on (Kim, 2014)). 
[image: ]
Source: Tim Schlippe (2022), based on Kim (2014).

Recurrent Neural Networks
RNNs enable the modeling of temporal correlations since the connections between the nodes allow the output of certain nodes to influence the subsequent input to the same node. Its internal memory allows it to process input sequences of a variable length (Tealab, 2018). Therefore, RNNs can maintain the order of a text, which makes them more suitable than CNNs for many NLP tasks. Usually, the training time for RNNs is slower than for CNNs as the computations cannot be parallelized. (Shankar & Parsana, 2022). The following figure visualized an RNN architecture for sentiment analysis.
RNN Architecture (based on (Jbene, Tigani, Saadane, & Chehri, 2021)). 
[image: ]Long short term memory (LSTM)
[bookmark: _Hlk122599365]A long short term memory (LSTM) is a type of recurrent neural network “that incorporates multiplicative gates that allows the network to have long- and short-term memory” (Yen and Moh (2019).

Source: Tim Schlippe (2022), based on Jbene et al. (2021).

Frequently, long short-term memory (LSTM) networks (Hochreiter & Schmidhuber, 1997) are used as RNNs since they help to avoid the vanishing gradient problem during training. The vanishing gradient problem occurs since during each iteration of training each of the neural network's “weights are updated [proportionally] to the gradient value ([a] partial derivative of the cost function with respect to the current weights) after each training iteration (epoch)” (Basodi, Ji, Zhang, & Pan, 2020). The problem is that “sometimes the gradient value is too small and its value gets gradually diminished during backpropagation to the initial layers”, preventing “the network from updating its weights” (Basodi et al., 2020).
To avoid this vanishing gradient problem, LSTMs assign “weights” to data that help RNNs to either let in new information, forget information, or give it enough importance to affect the output. Gates determine whether to let new input word  in (input gate), whether to delete the information since it is not important (forget gate), or whether it affects the output at the current time step (output gate). The following figure shows the building blocks of an LSTM cell, where  is the input vector to the LSTM unit,  the input gate's activation vector,  the cell state vector,  the forget gate's activation vector and  the hidden state vector is also known as the output vector of the LSTM unit. × represents an element-wise multiplication. Ꚃ represents the application of a differentiable function like the sigmoid function to a weighted sum.
Title 
[image: ]
Source: Tim Schlippe (2022)
Self-Check Questions
1. Please name the three gates that make up an LSTM.
input gate
forget gate
output gate
2.5 Transformer-based Approaches
In 2017 Google introduced transformer models which are currently the most powerful models for NLP tasks (Vaswani et al., 2017). Since then, successful big NLP models such as BERT (Bidirectional Encoder Representations from Transformers) (Devlin, Chang, Lee, & Toutanova, 2019), GPT (Generative Pre-trained Transformer) (Brown et al., 2020), etc. are based on transformer models that use an encoder-decoder architecture. In contrast to traditional encoder-decoder models, Transformers rely on attention mechanisms (Vaswani et al., 2017). Let’s first look at the encoder-decoder architecture and then at the attention mechanism.
Encoder-Decoder Architecture
An encoder-decoder architecture consists of an encoder and a decoder. The encoder uses encoding layers to process the input one layer after another until a vector is obtained that contains the most important context information from the input sequence. The decoder takes this context vector (also called feature vector) and uses its encoding layers one after another to generate an output sequence. The figure below shows a simplified version of a typical encoder-decoder architecture. 
Simplified Encoder-Decoder Architecture
[image: ]
Source: Tim Schlippe (2022)

For example, if we consider an example from machine translation where a sentence needs to be translated from English to German, the encoder will first encode the English sentence into a feature vector containing all the information about the original sentence. In the next step, the encoder's output is passed to the decoder, which then translates the information into German.
Attention Mechanism
NLP models with an attention mechanism outperform other models in tasks like machine translation (Vaswani et al., 2017). To understand the concept of the attention mechanism, let’s first look at the following two sentences: 
	“I moved from Munich to Berlin because I like it there.”
	“I moved from Munich to Berlin because I did not like it there.” 
In the first sentence, we know that ‘it’ refers to ‘Berlin’ – the focus or attention is on the word ‘Berlin’. However, in the second sentence ‘it’ refers to Munich – the focus or attention is on the word ‘Munich’. 
This example shows how important it is to identify the relevance of the parts of a sentence for accurate comprehension. Therefore, the idea is each time the model predicts an output word, it only uses parts of the input where the most relevant information is concentrated instead of the entire sequence. In the attention mechanism, this is realized with the help of attention weights.
There is a large number of pre-trained models available which are based on the transformer architecture such as GPT (Brown et al., 2020), BERT (Devlin et al., 2019), RoBERTa (a Robustly optimized BERT pretraining Approach) (Liu et al., 2019), DistilBERT (Sanh, Debut, Chaumond, & Wolf, 2019) or XLNet (Yang et al., 2019).
Self-Check Questions
1. Please name three pre-trained transformer-based NLP models.
BERT
RoBERTa
GPT


3. Speech Processing
Introduction 
In this unit we will describe statistical and deep learning-based methods to implement automatic speech recognition (ASR) and speech synthesis (also called text-to-speech (TTS)). 
Automatic speech recognition (ASR) – also called speech-to-text (STT) – transcribes an audio stream of spoken language – also called speech – into text. It is a “subfield of computational linguistics and computer science” (Soni, 2019). 
Speech synthesis (text-to-speech, TTS) “is the artificial production of human speech” (Hande, 2014) and describes the process of converting a written text to spoken language. It involves (Hande, 2014) “disciplines such as acoustics, linguistics, […] signal processing” (Ning, He, Wu, Xing, & Zhang, 2019), and computer science.
Speech recognition provides advantages for both information retrieval and device control: 
· the ability to keep one's hands free for other tasks,
· a more natural and intuitive input method compared to typing or using a mouse, 
· On average, speech allows for the transmission of information three times faster than typing (Ruan, Wobbrock, Liou, Ng, & Landay, 2018). 
For these reasons, voice assistants have gained widespread usage on smartphones and within households, such as Siri on iPhones or smart speakers like Apple HomePod, Amazon Echo, and Google Home. 
3.1 Statistical Speech Recognition and Synthesis
Both ASR and TTS systems are made up of various components that employ different techniques. This subsection will begin with statistical methods for ASR and TTS, followed by an examination of deep learning techniques for both tasks in the next subsection.
Statistical Speech Recognition
Before delving into the specific components of a statistical ASR system, such as the acoustic model, pronunciation dictionary, and language model, let's first understand how the speech signal is converted into feature vectors for computer processing. The main components of a statistical ASR system are the acoustic model, the pronunciation dictionary, and the language model.
Signal Preprocessing
The continuous speech signal recorded by a microphone is transformed into a discrete form that can be processed by a computer through the process of signal preprocessing, which includes sampling and quantization.
The process of sampling the speech signal over time involves capturing values at specific intervals, such as every 10 milliseconds. The Nyquist theorem (Shannon, 1949) must be followed, which states that the sampling frequency must be at least twice as high as the highest frequency in the signal, in order to avoid losing any valuable information. A sampling rate of 16 kHz is typically used to encode the frequencies in speech, this allows to reconstruct voice frequencies up to 8 kHz (Schultz & Schlippe, 2014).Fourier transform
The Fourier transform is a mathematical transform which converts a time function into a function expressed in terms of frequency.

