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Abstract
	Deep Neural Networks (DNNs) introduce phenomenal performance in a continuously growing number of applications such as computer vision, natural language processing, video analytics and mission-critical systems. The growing computational complexity of such models has propelled the development of specialized accelerators that offer improved performance and energy efficiency. Advanced VLSI process nodes have further intensified the development of ML accelerators by providing remarkable transistor miniaturization and power efficiency. Nonetheless, these process nodes are vulnerable to transistor aging, which can lead to a gradual decline in ML accelerators performance and prediction accuracy and introduce significant reliability concerns. In this work we demonstrate the first comprehensive study of aging effect on systolic arrays, which are in the core of many machine learning (ML) accelerators, such as Google’s TPU. Our experimental analysis indicates that systolic arrays can incur asymmetric aging where logical elements can age unequally. In addition, we show that asymmetric aging can produce persistent and transient errors that manifest in the datapath of a systolic array, which in turn may cause major faults in their overall operation and severely hit ML models resiliency. For example, considering only 3% of the overall transient failure events, the Top1 prediction accuracy of ResNet-18 model can drop by 40%. We introduce hardware mechanisms and design flow solutions which mitigate the asymmetric aging reliability impact on ML accelerators and achieve the original Top1 prediction accuracy of the DNN model. 
1. Introduction
	Deep Neural Networks (DNNs) play a major role at the core of numerous applications such as recommendation systems, natural language processing and vision recognition. DNN models demonstrate remarkable capabilities of learning and recognizing complex patterns and features in large sets of data. They are also computationally intensive and require significant processing resources for both training and inference. DNNs include multiple layers where each layer comprises a large-scale matrix multiplication or a convolution operation which are usually followed by an activation function. Both matrix multiplications and convolutions entail many multiply and accumulate (MAC) operations and are recognized as the lion’s share of ML processing workload. For example, GoogLeNet ([1]) and ResNet-101 ([2]) require approximately 1.5 and 7.8 billion MAC operations respectively for a single inference assuming a 224x224 pixels image resolution. 
	The deployment of DNNs in diverse platforms with different processing capabilities, real-time requirements and energy constrains have encouraged the development of specialized accelerators. For example, in 2016, Google first introduced the TPU ([3]). It uses a 256 x 256 two-dimensional systolic array (SA) architecture dedicated to matrix multiplication acceleration, and it has achieved remarkable performance speedup than traditional CPU. A SA ([4]) consists of a two-dimensional mesh array of tightly coupled processing elements (PEs) that can forward data directly between PEs in the same row and column through unidirectional connections. Each PE has a MAC unit and a local storage element that is used to store intermediate computations. Recently DNNs have also emerged into mission-critical systems such as autonomous vehicles, medical appliances, finance, and security systems ([5]–[8]). All these new applications set a high bar for DNNs resiliency and reliability which is enforced by regulatory agencies and industry standards ([9]). 
	Over the last decade, the semiconductor industry has continued to push the boundaries of VLSI technologies, with several notable trends. New process nodes have continued to keep pace with Moore’s law and miniaturize transistor into nanometric dimensions. New materials and devices which offer improved performance and reduced power consumption have been developed. However, these latest advances have aggravated the susceptibility of semiconductors to reliability concerns, particularly those induced by transistor aging. Transistor aging is the gradual degradation of a transistor's performance over time due to Hot Carrier Injection (HCI) and Bias Temperature Instability (BTI) ([10]–[12] ) effects that are described in Section 2. Our focus in this study is on BTI, as it is widely acknowledged as the predominant aging mechanism in modern integrated circuits (ICs).
	Transistor aging can significantly impact the reliability of DNN accelerators, resulting not only in substantial performance degradation but also in serious circuit failures due to setup timing violations. Asymmetric aging ([13]), which occurs when the aging degradation is unevenly distributed among logical elements, can result in even more severe reliability issues, potentially leading to overall system failure. Asymmetric aging can not only intensify setup violations but also introduce hold timing violations, which cannot be mitigated by reducing the clock frequency.
	This paper presents the first comprehensive study of the impact of asymmetric aging on DNN accelerators using systolic arrays as a case study. We demonstrate that asymmetric aging can cause transient faults in DNNs, resulting in decreased prediction accuracy and confidence levels. In mission-critical systems, such faults can have catastrophic consequences, potentially leading to a violation of functional safety. Our experimental analysis encompasses three frameworks: 1. functional simulations that use different workloads to extract the aging profile of systolic arrays; 2. detailed timing analysis coupled with aging models that are run on a physical implementation of a systolic array to pinpoint the failure points resulting from asymmetric aging; and 3. an error injection model that represents asymmetric aging transient errors is used to evaluate the overall impact on DNNs performance. Our experiments indicate that systolic array DNN accelerators can experience asymmetric aging, resulting in persistent and transient errors that propagate in the datapath of the array, which can cause not only significant faults in the systolic array but also severely impact the resiliency of machine learning models. In addition, our analysis reveals four primary mechanisms that encourage asymmetric aging in systolic arrays: 1. DNN sparsity, 2. underutilization of the dynamic range for value representation, 3. clock gating and 4. lack of symmetry between logical cell delays and wire delays. 
	Our study proposes both hardware and design flow approaches to address the impact of asymmetric aging on ML accelerators. We evaluate the effectiveness and overhead of our solutions on an SA. Our area and power analysis shows that with nearly 1% logical cell area overhead and 7.85% power overhead, we can fully mitigate the asymmetric aging impact on model Top1 prediction accuracy. Alternatively, we also show that a 7% reduction in the SA clock frequency can avoid power overhead.
	The primary contribution of this paper is as follows:
1. We perform an in-depth analysis of transistor aging in DNN accelerators using systolic arrays as a case-study and demonstrate that asymmetric aging can lead to major faults and reliability concerns.
2. We identify that data sparsity, power-saving measures, underutilization of dynamic range of values, and asymmetry in timing delays between wires and cells can promote asymmetric aging.
3. Our analysis shows that the spatial location of PEs can significantly contribute to the likelihood of incurring asymmetric aging-related faults.
4. We identify the internal elements and logical paths of a PE that are susceptible to asymmetric aging.
5. Our fault model indicates that asymmetric aging transient errors can accumulate within the PE and spread to neighboring PEs and successive DNN layers.
6. We offer hardware- and design flow solutions to mitigate asymmetric aging in systolic arrays and demonstrate that our techniques can completely avoid DNN model Top1 prediction accuracy hit.
	The remainder of this paper is organized as follows: Section 2 presents background and prior works. Section 3 introduces our experimental analysis for detecting asymmetric aging-induced faults in systolic arrays. Section 4 presents the fault analysis model and examines the impact on DNN performance in systolic arrays. Section 5 presents our asymmetric aging mitigation approaches and experimental analysis. Finally, Section 6 summarizes our conclusions and suggests future works.
2. Background and Prior Works
	This section provides an overview on SA architecture, transistor aging, asymmetric aging, and DNN resiliency related works.

