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[bookmark: _GoBack]Concrete plays a key role in construction worldwide, yet its annual production of over four billion tons contributes considerably to the engineering industry’s carbon footprint. To produce clinker raw materials are subjected to extreme temperatures requiring substantial energy consumption. In addition, limestone decomposition releases carbon dioxide amounting to as much as 10% of global greenhouse gas emissions whose reduction necessitates building more efficiently. Additional benefits of improved concrete performance include upgraded building safety and infrastructure durability. As concrete cracking jeopardizes service life, an accurate concrete behavior prediction tool is required to ensure the safety of structures particularly vulnerable to brittle failure. To assess levels of brittle failure we propose an innovative methodology combining experiments and multi-scale simulations. Our approach involves developing an energy equation using automated simulations to compute critical volumetric fracture density. By controlling for brittle failure, this method may ultimately deliver a tool to enhance concrete performance, less conservative structural design and use of thinner elements. Brittle failure occurs when a crack length surpasses a critical length; as no more additional energy is required to create further cracks, this unstable situation can result in catastrophic failure. Conversely, a stable crack requires additional energy in order to propagate. This well-established definition of critical crack length fails to consider the voids inherent in concrete’s internal geometry. Factoring actual geometry into automated simulations will likely result in more precise evaluation of the degree of concrete brittleness for diverse structural scenarios. However, modeling the growth and propagation of cracks is complex due to their nonlinear behavior as well as to the diversity of load-dependent mechanisms involved. We base our method on the Lattice Discrete Particle Model (LDPM), a numerical method that manages plasticity in addition to fracture behavior. To define our proposed equation for determining volumetric fracture density, we incorporate two phenomena into the currently existing LDPM to improve upon its ability to simulate material behavior under severe loading. Our first improvement entails developing a lattice model for high-strain rate concrete response, a formulation that will account for fracture throughout concrete aggregate. This feature is crucial as under conditions of high-strain rate load the cracking paths through aggregate tend to be straighter, first causing rapid fracture, then brittle failure. Our second improvement will enable the LDPM to simulate entrapped air, e.g., elongated and non-spherical voids. Construction techniques often generate such irregularly shaped air voids; the current LDPM equation treats these voids without regard for irregular shapes. Since these voids behave as stress-releasing margins, their development significantly affects the course of fracturing during failure. While making incremental improvements to LDPM, we will conduct numerical mesoscale simulations and experiments to verify bulk damage mechanisms under high pressure and confined conditions; these will be carried out at two different scales in order to facilitate exchange of concurrent information between models and experiments. Simulation results from the calibrated and validated lower scale will then be used to determine the mechanical parameters required to simulate a full-scale beam. Subsequent full-scale simulation and testing will result in the stress-strain curve analyzed to determine an equation taking into account volume and shape of aggregate and void content, loading rate, and estimated volumetric fracture density indicating level of brittleness. Automated simulations using varied geometries will ensure equation reliability and applicability to a wide range of structures. The proposed research offers a tool valuable to managing the level of concrete's brittleness, thereby extending its residual state. Better comprehending the behavior of cementitious materials will lead to advances in the design of durable, resilient structures, use of thinner elements and minimized amounts of concrete used in repairs, significantly reducing material waste and construction’s environmental impact. 
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releasing margins, their development significantly affects the course of fracturing during failure. While making 
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bulk damage mechanisms under high pressure and confined conditions; these will be carried out at two different 
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tool valuable to managing the level of concrete's brittleness, thereby extending its residual state. Better 

comprehending the behavior of cementitious materials will lead to advances in the design of durable, resilient 
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