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Abstract

The Stochastic Volatility in Mean (SVM) model represents an advancement of Stochastic
Volatility (SV) models, wherein the latent volatility is incorporated as an explanatory variable
in both the mean and variance equations. This integration facilitates the assessment of the
relationship between returns and volatility, albeit at the expense of complicating the estimation
process.

This study introduces a Bayesian methodology that leverages data cloning algorithms to
obtain maximum likelihood estimations for SV and SVM model parameters. By adopting this
Bayesian framework, approximate maximum likelihood estimations can be attained without the
need to maximize pseudo-likelihood functions. The key contribution of this paper lies in the
proposition of an estimator for the SVM Model, which effectively approximates the maximum
likelihood estimator through the utilization of Bayesian algorithms. Notably, these estimations
yield superior outcomes when compared to those derived from the Markov Chain Monte Carlo
(MCMC) method in terms of standard errors, all the while being independent of the selection
of prior distributions.

Keywords: Data cloning, Bayesian inference, Stochastic Volatility, Stochastic Volatility in
Mean, Bitcoin.
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1 Introduction

When analyzing time series of financial asset returns it is necessary to consider their specific
properties, paying special attention to the behavior of volatility, such as heteroscedasticy, volati-
lity clustering (Mandelbrot, 1963 and Tseng and Li, 2011), and excess leptokurtosis (Koopman
and Uspensky, 2002). To account for these properties, models such as GARCH (Bollerslev, 1986
and Katsiampa, 2017) and Stochastic Volatility (SV) (Taylor, 1982 and Taylor, 1994) have been
developed.

GARCH models define the conditional variance as a function of past squared innovations
and lagged conditional variances (Manera et al., 2016 and Chan and Grant, 2016). In contrast,
variance in SV models is characterized as an unobserved component that follows a stochastic
process (Koopman and Uspensky, 2002, Trolle and Schwartz, 2009, Brooks and Prokopczuk,
2013).

Moreover, the SV model captures the deviation of returns from the mean using a function of
two disturbance terms, whereas the GARCH model relies on a single disturbance term (Koop-
man and Uspensky, 2002). This added complexity in the SV model allows for more flexibility
(Asai et al., 2006, Balcilar and Ozdemir, 2019) and improved accuracy in capturing the vo-
latility clustering of financial series (Kim et al., 1998, Yu, 2002, Carr et al., 2003, Chan and
Grant, 2016, Tiwari et al., 2019, Agbeyegbe, 2022). Additionally, SV model is better equipped
to handle the negative relationship between volatility and returns. Furthermore, SV models are
more robust to misspecification and to radical changes in the data (Tiwari et al., 2019, Balcilar
and Ozdemir, 2019), in addition to better estimating the properties of the financial series.

Recently, Stochastic Volatility in Mean (SVM) model has emerged as a further refinement
of the SV model. This model allows for the simultaneous modeling of the mean and variance of
financial time series data, allowing the simultaneous analysis of the relationship between volati-
lity and returns, which is an important aspect of financial modeling (Koopman and Uspensky,
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2002). Other models, such as ARCH-M and GARCH-M, also attempt to estimate this rela-
tionship, but they do not provide simultaneous estimation of the ex ante relationship between
volatility and returns. Therefore, it is expected that SVM models will provide more accurate
estimates of the behavior of financial time series data when analyzing leverage effects (Bouchaud
et al., 2001) and the effect of volatility feedback (Koopman and Uspensky, 2002).

While SV models have been shown to be superior to GARCH models in the literature, they
are not as widely used due to their complexity in estimation. This is because of the difficulty to
directly evaluate the likelihood function and because they require estimating both return and
volatility at the same time.

Various techniques have been used to estimate Stochastic Volatility (SV) models, including
methods based on the method of moments (Taylor, 1986, Melino and Turnbull, 1990, Renault,
2009) and likelihood-based methods. The estimators of moments have the advantage of not
requiring a likelihood assessment to obtain them, but their efficiency is known to be suboptimal
compared to likelihood-based inference methods (Sandmann and Koopman, 1998). However,
likelihood-based methods have limitations such as being computationally intensive, requiring
excessive simulation efforts, and making assumptions that can be difficult to satisfy. Financial
markets often require real-time decision making, which requires computationally fast and robust
estimators that require less sampling (Yang et al., 2021).

Bayesian methods, such as Monte Carlo Markov Chain (MCMC) (e.g., Shephard, 1993,
Jacquier et al., 1994, Kim et al., 1998, Broto and Ruiz, 2004, Andrieu et al., 2010, Beskos et al.,
2013, Kastner et al., 2017, Li et al., 2019) and Integrated Nested Laplace Approximations (Mar-
tino et al., 2011), are a good solution for estimating the parameters of SV models as they allow
for efficient evaluation of the posterior distribution of parameters and volatility. However, these
methods also have limitations such as requiring a prior distribution for parameters, a numerical
evaluation of the likelihood function, and potential problems with the convergence of simulated
chains (Rue et al., 2009).

