
NEURAL NETS AND DEEP
LEARNING

DLBDSNNDL01

NEURAL NETS AND DEEP
LEARNING

MASTHEAD

Publisher:
IU Internationale Hochschule GmbH
IU International University of Applied Sciences
Juri-Gagarin-Ring 152
D-99084 Erfurt

Mailing address:
Albert-Proeller-Straße 15-19
D-86675 Buchdorf
media@iu.org
www.iu.de

DLBDSNNDL01
Version No.: 001-2023-0130
Evis Plaku

© 2023 IU Internationale Hochschule GmbH
This course book is protected by copyright. All rights reserved.
This course book may not be reproduced and/or electronically edited, duplicated, or dis-
tributed in any kind of form without written permission by the IU Internationale Hoch-
schule GmbH.
The authors/publishers have identified the authors and sources of all graphics to the best
of their abilities. However, if any erroneous information has been provided, please notify
us accordingly.

2

PROF. DR. THOMAS ZÖLLER

Mr. Zöller teaches in the field of data science at IU International University of Applied Scien-
ces. He focuses on the fields of advanced analytics and artificial intelligence and their key
role in digital transformation.

After studying computer science with a minor in mathematics at the University of Bonn, Mr.
Zöller received his doctorate with a thesis in the field of machine learning in image process-
ing. This was followed by several years of application-oriented research, including time spent
at the Fraunhofer Society. Throughout his professional career, Mr. Zöller has worked in vari-
ous positions focusing on the fields of business intelligence, advanced analytics, analytics
strategy, and artificial intelligence, while also gaining experience in the areas of defense tech-
nology, logistics, trade, finance, and automotive.

3

TABLE OF CONTENTS
NEURAL NETS AND DEEP LEARNING

Module Director . 3

Introduction
Signposts Throughout the Course Book . 8
Basic Reading . 9
Further Reading . 10
Learning Objectives . 12

Unit 1
Introduction to Neural Networks 13
Author: Evis Plaku

1.1 The Biological Brain . 15
1.2 Building Blocks of Neural Networks . 16
1.3 Deep Versus Shallow Networks . 22
1.4 Supervised Learning . 24
1.5 Reinforcement Learning . 28

Unit 2
Feed-forward Networks 31
Author: Evis Plaku

2.1 Architecture and Weight Initialization . 32
2.2 Cost Functions . 35
2.3 Backpropagation and Gradient Descent . 37
2.4 Batch Normalization . 46

Unit 3
Overtraining Avoidance 49
Author: Evis Plaku

3.1 What is Overtraining? . 50
3.2 Early Stopping . 54
3.3 L1 and L2 Regularization . 56
3.4 Dropout . 59
3.5 Weight Pruning . 60

4

Unit 4
Convolutional Neural Networks 65
Author: Evis Plaku

4.1 Motivation and Applications . 66
4.2 Convolution and Image Filtering . 68
4.3 CNN Architecture . 74
4.4 Popular Convolutional Networks . 76

Unit 5
Recurrent Neural Networks 85
Author: Evis Plaku

5.1 Recurrent Neurons . 86
5.2 Memory Cells . 93
5.3 LSTMs . 95
5.4 Training RNNs: Unrolling Through Time . 102

Appendix
List of References . 108
List of Tables and Figures . 110

5

INTRODUCTION

WELCOME
SIGNPOSTS THROUGHOUT THE COURSE BOOK

This course book contains the core content for this course. Additional learning materials
can be found on the learning platform, but this course book should form the basis for your
learning.

The content of this course book is divided into units, which are divided further into sec-
tions. Each section contains only one new key concept to allow you to quickly and effi-
ciently add new learning material to your existing knowledge.

At the end of each section of the digital course book, you will find self-check questions.
These questions are designed to help you check whether you have understood the con-
cepts in each section.

For all modules with a final exam, you must complete the knowledge tests on the learning
platform. You will pass the knowledge test for each unit when you answer at least 80 per-
cent of the questions correctly.

When you have passed the knowledge tests for all the units, the course is considered fin-
ished and you will be able to register for the final assessment. Please ensure that you com-
plete the evaluation prior to registering for the assessment.

Good luck!

8

BASIC READING
Aggarwal, C. C. (2018). Neural networks and deep learning: A textbook. Springer.

Chollet, F. (2017). Deep learning with Python. Manning Publications.

Géron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras and TensorFlow: Con-
cepts, tools, and techniques to build intelligent systems (2nd ed.). O’Reilly.

9

http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=cat05114a&AN=ihb.52632&site=eds-live&scope=site
http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=cat05114a&AN=ihb.49285&site=eds-live&scope=site
http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=cat05114a&AN=ihb.45750&site=eds-live&scope=site

FURTHER READING
UNIT 1

Kaur, M. (2021). An introduction to machine learning in a nutshell. 10th International Con-
ference on System Modeling & Advancement in Research Trends (SMART) System Mod-
eling & Advancement in Research Trends (SMART), pp. 17–22.