The process of assigning numerical values to the sampled values is called quantization. For speech, a 16-bit quantization is commonly used (Schultz & Schlippe, 2014). Feature vectors are then extracted from the signal, which is done through a Fourier transform in the frequency domain, since phonemes are difficult to recognize in the time domain and the human ear also analyzes frequencies. Mel-frequency cepstral coefficients (MFCC) have been widely used for decades as feature vectors since they provide a good representation of the short-term power spectrum of a sound. MFCCs retain frequencies audible only to humans by converting the Fourier coefficients into the Mel scale (Stevens, Volkmann, & Newman, 1937) and removing further redundant information through mathematical operations.
Fundamental Equation and Basic Components
The goal of ASR is then to determine the most likely spoken word sequence W = (w1, w2, …, wl), given sequence of feature vectors X = (x1, x2, …, xk). This can be represented by the conditional probability P(W|X), where W represents possible word sequences and X represents the set of feature vectors obtained from the signal preprocessing:
[image: ]
Calculating this conditional probability directly is not possible, but it can be re-written as P(X|W)*P(W)/P(X) and then solved by using the Bayes rule (Bayes, 1763).
Since the sequence of feature vectors X represents the observed spoken utterance, the probability P(X) of it occurring is 1. Therefore, we can disregard P(X) in our equation. The probability P(X|W) that the sequence of feature vectors X will occur given the word sequence W, is determined by the acoustic model, which nowadays uses phonemes instead of words. A pronunciation dictionary is necessary to map between phonemes and words. The probability P(W) that a word sequence W occurs, is provided by the language model, which is not dependent on any conditions. We will examine the acoustic model, the pronunciation dictionary, and the language model in more detail later.
Before, let's examine the "argmax" in the equation. It means that we're looking for the word sequence W that maximizes the product of the probabilities P(X|W) and P(W). To achieve this, we must calculate the product of the probabilities for different word sequences. This process of finding the maximum probability is known as search or decoding. Since it would be computationally expensive for the computer to calculate all possible combinations of probabilities, a search graph is built using the pronunciation dictionary, which only computes a predetermined number of the most likely paths. A well-known method for this is beam search (Reddy, 1977). 
This is an overview of the main components of an ASR system, which includes the acoustic model, pronunciation dictionary, and language model:
Basic components of statistical automatic speech recognition. Author: (Schlippe, 2014)
[image: ]
Acoustic Model
The acoustic model uses feature vectors containing MFCCs to determine the likelihood of a specific sequence of words being spoken. However, it expresses this sequence as a sequence of phonemes instead of words, as this increases flexibility and allows the model to predict words not present in the training data.
To predict the sequence of phonemes, Hidden Markov Models (HMM) are used. The states of HMMs represent sub-phonemes but are not observable, i.e., hidden. The objective of the HMMs is to learn how the hidden states are passed through based on the observed output sequence. The spoken utterance is represented by a sequence of feature vectors, and it is the observed output sequence. Typically, three states are utilized for each phoneme to model sub-phonemes, i.e., the beginning, middle, and end of the phoneme, as these parts are pronounced differently. The transitions between states have transition probabilities a, which can be calculated by the probability of occurrence of phoneme sequences in the words of the target language. The use of HMMs in the acoustic model is beneficial as each state outputs a probability b(x) depending on the provided feature vector X. Gaussian mixture models (GMM) are commonly used to model these probabilities, and more recently, deep neural networks (DNN) are increasingly being employed.Gaussian Mixture Model
“A Gaussian Mixture Model (GMM) is a parametric probability density function represented as a weighted sum of Gaussian component densities” (Reynolds (2009)

Connected HMMs building the word ’be’. Author: (Schlippe, 2014)
[image: ]
Pronunciation Dictionary
The pronunciation dictionary creates the connection between the phonemes in the acoustic model and the words in the language model and the transcription.
Pronunciation dictionary. Author: (Schlippe, 2014)
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
By describing each word as a sequence of phonemes:
· ... the ASR system can recognize words that were not present in the training data,
· … the ASR system can recognize speech from speakers not included in the training data,
· … the ASR system can recognize variations in pronunciation, allowing for greater flexibility in recognizing continuous speech, such as different dialects.
Since manually creating pronunciations for the words in a dictionary is a tedious and costly task, “(D)data-driven grapheme-to-phoneme converters trained from existing word-pronunciation pairs can be used to directly provide pronunciations for words” (Schlippe, 2014).
Language Model
The language model computes the probability of a sequence of words, regardless of how it was spoken. Language models are also applied in other natural language processing tasks, such as machine translation.
To determine the probability of a word sequence in a language model, such as the likelihood of "soccer" being spoken after "Cristiano Ronaldo plays" and the probability of "tennis" being spoken, two techniques can be used: The traditional method is n-gram language models, which rely on the occurrence probability of word sequences in text. An alternative approach is using neural language models. These models are powerful as they represent semantically similar words with their context in a word vector that is located close in vector space. This vector space also allows the probability of words that were not seen in a specific context in the training text corpus to be determined. The illustration below shows the components of a neural language model:
Neural language model. Source: Author
[image: ]
Statistical Speech Synthesis
As illustrated in the figure below, a typical speech synthesis system “is composed of two parts: […] a front-end and a back-end” (Isewon, Oyelade, & Oladipupo, 2014).
Speech synthesis system. Source: Author
[image: ]
· Front-end:
The front-end component focuses on analyzing the text input and extracting the information needed for back-end modeling. As a first step, it performs text normalization and tokenization to convert raw text, which often includes numbers and abbreviations, into written-out form. (Reichel & Pfitzinger, 2006). The front-end then applies a grapheme-to-phoneme conversion, using either rules or a dictionary, to convert each word into its corresponding phonetic transcription. For instance, the grapheme sequence "speech" would be converted into the four phonemes /s/ /ph/ /iy/ /ch/. Additionally, it marks prosodic units, such as rising pitch on questions. Together, the phonetic transcriptions and prosody information make up the symbolic linguistic representation that is output by the front-end.Prosody
Prosody refers “to those properties of speech that cannot be derived from the segmental sequence of phonemes”, such as “pitch”, “durations” and “loudness” (Nooteboom (1997). 

Tokenization
Tokenization is used to split a text into individual sentences, words, or sub-word units.

· Back-end:
The back-end component reads the output of the front-end analysis and “converts the symbolic linguistic representation into sound” (Isewon et al., 2014).
The two primary methods of TTS conversion have traditionally been concatenative TTS and parametric TTS, but recent advancements in deep learning have introduced new approaches to the problem of speech synthesis (Ning et al., 2019).
Concatenative Speech Synthesis
(Ning et al., 2019) describe the concatenative TTS as follows: The “method directly concatenates the waveforms in the speech waveform database and outputs a continuous speech stream. Its basic principle is to select the appropriate speech unit from the pre-recorded and labeled speech corpus according to the context information analyzed from the text input and concatenate the selected speech unit to obtain the final synthesized speech”. The use of context information greatly improves the naturalness of the synthesized speech, such as diphone synthesis and domain-specific synthesis. The following figure illustrates the speech unit selection (Heiga Zen, Tokuda, & Black, 2009):
Unit selection in concatenative speech synthesis. Author: (Heiga Zen et al., 2009)
[image: ]
The speech unit selection is based on two costs (Hunt & Black, 1996): 
· Target cost:
“Each target phoneme and each candidate in the synthesis database is” characterized by a […] feature vector” (Hunt & Black, 1996). The target cost refers to the discrepancy between the predicted target acoustic feature vector and the acoustic feature vector extracted from each unit.
· Concatenation cost:
“The concatenation cost is the acoustic difference between consequent units” which should “be concatenated without audible glitches at the unit boundary” (Apple Machine Learning Research, 2017). Consequently, the goal is to find a unit with a minimal difference in cepstral distance, power and pitch (Hunt & Black, 1996).
Parametric Speech Synthesis
“The parametric speech synthesis […] uses digital signal processing technologies to synthesize speech from text” (Ning et al., 2019). The aim is to imitate the human voice production mechanism by mimicking the parameters that are responsible for speech generation. It combines parameters such as fundamental frequency (F0), magnitude spectrum, duration, etc., and processes those parameters to produce speech. 
Parametric speech synthesis. Author: (Smith, 1997)
[image: ]

As shown in the figure, the simulation of the human voice production process starts either by creating a repeating pulse sequence (pulse train generator) to represent the vibration of the vocal cords in voiced speech or by using random noise (noise generator) to represent unvoiced speech. By adjusting the settings of the filter, a wide range of speech sounds can be generated.
Common techniques for parametric speech synthesis include formant parametric synthesis (Schröder, 2001), HMM-based speech synthesis (H. Zen et al., 2007), vocal organ parametric synthesis (Cataldo, Leta, Lucero, & Nicolato, 2006) and deep neural network (DNN)-based speech synthesis (Ze, Senior, & Schuster, 2013).
Self-Check Questions
1. Which two steps does the signal preprocessing in ASR consist of?
sampling
quantization

3.2 Speech Recognition and Synthesis with Deep LearningGrapheme
“A grapheme is the smallest meaningful contrastive unit in a written language” (Encyclopedia.com (2020).

In the past, acoustic, language, and pronunciation models were crucial in statistical speech, but now deep learning-based end-to-end systems are becoming increasingly popular. 
“(E)end-to-end is a system which directly maps a sequence of input acoustic features” derived from the speech signal “into a sequence of grapheme or words” (S. Wang & Li, 2019).
Speech Recognition with Deep Learning 
The figure illustrates the design of Mozilla DeepSpeech, a recurrent neural (RNN) network-based open-source ASR system that follows Baidu's DeepSpeech research paper (Hannun et al., 2014). The RNN's objective is to convert an input sequence of feature vectors into an output sequence of probabilities for each character, which can include letters, apostrophes, or spaces, to transcribe the speech.
End-to-end speech recognition with deep learning. Source: (Hannun et al., 2014)
[image: Ein Bild, das Tisch enthält.