This paper proposes the use of a different approach called data cloning (Lele et al., 2007),
for parameter estimation, utilizing the computational simplicity of MCMC algorithms while
enabling frequentist inferences such as maximum likelihood estimates and standard errors. The
method involves applying a Bayesian methodology to a data set constructed by cloning the
original data set as many times as necessary so that the solution approximates the maximum
likelihood solution (Ponciano et al., 2009 and Chaim and Laurini, 2022). The main advantage of
using data cloning over other Bayesian methods is that the inferences are invariant to the choice
of the prior distributions, and does not require likelihood estimation. Overall, data cloning is a
powerful method for estimating and studying complex models, specially when analyzing volati-
lity.

We propose the use of this methodology to estimate parameters of SV and SVM models, as
it has been shown to be particularly useful for complex models, as discussed in studies by Lele
et al., 2007, Ponciano et al., 2009, Sólymos, 2010 and Chaim and Laurini, 2022. Recently, this
method has been succesfully used to estimate parameters of other complex financial models in
Maŕın et al., 2015 and de Zea Bermudez et al., 2020. Although it is beyond the scope of this
article, models are recently being developed to estimate volatility in the valuation of financial
options, using two volatility components (Pasricha and He, 2023 and Lin and He, 2023). These
models are strong candidates for using an algorithm similar to the one we constructed in this
paper to estimate their parameters.

3



This paper makes three important contributions to the literature. First, it provides an al-
gorithm to estimate SV and SVM model parameters based on data cloning method. This is a
simpler way of estimating SVM that allows obtaining frequentist inferences without estimating
likelihood. Second, we perform an analysis with simulated data using the proposed algorithm
and show that its estimates are more accurate than the obtained using MCMC. Third, in order
to evaluate the predictive ability of the model over a real financial series, the methodology is
applyied to model Bitcoin returns, obtaining new conclusions about the relationship between
volatility and profitability in cryptocurrencies, conclusions that can only be obtained with the
SVM method.

The structure of the article is as follows. In section 2, we specify the SV and SVM models
in order to be able to estimate it later on. In section 3, we explain the data cloning method
in general, and then in section 4 we develop the algorithms to apply this method to SV and
SVM models. In this section, we also obtain the results and compare them with the MCMC
methodology, demonstrating that the data cloning methodology is superior. In section 5 we
apply SVM to a real example of financial series (Bitcoin) and analyze the relationship between
return and volatility, checking if the hypotheses of leverage effect and volatility feedback are
fulfilled. Finally, in section 6 we present the main conclusions of the paper.

2 Definition and specification of SV and SVM mo-

dels

Definition 1. The Stochastic Volatility model defines the returns of the process Yt in
discrete time t as

Yt = µt + σtϵt, ϵt ∼ NID(0, 1), (1)

µt = a+

k∑
i=1

bixi,t, for t = 1,2,... . (2)

Here xi,t can be both, independent variables or lags of the dependent variable. The mean µt also
depends on a constant a and bi for i = 1, · · · , k regression coefficients. The volatility process,
σ2
t is defined as

σ2
t = σ∗2eht , (3)

where σ∗2 is a positive scaling factor and ht is a stochastic process defined as

ht = ϕht−1 + σηηt, ηt ∼ NID(0, 1). (4)

In (4) ϕ and ση are model parameters. Parameter ση is the variance of the independent and
identically distributed normal variables ηt, while ϕ is the volatility persistence parameter. It is
important for ϕ to be positive and smaller than 1 (ϕ ∈ (0, 1)) to ensure stationarity.

It could be assume that in (3), σ2
t is specified in logarithmic form, considering that ht =

ln
(
σ2
t /σ

∗2).
SV model has two sources of variability by means of two independent and mutually incorre-

lated disturbance terms, ϵt and ηt. This constitutes the main difference with GARCH models
(Bollerslev, 1986 and Koopman and Hol Uspensky, 2002). The unconditional variance implied
in SV model is

σ∗2e
ση

2(1−ϕ2) .
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One important characteristic of SV models is that they capture part of the excess of kurtosis
that financial series present. The kurtosis of SV series is defined by

ky =
kϵE(σ4

t )

(E(σ2
t )

2)
= 3e

σ2
η

1−ϕ2 .

Definition 2. The returns of Stochastic Volatility in Mean (SVM) model is defined as (1) and
its mean is defined as

µt = a+

k∑
i=1

bixi,t + dσ2
t , (5)

where parameter d is measuring the effect of volatility in the mean of the process.

The variance of SVM model is defined by equations (3) and (4).

The inclusion of variance in the mean equation allows for a better understanding of the rela-
tionship between returns and volatility. It makes possible to perform studies like French et al.,
1987 and analyze the returns’ partial dependence of volatility, as all financial theory assesses
(Koopman and Hol Uspensky, 2002).