2.1 DNN Accelerators
	
	DNN hardware accelerators are specialized hardware devices designed to accelerate the execution of DNN models. There are several types of DNN hardware accelerators, such as Graphical Processing Units (GPUs) [[14]], Application-Specific Integrated Circuits (ASICs) [[15]] which are custom-designed for specific applications, and TPUs which use SAs for both ML training and inference. A Systolic Array (SA), which is our case-study for DNN accelerators, is a homogeneous two-dimensional grid of processing elements (PEs), usually built from multiply and MACs that are rhythmically working together for the purpose of matrix multiplication. The inputs are passed from one PE to its neighbors and every PE conducts a multiply-accumulate operation between the inputs and stores the intermediate result locally, then transmits the inputs for the adjacent PEs for the next cycle. Due to its well-defined interactions between neighboring PEs, tasks could be executed efficiently and enables data reuse and scalability [16]. 
	SA have different forms and shapes and could be used for various tasks. In our work we use the state-of-the-art output stationary (OS) SA variant, used to accelerate and efficiently execute matrix multiplication in many different DNN and ML related applications. Figure 1 depicts the state-of-the-art OS-SA architecture.
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Figure 1 – Output-Stationary Systolic Array
	
	Since DNNs are computation and memory intensive, the demand for DNN hardware acceleration has become crucial. An example of an SA-based DNN hardware accelerator is Google's Tensor Processing Unit (TPU). The TPU employs a SA of 256 x 256 MAC units to accelerate matrix multiplications, which can achieve a significant performance increase compared to a CPU [3]. MIT Eyeriss is another example of a SA accelerator for convolutional neural networks [17]. Another commercially used SA implementation is Tesla’s Full Self-Driving (FSD) chip[18]. In addition, SAs have been used in multiple fields, for example, for neurocomputing [19], language recognition [20], and character string manipulation [21].

2.2 Transistors Aging
	Transistor aging is the deterioration process of transistors in logical elements. There are two physical mechanisms that govern transistor aging: Hot Carrier Injection (HCI) and Bias Temperature Instability (BTI) [10]–[12]. HCI is induced when high kinetic current flows through a transistor, while BTI is induced when a static voltage (logical state) is applied to the gate of a transistor without current flow for a long period, typically ranging from 10 seconds to several weeks [22]. Both BTI and HCI increase the transistor threshold voltage, which leads to an increase in switching delay. In this study, we focus on BTI since it is recognized as the most dominant aging mechanism in modern ICs [23], [24]. The BTI aging model we use to represent the threshold voltage increase is based on the reaction-diffusion model, which is the main model considered by the semiconductor industry [24]–[27]. Equation 1 presents Vth increment, , due to BTI stress: 


Equation 1 – the Reaction-Diffusion model for Vth increase
 
Where Ea is a constant, T is the operating temperature, K is the Boltzmann constant, t0 is the time when the BTI stress starts, and t is the overall time. It has been found that p-type transistors are more susceptible to BTI (known as NBTI) than n-type transistors (known as PBTI) [28]. Therefore, logical gates with a constant idle state of logical 0 are most vulnerable to aging. A common method to measure the BTI stress profile on logical elements is the signal probability (SP). The SP represents the likelihood that a signal will have a logical value of 1, and it is measured as the ratio of time that a signal is 1 to the overall time. Lower SP increases the likelihood of BTI in the circuit and degraded performance or even failure over time.
	BTI can lead to a significant degradation in logical circuit performance, and if the degradation is symmetric among all logical elements, it can be mitigated by reducing the clock frequency. However, when the degradation is asymmetric due to aging, it may produce even more severe reliability concerns. 
	 2.3 Asymmetric Aging
	Asymmetric aging occurs when the degradation of the transistors’ performance is nonuniformly distributed between logical elements such as flip flops, gates, clock tree buffers, and memory cells. Due to its high complexity, asymmetric aging presents significant challenges in terms of modeling, analysis, prediction, and prevention for ICs, making it a major concern for reliability. Moreover, incorporating detailed timing analysis that takes aging into account is non-trivial because it depends on the workload and operating conditions, a capability that is absent from conventional design tools [22]
	As it will be presented next, we identify three primary mechanisms that promote asymmetric aging in SA: clock gating, DNN sparsity, and asymmetrical delay between logical elements and wires. Each of these mechanisms, could independently lead for asymmetric aging, eventually causing severe timing violations and both permanent and transient faults. The following discussion provides more insight into each of these mechanisms.  

