
COURSE BOOK

Algorithmics
DLMCSA01

Course Book
Algorithmics
DLMCSA01

Masthead

Publisher:
IU Internationale Hochschule GmbH
IU International University of Applied Sciences
Juri-Gagarin-Ring 152
D-99084 Erfurt

Mailing address:
Albert-Proeller-Straße 15-19
D-86675 Buchdorf

media@iu.org
www.iu.de

DLMCSA01
Version No.: 001-2022-0817

© 2022 IU Internationale Hochschule GmbH
This course book is protected by copyright. All rights reserved.
This course book may not be reproduced and/or electronically edited, duplicated, or distributed in any kind of
form without written permission by the IU Internationale Hochschule GmbH.
The authors/publishers have identified the authors and sources of all graphics to the best of their abilities.
However, if any erroneous information has been provided, please notify us accordingly.

2 Masthead

Module Director
Prof. Dr. Paul Libbrecht

Mr. Libbrecht has been a lecturer in Computer Science at IU Interna-
tional University of Applied Sciences since 2020. His main areas are
the World Wide Web, data management, and general computer sci-
ence.

Mr. Libbrecht studied Mathematics at the University of Lausanne
(Switzerland) and the Université du Québec à Montréal (Canada). He
received his doctorate in Computer Science from Saarland University
(Germany). He has been a substitute professor at the University of
Education Weingarten (PH Weingarten) and senior developer at the
Leibniz Institute for Research and Information in Education. He is a
member of the W3C Math Working Group and has been active in the
OpenMath Society.

Mr. Libbrecht’s research focusses on the technology of learning sys-
tems, often with a focus on mathematics. He has published in inter-
national conferences and journals. Since 2010, he has worked as a
web development consultant for German, French, and US companies.

3Module Director

1.1

1.2

1.3

1.4

2.1

2.2

2.3

2.4

3.1

3.2

3.3

3.4

Table of Contents
Algorithmics

Module Director . 3

Introduction
Algorithmics 7
Signposts Throughout the Course Book . 8

Learning Objectives . 9

Unit 1
Introduction to Algorithmics 12

Basic Concepts and Historical Overview . 12

Algorithms, Programming Languages, and Data Structures 15

Quality Algorithms: Correctness, Accuracy, Completeness, and Effi-
ciency . 20

The Role of Algorithms in Society . 21

Unit 2
Algorithm Design 30

Data Structures . 30

Recursion and Iteration . 56

Divide-and-Conquer . 60

Balancing, Greedy Algorithms, and Dynamic Programming 60

Unit 3
Some Important Algorithms 68

Searching and Sorting . 68

Pattern Matching . 81

The RSA Algorithm . 89

The K-Means Data Clustering Algorithm . 91

Contents4

4.1

4.2

4.3

4.4

5.1

5.2

5.3

6.1

6.2

6.3

7.1

7.2

7.3

Unit 4
Correctness, Accuracy, and Completeness of Algorithms 100

Partial Correctness . 100

Total Correctness . 104

Ensuring Correctness in Day-to-Day Programming 110

Accuracy, Approximation, and Error Analysis . 124

Unit 5
Computability 134

Models of Computation . 134

The Halting Problem . 146

Undecidable Problems . 147

Unit 6
Efficiency of Algorithms: Complexity Theory 152

Models of Complexity . 152

NP-Completeness . 168

P = NP? . 171

Unit 7
Advanced Algorithmics 174

Parallel Computing . 174

Probabilistic Algorithms . 182

Quantum Computing and the Shor Algorithm . 197

Appendix 1
List of References 208

Contents 5

Appendix 2
List of Tables and Figures 212

Contents6

Introduction
Algorithmics

Signposts Throughout the Course Book

Welcome

This course book contains the core content for this course. Additional learning materials can
be found on the learning platform, but this course book should form the basis for your
learning.

The content of this course book is divided into units, which are divided further into sections.
Each section contains only one new key concept to allow you to quickly and efficiently add
new learning material to your existing knowledge.

At the end of each section of the digital course book, you will find self-check questions.
These questions are designed to help you check whether you have understood the concepts
in each section.

For all modules with a final exam, you must complete the knowledge tests on the learning
platform. You will pass the knowledge test for each unit when you answer at least 80% of the
questions correctly.

When you have passed the knowledge tests for all the units, the course is considered fin-
ished and you will be able to register for the final assessment. Please ensure that you com-
plete the evaluation prior to registering for the assessment.

Good luck!

Introduction8

Learning Objectives

The course “Algorithmics” aims to present the theoretical and the historical foundations of
computer science and explore key concepts on the design and programming of algorithms.
Moreover, it looks at the societal implications of the use of the computing applications that
are born from the programming of algorithms. It also presents some of the futuristic para-
digms of algorithms.

The first part of the course starts with the above mentioned historical and societal perspec-
tives. It then focuses on searching, sorting, pattern-matching, clustering, and encryption
algorithms, and on the use of key data structures and algorithm design strategies. The theo-
retical foundations of computer science are presented in the second part of the course
where models of computation, complexity, completeness, and correctness are discussed. In
the last part of the course, we single out parallelism, probabilistic algorithms, and quantum
computing as some of the innovative paradigms for the future of algorithms. Links to the
IUBH GitHub repository for this course have been provided throughout this script. You are
encouraged to use this resource for practice.

Introduction 9

Unit 1
Introduction to Algorithmics

DL-E-DLMCSA01-U01

STUDY GOALS

On completion of this unit, you will have learned …

… basic concepts of algorithmics.

… key issues in the algorithm quality and the difficulty levels of computational problems.

… important features of the interplay between algorithms, programming languages, and
data structures using the JavaScript programming language.

… the historical and the contemporary role of algorithmics.

1. Introduction to Algorithmics

Introduction
Computer programming is widely perceived as the holding block of the following three
main technologies of the Fourth Industrial Revolution: digital, biological, and physical.
However, a computer program is nothing more than an algorithm written in a given
programming language. In other words, algorithms and algorithmics (the study of algo-
rithms) are the real holding blocks of Industry 4.0 (also known as the Fourth Industrial
Technology). One of the highlights of this unit will be to single out this cornerstone role
of algorithmics in the Fourth Industrial Revolution.

In addition to the discovery of the history of algorithmics, we study the definitions of
basic algorithmic concepts, as well as how to code algorithms in the JavaScript pro-
gramming language.

Some of the concepts introduced in this unit are related to the design of algorithms
and their evaluation in terms of their correctness and of their complexity. Finally, some
of the theoretical components of algorithmics such as the complexity theory and the
computability theory are introduced.

1.11.1 Basic Concepts and Historical Overview
Before looking at the history of algorithmics, it seems important to first briefly define
the concept. An algorithm is simply a sequence of steps toward the resolution of a
computational problem. After a historical overview, this section discusses computa-
tional problems and computability and explains how algorithms differ from algorith-
mics and programs.

History of Algorithmics

Many perceive Ancient Iraq and Ancient Egypt as the cradle of civilization. Conse-
quently, it is not surprising that they are also considered the cradle of algorithmics.
Ancient Greek and Italian mathematicians also played an important role. Fibonacci was
key in the dissemination of the work of al-Khwarizmi, the Persian mathematician from
Khiwa (present-day Uzbekistan and Iran) whose name gave birth to the term “algo-
rithm.” Turing and other contemporary Western mathematicians such as Gödel and Hil-
bert were also instrumental in the development of algorithmics.

Ancient Iraq and Ancient Egypt
The Sumerian people of Ancient Iraq are known as the first people to have used algo-
rithms around 2500 BCE, for example, in the teaching of geometry and basic operations
such as division on clay tablets.

12 Unit 1

For these calculations, their number system used decimal numbers within a sexagesi-
mal system. Thereafter, between 2000 and 1650 BCE, the Babylonians, another Ancient
Iraq people, also wrote algorithms on their tablets to teach other mathematical con-
cepts, such as inversing numbers, squaring roots, or solving algebraic quadratic equa-
tions. Similarly, Ancient Egypt used papyrus between 1900 and 1800 BCE to write algo-
rithms for the teaching of geometrical concepts, such as surface areas, geometrical
series, and volumes.

Ancient Greek civilization
Around 500 BCE, Ancient Greece ruled the world both militarily, politically, and academ-
ically. We know it as the “cradle of democracy.” Military commanders such as Alexander
the Great expanded the Greek empire to Egypt. Moreover, it was home to legendary phi-
losophers such as Plato, Aristotle, and Socrates, as well as brilliant mathematicians
such as Pythagoras, Thales, Euclid, and Eratosthenes. The renowned Hellenistic mathe-
maticians Eratosthenes and Euclid residing in Libya and in Alexandria, respectively,
found the first algorithms on the identification of prime numbers and on the calcula-
tion of the greatest common divisor of two numbers.

Ancient Islamic translations
In 820, the House of Wisdom was built by Muslim rulers, such as al-Mamun in Ancient
Baghdad, with the initial purpose of translating Hellenistic and other manuscripts into
Arabic (Ausiello, 2013). The house ultimately became a vibrant, intellectual, and scien-
tific hub that hosted a wide range of scholars from diverse origins, languages, and reli-
gions.

This is how al-Khwarizmi introduced the number zero from the Indian numbers system
to the Arabic numbers system. He is also credited for the first detailed specification of
the main four basic arithmetic operations: addition, subtraction, multiplication, and
division.

The Byzantine Empire
The Roman Empire split into the Western Empire and the Eastern Empire in 390. The
Western Empire ended around 480, but the Eastern (or Byzantine) Empire only ended
around 1453. History teaches us that Pisa (present-day Tuscany) held a key maritime
position in the life of the Byzantine Empire. This is where the young Italian Fibonacci
was born around 1170. He studied at Bugia (in what is now Algeria) but also traveled
intensively, both as a trader and as a scholar, in many Mediterranean countries where
he discovered the work of Hindu-Arabic scholars such as al-Khwarizmi. Fibonacci
became quite skillful at merging al-Khwarizmi’s Hindu-Arabic algorithms with Euclidian
mathematics. His work contains algorithms and mathematical solutions for various
application domains such as mathematics, accounting, and games, even though his
name is usually associated in the history of algorithmics with the “Rabbit Problem” and
the “Fibonacci Sequence.” Interested readers may find an account of the history of
mathematical notations and how they traveled in Mazur (2014).

Introduction to Algorithmics

13Unit 1

Post-Renaissance and contemporary Western mathematicians
Historical hardware devices sustained the vibrancy of algorithmic activities, starting
with the previously mentioned clay tablets and the papyrus used in Ancient Iraq and in
Ancient Egypt, respectively. The invention of “algorithmic mechanical machines” (e.g.,
Joseph Marie Jacquard, Charles Babbage) also constitutes a key moment in the history
of algorithmics. Jacquard was an eighteenth-century French inventor who created pro-
grammable sewing machines for the silk industry. His contemporary, Charles Babbage,
was an English mechanical engineer and mathematician whose groundbreaking inven-
tions included how to use punch cards to automate astronomical calculations.

Around 1900, the German mathematician Hilbert undertook the ambitious task of pro-
posing an algorithm or method that could decide on the veracity of any given mathe-
matical proposition or statement. However, the Austrian mathematician Gödel pub-
lished a clear proof in 1931 that no algorithm or method can decide the veracity of any
given mathematical proposition or statement. In 1936, Turing confirmed Gödel's work
and hypothesized that if there is a proof of the veracity of a given mathematical propo-
sition or statement then that proof can be confirmed by a Turing machine (Ausiello,
2013).

With its rich history in mind, we move to the overview of the present state of algorith-
mics.

Algorithmics Basic Concepts

This subsection is a presentation of the definition of basic algorithmics concepts such
as computational problems, computability, as well as the difference between algo-
rithms and algorithmics.

Computational problems
The purpose of algorithms is to solve computational problems that are made up of
three components: inputs with their preconditions, outputs with their post-conditions,
and a set of relationships between inputs and outputs. The problem of the identifica-
tion of the highest common divisor between two strictly positive numbers is described
in the next paragraph as an example of a computational problem.

The inputs of the aforementioned computational problem are two natural numbers
that must be strictly positive (precondition). The output will be a number with the post-
condition of being the highest common divisor of the two inputs.

As for the relationship between the inputs and the output, it simply portrays the output
as the biggest natural number that is both a divisor of the first input and a divisor of
the second input. Similarly, it is not difficult to specify the primality test problem of
deciding whether or not a given strictly positive natural number is prime.

From a Turing machine’s perspective, it is hypothesized that we can always run the
algorithm of a computational decision problem once we are in possession of such an
algorithm.

14 Unit 1

Algorithm
An algorithm solves
a computational
problem.

Programming lan-
guage
A programming lan-
guage automates the
processes leading to
the execution of
algorithms.

Decision problems are computational problems whose output simply yields Boolean
answers such as yes/no or true/false as opposed to non-decision problems. One can
easily identify the above described primality test and highest common divisor prob-
lems as a decision problem and as a non-decision problem, respectively.

Computability and decidability
A computational problem is said to be computable if there exists an algorithm that can
solve it, i.e., if a Turing machine exists for it. For example, if the above specified prob-
lem of the identification of the highest common divisor between two strictly positive
numbers is computable, so is the one of the primality test of a number. However, many
other computational problems, for example, the classical Halting Problem, are not com-
putable. The dichotomy between decision problems and non-decision problems also
makes it possible to speak of decidability as a synonym of computability for decision
problems; this does not make sense for non-decision problems for which computability
is only synonymous with solvability. Thus, we say the primality test problem is decida-
ble and the highest

Algorithms and algorithmics
An algorithm is a finite sequence of doable (by a Turing machine) steps aimed at solv-
ing a given computational problem. Consequently, algorithmics is the study of algo-
rithms and of computational problems since many computational problems are known
to be non-computable. While algorithmics examines the computability, solvability, and
decidability of computational problems as highlighted above, it also studies the design
and the analysis of algorithms as introduced below.

1.21.2 Algorithms, Programming Languages, and Data
Structures

It seems natural to present algorithms in the form of pseudocodes so that they can be
easily understood by humans in their natural languages. However, in order for an algo-
rithm to solve its computational problem with the help of a computer, the pseudocode
of that algorithm must first be translated into a program that will then be executed by
a computer, together with the relevant control and data structures. In contrast to pseu-
docodes that are written in natural languages, computer programs are written in pro-
gramming languages.

Programming Languages

Many programming languages are available algorithms, depending on the nature of the
computational problems. This course has adopted JavaScript as its programming lan-
guage mainly because of its ease of deployment on Web browsers. These were written
and tested in NodeJs, as visible in the following example.

Introduction to Algorithmics

15Unit 1

“Hello There”
Please follow the steps below to write and execute our “Hello There” JavaScript pro-
gram. This program asks its users to enter their name and it displays on the screen a
“Hello” message to that name followed by the “Kind Regards,” with each output on a
separate line. It is assumed that readers are familiar with the basic concepts of pro-
gramming and efforts will be made to always write self-explanatory JavaScript exam-
ples. Non-trivial code segments will always be explained.

1. Open a text editor (e.g., Notepad, Notepad++, Edit, GEdit, BBEdit, and Atom), type the
following code, and save your file with a name of your choice and with a js exten-
sion (Use the option All files for the dropdown list Save as type).

We see from that the characters // are used for short comments not exceeding one
line. The readline.question instruction is also very important here because of its
role in the identification of the inputs of the program, and a similar role is played by
the console.log instruction with regards to the display of the outputs of the pro-
gram.

2. Assuming that HelloThere.js is the name that you have given to your program,
type the node HelloThere.js command on the command prompt to run your pro-
gram. If that command complains that it does not recognize the readline-sync
module, then type the npm install readline-sync command on the command
prompt to install it. You are encouraged to run each program and even modify the
program with your own ideas and use a debugger (e.g., in Eclipse, VisualStudio Code,
netbeans WebStorm) to see it walk through its steps. These are two excellent meth-
ods for understanding the work of an algorithm.

Greatest Common Divisor (GCD)
As previously stated, the greatest common divisor (GCD) problem consists in identifying
the highest natural positive integer that divides two given strictly positive natural num-
bers.

A simple algorithm for the GCD problem is to start by assuming that the smallest of the
two given numbers is the highest divisor of these two numbers. Thereafter, that
assumption must be tested: If it is true, then the highest common divisor would have
been found. Otherwise, we have to reduce the value of currently assumed GCD by one
and test that new assumption. That iterative process of assumption and testing will

16 Unit 1

ultimately end with a GCD value greater or equal to one because one divides all strictly
positive natural numbers. N. B. Euclid is credited as the inventor of the first GCD algo-
rithm. The code below can be found here.

By default, it is usually assumed that users enter strings from the keyboard, so we have
to use parseInt to tell JavaScript that the value that is entered is an integer. The defi-
nition and the use of the function gcd also deserve our attention. Similarly, from this
program we learn how to calculate the minimum between two numbers (Math.min),
calculate the remainder or modulus between two numbers (%) (e.g., 26 % 7 is equal to 5
in the sense that when we divide 26 by 7, we get 3 but there is a remainder of 5), test
the equality of two entities (===), negate a Boolean value (!), and decrement the value
of a variable (--). The syntax of while loops and of function can also be learned from
this example, especially with the use of caliber brackets ({}). The use of the keyword
return is also very important for functions.

Data Structures

The HelloThere and GCD examples deal mainly with one or two integers or strings
whose values are collected from users. Those values are the data of the program. How-
ever, there are many situations where an algorithm or a program has to collect data of

Introduction to Algorithmics

17Unit 1

a more diverse nature either in terms of quantity or in terms of varieties. Consequently,
this forces algorithms and programs to organize or structure their data into relevant
data structures, such as arrays, lists, sets, trees, or graphs. For example, for the compu-
tational problem of sorting a sequence of numbers in ascending order, it would be
appropriate to use an array for the storing and the processing of these numbers, as in
the selection sort JavaScript example below.

18 Unit 1

Introduction to Algorithmics

19Unit 1

The selection sort algorithm swaps the smallest value from the first position of the
array with the value in the first position, then it swaps the smallest value of the array
from the second position with the value in the second position, then it swaps the
smallest value of the array from the third position with the value in the third position,
and so on, until it reaches the end of the array.

In the JavaScript program above, the array numbs has been initialized with the empty
value []. In order for the captureNumbers function to fill it with values, it must push
those values one by one at the end of the array. Moreover, the captureNumbers func-
tion uses the Number function instead of the parseInt function simply because this
computational problem accepts both integers and real numbers as inputs. It is also
important to note that all three functions of this JavaScript program are marking use of
the return keyword without returning any value, simply because their purpose is to
accomplish their intended tasks without necessarily returning one specific value. In
fact, two of these functions are modifying the array that is passed to them as a param-
eter either by filling it with values, or by sorting it, and the third function simply dis-
plays the content of its array on the screen. When an array is passed as a parameter to
a function, its content can be changed by that function if it contains the necessary
instructions to do so. This is possible because, in JavaScript, most parameters are
passed to functions by value, except for objects parameters that are passed to func-
tions by address, and JavaScript arrays are actually objects. Readers are reminded that
parameters that are passed by value to a function cannot be changed by that function,
as opposed to the ones that are passed by reference or by address.

Control Structures

From an algorithm’s perspective, the two main control structures are conditions and
loops. Conditions include different forms of if statements and loops are used for the
iteration or repetition of sequences of instructions. The purpose of these control struc-
tures is to indicate how instructions will follow one another. For example, the afore-
mentioned sortNumbers function has a condition inside a double loop.

1.31.3 Quality Algorithms: Correctness, Accuracy,
Completeness, and Efficiency

When proposing an algorithm for a given computational problem, we have to ensure
that such an algorithm is correct, accurate, complete, and efficient.

Correctness

The correctness of an algorithm can only be established through a mathematical cor-
rectness proof of its partial or total correctness. An algorithm is totally correct if there
is a mathematical proof that the algorithm is partially correct and, for all its inputs that
fulfill its preconditions (correct inputs), the algorithm will always terminate. An algo-

20 Unit 1

Time efficiency
This quality indi-
cates the speed of a
given algorithm.

rithm is said to be partially correct if one can prove mathematically that it has two
types of inputs fulfilling its preconditions: the ones for which the algorithm does not
terminate and whose outputs are therefore unknown, and the ones that terminate and
whose outputs fulfill its post-conditions (correct outputs).

Completeness

An algorithm is said to be complete if, for all its correct inputs (inputs that fulfill its
preconditions), it always renders the correct outputs (outputs that fulfill its post-condi-
tions) for the given inputs when there is a solution for such inputs, or it terminates
with a “no solution found” message when there is no solution for such inputs. Let’s
consider the computational problem of looking for the position of the first occurrence
of a decimal digit (0…9) in a given non-null string. Any algorithm that will ignore the
fact that certain strings do not contain decimal numbers will not be complete.

Accuracy

When inputting a value to a computational problem or when calculating the value of
one of its outputs, it is important for such values to have the desired level of accuracy,
i.e., to be as close as possible to the reality that those values are supposed to repre-
sent. The issue of accuracy is important for approximation algorithms whose purpose is
to make an approximation of an expected value. Such algorithms will be considered
inaccurate if their approximations are too different from the expected value.

Efficiency and Complexity

Let us recall that an algorithm is a finite sequence of doable (by a Turing machine)
steps aimed at solving a given computational problem, using appropriate data struc-
tures. This is why the efficiency of an algorithm can be assessed either in terms of
space or in terms of time. Space efficiency has to do with the amount of memory that
is required for the data structures of an algorithm. As for time efficiency, it has to do
with the number of steps of an algorithm. Complexity has more to do with the level of
difficulty of a given computational problem.

1.41.4 The Role of Algorithms in Society
It is important to note that the previous definition of algorithms is different from the
one that has widely been adopted by modern societies. Let’s first define algorithms
from a societal viewpoint before discussing the opportunities that they create and their
associated challenges. Modern societies consider algorithms powerful elements of
computing devices and applications whose mission it is to assist as much as possible
in the management of our lives in decision-making choices as well as the execution of
activities.

Introduction to Algorithmics

21Unit 1

Application Domains

Algorithms have so far mostly influenced modern life: search engines, public-key cryp-
tography and digital signatures, errors correction, patterns matching, data compression,
and databases (MacCormick, 2013).

Search engines
The World Wide Web is perceived by many as a gigantic collection of pages that are
deployed in a worldwide distribution and contain valuable information for its users.
Search engines allow their users to query the Web in order to select the right informa-
tion from all those pages. Currently, the most popular search engines are owned by
Google and Microsoft.

Public-key cryptography and digital signatures
Public-key cryptography and digital signatures are mainly used to secure information.
These two concepts are illustrated using the example of a box whose role is to transmit
messages between senders and receivers (Vryonis, 2013).

In private-key or symmetric cryptograph, we have a single private key that locks and
unlocks the box. Any key holder can hide the content of the box by locking it (encryp-
tion) and only the other holders of a copy of that private key can unlock it and see its
content (decryption).

Public-key or asymmetric cryptography works a bit differently. Suppose we have an ini-
tially closed single box with a single clockwise-turning private key held by only one
person. There are multiple copies of an anticlockwise-turning public key with the mid-
dle vertical position (↑) of the lock being the unlocked position and both the left (←)
and the right (→) horizontal positions being the locked ones. Anyone who puts some-
thing in the box or takes something from it must close it immediately after, and two
people cannot use the box at the same time. When the lock of the box is in the right
(→) horizontal position, anyone (including the private key holder) can open the box
with the public key, put things inside, and lock it with the public key (encryption); how-
ever, only the private key holder can unlock it (decryption). Similarly, if a public key
owner opens that box and finds a packet in it, then they are certain that the packet was
sent by the private key owner. That private key serves here as the digital signature of its
owner. A representative diagram of different cryptography systems is displayed below
from Kessler (2020).

22 Unit 1

Error correction
Computing devices, their applications, and algorithms handle large quantities of data
that sometimes contain errors. The purpose of error correction algorithms is to auto-
matically detect and correct such data errors. Let’s illustrate this purpose by checking
the validity of a 13-digit ISBN code.

First, we have to multiply its even positions digits by three and add all these results to
the sum of all the other digits except for the thirteenth. The second step is to calculate
the remainder from the division of that total by ten. If the addition of that remainder to
the thirteenth digit gives ten, then the ISBN code is valid; otherwise, it is not.

Let’s consider the ISBN code 978-3-540-48663-3. Its odd positions digits are 7, 3, 4, 4, 6,
and 3. Their multiplications by three will give 21, 9, 12, 12, 18, and 9, whose sum is 81.
When adding 81 to the other digits except for the 13th one (9, 8, 5, 0, 8, and 6), we get a
total value of 117. The natural division of 117 by 10 yields a value of 110 with a remainder
of 7, and the addition of 7 to the 13th digit gives 10. So this ISBN code is valid.

Error detection and correction algorithms are used in various application domains,
such as fixed and mobile storage devices or discs, internet packets transmissions, and
cell phone calls.

Introduction to Algorithmics

23Unit 1

Data compression
Data compression consists of taking advantage of the existence of redundancies in
data in order to present them in a more compact form. For example, the Run Length
Encoding (RLE) compression algorithm takes a sequence of binary digits and trans-
forms it to another sequence of binary digits based on the length of the longest
sequence of repetitive bits.

We will use the binary sequence 11111111111111111000011111111111 to illustrate the concept
of data compression. In this bit sequence, there are seventeen 1s followed by four 0s
and eleven 1s. We must use the number of bits of seventeen for our compression: 17 is
converted to 10001 which consists of five bits. So we must also convert 4 and 11 to
binary on five digits: 4 will be converted to 00100 and 11 will be converted to 01011. It is
now time to say that our binary sequence has seventeen 1s followed by four 0s and by
eleven 1s and obtain the compressed binary sequence 110001000100101011 of the initial
binary sequence. Note that the initial sequence had 32 bits, but its compressed version
has 18.

Pattern matching
Pattern matching algorithms aim to check the occurrence(s) of a given pattern in a
given object, using, for example, the regular expressions (regExp) facilities that are
available in current programming languages. For instance, the following JavaScript code
illustrates the matching of two patterns in a short present tense sentence input by
users in order to check whether such sentences are grammatically correct. This exam-
ple assumes that such sentences are simply made up of a pronoun (I, you, he, she, it,
we, and they) that is followed by a space and a verb. Pattern matching algorithms are
used in several applications, such as search engines, machine learning, information
security, virtual reality, DNA sequencing, and pattern recognition (characters and
images).

24 Unit 1

Databases
In a database, data is structured and kept in a repository making it easy for users and
programmers to store data and retrieve information. The repositories are currently
almost omnipresent in the management of all organizational activities dating back to
1960. Popular Database Management Systems (DBMS) include Oracle, SQL Server, DB2,
MySQL, Access, MongoDB, Solr, and CouchDB.

Challenges

In modern societies, algorithms tend to use personal data to help them manage their
activities and decision-making choices. However, such algorithmic societies are
exposed to several challenges such as the applicability of current legal and ethical
frameworks, the promotion of unfair and opaque practices, the lack of accountability,
privacy breaches, and the disruption of the labor system.

Applicability of current legal and ethical frameworks
The British Academy, the Royal Society, the House of the Lords, the French Parliament,
and the Association for Computing Machinery are all in agreement on the following
straightforward ethical principle for the use of data by algorithms: Algorithms should
only use data if it is for the general benefit of society (Olhede & Wolfe, 2018). Moreover,
since mid-2018, the European Union legal system follows a General Data Protection
Regulation (GDPR) law that requires all algorithms to give an explanation to anyone
who is requesting such an explanation when their data were used by the algorithms
without their consent or when they are affected by the processing and outcome of the
algorithms. However, critics doubt the ability of algorithms to generate meaningful
explanations in human natural languages, let alone in the legal terminology.