Automatisch generierte Beschreibung]
Like other ASR systems, Mozilla DeepSpeech utilizes mel-frequency cepstral coefficients (MFCCs) to capture the most significant speech features. For each time frame, a feature vector is extracted that includes not only the MFCCs of the current frame but also those of surrounding frames. The RNN architecture of Mozilla DeepSpeech comprises of 5 hidden layers (Hannun et al., 2014): The first three layers are not recurrent using a rectifier linear unit (ReLU) as the activation function which returns 0 for negative input values and the positive input values as output values. The fourth layer uses recurrent long short term memories (LSTM) (Hochreiter & Schmidhuber, 1997) to convey previous information.
Speech Synthesis with Deep Learning 
Deep learning-based speech synthesis utilizes deep neural networks to directly map linguistic features, such as character embeddings, to acoustic features, such as Mel-frequency cepstral coefficients (MFCCs), Linear Frequency Coefficients, and spectrograms. This approach has been shown to be highly effective in learning inherent features (Ning et al., 2019). 
Popular deep learning models for end-to-end speech synthesis include WaveNet (van den Oord et al., 2016) and Tacotron (Y. Wang et al., 2017). WaveNet is a “a deep neural network for generating raw audio waveforms” (Van den Oord et al., 2016). Tacotron uses a sequence-to-sequence “model with an attention mechanism to convert text to a […] spectrogram, which” is converted to speech (G. Wang, 2019). 
The following figure shows the architecture of Tocotron 2, “composed of a recurrent sequence-to-sequence feature prediction network that maps character embeddings to […] spectrograms, followed by a modified WaveNet model acting as a vocoder to synthesize time domain waveforms from those spectrograms” (Shen et al., 2017): 
End-to-end speech synthesis with deep learning. Source: (Shen et al., 2017)
[image: ]
(Shen et al., 2017) explains the encoder (indicated in blue) and the attention mechanism of Tacotron 2 as follows: 
“Input characters are represented using a learned 512-dimensional character embedding, which are passed through a stack of 3 convolutional layers […]. The output of the final convolutional layer is passed into a single bi-directional […] LSTM […] layer […] to generate the encoded features. […] A(a)n attention network […] summarizes the full encoded sequence as a fixed-length context vector for each decoder output step.”. 
The decoder, which is represented in orange in the figure, operates as follows: (Shen et al., 2017): 
“The prediction from the previous time step is first passed through a small pre-net containing 2 fully connected layer. […]. The pre-net output and attention context vector are concatenated and passed through a stack of 2 uni-directional LSTM layer […]. The concatenation of the LSTM output and the attention context vector is projected through a linear transform to predict the target spectrogram frame. Finally, the predicted mel spectrogram is passed through a 5-layer convolutional post-net which predicts a residual to add to the prediction to improve the overall reconstruction”.  
Finally, they “use a modified version of the WaveNet architecture […] to invert the mel spectrogram feature representation into time-domain waveform samples” (Shen et al., 2017).
Self-Check Questions
1. Complete the following sentence.
Whereas in statistical speech the three components acoustic model, language model and pronunciation dictionary played important roles, now more and more end-to-end systems are used which are based on deep learning.

Summary
In writing
4. Application ScenariosSpeaker recognition
“Speaker recognition is the process of automatically recognizing who is speaking by using the speaker-specific information included in speech waves to verify identities being claimed by people accessing systems” (Zhang (2000).

Introduction 
There are various tasks where speech processing is part of a more complex task. n the following sections, you will first be introduced to the traditional task of automatic transcription, then to information extraction and text understanding. Lastly, we will delve into voice assistants, which have gained significance in the realm of human-computer interaction and AI.
4.1 Speech Recognition, Speech Synthesis and Machine Translation
Speech Recognition
ASR refers to the automatic transcription of audio signals. However, ASR is also used in various other complex tasks such as voice search, speech-to-speech translation or voice assistants, or related tasks, e.g., speaker recognition and speaker diarization.
Speech SynthesisSpeaker diarization
“Speaker diarization is the task of” automatically “determining ‘who spoke when?’ in an audio or video recording” (Anguera et al. (2012).


Speech synthesis has been incorporated in many operating systems since the 1980s and it is now commonly used in a variety of applications such as navigation apps, novels, news readers, speech-to-speech translation, and voice assistants like Amazon's Alexa, to provide users with the latest news. 
The quality of speech synthesis is determined by its “similarity to the human voice and its ability to be understood” (Burri, 2018). Text-to-speech systems can assist individuals with visual or reading impairments to access written texts (Isewon et al., 2014). One of the most well-known examples of someone using speech synthesis for communication was Stephen Hawking (Medeiros, 2015). 
Machine Translation
There are two primary tasks that can be accomplished using MT technology: 
· Machine translation, where the input and output are both text.
· Speech-to-speech translation, where the input and output are both speech. 
MT of text is used in several applications:
· to get a first quick translation of text documents and websites.
· to assist human translators in speeding up the translation process (computer-aided translation).
· as a component of a speech-to-speech translation system.
As illustrated in the figure, the input of an MT system is text in the source language and the output is text in the target language:
Machine translation. Source: Author
[image: ]
Translating large volumes of text can be time-consuming without the aid of MT. By using an MT system, a more consistent translation can often be obtained than relying on multiple translators if their guidelines are not clearly defined, as the interpretation of how something should be translated can be subjective. 
Since the 2000s, many systems and services have been developed that provide effective results in specific domains. For example, (van der Wees, Bisazza, & Monz, 2018) report very good results for several language pairs in the news domain. Today, several MT services are available online, two well-known examples are Google Translate (Wu et al., 2016) and DeepL (“DeepL,” n.d.a). As mentioned in the introduction to MT, the importance of MT and its growing reach across borders can be seen from the following facts and figures: Facebook reported 6 billion translations per day in 2019, covering 41 languages (Ott et al., 2019). Google reports over 100 billion translations per day, in more than 100 languages (Turovsky, 2016).Text normalization
“Text normalization is the process of transforming” […] “text into a single canonical form” (Thanaki (2017, p. 164).

 While MT primarily deals with the translation from a source language to a target language, the technologies used in MT can also be applied to other NLP tasks. There are examples of successful use of MT for tasks such as text normalization (Schlippe, Zhu, Lemcke, & Schultz, 2013) and diacritization of Arabic text (Schlippe, Nguyen, & Vogel, 2008).Diacritization
“Automatic diacritization is the task to restoring missing diacritics in languages that are usually written without diacritics” (Hamed and Zesch (2017).

Speech-to-speech translation systems generally consist of the following three components, with the last component being the speech synthesis:
1. ASR to convert the speech into text.
2. MT to translate the text output of the ASR into text in the target language.
3. TTS to generate speech from the translated text.
The following figure shows the pipeline of a speech-to-speech translation from English to German with its three main components:
Speech-to-speech translation. Source: Author
[image: ]
Self-Check Questions
1. What are the three main components of a speech-to-speech translation system?
speech recognition
machine translation
speech synthesis
2. Which two statistical models does a statistical machine system consist of?
translation model
language model
4.2 Information Extraction and Natural Language Understanding
Natural language understanding is a part of NLP that deals with a computer's ability to comprehend and analyze human language. This is achieved through information extraction, allowing computers to extract meaning from text and speech.
Information extraction (IE) is the task of automatically extracting structured information from text (Adnan & Akbar, 2019). IE and information retrieval (IR) are closely related and often used interchangeably. The primary distinction between the two is that IE is focused on extracting pre-specified The primary distinction between the two is that IE is focused on extracting pre-specified relevant facts, while IR aims to uncover information or documents that may contain facts that the user is unaware of (Vlahovic, 2011). 
IE tasks like named entity recognition, coreference resolution, and relationship extraction are commonly used in advanced NLP applications such as question answering, natural language understanding, text summarization, and digital assistants (Singh, 2018). Research has also demonstrated that named entity recognition can enhance machine translation in certain instances (Babych & Hartley, 2003).
Techniques
Historically, IE tasks have been performed using supervised learning techniques (Nadeau & Sekine, 2007). This approach involves creating models using manually designed features, which necessitates a significant amount of expertise in the specific domain and a thorough understanding of linguistics. 
Features commonly employed for IE tasks include (Nadeau & Sekine, 2007):
· Word-level features: Word-level features reflect the character structure of words, such as word case (“Cuban” vs. “cuban”), punctuation (e.g. “H&M”), digit pattern (e.g. “09/02/2020”), special characters (e.g. “name@domain.com”), etc.
· List lookup features: By utilizing lists as features, we can gather information about a word's category if it is present in a specific list (such as a list of entities like cities or a list of stop words like "a", "an", "the", "of" etc.).
· Document and corpus features: Document features are characteristics that are based on the content and structure of the document. They can include more than just single-word or multi-word expressions containing meta-information and corpus statistics such as multiple occurrences, local syntax, and word frequency. 
· Part-of-speech tags: Part-of-speech (POS) tagging is often useful in many IE applications (Bird, Klein, Loper, & Baldridge, 2008; Nadeau & Sekine, 2007). POS tagging assigns grammatical word functions and categories to a text. In the sentence "Our dogs bark all day", the word "bark" is a verb (word category) serving as the predicate (word function). In the phrase "The bark of the old oak tree was wet", the word "bark" is a noun (word category) acting as the subject (word function). This example highlights that context plays a crucial role in POS tagging.
Part-of-speech tagging. Source: Author
[image: ]
Currently, the most advanced techniques for IE are primarily based on the following techniques:
· Hidden Markov Models (HMM): An HMM is a finite state automaton with stochastic state transitions and observations (Rabiner, 1990). The states in the sequence are not directly observable, known as hidden states, and the goal is to infer the sequence of hidden states based on the observed output sequence. 
Hidden Markov Models for part-of-speech tagging. Source: Author[image: ]
· Maximum Entropy Markov Models (McCallum, Freitag, & Pereira, 2000): The principle of maximum entropy states that the probability distribution that most accurately reflects the current level of knowledge is the one with the highest entropy.Entropy
Entropy is a measure for the average information content per token (e.g. character) of a source representing a system or a sequence of information.