2.3.1 Clock Gating
	One widely accepted method for dynamic power saving is clock gating [29], which involves selectively stopping the clock signal to certain parts of the circuit that are not currently in use, thereby reducing dynamic power consumption. By turning off the clock to idle parts of the circuit, unnecessary switching activity and associated power consumption are eliminated. Clock gating is typically implemented using a clock gate cell that contains an AND gate or an OR gate. When the clock is enabled, the clock signal is allowed to pass through the clock gate cell. When the clock is disabled, the output of the gate is held at a constant logic value, blocking the clock signal from passing through the gate. 
	Clock gating by nature can induce BTI since it intensifies the idleness on the clock network and combinational circuits. In addition, it can encourage asymmetric aging as it is illustrated in Figures 2 a. and b. In Figure 2a2a, the clock gate is used in the launch path, causing greater aging in the launch path than in the capture path. This asymmetry can lead to setup timing violations. On the other hand, in Figure 2b2b, using the clock gate in the capture path can intensify the aging in that path compared to the launch path, resulting in hold timing violations.
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(c)
Figure 2 – (a) Possible setup violation due to asymmetric aging induced by clock gating launch path, (b) Possible hold violation due to asymmetric aging induced by clock gating the capture path, and (c) Possible timing violations due to the asymmetry between the accumulated delay of logical cells and wires.
2.3.2 Asymmetry Between Logical Cell Delays and Wire Delays
	Another cause of asymmetric aging is the asymmetry between the accumulated delay of logical cells and wires. While logical cells are affected by BTI, wires are not impacted by this phenomenon. When launch and capture paths have different accumulated logical cell delays, BTI can induce asymmetric aging, as shown in Figure 2c. If the accumulated logical cell delay in the launch path is greater than that in the capture path, it may lead to setup violations. On the other hand, if the accumulated cell delay in the launch path is smaller than that in the capture path, it may cause hold violations. As illustrated in Figure 2c both launch and capture clocks are balanced with 170ps clock latency. However, the accumulated clock buffer delay in the capture path is 150ps while the clock buffer total delay in the launch path is 100ps. Such asymmetry between the accumulated cell and wire delay is considered in conjunction with BTI may result in hold timing violation due to the delay shift in the capture clock. Previous works such as [19] have ignored wire delays; however, our experimental analysis shows that this phenomenon can significantly contribute to asymmetric aging.

2.3.3 DNN Sparsity
	DNNs can exhibit a high degree of sparsity due to several reasons, including:
1. The usage of certain activation functions, such as ReLU [[30]].
2. Various DNN optimizations to avoid overfitting, such as dropout regularization, pruning, and weight decay [31].
3. Sparsity in the DNN model [[31]]
4. When the dynamic range for value representation is not fully utilized, for example, when the data type used is 16-bit wide, but weights and activations only utilize 8 bits.
As noted earlier, the constant values of logical 0 can promote BTI in DNN accelerators, particularly those induced by sparsity. Moreover, since sparsity is not uniformly distributed across all logical elements and paths in the SA, it can cause asymmetric aging. For example, if the most significant bits in activations and weights exhibit a high degree of sparsity, it may intensify aging on those logical paths with respect to other elements in the SA.

2.4 DNN Resiliency Related Works
	
	The urge for reliable DNNs accelerators, have motivated numerous researchers to study and explore the resiliency and robustness of SA-based DNN accelerators against faults, both permanent and transient. Permanent faults in data paths were studied in multiple works. For example, in [33] and [34] the authors showed that even for extremely low fault rates as low as 0.003%, the DNN’s accuracy significantly dropped from 74.13% to 39.69%. In addition, the authors proposed two techniques for fault tolerance enhancement, Fault-aware pruning (FAP) and Fault-aware pruning and retraining (FAP+T), both techniques allow the TPUs to work with fault rates as high as 50%. By using Discrete Time Markov Chain formalism, the authors in [35], have analyzed permanent manufacturing faults showing an accuracy drop from 97.72% to 10.15% for some cases. 
	On the other hand, in [36], [37]the impact of transient faults on SAs and DNN models’ inference accuracy have is explored, along with proposing, high-performance and energy-efficient design for fault prediction and mitigation in near-threshold operation mode for TPUs. In [38], timing error arising from near-threshold computing has been examined. Additionally, S. Kundu et al. in [39] has provided a comprehensive study both on permanent and transient faults for quantized DNNs in SA-based accelerators and conducted a detailed assessment of their performance in the presence of these errors. Moreover, the authors have presented a comparative analysis of the accuracy drop according to the fault's location (bitwise and layer-wise) and put forward efficient methods for carrying out in-field functional testing. First, they have shown that stuck-at-1 faults have a much larger impact on accuracy compared to stuck-at-0 faults. Second, faults at the most significant bits (MSBs) have a larger impact than faults at the least significant bits (LSBs). Finally, they found that faults in the first two layers have a greater impact than those in the other layers. Nevertheless, none of the works mentioned above examined the impact of aging-induced faults. 
	Aging-induced faults in SAs have only been mentioned in a few prior works. In [40] a new quantization method is proposed for the elimination of aging guard bands, thus minimizing aging-induced frequency degradation. As part of their work in [41] to accelerate timing simulations in SA-based accelerators, S. Holst et al. have proposed a new method to measure DNN accuracy losses caused by arbitrary timing faults. They have also presented how injecting one small-delay random defect in different numbers of PEs can affect the inference accuracy.
	Additional works such as [42]–[44] have conducted thorough and comprehensive reviews on the manifestation and mitigation techniques (hardware and software) of soft errors induced from multiple sources, such as radiation, process variations, temperature, and aging, in DNN accelerators, including SA-based ones. However, none of these works approached the faults induced from asymmetric aging.
	To the best of our knowledge, no previous work has approached the asymmetric aging-induced timing errors in SAs or studied their impact on DNNs' inference accuracy. Other works have approached the asymmetric aging phenomenon in different contexts. In [13], the authors introduced an asymmetric aging-aware microarchitecture to mitigate the phenomenon's impact on execution units, register files, and memory hierarchy in microprocessors with minimal overhead. In [32], the authors proposed an algorithm for static timing analysis of asymmetric aging in clock networks.
3. Asymmetric Aging-Induced Faults in Systolic Array
	Detecting faults induced by asymmetric aging in SAs involves two experimental phases. In the first phase, we analyze the aging profile of various SA architectures and DNN models by evaluating the signal probability of the microarchitectural elements in the systolic array. In the second phase, we perform a full implementation of the systolic array, including synthesis, place, route, and timing analysis, using aging models that represent BTI timing degradation. Through timing analysis, we can pinpoint logical paths that suffer from timing violations because of asymmetric aging.
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Figure 3 – A Systolic Array Processing Element

