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Research Program

1 Scientific Background

Quivers without loops and 2-cycles (known as cluster quivers) form an important ingredient in the

theory of cluster algebras by Fomin and Zelevinsky [14]. The notion of quiver mutation, which is the

process of creating a new cluster quiver from a given one at a prescribed vertex, plays a central role

in the theory.

A quiver can be enriched by an algebraic datum in the form of a potential. Roughly speaking, a

potential is a linear combination of cycles in the (complete) path algebra of the quiver. A systematic

study of quivers with potentials and their mutations has been initiated in the work [11]. Whereas in

quiver mutation the resulting quiver has no 2-cycles by construction, this may not be the case for

mutation of quivers with potentials. We say that a potential is non-degenerate if for any sequence of

mutations, the resulting quiver does not have any 2-cycles.

Given a quiver with potential, one can construct several algebraic objects (e.g. the Ginzburg dg-

algebra, the Jacobian algebra, a cluster category). Only when the potential is non-degenerate can

these constructions be used to adequately model the corresponding cluster algebra. This lies at the

foundation of the additive categorification of (skew-symmetric) cluster algebras. In addition, one can

draw significant conclusions on the cluster algebra of a quiver by investigating the Jacobian algebra

of a non-degenerate potential on it, as done in [12]. For such applications to cluster algebras, it is

important to know that there exists a non-degenerate potential on every quiver.

Indeed, the existence of a non-degenerate potential over an uncountable ground field was estab-

lished in [11]. However, the proof is not constructive and except for a few classes of quivers, it is not

known how to write a non-degenerate potential on a given quiver. Among the quivers for which an

explicit form of a non-degenerate potential is known we could mention those belonging to the muta-

tion classes of Dynkin quivers [8, 11]; those arising from triangulations of surfaces [13, 20, 21]; those

arising from reduced expressions in Coxeter groups [6, 7, 16]; certain McKay quivers [9].

Moreover, it is not known in general whether a non-degenerate potential on a given quiver is

unique. Here, uniqueness is considered up to right equivalence, which is roughly speaking an auto-

morphism on the space of potentials on the quiver. We have already shown [22] the uniqueness of a

non-degenerate potential for the quivers belonging to the class P of Kontsevich and Soibelman [19].

The question of uniqueness has been also settled for many finite mutation classes of quivers [15, 17].

The last finite mutation class for which the answers to the above questions were not known was

that of the quiver X7, discovered in [10]. Its mutation class consists of two quivers and it does not
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belong to the class P, so no explicit description of a non-degenerate potential was known. Moreover,

it has been conjectured [15] that it possess more than one non-degenerate potential.

2 Research Objectives and Expected Significance

A systematic investigation of the above problems for the quiver X7 was initiated in the Ph.D. thesis of

Abeer Shkerat done under my supervision. So far we have been able to define two potentials W and

W̃ on X7 and prove the following:

• W and W̃ are non-degenerate.

• The Jacobian algebra P(X7,W ) is finite-dimensional if and only if the characteristic of the

ground field is not equal to 2. In this case, it is symmetric and thus shares many properties

with those associated to quivers arising from triangulations of closed oriented surfaces.

This seems to be the first instance of a non-degenerate potential whose Jacobian algebra

behaves differently according to the characteristic of the ground field.

• The Jacobian algebra P(X7, W̃ ) is always finite-dimensional.

• The mutation of (X7,W ) at the central vertex yields a potential similar in form to those arising

from dimer models on closed oriented surfaces, however it is not of such form.

Based on these findings, we propose several directions for further research, which are elaborated

in the next section.

1. Study the Jacobian algebras P(X7,W ) and P(X7, W̃ ).

Sample questions to consider are the symmetry of the algebra P(X7, W̃ ) and whether it is

isomorphic to P(X7,W ) in characteristic different than 2.

2. Find additional non-degenerate potentials on X7.

As W̃ is a certain deformation of the potential W , we aim to consider other deformations of W ,

investigate their non-degeneracy and extract numerical invariants of their Jacobian algebras

with the ultimate goal of classifying all the non-degenerate potentials on X7.

3. Develop a theory of dimer models on non-orientable surfaces.

In order to explain the varying behavior of the Jacobian algebras P(X7,W ) according to the

characteristic of the ground field on the one hand, and the similarity of this potential to those
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Figure 1: The two quivers X7 (left) and X ′
7 (right) in the mutation class of X7.

arising from dimer models on the other hand, we propose a geometric model for X7 by a dimer

model on the real projective plane.

To this end we will first develop a general theory of dimer models on closed non-orientable

surfaces, that is, a method to construct a quiver with potential from a graph on such surface

whose complement is homeomorphic to a disjoint union of discs. Contrary to the classical

setup, the surface is no longer orientable and the graph is not necessarily bipartite, which will

impose additional conditions on the feasibility of such constructions, that we will explore.