Maximum Entropy Markov Models for part-of-speech tagging. 
Source: Author[image: ]
· Conditional random fields (CRF) (Patil, Patil, & Pawar, 2020): While a classifier assigns a label to a single word without considering the surrounding words, a CRF takes into account dependencies between the words in the context.

Conditional random fields for part-of-speech tagging. Source: Author[image: ]

· Deep neural networks (DNN): (Bengio, 2009): A DNN is an artificial neural network with several layers between the input and the output layer, which finds the optimal mathematical operations to transform the input into the output.
Deep neural network for part-of-speech tagging. Source: Author
[image: ]
Deep neural networks are typically trained end-to-end, which means that the output sequence is learned directly from the input sequence, eliminating the need for extensive manual feature engineering in intermediate steps (Nguyen, 2018). The lower layers of the network automatically learn the best feature representation, while the higher layers serve as the final classifier. The key challenges are selecting the optimal network architecture, defining an appropriate cost function, and obtaining a large amount of labeled training data (Nguyen, 2018).Cost function
In terms of artificial neural networks, the cost function quantifies the average distance between predicted and expected values on the training data set.

Building deep learning architectures for NER and other IE tasks typically include the following components (Li, Sun, Han, & Li, 2020): (1) Representations for input, (2) context encoder and (3) tag decoder. As illustrated in the following figure, these components can be implemented using various techniques.
Components and techniques for deep learning based named entity recognition. Source: Author
[image: ]
Initially, the words in the input sequence are encoded as vectors.  A “vector represents the projection of a word into continuous vector space” (Tang et al., 2018). “The position of a word within the vector space is learned from” the surrounding words in the “text” (Tang et al., 2018). In addition to words or characters, other types of tokens can also be encoded, such as part-of-speech tags. Multilayer perceptron
A “multilayer perceptron […] is a feed forward neural network” (Montes y Gómez, Escalante, Segura, and Murillo (2016)) with several layers of perceptrons (Baum (1988). A perceptron is an artificial neuron which receives one or more inputs and sums them to produce an output value or an activation.

Softmax function
The softmax function is an exponential function, which takes a vector of real numbers and converts it into a probability distribution with values between 0 and 1 (Nwankpa, Ijomah, Gachagan, and Marshall (2018). In multi-class classification tasks with neural networks it is often used as a final activation function to normalize the output of the network into a probability distribution over predicted classes.
Convolutional Neural Networks
A convolutional neural network (CNN or ConvNet) is an artificial neural network consisting of one or more convolutional layers followed by a pooling layer. In the convolutional layers, the activity of each neuron is calculated by a convolution. In the pooling layer, the dimension of the data us reduced discarding superfluous information.

Second, the context encoder is employed to capture context dependencies (Li et al., 2020). This can be achieved through the use of convolutional neural networks (CNNs), recurrent neural networks, or other neural networks.
Third, the tag decoder, which is the final stage in the named entity model, uses the context-dependent representations as input and predicts a tag for each word in the input sequence (Li et al., 2020). A common approach is using a multi-layer perceptron with the softmax function as the tag decoder, but other alternatives include using CRFs or RNNs.
In the following sections, we will delve deeper into three crucial tasks: Named entity recognition, coreference resolution, and relationship extraction.
Named Entity Recognition
Named entity recognition (NER) “is the” task “of […] classifying named entities in text into predefined […] categories” (Li et al., 2020). NER provides crucial information for comprehending the content of a text and is an ideal starting point for various types of text analysis.
The term "named entity" was coined for the Sixth Message Understanding Conference (Grishman & Sundheim, 1996; Nadeau & Sekine, 2007).  Initially, the NER task was defined as recognizing "organization", "person", and "location" (Thielen, 1995). In subsequent competitions following the Message Understanding Conferences, the classification of named entities became increasingly refined (S. Lee & G. Lee, 2005), with entities such as "location" being subdivided into subtypes like "city", "state", "country", etc.
For instance, in the sentence “Tomorrow Bill Gates will meet two German friends in Berlin”, we can identify the following five types of entities:
· “Date”: Tomorrow
· “Person”: Bill Gates
· “Cardinal” (cardinal numeral): two
· “NORP” (nationalities or religious or political groups): German
· “GPE” (geopolitical entity): Berlin
Named entity recognition. Source: Author
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
The BIO prefix scheme
There are various formats for annotating named entities. The BIO (also known as IOB) format is a widely used format first described by (Ramshaw & Marcus, 1995). One advantage of this format is that the NER labels specify the beginning (B), inside (I) and outside (O) of a named entity. 
An example of a popular NER corpus is the CoNLL-2003 Shared Task corpus (Tjong Kim Sang & Meulder, 2003). This corpus comprises a collection of manually annotated news articles from Reuters. The CoNLL dataset uses the following labels:
["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"]
These labels conform to the BIO prefix scheme (Ramshaw & Marcus, 1995):  
· B = begin, indicating the start of an entity (e.g., B-PER for the beginning of a person entity)
· I = inside, indicating the continuation of an entity (e.g., if an entity spans multiple tokens)
· O = outside, indicating a token that does not belong to an entity
The B and I prefixes can be followed by:
· MISC = a miscellaneous name
· PER = a person
· ORG = an organization
· LOC = a location
Here is an example from the data that is provided in raw text format:
[image: Ein Bild, das Tisch enthält.

Automatisch generierte Beschreibung]
 As demonstrated in the example, the dataset also includes labels for part-of-speech (POS) tagging (NNP, VBZ, RB, etc.). However, for our NER task, we are only concerned with the NER labels at the end of each line (highlighted in bold). In the sentence "Stefano Bordon is out through illness", Stefano is labeled as B-PER (beginning of a person's name) and Bordon as I-PER (inside/continuation of a person's name). Without the BIO scheme prefixes, it would be unclear whether "Stefano Bordon" refers to one person or two individuals, "Stefano" and "Bordon". All other word tokens in this sentence are labeled as O, indicating they do not belong to any named entity.Part-of-speech tagging
Part-of-speech (POS) tagging adds grammatical word functions and categories to a given text.