	Figure 3 illustrates a processing element (PE) cell in the examined SA. The weight and activation inputs are sampled by registers and forwarded to the neighboring PEs. To reduce clock cycle time, the MAC operation of the PE is pipelined such that the multiplier output is sampled by a register and used in the next clock cycle by the accumulator. The illustrated PE employs three clock gates to save energy consumption in the following two scenarios:
1. As certain PEs may not be involved in matrix multiplication operations (which will be described later), a clock gate (clock gate A) is used to disable the clock to the PE in this case.
2. When either the activation or the weight is zero, another clock gate (clock gate B) is used to disable the clock of the output multiplier sampling register. A third clock gate (clock gate C) is used to disable the clock to the accumulator register in the next clock cycle.
3.1 Experimental Environment
Our experimental analysis is based on two environments: a simulation environment that emulates the operation of an OS-SA and extracts the aging profile, and a detailed timing analysis EDA environment which examines the impact of asymmetric aging based on the aging profile.
For the aging profile extraction, we have run a co-simulation that consists of a C++ SA simulator which runs in conjunction with a Pytorch-based DNN model written in Python. Our SA simulator is configured to simulate a 128x128 output stationary SA. The DNNs that we have used in Pytorch are ResNet-18 and ResNet-50 models [[2]]. On the pre-trained DNN models we have performed post-training quantization such that weights and activations are represented as 8-bit integers and unsigned-integers respectively. In addition, we have assumed an 8x8 bits integer multiplier and a 32-bit integer accumulator. For the inference process, we have used 100 images chosen randomly from the ImageNet dataset [[14]].
For the timing analysis, we have written the SA in SystemVerilog and synthesized it for 28nm process technology using Cadence® Genus®, and for the place-and-route, we have used the Cadence® Innovus® implementation tool. The SA clock frequency assumed is 340MHz. We have adopted the reaction-diffusion model as our aging model, which is widely accepted by both industry and re-search communities as the preferred model for BTI aging[25], [27], [45], [46]). The timing analysis with the aging model is similar to the method used in [[13], [47]]. The propagation delay of logical elements is derated by their corresponding degradation factors, as a function of their SP extracted in Section 3.2.
Figure 4 illustrates the delay shift of gates under different SP using our aging model. It also presents the absolute delay shift of gates under variable SP relative to gates that are symmetrically aged with an SP of 0.5. The comparison demonstrates the asymmetrical delay shift of logical elements under constant BTI stress compared to other elements within a logical circuit that are symmetrically aged. The results show that gates with constant stress (when SP is 0 or 1) experience a 2-2.5% asymmetric delay shift relative to gates with SP=0.5. These results reveal an interesting observation that gates with a static stress of 1 may also suffer from this phenomenon, despite having a small BTI stress. However, when compared to gates with an SP of 0.5, the delay shift becomes significant. It's worth noting that the observed asymmetric delay shift, even one as small as 2-3%, can significantly impact circuit reliability.
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Fig. 4.  Frequency degradation and absolute asymmetric delay shift over a ten-year lifetime.