3 Data cloning estimation

The estimation of these models, particularly SVM, is not straightforward. Therefore, this
paper proposes a technique based on data cloning to obtain approximations of the maximum
likelihood estimators through Bayesian algorithms. The main idea is to clone the series k times
and assume that each series represents an independent trajectory of the process. We consider all
trajectories to be equal because the trajectory with the highest probability is the one obtained.
Although the heuristic explanation alludes to the independence of the cloned trajectories, the
mathematical proof of the algorithm does not rely on this assumption and in no case does it
assume that the k clones are independent.

This method was introduced by Lele et al., 2007 and Lele et al., 2010 as a means to obtain
maximum likelihood approaches for parameters of complex models where direct maximization
of the likelihood is infeasible.

The data cloning method offers an effective solution for estimating the parameters of SV and
SVM models as it avoids the need for direct maximization of the likelihood function. Instead,
it utilizes Bayesian algorithms to approximate the likelihood. Moreover, this methodology is
not reliant on the specific prior distributions chosen, resulting in improved solutions compared
to those provided by MCMC estimators.

Previous studies by Laurini, 2013 and de de Zea Bermudez et al., 2020 have successfully
applied this method to estimate the SV model, albeit using a less general model. Their findings
demonstrate enhanced accuracy in parameter estimation compared to the standard Bayesian
approach. Therefore, we aim to assess the effectiveness of this method in the context of a more
general SV model and the SVM model.

The data cloning method begins with an observed data set y = (y1, y2, ..., yn) and the prior
distributions for the parameters. It utilizes the posterior distribution of the parameter set θ,
denoted as π(θ|y), which is proportional to the likelihood function L(θ|y) multiplied by the
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prior distribution π(θ). This posterior distribution is then used to generate samples using a
MCMC method. In the data cloning method, samples are drawn from the posterior distri-
bution π(k)(θ|y), which is proportional to the k-th power of the likelihood function [L(θ|y)](k)
multiplied by the prior distribution π(θ).

The data cloning method is based on the principle that when k is sufficiently large, π(k)(θ|y)
converges to a multivariate normal distribution with the maximum likelihood estimator of the
model parameters as its mean. Additionally, the covariance of this multivariate normal dis-
tribution is equal to 1/k times the inverse of the Fisher information matrix for the maximum
likelihood estimator (Lele et al., 2007). Based on this, the data cloning algorithm can be sum-
marized in the following steps:

Step 1: Create k-cloned data set y(k) = (y,y, . . . ,y) by cloning the observed data set k times.
Each copy of y is treated as an independent sample path of the same process.

Step 2: Use a MCMC method to generate random values from the posterior distribution.
Start the algorithm with the prior distribution π(θ) and the cloned data vector y(k) =
(y,y, . . . ,y).

Step 3: After running the MCMC method for a total of B iterations, compute the sample
mean and variance of the obtained values for the marginal posterior distribution, denoted
as (θ)j , where j = 1, . . . , B. The sample means correspond to the maximum likelihood
estimates, while the approximate variances of the maximum likelihood estimates are k
times the posterior variances.

4 Data cloning algorithms to estimate SV and SVM

models

In order to facilitate the estimation algorithms for both models, the estimation of the cons-
tant parameter will be excluded. Although it is possible to include this parameter in the
algorithms, its inclusion significantly increases computation time as it requires a higher number
of clones. However, after conducting several empirical tests, it has been observed that excluding
the constant parameter does not significantly affect the results. Therefore, it has been decided
to omit it in the simulations and work with variables in differences.

4.1 Data cloning estimator for SV model

The algorithm based on data cloning method will be able to estimate the model parameters
for the SV model described in section two by equations (1), (3) and (4) and simplifying equation
(2) to

µt = bỹt−1, (6)

being ỹ = yt − ȳ (the returns in differences).

The model will be described to include just one autorregressive term. More autoregresive
terms, or other kind of terms, could be easily included if necessary, but each included term will
probably increase the required number of clones to achieve convergence, and consequently the
computation time.

This model is characterized by four parameters: ϕ, ση, σ
∗2, b.

To apply data cloning method is required to design a MCMC procedure, which makes ne-
cessary to choose prior distributions, even thought it is proved that they do not affect the final
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results (see Lele et al., 2007). Considering that, the following vaguely informative distribu-
tions will be chosen as prior distributions: ϕ ∼ U(0, 1), ση ∼ U(0, 10), σ∗2 ∼ U(0, 10) and
b ∼ U(−10, 10).