Promotion of unfair and opaque practices
Suppose we have an algorithm on a mobile application that allows any resident to
report street light problems in their neighborhood for the assessment of the state of
street light in the country and for the consequent allocation of a budget for their main-
tenance (Crawford, 2013). Unfortunately, this collection method of massive data for the
algorithm is biased in that it excludes the data of the non-users of the mobile applica-
tion. Consequently, all non-users of the mobile application will not have a budget for
the maintenance of their street lights even if those lights are not working, and that can
be seen as unfair. Another serious concern is that the development of algorithms is so
complex that they are a black box for most people who simply have to put their trust in
the hands of the few algorithm specialists. Unfortunately, the betrayal of this trust is
possible and can have serious negative consequences in people’s lives, as in the exam-
ple of the mistaken arrest of an African American due to a “faulty facial recognition
match” (Hill, 2020). Search engines are another example that illustrates the opacity of
algorithms. It is difficult for an end-user to understand how a search keyword can
return pages that correspond to their personal profile even when such a keyword does
not contain their personal data.

Introduction to Algorithmics

25Unit 1

Lack of accountability
Both the Association for Computing Machinery (ACM) and the European General Data
Protection Regulation (GDPR) are adamant that individuals are entitled to question
algorithmic decisions. It is the initiators of the use of automated algorithms in such
decision-making processes who are responsible and accountable for those decisions.
This is, however, difficult to enforce mainly because the typical end-user of automated
algorithms is usually a non-specialist who does not have the ability to understand and
to explain in natural languages the details leading to the outcomes of algorithms.

Privacy breaches
The sharing of social media data (sometimes for financial motives) by different stake-
holders without the prior knowledge and prior consent of the owners and generators of
such data is a good example of a privacy breach in algorithmic societies. It is a major
concern because people usually make use of social media to share their life experien-
ces with their friends and families, and discuss sensitive matters on their health, love
lives, or political opinions. This, unfortunately, sometimes leads to situations where
managers and government authorities use social media applications to invade people’s
privacy with negative consequences to their work and their lives.

Disruption of the labor system
As stated above, the development of algorithms is so complex that they are a black box
for most people who simply have to put their trust in the hands of the few specialists
who are working on them. Moreover, there are perceptions that, because algorithms will
ultimately take full and exclusive control of the management of people lives in terms
of their decision-making choices as well as the execution of their activities, the labor
force currently in charge of these decision-making choices and of these activities may
eventually become redundant. The main concern is that we may end up with an algo-
rithmic society where algorithmics’ workers are the only active population and all oth-
ers are unemployed.

Summary

This unit identified Euclid, al-Khwarizmi, Fibonacci, Gödel, Hilbert, and Turing as
some of the key players in the history of algorithms within their respective histori-
cal contexts. Computational problems were introduced before the presentation of
key algorithmic concepts, such as algorithm quality and the difference between
algorithms and programming. Finally, we reviewed modern algorithmic societies
with a few examples on some of their predominant algorithms, such as search
engines and error detection, and we identified societal issues resulting from algo-
rithms. Some of those issues include, for example, the opacity of algorithms and
their lack of accountability despite the existence of international laws for the pro-
motion of a transparent and fair algorithmic society.

26 Unit 1

Knowledge Check

Did you understand this unit?

You can check your understanding by completing the questions for this unit on the
learning platform.

Good luck!

Introduction to Algorithmics

27Unit 1

Unit 2
Algorithm Design

DL-E-DLMCSA01-U02

STUDY GOALS

On completion of this unit, you will have learned …

… how to organize the data of your algorithms into suitable data structures.

… the use of iteration and recursion in algorithm design.

… key algorithm design strategies.

2.

Data structure
A data structure

organizes data into a
usable format to
which operations

can be applied.

Algorithm Design

Introduction
When faced with the task of creating an algorithm for a computational problem, it is
useful to consider existing algorithm design techniques as a source of inspiration. It is
also important to have first-hand experience with other computational problems
whose algorithms are based on design techniques in order to be aware of the similari-
ties and differences between various computational problems. Similarities and differ-
ences between computational problems may arise from the nature of the data. This
fact calls for a clear understanding of the different data structures that are available to
algorithms, while knowing that the use of data structures may differ from one algo-
rithm design technique to another.

The concepts that are covered by this unit are intended to give you a sound under-
standing of the use of data structures by key design techniques, as visible in relevant
algorithms.

2.12.1 Data Structures
Algorithms use several data structures that are presented in this section, including
arrays, lists, heaps, queues, stacks, trees, and graphs.

Arrays

An array can be described as a finite sequence of elements which may be empty. The
length of an array is simply equal to the length of its sequence of elements. These ele-
ments are accessible through their indices. It is possible to insert and remove elements
in or from any position in the array. Current programming languages have many more
methods and functions for arrays, as is visible in the following JavaScript example for
the insertions’ operations:

1. at the beginning: arrayVariable.unshift (element(s) to add)
2. somewhere at the middle: arrayVariable.splice (position where the added ele-

ment(s) will stay, 0, element(s) to add)
3. at the end: arrayVariable[arrayVariable.length] = element(s) to add; or,

arrayVariable.push (element(s) to add)

It is also possible to initialize an array simply by stating its number of elements even
though other operations can be used later to increase or decrease that initial length.
That is what is done in the JavaScript program below.

30 Unit 2

In this program, an array is created with an initial size of n1, making it possible for the
function captureElements to fill those n1 positions of the array simply by accessing
them with their indices. However, because the other n2 elements were not planned as
being part of the initialization of the array, the use of one of the methods identified
above is necessary for their insertion.

Algorithm Design

31Unit 2

Stacks

A stack is a sequence of elements where new elements can only be inserted at the end
of the sequence, and it is only the element at the end of the sequence that can be
removed. Thus, stack data structure has a limited number of operations: creating an
empty stack, putting a new element on top of the stack, getting the value of the ele-
ment currently on top of the stack, or removing it from the stack. All of these opera-
tions can easily be implemented by a stack class with an array as a private attribute.
On the other hand, implementing stacks with linked nodes is a little bit more complica-
ted, as is visible in the following JavaScript program. Many points deserve our attention
here.

32 Unit 2

Algorithm Design

33Unit 2

Lists

A list is a sequence of elements, just like an array or a stack. Although all three have a
beginning (head) position and an end (tail) position, for a list, we will also always want
to know the current position of the cursor of the list.

In fact, the operations of a list are usually carried out only from this unique position of
the cursor. In the case of a stack, the position of the cursor always points to the top of
the stack such that all stacks’ operations can only apply to the top of the stack. The

34 Unit 2

identified arrays’ and stacks’ operations still apply to lists for the position of their cur-
sor. Moreover, lists offer the possibility to change the value of the position of their cur-
sor.

As is the case for stacks, because lists can easily be implemented by a class with an
array as a private attribute, we will show you how to implement them by using linked
nodes, as illustrated in the following JavaScript program.

Always trace this program with a handful of test cases for a better understanding of the
implementation of the list data structure so that missing methods can be added (e.g.,
insertion of elements).

Algorithm Design

35Unit 2

36 Unit 2

Algorithm Design

37Unit 2

Non-Priority and Priority Queues

For stacks, the top of the stack contains the element that entered last. It is that top of
the stack that will always be the first element to leave the stack. This is why stacks are
said to have a last-in-first-out (LIFO) policy. The code below can be found here.

38 Unit 2

Algorithm Design

39Unit 2

40 Unit 2

In the first-in-first-out (FIFO) policy of non-priority queues, the first element to have
entered the queue is always the first element to leave. Non-priority queues behave like
lists with cursor positions always equal to zero, making their implementation very simi-
lar to the one of lists except for the position. A non-priority queue that is implemented
as a list with a cursor position always equal to zero is visible in the above JavaScript
program. Readers are advised that the word list has simply been replaced by the word
queue. The cursor attribute has disappeared, and it has been replaced by the zero
value where necessary.

As in the case of a queue where the elderly are sometimes helped first, priority queues
allow their elements to have different levels of priority in order to first serve the ones
with the highest level of priority. This requires the QueueNodeClass class to have a
third attribute on the priority level of each of its nodes so that, periodically, we can
scan through the queue, identify the position of the first node with the highest level of
priority, and remove it from the queue in order to attend to it. This is done with the
getPriorityPosition() method of the PQueueNodeClass class in the JavaScript
implementation of a priority queue, shown below.

The first difference between the PQueueNodeClass class and the QueueNodeClass class
is the inclusion of the priority attribute in the PQueueNodeClass class to indicate that
each node of a priority queue has a priority level that is represented by a priority num-
ber. Recall that a priority number is a strictly positive natural number and that the
smaller the priority number, the higher the priority level.

Algorithm Design

41Unit 2

42 Unit 2

Algorithm Design

43Unit 2

The second difference between these two classes is the inclusion of the getPriority-
Position() method in the PQueueNodeClass class so that we can use that method to
find the position of the first element with the highest priority and remove the associ-
ated element from the queue, if needed, in order to attend to it.

This is precisely what is achieved by the removeHighestPriorityElement() method
of the PQueueClass class. The use of the Math.random() method by the captureEle-
ments() function for the generation of random priority numbers is also worth noting.

44 Unit 2

Binary Trees and Binary Search Trees

A tree is made of up a root node that has one or many children or subtrees. In the case
of binary trees, every root node has one or two direct sub-nodes except for the leaves
that do not have any nodes. Let us suppose that we have a binary tree in which every
node has two sub-nodes, except for the leaves that do not, as represented in the fol-
lowing diagram.

Such a completely full L levels tree has a number of nodes equal to the sum of the
terms of the geometrical sequence that has 1 as its first term and 2 as its ratio.20 + 21 + 22 + 23 + 24 + … + 2L − 1
The application of the following formula for the sum of the first n terms of a geometric
series with an initial value a and with a ratio r yields a value equal to 2L–1.

ar0 + ar1 + ar2 + ar3 + ar4 + … + arn − 1 = a 1 − rn1 − r
This means that if we want to store all nodes of a completely full binary tree of L lev-
els, we must keep 2L–1 slots for that storage. Such slots can be numbered from 1 to 2L–1 or from 0 to 2L–2. As the figure below illustrates: the numbers represent the positions
of the tree above, and the root of the tree is in position 0.

Algorithm Design

45Unit 2

It is interesting to note in this tree of positions that all the left nodes are located in
odd positions and all the right nodes are located in even positions. Moreover, the posi-
tion of a left child node is the addition of one to the double of the position of its
father, and the position of a right child is the addition of two to the double of the posi-
tion of the father. Conversely, the position of a father is the half of the position of its
left child minus one, but that position of the father is also the subtraction of one from
half of the position of the right child. In other words, the position of the two children
can easily be calculated based on the position of the parent, and the position of the
parent can also be easily calculated once we know the position of one of the children.
Thus, it is possible to assign values to the different nodes of the binary tree based on
the following rule: assigning a value to the root of the tree that is located in position 0
is always allowed, and, for all the other nodes, assigning a value to a node in a position
where the parent does not have a value is not allowed. This is precisely what is done by
the following JavaScript program where the values of the nodes of binary tree are kept
in an array.

The following points can be singled out from this JavaScript implementation of binary
trees:

• The BinTreeClass class that represents binary trees is quite simple as it is only
made up of two attributes: (1) the number of levels in the tree and (2) the array that
will store all the elements of the array. It has a getTTNbOfElements() method
whose purpose is to calculate the total number of slots required for the array to
store all the elements of the binary tree, even when such a tree is completely full.
That method is called by the initializeBinTree() that assigns all these array’s
slots to undefined as a way of stating that none of the elements of the tree has so
far been given a value. The role of the putElementInNode() method is to place an
element in a given position on the binary tree provided that its parent’s position

46 Unit 2

does not contain an undefined object. Other instructions are included in the Java-
Script program, and their modus operandi will easily become apparent by tracing
the program with a few representative test cases.

• It is worth noting that the JavaScript program presented below does not have a
method on how to remove an element from a binary tree. Suppose we want to
remove the element that is currently located in a given position on the binary tree.
The first thing to do is to set the value in that position to the undefined object.
Afterwards, one will have to scan through all the nodes that have a higher index
value than the current position and that are located below the node of that posi-
tion. All those higher index values will be set to undefined.

Just as there are many species of trees in nature, there are different sizes and shapes
of binary trees in algorithmics. This variation has led to the identification of several
types of binary trees such as full, complete, perfect, and balanced trees. Other noticea-
ble types of binary trees include the Huffman and binary search trees, heaps, and AVLs
(Adel’son-Vel’sky & Landis, 1962), in addition to other types of multi-node trees where a
node is allowed to have more than two children. Similarly, there are different ways to
systematically scan through the different nodes of a tree: the breadth-first approach,
where the nodes that are the nearest to the root are the first ones to be scanned, and
the depth-first approach, where the nodes that are the furthest from the root are the
first ones to be scanned. The implementation of binary trees can be done either with
the use of an array or linked nodes, as was done for lists and queues. The following
JavaScript program uses arrays for its implementation of binary trees.

Algorithm Design

47Unit 2

48 Unit 2

Let us briefly return to the concepts of full trees and complete trees. In a full tree, only
the leaves are allowed not to be full. For a binary tree to be complete, it must satisfy
the following two conditions: (a) be full, and (b) have all leaves at the same height from

Algorithm Design

49Unit 2

the root. It is also possible for a binary tree to be considered semi-complete, i.e., it is
complete up to one level before the leaves, but few of the parents of the leaves on the
right side are not full. One of the advantages of complete and almost-complete binary
trees is that, because they do not have many internal holes, their implementation by
an array effectively makes use of almost all the spaces of that array. As for binary
search trees, the value of the left child of each node must be smaller than the one of
the node itself, which in return must be smaller than the value of its right child. This
makes it easy for these trees to be searched.

A heap is an almost complete binary tree that also keeps an order between each node
and its children. There are two types of heaps: the min-heap and the max-heap. In a
max-heap, the value of each parent node is greater than or equal to the one of each of
its direct children nodes. For a min-heap, however, the value of each parent node is
smaller than or equal to the one of its direct children nodes. The root of a max-heap
always holds the maximum value of the tree, and the root of the min-heap also holds
the minimum value of the tree. This is what makes heaps suitable for the representa-
tion of priority queues.

Graphs

Much like binary trees, graphs can either be scanned with a breadth-first approach or a
depth-first approach. Their application domains include communication systems,
hydraulic systems, integrated computer circuits, mechanical systems, and transporta-
tion (Ahuja et al., 1993).

A graph can be seen as a set of connected nodes. In a directed graph, the direction of
the connection between two nodes is well indicated as opposed to general graphs
where all connections between nodes are bi-directional. Thus, we focus on directed
graphs because they also allow for the possibility of representing bi-directions in
nodes’ connections, as illustrated in the example below. This example is a labeled
graph where weights are assigned to the nodes’ connections. In any case, this also
accommodates unlabeled graphs where weights are Boolean values.

50 Unit 2

In a graph with a given number of nodes, each node can be identified by a unique nat-
ural positive number less than the total number of nodes. Thereafter, it will become
easy to identify each node and implement graphs either as two-dimensional arrays or
as an array of linked nodes. This is what is done below for the above graph.

Algorithm Design

51Unit 2

Let’s now represent the previous graph example first as a two-dimensional array and as
an array of linked nodes.

52 Unit 2

Certain graphs’ configurations are more suitable for representation as a two-dimen-
sional array while others are better represented as an array of linked nodes. The Java-
Script example below is an implementation of graphs with two-dimensional arrays so
that readers can also be introduced to the programming of these types of arrays in
JavaScript.

In this JavaScript program, the nbOfNodes attribute of the GraphClass class represents
the total number of nodes of the graph, and the names of those nodes are stored in
the nodesNames array attribute. It is the weights array attribute that stores the values
of the weights of the links between the different nodes of the graph, as illustrated in
the two-dimensional array (above). Unfortunately, there are no two-dimensional arrays
in JavaScript. Hence, we must store arrays inside another array as a way to implement a
two-dimensional array. This is visible in the initializeGraph() method whose pur-
pose is to initialize each box of the nodesNames array with the undefined object. That
method also initializes each box of the weights array with a sequence of undefined
objects.

Suppose we have a graph with three nodes. In this case, the nodesNames array is made
up of three boxes and each of these three boxes is initialized with the undefined
object. Similarly, the weights array is made up of three boxes. Each of these three
boxes is also an array of three boxes that are each initialized with the undefined
object by the initializeGraph() method. The rest of the program is not too difficult
to understand, and, again, it is always useful and recommended to trace your programs
with a few test cases in order to unearth all their details.

Algorithm Design

53Unit 2

54 Unit 2

Algorithm Design

55Unit 2

Recursion
This approach allows

a function to call
itself with different

arguments.

2.22.2 Recursion and Iteration
Let’s briefly put ourselves in the situation where we have to fulfill the important mis-
sion of climbing a cement stairway. One way to approach that mission is to step on the
first stair, then move to the second, then the third, the fourth, the fifth, and so on, up to
the top. We would call this an iterative approach. It usually takes the form of a for, a
while, or a repeat loop when it is adopted in an algorithm. Each of its steps is identi-
fied as an iteration. The other way to approach the mission is to step on the first stair
and simply consider the remaining steps as a new but shorter mission that, when fulfil-
led, will also successfully end the initial mission. This new approach is recursive in the
sense that the completion of the initial mission on a given object relies on the comple-
tion of the same mission but for a simpler or smaller object. Let us now illustrate these
two concepts of recursion and iteration with the following two JavaScript programs on
the factorial of numbers and on the enumeration of prime numbers, respectively. More
precisely, the first program calculates the factorial of a given strictly positive natural
number, both iteratively and recursively. The second program enumerates the set of
prime numbers smaller than or equal to a given strictly positive natural number, also
both iteratively and recursively.

This is a gentle reminder of the formula of the factorial of a strictly positive natural
number n. n! = n · n − 1 · n − 2 · n − 3 · n − 4 · … · 5 · 4 · 3 · 2 · 1

56 Unit 2

The iterative calculation of the factorial of n can be illustrated as follows.

As for the recursive calculation of the factorial of n, it is clearly visible in the formula of
factorial itself, as illustrated below.

Algorithm Design

57Unit 2

n! = n · n − 1 · n − 2 · n − 3 · n − 4 · … · 5 · 4 · 3 · 2 · 1n! = n · n − 1 ! i.e. Factorial n = n · Factorial n − 1
In other words, the recursive calculation of the factorial of n involves the calculation of
another factorial, the factorial of n–1.

Both the iterative and recursive approaches are illustrated in the JavaScript program
presented below. It enumerates the set of prime numbers less than or equal to a given
strictly positive natural number, starting with the primality testing function for which
isPrimeIter() uses the iterative approach, and isPrimeRec() uses the recursive
approach. The isPrimeIter() function loops from 2 to the value of its parameter to
check if the later one has a divisor. As for isPrimeRec(), if its first parameter is divisi-
ble by its second, then it concludes on the non-primality of the first parameter; other-
wise, it reduces the value of its second parameter by one before calling itself back into
action. The primesIter() function uses an iterative approach by testing the primality
of each number for its possible inclusion in the final array. On the other hand, the pri-
mesRec() function checks the primality of its parameter and decides its inclusion in
the set of the prime numbers that are less than that parameter.

58 Unit 2

Algorithm Design

59Unit 2

Divide-and-Conquer
This strategy results
in faster algorithms

by breaking the
input data into

many, almost equal-
sized inputs.

2.32.3 Divide-and-Conquer
The divide-and-conquer algorithm design strategy consists of sub-dividing a given
problem into similar sub-problems of almost equal sizes, solving those sub-problems,
and aggregating the solutions of those sub-problems into an overall solution for the
initial problem. According to Kao (n.d.), the divide-and-conquer strategy is linked to
Herbert Simon’s mathematical concept of near decomposability. Simon (2002) defines
near decomposability as the “boxes-within-boxes” hierarchical multilevel organization
of a system.

This algorithm design strategy is usually recursive and time-efficient. This strategy is
illustrated in the following algorithm that multiplies two long integers with an equal
length that is a power of two. Suppose that we have the long integer L1 = 74983152
whose length is 8. We can divide this long integer into two parts: the upper part 7498,
and the lower part 3152. Similarly, let’s consider the example of another long integer L2= 54926813 of length 8 whose upper half is 5492 and lower half is 6813. This is where
the trick is.L1 = 74983152 = 7498 · 104 + 3152L2 = 54926813 = 5492 · 104 + 6813L1 · L2 = 6813 · 3152 + 6813 · 7498 · 104 + 5492 · 3152 · 104 + 5492 · 7498 · 108
This equation shows how the problem of multiplying integers of length 8 has been
reduced to the problem of multiplying integers of length 4 which itself will be reduced
to the easier problem of multiplying integers of length 2. The efficiency of this method
comes from the number of steps taken to move from 8 to 2 (three steps on the 8, 4, 2
trip) compared to the 8 steps on the 8, 7, 6, 5, 4, 3, 2, 1 trip.

2.42.4 Balancing, Greedy Algorithms, and Dynamic
Programming

The following algorithm design techniques are usually used for optimization problems
where the aim is typically to find the best option for a given purpose.

Balancing

The divide-and-conquer algorithm design technique teaches us that an algorithm can
become significantly faster by subdividing its input into two smaller equal-sized sub-
inputs. This is the case, for example, for an algorithm on binary trees where it can
decide to consider the left and the right children of the tree separately in its quest to
solve its computational problem. Hence, ensuring that the left and the right children of
the tree have an almost equal size for the metric that the algorithm is interested in is
vital. It is in that perspective that AVL trees always stay balanced (heights of left and

60 Unit 2

right children never differ by more than one). The AVL acronym comes from the names
of Adel’son-Vel’sky and Landis (1962) who are credited for the discovery of the AVL data
structure.

Let us now illustrate the concept of tree-balancing by successively inserting the follow-
ing numbers in an initially empty AVL, having in mind the two main properties of AVLs:
(1) the value of any parent is greater than the one of any left child but less than the
one of any right child, and (2) the difference in height between any left child and any
right child cannot exceed one. The sequence of numbers to be inserted is 75, 29, 52, 89,
92, 90, 24, 8, 17, 27.

Algorithm Design

61Unit 2

62 Unit 2

Algorithm Design

63Unit 2

Greedy Algorithms

Dating back to the 1970s, the greedy algorithm design technique consists of always
making the best possible choice in the moment (local choice), even if the final or
global outcome from these successive local choices happens not to be the best one
(Ye, 2013). This is how this technique works for the knapsack problem. Suppose that we
have to store a set of valuable fruits and vegetables in a bag with a given weight so
that the bag can be as full as possible with the most valuable items. We have mangoes,
avocadoes, yams, maize, cassava, potatoes, and apples. The different weights of these
different items are 20, 15, 10, 30, 5, 50, and 25, and their total costs are 60, 60, 90, 60, 80,
75, and 75, respectively. If we want to know the value of a given item, we must calculate
the unit cost of that item by dividing its total cost by its weight.

The greedy approach starts by assuming that mangoes are the most valuable and com-
pares their unit cost to the other fruits and vegetables until it finds that avocadoes are
more valuable than mangoes. Once avocadoes are assumed to be the most valuable,
their unit cost will be compared against that of yams, which will become the assumed
most valuable item. This process continues until we learn that cassava is actually the
most valuable.

64 Unit 2

Dynamic Programming

This algorithm design technique looks for the best possible solution to a combinatory
problem by dividing the initial problem into relevant sub-problems whose solutions
are then stored in arrays before being aggregated toward the final solution. Currency
exchange illustrates this technique. Suppose we have 1, 7, and 11 coins denominations
for a given currency, and we want to change a cash value of 21 in that currency with the
smallest possible number of coins. A greedy approach will first look at the eleven (11),
then the seven (7), and finally the one (1). It will result in a single eleven (11) currency
denomination coin, a single seven (7) currency denomination coin, and 3 one (1) coins,
for a total of 5 coins. A quick look at this example shows that it is also possible to
change the same amount of cash with only 3 seven (7) coins.

In other words, the greedy approach fails to find the best or smallest possible number
of coins for this problem. Let's look at the dynamic programming solution of this exam-
ple.

The first row in the table represents the cash value from 0 to 21. The three different cur-
rency denominations are represented in the first column. The entire second column is
filled with zeros because a zero cash value is changed into zero coins for any denomi-
nation. Let’s start by showing how to fill the rest of the second row where it is assumed
that we only have a currency denomination of value 1 and where the cash value and
the number of coins are equal since we only have coins of 1s in the second row. When
we are on the third row, we now have coins of 1s and coins of 7. Cash values from one

Algorithm Design

65Unit 2

to six can only use coins of 1s, but a cash value of seven will use one coin of seven that
can be calculated as the minimum value between the number on top of that box and
the successor of the value located in the seventh position on the left of that box. When
this process is carried out for all the other rows of the table, it will result in the mini-
mum number of coins for this problem: three.

Summary

This unit explained how to organize data in relevant data structures, such as arrays,
lists, queues, graphs, and trees. We reviewed how an iterative algorithm can be
transformed to its recursive equivalent. Important algorithm design techniques
were presented, including the divide-and-conquer strategy, the greedy approach,
dynamic programming, and data balancing with the example of balanced binary
search trees.

Knowledge Check

Did you understand this unit?

You can check your understanding by completing the questions for this unit on the
learning platform.

Good luck!

66 Unit 2

Unit 3
Some Important Algorithms

DL-E-DLMCSA01-U03

STUDY GOALS

On completion of this unit, you will have learned …

… key details about the main searching and sorting algorithms.

… jq commands for pattern matching.

… fundamental cryptography concepts as applied to the RSA algorithm.

… essential data clustering concepts as visible in the k-means algorithm.

3. Some Important Algorithms

Introduction
Algorithms are designed and developed for computational problems from a myriad of
application domains and knowledge areas. However, a good proportion of algorithms
relies on searching and sorting tasks in the process of crafting their own solutions. This
is why searching and sorting algorithms are important, for example, for the task of
matching patterns from a given text.

Digital security is a critical domain for the protection of the integrity of computing sys-
tems. It mainly relies on data encryption and decryption protective techniques offered
by cryptography algorithms such as the RSA (Rivest–Shamir–Adleman) algorithm.

This unit is dedicated to searching and sorting algorithms, pattern matching, and the
RSA algorithm. It also presents the k-means algorithm that plays an important role in
data clustering. This is the task of subdividing a given set of objects into groups or
clusters based on the analysis of their data.

3.13.1 Searching and Sorting
This section is dedicated to the presentation of searching and sorting algorithms
because of their omnipresence in algorithmic tasks. An effort will be made to always
compare the efficiency of the different algorithms.

Searching Algorithms

The following searching algorithms are presented in this sub-section: linear, binary, and
hash search. A search problem consists simply of locating the position of a given value
within a sequence of values. We will assume that the sequence of values is stored in an
array. We will also assume that the search for a value in the array will return a position
where that searched value is stored in the array, or it will return —1 when a search did
not find the expected value.

Linear search
The linear search algorithm simply goes through each element of a sequence of values
in search of the expected one and returns with its position, if found; otherwise, it con-
cludes that it did not find it. The number of comparisons of the linear search algorithm
can be as high as the length of the sequence in situations where the value being
searched is not found in the sequence (Subero, 2020).

Binary search
The binary search algorithm assumes that its sequence of elements is already sorted. It
consists in dividing that sequence into two halves with the assumption of having only
three alternatives: (i) the value being searched is located at the middle of the sequence

68 Unit 3

and the search is over, (ii) the value being searched is located in the first half of the
sequence and the search should continue only inside that chunk of the sequence, and
(iii) the value being search is located in the second half of the sequence and the
search should continue only inside that second half of the sequence. It is important to
note that the size of the sequence being searched always shrinks by half until it even-
tually reaches the size of one in the worst case. At the beginning, three comparisons
(equal, less than, greater than) are made on a value of the full size sequence. Then the
same comparisons are made on a value of the appropriate half-size sub-sequence, and
thereafter the same comparisons are made on a value of the consequent quarter-size
sub-sequence, etc.