3.2 SA Aging Profile 
The aging profile of the SA is described by the measurements of the SP and idleness of logical elements within every PE. Figures 5 and 6 illustrate a sample of heatmaps for activations, weights, multiplier output, and accumulator for ResNet-18 and ResNet-50 respectively on a subset of ImageNet images. One of our first observations is that matrix multiplications and convolutions within the DNN do not exploit the full spatial dimension of the SA. For example, when the dimensions of a matrix multiplication are smaller than the SA dimensions, unused rows and columns are clock gated due to power saving considerations and thereby are kept idle. As a result, PEs in the upper rows and columns exhibit significantly lower utilization which can encourage asymmetric aging relative to all other PEs. We partition each SA into four regions: Region A comprises of the lower 68 rows and columns, region B includes the 68 lower rows and upper 64 columns, regions C encompasses the upper 60 rows and lower 64 columns and region D spans of the remaining rows and columns. 
Our experimental study suggests that logical elements within the SA may experience asymmetric BTI stress, and thereby can age differently while inducing critical timing violations. We summarize in Table 1 the root causes for these potential violations into the following classes:
1. SA utilization – Our observations indicate that SA regions B, C, and D incur underutilization which incurs idleness and BTI stress. Thereby, they can become susceptible to asymmetric aging which can induce both setup and hold timing violations.
2. Dynamic range – When the dynamic range of value representation cannot be fully utilized, it increases the likelihood that certain bits or signals will be under a constant logical state and thereby incur asymmetric aging. This can encourage BTI stress on logical computational elements, increase their propagation delay and result in setup violation
3. Sparsity – Exploiting sparsity can save unneeded operations and help reduce power consumption. However, our analysis indicates that sparsity can encourage BTI stress on logical element and on the SA gated clocks. When the BTI stress is applied to logical elements, it may cause setup violation. However, in the case of gated clocks, BTI stress can promote also hold violations. 
In the remaining discussion of our experimental analysis, we focus on ResNet-18, though similar behavior can be observed in ResNet-50: 
Activations – In region A, the SP of activation bits 0-5 ranges from 15-19%, while bits 6-7 have a significantly lower SP (<0.25%) due to two reasons: 1) lack of utilization of the full dynamic range of the Int8 representation, and 2) high sparsity. In regions B, C, and D, the SP of all activations is even smaller than 5%, which is attributed to the low utilization of these regions. 
Weights – Unlike the activations, the SP of weights is approximately 50% in region A. However, in regions B, C, and D, the SP is lower than 15% due to the low utilization of these regions.
Multiplier output – The SP of bit 0 and bits 1-15 of the multiplier output in the SA falls within the range of 2-10% and 4-20% respectively. The least significant bit of the multiplication product has a lower SP compared to the other higher-order bits because the likelihood of the product of two arbitrary integers being even is 0.75. Our analysis indicates that the overall low SP of the multiplier can be attributed to the following factors: 1. Relatively low utilization of regions B, C, and D, 2. High sparsity of activations, and 3. Low utilization of the 16-bit value range.
Accumulator – The SP of the accumulator is distributed over a much broader range than the multiplier output: 13-50% and 15-72% for bits 0-15 and bits 16-31 respectively. The high-order bits have a higher SP for two reasons: 1. the accumulator values are spread across a broad dynamic range of values, and 2. the 2’s complement representation for negative values, both increase the likelihood of 1’s in the most significant bits. In addition, regions B, C and D have lower SP relative to region A due to their lower utilization.
Gated clock – Figures 7(a) and (b) illustrates the toggle rate (TR) of the accumulator and multiplier gated clock for ResNet-18 and ResNet-50. The gated clock toggle rate is governed by the sparsity of weights and activations in the DNN, i.e., whenever either the weight or activation is zero, the clock is gated. While clock gating can help save energy consumption in the SA, it intensifies the BTI stress on the gated clock tree branch and may encourage asymmetric aging. Although region A exhibits the highest toggle rate reaching nearly 40%, it is significantly lower than the maximum toggle rate of a free running clock (100%). This is explained due to the high sparsity of activation which encourages clock gating. The remaining regions have toggle rate within the range of 5-27% due to both lower utilization by the DNN model and the high sparsity of activations.
3.3 Timing Analysis 
	The second phase of our experimental analysis involves detailed timing analysis using aging models. We analyze all logical paths in the SA and partition them into the following groups, as shown in Figure 8:
1. A2A: The logical paths between the sampling register of the input activation and the neighbor cell activation register.
2. W2W: The logical paths between the sampling register of the input weight and the neighbor cell weight register.
3. AW2M: The logical paths that start from the activation sampling register or the weight sampling register, propagate through the multiplier, and end at the multiplier sampling register.
4. M2AC: The logical paths that start from the multiplier sampling register, go through the adder, and end at the accumulator register.
5. AC2AC: The logical paths that start from the accumulator register, go through the adder, and return to the accumulator register.
The design of the SA has been implemented using the synthesis and place-and-route tools described in subsection 3.1. The SA timing analysis have shown no timing violations, however when the impact of asymmetric aging is considered the timing validation tool reports severe timing violations for both setup and hold.
	Tables 2 and 3 summarize the detailed timing analysis results for the SA when considering asymmetric aging. The setup timing analysis indicates that the path group from the 32-bit accumulator output to the accumulator input (AC2AC) is the most susceptible to BTI since it is the critical timing group of the SA. Table 2 shows that the AC2AC group experiences the highest degradation in worst negative slack (WNS) in all regions, dropping from 0 ps down to -174 ps. Table 3 also shows that the number of setup violations for the AC2AC group is in the range of 14,000 to 17,000 in every region. The M2AC group also experiences setup violations due to aging, but their WNS and the number of violating paths are smaller than those introduced by the AC2AC group. The remaining group paths do not exhibit any setup violations, however since their WNS dropped, their resiliency is degraded.
	Tables 2 and 3 also present the hold timing analysis of the SA. As opposed to setup violations which can be mitigated by reducing the SA clock frequency, hold violations do not have any mitigation and thereby they are even more severe than setup violations. In hold timing analysis, asymmetric aging affects two opposing mechanisms. The following discussion summarizes our observations with respect to each path group:
	A2A – The A2A group incurs hold timing violations in all regions with a worst negative slack (WNS) of -4 ps, with regions B and D having the highest number of hold violations. Our timing analysis indicates that despite the high utilization of region A, it also experiences hold violations. This is attributed to the asymmetry between the accumulated wire delay and logical cell delay (as discussed in subsection 2.3) in certain paths. In addition, the violations in region B and D are induced by the low utilization of these regions in conjunction with the asymmetry between the accumulated wire delay and logical cell delay. Our timing analysis indicate that all activation signals traversing from the boundary of regions A to B and C to D have additional contribution to the violations in these regions. This is due to the capture clock in regions B and D which incurs a larger delay shift than the launch clock in regions A and C, resulting in hold timing violations. The hold violations in regions C are also contributed by its low utilization and the asymmetry between logical and wire cell delays. Region C presents lower number of violations than region A due to its smaller number of rows. Our setup timing analysis indicates that the A2A group does not incur any setup violations due to aging since it has a significant positive timing slack.
	W2W – The W2W group also incurs hold violations in all regions with WNS in the range of -2 to -1 ps. The asymmetry between the accumulated cell and wire delay causes hold violations in all regions. The hold violations in regions B, C and D are also attributed to their low utilization. All weight signal crossing from regions A and B to regions C and D respectively encounter hold timing violations. The low utilization of region C and D creates a bigger delay shift in the capture clock with respect to the launch clock. The higher number of rows in regions A and B, compared to C and D, is a contributing factor to the increased number of hold violations.
	AW2M – The AW2M group has hold WNS of -3 ps in all regions, where regions A and B have a greater number of hold violations due to their larger number of rows. Our timing analysis indicates that hold violations are induced by a combination of factors: 1. activation sparsity, and 2. asymmetry between the accumulated wire delay and cell delay. In both cases, the capture clock incurs a larger delay shift, which results in hold violations. The AW2M group does not present any setup violations due to asymmetric aging, however its positive timing slack is reduced in approximately 130 ps.
	M2AC – The M2AC path group has a hold WNS of -2 ps and the largest number of violating paths. In this group, both the launch clock and the capture clock are governed by the same control logic, and thus all clock buffers on the launch and capture clock branches age symmetrically. However, our timing analysis indicates that all regions incur hold violations due to the asymmetry between the accumulated cell and wire delays. This asymmetry is emphasized by the high sparsity, which intensifies the aging on both the launch and capture clocks. In addition, the low utilization in regions B, C, and D further encourages clock tree aging, resulting in an even higher number of violations than in region A. The M2AC group also presents setup timing violations with a WNS of -49 ps. Our timing analysis indicates that this is attributed to the high sparsity on the accumulator path, which accelerates the timing degradation on the logical elements in the M2AC path.
	AC2AC – The AC2AC path group is the longest path in the SA and therefore incurs the most severe setup violations due to the aging of the 32-bit adder. The setup violations are ascribed to 1. the low utilization of regions B, C and D and 2. lack of utilization of the full 32-bit dynamic range in all regions. Additionally, this path group does not present hold timing violation even when asymmetric aging is considered. In this case both launch and capture paths of the clock tree are the same since the path begins and ends in the same register, and as a result they degrade symmetrically. In addition, the aging effect slows down the logical path between the accumulator output to the accumulator input and thereby it contributes to improve hold margins. 
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Figure 5 – ResNet-18 Signal probability heatmap measurements for ResNet-18 inference on a sample of ImageNet images: (a) Accumulator bits 0-15, (b) Accumulator bits 16-31, (c) Weight bits 0-7, (d) Activation bits 0-5, (e) Activation bits 6-7, (f) Multiplier bit 0, and (g) Multiplier bits 1-15.