A practical application of NER in industry is updating fields in customer relationship management (CRM) systems. For instance, Salesforce CRM system offers the ability to use Einstein NER (Bari, Joty, & Jwalapuram, 2020) to update fields such as "delivery address" using the "location" label extracted from chat messages (“Salesforce,” 2020).  
Coreference Resolution
Coreference happens when two distinct linguistic expressions refer to the same thing in an utterance. Coreference resolution is the task of identifying words that refer to the same entity in a text (Clark & Manning, 2016a, 2016b).  Coreference resolution plays an important role in NLP tasks such as summarization and question answering (Suresb, 2019).
For instance, in the sentence "Jamie has a bicycle and he loves it," "he" refers to "Jamie," and "it" refers to "bicycle." Therefore, "Jamie" and "bicycle" are the referents.
Coreference resolution. Source: Author
[image: ]
A practical application of coreference resolution is in the clinical domain, where "unstructured clinical narratives" provide a wealth of information that complements structured data in "electronic health records" (Zheng, Chapman, Crowley, & Savova, 2011). Zheng et al., (2011) state that “Attributes, temporal descriptions, and contextual information necessary for understanding whether conditions, symptoms, and treatments [...] are often spread over several sentences [...] and require coreference resolution for accurate interpretation.” For example, in the sentences "The patient has abdominal pain and fever. To lower the temperature, he takes paracetamol" it is important to know that "paracetamol" co-refers to lowering the temperature and is the patient's remedy for "fever", not for "abdominal pain".
Relationship Extraction
Relationship extraction (also called relation extraction) is the task of "extracting semantic relations between entities in [...] text" (Bach & Badaskar, 2007). Usually, binary relations such as "LOCATED-IN (IU, Germany)" or "FATHER-OF (Darth Vader, Luke Skywalker)" are extracted. is a vital aspect in the field of question answering: For example, for the question "Who is the founder of Apple?", a search is conducted for the relational tuple of the pattern "FOUNDER-OF (Apple, ???)".
For those who are interested in the topic of relationship extraction, we suggest looking into the challenges and solutions presented at SemEval, a regular workshop that evaluates IE systems. You can find related challenges such as identifying if an attribute helps differentiate between two concepts and scientific papers detailing corresponding solutions (Krebs, Lenci, & Paperno).
Question Answering
Question answering (QA) is a subfield of NLP that aims to enable computer systems to understand and provide accurate and relevant answers to questions asked in human language. The goal of QA is to bridge the gap between human language and computer systems, allowing for more natural and efficient communication. 
QA systems have a wide range of potential use cases, including:
· Customer service: QA systems can be integrated into chatbots or virtual assistants to provide quick and accurate responses to customer inquiries.
· Search engines: QA systems can be used to improve the accuracy and relevance of search engine results by understanding the intent behind a query and returning the most relevant information.
· Knowledge management: QA systems can be used to create a centralized repository of information that can be easily accessed and searched by employees or customers.
· Education: QA systems can be integrated into educational platforms to provide students with instant access to information and help them complete their assignments.
· Healthcare: QA systems can be used to provide patients with accurate and up-to-date information about their health conditions and treatment options.
· Business intelligence: QA systems can be used to analyze large amounts of data and provide insights to help organizations make better decisions.
· Virtual assistants: QA systems can be integrated with virtual assistants to answer natural language questions.
The process of question answering involves several steps, including NLU, IR, and knowledge representation (Nadeau & Sekine, 2007). The first step is NLU, where the computer must understand the meaning of the question and the context in which it was asked. This is often achieved through techniques such as NER and coreference resolution (Clark & Manning, 2016a, 2016b).
Information retrieval is the next step, where the computer must search for relevant information in a large corpus of text. This is typically done through techniques such as keyword matching and Boolean search (Manning, Raghavan, & Schütze, 2019). Once relevant information is found, the computer must then extract the answer from the text. This is often done through techniques such as relationship extraction and text summarization (Barzilay & Elhadad, 1997).
One of the most popular approaches in QA is the use of knowledge bases, such as Wikipedia or DBpedia, which contain structured information that can be easily queried (Lehmann et al., 2015). These knowledge bases are often used in combination with NLP techniques to provide more accurate answers (Suchanek, Kasneci, & Weikum, 2007).
Recently, deep learning models, such as BERT (Devlin, Chang, Lee, & Toutanova, 2019), GPT (Brown et al., 2020), and T5 (Devlin et al., 2019; Raffel et al., 2020), which are pre-trained on large amounts of data have been fine-tuned for the task of QA. These models can understand the context and meaning of a question to provide more accurate answers (Devlin et al., 2019; Vaswani et al., 2017). In addition to deep learning models, rule-based systems and pattern matching have also been used in QA (Singh, 2018). However, these methods have been increasingly replaced by neural-network-based models, as they have been shown to achieve better results and require less domain-specific knowledge (Nguyen, 2018).
Self-Check Questions
1. What is the main difference between information extraction (IE) and information retrieval (IR)?
[bookmark: _5hmh526rnvf6]The main difference between IE and IR is that for IR relevant facts of interest are specified in advance, while IR tries to discover information or documents that may have facts of interest for the user that the user is not aware of.
4.3 Chatbots and Voice Assistants
A chatbot is a computer system that uses natural language text to interact with users. It can respond to user input by taking actions or providing a natural language response. Some chatbots use avatars, which are digital characters that mimic a specific personality. Examples of this include ELIZA, which simulates a psychotherapist (Weizenbaum, 1966). Chatbots use NLP technology, and are the basis for popular voice assistants like Google Assistant and Alexa. They are often integrated with messaging apps, organizational tools, and websites.
[bookmark: _pakhttovit6m]Examples and Techniques
Chatbots can be built using rule-based and statistical-based techniques.Loebner prize
The Loebner prize is an annual competition for chatbot implementations based on the Turing test.

[bookmark: _c6d41tbm3c9l]Rule-based techniques
In rule-based chatbot development, a set of predefined rules, often in the form of regular expressions, are used to understand the user's intent and respond accordingly. Examples of early rule-based chatbots include ELIZA (Weizenbaum, 1966) and A.L.I.C.E (Artificial Linguistic Internet Computer Entity) (Wallace, 2009), a more sophisticated rule-based chatbot that won the Loebner prize three times. In this context Wallace created AIML (Artificial Intelligence Markup Language) (Marietto et al., 2013), an XML-based language used to create conversation rules for rule-based chatbots. AIML is open-sourced and can be implemented in various programming languages.
Let’s have a look at an example:
Excerpt of an AIML file. Source: (Worswick, 2019)
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung] 
The <category> tag defines the container for the conversation rule. Inside this container, the <pattern> tag contains the text pattern that is matched with the user’s query. Please note that AIML does not use regular expressions, but a custom, simplified pattern matching language where the * character matches an arbitrary sequence of characters (like .* in regular expressions). Let’s say our user asks the bot “Tell me about Barack Obama.”. The input is normalized to "TELL ME ABOUT BARACK OBAMA" by making it all uppercase and removing any punctuation. Now the example above “TELL ME ABOUT *” matches and the content of the <template> tag is displayed: First it prints a message “Here is some information about Barack Obama.” where <star/> is replaced by the text “Barack Obama” that matched the * in the pattern. Then it shows a button with the text “Click here” that redirects to the Wikipedia article of Barack Obama at https://en.wikipedia.org/wiki/Barack_Obama.
[bookmark: _qxkz6mrocoln]Statistical-based techniques
Chatbots can also be built using statistical methods, in which machine learning techniques are employed to train the chatbot with example conversations to produce the desired behavior. An example of this approach is Rasa (Bocklisch, Faulkner, Pawlowski, & Nichol, 2017), an open-source conversational AI toolkit.
In the first phase, known as intent classification, our system tries to determine what the intent of a user is. For example, “Hello”, “Good morning”, or “Hey” indicate that the user wants to greet the bot. If the user asks questions like “How are you doing?”, “How is it?”, or “Are you fine?”, his intent is to know how the person feels. Let’s call this intent feeling. Consequently, “Bad”, “Not so good”, “I am feeling unhappy”, etc. indicates a negative mood and we call the intent mood_negative. “Good”, “I am fine”, “Fantastic”, etc. can be mapped to an intent that we call mood_positive. Having defined these intents and examples, we have mapped the problem to a text classification task: The input feature of our models is the text input of the user and the output feature is one of the labels greet, feeling, mood_positive, and mood_negative. In Rasa, these intents would be represented in the training data as follows:
Rasa bot training data. Source: Author
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
Intent classification, which is used to understand the user's meaning, forms the foundation of the dialog system. Another crucial aspect is actions which dictate how the bot should respond in a conversation. Actions can range from simple utterances such as “I am fine. How are you?” to more complex actions that involve fetching data from a knowledge base or external service like a weather forecast service. For example, the action utter_greet makes the bot say “Hello, how are you doing?”, utter_sorry makes the bot say “Oh, I am sorry.” and utter_appreciation makes the bot say “Cool, I appreciate that.”. The final component is connecting intents and actions, which is known as dialog management. In Rasa, the dialog management model is trained on sample conversations called “stories that show the bot what actions are most likely to follow a certain intent. An example story would be like this:
Example conversation in natural language. Source: Author
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
The story represented as intents and actions looks like this:
Example conversation encoded as Rasa intents. Source: Author[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
The dialog management module uses a sequence of intents, such as the history of the last 5 intents, as input and is trained to predict the next action. In this example, the input features would be greet and mood_positive and the expected output would be utter_appreciation. Taking the intent history into account allows the bot to understand and respond to the user in a context-aware way. Chatbots can also extract specific information from the user's input, such as location, dates, or names, for example in hotel or train booking dialog systems. This is a named entity recognition task which is called slot filling in the context of chatbots.
[bookmark: _9m47habmqsj7]Use Cases
[bookmark: _h34v34m2zt9l]Chatbots can provide answers to questions and inquiries of customers, give product recommendations, make hotel and flight reservations or book tickets for events. There are interfaces to pass requests to a human support team. Chatbots are usually available 24 hours a day and 7 days a week at a low cost and can scale easily if needed. Apart from that, they provide convenient access to products and services through messenger platforms the users are already using such as WhatsApp or Facebook Messenger. Hence, in customer service, chatbots can save costs and efforts and provide an improved customer experience.Lead
A lead is contact with a potentially interested person or organization.