Let’s consider the worst case scenario where the value being searched is not in the
sequence. The following series represents the sizes of the successive sub-sequences
being searched. n, n2 , n22 , n23 , n24 , n25 , n26 , n27 , …, n2s − 1 , n2s
In other words, for a sequence with a length n, the binary search algorithm will succes-
sively consider s + 1 sub-sequences and make three comparisons for each of them.
The algorithm will ultimately stop when its input is reduced to a sub-sequence with a
length of one, in other words, when the following equation is fulfilled.n2s = 1or2s = nors = log2 n
This equation gives us an idea about the logarithmic efficiency of the binary search
algorithm (Subero, 2020).

Hash search
The hash search algorithm assumes that there is a sequence of elements where each
element is identified by a unique key that is either a natural number or a string.
Searching strings is possible here because it is always possible to transform any string
into its integer equivalent using ASCII codes. The hash search algorithm uses these
keys to store the different elements in a hash table that can easily be searched later. In
fact, each element of the sequence is stored in the hash table in the position of the
hash function of its key. So, if we are looking for an element, we simply have to calcu-
late the hash function of its key and locate it at that position. The first problem is that
it is possible for many different keys to have the same hash function. This is called a
collision, and it leads to an extra search in the position of the collided keys. The second

Some Important Algorithms

69Unit 3

problem is that there are no standard hash functions for all types of keys. This subsec-
tion uses the Multiplication, Addition, and Division (MAD) hash function to illustrate the
concept of hash search.

Let’s start from the assumption that there are n keys to search from, and p is the small-
est prime number that is greater or equal to n. Two random numbers a and b are then
chosen between 0 and p – 1 with a being strictly positive. The MAD hash function h ish k = ak + b mod p mod n
Let us suppose that we have the following 24 keys to search from: 19, 20, 30, 31, 67, 125,
189, 192, 267, 357, 388, 393, 428, 435, 483, 513, 574, 592, 645, 744, 794, 916, 954, and 980.

Twenty-nine is the smallest prime number that is greater than 24; and we will use 4
and 15 as the respective values of a and b. In other words, the values of n, p, a, and b
are respectively 24, 29, 4, and 15. The first column of the table below contains the values
of the different keys. The fourth column contains the calculated hash function. It is the
index of the place where values are stored. When searching for a key, the hash search
algorithm will calculate the hash function of that key and locate it in the matching
index of the hash table. In case of collusion, the matching index will contain many keys
that must be searched with a different search algorithm. The speed of the hash search
algorithm mainly depends on the speed of the algorithm of the hash function and on
the number of collisions.

Sorting Algorithms

The history of sorting algorithms includes radix sort, merge sort, insertion sort, count-
ing sort, bubble sort, bucket sort, quicksort, introsort, timesort, library sort, and burst
sort (Attard Cassar, 2018). In this section, we will only focus on the fundamental sorting
algorithms: radix sort, merge sort, insertion sort, bubble sort, bucket sort, and quick-
sort. We will not dwell on how these fundamental sorting algorithms were extended by
other sorting algorithms.

70 Unit 3

Radix sort
Although the radix sort algorithm was invented by Hollerith in the 1880s, the first com-
puterized version was proposed by Seward (Attard Cassar, 2018). It works well with nat-
ural numbers where it makes use of the different digits of these numbers starting from
the least significant ones to the most significant ones. This algorithm uses ten buckets
numbered from zero to nine because it knows that each decimal digit has a value
between these two numbers.

Some Important Algorithms

71Unit 3

At the beginning of the algorithm, each number is put in the bucket of its least signifi-
cant digit (digit 0, see the second column in the table below). Then each number is put
in the bucket of its second least significant digit (digit 1, see the third column in the
table below). This process ends when all the digits’ positions are covered. This is illus-
trated below for the numbers 7, 500, 26, 6, 6648, 578, 45, 65947, 28, 3974, and 174.

The total number of operations performed by the radix sort algorithm depends on the
number of elements to be sorted and on the highest number of significant digits for
those elements. In fact, each element is checked for each level of significance.

Bucket sort
The bucket sort algorithm assumes that it is given different sorted ranges or buckets to
which the various values to be sorted belong. It then simply places each value inside
its range or bucket before sorting each bucket with another sorting algorithm. There-
after, the sorted buckets are concatenated to get the final sorted sequence of values.
This is illustrated below for the numbers 7, 500, 26, 6, 6648, 578, 45, 65947, 28, 3974, and
174. This example uses the following buckets or ranges: [0…9], [10…99], [100…999], [1000…
9999], and [10000…99999].

72 Unit 3

The final sorted sequence for this example is 6, 7, 26, 28, 45, 174, 500, 578, 3974, 6648, and
65947. This algorithm relies on the uniform distribution of values in the buckets even
though such a distribution is not guaranteed, and its total number of operations
depends on the other sorting algorithm that it is using.

Insertion sort
The insertion sort algorithm searches for the smallest value in a given sequence and
exchanges it with the value at the beginning of that sequence. It then ignores this
newly updated first element of the sequence in order to restart the above process with
the rest of the sequence, up to the point where the entire sequence is sorted. The fol-
lowing example is an illustration of the insertion sort algorithm for the numbers 7, 500,
26, 6, 6648, 578, 45, 65947, 28, 3974, and 174.

Some Important Algorithms

73Unit 3

For the table above, ei is the abbreviation of Exchange Index, and mi is the abbreviation
of Minimum Index. When the insertion sort algorithm is looking for its minimal value
for the first time, it checks almost the entire sequence of numbers. But, in the second
time, its number of checks is reduced by one, by one again for the third time, and so on
until there is nothing to check. The total number of checks and swaps made by the
insertion sort algorithm in the worst case scenario is, thus, almost equal to the follow-
ing formula where n represents the number of elements in the sequence to be sorted.n − 1 + n − 2 + n − 3 + … + 4 + 3 + 2 + 1 = n n − 12
Bubble sort
The bubble sort algorithm consists of continuously swapping neighboring values in a
sequence of elements so as to shift the highest value at the end of the sequence. The
following example is an illustration of how the bubble sort algorithm shifts the highest
value of the following numbers to the end of the sequence: 7, 500, 26, 6, 6648, 578, 45,
65947, 28, 3974, and 174.

74 Unit 3

The same process is carried out for the following remaining sequence of numbers as is
illustrated below: 7, 26, 6, 500, 578, 45, 6648, 28, 3974, and 174.

Some Important Algorithms

75Unit 3

Merge sort algorithm
The merge sort algo-

rithm efficiently
joins two already

sorted arrays into a
newly sorted array.

Now that the highest value 6648 has been shifted to the end of its sequence, the bub-
ble sort algorithm can continue with the remaining sequence of numbers 7, 6, 26, 500,
45, 578, 28, 3974, 174 until the entire sequence is sorted. The number of swapping posi-
tions is almost equal to the number of elements in the sequence, and the lengths of
the sequences where swapping happens successively decrease by one starting from
the length of the full sequence. In other words, in the worst case, the number of swaps
done by the bubble sort algorithm is similar to the number of operations that are per-
formed by the insertion sort algorithm.

Merge sort
The merge sort algorithm starts with the partitioning of its sequence of values into a
set of singleton arrays (single-element arrays). Each of these singleton arrays is sorted
since they only contain one value. This allows the merge sort algorithm to continuously
merge all neighboring pairs of arrays until the entire array is sorted. Before illustrating
the merge sort algorithm itself, it is important to first understand the following example
on how to merge two sorted arrays: 1, 3, 5, 6 and 2, 5, 5, 6, 9.

76 Unit 3

It is important to note that the number of comparisons made during the merging of
two already sorted sequences is almost equal to the total number of values in those
two sequences. It is also important to have an idea about the total number of mergers
made by the merge sort algorithm. This number of mergers depends on the length n of
the sequence to be sorted. At the beginning, there are n2 mergers, then there are n4
mergers, then n8 mergers, and so on, up to one merger. This roughly corresponds to the
following series. n2 , n22 , n23 , n24 , n25 , n26 , n27 , …, n2s − 1 , n2s
In other words, if s represents the total number of times that the merge sort algorithm
changes the size of the sequences being merged, the following equation must be fulfil-
led by s.

Some Important Algorithms

77Unit 3

n2s = 1or2s = nors = log n
This means that the merge sort algorithm roughly changes its merging size log(n) times,
and it makes almost n comparisons for each of those merging sizes for a total number
of comparisons of almost n log(n) for the entire merge sort algorithm.

Quicksort
The quicksort algorithm (Hoare, 1961) chooses a pivot value (possibly initialized with
the first element of the sequence to sort) and places it in a suitable position so that
every value on the left of that position is less than or equal to the pivot value, and
every value on the right of that position is greater than or equal to the value of the
pivot. This process is carried out many times for the sequence on the left of the pivot
and for the one on its right until the length of the sequence to be sorted is equal to
one.

The quicksort algorithm has two cursors, a left-to-right → cursor that only moves from
the left to the right, and a right-to-left ← cursor that only moves from the right to the
left. At the start of the algorithm, the → cursor points to the beginning of the sequence
being sorted while the ← cursor points to its last element. The → cursor stops moving
when it finds a value that is greater than the value of the pivot, but the ← cursor con-
tinues moving as long as it is meeting values that are greater than the one of the pivot.

Two cases are possible when both cursors stop moving. The first is that the position of
the ← cursor is higher than the one of the → cursor. In this case, the two cursors will
simply exchange the values in their positions and continue with their moves. The sec-
ond case is that the position of the ← cursor is lower than the one of the → cursor. In
this second case, the following two steps are carried out:

1. The position of the ← cursor exchanges its value with the one in the position of the
current pivot.

2. The entire quicksort algorithm starts all over again for the sub-sequence on the left
side of the ← cursor and for the one on its right side until both sub-sequences are
left with one element maximum.

There is no guarantee that the found correct place of the pivot will divide the sequence
being sorted into two almost equal-sized left and right sub-sequences. This is why, in
the worst case scenario, the total number of operations performed by the quicksort
algorithm is roughly equal to the following (n is the length of the sequence being sor-
ted).

78 Unit 3

n − 1 + n − 2 + n − 3 + … + 4 + 3 + 2 + 1 = n n − 12
The following table illustrates the quicksort algorithm for the sequence of numbers 7,
500, 26, 6, 6648, 578, 45, 65947, 28, 3974, and 174.

Some Important Algorithms

79Unit 3

80 Unit 3

Regular expression
A regular expression
describes the format
of how a given text
should be written.

3.23.2 Pattern Matching
This section focuses on two different applications of pattern matching. First, it looks at
how to define a pattern of characters so that we can check if and where it is matched
by a given string. Such patterns are known as regular expressions, and many modern
programming languages process them under the RegExps abbreviation. This section
gives an overview of RegExps in JavaScript. It is also possible to define patterns and
search them in JavaScript objects. Such objects are described with the use of the Java-
Script Object Notation (JSON). The second part of this section is dedicated to the jq
utility where it is possible to define a pattern and match it against a JSON object.

Regular Expressions or RegExps

Regular expressions (RegExps) are constructed from the following building blocks:
basic operations, ranges, the escape feature, anchors, and commonly used classes. A
character is the most basic unit of a RegExp, and the dot (.) stands for any character.
Regular expressions are concatenated by simply placing them one next to the other,
while piping (|) two expressions means that we are interested in either of the expres-
sions. The same role is played by the square-bracketing of regular expressions inside,
where it is possible to insert a caret (^) to indicate that none of the expressions should
be matched. The round-bracketing of a regular expression forces it to be evaluated.

The * operator repeats its regular expression zero or more times, while the + operator
repeats its expression one or more times, and the ? operator simply checks whether its
regular expression appears at most once. The escape character \ must be applied to
special characters, such as those previously identified, in order to cancel their special
meaning. The minus sign - when placed between two characters inside square brackets
[] represents any value in the range between these two characters, but it loses that
special meaning if it is located at the beginning of the left square bracket [.

The following expressions are commonly used by regular expressions. \d stands for any
numeric digit, \w stands for any alphanumeric character or for _, and \s stand for the
white space character. The capitalization of these expressions leads to their negation:
\D stands for any character that is not a numeric digit, \W stands for any character that
is not an alphanumeric character nor _, and \S stands for any character that is not a
white space.

Four anchoring tags are used to indicate the place where we want our expression to be:
The caret character (^) places the regular expression at the start of the sentence while
the dollar sign ($) places it at the end. Similarly, the \< tag (\b in JavaScript) places its
regular expression at the beginning of the word while \> (\b in JavaScript) places it at
the end.

Some Important Algorithms

81Unit 3

Jq and Json Objects

While regular expressions are used to match desired patterns in strings, they can also
be used to match desired patterns in objects. Here, we focus on how to use jq com-
mands to search specific patterns in objects.

In jq, the dot (.) symbol simply refers to the entire set of objects being searched, but
placing the name of an attribute after that symbol restricts the listed values to that
attribute. The keys keyword lists all the attributes’ names but that keyword can be
given an index to specify a specific attribute. Square brackets are used for arrays. The
comma sign can be used to apply different filters to the same set of objects. The
length function gives the number of elements in an array, the number of attributes in
an object, or the length of a string, depending on the nature of its parameter. This
parameter is passed to it though the | pipe character. Some of these jq filtering pat-
terns are presented in the table below.

jq Filtering Patterns (Selection)

Command Line Job Description

jq . This command lists all the objects being sear-
ched. This is useful to format the json input
simply.

jq .attrName This command lists the values of all the objects
for the attribute attrName.

jq .arrayAttr[p] This command lists the values of all the objects at
the position p of the array attribute arrayAttr.

jq .[p] This command gives the value in position p of the
object being searched, provided that such object
is an array

jq filt | length This command gives the number of elements or
the length of the result obtained from filtering the
objects being searched with the filter filt.

We will restrict ourselves to the following jq general command to look for regular
expressions in the object located in the json file f.json.

jq 'fltPat | fct ("regExp" ; "flg")' f.json

82 Unit 3

In this command, fltPat represents the filtering patterns that follow the jq keyword in
the first column of the above table. fct stands for any of the following functions:
match, test, or capture. The match function gives a four-field description of the occur-
rences of the regExp regular expression in the filtered object(s), while the test func-
tion simply gives a true or false answer. The capture function is used for the naming
of the matched patterns, for example, to identify the different parts of a string. Here,
flg stands for optional flags.

We now illustrate these different jq commands’ parameters with the following Json
object. We will not use the command line version of jq because of its issues in the pro-
cessing of single and double quotes for different operating systems. Instead, we will
use the online version of jq by simply specifying the designed filters with the assump-
tion that the content of the following object is already present in the designated text-
box of the jq online tool.

The RespId field is an array where each element is assumed to be a sequence of four
decimal digits. The ContId and the Gender fields are also arrays. ContId represents the
name of a continent assuming that there are six continents known under the six abbre-
viations AF, AS, AU, EU, NA, and SA.

The following filter will check each element of the RespId array to find if it respects the
above described format.

.RespId[] | test("^([0-9]{4})$")

Let's examine this jq filter from left to right, starting with the full stop sign that simply
states that RespId is an attribute of the Json object being filtered. The square brackets
[] are an indication that RespId is an array and that we are filtering each of its ele-
ments. The first pipe | separates the input string (ending with []) from the function of
the filter (test in this case). A regular pattern expression is inside the test function
and is formatted as a sequence of exactly four digits. The presence of the caret (^) and
the dollar sign ($) at the beginning and at the end of the test function, respectively, is

Some Important Algorithms

83Unit 3

an indication that the given pattern is expected to match the entire word, not only its
beginning nor end. The output of the jq filter for our displayed illustrative json object
(above): true, false, true. It shows that the second element did not match the speci-
fied pattern because it has five digits instead of four.

The following filter will check each element of the ContId array to find if it respects the
format described above. The pipes characters | inside the test function represent the
OR operator.

.ContId[] | test("^(AF|AS|AU|EU|NA|SA)$")

The output of this jq filter for our displayed illustrative json object is: false, true,
true. It shows that the first element did not match the specified pattern because its
value ZA is not a recognized continent. The Gender field is also an array. It is assumed
that the recognized genders are M, F, U, m, f, and u, where U and u both stand for the
unspecified gender. Here, a gender is valid if and only if it starts with any of the above
listed six characters.

The following command checks each element of the Gender array to find if it respects
the format described above.

.Gender[] | test("^[FMUfmu]")

Here is the output of the above jq filter for our above displayed illustrative json
object: true, true, false. It shows that the third element did not match the specified
pattern because its value bfm does not start with any of the six recognized alphabetical
characters.

The Issues field is an object with two sub-fields Voting and Internet that are both
arrays. Let’s assume that the Voting field represents the voting age as a natural num-
ber between 0 and 999. The following command will check the conformity to that speci-
fication.

.Issues.Voting[] | test("^([0-9]{1,3})$")

This time, the output of the Jq command is “false, false, true,” for the reasons you
have surely already identified

We will now show how these four jq commands can be transformed from being test
functions into becoming match functions so that answers can be shown as matched
objects instead of being mere true or false outputs. For ease of reference, the above
jq filters are denoted by C1, C2, C3, and C4 as seen below.

Notation Jq Filter

C1 .RespId[] | test("^([0-9]{4})$")

84 Unit 3

Notation Jq Filter

C2 .ContId[] | test("^(AF|AS|AU|EU|NA|SA)$")

C3 .Gender[] | test("^[FMUfmu]")

C4 .Issues.Voting[] | test("^([0-9]{1,3})$")

The match equivalent of the above test table is the following.

Notation Jq Filter

C5 .RespId[] | match("^([0-9]{4})$")

C6 .ContId[] | match("^(AF|AS|AU|EU|NA|SA)$")

C7 .Gender[] | match("^[FMUfmu]")

C8 .Issues.Voting[] | match("^([0-9]{1,3})$")

The outputs for the above match commands for our above illustrative Json object
example are presented by the following table.

Some Important Algorithms

85Unit 3

86 Unit 3

You may have noticed that the results of the match commands are quite verbose. We
will now use the capture functionality to extract the information that we would like to
focus on, as shown by the following new commands.

Ref. Jq Filter

C9 .RespId[] | capture("^(?<idNo>([0-9]{4}))$")

C10 .ContId[] | capture("^(?<ctn>(AF|AS|AU|EU|NA|SA))$")

C11 .Gender[] | capture("^(?<Gender>([FMUfmu]))")

C12 .Issues.Voting[] | capture("^(?<vote>([0-9]{1,3}))$")

The results of the above capture commands are presented below.

C9 C10 C11 C12

{
 "idNo":
"0028"
}
{
 "idNo":
"0109"
}

{
 "ctn": "AF"
}
{
 "ctn": "EU"
}

{
 "Gender": "m"
}
{
 "Gender": "F"
}

{
 "vote": "19"
}

For the sake of completeness, let us try our test and capture commands on a diffe-
rent Json object (displayed below), and check if we get the expected results.

Some Important Algorithms

87Unit 3

The respective outputs for the eight tests and capture commands above are presen-
ted by the following table for the new json object.

Output for Eight tests and capture Commands

Ref. First element Second element Third element

C1 true false false

C2 true false true

C3 false true true

C4 false true false

C9 {
 "idNo": "0000"
}

C10 {
 "ctn": "AF"
}

{
 "ctn": "EU"
}

C11 {
 "Gender": "u"
}

{
 "Gender": "M"
}

88 Unit 3

Encryption
To encrypt a mes-
sage is to transform
it so that it cannot
be understood with-
out having been
decrypted.

Output for Eight tests and capture Commands

Ref. First element Second element Third element

C12 {
 "vote": "180"
}

Readers are invited to check the veracity of the above table.

3.33.3 The RSA Algorithm
The RSA algorithm is currently used worldwide to secure the transmission of data and
information. It is a public-key asymmetric encryption algorithm that uses both private
and public keys. The RSA acronym stands for Rivest, Shamir, and Adleman who are the
three scholars who authored the RSA algorithm in 1978. This section presents the
strengths and weaknesses of this algorithm.

Encryption, Decryption, and Signatures

Put yourself for a moment in the situation where you have to choose two different
prime numbers p1 and p2. Let’s say that you have chosen for example 11 and 23. Let us
denote by m1 the multiplication of p1 by p2 (m1 = 11 · 23 = 253), and m2 the multiplica-
tion of p1 – 1 by p2 – 1 (m2 = 10 · 22 = 220). You are now requested to choose a strictly
positive number e less than m2 and coprime with it (e and m2 should not share a com-
mon divisor except for 1, for example, e = 9). Let us now calculate a value d such thate · d is the immediate successor of a multiple of m2 (for example, e · d =1 + (2 · 220) = 441. So, d = 49). We can now encrypt and decrypt messages. The
encryption of a number n can be achieved with the following formula.Encrypt n = ne mod m1
The decryption of the above encrypted message is achieved with the following formula.Decrypt n = nd mod m1
Let us now take the example of non-case-sensitive English text messages made up
exclusively of alphabetical characters. There are 26 letters in the English alphabet, so
each character can be converted into its numeric equivalent as a number between 01
and 26, representing the characters a and z, respectively.

Some Important Algorithms

89Unit 3

Suppose we want to send the text Yes in its encrypted format. First, we must convertYes into its digits’ format 25, 05, 19. We can now use e = 9, d = 49, and m1 = 253 to
encrypt 25, 05, 19 and decrypt it later as seen in the following table.

Encrypt 25 = 259 mod 253 = 213 Decrypt 213 = 21349 mod 253 = 25
Encrypt 05 = 59 mod 253 = 218 Decrypt 218 = 21849 mod 253 = 5
Encrypt 19 = 199 mod 253 = 194 Decrypt 194 = 19449 mod 253 = 19

The encrypted message is thus equal to 213, 218, 194, and its decryption will return the
values 25, 05, 19. Even when we know the values of e and m1, we will still not be able to
decrypt messages without knowing the value of d. This explains why e and m1 are con-
sidered public keys, and d is considered the private key. Conversely, if a message can
be decrypted by the public keys e and m1, it is because it was encrypted by the private
key d. In other words, a private key can be used to encrypt messages that can be
decrypted by public key holders with the assurance that these messages were encryp-
ted with the use of the private key. This is how a private key is used as the digital sig-
nature of its owner.

We can reverse the above example to illustrate this concept of digital signature by
allowing the private key owner to use their private key d = 49 to encrypt and sign their
message 25, 05, 19 so that public key holders can decrypt it with the public keys e = 9
and m1 = 253.

Encrypt 25 = 2549 mod 253 = 147 Decrypt 147 = 1479 mod 253 = 25
Encrypt 05 = 549 mod 253 = 020 Decrypt 20 = 209 mod 253 = 5
Encrypt 19 = 1949 mod 253 = 172 Decrypt 172 = 1729 mod 253 = 19

The RSA encryption system can be summarized in the following illustrated situation
whereby secret messages are exchanged between the members of a group and their
leader. Each group member knows the values of the public keys e and m1 but only the
group leader knows the value of the private key d. When a person wants to send a mes-
sage to the group leader, the sender must encrypt their message with the public keys e
and m1 so that only the group leader can decrypt it with the private key d. On the other

90 Unit 3

hand, when the group leader wants to send a message to the group members, they
must encrypt it with the private key d so that any member can use the public keys e
and m1 to decrypt it with the assurance that the message is coming from the group
leader. The RSA encryption system is asymmetric in the sense that the encryption and
the decryption keys are different.

Strengths and Weaknesses of the RSA Algorithm

The strength of the RSA algorithm comes from the fact that m1 is the product of two
prime numbers p1 and p2, and for large values of m1 it is very difficult to identify p1 andp2 even when we know the value of m1. That makes it equally difficult to find the value
of m2 and, consequently, that of d even when we know the value of e.

Choosing large values for m1 lowers the speed of the RSA algorithm. However, the RSA
cryptography system is less secure with smaller values of m1 because it is easier to fac-
torize them. The choice of the values of m1 is the Achilles heel of the RSA algorithm: On
one hand, large values of m1 make the RSA algorithm more secure but they reduce its
speed, and on the other hand, smaller values of m1 speed up the RSA algorithm but
they make it less secure. Let us also mention that the message needs to be unknown;
otherwise, the key becomes known.

3.43.4 The K-Means Data Clustering Algorithm
The concept of data clustering refers to the process of dividing a dataset into clusters
or groups so that the closest elements of the dataset are assigned to the same cluster.
Data clustering is part of data mining because its clustering process only relies on the
data itself. It has several applications in image processing, market research, and geo-
graphical information systems (GIS).

This section will restrict itself to two-dimensional coordinate datasets where it is sim-
ple to calculate the distance between two data elements. Invented by Lloyd (1982), the
k-means name comes from the fact that the k-means algorithm divides its dataset intok clusters or groups. These clusters are built based on the distance to the mean value
of each cluster. Here is an illustration of the k-means algorithm for the following two-
dimensional dataset.

Some Important Algorithms

91Unit 3

The first step of the k-means algorithm is to choose the value of k. For our example, we
choose k = 4 to state that we want our data to be partitioned into 4 clusters. This algo-
rithm also requires the random choice of k elements from the dataset as the initial
mean values to start working. We can, for example, choose E1, E6, E7, and E11 as our
respective initial mean values M1, M2, M3, and M4. We then have to calculate the Eucli-
dean distance of each element to each mean value and assign each element to the
cluster of its closest mean (see the first step table below). The first step table shows
that so far, the dataset has been divided into the following clusters: {E1, E2, E9}, {E4, E6,
E8, E10}, {E7}, and {E3, E5, E11, E12}.

We will now calculate the mean values of each of these clusters both for the X and Y
components, and we will get the following four means-elements: M1(40.33; 43), M2(42;
81.75), M3(98; 7), and M4(93.25; 23). It is now time to check each element again in order
to identify which of the M1, M2, M3, or M4 mean-elements it is closest to and assign it
to the corresponding cluster (second step table).

92 Unit 3

The following table shows that, so far, the dataset has been divided into the following
clusters: {E1, E2}, {E9, E4, E6, E8, E10}, {E7, E11}, and {E3, E5, E12}.

Some Important Algorithms

93Unit 3

We will now calculate the mean values for each of these clusters both for the X com-
ponent and for the Y component, and get the following four means-elements: M1(18.5;
26.5), M2(50.4; 80.6), M3(95.5; 9), and M4(93.333333; 27). We check each element in order
to identify which of the M1, M2, M3, or M4 mean-element it is closest to and assign it to
the corresponding cluster (third step table). The third step table shows that so far, the
dataset has been divided into the following clusters: {E1, E2}, {E9, E4, E6, E8, E10}, {E7, E11,
E12}, and {E3, E5}.

We will now calculate the mean values for each of these clusters both for the X and Y
components, and get the following four means-elements: M1(18.5; 26.5), M2(50.4; 80.6),
M3(91.66; 11.33), and M4(98; 32.5). We check each element once again to identify which of
the M1, M2, M3, or M4 mean-element it is closest to and assign it to the corresponding
cluster. This is the purpose of the next table.

94 Unit 3

This time, we have the same clusters as in the previous step. Therefore, the same mean
values will prevail, and the algorithm has to stop in acknowledgment that the current
clusters are the final ones. These clusters are graphically represented below: {E1, E2},
{E3, E5}, {E4, E6, E8, E9, E10}, and {E7, E11, E12}.

Some Important Algorithms

95Unit 3

Summary

This unit began with the presentation of classical searching and sorting algorithms.
Searching and sorting are very important because they sometimes appear as the
basic tasks of many algorithms. Moreover, an idea about the number of steps in
these searching and sorting algorithms in the worst case scenario was given. This
unit explained how to write basic regular expressions for pattern matching with the
use of jq commands. The RSA algorithm and the k-means algorithm were also pre-
sented by this unit.

96 Unit 3

Knowledge Check

Did you understand this unit?

You can check your understanding by completing the questions for this unit on the
learning platform.

Good luck!

Some Important Algorithms

97Unit 3

Unit 4
Correctness, Accuracy, and
Completeness of Algorithms

DL-E-DLMCSA01-U04

STUDY GOALS

On completion of this unit, you will have learned …

… how to write correctness proofs.