The joint posterior distribution is obtained assuming that Yi ∼ N(µt, σ
2
t ) with µt defined in

(6) and σ2
t defined in (3), so the likelihood function of SV model is:

L
(
b, σ∗2, ϕ, ση|ỹ

)
=

(
n∏

i=1

1√
2πσ∗2ehi

)
exp

{
− 1

2σ∗2

n∑
i=1

(ỹi − bỹi−1)
2

exp(hi)

}
,

being hi defined by (4). With this likelihood function, the joint posterior is

π(k)(ϕ, ση, σ
∗2, b) ∝

[
L(ϕ, ση, σ

∗2, b|ỹ)
]k

π(ϕ)π(ση)π(σ
∗2)π(b)

∝
(∏n

i=1 2πσ
∗2ehi

)−k/2
exp

{
− k

2σ∗2
∑n

i=1
(ỹi−bỹi−1)

2

exp(hi)

}
·I(0,1)(ϕ)I(0,10)(ση)I(0,10)(σ∗2)I(−10,10)(b).

And the conditional posterior distributions for the parameters are

π(k)(ϕ|ση, σ∗2, b, ỹ) ∝

(
N∏
i=1

σ∗2ehi

)− k
2

exp

{
− k

2σ∗2

n∑
i=1

(ỹi − bỹi−1)
2

exp(hi)

}
I(0,1)(ϕ),

π(k)(ση|, ϕ, σ∗2, b, ỹ) ∝

(
N∏
i=1

σ∗2ehi

)− k
2

exp

{
− k

2σ∗2

n∑
i=1

(ỹi − bỹi−1)
2

exp(hi)

}
I(0,10)(ση),

π(k)(σ∗2|ϕ, ση, b, ỹ) ∝

(
N∏
i=1

σ∗2ehi

)− k
2

exp

{
− k

2σ∗2

n∑
i=1

(ỹi − bỹi−1)
2

exp(hi)

}
I(0,10)(σ

∗2),

π(k)(b|ϕ, ση, σ∗2, ỹ) ∝

(
N∏
i=1

σ∗2ehi

)− k
2

exp

{
− k

2σ∗2

n∑
i=1

(ỹi − bỹi−1)
2

exp(hi)

}
I(−10,10)(b).

Data cloning algorithm starts from an initial solution ϕ(0), σ
(0)
η , σ∗2(0), b(0) and from the

conditional posterior distributions, it generates values for ϕ(m), σ
(m)
η , σ∗2(m), b(m) in each itera-

tion m. The initial values will be simulated directly from the prior distributions, since it is not
necessary to use specific values to achieve convergence in a reasonable time.

After a large enough number of iterations, a sample will be obtained to constitute the
posteriors whose means will be an approach to the maximum likelihood estimations of the
model parameters. The steps of this algorithm can be summarized as follows:

Step 1: Set initial solution at m = 0 as: ϕ(0), σ
(0)
η , σ∗2(0) and b(0).

Step 2: Generate ϕ(m+1) from its conditional posterior distribution

ϕ(m+1) ∼ π(k)(ϕ|ση, σ∗2, b, ỹ).

Step 3: Generate σ
(m)
η from its conditional posterior distribution

σ(m)
η ∼ π(k)(ση|ϕ, σ∗2, b, ỹ).
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Step 4: Generate σ∗2(m) from its conditional posterior distribution

σ∗2(m) ∼ π(k)(σ∗2|ϕ, ση, b, ỹ).

Step 5: Generate b(m) from its conditional posterior distribution

b(m) ∼ π(k)(b|ϕ, ση, σ∗2, ỹ).

Step 6: Set m = m+ 1 and go to Step 2.

This algorithm has been implemented using the package dclone (Sólymos, 2010) from the
R project (R Core Team, 2012).

To test the performance of the algorithm in estimating the parameters of the SV model, a
sample path of this model has been simulated. This allows for a comparison between the real
parameters and the estimated ones. A simulator for this model has been developed using R
to generate the series, which consists of 245 values, approximately representing the number of
working days in a year. This is done to assess the performance of the algorithm when conside-
ring the annual evolution of the daily returns of a financial asset. The selected parameter values
for simulating the model are: ϕ = 0.97, ση = 0.12, σ∗2 = 0.2 and b = 0.2.

The data cloning algorithm requires determining the optimal number of clones. This is
achieved by evaluating the maximum eigenvalue of the posterior variance, the minimum squared
error, the R2 statistic, and the R̂ criterion (Lele et al., 2010 and Brooks and Gelman, 1998). All
these metrics can be computed using the dclone package. Based on these results, no significant
improvements were found by using more than 20 clones, so the optimal number of clones is fixed
at 20.

The results obtained by applying the algorithm to a single sample path are presented in
Table 1. The table displays the real values for all parameters, the estimated parameters, the
standard errors, and the 95% confidence intervals in columns. Additionally, the last two columns
include the parameter estimates using an MCMC estimator and the corresponding estimation
standard errors. This allows for a comparison with the results obtained using data cloning.

Parameter Real Data cloning S.D. 95% confidence MCMC S.D.
Value Estimations Intervals Estimations (MCMC)

ϕ 0.97 0.8879 0.03931 (0.5433, 1.2324) 0.8335 0.2077
ση 0.12 0.1478 0.03758 (−0.1816, 0.4771) 0.1910 0.1220
σ∗2 0.2 0.2130 0.06577 (−0.3635, 0.7895) 0.2036 0.0392
b 0.2 0.2192 0.01462 (0.0911, 0.3474) 0.1199 0.0676

Table 1: Estimation for Stochastic Volatility model parameters using data cloning method.