[bookmark: _1v4fgt78azzw]In marketing, a chatbot can be used for lead generation. For instance, it could be placed on the company’s website to get in touch with the otherwise anonymous visitors of the page to ask the customer sales-oriented sales-oriented questions, in order to provide guidance and potentially acquire new leads. Additionally, chatbots can introduce new products to customers and engage them through interactive quizzes and games.
[bookmark: _h0g2b0d7n4g0]Chatbots can serve as virtual sales representatives, assisting customers in finding product information, obtaining price quotes, and even demonstrating products. This can ease the workload of human sales representatives, allowing them to focus on more complex and high-priority cases.
Voice Assistants
The figure illustrates the components of a voice assistant implemented with the open source software Mozilla TTS (“Mozilla TTS,” n.d.b), which you can easily reproduce since the components are open source and work well together. The speech synthesis component is highlighted by the box.
Speech synthesis in a voice assistant. Source: (Bocklisch et al., 2017)
[image: ]
When a user speaks a voice command, the audio signal is converted into text by the ASR component. The NLU component then extracts the intents and entities from the transcribed command and generates a response. The response is then converted into spoken language by the speech synthesis component, using Mozilla TTS in this example, resulting in a voice output.
Evaluation
The Turing test (TURING, 1950) is a commonly used method to evaluate chatbots, however, there are no specific metrics to evaluate and compare dialog systems. Nonetheless, as chatbots are made up of various NLP components, such as intent classification and dialog management models, different metrics can be used to evaluate their performance. For example, the intents can be evaluated using metrics such as accuracy, precision, recall and F-score, which were discussed in previous chapters. The usability of the chatbot can also be evaluated through questionnaires.

Self-Check Questions
1. What is AIML?
AIML (Artificial Markup Language) is an XML-based language for designing rule-based chatbots.
4.4 NLP in Education
NLP techniques can be used in various applications, including education, to enhance learning and teaching processes. A good overview of AI technologies for education is by (Zhang & Aslan, 2021).
Automatic Grading
Popular NLP applications in education are automatic short answer grading and automated essay scoring. These technologies use machine learning algorithms to analyze and grade student exam answers and essays. Research has shown that automated scoring and grading can be as effective as human graders in assessing student answers in exams (Sawatzki, Schlippe, & Benner-Wickner, 2022; Schlippe & Sawatzki, 2022b) and student writing (Shermis & Burstein, 2016). These applications can save teachers’ time and provide more consistent and objective feedback to students. A combination of chatbot technology and automatic short answer grading can support students in their exam preparations (Schlippe & Sawatzki, 2022a).
Text Simplification and Natural Language Generation
Another application of NLP in education is text simplification, for example with the help of natural language generation (NLG). NLG systems can automatically generate written or spoken explanations of complex concepts in simple, easy-to-understand language. This can be particularly useful for students with learning disabilities or for language learners (Candido Jr et al., 2009).
NLP can also be used to create educational content, such as interactive tutorials and quizzes. For example, (Heilman & Smith, 2010) have developed an NLP-based system that can automatically generate multiple-choice questions from a given text. This can save teachers time and resources when creating quizzes and assessments.
Recommendation Systems
Using NLP allows to develop recommender systems which compare the contents of educational institutions’ learning curricula to students’ skill sets or skills requires on the job market (Bothmer & Schlippe, 2022, 2023). After extracting, vectorizing, clustering, and comparing skills it is possible to provide recommendations that help educational institutions to ensure that the skills required on the job market are covered in their learning curricula, recommend study programs and advise students.
Analyzing Student Feedback, Engagement and Learning Outcomes
Finally, NLP can be used to analyze student feedback, engagement and learning outcomes. For example, (Heilman & Smith, 2010) used NLP to analyze student engagement in a middle-school media arts classroom. (Rakhmanov & Schlippe, 2022) investigated monolingual and cross-lingual sentiment analysis to classify student comments in course evaluations. This can provide insights into how students are engaging with the material and identify areas where they may need additional support. 
Self-check Question
4.5 NLP with Python
This section covers the introduction of Python as a programming language, Jupyter Notebooks (Randles, Pasquetto, Golshan, & Borgman, 2017), NLP frameworks such as spaCy (Honnibal & Montani, 2018) and the Natural Language Toolkit (NLTK) (Bird et al., 2008). 
[bookmark: _a5k7lknqeeci]Why Python? 
Python is an interpreted, high-level, general-purpose programming language. that can be used for a wide range of tasks such as web development, software development, and data science. Its simple syntax makes it easy to read and understand. Python has become a popular choice for data science and machine learning due to its many well-maintained libraries. There are multiple integrated development environments (IDE) for Python including IDLE, Spyder, PyCharm, or Sublime Text. Python also has a user-friendly interactive IDE called Jupyter notebook. 
[bookmark: _dsm0mhx4mzry]Jupyter Notebook
Jupyter notebook is an open-source web-based interactive development environment that is commonly used in data science and machine learning projects. It provides a web-based interactive environment that allows users to combine code, equations, visualizations, and narrative text. The notebook is divided into cells, which can be run individually, making it easy to test and debug code, improve visualizations, and streamline the development process. PIP
PIP is Python’s built-in package manager.

Jupyter notebook can be installed by using the PIP package by running the command pip install jupyter notebook. Once installation is complete, we can launch the Jupyter notebook using the command jupyter notebook and it will open in the default browser. 
Initial screen of Jupyter notebook.[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
To create a new notebook in Python, select "New" from the right-hand menu. The notebook starts with an empty code cell that can be filled with Python code and executed by pressing Shift + Enter.
 The hello world example.
[image: ]
To add formatted text to the notebook to explain and document your work, use the dropdown menu to change the cell type to Markdown.
 Creating a new Markdown cell in Jupyter notebook.
[image: ]Markdown code
Markdown code is a simple formatting language for rich text.

After selecting Markdown, you can start typing in Markdown code. To display the formatted version of your code, compile the cell by pressing Shift + Return.
Example of a Markdown cell.
[image: ]
Jupyter notebooks also provide the option of exporting the code in various formats such as Python script (.py) or HTML. You can export the code by clicking on the "Download As" button located under the "File" tab on the left of the notebook. 
This is just a basic overview of how to install, create, and code in Jupyter notebook, there are many more features to discover!
[bookmark: _bo5g5xy40is0]Introduction to spaCy and NLTK
NLTK and spaCy are two widely used Python frameworks for NLP due to their functionalities and ease of use. These can be used for the implementation of various NLP tasks such as sentiment analysis, chatbots, text summarization, intent and entity extraction, and more. Both frameworks can easily be installed using the Python package manager PIP. You can use the commands pip install spacy and pip install nltk to install them. Both frameworks make use of additional external resources which have to be downloaded separately. NLTK requires task-specific datasets which can be downloaded by using the command nltk.download() in a Python terminal. SpaCy comes with pre-trained language models that are available in multiple languages and different sizes. You can download a small model for English by using the command python -m spacy download en_core_web_sm. 
Both NLTK and spaCy provide everything needed for NLP projects, but there are a few key differences between them. NLTK offers a wide range of algorithms to choose from for a particular problem, while spaCy focuses on providing the best state-of-the-art algorithm for a problem as determined by the spaCy developers. Additionally, NLTK functions use strings for input and output, while spaCy's object-oriented model is centered around its document object.
[bookmark: _a60o5oeudeyi]Implementation of Selected NLP Concepts with Python
This section shows how to perform various NLP tasks using spaCy, with a focus on tokenization – a fundamental step in many NLP tasks.
[bookmark: _lh109v4s1tgo]Both NLTK and spaCy provide functions for tokenization. The following steps will guide you through the process of sentence and word tokenization:
1.  Import the spaCy library (line 1), load the English model (line 2), and create a spaCy document (line 3).
FCreating a spaCy document.
[image: ]
2. Access the word tokens by iterating over the document object doc (line 1) and print them (line 2):
Tokenization in spaCy.
[image: ]
3. Alternatively, access (line 1) and print (line 2) the sentence tokens:
Sentence tokenization in spaCy.
[image: ] 
[bookmark: _gjz58oeyoh0z]Part-of-Speech Tagging
To output POS tags in spaCy, we loop through the word token in our document doc (line 5) and print the pos_ attribute of each token (line 6).
Figure 14: Part-of-speech tagging with spaCy.
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
[bookmark: _8w4e5n5jpvz7]Named Entity Recognition
To output named entity labels in spaCy we just have to iterate over the entities in our document doc.ents (line 5) and print the label attribute of each token (line 6). 
 Named entity recognition with spaCy.
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]