… the difference between total correctness and partial correctness.

… the practical side of a program’s correctness.

… how to analyze the accuracy of approximate algorithms.

4. Correctness, Accuracy, and Completeness
of Algorithms

Introduction
We have all endured, at least for a few moments in our lives, the discomfort of having
to scrutinize each and every line of one of our programs to find out why it was not
working according to plan. This is simply because an algorithm or a program is of no
use if it produces the wrong output for a given legitimate input.

There are also instances where programs and algorithms fail to produce the expected
output simply because their execution is unable to reach an end point. This is why it is
important to verify the correctness of programs and algorithms during their develop-
ment in anticipation of their later testing.

The concepts covered in this unit are intended to give to the readers a sound under-
standing of how to ensure that their algorithms and programs are correct. These cor-
rectness concepts will be illustrated in this unit with suitable algorithms written in
JavaScript.

4.14.1 Partial Correctness
The partial correctness of an algorithm is checked with the help of correctness proofs
that are themselves based on the mathematical induction proof method. We first
briefly present the mathematical induction proof method before explaining how to
prove the partial correctness of an algorithm.

Mathematical Induction

The basic principle of mathematical induction states that in order to show that a state-
ment is true for a sequence of objects, we first have to prove that it is true for the first
object. We then have to assume that the statement is true for all the objects up to a
certain one and prove that the statement is true for the next object. This can be
expressed in the mathematical language as follows. In order to prove that a statementS is true for a sequence of objects O0, O1, O2, O3, O4, …, On–4, On–3, On–2, On–1, On, we
must first prove that S(O0) is true. We must then prove that S(Ok+1) is true when0 <= k <= n – 1 and S(Oi) is assumed to be true for any i <= k. For example, let us
prove that the following formula is true for any whole number n:1 + 2 + 3 + 4 + … + n − 4 + n − 3 + n − 2 + n − 1 + n = n n + 12
Let us start with the base case where n = 0. The corresponding statement is the follow-
ing and is true:

100 Unit 4

0 = 0 0 + 12
Let us now assume that the following statement is true for any i less or equal to k withk itself being between 0 and n – 1:1 + 2 + 3 + 4 + … + i − 4 + i − 3 + i − 2 + i − 1 + i = i i + 12
Let us now calculate the following sum:1 + 2 + 3 + … + k − 4 + k − 3 + k − 2 + k − 1 + k + k + 1
The sum can also be written as follows:1 + 2 + 3 + … + k − 4 + k − 3 + k − 2 + k − 1 + k + k + 1
This is also equal to the following expression because of the above assumption:k k + 12 + k + 1
Further calculations on the expression will lead to the following:k k + 12 + 2 k + 12 = k + 1 k + 22
Thus, the equation confirms what we had to prove:1 + 2 + 3 + 4 + … + k − 3 + k − 2 + k − 1 + k + k + 1 = k + 1 k + 1 + 12
Partial Correctness Proof of Iterative Algorithms

Correctness proofs of iterative algorithms are based on the use of the following three
algorithmic features: preconditions, loop invariants, and post-conditions. Preconditions
are a description of the criteria to be met by the inputs of an algorithm, while post-
conditions are a description of the criteria to be met both by its output and by some of
its key internal variables. As for loop invariants, they are a statement that must stay
true for each and every instance of a loop while ensuring that the loop is contributing
to the computation of the output.

The previous example on the sum of the first n natural numbers is implemented by the
following Node.Js JavaScript program to illustrate partial correctness concepts.

Correctness, Accuracy, and Completeness of Algorithms

101Unit 4

This JavaScript function is intended to calculate s as the sum of all the whole numbers
from 0 to n. Let us now give a partial correctness proof, starting with the definition of
the precondition, the invariant, and the post-condition. The precondition is simply thatn must be an integer greater than or equal to zero. The loop invariant is the following: s
is the sum of all the whole numbers between 0 and i. The post condition is that s is the
sum of all the whole numbers between 0 and n.

The partial correctness proof itself consists in proving that

• the invariant is true at the initialization of the loop.
• if we assume that the invariant is true for all the values of the iterator i up to a

given value k, then we have to show that the invariant remains true when the value
of the iterator i becomes equal to k + 1.

• the algorithm ultimately yields the expected result after its final exit of the loop.

When the precondition is met, can we confirm that the loop invariant is true even
before entering the loop? Yes. Indeed, before entering the loop, we have i = 0, s = 0,
and, in this case, s (whose value is equal to 0) is as a matter of fact, the sum of all the
natural positive numbers between 0 and i (whose value is equal to 0).

Can we now prove that the loop invariant is true? Yes. We will do so with the help of
the second step of the mathematical induction technique. We assume that the loop
invariant is true for any value of i less than or equal to a given whole number k. We
have to prove that the loop invariant remains true for i = k + 1, with k being of course
less than n. When i exits the loop with the value i = k, the above assumption implies
that s is the sum of all the natural numbers between 0 and k. When i re-enters the loop
this time with the value i = k + 1, it will allow the assignment instruction s = s + i to

102 Unit 4

replace the s on its right side with its above indicated sum value. This replacement will
update the value of s as follows: s = (1 + 2 + 3 + …+ k) + k + 1. This clearly shows
that s is the sum of all the natural numbers from 0 to k + 1, which is what we had to
prove.

The final step of the partial correctness proof is to show that after the last iteration of
the loop, s will yield the expected final result of the algorithm, which is the sum of all
the natural numbers from 0 to n. This can be proven by the case of k = n – 1 in the
previous step of the proof that implies that the loop invariant is also true for k + 1
which is n. In other words, s is the sum of all the natural numbers from 0 to n.

Partial Correctness Proof of Recursive Algorithms

Recursive algorithms are not too different from iterative algorithms as far as partial
correctness proofs are concerned, especially because these proofs are both based on
the mathematical induction method. In fact, recursive algorithms also have precondi-
tions, invariants, and post-conditions. The following main differential feature of recur-
sive functions is however worth noting for the conceptualization of their correctness
proofs.

Recursive functions always recall themselves into action with different parameters,
except when they reach their base case. The partial correctness proof of a recursive
algorithm therefore consists of the following three steps:

1. Proving that the base case of the invariant is true when the precondition is met
2. Proving that, if the invariant is true for all the parameter-values i less than or equal

to a given value k, then the invariant is also true when the parameter-value i
becomes equal to k + 1

3. The algorithm ultimately yielding the expected result after its final recursive call. Let
us, for example, prove the partial correctness of the Node.Js JavaScript facto func-
tion written below for the calculation of the factorial of m.

Correctness, Accuracy, and Completeness of Algorithms

103Unit 4

The precondition for the recursive facto function is that the parameter m should be a
whole number. The invariant is that, for any whole number i between 0 and m, the
facto(i) function should yield the value i!, and the post-condition is that the
facto(m) function should yield the value m!.
Let us start with the first step of the partial correctness proof. Is the invariant true for
the base case when the precondition is met? Yes. Indeed, the base case is when m===0.
In that case, the facto(0) function yields the value 1 which indeed is the value of 0!.
Assuming that facto(i) is equal to i! for any value of i less than or equal to a given k
between 0 and m – 1, let us prove that facto(k + 1) = (k + 1)!. The fact that k is
between 0 and m–, and that m is greater than or equal to 0 implies that k + 1 is at
least equal to 1. In other words, it is the else part of the above if condition that will
be used for the calculation of facto(k + 1) as being equal to (k + 1) · facto(k),
which is ultimately equal to (k + 1) · k! because of the induction assumption on
facto(k). We have now shown that facto(k + 1) is equal to (k + 1) · k! which is
clearly the same as (k + 1)! which we had to prove. The last step of the proof is to
show that facto(m) = m! by simply referring to the previous step with k being equal tom – 1.

4.24.2 Total Correctness
Proving the total correctness of an algorithm consists of two parts, namely, its partial
correctness proof, and its termination proof.

104 Unit 4

Total correctness
This categorization
entails partial cor-
rectness and termi-
nation.

Termination Proofs

The termination of an iterative algorithm can be proven by demonstrating that its loop
is made up of a finite number of steps that are always going to come to an end. As for
the termination of a recursive algorithm, it is proven by demonstrating that the param-
eters of that recursive function will be subjected to a finite number of variations that
are always going to come at the end to the base case.

For example, the above iterative algorithm on the sum of the first n natural numbers
has the following for loop: for(let i=1; i<=n; i++). Can we prove that this algo-
rithm will always terminate? Yes. This algorithm will always terminate because, when n
is meeting the precondition (n >= 0), the loop of this algorithm will always come to
an end after being executed n times (n is a finite number).

Let us likewise prove that the above facto function will also always terminate. It is
obvious that the facto function will terminate when its parameter is equal to zero. Let
us now prove that facto(m) will also always terminate for all the other whole numbersm that meet the precondition (m >= 0). For all such m values, the following successive
calls are made for the calculation of facto(m): facto(m–1), facto(m–2), facto(m–3),
and so one, up to facto(0). This clearly shows that the recursive facto function will
come to an end after recursively calling itself m times (m is a finite number).

Total Correctness Proofs

An algorithm (or a program) is correct if and only if it is totally correct. For an algorithm
to be declared totally correct, its termination (for all the inputs that are fulfilling its
preconditions) and its partial correctness must be proven. The following table summa-
rizes the relationship between algorithms' partial correctness, their termination, and
their total correctness.

Summary

Partial Correctness Termination Total Correctness

False False or Unclear or
Unproven

False

False True False

True False or Unclear or
Unproven

False or Unclear or
Unproven

True True True

Correctness, Accuracy, and Completeness of Algorithms

105Unit 4

The table above seems clear, but it does not really explain why it is crucial to differenti-
ate partial correctness from total correctness: there are many algorithms for which the
termination proof is unknown. For these algorithms, only the concept of partial correct-
ness can be applied. Here are two examples of such algorithms whose termination
proofs are unknown even though their partial correctness is proven.

Let’s consider the problem of determining whether the Collatz sequence of a given
strictly positive integer contains the value 1. For that sequence, the next number is
equal to half of the current number when the current number is even, else the next
number is the immediate successor of the triple of the current number. The Collatz
sequence of a strictly positive integer always starts with that number and it ends when
it lands on a repetitive or cyclic sub-sequence. Let’s assume that we are looking for the
Collatz sequence of 6. That sequence will start with 6, then it will go to 3, then 10, 5,
followed by 16, 8, 4, 2, and finally 1, 4, 2, and 1. In other words, Collatz(6) is 6, 3, 10, 5, 16,
8, 4, 2, 1, 4, 2, 1. Similarly, Collatz(18) is equal to the sequence 18, 9, 28, 14, 7, 22, 11, 34, 17,
52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1. It does not seem too difficult to write a naive
JavaScript function to check whether the Collatz sequence of a given strictly positive
integer contains the value 1.

All that is needed is to loop up to the last value which is equal to one and change the
value for each iteration either to half of its previous value, or to the successor of its
triple, depending on its parity. The JavaScript program below computes Collatz sequen-
ces containing the number 1.

106 Unit 4

The partial correctness of this JavaScript collatz function can be proven based on the
following specifications. The precondition is that the input n1 of the collatz function
should be a strictly positive integer. The invariant stipulates that, with lc being consid-
ered as the length of the array c, this array is the sub-sequence of the first lc elements
of the Collatz sequence of n1. The post-condition is that the array returned by the col-
latz function is the Collatz sequence of n1.

Is the invariant true for the base case when the pre-condition is met? Yes. Indeed, in
that case, lc=1 since c is only made up of n1, and c is the sub-sequence of the first
element of the Collatz sequence of n1 (c=[n1] and lc =1).

Let us now assume that, for all the arrays c with a length lc less than or equal to a
given length klc, the array c is the sub-sequence of the first lc elements of the Collatz
sequence of n1. Can we prove that, when the length of c becomes equal to klc + 1, c
will also be the sub-sequence of the first klc + 1 elements of the Collatz sequence of
n1? Yes. The length of c can only become equal to klc + 1 because it has added a new
Collatz element to the already calculated Collatz sub-sequence with lc elements.

Does the above function return the Collatz sequence after exiting its loop? Certainly.
The loop invariant is always fulfilled, up to when m becomes equal to one.

Correctness, Accuracy, and Completeness of Algorithms

107Unit 4

It is now time to look at the total correctness of the collatz JavaScript function by
proving its termination now that we have proven its partial correctness. Does it always
terminate for all the inputs that are fulfilling its precondition? Unfortunately, this is an
open conjecture without an unanimously accepted mathematical proof judging by Paul
Erdos’s comment that “Mathematics is not yet ready for such problems” (Lagarias, 1985,
p. 3). In other words, presently there is no termination proof for the collatz function.
No one knows if the above collatz function is totally correct since it does not have a
termination proof. All that can be said of this algorithm is that it is partially correct as
proven above. The example of the twin primes problem can also help us to further
understand why it is sometimes necessary to restrict oneself to proving the partial cor-
rectness of an algorithm instead of trying to prove its total correctness.

By definition, the numbers p and p + 2 are twin primes if and only if p and p + 2 are
both primes. An apparently simple problem will be to find, for a given whole number n,
the smallest possible value p greater than or equal to n such that p and p + 2 are twin
primes. For example, for n in {0, 1, 2, 3}, p and p + 2 are equal to 3 and 5, respectively;
but for n in {4, 5}, p and p + 2 are respectively equal to 5 and 7. The naive algorithm for
this twin primes problem will simply consist of starting an upwards loop on n in search
of the prime number p for which p + 2 is also prime. Such a naive algorithm is availa-
ble in the JavaScript program below.

108 Unit 4

The proof of the partial correctness of the above JavaScript program is twofold in the
sense that one has to prove the partial correctness of the isPrime primality test func-
tion prior to proving the partial correctness of the twinP function itself. However, we
can move directly to the partial correctness proof of the twinP function since the par-
tial correctness proof of the isPrime primality test function was given as a self-check
question in the previous section.

The precondition of the twinP function is that each of its inputs m should be a whole
number. The loop invariant states that: For each value of the loop iterator i, there is no
integer value p from m to i – 1 such that p is prime and p + 2 is also prime. As for the
post-condition, it requires that the twinP function returns the value of the smallest
possible prime number p greater than or equal to m such that p + 2 is also prime.

Correctness, Accuracy, and Completeness of Algorithms

109Unit 4

Is the invariant true before the start of the loop? Yes. In this case, i = m, there is no
single number from m to m – 1 (is equal to i – 1), and there can’t be any prime number
from m to i – 1.

Let us now suppose that for each value of the loop iterator i less than or equal to a
given value k there is no integer value p from m to i – 1 such that p is prime and p + 2
is prime. Is it true that, when i = k + 1, there is no integer value p from m to k such
that p is prime and p + 2 is prime? Yes. Indeed, when i becomes equal to k + 1, it is
because k is not prime or k + 2 is not prime. The assumption of the induction implies
that there is no integer value p from m to k – 1 such that p is prime and p + 2 is prime.
We just saw now that at least one value between k and k + 2 is not prime. This proves
that there is no integer value p from m to k such that p is prime and p + 2 is prime.

The last step of this partial correctness proof is to demonstrate that the algorithm
yields the expected result at the final exit of its loop. This seems obvious because the
loop will only stop when it finds the first value i such that (isPrime(i)===true) and
(isPrime(i+2)===true), and that is the expected output since i was initialized to m
and the value of i is always increased by one.

It is now time to turn our attention to the termination proof of the twinP algorithm.
Can we prove that the while loop of the twinP algorithm will always terminate?
Unfortunately not because it has not yet been proven that there are infinitely many
twin primes, and one is not sure whether, given a random extra-large integer m, the
above algorithm will ultimately find a prime couple greater than m. This is why the
JavaScript program sometimes seems to loop forever in the face of an extra-large input
value m, and ultimately fails to output the expected result, even though it seems to
work perfectly with smaller input values.

In summary, this is an algorithm that has been proven as partially correct but without
any termination proof; sometimes, the algorithm does not seem to terminate. For
example, this happened to us when we ran this program with the input value
1000000000000; and, after five minutes, we gave up on seeing the output that was still
not there. This example illustrates a different perspective on how the definitions of
partial correctness and total correctness can be tied down to the issue of termination.
An algorithm is said to be totally correct if and only if, for all the inputs that fulfill its
precondition, the algorithm always terminates and returns the correct output as
defined by the post-condition. On the other hand, an algorithm is said to be partially
correct if and only if, for all the inputs that fulfill its precondition, the algorithm returns
the correct output as defined by the post-condition whenever it terminates.

4.34.3 Ensuring Correctness in Day-to-Day Programming
It is generally acknowledged that the writing of correctness proofs is perceived by most
programmers as a difficult exercise that is only worthwhile for special software devel-
opment projects such as the ones on the verification of security protocols. This might

110 Unit 4

explain why manual correctness proofs are rarely done in day-to-day programming.
Instead, correctness is ensured in day-to-day programming by different mechanisms
both during and after coding.

Ensuring Correctness during Coding

Programmers can ensure the correctness of their code by making use of exceptions
handling and assertions mechanisms, by modularizing their code, for example, through
the use of existing libraries, and by programming in teams. Code analysis tools are also
very valuable for the detection of errors.

Modules and libraries
It is easier to detect errors in a program that is divided into modules compared to a
program that presents itself in a single block, especially for modules from tried and
tested libraries. This is the case because modularization allows programmers to isolate
problematic modules and focus their energy on the mitigation of their errors. For
example, here is a main program that makes use of an already written isPerfect Boo-
lean function to test whether given numbers are perfect (equal to the sum of their divi-
sors excluding themselves, e.g., 6 since 6 = 3 + 2 + 1). This example assumes that
isPerfect is from the number-isperfect library that can be installed with the npm
install number-isperfect command.

In this code, the loop of the main program is only made up of three instructions:

1. The first one collects the input from the user and stores it in the num variable.
2. The second one calls the isPerfect(num) function and stores its result in the pf

variable.
3. The last one displays the pf result on the screen.

The actual task of checking whether a number is perfect is not done by this main pro-
gram but by the isPerfect() function. In fact, the main program simply divides the
job to be done into relevant sub-tasks and coordinates their interactions. The isPer-
fect() function's sole role is to check if a given number is perfect.

Correctness, Accuracy, and Completeness of Algorithms

111Unit 4

GIGO
This concept descri-
bes the challenge of
programs outputting

the wrong answers
because they have

been fed with inap-
propriate inputs.

Exceptions and assertions
Modern high-level programming languages allow programmers to test an expected pre-
condition for the purpose of handling any related exception. There are also instances
where programmers make use of assertion instructions to test an expected precondi-
tion and ultimately halt the program for any negative test. Exception handling and
assertions are available in JavaScript and Node.js. These two mechanisms are also an
attempt to counter the Garbage In Garbage Out (GIGO). This is, for instance, the case of
a program that might tell you that 11.5 is a prime number simply because it has conver-
ted its input from the console into an integer without first rejecting all non-integer
values. Exceptions use keywords such as try and catch to avoid certain instructions to
be executed with wrong values, and assertions use the assert keyword to ensure that
a given condition is fulfilled prior to the execution of certain instructions. Let’s see how
to use exceptions and assertions to improve our primality test algorithm. The code
below can be found here.

112 Unit 4

A second version of the program can be found below with try, throw, and catch
instructions.

Correctness, Accuracy, and Completeness of Algorithms

113Unit 4

An equivalent program can be found below where exception handling is replaced by
assertion instructions.

114 Unit 4

Code analysis tools
Code analysis automated tools are used by programmers to quickly detect programm-
ing errors instead of spending long hours manually debugging. Such error identification
is relatively easy in the first version of a program but becomes increasingly difficult
with the changes made by its newer versions. This tool is becoming essential since a
growing number of programs are being “transpiled” from one language to another in
order to keep their qualities in newer execution environments.

We will now illustrate the use of code analysis tools by executing Jshint on the follo-
wing JavaScript program (Jshint is a JavaScript code analysis tool that can be installed
by the npm install jshint command).

Correctness, Accuracy, and Completeness of Algorithms

115Unit 4

Trying to execute the above JavaScript program with the node command (node nameOf-
program.js) will output the following error.

while((d===false)&&(i<n-1){i++; d=((n%i)===0);}
 ^
SyntaxError: Unexpected token '{'

However, running the same code with the Jshint code analysis tool (jshint nameOf-
program.js) will output the following errors.

line 1, col 1, 'let' is available in ES6 (use 'esversion: 6') or Mozilla
JS extensions (use moz).
line 3, col 3, 'let' is available in ES6 (use 'esversion: 6') or Mozilla
JS extensions (use moz).
line 3, col 53, 'let' is available in ES6 (use 'esversion: 6') or Mozilla
JS extensions (use moz).
line 4, col 8, Expected a conditional expression and instead saw an assignment.
line 6, col 5, 'let' is available in ES6 (use 'esversion: 6') or Mozilla
JS extensions (use moz).
line 7, col 31, Expected ')' to match '(' from line 7 and instead saw '{'.
line 9, col 37, Expected an operator and instead saw '!'.
line 9, col 47, Unrecoverable syntax error. (90% scanned).

Team programming
The traditional image of a programmer is a computing geek always sitting alone in their
corner staring at the computer or hitting the keyboard in search of a solution for a
computing problem. It is what is known as solo programming as opposed to team pro-
gramming where many programmers work together on the same program. One form of
collaboration is pair programming. According to Saltz and Shamshurin (2017), pair pro-
gramming improves code quality by approximately 15 percent, and its significant increa-
ses in code development time usually lead to important decreases in debugging and
testing times. The same authors also report that pair programming significantly enhan-

116 Unit 4

ces the thinking abilities, programming knowledge, and communication skills of pro-
grammers whose job satisfaction and team spirit levels are likewise meaningfully incre-
ased.

Ensuring Correctness after Coding

In day-to-day programming, it is common practice to enforce programs' correctness
after coding through code reviews and through testing.

Code reviews
Once a code has been written, it is not unusual to ask a fellow programmer to review it
in order to assess its quality, just like research articles are peer-reviewed in the publi-
cation process.

According to Alami et al. (2019), code review is currently extensively practiced in the
software industry. The same study presents the following benefits of code review,
based on the case study of 21 code reviewers from four open-source communities
(Allura, CKAN, FOSSASIA, and Kernel):

• Negative feedback constitutes the main quality assurance mechanism of code
reviews.

• Negative feedback from a code review is an opportunity to learn and become a bet-
ter coder.

• Code reviewers are passion driven and always on the quest for excellence and qual-
ity.

• The primary trading currencies in the code review world are reputation and status.

Testing
It is unthinkable that a program could be put into use without having been tested. Test-
ing consists of running a program with various inputs or test cases in order to assess
the behavior of the program compared to its requirements. Testing happens at different
levels such as unit testing, integration testing, and system testing. Unit testing is
restricted to individual units or modules, integration testing checks the interactivity of
these units, and system testing extends to the assessment of the behavior of the sys-
tem as a whole. We can reasonably say that testing contributes to the improvement of
the quality of a program, but what about the quality of the test cases themselves?
According to Kochhar et al. (2019), there are five main test case characteristics that soft-
ware testers use as guidelines for the design of quality test cases.

Their study confirmed these characteristics by surveying 21 respondents and interview-
ing 261 software practitioners both from the open source and from the proprietary soft-
ware industry. The participants of this study were distributed over 29 countries; China
and the USA had the highest number of participants. Moreover, these respondents were
from reputable organizations such as Google, Facebook, Apache, and Microsoft. To
examine the perceptions of the respondents on the quality characteristics of test cases,
26 Likert scale items were created. These items were classified into the following five

Correctness, Accuracy, and Completeness of Algorithms

117Unit 4

themes: the content of test cases, their size and complexity, coverage, maintainability,
and their bug detection requirements. Readers are invited to refer to Kochhar et al.
(2019) for a closer look at the above listed quality requirements for test cases.

In the meantime, we present an example of how to automate test cases for a NodeJs
program using the JEST testing tool. It is assumed that you have installed JEST on your
machine, for instance, with the npm install --save-dev jest command and that
you have added the following object in the list of objects in your package.json file
inside your home folder.

The NodeJs function to be tested is the isPrime primality test function. However, we
had to modify it slightly as follows and save it in a dedicated file named isPrime1.js
for its testing by JEST.

118 Unit 4

The test cases themselves can be found in the isPrime1.test.js below written file
where for each integer i between 0 and 16, the expected primality r of the integer i is
compared to its calculated primality t by the isPrime1() function. The isPrime1()
function will fail the test whenever t and r are different, and this automated testing
process is enacted by the npm run test command.

It is also possible to test whether a given test case can trigger the expected exceptions
as visible in the updated NodeJs program below (isPrime2.js).

Correctness, Accuracy, and Completeness of Algorithms

119Unit 4

The following code (isPrime2.test.js) contains three test cases (abc, 10.3, and –7) for
the testing of the handling of exceptions by the program above.

The automated testing process is enacted by the npm run test command.

We end this section by presenting a different side of testing where the behavior of a
program significantly differs from what was expected because its input is a code
instead of data. This is known as code injection. We show an example of SQL injection
in a NodeJs code that interacts with a MySql Database. Install MySql for the execution
of the following programs.

The following program creates a Credentials database assuming that the user name
of the administrator of the MySql server is root, and they use pswd!@#$%^ as the
password in MySQL. Successfully running this program on the command line with
NodeJs leads to the creation of the Credentials database in MySQL.

120 Unit 4

The following code creates the login table in the above referred Credentials data-
base.

This login table is made up of two fields that are both strings, the email address field
(email), and the password field (pswd). The email address field is the primary key. This
program must be run with NodeJs on the command line after execution of the one
above in order for this login table to be created in the Credentials database with its
two email and pswd fields.

Correctness, Accuracy, and Completeness of Algorithms

121Unit 4

The coding and the execution of the following program will allow a user to input their
email address and password in order for them to be stored in the login table in the
Credentials database. Let’s suppose that one user has entered Algo2020[@]exam-
ple[.]com as a username and yu2?&!me as a password; another user has entered Cor-
rect100[@]example[.]com as their username and me241&!u as the password.

122 Unit 4

This final JavaScript will allow a user that has forgotten their password to see that
password after inputting their email address.

Correctness, Accuracy, and Completeness of Algorithms

123Unit 4

Readers can now have a first-hand experience with SQL injection by executing the pro-
gram above using the following usernames or email addresses as inputs:

a. Email address: Algo2020[@]example[.]com. The above program correctly outputs the
password of the user as yu2?&!me. Everything seems normal since the program is
behaving as expected.

b. Email address: Correct100[@]example[.]com. The above program correctly outputs
the password of the user as me241&!u. Here, everything also seems normal since the
program is behaving as expected.

c. Email address: "" OR 1=1. The above program displays the email addresses and
passwords of each and every user in the login table. Something is terribly wrong
with the program that has now suffered an SQL injection attack where a user has
input a code instead of a bona fide email address.

4.44.4 Accuracy, Approximation, and Error Analysis
This section is dedicated to nondeterministic algorithms as opposed to the determinis-
tic ones that we have been dealing with. For a given input, a deterministic algorithm
will always yield the same output no matter how many times the algorithm is executed.
But for a nondeterministic algorithm, it is possible for the outcome of the execution of
the algorithm to change from one execution to another one, still with the same input,
and sometimes with the wrong output.

124 Unit 4

Nondeterministic
algorithms
These algorithms
tend to yield differ-
ent output values
when executed many
times with the same
input value.

Rationale and Consequences

The main idea behind the design of nondeterministic algorithms is fourfold:

1. Random choices can sometimes lead to the solution.
2. Many problems do not require to be solved with a one hundred percent level of

accuracy.
3. The use of approximations simplifies solutions.
4. A fast approximate solution to a problem is sometimes preferable to a delayed exact

answer for the same problem.