In addition, we propose certain families of graphs on the real projective plane which generalize

the graph corresponding to the potential W we constructed and are thus expected to yield

quivers with potentials whose Jacobian algebras share similar properties.

3 Detailed Description of Proposed Research

3.1 Preliminary Results

We have been able to explicitly construct a non-degenerate potential on the quiver X7, without any

assumption on the ground field. In fact, the potential we constructed is a sum of cycles, and hence it

is even defined “over the integers”. Details will appear in the forthcoming thesis of my Ph.D. student

Abeer Shkerat.

The mutation class of the quiver X7 consists of two quivers, which are shown in Figure 1. The

quiver X7 itself is the left one, and we denote the right one by X ′
7. Note that X ′

7 = µ7(X7) and

moreover X7 ' µi(X7) and X ′
7 ' µi(X ′

7) for any vertex 1 ≤ i < 7.
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A potential on X7 has been suggested in the physics literature [1], but without any rigorous anal-

ysis. Our potential seems to differ from that potential. In order to define it, consider the following six

3-cycles B1, B2, B3,∆1,∆2,∆3 on X7 given by

Bi = αiβiγi, ∆i = αiδiγi, (1 ≤ i ≤ 3).

Denote the characteristic of a field K by charK.

Theorem. Let K be a field. Consider the potential

W = B1 +B2 +B3 + ∆1∆2 + ∆2∆3 + ∆3∆1 (3.1)

on X7 and let Λ = P(X7,W ) be its Jacobian algebra. Then:

(a) The potential (X7,W ) is non-degenerate.

(b) If charK = 2, then Λ is infinite-dimensional over K.

(c) If charK 6= 2, then Λ is finite-dimensional and symmetric over K.

Recall that an algebra Λ is symmetric if Λ and HomK(Λ,K) are isomorphic as bimodules over Λ.

The above result yields an explicit description of a non-degenerate potential on the other quiverX ′
7

as well. Namely, the mutation of µ7(X7,W ) at the vertex 7 is right equivalent to (X ′
7,W

′) where W ′ is

the potential on X ′
7 consisting of the six triangles passing through the vertex 7 and three quadrangles

passing outside 7. Since there is at most one arrow between any two vertices in the quiver X ′
7, any

path of length m may be identified with the sequence of vertices (i0, i1, i2, . . . , im) it traverses, so W ′

can be written as:

W ′ = 7237 + 7257 + 7457 + 7417 + 7617 + 7637 + 12341 + 34563 + 56125. (3.2)

Part (a) of the theorem is proved by analyzing all the finitely many possible mutations. One has

µi(X7,W ) ' (X7,W ) and µi(X ′
7,W

′) ' (X ′
7,W

′) for any 1 ≤ i < 7, so the mutation class consists of

exactly two quivers with potentials.

By a general result on symmetric Jacobian algebras [23] we deduce the following:

Corollary 1. If charK 6= 2, then the Jacobian algebra Λ′ = P(X ′
7,W

′) is finite-dimensional, symmet-

ric and derived equivalent to Λ.

Since there is a non-degenerate potential on X7 whose Jacobian algebra is infinite-dimensional,

we can invoke the results of [5] and deduce the following:
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Corollary 2. None of the quivers X7 and X ′
7 admits a reddening sequence in the sense of [18].

We remark that the weaker statement that there is no maximal green sequence on X7 has been

previously proved by combinatorial techniques [24].

The latter corollary has some implications on the cluster category. When charK 6= 2, the finite-

dimensionality of its Jacobian algebra allows to associate to the quiver with potential (X7,W ) a gener-

alized cluster category C = C(X7,W ) in the sense of [2], which is a 2-Calabi-Yau triangulated category

with a cluster-tilting object.

Corollary 3. The exchange graph of cluster-tilting objects in the cluster category C(X7,W ) is not con-

nected.

We note that to the best of our knowledge, this is the first instance of a quiver with non-degenerate

potential whose Jacobian algebra behaves differently according to the characteristic of the ground

field. Previously, there were known examples of quivers possessing several non-degenerate po-

tentials, some of them with finite-dimensional Jacobian algebras and some with infinite-dimensional

ones [15, 22], but this property did not depend on the ground field.

Recently, we have been able to show the next result.

Theorem. Let K be a field. Consider the potential

W̃ = B1 +B2 +B3 + ∆1∆2 + ∆2∆3 + ∆3∆1 + ∆1∆2∆3 (3.3)

on X7. Then:

(a) The potential (X7, W̃ ) is non-degenerate.