It can be observed that, considering only one simulated sample path, the estimator produces
values that closely match the real values used to generate the path. Additionally, the standard
errors of the estimation are very small for all cases, indicating that the estimator yields good
results based on a single sample path. Moreover, all real values fall within the 95% confidence
intervals, as expected.
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Comparing these results with those obtained using a traditional MCMC estimator, data
cloning demonstrates superior performance in almost all cases. It provides estimates with
smaller standard errors that do not depend on the selected priors.

Figure 1: Histograms of the posterior distributions of the Stochastic Volatility model parameters

Figure 1 shows the posterior distributions obtained by the data cloning algorithm, letting
understand better the behavior of the estimates. We observe a slight tendency to underestimate
the value of ϕ, but for the remaining parameters, the higher probabilities of the posterior density
function closely align with the true parameter values.

It should be noted that data cloning estimators are approximations to maximum likelihood
estimators, so they will have the same analytical properties.

4.2 Data cloning estimator for SVM model

The estimator for SVM based on data cloning method also requires simplifying the mean
equation (5), in order to work with the returns in differences and fix the variables to be used.
Thus, the equation of the mean is defined by

µt = bỹt−1 + dσ∗2eht . (7)

Again, a unique autorregressive term has been included to simplify the algorithm execution.
Thus, the model has five parameters: ϕ, ση, σ

∗2, b and d, one more than SV model, to include
ht in the mean equation.

The prior distributions to be used in the algorithm are: ϕ ∼ U(0, 1), ση ∼ U(0, 10),
σ∗2 ∼ U(0, 10), b ∼ U(−10, 10) and d ∼ U(−10, 10).

The joint posterior distribution will be obtained considering that Yi ∼ N(µt, σ
2
t ) with µt

defined in (7) and σ2
t defined in (3), so the likelihood function of SVM model is

L
(
ϕ, ση, σ

∗2, b, d|ỹ
)
=

(
n∏

i=1

1√
2πσ∗2ehi

)
exp

{
− 1

2σ∗2

n∑
i=1

(
ỹi − bỹi−1 − dσ∗2 exp(hi)

)2
exp(hi)

}
,

being hi defined by (4).

Based on this likelihood function the joint posterior is

π(k)(ϕ, ση, σ
∗2, b, d) ∝

[
L(ϕ, ση, σ

∗2, b, d|ỹ)
]k

π(ϕ)π(ση)π(σ
∗2)π(b)π(d)

∝
(∏n

i=1 2πσ
∗2ehi

)−k/2
exp

{
− k

2σ∗2
∑n

i=1
(ỹi−bỹi−1−dσ∗2 exp(hi))

2

exp(hi)

}
·I(0,1)(ϕ)I(0,10)(ση)I(0,10)(σ∗2)I(−10,10)(b)I(−10,10)(d).
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From this likelihood, the conditional posteriors are:

π(k)(ϕ|ση, σ∗2, b, d, ỹ) ∝

(
N∏
i=1

σ∗2ehi

)− k
2

exp

{
− k

2σ∗2

n∑
i=1

(
ỹi − bỹi−1 − dσ∗2 exp(hi)

)2
exp(hi)

}
I(0,1)(ϕ),

π(k)(ση|ϕ, σ∗2, b, d, ỹ) ∝

(
N∏
i=1

σ∗2ehi

)− k
2

exp

{
− k

2σ∗2

n∑
i=1

(
ỹi − bỹi−1 − dσ∗2 exp(hi)

)2
exp(hi)

}
I(0,10)(ση),

π(k)(σ∗2|ϕ, ση, b, d, ỹ) ∝

(
N∏
i=1

σ∗2ehi

)− k
2

exp

{
− k

2σ∗2

n∑
i=1

(
ỹi − bỹi−1 − dσ∗2 exp(hi)

)2
exp(hi)

}
I(0,10)(σ

∗2),

π(k)(b|ϕ, ση, σ∗2, d, ỹ) ∝

(
N∏
i=1

σ∗2ehi

)− k
2

exp

{
− k

2σ∗2

n∑
i=1

(
ỹi − bỹi−1 − dσ∗2 exp(hi)

)2
exp(hi)

}
I(−10,10)(b),

π(k)(d|ϕ, ση, σ∗2, b, ỹ) ∝

(
N∏
i=1

σ∗2ehi

)− k
2

exp

{
− k

2σ∗2

n∑
i=1

(
ỹi − bỹi−1 − dσ∗2 exp(hi)

)2
exp(hi)

}
I(−10,10)(d).