Self-Check Questions
1. Please name the three differences between NLTK and spaCy.
i. NLTK has a vast number of algorithms to choose from for a particular problem, whereas spaCy keeps the best state-of-the-art algorithm for a problem according to the spaCy developers.
ii. NLTK uses strings as input and output for its functions, while spaCy is based on an object-oriented model centered on its document object.
iii. spaCy allows us to work with vector-based word embeddings. NLTK does not provide any support for word embeddings.



	IU

	Natural Language Processing

	DLMAIWNLPVA1
Tim Schlippe





5. Challenges in NLP
Introduction
In writing
5.1 Data for NLP
In order to build NLP models and systems, large amounts of data are required. In this subsection, we will discuss different ways to retrieve data to build NLP models and systems.
Public Datasets
One of the easiest ways to get data for NLP is to use publicly available datasets. There are many datasets that have been created and shared by researchers and organizations for the purpose of building NLP models. Some popular datasets include the Penn Treebank (Marcus, Santorini, & Marcinkiewicz, 1993), the Brown Corpus (Francis & Kucera, 1979), and the Cornell Movie-Dialogs Corpus (Danescu-Niculescu-Mizil & Lee, 2011). 
Kaggle offers a cloud-based workbench for data scientists to develop and share their models, and a large community of users who share resources, knowledge, and best practices. In the beginning of 2023 they reported “over 50,000 public datasets and 400,000 public notebooks” (“kaggle,” 2023).
Web Crawling and APIs
Another way to get data for NLP is to crawl (i.e., scrape) the web. The internet is a vast source of unstructured data that can be used to train and evaluate NLP models. Websites such as Wikipedia, Reddit, and Twitter can be scraped to retrieve text data. However, web scraping can be legally and ethically complex. Consequently, it is important to be aware of the terms of use and data protection laws of the website being crawled. For example, (Schlippe, Gren, Vu, & Schultz, 2013) “elaborate an unsupervised text collection […] strategy that includes crawling appropriate texts from RSS Feeds” and “from Twitter […] for language modeling”.
A good way to get data for NLP is to use APIs (Application Programming Interfaces). APIs are a way for different applications to communicate with each other and share data. Many popular websites and services, such as Google, Facebook, and Twitter, have APIs that can be used to retrieve data. For example, the Twitter API can be used to retrieve tweets to build a sentiment analysis corpus (R. K. Mabokela & Schlippe, 2022; K. R. Mabokela & Schlippe, 2022), while the Google Translate API can be used to translate text (Rakhmanov & Schlippe, 2022).
Often is makes sense to apply text normalization (Schlippe, Zhu, Lemcke, & Schultz, 2013) and filter methods on flawed text data (Schlippe, Ochs, & Schultz, 2014).
Challenges in Data Collection
There are several challenges in collecting data for NLP:
· Annotation: NLP tasks often require labeled data, which can be time-consuming and expensive to obtain.
· Quality: The quality of the data can be an issue, as it needs to be accurate, consistent and relevant to the task at hand.
· Representativeness: The data needs to be representative of the population or domain in question.
· Privacy: There are ethical considerations when collecting and using data, particularly when it contains sensitive information.
· Scale: NLP requires large amounts of data, and collecting and annotating such large datasets can be a significant challenge.
· Language: In case of multilingual data, it is important to consider the language of the data, as it will affect the type of processing techniques used and the performance of models.
· Diversity: NLP systems are best when they are trained on diverse data, so it is important to consider how to collect data that represents a wide range of perspectives, dialects, and styles.
Self-Check Questions
1. Please name 3 challenges in data collection.
annotation
quality
representativeness

5.2 Domain and Language AdaptationFine-tuning
Fine-tuning is the process of taking a pre-trained model and further training it on a task-specific dataset to adapt the model to the task at hand and improve its performance on that task.

The effectiveness of NLP models can vary significantly depending on the domain and language in question. For example, an NLP system trained on news articles may not perform well when applied to medical documents. Similarly, a system trained on English may not perform well when applied to a language with a completely different grammar and syntax.
Domain adaptation involves adjusting an NLP model to perform well in a new domain. This typically involves fine-tuning the model on a smaller set of data from the target domain, or incorporating new features that are specific to that domain. For example, an NLP model that is trained to detect emotions in social media posts may need to be adapted to identify emotions in customer reviews or support tickets.
Language adaptation involves adjusting an NLP model to perform well in a new language. This can involve translating the training data into the new language, and then training the model on the translated data. It can also involve developing new algorithms that are tailored to the grammatical and syntactical structures of the new language, e.g., language-specific tokenization (Rakhmanov & Schlippe, 2022).Transfer learning
Transfer learning involves training a machine learning model on a large amount of data in one domain, and then adapting or fine-tuning the model for a specific task in a different domain with a smaller amount of labeled data.

Transfer Learning
One popular approach to domain and language adaptation is transfer learning. Transfer learning has been shown to be highly effective, especially for deep learning models such as RNNs and transformers. Typically, a pre-trained model is used as a starting point, where the model is first trained on a large corpus of text in a general domain (such as Wikipedia or news articles), and then fine-tuned on a smaller dataset in a more specific domain or for a specific task (such as sentiment analysis, question-answering, or text classification). The pre-training step allows the model to capture general linguistic patterns and features that are useful for a wide range of NLP tasks, while the fine-tuning step allows the model to adapt to the specific task or domain with fewer labeled examples.
Transfer learning in NLP has led to significant improvements in performance and generalization for a wide range of tasks and has been used to develop state-of-the-art models in areas such as language modeling, machine translation, sentiment analysis, and automatic short answer grading (Sawatzki, Schlippe, & Benner-Wickner, 2022). Cross-lingual transfer
[bookmark: _Hlk127740795]Cross-lingual transfer in NLP refers to the ability of a model to transfer knowledge and features learned from one language to another, allowing the model to perform well on tasks in multiple languages.