	SA Element
	SP
	SA utilization
	Sparsity
	Dynamic range

	Activations in region A
	Bits 5-0
	15-19%
	
	+
	+

	
	Bits 7-6
	<0.25%
	
	+
	+

	Activations in regions B, C, D
	Bits 5-0
	<5%
	+
	+
	+

	
	Bits 7-6
	<0.05%
	+
	+
	+

	Weights in region A
	Bits 7-0
	50%
	
	
	

	Weights in region B, C, D
	Bits 7-0
	<15%
	+
	
	

	Multiplier in region A
	Bit 0
	<10%
	
	+
	+

	
	Bit 15-1
	16-20%
	
	+
	+

	Multiplier in regions B, C, D
	Bit 0
	<7%
	+
	+
	+

	
	Bit 15-1
	<12%
	+
	+
	+

	Accumulator in region A
	Bits 15-0
	30-50%
	
	
	+

	
	Bits 31-16
	40-72%
	
	
	

	Accumulator in regions B, C, D
	Bits 15-0
	13-30%
	+
	
	+

	
	Bits 31-16
	15-40%
	+
	
	+

	
	
	TR
	
	
	

	Gated clock in region A
	
	30-40%
	
	+
	

	Gated clock in regions B, C, D
	
	5-27%
	+
	+
	


Table 1 – ResNet-18 Summary of SP and gated clock TR distribution with potential to asymmetric aging timing violations
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Figure 6 – ResNet-50 Signal probability heatmap measurements for ResNet-50 inference on a sample of ImageNet images: (a) Accumulator bits 0-15, (b) Accumulator bits 16-31, (c) Weight bits 0-7, (d) Activation bits 0-5, (e) Activation bits 6-7, (f) Multiplier bit 0, and (g) Multiplier bits 1-15.
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Figure 7 –Accumulator and multiplier gated clock toggle rate: (a) ResNet-18 and (b)ResNet-50 
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Figure 8 – Examined timing path groups of timing in a PE

	Logical path
	Setup WNS [ps] before / after asymmetric aging
	Hold WNS [ps] before/after asymmetric aging