The random and approximate nature of nondeterministic algorithms implies that
those algorithms do not always give the correct answer and are prone to errors. Never-
theless, they are useful as long as their level of accuracy is acceptable. The next section
is an illustration of these concepts using the example of the middle rank problem. In
that example, simple probability calculations will be used for the estimation of the
level of accuracy of an approximate algorithm.

Approximate Algorithm for the Middle Rank Problem

The middle rank problem assumes that there is a sequence U of n unsorted distinct
numbers, and we simply want to identify any element S[k] with S being the sorted ver-
sion of U and with k fulfilling the following condition.k ∈ 1 − ε n2 , 1 + ε n2 , 0 ≤ ε ≤ 12
Let’s suppose that the unsorted sequence is made up of the following 16 numbers.
Assuming that ε = 18 , it is required for k to be equal to seven, eight, or nine. In other
words, we are simply looking for the seventh, eighth, or ninth element in the sorted
version of the following sequence of numbers: 51, 54, and 59.

26 71 65 43 60 95 54 72 74 42 51 85 49 46 16 59

This problem can be solved by first sorting the array and thereafter getting access to
the seventh, eighth, or ninth element of the sorted array. But sorting takes times. So
why not try our luck with any element from any position in the above array and calcu-
late its ranking? We might be lucky to land with a number whose ranking is between 7
and 9; for example, what is the ranking of the element in position 10 whose value is 42?
This can be calculated by first assuming that 42 is the smallest element of the array,
and its rank is thus equal to 1; by comparing each element of the array with 42 and
incrementing the ranking of 42 each time, an element is less than 42.

Correctness, Accuracy, and Completeness of Algorithms

125Unit 4

This gives a ranking of 2 for the value 42, which does not belong to the required interval
between 7 and 9. Why not try our luck one last time with the 16th element of the
sequence, 59? The ranking of 59 is 8: Bingo! We found our number in the required range
after two random choices only and without sorting the array.

This algorithm is formalized in the following JavaScript program that assumes that the
numbers of the unsorted sequence are stored line by line in a text file whose name is
input by the user together with the value of ε. Before going into the details of the Java-
Script program itself, let us calculate a few mid rank intervals for the different values of
epsilon that we will use for the testing of our program, assuming that there are 100 dif-
ferent numbers in the text file (n = 100).

The following program uses the n-readlines module that should be installed on your
machine using the npm install n-readlines command. This module contains the
necessary functions for the line-by-line reading of a text file. Once the numbers are
read from the text file, they are immediately transferred into an array for their process-
ing by the algorithm designed for the mid rank problem.

126 Unit 4

In this program, the midRangeV0 function is an implementation of the algorithm that
randomly picks up a number and reports it as a successful answer if its rank is in the
required mid-range while acknowledging a failure if that is not the case. The main pro-

Correctness, Accuracy, and Completeness of Algorithms

127Unit 4

gram above always starts by trying its luck with a first attempt of the midRangeV0 func-
tion (let r1 = midRangeV0(A,eps)) with the hope of it being successful. We have
experimented with this program using the following 100 values stored in a text file with
one value per line.

8722, 3420, 4548, 5637, 5927, 5078, 3739, 6338, 8362, 4617, 3980, 2680, 6264, 8329, 1815, 6119,
9179, 8015, 9235, 3161, 8453, 8469, 3917, 2944, 7502, 6514, 4025, 8678, 8820, 6988, 7214, 6463,
7506, 2042, 7176, 3762, 9577, 5902, 5109, 4441, 9127, 2271, 3726, 2018, 8272, 9629, 8693, 5772,
3185, 6663, 3644, 7668, 1667, 3757, 2969, 6626, 6074, 3861, 2913, 7566, 2257, 3705, 1353, 3868,
9133, 8921, 8368, 8307, 4331, 1092, 6495, 8175, 6472, 9238, 8987, 2838, 1012, 6521, 2779, 2028,
3677, 7394, 2582, 2978, 7930, 7274, 2272, 4015, 3678, 6991, 1962, 9652, 5097, 3277, 4532, 6607,
9203, 4945, 5708, 9954

We executed this program four times with an epsilon value ε = 12 = 0.5 for a required
mid-range of [25, 75] and got the following different results.

Execution Result

First Rank and value found after first attempt: undefined, undefined
Rank & value found after more attempts: 68 , 4331

Second Rank and value found after first attempt: 31 , 6463

Third Rank and value found after first attempt: 72 , 6472

Fourth Rank and value found after first attempt: undefined, undefined
Rank & value found after more attempts: 60 , 2257

The table above shows that, out of four executions, the first attempt of the midRangeV0
function failed to do its job twice (first and fourth execution) in trying to find a mid-
range value ranked between the 25th and the 75th rank, but it yielded different good
answers when it succeeded (second and third execution). The main reason behind this
nondeterministic behavior is the use of a random number by the midRangeV0 function.
We then executed the same program another four times but with an epsilon valueε = 18 = 0.125 for a required mid-range of ranks in the [43.75, 56.25] interval. This time,
we got the following different results.

Execution Result

First Rank and value found after first attempt: undefined, undefined
Rank & value found after more attempts: 51 , 7668

128 Unit 4

Execution Result

Second Rank and value found after first attempt: undefined, undefined
Rank & value found after more attempts: 47 , 5772

Third Rank and value found after first attempt: 49 , 6663

Fourth Rank and value found after first attempt: undefined, undefined
Rank & value found after more attempts: 56 , 6074

The table above shows that, out of four executions, the first attempt of the midRangeV0
function failed to do its job three times (first, second, and fourth execution) in trying to
find a mid-range value ranked between the 44th and the 56th rank, but it yielded a
good answer when it succeeded (third execution). The success rate of the midRangeV0
function is 50 percent for the first table, but it is now 25 percent for the second. It is
important to note that each successful answer of the midRangeV0 function is a correct
answer, but each failure of the same function is a wrong answer.

In this case, the terms' success rate and accuracy levels are equivalent, and it is only
natural for us to want to know the value of the estimated accuracy level of the midRan-
geV0 function. Is it 50 percent as experienced by the results of the first table? Is it 25
percent as experienced by the results of the second? Or does it depend on certain
parameters? The rest of the section is dedicated to these questions.

What are the chances for the midRangeV0 function succeeding? It succeeds when, at
the end of the iteration of i, k ends with a value that fulfills the following condition.k ∈ 1 − ε n2 , 1 + ε n2
How many possible values are there in this interval? εn + 1 as shown below1 + ε n2 − 1 − ε n2 + 1 = 1 + ε n − 1 − ε n2 + 1 = n + εn − n − εn2 + 1 = 2εn2+ 1
How many possible values can k have in general? n values, since k can end up with any
value between 1 and n.

What are the chances of the midRangeV0 function to succeed? The answer to this ques-
tion is the following in accordance with basic probability laws: εn + 1n ≃ ε. This trans-
lates into the following estimated accuracy levels of the midRangeV0 function when n is
equal to 100.

Correctness, Accuracy, and Completeness of Algorithms

129Unit 4

ε Estimated Accuracy Lev-
els of the midRangeV0
Function When n = 100 Estimated Failure Rate

12 = 0.5 50% 50%

14 = 0.25 25% 75%

18 = 0.125 12.5% 87.5%

116 = 0,0625 6.25% 93.75

132 = 0,03125 3.125% 96.875

The table above shows that the estimated accuracy level of the midRangeV0 function is
quite low. The best that algorithm can do is to give us a fifty-fifty chance between a
correct answer and an erroneous one when we execute it. Worse, there is almost no
chance of getting a good answer when the value of epsilon becomes smaller. But what
happens when the midRangeV0 function is executed a few times, let’s say c times? The
probability of the midRangeV0 function to fail is equal to (1 – ε) since its probability to
succeed is equal to ε. Therefore, the probability of the midRangeV0 function to fail c
times is equal to (1 – ε)c, and its probability to succeed after c times is equal to 1 – (1 –
 ε)c. This translates into the following accuracy levels of a midRangeV function that tries
the midRange0 function c times with n equal to 100 and c equal to 10.

ε Estimated failure
rate of mid-
Range0:(1 – ε)

Estimated failure
rate of 10 mid-

Range0 attempts:(1 – ε)10
Estimated suc-
cess rate of 10
midRange0
attempts:1 – (1 – ε)10

12 = 0.5 0.5 0,00098 = 0.098% 0,99902 = 99.902%

130 Unit 4

ε Estimated failure
rate of mid-
Range0:(1 – ε)

Estimated failure
rate of 10 mid-

Range0 attempts:(1 – ε)10
Estimated suc-
cess rate of 10
midRange0
attempts:1 – (1 – ε)10

14 = 0.25 0.75 0,05631 = 5.631% 0,94369 = 94.369%

18 = 0.125 0.875 0,26308 = 26.308% 0,73692 = 73.692%

116 = 0,0625 0.9375 0,52446 = 52.446% 0,47554 = 47.554%

132 = 0,03125 0.96875 0,72798 = 72.798% 0,27202 = 27.202%

It is important to note that, even when the midRangeV function runs the midRange0
function a few number of times, it is still achieved in a linear time. In fact, it is still
faster by far than the time that it would have taken to sort the array, which in the worst
case is quadratic.

Summary

This unit presented mathematical induction as the cornerstone of partial correct-
ness proofs both for iterative algorithms and for recursive functions where we have
to show that the invariant is always true. It covered termination proofs as the addi-
tional verification step beyond the partial correctness proof in order to determine
total correctness. Day-to-day programming correctness checking mechanisms, such
as testing and code reviews, together with other approaches such as the use of
code analysis tools, libraries, modules, assertions, and exceptions, were reviewed.
The end of the unit was dedicated to the presentation of an example of an approxi-
mate and randomized algorithm. The presentation of this algorithm includes key
details about the probabilistic calculation of its accuracy in an effort to explain the
rationale behind such nondeterministic algorithms despite the fact that they some-
times yield erroneous results.

Correctness, Accuracy, and Completeness of Algorithms

131Unit 4

Knowledge Check

Did you understand this unit?

You can check your understanding by completing the questions for this unit on the
learning platform.

Good luck!

132 Unit 4

Unit 5
Computability

DL-E-DLMCSA01-U05

STUDY GOALS

On completion of this unit, you will have learned …

… how to compute an algorithm in a given model of computation.

… the specification and characteristics of the halting problem.

… key details about some well-known undecidable problems.

5.

Model of computa-
tion

A model of computa-
tion fully describes a

conceptual com-
puter.

Computability

Introduction
Today’s computing machinery seems so effective judging by its overwhelming success
both for traditional applications and the newest ones. In the midst of such an impres-
sive computing power, it is a legitimate question to ask whether a computational prob-
lem that cannot be solved by a computer exists. This is the question at the core of this
unit. But that question cannot be answered without a clear understanding of the differ-
ent models of computation.

Classical models of computation are presented first. Thereafter, the specification and
the characteristics of the halting problem are described as an introduction to the con-
cepts of uncomputability and undecidability. The last section of the unit is dedicated to
the presentation of some well-known undecidable problems.

5.15.1 Models of Computation
A model of computation is a mathematical description of how a conceptual computer
processes the inputs of computational problems towards the output of their results.
These models of computation are usually benchmarked against the Turing machine
that was invented around 1930.

Traditional Models

This subsection is dedicated to five models of computation: automata, Turing
machines, lambda calculus, recursive functions, and first order predicate calculus. An
effort will be made to present these models with the help of suitable understandable
examples. Although this book does not include JavaScript examples of each of these
computational models, they are all feasible and, in fact, have been done by various
packages. If they use these packages, motivated readers will grasp the concepts in
question in a rich and applied way. Let us recall that a model of computation is a
description of how a conceptual computer processes its instructions written in a given
formalized or formal language. As in the case for natural languages, the formal lan-
guage of each conceptual computer is made up of semantically and syntactically
approved words from a given alphabet. We will later see that each model of computa-
tion covers its own family of languages, with certain families being more powerful than
the others.

Automata
There are two types of automata: finite automata, which are the model of computation
for regular languages based conceptual computers, and pushdown automata, which are
the model of computation for context-free language-based conceptual computers. Let’s

134 Unit 5

suppose that we want to build a small conceptual computer whose task is simply to
check whether an input from the user is solely made up of the two strings YES or NO.
This conceptual computer is equivalent to the following finite deterministic automaton.

Assuming that all inputs are starting from the initial state (so), it is easy to observe that
all valid inputs will end up at the s4 acceptance state. It is important to note that the
above automaton implicitly assumes that any non-valid transition will land in the dust-
bin state. For example, for the input string NOT, the automaton will be in s4 without
having read the character T, and reading T from s4 is considered as a non-valid transi-
tion since such a transition is not explicitly stated. In other words, the input string NOT
will end up in the dustbin state. Let us now build a finite automaton for a conceptual
computer whose sole task is to check whether an input from the user in the decimal
numbering system is a positive multiple of 10.

Computability

135Unit 5

We can now formally define a finite automaton as a model of computation that
includes the family of conceptual computers. These are made up of the following com-
ponents: a finite number of states with one of them being the initial state (dotted line
state) and one or more of them being the final accepting (green state) state(s), an
alphabet of characters, and a transition function or table on how to move from one
state to another state for each character of the alphabet. Any input leading to a non-
authorized move by the machine is considered invalid. For instance, the above autom-
aton is formally specified as follows:

Alphabet = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; states = {s0, s1, s2} with s0 as the initial state
and s2 the final accepting state. The transition function is represented by the following
table.

Alphabet’s elements c
State c = 0 c in {1,2,3,4,5,6,7,8,9}s0 s2 s1s1 s2 s1s2 s2 s1

136 Unit 5

Certain automata restrict their transition function to less than two moves per character
from each state. Those are deterministic automata as opposed to nondeterministic
automata where characters are allowed any number of moves from any state. It is
worth mentioning that both finite deterministic and finite nondeterministic automata
are part of the same model of computation as the one of regular languages.

One of the characteristics of regular languages is that the union of two regular lan-
guages remains a regular language; the same applies for their intersection. Another
property of regular languages, the one proven by the pumping lemma, is that a word of
a given regular language can only be arbitrarily long if and only if it is of the form pmns,
where p, m, s are words and n is a positive integer. In other words, because the finite-
ness of the number of states of automata and their lack of memory, an arbitrary long
word will have to go through a loop on its way to a final accepting state. As a result,
many languages cannot be modeled by finite automata.

Let’s consider a small machine whose sole task is to check whether a sequence of
brackets entered by a user is well-bracketed in the sense that each open bracket is
suitably closed. Such a machine needs a memory to keep track of the number of con-
secutively open brackets so that it can check if that number matches the one for the
closed brackets.

The above pushdown automaton uses a stack whose push operation increases the
count of the number of consecutive open brackets.

Computability

137Unit 5

The pop operation of the stack decreases the above count. All in all, a final state with
an empty stack will correspond to a well-bracketed sequence. The concepts of states,
transitions, and alphabets are similar to the ones of the finite automata except that, for
pushdown automata, stacks may have an alphabet of their own in addition to the
alphabet of the inputs. However, these two alphabets might sometimes coincide. It is
also important to note that the transition arrow of a pushdown automaton is made up
of three elements: the current letter of the input word being checked, the letter cur-
rently on the top of the stack, and the action to be performed on the stack (push or
pop). For example, there is a transition between s0 and s2 and that transition has the “(,Ø, push ꓕ, (” label. This means that from s0, if the open bracket (is the current letter of
the input word, and the stack is currently empty Ø, then we have to push “ꓕ” followed
by (on top of the stack and move to s2.
Readers are advised that the above pushdown automaton assumes that well-formatted
input words end with the “ꓕ” character, and the stack is initially empty. Readers are also
invited to test the machine using, for example, (())()ꓕ as an input word. They are also
reminded that pushdown automata are the model of computation of context-free lan-
guage-based conceptual computers where the stack serves as the memory device.

Turing machines
The use of a stack as a memory device has its own limitations. This calls for other
memory devices that make use of a less restrictive data structure as is the case of the
tape of a Turing machine. Such tapes allow their read/write head to move to the left
(L), to stay unchanged (U), or to move to the right (R).

138 Unit 5

The purpose of the Turing machine above is to recognize words of the form anbncn,
where n is a strictly positive integer. The transition from one state to another is made
up of three components. For example, the a, N, R transition between the SaZ state and
the Sb state stipulates that from state SaZ, if the head of the tape is currently pointing
to a, then the letter a has to be replaced by N, the head of the tape must be moved to
the position on its immediate right, and the Turing machine must go to state Sb. It is
important to note that the input word is always copied on the tape at the beginning of
the processing with the head of the Turing machine pointing to the first letter of that
input. Here again, there is a terminating character ꓕ as was the case for pushdown
automata. The Turing machine is tested here for the aabbcc input, but readers are invi-
ted to test it with other inputs.

Computability

139Unit 5

What is amazing about Turing machines is that they are the model of computation for
all possible language-based conceptual computers. In other words, we define an algo-
rithm to be computable if and only if can be modeled by a Turing machine.

Lambda calculus
Lambda calculus is a model of computation for conceptual computers whose language
is made up of the terms defined below:

140 Unit 5

• A variable such as x, y, z, a, b, c, d, and so on
• An anonymous lambda function that assigns the term t to a given variable x, deno-

ted by λx.t
• An application ts that computes the term t using another term s as an argument

In other words, a term is either a variable, an anonymous lambda function, or an appli-
cation. However, the use of brackets is sometimes unavoidable for the sake of clarifica-
tion even though the left priority rule [t1t2t3 = (t1t2)t3] applies by default. Here are a
few examples of simple terms. The identity function for which each element is assigned
to its own value is represented by the anonymous lambda function λx.x, which is the
same as λy.y since x is a variable whose name is changeable.

Let’s also look at the example of how functions are composed where f∘g represents the
composition of the functions f and g. What is the meaning of f∘f? For f, every variable is
assigned to the value of its f-mapping, which is the value of its mapping by the func-
tion f. For f∘f, each variable is assigned to its f∘f-mapping which is the value of its map-
ping, by the function f∘f (i.e., the f-mapping of its f-mapping). We can carry on with f∘f∘f,f∘f∘f∘f, and so on, up to eternity, but, let us pause for a while to look at how to translate
these examples of function compositions into the lambda calculus language:

• The anonymous function that assigns any given variable f (f is a function) to its own
value f is denoted in lambda calculus by λf.(λx.fx).

• The anonymous function that assigns any given variable f (f is a function) to the
value of its own double composition f∘f is denoted in lambda calculus by λf.(λx.f(fx)).

• An anonymous function that assigns any given variable f (f is a function) to the
value of its own triple composition f∘f∘f is denoted in lambda calculus by λf.(λx.f(f(fx))).

These three bullets are the respective lambda calculus representations of the numbers
1, 2, and 3, with the convention that the lambda term λf.(λx.x) is a representation of 0.

It is possible to reduce a lambda calculus expression to a simpler form as is the case
for other mathematical expressions. Such simplifications are done with the help of the
following three rules: alpha-conversions, beta-reductions, and eta-reductions.

1. Alpha-conversion: For application terms, argument names should be changed in
order to avoid the name clashing with the names of the variables of mapping func-
tions.

2. Beta-reduction: An application term ts can be reduced by replacing the variable of
the term t with the argument s.

3. Eta-reduction or conversion: The term λx.(tx) can be simplified, reduced, or conver-
ted to the term t when the variable x is not used by the term t.

We will now illustrate the use of these simplification rules on the following lambda cal-
culus term: λn.(λf.(λx.f((nf)x))).

Computability

141Unit 5

Turing-complete
computational mod-

els
These models are
able to model any

Turing machine.

Turing-equivalent
computational mod-

els
Turing machines can
simulate any Turing

equivalent computa-
tional model.

Let us try to apply this function with the variable n equal to λf.(λx.x). This will give the
application term (λn.(λf.(λx.f((nf)x))))(λf.(λx.x)).λn . λf . λx . f nf x λf . λx . x = λn . λf . λx . f nf x λf . λx . x= λf . λx . f λf . λx . x f x = λf . λx . f λf . λx . x f x by beta‐reduction= λf . λx . f λf . λx . x f x = λf . λx . f λx . x x by Eta‐conversion= λf . λx . f λx . x x = λf . λx . f x = λf . λx . f x = λf . λx . fx
We have just applied λf.(λx.x) to the λn.(λf.(λx.f((nf)x))) lambda calculus term and
landed on the term λf.(λx.fx). Readers are also invited to apply λf.(λx.fx) to the λn.(λf.(λx.f((nf)x))) lambda calculus term, and they will land on the term λf.(λx.f(fx)) in con-
firmation of the fact that λn.(λf.(λx.f((nf)x))) is the lambda calculus representation of
the increment function that adds 1 to its parameter n.

Lambda calculus was discovered by Church and Kleene around 1930 (Turner, 2018). It is
both Turing-complete and Turing-equivalent (Adams, 2018; Lyman, 2016) in the sense
that any Turing machine can be modeled as a lambda calculus-based machine and
vice-versa.

Recursive functions
Discovered by Gödel and Herbrand around 1930, general recursive functions are Turing-
complete (Wang, 1990). There are two types of recursive functions for a tuple variableX = (x1, x2, x3, …, xn): primitive recursive functions and general recursive functions.

For a function to be declared a primitive recursive function, it has to fulfill one of the
following conditions:

• It is a Zero function that assigns the value zero to each tuple variable X.
• It is a projection function that assigns a selected tuple coordinate to each tuple var-

iable X.
• It is a projection successor function that assigns the successor of a selected tuple

coordinate to each tuple variable X (e.g., X is mapped to 1 + x3).
• It is the composition of primitive recursive functions.
• It is the recursion of two primitive recursive functions g and h, as expressed below:

f X, 0 = g Xf X, S n = h X, n, f X, n .
Let us consider a few examples of functions to check whether they are primitive recur-
sive, starting with the increment function that simply adds 1 to its parameter. The incre-
ment function f(x) = x + 1 is a primitive recursive function since x + 1 is the successor
of the projection on the first and unique variable x. Let's look at the function f that
adds its two parameters x and n. This function is recursively written as follows even
though it is not yet the formal primitive recursive language.f x, 0 = xf x, S n = f x, n + 1

142 Unit 5

The workings of the formulation of the x + n function in the formal primitive recursive
language are as follows:

• f(x,0) = g(x) = x with g being the projection on its first and unique variable
• f(x, S(n)) = h(x, n, f(x, n)) with h being the successor of the projection on its third

attribute

This leads to the following formal formulation of the x + n function as a primitive
recursive function f x, 0 = g xf x, S n = h x, n, f x, n
with g t = th u, v,w = S w
It is also possible to write the function f that multiplies its two parameters x and n. The
function is written recursively as follows even though it is not yet the formal primitive
recursive language. f x, 0 = 0f x, S n = f x, n + x
The workings of the formulation of the x · n function in the formal primitive recursive
language are as follows:

• f(x,0) = g(x) = 0 with g being the Zero function
• f(x, S(n)) = h(x, n, f(x, n)) with h being the addition of the first parameter with the

third one.

This leads to the following formal formulation of the x · n function as a primitive recur-
sive function, assuming that we have already shown that the addition function is a
primitive recursive function. f x, 0 = g xf x, S n = h x, n, f x, n
with g t = 0h u, v,w = add u,w
Readers are invited to convert other arithmetic operations such as subtraction, the
power on one number to another one, and even the factorial to their formal primitive
recursive formats. For now, we are going to direct our attention to general recursive
functions.

Computability

143Unit 5

A function f(X) is said to be a general recursive function if and only if it fulfills either of
the following conditions:

• It is a primitive recursive function.
• It is the unbounded minimization of another general recursive function g and can

be expressed as

f X = Minimum z such that g X, z = 0
Here is an example of a general recursive function that is not primitively recursive, the
Ackermann function A, defined as follows:A 0, y = y + 1A x + 1, 0 = A x, 1A x + 1, y + 1 = A x,A x + 1, y .
Below are the values of A(x,y) when x and y belong to the {0, 1, 2, 3} set.

y = 0 y = 1 y = 2 y = 3x = 0 1 2 3 4x = 1 2 3 4 5x = 2 3 5 7 9x = 3 5 13 29 61

We can see from the table that any couple of natural numbers has a value for the
Ackermann function. This function is thus recognized as a total general recursive func-
tion. In contrast, the following general recursive function only has a value when x = 0
and not for any other x. It is recognized as a partial general recursive function: f(x) =Min {z | add (x,z) = 0}.

First order predicate calculus
Discovered by Frege (1879/1990), first order predicate calculus is proven to be Turing-
complete. It is a model of computation that consists in representing facts either as true
or not true, with the help of quantifiers such as “for all” and “there exists.” Here is an
illustration of the use of the first order predicate calculus model for the increment
operation i. This example simply says that for any number n, it is true that the incre-
ment i of n is simply its successor s(n): ∀n.i(n,s(n)).

144 Unit 5

Similarly, the addition operation a can be expressed by the following first order predi-
cate calculus expression according to which it is true that the addition of any number x
with 0 is equal to x. According to the second part of that expression, it is true that if z is
the result of the addition of x and y, then it is also true that z + 1 is the result of the
addition of x and y + 1. ∀x . a x, 0, x∀x . ∀y . ∀z . a x, y, z a x, s y , s z
Let’s try to compute the addition of 3 and 2 with this predicate calculus model of com-
putation: a(3,0,3) ⇒ a(3,1,4) ⇒ a(3,2,5).
New Models and the von Neumann Machine

The above models have led to the creation of new models of computation such as the
von Neumann machine, object calculus, and interaction nets. Object-oriented program-
ming is one of the relatively new programming approaches whose model of computa-
tion is known as imperative object calculus as proposed by Abadi and Cardelli (1996). It
is based on lambda calculus and it has been proven to be Turing-complete. Interaction
nets are a graphical model of computation that was proposed by Lafont (1989) even
though they also have a textual version. This model of computation is based on a lin-
ear logic model proposed by Girard (1987) as a combination of classical logic and con-
structive logic. It is important to note that interaction nets are Turing-complete. Com-
puting is also currently being explored from the perspective of many other knowledge
domains such as humanities, physics, chemistry, biology, biochemistry, and mathemat-
ics, with the hope of proposing new models of computation.

We would like to end this section with an overview of the von Neumann computer
because of its central role towards the physical implementation of several abstract
concepts from many of the aforementioned models of computation.

The von Neumann computer is made up of the following main components that are
connected by a bus system: control unit, processing unit, memory, hard disk, and input/
output devices. The role of the control unit is to coordinate the activities of the other
components by continuously updating its instruction register and its program counter.
The processing unit is made up of an arithmetic-logic unit and of registers for the pro-
cessing of instructions. As for the memory, its role is to store instructions and data
prior to their execution by the processing unit. The memory is organized as a sequence
of addresses whose role is to identify the locations of program data and instructions.

Such addresses are used by the Fetch-Decode-Execute cycle of the control unit for its
continuous coordination of the activities of the components of the computer. Let’s not
forget to mention input and output devices for their central role at the interface
between the computer and its user. We must also remember that data and programs
are transferred to the memory when it is their turn to be processed; otherwise, they are
stored in the hard disk.

Computability

145Unit 5

5.25.2 The Halting Problem
Having in mind that a function is supposed to be fed with an input for which it will
yield an output, let us consider the following function denoted by hp:

• The input of hp is made up of two arguments ta and ti where ta represents any
algorithm in its JavaScript textual form, and ti represents any text input of that
algorithm ta. Please note that JavaScript is not mandatory here and can be replaced
with any other language.

• The output of hp for the (ta, ti) input is a Boolean value that is equal to true if
and only if the algorithm ta terminates for the text input ti.

The hp function portrays what is known as the halting problem, and it is well estab-
lished that there is no possible hp function that can decide in advance whether any
given algorithm ta will terminate for any given input ti.