The algorithm starts from an initial solution ϕ(0), σ
(0)
η , σ∗2(0), b(0) and d(0) and considering

these values generates the new ones (ϕ(m), σ
(m)
η , σ∗2(m), b(m) and d(m)) in each iteration (m)

from the conditional posterior distributions. The posterior sample will be obtained with them
and its arithmetic means will constitute the maximum likelihood estimations approach. The
algorithm steps can be summarized as follows:

Step 1: Set initial solution at m = 0 as: ϕ(0), σ
(0)
η , σ∗2(0), b(0) and d(0).

Step 2: Generate ϕ(m+1) from its conditional posterior distribution

ϕ(m+1) ∼ π(k)(ϕ|ση, σ∗2, b, d, ỹ).

Step 3: Generate σ
(m)
η from its conditional posterior distribution

σ(m)
η ∼ π(k)(ση|ϕ, σ∗2, b, d, ỹ).

Step 4: Generate σ∗2(m) from its conditional posterior distribution

σ∗2(m) ∼ π(k)(σ∗2|ϕ, ση, b, d, ỹ).

Step 5: Generate b(m) from its conditional posterior distribution

b(m) ∼ π(k)(b|ϕ, ση, σ∗2, d, ỹ).

Step 6: Generate d(m) from its conditional posterior distribution

d(m) ∼ π(k)(d|ϕ, ση, σ∗2, b, ỹ).

Step 7: Set m = m+ 1 and go to Step 2.

The package dclone (Sólymos, 2010) from the R project (R Core Team, 2012) has been
used again to program the algorithm, analogously to the way the data cloning algorithm was
programmed to estimate the SV model. Initial values have been simulated directly from the
prior distribution.
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The same procedure used for the SV model will be followed to analyze the quality of the
estimates. Therefore, a series with 245 observations will be simulated using the following para-
meters for the model: ϕ = 0.97, ση = 0.12, σ∗2 = 0.2, b = 0.2 and d = 0.1. The parameters of
the model will then be estimated using the series data, and the proximity of the estimated values
to the real values, as well as the standard errors of estimation, will be examined. Confidence
intervals will also be obtained for the parameters and it will be checked if they include the true
values.

To determine the optimal number of clones, the following criteria from the dclone package
will be employed: maximum eigenvalue of the posterior variance, minimum squared error, R2

and R̂ (Lele et al., 2010 and Brooks and Gelman, 1998). It can be noted that, as this model have
one more parameter, it is necessary to use a considerable higher number of clones to achieve
convergence. After trying several estimations it has been possible to conclude that 40 clones
are enough to make quality estimates that are not substantially improved by including a larger
number of clones. Hence, the optimal number of clones is set at 40.

The table 2 shows in columns the real data used to estimate the series, the estimates obtained,
the standard errors of estimation and the confidence intervals for each parameter. The table
also includes the estimates obtained using the MCMC method, with their respective standard
errors, for the purpose of comparing the estimation quality between the two methodologies.
Figure 2 displays the posterior distributions of the parameters obtained by the algorithm.

Parameter Real Data cloning S.D. Confidence MCMC S.D.
Value Estimations Intervals Estimations (MCMC)

ϕ 0.97 0.9717 0.0053 (0.9055, 1.0379) 0.9368 0.0810
ση 0.12 0.1386 0.0171 (−0.0736, 0.3509) 0.1878 0.0807
σ∗2 0.2 0.1831 0.0671 (−0.6493, 1.0155) 0.1717 0.0511
b 0.2 0.2548 0.0103 (0.1267, 0.3829) 0.2527 0.0654
d 0.1 0.1386 0.0171 (−0.1454, 0.4145) 0.1402 0.1408

Table 2: Estimation for Stochastic Volatility in Mean model parameters using data cloning method.

Only one trajectory has been considered and yet it can be seen how the estimation algorithm
provides values very close to the real values of parameters used to simulate it. The standard
errors of estimation are also small enough to support the quality of the obtained estimates.
Finally, it can be seen that the 95% confidence intervals include the real values of the parame-
ters and the estimations improve the obtained by a MCMC procedure in terms of estimation
standard errors. The histograms demonstrate the close correspondence between the estimated
SVM parameters and the real values. From the results obtained, it can be observed that in the
analyzed case, it overestimates the values of ϕ, σ∗2 and d, while underestimating the values of
ση and b.

Although it can be noted that the estimates based on a single trajectory are good enough,
different trajectories have also been estimated from the same parameters, obtaining as result
the average of all the estimates. As expected, this method provides values which are even closer
to the true values of the parameters. We do not include further details of this option as it may
not be applicable to real data, where only a single trajectory is available. However, it is worth
mentioning that this approach enhances the quality of the estimator by reducing variance and
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Figure 2: Histograms of the posterior distributions of the Stochastic Volatility in Mean model parameters

improving the accuracy of the mean value.

The algorithm has also been evaluated with different size sample paths, showing good per-
formance in all of them. It is observed that when the sample paths are small in size, the
estimation results depend to a greater extent on the path considered. In contrast, convergence
is achieved with a number of clones even smaller than the 40 clones proposed to be used. When
the size of the sample paths is moderately large, the estimates are more stable and depend less
on the considered path, but in some cases, it is necessary to use more than 40 clones to reach
convergence. Results are summarized in table 3.