	
	Region A
	Region B
	Region C
	Region D
	Region A
	Region B
	Region C
	Region D

	A2A
	2605/2598
	2605/2598
	2605/2598
	2605/2599
	0/-2
	0/-4
	0/-3
	0/-3

	W2W
	2576/2573
	2576/2571
	2576/2571
	2576/2571
	0/-1
	0/-1
	0/-2
	0/-1

	AW2M
	1038/910
	1038/906
	1038/908
	1038/905
	0/-3
	0/-3
	0/-3
	0/-3

	M2AC
	119/-32
	119/-44
	119/-38
	119/-49
	0/-1
	0/-2
	0/-2
	0/-2

	AC2AC
	0/-155
	0/-170
	0/-162
	0/-174
	30 / 31
	30 / 31
	30 / 31
	30 / 32


Table 2 – Summary of the Worst Negative Slack (WNS) of timing violations in the SA as a result of asymmetric aging

	
	Number of violated setup paths  
	Number of violated hold paths

	Logical path
	Region A
	Region B
	Region C
	Region D
	Region A
	Region B
	Region C
	Region D

	A2A
	0
	0
	0
	0
	8,606
	9,150
	7,680
	12,000

	W2W
	0
	0
	0
	0
	8,606
	8,606
	7,872
	7,680

	AW2M
	0
	0
	0
	0
	4,303
	4,303
	3,840
	3,840

	M2AC
	4,303
	4,303
	3,840
	3,840
	8,606
	47,333
	34,560
	42,240

	AC2AC
	9,822
	12,909
	11,520
	11,520
	0
	0
	0
	0

	Total 
(Percentages of violating paths out of total number of paths)
	14,125 (0.00014%)
	17,212
 (0.00017%)
	15,360 (0.00015%)
	15,360 (0.00015%)
	30,121 (0.0003%)
	69,392 (0.0007%)
	53,952 (0.0005%)
	65,760 (0.00065%)


Table 3 – Summary of the total number of timing violations in the SA due to asymmetric aging

4. Fault Analysis
	Our fault injection experimental model examines the impact of timing violations due to asymmetric aging on the prediction accuracy of the DNN model. When timing paths are violated, it may cause flip-flops to turn into meta-stable state resulting in bit flips. In severe cases, when the data consistently misses the boundaries of the flip-flop sampling window, it may even manifest as persistent errors. The rate of entering a meta-stable state in a flip-flop when timing constraints are violated is provided using Equation 2 ([[48]]): 


Equation 2 – Metastability failure rate

	Where S is a pre-determined time for metastability resolution, FC is the clock frequency and FD is the data transition rate. Both 𝜏 and 𝑇𝑊 are flip-flop intrinsic circuit parameters which represent the resolution time constant and the metastability window width respectively. When plugging in the design parameters of our 28nm SA into Equation 2 and considering the resolution time available for every path group to resolve the failure events, it produces the FIT rate summarized in Table 3 per a single flip flop with timing violation.

	Path group
	Failure events in an inference

	A2A
	0.01

	W2W
	0.01

	AW2M
	853

	M2AC
	853

	AC2AC
	853


Table 3 – Failure events per single flip-flop with timing violations in an inference for every path group.

When considering both setup and hold timing violations for our fault injection model, the overall number of flip-flop failure events can reach up to 190 million per single inference. We perform a sensitivity analysis of the DNN model prediction accuracy to the number of flip-flop failure events in every inference. In our sensitivity analysis, we increase the number of failure events in every inference in steps of 10,000 (0.00526% of the overall number of failure events predicted by Equation 2). Additionally, the failure events are distributed randomly over all DNN layers, excluding the first and last layers. Within a model layer, all flip-flop failure events are randomly distributed over time. We run every image inference five times and calculate the average prediction accuracy. Figure 9(a) presents the sensitivity of ResNet-18 prediction accuracy when the fault injection model is considered. It can be observed that by considering less than 0.00001% of the overall failure events, the prediction accuracy of the model drops by 40%. In addition, when less than 0.00005% of the failure events are considered, the model prediction accuracy drops to nearly 0%. 
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(a)
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(b)
Figure 9 – ResNet-18 Inference with fault injection: (a) Prediction accuracy and (b) flip-flop failure rate.

	The next step in our fault injection analysis considers only hold timing violations, assuming that setup violations can be mitigated by reducing the clock frequency. The hold fault injection analysis is performed with a failure event distribution similar to the combined setup-and-hold analysis. In the case of hold-related faults, the overall number of flip-flop failure events can reach up to 127 million per single inference. In our analysis we increase the number of failure events in every inference in steps of 10,000, which is 0.008% of the overall number of failure events predicted by Equation 2. Figure 9(b) illustrates the sensitivity of ResNet-18 prediction accuracy when hold-related faults are considered. It can be observed that by considering less than 0.7% of the overall failure events, the prediction accuracy of the model drops by 40%. Such a significant reduction in prediction accuracy, even when setup violations are excluded and only a small portion of the overall hold failure events are considered, suggests that asymmetric aging can induce catastrophic functionality failures in SAs and DNN models. Therefore, developing mitigation techniques for asymmetric aging is crucial to maintain DNNs' resiliency.	
5. Asymmetric Aging Mitigation Strategies
	In this study we identify several approaches to mitigate asymmetric aging in ML accelerators. We demonstrate these techniques on SAs; however, they are applicable to ML accelerators in general. Our mitigation techniques include:
1. Introducing a new clock gate circuitry to alleviate asymmetric aging of clock buffers.
2. Adding timing guard band to the clock cycle time to mitigate setup violations.
3. Selective hold violation fixes. 
4. Presenting a completed design flow for ML accelerators which integrates the flows and analysis described through this paper.
	Through this study, we observe that clock gate circuitries promote asymmetric aging on clock branches, resulting in severe timing violations. A common clock gate circuitry is illustrated in Figure 10(a), which consists of a latch and an AND gate. When the enable signal, En, is set to logical 1, the clock signal is allowed to propagate through the clock branch. However, when the enable signal is set to logical 0, the clock path is maintained under a constant logical state of 0, which encourages BTI stress. To overcome the limitation of the common clock gate, we propose a novel symmetric clock gate circuitry that is illustrated in Figure 10(b). In the new clock gate, the logical state of the gated clock can be controlled by the mode signal. When mode is set to logical the 0, the symmetric clock operates like the original clock gate, i.e., the gated clock logical state is 0. However, when mode is set to logical when the gated clock state will be logical 1. The proposed clock gate is free from static hazards, allowing the mode signal to be toggled at a low rate by the SA control logic. This ensures that when the clock is gated, it spends nearly an equal amount of time in logical 1 and logical 0 states. 
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(a)
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(b)
Figure 10 – (a) A typical clock gate circuitry and (b) A Symmetric clock gate circuitry