Proof: Let us suppose that there is an algorithm hpa for the halting problem whereby
hpa(ta, ti) always returns true if the algorithm ta terminates for the input text ti
and returns false otherwise. We also have another function with the name of happy-
CrazyLooper that works as follows for a given input text t: It is happy to return true
when hpa(t, t) is false; otherwise, it loops forever.

function happyCrazyLooper(t) {
 if (hpa(t,t) == false) {return true}
 if (hpa(t,t) == true) {loop forever}
}

Having in mind that the happyCrazyLooper algorithm is also a text that we can denote,
for example, by hcl, an interesting question is to find out if happyCrazyLooper(hcl)
terminates. The simple example of a program that counts the number of words in a
given text can help us understand that a program can use itself as an input, i.e., a pro-
gram can count its own number of words.

If we first assume that happyCrazyLooper(hcl) terminates, then this will imply that
hpa(hcl, hcl) is false. In other words, hcl does not terminate with hcl as an input,
which also tells us that happyCrazyLooper(hcl) does not terminate. And that contra-
dicts the initial first assumption made.

If we now assume that happyCrazyLooper(hcl) does not terminate, then this will
imply that hpa(hcl, hcl) is true. In other words, hcl does terminate with hcl as an
input, which also tells us that happyCrazyLooper(hcl) does terminate. It is a contra-
diction of the initial second assumption made. These contradictory conclusions point
to the fact that the existence of the hpa algorithm is not possible. In other words, there
is no possible algorithm for the halting problem.

146 Unit 5

Decision problems
These aim at return-
ing a binary answer
such as true or false,
yes or no, 0 or 1, etc.

5.35.3 Undecidable Problems
The previous section ended with the confirmation that it is not possible to have an
algorithm for the halting problem. In other words, there is no possible algorithm that
can decide in advance if a given algorithm will terminate for any given input. Otherwise,
the halting problem is undecidable, and so are so many other problems from diverse
mathematical sub-domains such as logic, numbers theory, differential equations, and
Turing machines.

This section will present two undecidable Turing machine problems, but let us first take
a few minutes to mention that the previous halting problem was initially described by
Turing himself as a Turing machine problem. That initial formulation of the halting
problem states that there is no algorithm that can decide in advance whether any ran-
domly given Turing machine will terminate for a randomly given input.

It is now time to look at two other undecidable Turing machine problems: the null
(empty) string problem and the problem of the membership to a recursively enumera-
ble set.

The Null (Empty) String Problem

Let us suppose that we have a randomly chosen Turing machine, TM, as well as a ran-
domly chosen input, x. We can then build the following Turing machine, TM’, whose
behavior for each of its inputs y is based on TM and x.

Let us suppose for a moment that we found an algorithm NSA (Null String Algorithm)
that can determine in advance whether any given Turing machine accepts the
null(empty) string. This will imply that the NSA algorithm is able to determine in

Computability

147Unit 5

advance whether the above described Turing machine TM’ accepts the null string. In
other words, having in mind that yx = x when y is the null(empty) string, the NSA algo-
rithm is able to determine in advance whether or not TM halts on x. This shows that
we have now found an algorithm that, for any randomly chosen Turing machine TM
and any randomly chosen input, x is able to decide in advance whether TM halts on x.

This contradicts the undecidability of the halting problem, and we conclude that there
is no algorithm that can determine in advance whether a given Turing machine accepts
the null string.

The Problem of the Membership in a Recursively Enumerable Set

It is possible to represent each imaginable algorithm and each conceivable algorithm’s
input by a natural number. Let us assign ourselves the task of writing a JavaScript pseu-
docode listSHX to print SHX. We assume that SHX is the list of all the algorithms (rep-
resented by numbers) that are halting on a randomly chosen input X (also represented
by a number), having in mind that an algorithm is a sequence of many steps.

The listSHX JavaScript pseudocode shows that SHX is a recursively enumerable set,
i.e., a set for which “there is a computer program that when left running forever eventu-
ally prints out exactly” its elements (Poonen, 2014, p. 3).

Is there a possible program that can determine whether an algorithm represented by a
number n belongs to SHX? In other words, is there a program that can determine in
advance whether any algorithm a will halt on a randomly chosen input X? The answer
to that question is negative because of the undecidability of the halting problem. In
other words, the problem of the membership of an algorithm to the recursively enu-
merable set SHX is undecidable. This also shows that the problem of determining
whether or not a randomly chosen natural number belongs to a randomly chosen
recursively enumerable set is undecidable.

148 Unit 5

Summary

This unit presented five traditional models of computation including automata,
Turing machines, lambda calculus, recursive functions, and first order predicate cal-
culus. With the exception of automata, these classic models of computation are all
Turing-complete. They are the foundation of contemporary programming language
paradigms, such as imperative, functional, and logic. Newer models of computation,
such as the von Neumann machine, object calculus, interaction nets, and nature-
based computing models, were briefly introduced.

The concept of undecidability was presented and exemplified with the halting
problem, the null (empty) recognition problem, and the problem of the member-
ship to a recursively enumerable set. These examples are a living proof that Turing
machines are powerful enough to compute all possible algorithms because of the
equivalence between the concepts of algorithms and Turing machines. But there
are still many computational problems that cannot be solved by any algorithm.

Knowledge Check

Did you understand this unit?

You can check your understanding by completing the questions for this unit on the
learning platform.

Good luck!

Computability

149Unit 5

Unit 6
Efficiency of Algorithms: Complexity
Theory

DL-E-DLMCSA01-U06

STUDY GOALS

On completion of this unit, you will have learned …

… how to measure the efficiency of an algorithm.

… the different computational complexity classes.

… key perceptions as to whether P = NP.

6.

Model of complexity
A model of complex-

ity encompasses
metrics used to

measure the effi-
ciency of algorithms
and the difficulty of

computational prob-
lems.

Big O time complex-
ity

The big O time com-
plexity model meas-

ures the upper
bound of the execu-
tion time of an algo-
rithm when its input
size is considered to

be infinitely large.

Efficiency of Algorithms: Complexity Theory

Introduction
Let us recall that an algorithm is nothing more than a step-by-step method proposed
as a solution to a computational problem. It is important for an algorithm to have the
smallest possible number of steps for the fastest resolution of its computational prob-
lem. Apart from this time efficiency requirement, the quality of an algorithm also
depends on the amount of space that it is using. Both complexity dimensions are
important to assess if an implemented algorithm will be able to process an expected
class of inputs.

The purpose of this unit is to present the main computational complexity models that
are available for the measurement of the efficiency of algorithms and for the analysis
of the complexity of computational problems. This unit will also present the different
classes of computational complexity, in anticipation of the discussion of the question
as to whether P = NP.

6.16.1 Models of Complexity
A model of complexity is an evaluation framework for the assessment of the complex-
ity of computational problems or for the analysis of the efficiency of algorithms.

Time Efficiency Analysis with the Big O Approximation Model

Let us recall that an algorithm is nothing more than a sequence of steps to solve a
given computational problem. From that perspective, it is possible to consider that the
number of steps of an algorithm is a suitable metric for the measurement of its effi-
ciency. Let us also remember that different inputs do not necessarily yield the same
number of steps for a given algorithm. One of the most used complexity models for the
analysis of the time (and the space) efficiency of algorithms is the big O time and
space approximation model. The big O model consists of approximating the time (or
the space) efficiency of algorithms in the form of a function of their infinitely large
input size. It is a measurement of an upper bound of the execution time (or the space
requirement) of an algorithm for an infinitely large input size.

The formal definition of the big O notation stipulates that h(n) = O(f(n)) if and only if
two constant values b and c exist such that 0 ≤ h(n) ≤ bf(n) for all values of n >= c. In
other words, the definition of the big O is that bf(n) is an upper bound of h(n) for high
values of n. Below are a few examples of how to calculate the big O efficiency of an
algorithm.

The biggest subsequence problem
Let us assume that we have a sequence of numbers and are looking for an algorithm to
identify the first subsequence with the biggest sum among all the other subsequences.

152 Unit 6

Big O space com-
plexity
The big O space
complexity model
measures the upper
bound of the space
used by an algo-
rithm when its input
size is considered to
be infinitely large.

Efficiency of Algorithms: Complexity Theory

153Unit 6

The biggest subsequence problem can be illustrated with the example of the sequence
3, —4, 8, —1, 6, —1 where it is visible that the subsequence with the biggest total (of 13)
is 8, —1, 6. The above NodeJs JavaScript code presents two different algorithms for the
biggest subsequence problem. These two algorithms are traced for the input sequence
3, —4, 8, —1, 6, —1, starting with the first one denoted by biggestSubSeq.

154 Unit 6

This algorithm simply scans through each element of the sequence and calculates the
sums of all the possible subsequences that are starting from that element. This proc-
ess assigns a new value to the biggest subsequence whenever it finds a new subse-
quence that is bigger than the one that was previously considered the biggest.

Let us estimate the efficiency of this algorithm with the help of the big O notation,
assuming that the input sequence has a length of n. When i = 0, j loops from 0 to n – 1.
In other words, j loops n times; each of these times a fixed number of basic steps are
executed by the algorithm. When i = 1, j loops from 1 to n – 1, i.e., j loops n – 1 times,
and each of these times a fixed number of basic steps is executed by the algorithm. We
can carry on with that pattern until we reach the point where i = n – 1 and, in that
case, the instructions inside the inner loop are only executed once. This leads to the
following formula for the number of basic operations carried out by the above traced
algorithm when the value of n is assumed to be infinitely big.n + n − 1 + n − 2 + … + 3 + 2 + 1 = n n + 12 = O n2
The equation shows that this algorithm has a quadratic big O time efficiency (n2 is the
square of n). Let us recall the following formal definition of the big O notation: h(n) =O(f(n)) if and only if two constant values b and c exist such that 0 <= h(n) <= bf(n)
for all values of n >= c. This definition of big O also clearly shows that bf(n) is an
upper bound of h(n) for high values of n. For instance, one can see in the above exam-
ple that 12 · n n + 1 is less or equal to n2 when n >= 1 (for this example, b = c = 1, andn2 is an upper bound of 12 · n n + 1).

The following table traces Kadane’s algorithm for the subsequence problem with the
same input sequence: 3, —4, 8, —1, 6, —1.

Efficiency of Algorithms: Complexity Theory

155Unit 6

The main characteristic of the traced algorithm is that, when we try to add a value a[i]
to the current local sum, it is better to start a new local sum from the element a[i] if
that element is greater than the addition. For example, if the current local sum is —3,
and we are trying to add —2 to it, then the addition will give —5, which is less than —2.
Therefore, it is better to start a new sum from —2. Another key characteristic of this
algorithm is that it is made up of a single loop instead of a double loop, as was the
case for the first one biggestSubSeq.

It is clear that the traced Kadane’s algorithm (above) loops n times, and for each of
these times, a fixed number of operations is executed. If we denote that fixed number
of operations with c, then the total number of operations executed by that algorithm
can be estimated by the following formula when n is assumed to be infinitely big.cn ≃ n = O n

156 Unit 6

Both algorithms are a typical illustration of the fact that for the same computational
problem, it is possible to have different algorithms, but the most valuable ones are the
ones that are proven to be the most efficient. In this case, Kadane’s algorithm with a
linear big O time efficiency function (a linear function of n) is by far more efficient than
the other algorithm that has a quadratic big O time efficiency function. This difference
is visible in the graph below comparing the evolution of the quadratic function to a lin-
ear function.

Fibonacci numbers
Fibonacci numbers are quite popular in computing and mathematics. They are defined
as follows: F 0 = 0F 1 = 1F i = F i − 1 + F i − 2 for i ≥ 2
The following NodeJs JavaScript code contains two different algorithms for the compu-
tation of the Fibonacci number F(n) when n is considered a given positive integer.

In the following program, the usualFib function is an implementation of the usual cal-
culation of Fibonacci numbers. It is a loop from 2 to n as an iterative computation ofF(0), F(1), F(2), F(3), F(4), …, and so on, up to F(n). That loop is executed almost n
times with a fixed number of operations for each instance of the loop. We can say that
the big O approximation of the usualFib algorithm is the following when the value of n
is assumed to be infinitely big.

Efficiency of Algorithms: Complexity Theory

157Unit 6

cn ≃ n = O n

158 Unit 6

Efficiency of Algorithms: Complexity Theory

159Unit 6

The rationale behind the fastFib function as another way to compute Fibonacci num-
bers is less obvious. It deserves a few words, starting with the presentation of the fol-
lowing matrix M: M = 1 11 0
Let us multiply the matrix M by itself a few number of times: M · M = M2; M · M · M =M3; M · M · M · M = M4; M · M · M · M · M = M5 and so on.

M1 = 1 11 0 M2 = 2 11 1 M3 = 3 22 1 M4 = 5 33 2
M5 = 8 55 3 M6 = 13 88 5 M7 = 21 1313 8 M8 = 34 2121 13

The above table can be generalized by stating thatMn = F n + 1 F nF n F n − 1

160 Unit 6

This formula shows that the calculation of Mn directly leads to the value of F(n). This is
precisely what is exploited by the fastFib function.

A closer look at the fastFib function shows how the matrix M is raised to the power n,
visible above for all the numbers n from 1 to 16. Let us start by tracing the above tree
for n = 16. The calculation of M16 (= M8 · M8) calls for the calculation of M8 (= M4 ·M4), which itself calls for the calculation of M4 (= M2 · M2), and then M2 (= M1 · M1).
This shows that the calculation of M16 succeeds with only four (4 = log2(16)) multiplica-
tions of two matrices. The calculation of M32 will succeed with only five (5 = log2(32))
multiplications of two matrices. In general, when n is a power of 2, the calculation ofMn will succeed with only log2(n) multiplications of two matrices. This process works
well when the division by two always lands on an integer from n down to 1. The situa-
tion is, however, slightly nuanced when the number to be halved is odd.

Let us trace the tree above for n = 25. The calculation of M25 (= M12 · M12 · M) calls
for the calculation of M12 (= M6 · M6) which itself calls for the calculation of M6 (= M3· M3) and the one of M3 (= M1 · M1 · M). This shows that the calculation of M25 suc-
ceeds with only four (4 ≤ log2(25)) matrices multiplication requests, and each of these
requests consists of one or two multiplications. It can be generalized that when n is not
a power of 2, the calculation of Mn succeeds with less than log2(n) matrices multiplica-
tion requests, with each request being made up of one or two multiplications. Let us
recall that when n is a power of 2, Mn succeeds with exactly log2(n) matrices multiplica-
tion requests, with each request being made up of one multiplication. Having in mind
that the multiplication of two 2 x 2 matrices involves few arithmetic operations, we can
conclude that the total number of operations executed by the fastFib algorithm can
be estimated with the following formula when n is assumed to be infinitely big.c log2 n = O log2 n

Efficiency of Algorithms: Complexity Theory

161Unit 6

Once again, we have two different algorithms for the same computational problem
where one of them, fastFib, is more efficient than the other one, usualFib. In fact,
the big O approximation function of the time efficiency of fastFib is logarithmic
(log2(n)) while the one of usualFib is linear.

Space Efficiency Analysis with the Big O Approximation Model

Until now, we have focused on the approximation of the time efficiency of algorithms
using the big O model. Let’s briefly turn our attention to the big O approximation of the
space efficiency of the previous two algorithms.

The biggest subsequence problem
The two algorithms that were proposed for this problem both make use of a small
number of integer variables (c). This number does not depend on the size of the input
array. We are thus able to conclude that the total amount of space used with each of
these algorithms can be estimated by the following formula when the size n of the
input array is assumed to be infinitely big.f n = c = O 1
This equation shows that the big O approximation function of the space efficiency of
each of these two algorithms is constant. It might still be necessary to consider the sizen of the input array as part of the space requirements of these algorithms, for example,
when the array is read from a network.

Fibonacci numbers
The usualFib algorithm that was proposed for Fibonacci the problem makes use of a
small number of integer variables. This number does not depend on the value of the
input n. We can conclude that the total amount of space used by that algorithm can be
estimated with the following formula when n is assumed to be infinitely big: f(n)=c =O(1). This formula shows that the big O approximation function of the space efficiency
of the usualFib algorithm is constant.

The fastFib algorithm uses a recursive version of the powerMatr function; recursive
calls need to store all local variables of each of the functions that they visit until either
it is finished, or the variable is not necessary anymore. Therefore, “tail-recursive” func-
tions have an added advantage. Let us look at powerMatrI, which is the iterative ver-
sion of the powerMatr algorithm, in order to estimate the amount of space used by
these two algorithms. It is visible that the first loop of the powerMatrI algorithm builds
a stack s to record the parity of the successive numbers when they are halved because
that parity determines how the second loop multiplies its matrices (one multiplication
or two multiplications). As was the case with the big O function of the time efficiency of
the fastFib algorithm because of the halving of numbers, we can conclude that the
stack s does not contain more than log2(n) integers. Moreover, the total amount of
space used by the fastFibI (also by the fastFib) algorithm can be estimated by the
following formula when n is assumed to be infinitely big.

162 Unit 6

c log2 n ≃ log2 n = O log2 n
Worst, Average, and Best Case Efficiency Analysis

There are many situations where the efficiency of an algorithm depends on the choice
of the value of its input. This calls for the need to analyze the efficiency of algorithms
for the best possible, worst possible, and average scenarios. It also helps provide an
estimate of the waiting time for the termination of an algorithm that is run by a user.
Below is an example of a search algorithm that seeks to identify the position of the
first occurrence of a given element in a given sequence of elements.

Worst case scenario
The worst case scenario is the situation whereby the input of the algorithm pushes it to
perform the highest possible amount of work. Let’s consider the search algorithm that
scans through its input sequence from its first element to its last. Here, the worst case
scenario corresponds to the situation where the element that is being sought is either
the last element of the sequence or does not even belong to the sequence. In that
case, the algorithm would have checked each and every element of the sequence. This
means that the total number of comparisons made in the worst possible case by the
search algorithm can be estimated with the following formula when n (the number of
elements in the input sequence) is assumed to be infinitely big.

Efficiency of Algorithms: Complexity Theory

163Unit 6

cn ≃ n = O n
This formula shows that the worst case big O approximation function of the time effi-
ciency of the above search algorithm is linear.

Best case scenario
The best case scenario is the situation where the input of the algorithm pushes that
algorithm to perform the smallest possible amount of work. Let’s consider the search
algorithm that scans through its input sequence from its first element to the last one.
Here, the best case scenario corresponds to the situation where the element that is
being sought is the first element of the sequence. In this case, the algorithm would
have only checked one element of the sequence. This means that the total number of
comparisons made in the best possible case by the search algorithm can be estimated
with the following formula when n (the number of elements in the input sequence) is
assumed to be infinitely big. f n = c = O 1
This formula shows that the best case big O approximation function of the time effi-
ciency of the above search algorithm is constant.

Average case scenario
The average case scenario assumes that algorithms’ inputs have random values. We
assume a uniform random distribution of data here to avoid data repeats and biases
that can influence the evaluation of the efficiency of an algorithm. For such randomly
distributed data, the big O approximation notation can still represent the calculated
average efficiency when the value of the input size is considered to be infinitely big. If
we again consider the search algorithm, the general case is the one where the element
being sought can be found in any position in the sequence.

If the element being sought is the first element of the sequence, then only one com-
parison is made by the search algorithm. If the element being sought is the second ele-
ment of the sequence, then only two comparisons are made by the search algorithm.
We can easily see that if the element being sought is the pth element of the sequence,
then only p comparisons are made by the search algorithm. The probability of an ele-
ment to be in position p is 1n because of the hypothesized uniform distribution princi-
ple, and p can take any value between 1 and n. In other words, the total number of
comparisons made in the average case by the search algorithm can be estimated by
the following formula when n (the number of elements in the input sequence) is
assumed to be infinitely big. The formula shows that the average case big O approxima-
tion function of the time efficiency of the above search algorithm is linear.1n + 2n + 3n + … + n − 2n + n − 1n + nn = 1n 1 + 2 + … + n = n n + 12n = O n
Here is a summary of the names of the most common big O approximation functions.

164 Unit 6

Big O approximation function name Big O Approximation function notation

Constant O(1)
Logarithmic O(log2(n))
Linear O(n)
Log linear O(nlog2(n))
Quadratic O(n2)
Exponential O(cn) with c constant

Complexity Classes

It is one thing to estimate the efficiency of a given algorithm, but it is entirely another
issue to estimate the level of complexity or difficulty of a given computational problem.
In fact, certain problems are intrinsically more difficult to resolve than others. This is
why it is possible to classify computational problems into distinct complexity classes
according to their different levels of difficulty or complexity. Such a classification
implies that two different problems will belong to the same complexity class if and
only if their best possible algorithms have the same big O approximation function. A
complexity class is formally defined by the following four elements: a computational
model (i.e., Turing machine), a computational mode (deterministic or nondeterministic),
a resource (time or space), and a lowest upper bound (big O approximation of the best
possible algorithms). The deterministic term is abbreviated to D, and the nondetermin-
istic term to N for the naming of computational classes. For example, DTime(nk) is the
complexity class of all the computational problems whose best possible algorithm has
a big O time efficiency approximation function of nk when using a deterministic Turing
machine as the model of computation. Similarly, NSpace(log2(n)) is the complexity
class of all the computational problems whose best possible algorithm has a big O
space efficiency approximation function of log2(n) when using a nondeterministic
Turing machine as the model of computation. We see from these two examples that the
name of a complexity class is of the form MTime(f) or MSpace(f) where M is either D
or N and f is a big O approximation function of n. The following table gives a list of the
most common complexity classes.

Efficiency of Algorithms: Complexity Theory

165Unit 6

Most Common Complexity Classes

Acronym Notation Name

REG DSpace 1 = NSpace 1 Regular languages prob-
lems

L DSpace log2 n Deterministic logarithmic
space problems

NL NSpace log2 n Nondeterministic logarith-
mic space problems

PSPACE DSpace nO 1 = NSpace nO 1 Polynomial space prob-
lems (n, n2, n3, etc.)

EXPSPACE DSpace 2nO 1 = NSpace 2nO 1 Exponential space prob-
lems (2n, 2n2, 2n3, etc.)

CONSTTIME DTime 1 = NTime 1 Constant time problems

DLOGTIME DTime log2 n Deterministic logarithmic
time problems

NLOGTIME NTime log2 n Nondeterministic logarith-
mic time problems

P DTime nO 1 Deterministic polynomial
time problems

NP NTime nO 1 Nondeterministic polyno-
mial time problems

EXPTIME DTime 2nO 1 Deterministic exponential
time problems

NEXPTIME NTime 2nO 1 Nondeterministic expo-
nential time problems

166 Unit 6

It is proven that the following relationships are true for any big O approximation func-
tion f(n). DTIME f n ⊆ NTIME f nDSPACE f n ⊆ NSPACE f nDTIME f n ⊆ DSPACE f nNTIME f n ⊆ NSPACE f nNTIME f n ⊆ DSPACE f nNSPACE f n ⊆ DTIME 2f nNTIME f n ⊆ DTIME 2f nNSPACE f n ⊆ DSPACE f n 2
These properties also lead to the following hierarchy of complexity classes.CONSTTIME 1 ⊆ REG ⊆ L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ NEXPTIME
The attention of readers is drawn to the use of the ⊆ symbol above. This is because it
is still an open question whether that ⊆ symbol should be replaced by the ⊂ symbol or
even by the = symbol in certain instances. For example, it is well proven that P ⊆ NP,
but it is an open question whether P ⊂ NP or if N = NP. On the other hand, Vega
(2016) recently claimed that NL = P.

Each of the identified complexity classes has several computational problems than
cannot be explicitly listed. The following table is an attempt to describe a few examples
of computational problems for some of the above identified complexity classes.

Computational Problems (Examples)

Class Problem

REG Deciding whether or not a given natural number (in the decimal
number system) is a multiple of ten

L Deciding whether or not all opened brackets are well closed in an
string of brackets

NL Deciding whether or not there is a path between two given points
of a given directed graph

P Identifying the complement of a given graph

NP Factorizing a given natural number

Efficiency of Algorithms: Complexity Theory

167Unit 6

6.26.2 NP-Completeness
It seems opportune to introduce this section with the example of the well-known trav-
eling salesperson and Hamilton cycle problems because of the central role of the
notion of reducibility in the conceptualization of NP-completeness.

The Traveling Salesperson Problem (TSP)

The formulation of the traveling salesperson problem is quite simple. It seeks to deter-
mine whether a person can travel from a point of origin and back to the same point
after visiting each city of a given network exactly once, and without exceeding a given
maximum total distance. The following figure is an example that represents five cities
denoted by A, B, C, D, and E and their distances.

The ABCDEA route has a total distance of 10 while the ACEBDA has a total distance of 13,
but the total distance of the AECDBA route is only 8. This shows that there is a solution
here for a maximum distance of 8.

168 Unit 6

The Hamilton Cycle Problem (HCP)

The Hamilton cycle problem seeks to determine whether a given graph has a path from
a point of origin and back to the same point (cycle) after visiting each node of the
graph exactly once. For example, the first graph below does not have a Hamiltonian
cycle while ADECBA, DECBAD, ECBADE, CBADCE, and BADECD are Hamiltonian cycles for
the second graph.

The Concept of Reducibility

Although they both deal with graphs, TSP and HCP are two different computational
problems. In fact, the graph of the former is a fully connected graph but that is not nec-
essarily the case for the latter. Similarly, the first problem aims to optimize distances
while the second one does not involve any distance concept. Let us transform the two
graphs of the HCP by assigning a value of one to the existing links and by creating new
links with a value of two so that each of these graphs can be fully connected.

Efficiency of Algorithms: Complexity Theory

169Unit 6

NP-hard problems
The polynomial time

reduction of an
existing NP-com-
plete to another

problem makes that
other problem NP-

hard.

Having in mind that each of the graphs has five nodes, let us determine for both
whether a person can travel from a point of origin and back to the same point after
visiting each node exactly once, without exceeding a maximum total distance of five.
The answer is no for the first graph but yes for the second.

What has just happened? An instance H of the HCP has been transformed or reduced
into an instance T of the TSP so that the answer of H can be directly derived from the
answer of T. In general terms, any instance of the HCP can be reduced into an instance
of the TSP by assigning a value of one to the existing links of the graph of the HCP and
by creating new links with a value of two in order for that graph to become fully con-
nected. The big O approximation of the time efficiency of the above described transfor-
mation or reduction is equal to O(n2) (polynomial reduction) where n is the number of
nodes of the graph of the HCP. This is because such a reduction simply assigns relevant
values in the n x n matrix that represent the HCP graph. The general definition of
reducibility states that a problem PRO is reducible to another problem QUE if and
only if each instance p of the problem PRO can always be transformed into an
instance q of the problem QUE such that the solution of p is directly derived from the
solution of q. We have described how to reduce any instance of the HCP into an
instance of the TSP. There is also an algorithm to the reduce each instance of the TSP
into an instance of an HCP.

NP-Complete and NP-Hard Problems

Having in mind that the NP complexity class represents the class of nondeterministic
polynomial time computational problems, NP-complete problems are the subclass of
the most difficult decision problems (with a yes or no answer) of that class. For a given
complexity class C, we define the C-complete complexity class as the subclass of the
most difficult problems of C.

It is well established, for example, that the TSP is a NP-complete problem in the sense
that it is one of the most difficult NP problems. An interesting question is to determine
whether a given new problem is NP-complete. This requires proving that every instance
of such a problem can be reduced in polynomial time to an instance of a well-known
NP-complete problem and vice versa. This is, for instance, the case of the HCP that was
proven to be reducible to TSP in polynomial time, while it is also established that TSP is
reducible to HCP in polynomial time. In other words, the HCP is also NP-complete.
Moreover, once it is proven that for a given problem H, an existing NP-complete prob-
lem is reducible in polynomial time to H, that problem H is said to be NP-hard.