Parameter Real Estimations (S.D.) Estimations (S.D.) Estimations (S.D.) Estimations (S.D.)
Value n = 100 n = 245 n = 500 n = 1000

ϕ 0.97 0.9635 (0.0054) 0.9717 (0.0053) 0.9893 (0.0039) 0.9631 (0.0024)
ση 0.12 0.1143 (0.0143) 0.1386 (0.0171) 0.1401 (0.0086) 0.1465 (0.0047)
σ∗2 0.2 0.4505 (0.0261) 0.1831 (0.0671) 0.5086 (0.1575) 0.2571 (0.0049)
b 0.2 0.1335 (0.0190) 0.2548 (0.0103) 0.1341 (0.0072) 0.2042 (0.0051)
d 0.1 -0.061 (0.0252) 0.1386 (0.0171) 0.0656 (0.0133) 0.1512 (0.0092)

Table 3: Estimation for Stochastic Volatility in Mean model parameters using data cloning method in sample paths
of different sizes.

5 Applications of estimators to real data: Bitcoin

There is no doubt about the importance of cryptocurrencies in the economy since the intro-
duction of Bitcoin to the markets in 2008 (Urquhart, 2016, Katsiampa, 2017, Akkus and Çelik,
2020). Cryptocurrencies exhibit higher volatility and are more susceptible to bubbles compared
to traditional currencies (Cheah and Fry, 2015). In addition, the volatility of Bitcoin returns
presents long memory, resulting in their analysis as financial assets rather than traditional cu-
rrencies. They are increasingly being included in financial portfolios and therefore modeling
volatility and its relationship to returns is very important in portfolio optimization, hedging
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and valuation of derivative securities. Bitcoin remains the most important cryptocurrency in
terms of market capitalization (Tiwari et al., 2019, Akkus and Çelik, 2020) and that is why
we are going to use it as an example. Tiwari et al. (2019) obtain that in general, SV mo-
dels consistently outperform the GARCH models when it comes to analyzing cryptocurrencies
(particularly in the case of Bitcoin and to a lesser extent in Litecoin). Moreover, they show
that in general using t-distributed innovations greatly improves the results of standard GARCH
models, but this result is not significant for SV models. Considering that, in this paper we use
innovations that follow a normal distribution. Nevertheless, the analysis can be easily extended
to incorporate a Student’s t distribution.

The data considered are the daily returns of the cryptocurrency from October the 1st of
2020 to March the 1st of 2021. Data set have been obtained from the Spanish financial news
website https://es.investing.com/.

5.1 Modeling Bitcoin returns using the SV model estimated by
data cloning method

To model real data by a SV model, since the estimation algorithm excludes the intercept
term, we will use the deviations from the mean of the data. Furthermore, the most recent
5 data values have been excluded, to be used later to test the predictions. The estimated
model parameters, the estimation standard errors and credible intervals are shown in table 4.
It also includes the estimates of the model parameters and corresponding standard errors using
the MCMC method in order to compare both methodologies. Bayesian confidence intervals
are included because they will be used to analyze the significance of the parameters from a
Bayesian point of view. However, as shown above, if a frequentist approach to the study is
desired, confidence intervals can be readily calculated. This is one of the advantages of the data
cloning methodology.

Parameter Data cloning S.D. HPD 0.95 MCMC S.D.
Estimations DC Estimations MCMC

ϕ 0.4722044 0.2779 (0.0170559, 0.9464303) 0.4165 0.26151
ση 0.1012176 0.06509 (0.0196413, 0.3175769) 0.4825 0.3382
σ∗2 0.0001425 7.516e− 6 (0.0001297, 0.0001603) 0.0001489 4.6174e− 5
b −0.2081462 0.02999 (−0.2671039,−0.1502172) −0.1194 0.1324

Table 4: Estimation for SV model parameters to estimate Bitcoin, using data cloning and MCMC methods.

As expected, the data cloning and MCMC algorithms provide close values for all parameters
except for ση. This is probably due to a high standard error in the MCMC method. Note that
all parameters except ϕ have lower estimation errors in the estimates obtained through Data
Cloning.

All the parameters are significant at 5%, according to the credible intervals. The parameter
b represents the effect of the lagged return in the expected value of the return and in this case a
negative value has been obtained. ϕ is the first order coefficient of the log equation volatility (4)
while ση is moderating the effect of disturbance in the log-volatility equation (4). Finally, σ∗2

is the constant coefficient of variance and it takes a small value of the volatility overall, which
will be increased by ϕ and ση.
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The value of ϕ is significant, providing an evidence of volatility clustering. However, its
value is relatively low, suggesting that there is not a substantial persistence of volatility across
consecutive periods. At the same time, the value of ση is quite high and significant, which means
that the volatility of a period is strongly affected by the shocks of the same period, increasing the
value of the variance. That implies that the volatility process is less easily predictable. Finally,
b takes a negative value, indicating that the profitability in differences of one period negatively
affects the profitability of the following period. Therefore, we can conclude the following:

� The negative value of b implies that returns from one period have a negative impact on
the returns of the subsequent period.