(b) The Jacobian algebra Λ̃ = P(X7, W̃ ) is finite-dimensional.

As a consequence, we can partially confirm the conjecture of [15].

Corollary 4. If charK = 2 then the potentials W and W̃ on X7 are not right equivalent.

3.2 The Jacobian Algebras

Many aspects of the algebra Λ, such as the computation of its Cartan matrix and its center, have

been considered in the Ph.D. thesis of Abeer Shkerat. The above results motivate a similar study of

the finite-dimensional algebra Λ̃. We aim to consider the following questions and problems.
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• Is the algebra Λ̃ symmetric?

• Compute the Cartan matrix and the center of Λ̃.

• Are the algebras Λ and Λ̃ isomorphic when charK 6= 2?

A negative answer to the last question would confirm the conjecture of [15] also when charK 6= 2.

We note that while there is a natural grading on the algebra Λ which turned out to be very useful

in calculations, this does not seem to be the case for the algebra Λ̃.

3.3 Additional Non-degenerate Potentials

Our preliminary results indicate that the quiver X7 shares many properties with the quivers arising

from triangulations of closed oriented surfaces of positive genus with one puncture, namely the inex-

istence of reddening sequences, the symmetry of Jacobian algebras and the existence of more than

one non-degenerate potential.

By now it is known that on each of these quivers there are actually infinitely many non-degenerate

potentials whose Jacobian algebras are pairwise not isomorphic [17, 23]. We plan to address the

question whether a similar phenomenon occurs also for the quiverX7. In order to do this, we consider

deformations of the potential W by adding higher order terms, namely potentials of the following form

Wf = B1 +B2 +B3 + ∆1∆2 + ∆2∆3 + ∆3∆1 + f(∆1,∆2,∆3),

where f(x1, x2, x3) is a power series in the non-commuting variables x1, x2, x3 such that:

• f is a sum of monomials of degree at least 3;

• consecutive variables in each monomial (or its rotation) must be distinct; for instance, (x1x2)
m

is allowed, but x21x2 or x1x2x1 are not.

For instance, W = W0 and W̃ corresponds to the monomial x1x2x3.

One can consider the following two natural problems:

• (Non-degeneracy) Give conditions on f such that Wf is non-degenerate.

• (Equivalence) Given two power series f and g, when are the two potentials Wf and Wg equiv-

alent? More specifically, when are W = W0 and Wf are equivalent?
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Concerning the first problem, we were able to compute the mutations of (X7,Wf ). In particu-

lar, µi(X7,Wf ) ' (X7,Wf ) for 1 ≤ i < 7 and µ7(X7,Wf ) = (X ′
7,W

′
f ) where W ′

f can be explicitly

described using cycles similar to those appearing in the expression (3.2). Moreover, the mutations

µi(X
′
7,W

′
f ) for 1 ≤ i < 7 can also be computed, but the main difficulty is that in general they are not

equivalent to W ′
f anymore.

Concerning the second problem, we note that in order to show that Wf and Wg are not equivalent,

it is enough to prove that some numerical invariants of their Jacobian algebras differ.

3.4 Dimer Models on Non-oriented Surfaces

The potential that we found on X7 has the special property that the answer to the question whether its

Jacobian algebra is finite-dimensional or not depends on the characteristic of the ground field. One

would like to know whether this is an isolated example or rather a tip of an iceberg.

Problem. Find more non-degenerate quivers with potentials whose Jacobian algebras behave differ-

ently according to the ground field.

We propose to develop a theory of dimer models on non-oriented surfaces that will allow, at

least in the case the surface is a projective plane, to construct quivers with potentials whose finite-

dimensionality of their Jacobian algebras depends on whether the characteristic of the ground field

is 2 or not.

Consider the potential W ′ on the quiver X ′
7 given in (3.2). It is a sum of nine cycles, six of them

of length 3 and the other three are of length 4. Moreover, each arrow appears in exactly two cycles.

This reminds us of quivers with potentials arising from dimer models, we refer to the monograph [4]

and the recent survey [3].

Dimer models are built from bipartite graphs on oriented surfaces. In order to construct a graph

from the quiver with potential (X ′
7,W

′), we take its dual graph; its nodes are the cycles in W ′ (there

are 9 of them) and its edges are in one-to-one correspondence with the arrows of X ′
7 (so there are

15 of them). If an arrow α appears in the cycles c and c′, we connect the corresponding nodes by an

edge c
α

c′ . The dual graph of (X ′
7,W

′) we obtain in this way is shown in Figure 2.

Apart from the nodes and the edges, there is also a higher dimensional structure consisting of

the faces, which correspond bijectively to the vertices of the quiver. In our example each face is a

quadrangle or an hexagon, in accordance with the valency of the corresponding vertex.