For instance, the previous version of the TSP is a decision problem in the sense that its
answer is a yes or a no. However, another version of the TSP exists. It is the optimiza-
tion version that consists of determining the shortest path from a city of origin and
back to the same point after visiting each city only once for a given network. The opti-
mization version of the TSP is a NP-hard problem, even though it is neither a decision
problem nor a NP-complete problem. Similarly, most optimization versions of existing

170 Unit 6

NP-complete problems are NP-hard problems. Here are a few examples of some well-
known NP-complete problems (Aho, 1977; Varadharajan, 2020; Zapata-Rivera & Ara-
nzazu-Suescun, 2020):

• the satisfiability problem (SAT) to determine whether a given Boolean formula can
be satisfied

• the partitioning problem to determine whether a given set of positive integers can
be partitioned into two complementary subsets such that the sum of the elements
of one subset is equal to the sum of the elements of the other subset

• the graph coloring problem to determine whether it is possible to assign different
colors to each node of a graph while ensuring that two directly connected nodes do
not have the same color and the total number of colors used does not exceed a
given value

6.36.3 P = NP?
A hierarchy of inclusion of the various complexity classes was presented in the first
section of this unit where we saw that P ⊆ NP. What remains an open question is
whether P = NP. That question is so interesting for computer scientists that there is
even a one million dollar reward for the first person to solve it (Blank, 2002).

The P versus NP question is also interesting because it is currently approached on the
basis of the “educated” perceptions and beliefs of computer theory scientists instead
of through systematic facts and proofs. In fact, surveys conducted by Gasarch (2002;
2012) found that the majority of eminent computer theory scientists think that P ≠ NP.
More precisely, Gasarch (2012) found that 83 percent of the surveyed scientists thought
that P ≠ NP, an increase from 61 percent in Gasarch (2002). Similar proportions are
reported in both surveys about the beliefs of the respondents that a proof will be
found for this question before the beginning of the twenty-second century. Interest-
ingly, in 2002, 22 percent of the respondents reported that they did not know whether
or not P = NP, but that number shrunk to a mere 0.6 percent by 2012. The 2002 survey
also revealed that almost a fifth of respondents reported that they did not know when
this problem would be solved, and almost the same proportion of respondents thought
that it will be solved after 2100. In contrast, 41 percent of the respondents in 2012
believed that a solution would be found for this problem after 2100.

These results seem to indicate that it is currently widely believed that P ≠ NP, but one
of the follow-up questions is about the consequences of the opposite statement. In
other words, how will a P = NP proven statement challenge the status quo? If there is
a proof that P ≠ NP, then such a proof can be used to solve other relevant open ques-
tions. Nevertheless, a P = NP proof will release a gigantic algorithmic power in the
sense that the entire existing class of NP problems that are currently considered as
intractable (not realistically solvable by an efficient algorithm) will become tractable
(realistically solvable by an efficient algorithm). A P = NP proof will, however, destroy

Efficiency of Algorithms: Complexity Theory

171Unit 6

existing cryptography systems that currently rely on the fact that it is hard to break the
primary and private keys because the factorization problem is an NP problem (Rodó,
2010).

Summary

This unit began with the presentation of the big O time and space approximation
model as the commonly used complexity model for the measurement of the effi-
ciency of algorithms and for the analysis of the complexity of computational prob-
lems. This presentation is illustrated with relevant examples for the best, average,
and worst case scenarios, as well as for the identification of the complexity classes
of computational problems. The rest of the unit is dedicated to the concept of NP-
completeness, with the presentation of the central concept of reducibility with
examples of both NP-complete problems and NP-hard problems. The unit ends
with a presentation of the perceptions of eminent computer theory scientists on
the question of whether P = NP.

Knowledge Check

Did you understand this unit?

You can check your understanding by completing the questions for this unit on the
learning platform.

Good luck!

172 Unit 6

Unit 7
Advanced Algorithmics

DL-E-DLMCSA01-U07

STUDY GOALS

On completion of this unit, you will have learned …

… the fundamental constructs of parallel algorithms.

… how to program basic probabilistic algorithms.

… core quantum computing concepts.

… the five steps of Shor’s algorithm.

7. Advanced Algorithmics

Introduction
The world of computing is an ever evolving domain where novel and diverse paradigms
are regularly proposed in the quest for new solutions to existing computational prob-
lems and for the advancement of computing sciences and technologies. This unit is an
introduction to alternative advanced algorithmic approaches such as parallel algo-
rithms, probabilistic algorithms, and quantum computing. These interesting approaches
are considered important alternative solutions to some of the most difficult computa-
tional problems. The unit will present Shor’s algorithm as an important application of
quantum computing. It will also use other relevant examples to outline the fundamen-
tal concepts of parallel algorithms and introduce probabilistic programming.

7.17.1 Parallel Computing
This section is an introduction to parallel algorithms with an overview of their general
concepts together with suitable NodeJs parallel programming examples.

Parallel Algorithms General Concepts

Let us recall that an algorithm is a set of steps to be executed as a solution to a given
computational problem, and let us denote such steps as s0, s1, s2, …, and sn. The most
common approach for the execution of such steps is the sequential or serial execution
whereby s0 is executed first, then s1, s2, and so on. The sequential approach works well
in instances where the execution of one step depends on the outcome of the execution
of the preceeding one. There are, however, other instances where two steps can be exe-
cuted at the same time or in parallel simply because they use different data inputs. The
main advantage of this parallel approach is its time efficiency. In fact, the time taken
for the parallel execution of two steps is equal to the time taken for the execution of
the longest of these two steps. On the other hand, the sequential execution of two
steps is equal to the addition of the execution times of the two steps. It is also impor-
tant to note that sequential execution is unavoidable in situations where the executing
computer only has one processor as was the case in the early days of computing. On
the contrary, the emergence of multiprocessor computers and of distributed computing
makes it possible for the different processors of the same computer (or from different
machines) to execute different instructions in parallel. Nowadays, these multiprocess
infrastructures are cleverly used by the parallel features of many modern programming
languages.

The parallel execution of instructions by the different processors of the same computer
can be referred to as multiprocessor parallel programming. This is different from multi-
computer parallel programming where different computers execute in parallel the dif-
ferent processes of the same task. In both cases, parallel programming must take into
account situations where parallel tasks are not totally independent. In fact, parallel

174 Unit 7

Semaphore
A semaphore is a
data structure that is
acquired and on
which one can wait
for the management
of a shared resource.

Deadlocks
These occur when a
process is holding a
shared resource
while waiting for a
shared resource held
by another process
that is also waiting
for a shared
resource.

tasks sometimes rely on, synchronize with, and communicate with one another either
through message-passing or through the use of a shared memory. Such a synchroniza-
tion often requires the use of semaphores or locks that are acquired and orderly
released for the management of interesting situations such as mutual exclusion, criti-
cal sections, and deadlocks, especially for the integrity of a shared memory. Besides
synchronization, partitioning and scheduling are two other important aspects of paral-
lel algorithms.

Data partitioning versus function partitioning
Let us suppose that we have some input data d for a given algorithm f that we would
like to parallelize with a certain number of parallel tasks. A key question is to decide
what will constitute a parallel task. One method is the data partitioning approach
which consists of dividing the original dataset d into many data partitions or parts such
that a parallel task can be created for each data partition. Here, the different parallel
tasks are doing the same job but on different data. Another method, the function parti-
tioning approach, consists of dividing or partitioning the original algorithm f into differ-
ent sub-functions than can be executed in parallel on the original dataset d. In both
cases, the number of partitions determines the granularity of the parallel algorithm
which can either be classified as coarse-granularity for large parallel tasks, or as fine-
granularity for small parallel tasks.

Scheduling
Once the different parallel tasks have been designed, they must be assigned to differ-
ent processors or computers for their parallel execution. This assignment process is
also known under the name of scheduling where each processor or computer is
assigned a schedule of parallel tasks. This assignment process can either be dynamic
or static. In dynamic scheduling, the assignment of tasks to processors or to computers
is decided during the execution of the parallel tasks. In contrast, static scheduling
allows program designers to specify within their parallel programs how the parallel
tasks will be assigned to the different processors or computers.

Parallel Programming Building Blocks and Examples

There are a number of parallel building blocks or features that are available in modern
programming languages for the design of parallel programs. The parallel programming
features presented here are mostly applicable to data parallel algorithms. Some of
these features include elementwise operations, reductions, and broadcasting. These
features will be presented in the following subsections with relevant NodeJs illustrative
examples using the ParallelJs library. Other parallel JavaScript libraries include Ham-
sters.js, Threads.js, and Parallel.es (Reiser, 2017). ParallelJs has a relatively small number
of functions but these functions are powerful enough to implement key parallelism
features in JavaScript. Readers are advised to install the ParallelJs library, for instance,
with the help of the npm install paralleljs command should they want to explore
and test the given examples in NodeJs.

Advanced Algorithmics

175Unit 7

Elementwise operations
Elementwise operations allow the parallel execution of the same operation on each of
the data partitions. This is visible in the following ParallelJs example where the
cubeOperation operation is carried out in parallel by each element of the lst
sequence. The final output of the program appears below it.

The first line of this program simply indicates that the program requires the use of the
ParallelJs library. The second line declares an array lst with four integers. The list con-
stitutes the data of the program, and it is partitioned into four elements. The third line
of the program creates a ParallelJs object p for the parallel processing of the lst data.
The fourth line is a modification of the behavior of the log method so that it can sim-
ply print the content of the arguments array that contains the current results of the
parallel processing of the partitioned data. The cubeOperation function simply returns
the value of the cube of its parameter. The last line of the program uses the ParallelJs
map function for the parallel execution of the cubeOperation function on each of the
elements of the p ParallelJs object such that the subsequent array of results can be
printed by the log function.

Let us consider another little more elaborate example to illustrate the use of the con-
cept of elementwise operations by the ParallelJs map function. It is the example of the
pairwise multiplication of a row of values by a column of values. Assuming, for exam-
ple, that the elements of a row are presented from the left to the right and the ones of
the column are presented from the top to the bottom, the pairwise multiplication of
the row [1,2,3,4] by the column [5,6,7,8] will yield the value [(1*5), (2*6), (3*7), (4*8)] which
is equal to the array [5, 12, 21, 32].

A screenshot of the output of the following program is displayed below that program
for input row [1,2,3,4] and for input column [5,6,7,8]. Readers are advised to test the pro-
gram and trace it.

176 Unit 7

Advanced Algorithmics

177Unit 7

The first two lines of the above program simply declare the two libraries that are used
by the program. Let us recall that the ParallelJs object’s constructor uses an array of
values as its main parameter, but our data is made up of two arrays which respectively
represent a row of values and a column of values. One way to merge these two arrays
into a single array is to pair their elements such that the first element of the row is
paired with the first element of the column, the second element of the row is paired
with the second element of the column, the third element of the row is paired with the
third element of the column, and so on. Such pairs can be constructed as objects with
two attributes where the first attribute is the value from the row and the second one is
the value for the column.

Returning to our example on the pairwise multiplication of the row [1,2,3,4] by the col-
umn [5,6,7,8], the pairwise alignment of these two arrays is equal to the array
[{rowV:1, colV:5}, {rowV:2, colV:6}, {rowV:3, colV:7}, {rowV:4, colV:8}].

This array has four objects which will be processed in parallel by the ParallelJs map ele-
mentwise operation as applied to the pMultRC function. It is easy to see that the
pMultRC function takes in an object that is made up of a rowV attribute and a colV
attribute, and it returns the multiplication of the value of rowV by the value of colV. As
for the pairRoAndColValues function, its role is to perform and return the pairwise
alignment of its two input arrays. Readers are also invited to write the sequential ver-
sions of the different examples as a way of comparing parallel programming with
sequential programming.

Reductions
The result of the parallel execution of partitioned data is usually stored in an array
(seen above), and the purpose of the reduction operation is to perform an action that
can cumulate or reduce all the values of that array into a single scalar or atomic value.
For example, the result of the sum reduction of the array [10, 20, 30, 40] is 100. We
use the term sum reduction here to say that we are reducing the array [10, 20, 30,
40] to a single scalar value by summing all its values.

The combination of the reduce operation with the map operation is highly credited for
its ability to optimize parallelism, for example, for graphics programming: “Map Reduce
is an ideal abstraction for programming general purpose computations on the graphics
processor. Structuring a computation as stages of Map Reduce operations ensures that
maximal parallelism is expressed” (Catanzaro et al., 2008, Section 3).

Returning to our example of the multiplication of a row by a column, and keeping in
mind that the program has already shown us how to store the pairwise multiplication
of a row and a column into an array, the sum reduction of that array is the final result
of the multiplication of the row by the column. This is demonstrated by making the fol-
lowing changes in the above program:

• Add the following function to your program:
function addAll(d) {return d[0] + d[1];}

• Replace console.log('Pairwise multiplication of the row and the col-
umn') with the following instruction:

178 Unit 7

console.log('Multiplying row and column: The final result is');
• Replace p.map(pMultRC).then(log) with the following instruction:

p.map(pMultRC).reduce(addAll).then(log);

Below is a screenshot of the output of the updated program using the input row
[1,2,3,4] and the input column [5,6,7,8]. This example shows that the multiplication of the
row [1,2,3,4] by the column [5,6,7,8] is the sum of all the values of the array [(1*5), (2*6),
(3*7), (4*8)], in other words 5 + 12 + 21 + 32, which is ultimately equal to 70. The sum
is the outcome of the addAll sum reduction operation as applied to the array resulting
from the pMultRC pairwise multiplication operation.

Broadcasting
The purpose of broadcasting operations is to distribute a given value to different paral-
lel processes for their internal use. We will illustrate that concept with the following
example of the multiplication of two matrices.

Advanced Algorithmics

179Unit 7

180 Unit 7

In the example above, the first (left) matrix is constant, and it is broadcast to the differ-
ent processes that will perform the multiplication of that matrix by the different col-
umns of the second (right) matrix. This broadcasting operation is performed by the
require ParallelJs method that distributes the outcome of the leftMatr function to all
future parallel processes for their internal use. It is important to note that the purpose
of the leftMatr function is simply to return the value of the left matrix in order for it
to be broadcast to the parallel processes that will use it in the multByLeftMatr func-
tion. The use of the ParallelJs elementwise map operation allows the creation of a set of
parallel processes where the left array multiplies each column of the right array:

0 1 2 3 45 6 7 8 91 2 3 4 5 × 2 34 56 77 90 2 = 37 54132 18456 80 .
Below is a screenshot of the output of the above program for the matrices multiplica-
tion example. Readers are advised to test and trace the program with this example as
well as with the others.

Advanced Algorithmics

181Unit 7

Probabilistic algo-
rithms

These algorithms
create and process

random data for var-
ious probability dis-

tributions.

7.27.2 Probabilistic Algorithms
The purpose of probabilistic algorithms is to resolve computational problems on the
creation and the processing of random data. Such data randomizations are based on
the use of common probability distributions. This section is an introduction to the pro-
gramming of probabilistic algorithms using the WebPPL JavaScript probabilistic lan-
guage. Other probabilistic programming languages include Hakaru, Augur, R2, Figaro,
IBAL, PSI, Church, Anglican, BLOG, Turing.jl, BayesDB, Venture, Probabilistic-C, CPProb,
Biips, LibBi, Birch, STAN, JAGS, and BUGS (van de Meent et al., 2018).

WebPPL can be installed in NodeJs with the npm install -g webppl command, and
we will use the following HelloTest.wppl to illustrate how to test it. Readers are
advised to install WebPPL, type the following few lines in a text editor, and save their
file under the name HelloTest.wppl before executing the webppl HelloTest.wppl
command.

182 Unit 7

The following three screenshots of the output of three executions of the above pro-
gram illustrate the randomness of the data generated by that program. In fact, the
greeting function randomly returns either “Hello” or “Hi” with an equal “fifty-fifty”
probability or chance. Similarly, the aParent function randomly returns either “Mam” or
“Dad” with an equal “fifty-fifty” probability or chance.

First, let us review the programming of the listed probability distributions. We apply
these distributions later to the example of the visualization of an algorithm of average
time efficiency. Next, we introduce the programming of common descriptive statistics
used by probabilistic algorithms and hypothesis testing.

Generation of Random Data for Common Probability Distributions

The following probability distributions are introduced in this subsection: Bernoulli,
binomial, geometric, and uniform distributions.

The Bernoulli distribution
The Bernoulli distribution is that of a single event whose outcome is randomly chosen
with a given probability between two possible values. A common example of such a
random choice is the flip of a coin that has a 50 percent chance (probability) to land on
either side. It is, of course, always possible to set the value of the probability of a given
distribution to any number between zero and one. The flip function allows WebPPL
programmers to generate data according to the Bernoulli distribution as was the case
for the above HelloTest.wppl example.

That flip function receives a probability value as a parameter but that value is
assumed to be equal to 0.5 when absent. The following example uses the flip function
inside the random0To4 function to generate a random number between 0 and 4.

Advanced Algorithmics

183Unit 7

Here, it is acknowledged that the flip function can only return 0 or 1 and adding four
calls of the flip function can yield any natural number between 0 and 4.

This program can be slightly amended to generate six random natural numbers that are
each between 0 and 4.

The binomial distribution
The binomial distribution represents the number of successes in a series of Bernoulli
events assuming that the outcome of each Bernoulli event is either a success (with a
given probability) or a failure (with the complementary probability). In the following
program, the b0To10 variable uses the Binomial constructor to represent the numbers
of successes for a series of ten “fifty-fifty” chance Bernoulli events.

The purpose of the randomSampleB0To10 function is to generate a sample of the bino-
mial object b0To10 as a single random value between 0 and 10. Seven of such random
values are generated by the randomSampleOf7ValuesB0To10 function.

The geometric distribution
The geometric distribution represents the number of attempts by a series of Bernoulli
events before its first success, assuming that the outcome of each Bernoulli event is
either a success (with a given probability) or a failure (with the complementary proba-
bility). WebPPL does not have a constructor for the geometric distribution. Instead, that
distribution can be translated into a recursive function that uses the flip function of
the Bernoulli distribution. The code can be found here.

184 Unit 7

The geomF function of the program returns 0 when the Bernoulli event is successful;
otherwise, it increments the number of unsuccessful attempts by one before starting a
new Bernoulli event.

We have biased each Bernoulli event by making the randomG function call the geomF
function with an argument of 0.1 so that it can only have a 10 percent probability of
success. This was done for us to witness higher values for the geomF function. Here is a
screenshot of an example of execution of the above program as yielded by its
repeat(10, randomG) instruction.

The uniform distribution
The uniform distribution can either be discrete or continuous. A discrete uniform distri-
bution represents a single event whose outcome is a randomly chosen integer or value
from a given range of values. As for the continuous uniform distribution, it represents a
single event whose outcome is a randomly chosen real number from a given range of
values. WebPPL uses the RandomInteger constructor for discrete uniform distributions
while the Uniform constructor is used for continuous uniform distributions as visible.

Advanced Algorithmics

185Unit 7

This program chooses two random numbers: one random integer between 0 and 50
and one random real value between —3 and 1.

Descriptive and Inferential Statistics

This subsection is an introduction to the programming of basic descriptive statistics
such as the computation of means, variances, and standard deviations. Inferential
hypothesis testing is also introduced in this subsection with the example of the com-
putation of the Bayes factor.

Descriptive statistics
Means, variances, and standard deviations are common in probabilistic algorithms. The
following program is an illustration of how to compute these in WebPPL.

186 Unit 7

Hypothesis testing and Bayesian inference
It is possible to customize a given probability distribution according to the context. For
example, in the following program, the nullHypM variable simply represents a binomial
distribution for 200 attempts with a probability of 0.5. As for the altHypM variable, it
represents a customized binomial distribution for 200 attempts but whose probability
is a randomly chosen real number between 0 and 1 (See p = uniform(0, 1)). The
value of the altHypM variable is inferred from 100 samples of the customized binomial
distribution.

Advanced Algorithmics

187Unit 7

This program represents the simple scenario whereby a coin is flipped 200 times with
115 successes. Such observed data may lead to the null hypothesis nullHypM that the
probability of one of the 200 flips to succeed is 0.5, as represented by the Bino-
mial({p: 0.5, n: attempts}) distribution where the value of the attempts variable
is 200. An alternative hypothesis with the name of altHypM counters the above null-
HypM hypothesis by stating that the probability of one of the 200 flips to succeed can
take any value between 0 and 1, as explained above. The Bayes factor can be used to
decide which of the hypotheses is supported by the observed data, i.e., the actual
observed number of successes. A Bayes factor above 1.6 indicates that the hypothesis
on its numerator (null hypothesis) is the one that should be accepted, while a Bayes
factor below 1.6 indicates that the hypothesis on its denominator (alternative hypothe-
sis) is the one that should be accepted. This program was executed a few times, and its
output always yielded a value below 1.6 (see screenshots below), indicating that the
null hypothesis of p = 0.5 cannot be accepted.

Visualizing the Effect of Uniform Distributions on Efficiency Estimates

The concept of the average efficiency of an algorithm can be suitably understood under
the assumption that its input data is uniformly randomly distributed. We will illustrate
the suitability of the uniform random distribution with the example of a naive linear

188 Unit 7

algorithm that seeks to identify the first number that is greater than or equal to 50 in
an array A of n whole numbers. It is assumed that the value of each element of A is less
than 100. In the best case, the first element of A is greater than or equal to 50, and it
will only take one step for the algorithm to find it. In the worst case, no element of A
has a value greater than or equal to 50, and it will take n steps for the algorithm to see
that. In the average case, the data of A will be uniformly randomly distributed between
0 and 99. So, how many steps will the algorithms take to find the searched item in the
average case? In other words, what is the efficiency of the algorithm in the average case
scenario? This question is answered by the following webppl programs. The first pro-
gram gives a textual output, and the second uses plotly for the visualization of its
graphical output. Both of these programs collect the value of n in the form of an argu-
ment (argv.n) on the command line when running webppl for their execution.

Program with a textual output
This program creates array of n uniformly distributed random whole numbers with
none of the numbers greater than 99 (See udpns, udp1s, and udp). The stepsTo-
Find1stPassF(a) function returns the first position in the array a where a value
greater or equal to 50 is found. This function returns 0 if a does not have any value
greater than or equal to 50. Apart from the n argument, this program also uses a sec-
ond argument denoted by mode that can take three possible values: ad, mn, or mr. In
the ad mode, the program outputs the details of each randomly generated array
together with the number of steps used to find its first number with a value greater
than or equal to 50. The code below can be found here.

Advanced Algorithmics

189Unit 7

190 Unit 7

Let us trace the above program when it is in the ad mode. The following functions are
called one after the other.

• randomSearchRunsOnMoreAndMore() simply calls the following function.
• cRandomSearchRuns(argv.n) simply calls the following function.
• repeat(argv.n,steps21stPass)) calls steps21stPass n times
• steps21stPass: simply calls the following function.
• randomSearchRun() creates a random array a of n values by calling udpns (a=

udpns()), calls the stepsToFind1stPassF(a) function to locate the first element
of a with a value greater than or equal to 50, and returns the value of the array and
the found location.

Assuming that the program is named unin.wppl, we can call it in the ad mode with the
webppl unin.wppl -- --n 10 --mode ad command that will yield an output similar
to the following screenshot.

Advanced Algorithmics

191Unit 7

The mr and mn modes are slightly different from the ad mode, stemming mainly from
the following instructions:

• map(cRandomSearchRuns,builtArray(10,200)): The function cRandomSearchRuns
is called for each multiple of 10 between 1 and 200 and executes the following
instruction where c is a multiple of 10 between 1 and 200.

• return[c,listMean(repeat(c,steps21stPass))]: Here, c random arrays of n ele-
ments are generated. Each of these will have a calculated value of the position of
the first element greater than or equal to 50. It is the average value of these posi-
tions that is returned here together with the value of c.

The only difference between mr and mn is that mr rounds its results to the nearest natu-
ral value while mn does not.

Assuming that the above program is named unin.wppl, we can call it in the mr or in
the mn mode with the webppl unin.wppl -- --n 10000 --mode mr or unin.wppl --
--n 10000 --mode mn command, respectively.

192 Unit 7

Advanced Algorithmics

193Unit 7

Program with a graphical output
This subsection exclusively considers the mr mode of the above program and modifies
it with the purpose of showing a visual representation of the final array generated by
that program. Each element of that array is made up of two numbers that will be con-
sidered the x and y coordinates of a point. These points are visualized here. In the pro-
gram above, the data of the final array targets the multiples of 10 less than or equal to
200, but the program below extends its data to the sequence of natural numbers less
than or equal to 1000.

194 Unit 7

The concept of mode does not exist in the above program because it exclusively focu-
ses on the mr mode. The webppl 12-probabilistic-efficiency-graph.wbpl -- --
n 100 > pts.js command will allow the above program (u12-probabilistic-effi-
ciency-graph.wbpl) to save its pts generated array of points in the pts.js file
whose pts variable can be imported by another JavaScript program. It is precisely this
importation mechanism that is used by the JavaScript program within the following
HTML Web page. For the Web page to run, the plotly open source library must be loa-
ded with npm install plotly.js.

This importation mechanism is used by the following program for the online plotly
drawing of the content of the pts array. The online use of plotly requires a sign up on
the plotly nodeJs website where you are issued a username and an API key. Those
are the two plotly credentials that are used in the plotly require function in the
following program. The other require instruction of that program simply imports the
pts array from the above described pts.js file so that it can transfer that array to a
sequence of points (data) to be drawn by plotly. The graph generated by this program
is denoted by uniDisAvgStp, and the actual drawing is accomplished by the plotly
plot function. Our program code is visible below.

Advanced Algorithmics

195Unit 7

The program above is simply executed with the node plotlyDraw.js command if one
assumed that plotlyDraw.js is its name.

The url should show your plotly username on your screen. Please copy that url and
paste it on the address bar of your Web browser and you will see a graph that is similar
to the following.

The y-axis of the graph represents the average number of steps that it took to find the
first element greater than or equal to 50 in an array of 100 values uniformly distributed
between 0 and 99. The x-axis represents the number of times that an array was gener-
ated and searched. An interesting question is to find out why the above graph tends to
follow the line with the equation y = 2.

196 Unit 7

7.37.3 Quantum Computing and the Shor Algorithm
A quantum computer is a computing machine that uses distinctive quantum physics
and mathematics features to solve computational problems. A historical overview of
quantum computing is hereby presented, followed by an introduction to some of the
key concepts of quantum computing. The rest of the subsection is dedicated to the
overview of the five phases of Shor’s algorithm (Lomonaco, 2000).

Genesis of Quantum Computing

According to Hidary (2019), the genesis of quantum computing can be traced back to
1979 when Paul Benioff suggested the idea of a theoretical paradigm for the construc-
tion of quantum machines. Yuri Manin was another of the quantum computing pio-
neers with the publication of his book on this topic in 1980 (Hidary, 2019). In 1981, the
field of quantum computing came to the public eye when Nobel Prize winner Feynman
revealed that the usual computing paradigm was not able to model many quantum
physics features and proposed a set of desirable functionalities for quantum comput-
ers. Some quantum computing pioneers include David Deutsch, Richard Jozsa, Umesh
Vazirani, Ethan Bernstein, Daniel Simon, Seth Lloyd, and Peter Shor.

Complex Numbers, Vectors, and Matrices

Let us start by recalling a few fundamentals of complex numbers and matrices because
of their importance in quantum computing. We use the example of the complex num-
ber c = 4 + 3i which is made up of the real part 4 and the complex part 3. The complex
conjugate c̅ of 4 + 3i is the complex number 4 – 3i, and its modulus |c| is the square
root of (42 + 32) which is equal to 5. Let’s not forget that i2 = –1. Quantum computing
uses matrices of complex numbers to model solutions for computational problems.
Here is an example of a matrix M of complex numbers followed by its transposeMT (the first row becomes the first column, the second row becomes the second col-
umn, etc.), its conjugate M̅ (each element is replaced by its conjugate), and its adjointM† (the conjugate of its transpose, or the transpose of its conjugate).−5 + 4i 6 − 7i 91 − 2i −3 −8iMMatrix , −5 + 4i 1 − 2i6 − 7i −39 −8iMTTranspose

, −5 − 4i 6 + 7i 91 + 2i −3 8iMConjugate , −5 − 4i 1 + 2i6 + 7i −39 8iM†Adjoint
The tensor product is also intensively used in quantum computing and can be defined
as follows. Assuming that A is a matrix with m rows and n columns, we can denote byai,j the element on the ith row and column jth of A. The tensor product of A by another
matrix B is a matrix denoted by A ⊗ B and it is calculated as follows.