� The variance exhibits a generally high level, showing little dependence on the variance of
the previous period but significant sensitivity to shocks occurring in the current period.

These parameters enable the construction of equations for predicting the subsequent values using
a one-step prediction method. This approach involves using the actual values from the previous
period to generate predictions for returns. For constructing the next values in the series, the
true value of the required lag (in this case, one) is used. Similarly, a lag is required for volatility,
but since volatility is unobservable, the estimated value is employed in this context.

Figure 3: Bitcoin returns vs. estimations of Bitcoin returns by using SV model estimated by data cloning algorithm.

Figure 3 displays the predictions of bitcoin returns obtained through SV modeling compared
to the actual bitcoin returns. The figure demonstrates the model’s ability to generate accurate
one-step predictions for future values in this series.

5.2 Modeling bitcoin returns using the SVM model estimated
by data cloning method

The same dataset will also be modeled using the SVM model estimated through the data
cloning algorithm introduced earlier. This model is expected to better incorporate the unob-
servable behavior of volatility by considering its effects on both the return and its mean simul-
taneously. Table 5 presents the estimated parameter values, their standard estimation errors,
and the credible intervals. Additionally, it includes the parameter values estimated through
MCMC and their corresponding standard errors.
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Parameter Data cloning S.D. HPD 0.95 MCMC S.D.
Estimations Estimations MCMC

ϕ 0.4918337 0.3506 (0.011611, 0.9855730) 0.4290 0.2661
ση 0.1158941 0.06447 (0.048043, 0.2844250) 0.4556 0.3318
σ∗2 0.0001422 7.998e− 6 (0.000131, 0.0001663) 1.49e− 4 5.28e− 5
b −0.214432 0.02091 (−0.25487,−0.173575) −0.1212 0.1314
d 7.1425561 1.558 (3.851365, 9.7414312) 2.3354 5.0931

Table 5: Estimation for Stochastic Volatility in Mean model parameters to estimate Bitcoin, using data cloning
method.

Both estimation methods yield similar parameter values, except for ση and d, where the
MCMCmethod exhibits higher standard errors, resulting in less agreement with the data cloning
estimations.

All parameters are statistically significant at a 5% significance level, as indicated by the
credible intervals. The significance of ϕ once again supports the presence of volatility cluste-
ring, although its magnitude is not particularly high. Similarly to the SV model, parameter b
takes a negative value, indicating a negative impact of lagged returns on current returns.

In the SVM model, a new parameter d is estimated, which captures the effect of volatility
on the mean returns. Its significance suggests that the variance has a substantial influence on
the expected returns, and the positive value indicates a feedback effect of volatility on returns,
aligning with our expectation when analyzing returns in differences.

Figure 4: Bitcoin returns vs. estimations of Bitcoin returns by using SVM model estimated by data cloning algorithm

Figure 4 presents the predicted values of the last observations obtained from the SVM model
compared to the actual values. It demonstrates the effectiveness of the one-step prediction
method in capturing the future behavior of the series. The close alignment between the predicted
values and the actual observations highlights the accuracy of the SVM model in forecasting
future values.
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6 Final conclusions

The main goal of this paper is to introduce an estimator of the SVM model parameters based
on the data cloning algorithm, which provides an approximation to the maximum likelihood
estimates of the model parameters. The main findings of this study are as follows:

� Data cloning algorithm is a good solution for estimating the parameters of SV and SVM
models whose complexity makes it difficult to use other estimation methods.

� Data cloning is especially interesting to estimate SVM model because it let to estimate
the return and the volatility at the same time.

� The estimates obtained by the data cloning method to estimate the parameters of the SV
and SVM models are shown to be better in terms of standard error than those obtained
by the conventional MCMC algorithms in the simulation study.

� The SVM data cloning estimation algorithm demonstrates consistent performance regard-
less of the sample path size. However, it is observed how the estimates are more stable
and less path dependent when we increase its size.

� The hybrid nature of the data cloning methodology proves to be a very suitable solution
when estimating parameters by the maximum likelihood method using Bayesian algo-
rithms.

� SV and SVM models are suitable for modeling financial data with volatility jumps and
they let to understand these series behavior.

� SV and SVM models empirically show good capabilities to provide one step predictions
for cryptocurrencies like Bitcoin. They show that Bitcoin volatility is strongly related to
the return in the same period.
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Akkus, H. and Çelik (2020). Modeling, forecasting the cryptocurrency market volatility and
value at risk dynamics of bitcoin. Muhasebe Bilim Dünyası Dergisi 22 (2), 296–312.
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Sólymos, P. (2010). dclone: Data cloning in R. The R Journal 2 (2), 29–37.
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