We observe the following points which distinguish the graph from the dimer models considered

so far in the literature:
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Figure 2: A graph on the projective plane corresponding to the quiver with potential (X ′
7,W

′). Nodes

and edges with the same label have to be identified.

• The graph is not bipartite (for instance, there is a cycle of length 3 passing through the node

12341);

• The surface the graph defines by gluing the faces along the edges is not oriented.

Indeed, its Euler characteristic is χ = 9− 15 + 7 = 1, i.e. that of the projective plane RP2.

One can therefore consider a graph on a non-oriented surface whose complement is homeomor-

phic to a disjoint union of discs (in order to have the structure of faces) and then try to apply a reverse

procedure in order to construct a quiver with potential. It is clear that the vertices of the quiver will

correspond bijectively to the faces and its arrows will correspond to the edges, however since there

is no partition of the nodes into “black” and “white” and the surface is not necessarily oriented, it is

not a-priori clear how to orient each arrow in a consistent manner yielding the required cycles which

should correspond to the nodes of the graph.

Problem. Find conditions on arbitrary graphs on surfaces (not necessarily oriented) that will allow

to define quivers with potentials in a way which generalizes the known one for bipartite graphs on

oriented surfaces.

Let us suggest a family of such graphs on the projective plane. Consider the graph in Figure 2;
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we see a central hexagon, surrounded by one layer comprising of six quadrangles. This can be

generalized in two directions; firstly, the central hexagon can be replaced by any (4n + 2)-gon for

n ≥ 1; secondly, instead of just one layer, one can have m ≥ 1 layers, each consisting of 4n + 2

quadrangles. As in Figure 2, we identify each pair of antipodal edges on the circumference of the

outermost layer.

Denote by vn,m, en,m, fn,m the numbers of nodes, edges and faces in such a graph. Since half of

the nodes (and edges) on the outermost layer are identified with their antipodes, we have

fn,m = 1 +m(4n+ 2),

vn,m = m(4n+ 2) + (2n+ 1) = (2m+ 1)(2n+ 1),

en,m = 2m(4n+ 2) + (2n+ 1) = (4m+ 1)(2n+ 1),

so the Euler characteristic equals vn,m − en,m + fn,m = 1.

Denote by (Qn,m,Wn,m) the corresponding quiver with potential. The quiver Qn,m has fn,m ver-

tices and en,m arrows, and the potential Wn,m is the sum of vn,m cycles, 4n+ 2 of them are of length

3 and the rest are of length 4. When (n,m) = (1, 1), one gets the quiver with potential (X ′
7,W

′).

We expect the following properties of the Jacobian algebra Λn,m = P(Qn,m,Wn,m):

• When charK = 2, the algebra Λn,m is graded and infinite-dimensional;

• When charK 6= 2, the algebra Λn,m is finite-dimensional. We plan to investigate whether it is

also symmetric.

Unless (n,m) = (1, 1), the mutation class of Qn,m will be infinite and this will pose difficulties in

establishing the non-degeneracy of the potential Wn,m. However, one can restrict to a finite subset of

the mutation class obtained by mutating each time only at vertices of valency 4. In the dimer model

setup these mutations correspond to urban renewal known also as spider moves (see [3]). We expect

to get quivers with potentials whose Jacobian algebras have the same properties stated above, and

plan to investigate the question of derived equivalence of these algebras with the initial algebra Λn,m.
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[9] Louis de Thanhoffer de Völcsey and Michel Van den Bergh, Some new examples of nondegen-

erate quiver potentials, Int. Math. Res. Not. IMRN (2013), no. 20, 4672–4686.

[10] Harm Derksen and Theodore Owen, New graphs of finite mutation type, Electron. J. Combin.

15 (2008), no. 1, Research Paper 139, 15.

[11] Harm Derksen, Jerzy Weyman, and Andrei Zelevinsky, Quivers with potentials and their repre-

sentations. I. Mutations, Selecta Math. (N.S.) 14 (2008), no. 1, 59–119.

[12] Harm Derksen, Jerzy Weyman, and Andrei Zelevinsky, Quivers with potentials and their repre-

sentations II: applications to cluster algebras, J. Amer. Math. Soc. 23 (2010), no. 3, 749–790.

[13] Sergey Fomin, Michael Shapiro, and Dylan Thurston, Cluster algebras and triangulated sur-

faces. I. Cluster complexes, Acta Math. 201 (2008), no. 1, 83–146.



Application 2517/23, Sefi Ladkani 11

[14] Sergey Fomin and Andrei Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15

(2002), no. 2, 497–529 (electronic).

[15] Christof Geiss, Daniel Labardini-Fragoso, and Jan Schröer, The representation type of Jacobian
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