Advanced Algorithmics

197Unit 7

A ⊗ B =
a1,1B a1,2B a1,3B ⋯ a1, n − 2B a1, n − 1B a1, nBa2,1B a2,2B a2,3B ⋯ a2, n − 2B a2, n − 1B a2, nBa3,1B a3,1B a3,3B ⋯ a3, n − 2B a3, n − 1B a3, nB⋮ ⋮ ⋮ ⋯ ⋮ ⋮ ⋮am − 2,1B am − 2,2B am − 2,3B ⋯ am − 2, n − 2B am − 2, n − 1B am − 2, nBam − 1,1B am − 1,2B am − 1,3B ⋯ am − 1, n − 2B am − 1, n − 1B am − 1, nBam, 1B am, 2B am, 3B ⋯ am,n − 2B am,n − 1B am,nB

It also seems important to recall the following formula and Dirac kets notations for the
calculation of ∥V∥ which is the norm of a column vector V of complex numbers.

V = V = c0, c1, c2, c3, …, cn − 3, cn − 2, cn − 1 T =
c0c1c2c3⋮cn − 3cn − 2cn − 1

V = VT = c0, c1, c2, c3, …, cn − 3, cn − 2, cn − 1

∥ V ∥ = ∥ V ∥ = V V = c0, c1, c2, c3, …, cn − 3, cn − 2, cn − 1 ×
c0c1c2c3⋮cn − 3cn − 2cn − 1

The formula is similar to the following from Strubell (2011, pp. 6—7):∥ V ∥ = c0 2 + c1 2 + c2 2 + c3 2 + … + cn − 3 2 + cn − 2 2 + cn − 1 2 .

198 Unit 7

States and Dynamics

A quantum system is defined as a structure with a finite number of positions or states
with the understanding that at the time when that structure is observed, only one of
these positions or states is occupied by the proton, and each of these positions or
states has its own probability to be occupied. This does not cancel out the main feature
of quantum computing according to which the proton simultaneously occupies all its
states when it is not being observed. If we assume that our quantum system has n
positions or states, then those positions or states can be represented by the following
column vector using the Dirac ket notation.φ = c0, c1, c2, c3,…, cn − 1, cn − 2, cn − 1 T
The above states can be normalized where it is clear that each value represents a prob-
ability between 0 and 1:φ∥ φ ∥ = c0∥ φ ∥, c1∥ φ ∥, c2∥ φ ∥, c3∥ φ ∥,…, cn − 3∥ φ ∥, cn − 2∥ φ ∥, cn − 1∥ φ ∥ T
The normalized observed state values show that at the time when the quantum system
is being observed the sum of all the probabilities is equal to 1 with the probability of
the proton being in state i calculated as: ci 2∥ φ ∥ 2
It is important to note that the classical 0 and 1 bits are translated as follows in quan-
tum computing so that any qubit [c0, c1]T can be expressed in terms of the qubit of 0
and the qubit of 1.

10 01 c0c1 c0c1 = c0 · 10 + c1 · 01
0 1 c c = c0 0 + c1 1

Qubit of 0 Qubit of 1 A qubit c Expression of c†

Advanced Algorithmics

199Unit 7

The observed values of the states of a quantum system continuously change as speci-
fied by an operator that is represented by a unitary square adjacency matrix of com-
plex numbers whose number of columns (or rows) is equal to the number of states of
the quantum system. A matrix M is said to be unitary when the M × M† multiplication
and the M† × M multiplication are both equal to the identity matrix. This change proc-
ess and example is presented below.

c0c1 U0,0 U0,1U1,0 U1,1 c0c1 U0,0 U0,1U1,0 U1,1 c0c1 U0,0c0 + U0,1c1U1,0c0 + U1,1c1
φ U φ U φ U φ

Original qubit Adjacency Qubit change process Changed qubit

−1 + 3i14−2i14
1 00 i −1 + 3i14−2i14 1 00 i −1 + 3i14−2i14

−1 + 3i14214
φ U φ U φ U φ

Original qubit Adjacency
matrix

Qubit change process Changed qubit

An Overview of Shor’s Algorithm

The purpose of Shor’s algorithm is to solve the problem of the factorization of natural
numbers. The efficiency of that algorithm is seen as a serious threat to the survival of
current encryption systems that are based on the difficulty of computing the prime fac-
tors of numbers. Shor’s algorithm is usually divided into five steps but it is only one of
these steps that makes use of quantum computing paradigms. These five steps are
briefly reviewed below for an input value N.

1. Randomly choose a natural number m between 2 and N – 1 and calculate the gcd or
greatest common divisor between m and N. If the value of the gcd is different from
1, then the algorithm should terminate with the answer that the gcd is a factor of N.
If not, then the algorithm should move to the second step.

2. Use quantum computing to calculate the period p of the function f(n) = mn mod N.

200 Unit 7

3. Determine whether p is even or odd. If p is even, then the algorithm should move to
the fourth step, otherwise it should move to the first step.

4. Determine whether mp2 + 1 = 0 mod N . If so, then the algorithm should move to
step one, otherwise it should move to step five.

5. Calculate d as the highest common divisor between mp2 − 1 and N. The algorithm
must then terminate by returning d as a non-trivial factor of N.

Use of Quantum Computing by Shor’s Algorithm

Let us end this section by briefly illustrating how Shor’s algorithm uses quantum com-
puting to calculate the period p of the function f(n) = mn mod N with the example of
the calculation of the period of the function f(x) = x mod 2. A value r is a period of f if
and only if f(x) = f(x + r) for all x values. First, we need to introduce Quantum Fourier
Transformation (QFT) matrices because of their use by this algorithm. We also must
remember that epi = –1. Let us also denote the imaginary number e2πiN by the name w
where N is a natural number.

The QFTN matrix is defined as follows:

QFTN = 1N
1 1 1 1 ⋯ 1 11 w w2 w3 ⋯ wN − 2 wN − 11 w2 w4 w6 ⋯ w2N − 4 w2N − 21 w3 w6 w9 ⋯ w3N − 6 w3N − 3⋮ ⋮ ⋮ ⋮ ⋯ ⋮ ⋮1 wN − 3 w2N − 6 w3N − 9 ⋯ w N − 2 N − 3 N − 2 w N − 1 N − 3 N − 11 wN − 2 w2N − 4 w3N − 6 ⋯ w N − 2 N − 2 N − 2 w N − 1 N − 2 N − 11 wN − 1 w2N − 2 w3N − 3 ⋯ w N − 2 N − N − 2 w N − 1 N − N − 1

Let us review the examples of N = 2, N = 4, and N = 8.

QFT2 = 12 1 11 w = 12 1 11 e2πi2 = 12 1 11 −1
For N = 4, the value of w is equal to e2πi4 = eπi2 . The square of w will therefore yield the
value epi which is also equal to —1. This implies that w = i. The QFT4 matrix can now
easily be filled knowing that w = i, w2 = –1, w3 = –i, w4 = 1, w5 = i, w6 = –1, w7 = –i,w8 = 1, w9 = i.

QFT4 = 12 1 1 1 11 w w2 w31 w2 w4 w61 w3 w6 w9 = 12 1 1 1 11 i −1 −i1 −1 1 −11 −i −1 i

Advanced Algorithmics

201Unit 7

For N = 8, the value of w is equal to e2πi8 = eπi4 . Raising w to the power 4 will yield the
value epi which is also equal to —1. This implies that w is equal to the square root of i
which is also equal to 1 + isqrt 2 , and QFT8 can be calculated as follows:

QFT8 = 18
1 1 1 1 1 1 1 11 w w2 w3 w4 w5 w6 w71 w2 w4 w6 w8 w10 w12 w141 w3 w6 w9 w12 w15 w18 w211 w4 w8 w12 w16 w20 w24 w281 w5 w10 w15 w20 w25 w30 w351 w6 w12 w18 w24 w30 w36 w421 w7 w14 w21 w28 w35 w42 w49

= 18
1 1 1 1 1 1 1 11 i i w3 −1 w5 −i w71 i −1 −i 1 i −1 −i1 w3 −i w9 −1 w15 i w211 −1 1 −1 1 −1 1 −11 w5 i w15 −1 w25 −i w351 −i −1 i 1 −i −1 −i1 w7 −i w21 −1 w35 −i w49

.

We can now multiply QFT8 by the qubit |0⟩ |0⟩ = |0⟩ ⊗ |0⟩ as shown below.

0 0 =
10000000

⊗
10000000

=
1 00 00 00 00 00 00 00 0

18
1 1 1 1 1 1 1 11 i i w3 −1 w5 −i w71 i −1 −i 1 i −1 −i1 w3 −i w9 −1 w15 i w211 −1 1 −1 1 −1 1 −11 w5 i w15 −1 w25 −i w351 −i −1 i 1 −i −1 −i1 w7 −i w21 −1 w35 −i w49

×
1 00 00 00 00 00 00 00 0

= 18
1 01 01 01 01 01 01 01 0

1 01 01 01 01 01 01 01 0
=

1 00000000
+

01 0000000
+

001 000000
+

0001 00000
+

00001 0000
+

000001 000
+

0000001 00
+

00000001 0

202 Unit 7

The equation can be rewritten as1 01 01 01 01 01 01 01 0
= 0 0 + 1 0 + 2 0 + 3 0 + 4 0 + 5 0 + 6 0 + 7 0 ∑x = 07 x 0

These calculations show that we landed on the following qubit after multiplying QFT8
by the qubit |0⟩ |0⟩. 18 ∑x = 07 x 0
We now have to apply the following unitary transformation Uf to the above qubit:18 ∑x = 07 x 0 Uf 18 ∑x = 07 x f x = 18 ∑x = 07 0 ⊗ f x
The above unitary transformed quibit can be rewritten as follows:18 ∑x = 07 x f x = 18 0 f 0 +1 f 1 + 2 f 2 + 3 f 3 + 4 f 4 + 5 f 5 + 6 f 6 + 7 f 7
We now have to measure |f(x)⟩ whose value can either be equal to |0⟩ or to |1⟩ becausef(x) is a modulo of 2, having in mind that we are using modulus 2.

Let us assume that |f(x)⟩ is equal to |0⟩. This implies that x is even, and the measure-
ment of the above unitary transformed quibit is the following where p = 2 (even or
odd).

18 ∑x = 07 0 ⊗ f x measure pN ∑x = 0
Np − 1 x f x = 12 0 + 2 + 4 + 6 ⊗ 0

The QFT of the above measurement yields

Advanced Algorithmics

203Unit 7

12 0 + 0 + 0 + 0 QTF8 12 0 + 4
This transformation tells us that we must measure |4⟩. Moreover, the division of N by 4
is equal to 2, since N = 8, and the period of our function is 2.

Summary

Three advanced algorithmic paradigms were introduced in this unit: parallel, proba-
bilistic, and quantum computing. Parallel algorithms are classified either as data
partitioning or function partitioning algorithms. They are based on fundamental
mechanisms such as elementwise operations, reductions, and broadcasting. This
unit contains practical basic examples on how to program fundamental probability
distributions. It also showed how to compute descriptive statistics and test a
hypothesis using the Bayes factor. We provided a brief historical perspective on
quantum computing before recalling core mathematical concepts on complex num-
bers, vectors, and matrices. Finally, we reviewed key quantum computing system
components, such as states and dynamics, qubit, and Shor’s algorithm.

Knowledge Check

Did you understand this unit?

You can check your understanding by completing the questions for this unit on the
learning platform.

Good luck!

204 Unit 7

Congratulations!

You have now completed the course. After you have completed the knowledge tests on
the learning platform, please carry out the evaluation for this course. You will then be
eligible to complete your final assessment. Good luck!

205Evaluation

Appendix 1
List of References

List of References

Abadi, M., & Cardelli, L. (1996). A theory of objects. Springer.

Adams, P. (2018). Undecidability and the structure of the Turing degrees [REU Paper, Uni-
versity of Chicago].

Adel'son-Vels'ky, G. M., & Landis, E. M. (1962). An algorithm for organization of informa-
tion. Doklady Akademii Nauk SSSR, 146(2), 263—266.

Aho, A. V. (1977). Algorithms and computational complexity. Acta Crystallographica Sec-
tion A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 33(1), 5—12.

Ahujia, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows: Theory, algorithms and
applications. Prentice Hall.

Alami, A., Cohn, M. L., & Wąsowski, A. (2019, May 25—31). Why does code review work for
open source software communities? Proceedings of the 41st International Conference
on Software Engineering (ICSE ’19) (pp. 1073—1083). IEEE.

Attard Cassar, E. (2018). In search of the fastest sorting algorithm. Symposia Melitensia,
14, 63—77. https://www.um.edu.mt/library/oar/handle/123456789/30001

Ausiello, G. (2013). Algorithms, an historical perspective. In A. Giorgio & R. Petreschi
(Eds.), The Power of Algorithms (pp. 3—26). Springer.

Blank, B. E. (2002). The millennium problems: The seven greatest unsolved mathematical
puzzles of our time. Basic Books.

Catanzaro, B., Sundaram, N., & Keutzer, K. (2008, April). A map reduce framework for pro-
gramming graphics processors. Workshop on Software Tools for MultiCore Systems.

Crawford, K. (2013, April 1). The hidden biases in big data. Harvard Business Review.
https://hbr.org/2013/04/the-hidden-biases-in-big-data

Frege, G. (1990). Begriffsschrift, a formula language, modeled upon that of arithmetic,
for pure thought. In J. van Heijenoort (Ed.), Frege to Gödel: A source book in mathemati-
cal logic (pp. 1—82). Harvard University Press. (Original work published 1879)

Gasarch, W. I. (2002). The P=?NP poll. ACM SIGACT News, 33(2), 34—47.

Gasarch, W. I. (2012). Guest column: The second P=?NP poll. ACM SIGACT News, 43(2), 53—
77.

Girard, J. Y. (1987). Linear logic. Theoretical computer science, 50(1), 1—101.

Hidary, J. D. (2019). Quantum computing: An applied approach. Springer.

208 Appendix 1

Hill, K. (2020, June 24). Wrongfully accused by an algorithm. The New York
Times. https://www.nytimes.com/2020/06/24/technology/facial-recognition-arrest.html

Hoare, C. A. R. (1961). Algorithm 64: quicksort. Communications of the ACM, 4(7), 321.

Kessler, G. C. (2020, June 1). An overview of cryptography. Gary Kessler. https://www.gary-
kessler.net/library/crypto.html

Kao, Y. F. (n. d.). Computable foundations of bounded rationality [Lecture notes].
https://pdfs.semanticscholar.org/bc65/587fe1409cc4a152bdaefedec0c6e2020100.pdf

Kochhar, P. S., Xia, X., & Lo, D. (2019, May). Practitioners' views on good software testing
practices. 2019 IEEE/ACM 41st International Conference on Software Engineering: Soft-
ware Engineering in Practice (ICSE-SEIP) (pp. 61—70). IEEE.

Lafont, Y. (1989, December). Interaction nets. Proceedings of the 17th ACM SIGPLAN-
SIGACT symposium on principles of programming languages (pp. 95—108). Association
for Computing Machinery.

Lagarias, J. C. (1985). The 3x+ 1 problem and its generalizations. The American Mathemat-
ical Monthly, 92(1), 3—23.

Lloyd, S. P. (1982). Least squares quantization in PCM. IEEE Transactions on Information
Theory, 28(2), 129—137.

Lomonaco, S. J. (2000). A lecture on Shor’s quantum factoring algorithm [Lecture notes].
arXiv. https://arxiv.org/pdf/quant-ph/0010034.pdf

Lyman, J. (2016). Blossom: A language built to grow. Mathematics, Statistics, and Com-
puter Science Honors Projects, 45.

MacCormick, J. (2013). Nine algorithms that changed the future: The ingenious ideas
that drive today's computers. Princeton University Press.

Mazur, J. (2014). Enlightening symbols: A short history of mathematical notation and its
hidden powers. Princeton University Press.

Olhede, S. C., & Wolfe, P. J. (2018). The growing ubiquity of algorithms in society: Implica-
tions, impacts and innovations. Philosophical Transactions of the Royal Society A: Math-
ematical, Physical and Engineering Sciences, 376(2128), 3—26.

Poonen, B. (2014). Undecidable problems: A sampler. In J. Kennedy (Ed.), Interpreting
Gödel: Critical essays (pp. 211—241). Cambridge University Press.

Reiser, M. (2017). Parallelize JavaScript computations with ease [Projektarbeit, Hoch-
schule für Technik Rapperswil]. Hochschule für Technik Rapperswil.

List of References

209Appendix 1

Richardson, K. (2020, May). Number theory meets computability theory. Kyle Richardson.
https://www.nlp-kyle.com/files/h10.pdf

Rivest, R. L., Shamir, A., & Adleman, L. (1978). A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2), 120—126.

Rodó, C. (2010). Efficiency in quantum key distribution protocols using entangled Gaus-
sian states [Master thesis, Universitat Autonoma de Barcelona]. arXiv:1005.2291.

Saltz, J. S., & Shamshurin, I. (2017, July). Does pair programming work in a data science
context? An initial case study. 2017 IEEE International Conference on Big Data (Big Data)
(pp. 2348—2354). IEEE.

Simon, H. A. (2002). Near decomposability and the speed of evolution. Industrial and
corporate change, 11(3), 587—599.

Strubell, E. (2011). CSE 301: An introduction to quantum algorithms [Lesson content].

Subero, A. (2020). Codeless data structures and algorithms: Learn DSA without writing a
single line of code. Apress.

Turner, R. (2018). Towards a philosophy of computer science. Computational Artifacts
(pp. 13—19). Springer.

van de Meent, J. W., Paige, B., Yang, H., & Wood, F. (2018). An introduction to probabilistic
programming. arXiv:1809.10756.

Varadharajan, S. (2020). Hard mathematical problems in cryptography and coding
theory [Doctoral dissertation, The University of Bergen]. The University of Bergen.

Vega, F. (2016). NL versus P. hal-01354989. https://hal.archives-ouvertes.fr/hal-01354989/
document

Vryonis, P. (2013, August 27). Public-key cryptography for non-geeks. Vrypan. https://
blog.vrypan.net/2013/08/28/public-key-cryptography-for-non-geeks/

Wang, H. (1990). The concept of computability. In Computation, Logic, Philosophy (pp. 13
—29). Springer. https://doi.org/10.1007/978-94-009-2356-0

Ye, Y. (2013). Generalizing contexts amenable to greedy and greedy-like algorithms [Doc-
toral dissertation, University of Toronto]. TSpace.

Zapata-Rivera, L. F., & Aranzazu-Suescun, C. (2020). Enhanced virtual laboratory experi-
ence for wireless networks planning learning. IEEE Revista Iberoamericana de Tecnolo-
gias del Aprendizaje, 15(2), 105—112.

210 Appendix 1

Appendix 2
List of Tables and Figures

List of Tables and Figures

“Hello There” Example
Source: Author.

GCD Naive Algorithm
Source: Author.

Selection Sort Algorithm
Source: Author.

Cryptography Systems
Source: Kessler, 2016.

Third Person Present Tense Pattern
Source: Author.

Array’s Input and Output Example
Source: Author.

Stack Implementation with Linked Nodes (Start)
Source: Author.

Stack Implementation with Linked Nodes (End)
Source: Author.

Linked List Representation of the YES String
Source: Author.

Removal of an Element from a List
Source: Author.

List Implementation with Linked Nodes (Start)
Source: Author.

List Implementation with Linked Nodes (Cont’d)
Source: Author.

212 Appendix 2

List Implementation with Linked Nodes (End)
Source: Author.

Non-Priority Queues Implementation with Linked Nodes (Start)
Source: Author.

Non-Priority Queues Implementation with Linked Nodes (End)
Source: Author.

Priority Queues Implementation with Linked Nodes (Start)
Source: Author.

Priority Queues Implementation with Linked Nodes (Cont’d)
Source: Author.

Priority Queues Implementation with Linked Nodes (End)
Source: Author.

Completely Full Binary Tree Example
Source: Author.

Numbering of the Nodes of a Completely Full Binary Tree
Source: Author.

Binary Trees Implementation with Arrays (Start)
Source: Author.

Binary Trees Implementation with Arrays (End)
Source: Author.

Example of a Labeled Graph
Source: Author.

Example of Nodes Identification in a Graph
Source: Author.

List of Tables and Figures

213Appendix 2

Representation of the Nodes of a Graph in an Array
Source: Author.

Graph’s Representation as a Two-Dimensional Array and an Array of Linked Nodes
Source: Author.

Graph Implementation with Two Arrays (Start)
Source: Author.

Graph Implementation with Two Arrays (End)
Source: Author.

Iterative and Recursive Versions of Factorial
Source: Author.

Iterative Illustration of Factorial
Source: Author.

Naive Iterative and Recursive Primality Test Algorithms
Source: Author.

Insertion of the Sequence 75, 29, 52, 89, 92, 90, 24, 8, 17, 27 in an AVL (Start)
Source: Author.

Insertion of the Sequence 75, 29, 52, 89, 92, 90, 24, 8, 17, 27 in an AVL (Cont’d)
Source: Author.

Insertion of the Sequence 75, 29, 52, 89, 92, 90, 24, 8, 17, 27 in an AVL (End)
Source: Author.

Greedy Algorithm Example
Source: Author.

Dynamic Programming of the Currency Exchange Problem
Source: Author.

214 Appendix 2

Sorting Algorithms
Source: Author.

Radix Sort Algorithm Example
Source: Author.

Bucket Sort Algorithm
Source: Author.

Insertion Sort Algorithm Example
Source: Author.

Bubble Sort Algorithm Example (Start)
Source: Author.

Bubble Sort Algorithm Example (End)
Source: Author.

Merging Two Sorted Sequences and Merge Sort Algorithm Examples
Source: Author.

Quicksort Algorithm Example
Source: Author.

jq Filtering Patterns (Selection)
Source: Author.

Json Object First Example
Source: Author.

Outputs
Source: Author.

Json Object Second Example
Source: Author.

List of Tables and Figures

215Appendix 2

Outputs for Eight tests and capture Commands
Source: Author.

K-Means Algorithm Example
Source: Author.

Graphic Representation of the Above Dataset
Source: Author.

K-Means Algorithm Example First Step
Source: Author.

K-Means Algorithm Example Second Step
Source: Author.

K-Means Algorithm Example Third Step
Source: Author.

K-Means Algorithm Example Four Step
Source: Author.

K-Means Algorithm Example Diagram
Source: Author.

Example of the Sum of Numbers
Source: Author.

Example of the Recursive Version of Factorial
Source: Author.

Summary
Source: Author.

Collatz Sequence Code
Source: Author.

216 Appendix 2

Twin Primes Code
Source: Author.

Perfect Numbers Caller Example
Source: Author.

Primality Test Example with Exceptions (First Version)
Source: Author.

Primality Test Example with Exceptions (Second Version)
Source: Author.

Primality Test Example with Assertions
Source: Author.

Primality Test Example for Jshint Demo
Source: Author.

Jest Object for package.json File
Source: Author.

First Primality Test Example for Jest Demo
Source: Author.

First Set of Jest Test Cases for the Primality Test Program
Source: Author.

Second Primality Test Example for Jest Demo
Source: Author.

Second Set of Jest Test Cases for the Primality Test Program
Source: Author.

Code for the Creation of a MySQL Database
Source: Author.

List of Tables and Figures

217Appendix 2

Code for the Creation of a MySQL Table
Source: Author.

Code for the Storage of a MySQL Record
Source: Author.

Code for the Querying of a MySQL Record
Source: Author.

Mid Rank Intervals for Epsilon
Source: Author.

Mid Rank Problem Algorithm Example
Source: Author.

YES or NO Automaton
Source: Author.

Automaton for the Positive Multiples of 10
Source: Author.

Alphabet’s Elements c
Source: Author.

Pushdown Automaton for Well-Bracketed Expressions
Source: Author.

Turing Machine for the Words anbncn
Source: Author.

Turing Machine (aabbcc Input)
Source: Author.

Turing Machine Concept for the Null (Empty) String Problem
Source: Author.

218 Appendix 2

Recursively Enumerable Set Membership JavaScript Pseudocode
Source: Author.

Biggest Subsequence Problem JavaScript Code (Start)
Source: Author.

Biggest Subsequence JavaScript Code (End)
Source: Author.

Traced Algorithm
Source: Author.

Tracing Kadane’s Algorithm
Source: Author.

Graphical Comparison of O(n2) and O(n)
Source: Author.

Fibonacci Algorithms (Start)
Source: Author.

Fibonacci Algorithms (Cont’d)
Source: Author.

Fibonacci Algorithms (End)
Source: Author.

Tracing the Fast Fibonacci Algorithms
Source: Author.

Search Algorithm Example
Source: Author.

Most Common Complexity Classes
Source: Author.

List of Tables and Figures

219Appendix 2

Computational Problems (Examples)
Source: Author.

Traveling Salesperson Problem Example Graph
Source: Author.

Decision Hamilton Cycle Problem Examples Graphs
Source: Author.

Reducing Hamilton Cycle Problem Examples Graphs
Source: Author.

ParallelJs Map Operation First Example with Output Screenshot
Source: Author.

ParallelJs Map Operation Second Example
Source: Author.

Output Screenshot of the Second ParallelJs Map Operation Example
Source: Author.

Output Screenshot of the ParallelJs Map Reduce Example
Source: Author.

ParallelJs Broadcasting Operation Example (Start)
Source: Author.

ParallelJs Broadcasting Operation Example (End)
Source: Author.

ParallelJs Broadcasting Operation Example
Source: Author.

WebPPL Hello Mam or Dad Example
Source: Author.

220 Appendix 2

Output Screenshot of the WebPPL Hello Mam or Dad Example
Source: Author.

WebPPL Bernoulli Distribution First Example
Source: Author.

WebPPL Bernoulli Distribution Second Example
Source: Author.

WebPPL Binomial Distribution Example
Source: Author.

WebPPL Geometric Distribution Example
Source: Author.

Output Screenshot of WebPPL Geometric Distribution Example
Source: Author.

WebPPL Uniform Distribution Example
Source: Author.

Output Screenshot of WebPPL Uniform Distribution Example
Source: Author.

WebPPL Descriptive Statistics Example (Start)
Source: Author.

WebPPL Descriptive Statistics Example (End)
Source: Author.

Output Screenshot of WebPPL Descriptive Statistics Example
Source: Author.

WebPPL Inferential Statistics Example
Source: Author.

List of Tables and Figures

221Appendix 2

Output Screenshot of WebPPL Inferential Statistics Example
Source: Author.

WebPPL Text Version Search Example with Uniformly Distributed Input (Start)
Source: Author.

WebPPL Text Version Search Example with Uniformly Distributed Input (End)
Source: Author.

Detailed Array Output of WebPPL Uniform Input Distribution Text Version Example
Source: Author.

Real Mean Output of WebPPL Uniform Input Distribution Text Version Example
Source: Author.

Natural Mean Output of WebPPL Uniform Input Distribution Text Version Example
Source: Author.

WebPPL Graphic Version Search Example with Uniformly Distributed Input (Start)
Source: Author.

WebPPL Text Version Search Example with Uniformly Distributed Input (End)
Source: Author.

Plotly Uniform Input Distribution Example
Source: Author.

Output of Plotly Uniform Input Distribution Example (Screenshot)
Source: Author.

222 Appendix 2

IU Internationale Hochschule GmbH
IU International University of Applied Sciences
Juri-Gagarin-Ring 152
D-99084 Erfurt

Mailing address:
Albert-Proeller-Straße 15-19
D-86675 Buchdorf