Our aging profiling simulation shows that the usage of the symmetric clock gate achieves a SP of approximately 50% on the gated clock. In addition, the timing analysis of the SA with the symmetric clock gate is summarized and compared to the conventional clock gate in Table 4. It can be observed that the symmetric clock gate improves the hold WNS by 50% in most of the violated path groups. In addition, it reduces the number of hold violations by 55%. The timing analysis also shows a negligible impact of the symmetric clock gate on setup violations. Our synthesis and place-and-route analysis indicates that symmetric clock gates introduce an overhead of 1% to the total cell area, which can be absorbed by the implementation tools with no overhead to the overall floorplan area. In addition, the symmetric clock gate power overhead is nearly 0.09% of the total SA power.

	Path groups
	WNS with conventional (Table 2) / 
symmetric clock gate [ps]

	
	Setup
	Hold

	A2A
	2598/2569
	-4/-2

	W2W
	2571/2573
	-2/-1

	AW2M
	905/904
	-3/-2

	M2AC
	-49/-50
	-2/-1

	AC2AC
	-174/-174
	31/31

	

	
	Number of violated paths with conventional 
(Table 3) / symmetric clock gate [ps]

	
	Setup
	Hold

	A2A
	0 / 0
	37436 / 32572 (-13%)

	W2W
	0 / 0
	32764 / 16286 (-51%)

	AW2M
	0 / 0
	16286 /16286 (0%)

	M2AC
	16286 / 16286
	132739 / 32572 (-75%)

	AC2AC
	45771 / 45771
	0 / 0 (0%)

	Total
	62057 / 62057
	219225 / 97716 (-55%)


Table 4 – Path groups failure rate per single flip-flop with timing violations.

	Overcoming setup timing violations requires tightening the clock cycle time and considering aging degradation in timing closure. Our timing results, summarized in Table 4, indicate that the setup WNS is -174ps, which can be mitigated by tightening the clock cycle time by 7%. Table 5 presents our power analysis, which indicates that such a mitigation approach introduces a 1.3%, 8%, and 7.25% increase in leakage power, dynamic power, and total power, respectively. In addition, our SA area analysis indicate that this approach involves negligible area overhead since logical cells on the critical path are swapped with lower Vth cells that have similar area footprint. It should be noted that an alternative approach for tightening the clock cycle is to compromise SA performance and reduce its clock frequency by 7%.

	
	Leakage Power
	Dynamic Power
	Total Power

	SA (original)
	156.4mW
	1,249mW
	1405.4mW

	SA with aging clock cycle guard band
	158.51mW
(+1.3%)
	1,348.8mW
(+8%)
	1507.3mW
(+7.25%)


Table 5 – Power consumption of SA with aging guard band versus the original SA.

	The remaining timing violations after employing the previously described techniques are the hold violations that have not been solved by the symmetric clock gate. This time, we selectively fix hold violations based on their contribution to the failure rate. Table 3 indicates that both A2A and W2W failures occur at a relatively low rate. Additionally, our fault injection simulations also indicate that such faults have an unobservable impact on the DNN prediction accuracy. Therefore, we consider fixing only the AW2M and M2AC hold violations. The fix process for the remaining hold violations is done by adding a delay buffer to the violated logical path. Our area and power analysis indicates that these remaining fixes incur 0.07% and 0.01% area and power overhead, respectively, with no impact on clock cycle time. Table 6 summarizes the overall power and area overhead for the presented asymmetric aging mitigation techniques.

	
	Power overhead
	Area overhead

	Symmetric clock gate
	0.09%
	1%

	Clock cycle guard band
	7.25%
	0%

	Selective hold violation fixes.
	0.01%
	0.07%

	Total
	7.85%
	1.07%


Table 6 – Asymmetric aging mitigation: Power and area overhead.

	Last, we summarize the complete design flow for ML accelerators, which integrates the flows and analysis described in this paper. The full flow is depicted in Figure 11 and consists of the following stages:
1. Dataset preparation
2. DNN accelerator simulation on the related dataset.
3. Aging profile produced by functional simulation, which consists of SP measurements for the building blocks of the DNN accelerator.
4. Synthesis and place-and-route of the DNN accelerator HDL model.
5. Timing analysis combined with aging libraries and the aging profiles produced in stage 3.
6. Generation of timing reports for all setup and hold timing violations.
7. Fault injection analysis, which combines DNN accelerator functional simulation with fault injections for the violated paths.
8. Failure rate report, which provides the impact of faults on the overall model accuracy.
9. Timing fixes, which combine symmetric clock gating, clock cycle guard band, and selective fixes for hold violations. The necessary timing fixes are then pushed to the place-and-route tool to be implemented in the design. Stages 4-9 are repeated until the design is found to be free from timing violations that affect model accuracy.
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Figure 11 – Asymmetric aging aware design flow for ML accelerators.

6. Conclusions
Summary
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