Multilingual and Cross-lingual NLP
Another approach is multilingual NLP, which involves training a single model on data from multiple languages. A benefit of multilingual models is that if they are trained and fine-tuned on text in one language, they transfer knowledge and features to another language. This ability is called “cross-lingual transfer”. The cross-lingual transfer is particularly useful for low-resource languages, which may not have enough data to train an NLP model on their own.
For example, the Multilingual Bidirectional Encoder Representations from Transformers model (M-BERT) (Devlin, Chang, Lee, & Toutanova, 2019) is a multilingual NLP “model pre-trained from monolingual corpora in 104 languages” which can be adapted to a certain task with task-specific labeled text data in 1 or more languages (transfer learning) and then perform this learned task in other languages (cross-lingual transfer) (Pires, Schlinger, & Garrette, 2019). 
Furthermore, there are cross-lingual NLP approaches which solve the problems of low-resource languages by benefiting from rich-resource languages like English (Balahur & Turchi, 2014; K. R. Mabokela & Schlippe, 2022; Rakhmanov & Schlippe, 2022). In these approaches, the comments are usually machine-translated from the original low-resource language to English. This allows to do the NLP task with well-performing models trained with a lot of English resources. Of course, the final task’s performance is dependent on the translation quality.
Self-Check Questions
1. Please explain in 1 sentence why domain and language adaptation are important in NLP. 
The effectiveness of NLP models can vary significantly depending on the domain and language in question.
5.3 Explainability
As machine learning models become more complex and powerful, there is a growing need for transparency and accountability in their decision-making processes. In many NLP applications, such as sentiment analysis or machine translation, it is important to understand how the model arrived at its decision or prediction. This is especially true when the model is used in high-stakes applications, such as medical diagnosis or financial analysis, where incorrect or biased predictions can have serious consequences.
Importance of Explainability in NLP
[bookmark: _Hlk128122815]Explainability in AI (also called explainable AI or XAI) is also important for building trust and understanding between humans and machine learning models. When a model's decision-making process is opaque, it can be difficult for humans to trust the model's predictions or understand how to improve its performance. Explainability techniques can help bridge the gap between humans and machine learning models by providing insights into how the model works and how it can be improved.
In some cases, machine learning models or algorithms produce outputs without providing any insight into the internal workings of how the model arrived at those outputs. Such models are considered a "black box" model because its inner workings are not transparent to the user or the observer. To deal with those black box models, ongoing research is the creation of additional predictive models that can meet the accuracy of black box models while being intrinsically interpretable (Schlippe, Stierstorfer, Koppel, & Libbrecht, 2023). In contrast, a transparent or interpretable model allows the user or observer to understand how the model arrived at its outputs. 
Techniques
There are several techniques for achieving explainability in NLP. Some of the most common techniques include:
· Feature Importance: This technique involves identifying the most important features or words in a text that contribute to the model's prediction. This can be done using methods such as permutation importance or LIME (Local Interpretable Model-agnostic Explanations).
· Attention Mechanisms: Attention mechanisms are a type of neural network architecture that allows the model to focus on specific parts of the input text. By analyzing the attention weights, it is possible to understand which parts of the input text the model is paying the most attention to.
· Rule-based Explanations: Rule-based explanations involve using a set of rules or heuristics to explain the model's decision. These rules can be manually crafted or generated automatically using techniques such as decision trees or association rules.
· Counterfactual Explanations: Counterfactual explanations involve generating alternative input texts that would lead to a different model prediction. By analyzing these alternative texts, it is possible to understand how the model's decision would change under different input conditions.
More details on state-of-the-art approaches for explainability in NLP can be found in (Danilevsky et al., 2020)
Challenges
Despite the progress that has been made in explainability techniques for NLP, there are still many challenges that remain to be addressed. One of the main challenges is the trade-off between explainability and performance. Many of the current explainability techniques involve sacrificing some degree of model performance to achieve greater transparency. Another challenge is the need to develop more comprehensive evaluation metrics for explainability techniques to determine their effectiveness and generalizability.
In the future, it is likely that explainability will become an increasingly important area of research in NLP, as machine learning models become more prevalent in high-stakes applications. There is also a need for greater collaboration between NLP researchers and domain experts in areas such as medicine, law, and finance to ensure that explainability techniques are tailored to the needs of specific domains. For example, (Schlippe et al., 2023) collaborated with teaching staff to investigate methods to express explainability in automatic short answer grading.

Self-Check Questions
1. Please fill the gap. 
Explainability techniques can help bridge the gap between humans and machine learning models by providing insights into how the model works and how it can be improved.
5.4 Bias
One of the most significant challenges in NLP is the issue of bias. Bias refers to the systematic and unfair treatment of certain individuals or groups based on their personal characteristics, such as race, gender, or age. Bias in NLP can occur in many ways, including in the data used to train NLP models, the design of NLP algorithms, and the interpretation of NLP results. A good overview of bias in NLP is given in (Blodgett, Barocas, Daumé III, & Wallach, 2020).
Bias is a much discussed and sometimes controversial topic. There are many proposals to classify types of bias and categorize them hierarchically. The difficulty is that there can be overlaps or interactions between different types of bias in NLP systems.
Sources of Bias
One of the most significant sources of bias in NLP is the use of biased training data. NLP models are trained on large datasets of human language, which can reflect the biases and prejudices of the people who created or labeled the data. For example, if a dataset of movie reviews contains more reviews from men than women, it could bias the results of an NLP model trained on this data to favor male perspectives.
In addition to training data, the design of NLP algorithms can also introduce bias. For example, NLP algorithms that rely on word embeddings, which map words to a high-dimensional vector space, can amplify biases that exist in the training data. This was demonstrated in a study by (Caliskan, Bryson, & Narayanan, 2017), which found that word embeddings trained on large text corpora reflected gender biases, such as associating words like "doctor" and "engineer" with men, and words like "nurse" and "receptionist" with women.
Another form of bias in NLP is the interpretation of NLP results. For example, depending on the cultural background, results can be interpreted differently.
The following figure shows where biases can occur in the pipeline of a machine learning system between data collection and interpretation of results (Suresh & Guttag, 2021):
[image: Sources of bias]
Hinweis: Copyright unclear.

The process of generating data involves defining a target population, collecting data from it, and identifying and measuring relevant features and labels. In this process (Suresh & Guttag, 2021) describe the following types of bias:Target population
In machine learning, a target population refers to the group of individuals or entities that the model is intended to make predictions or decisions about.

· Historical bias: Historical bias refers to a type of bias that arises in machine learning models when the historical data used to train them contains systematic and unjust biases or reflects past discrimination and inequality. 
· Representation bias: Representation bias happens when the development sample does not adequately include all parts of the population, which results in poor generalization of the model for a specific subset of the target population.
· Measurement bias: Measurement bias occurs in machine learning when features and labels are selected, collected, or computed in a way that introduces distortions or inaccuracies, often due to using proxies to approximate abstract or unobservable concepts.
The data is then split into training and test sets, and a model is defined and optimized on the training data. Afterwards, the final model is then evaluated using test and benchmark data. (Suresh & Guttag, 2021) indicate the following types of bias in this process:
· Aggregation bias: Aggregation bias occurs when a model is developed to fit all data without considering the distinctions between various groups or types of examples in the data.
· Learning bias: Learning bias occurs when the choices made during model training amplify performance differences across various examples in the dataset. The objective function used to optimize the machine learning algorithm is a crucial factor that can affect the learning bias, as it aims to maximize accuracy but can cause bias in the model's predictions if prioritized over other objectives.Benchmark
A benchmark is a standardized set of tasks or datasets used to evaluate the performance of models or algorithms. 

· Evaluation bias: Evaluation bias occurs when the data used as a benchmark for a specific task fails to represent the user population accurately.
Then the model is integrated into a real-world context where the following type of bias can occur (Suresh & Guttag, 2021):
· Deployment bias: Deployment bias refers to a mismatch between the intended problem-solving capacity of a model and the way it is used in practice. This occurs when a model is built and evaluated as fully autonomous, but it then operates within complex sociotechnical systems regulated by institutional structures and human decision-makers.
This whole process demonstrated in the figure above is cyclic, with decisions made by the model affecting the world and future data collection. 
[bookmark: _Toc348014754]Approaches to Address Bias
To address bias in NLP, several strategies are investigated. One approach is to develop more diverse training datasets that reflect a broader range of perspectives and experiences. Another approach is to design NLP algorithms that are less susceptible to biases, such as using counterfactual explanations to identify and correct biased decisions.
To address bias in NLP, researchers and practitioners are exploring a range of strategies, including:
· Dataset selection and curation: Bias in NLP models often stems from biased datasets, so selecting and curating datasets that are representative of the population is crucial. Various techniques, such as demographic balancing, have been proposed to reduce bias in datasets (Bolukbasi, Chang, Zou, Saligrama, & Kalai, 2016).
· Algorithmic approaches: Researchers have proposed several algorithmic approaches to mitigate bias in NLP models, including counterfactual data augmentation, adversarial debiasing, and multi-task learning (Zhao, Wang, Yatskar, Ordonez, & Chang, 2017; Elazar & Goldberg, 2018; Madras, Creager, Pitassi, & Zemel, 2018).
· Ethical guidelines and standards: Ethical guidelines and standards can help ensure that NLP models are developed and deployed in an ethical and unbiased manner. Several organizations, such as the Partnership on AI and the IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems, have published ethical guidelines for AI development (“Partnership on AI,” 2023c; “The IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems,” 2023a).
· Inclusive design: Inclusive design involves designing NLP models with diverse user groups in mind, which can help prevent bias in the design and development process. This approach emphasizes the importance of involving diverse perspectives in the design and development process (Vorvoreanu et al., 2019).
Self-Check Questions
1. Please define the term “target population” in the context of machine learning in 1 sentence. 
In machine learning, a target population refers to the group of individuals or entities that the model is intended to make predictions or decisions about.




	
	
	



image1.emf

image2.png

image3.png

image4.emf

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image42.png

image43.png

image44.png

image45.png

image46.png

image47.png

image48.png

image49.png

image50.png

image51.png

image52.png

image53.png

image54.png

image55.png

image56.png

image57.png

image58.png

image59.png

image60.png

image61.png

image62.png

image63.png

image64.png

image65.png

image66.png