Kriegeskorte, N. & Tal, G. (2019). Neural network models and deep learning. Current Biol-
ogy, 29(7), 231–236.

UNIT 2

Isomura, T., & Friston, K. (2020). Reverse-engineering neural networks to characterize their
cost functions. Neural Computation, 32(11), 2085–2121.

Lu, J. (2022). Gradient descent, stochastic optimization, and other tales.

UNIT 3

Bejani, M. M., & Ghatee, M. (2021). A systematic review on overfitting control in shallow
and deep neural networks. Artificial Intelligence Review: An International Science and
Engineering Journal, 54(8), 6391–6438.

Watanabe, S., & Yamana, H. (2022). Overfitting measurement of convolutional neural net-
works using trained network weights. International Journal of Data Science and Analyt-
ics, 1–18.

UNIT 4

Cong, S., & Zhou, Y. (2022). A review of convolutional neural network architectures and
their optimizations. Artificial Intelligence Review: An International Science and Engi-
neering Journal, 1–65.

Zhang, H. (2022). A review of convolutional neural network development in computer
vision. EAI Endorsed Transactions on Internet of Things, 7(28), 1–11.

10

http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=edseee&AN=edseee.9676315&site=eds-live&scope=site
http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=asn&AN=146528826&site=eds-live&scope=site
https://search-ebscohost-com.pxz.iubh.de:8443/login.aspx?direct=true&db=edsarx&AN=edsarx.2205.00832&lang=de&site=eds-live&scope=site
http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=edssjs&AN=edssjs.9C60332D&site=eds-live&scope=site
http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=edssjs&AN=edssjs.F2996A66&site=eds-live&scope=site
http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=edssjs&AN=edssjs.75CE83F2&site=eds-live&scope=site
http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=asn&AN=158657909&site=eds-live&scope=site

UNIT 5

Alqushaibi, A., Abdulkadir, S. J., Rais, H. M., & Al-Tashi, Q. (2020). A review of weight optimi-
zation techniques in recurrent neural networks. 2020 International Conference on Com-
putational Intelligence (ICCI), Computational Intelligence (ICCI), pp. 196–201.

Kaur, M., & Mohta, A. (2019). A review of deep learning with recurrent neural network. 2019
International Conference on Smart Systems and Inventive Technology (ICSSIT), pp.
460–465.

11

http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=edseee&AN=edseee.9247757&site=eds-live&scope=site
http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=edseee&AN=edseee.8987837&site=eds-live&scope=site

LEARNING OBJECTIVES
Intelligent machines have long been a dream of humanity. The possibility of developing a
computer system that learns by itself is not solely associated with sci-fi movies but is now
part of a global momentum marking the unprecedented rise of artificial intelligence,
machine learning, and deep learning.

The objective of the Neural Nets and Deep Learning course book is to provide a path that
takes you from understanding fundamental concepts of machine learning, neural net-
works, and deep learning to starting to build your own projects that solve complex tasks
intelligently.

You will be introduced to core machine learning approaches before carefully investigating
neural networks and deep learning methodologies. You will expand your knowledge and
gain practical experience with the architectures and topologies of the most common neu-
ral networks while analyzing their fundamental building blocks.

You will learn state-of-the-art techniques to fine-tune neural networks to enhance their
performance and increase their efficiency while addressing challenging problems in a
principled manner. You will broaden your understanding and gain more practical experi-
ence as you experiment with convolutional and recurrent neural networks.

This overview of frameworks, techniques, programming, logic, and a quest of always ask-
ing “why” will prepare you with the necessary tools to begin a journey that not only equips
you with the skills to understand how intelligent computer systems operate, but also to
start building your own.

12

UNIT 1
INTRODUCTION TO NEURAL NETWORKS

STUDY GOALS

On completion of this unit, you will be able to ...

– understand what machine learning is and which problems it aims to solve.
– explain what neural networks are and outline their fundamental building blocks.
– distinguish between deep and shallow neural networks.
– analyze various machine learning categories, such as supervised learning, unsuper-

vised learning, semi-supervised learning, and reinforcement learning.
– develop a simple neural network used to classify images of hand-written digits.

Deep learning
a machine learning

framework that uses neu-
ral networks to learn from

experience

1. INTRODUCTION TO NEURAL NETWORKS

Case Study
Anne, a neuroscientist, is fascinated by the human brain. She studies the ability of the
brain to process thousands of impulses from the outside world and almost instantane-
ously translate those stimuli into meaningful information and insight. She is dazzled by
the ability of the brain to process visual information, recognize patterns, and change and
adapt to unknown situations based upon previous experiences. Anne always wonders
how our brains guide us to run toward an ice-cream shop and to run away from a fast-
approaching car, and in both cases to do it without much effort. Even in new situations,
the brain seems to know, as if from experience, what is the right course of actions.

Anne’s friend, Lukas, is a software engineer. As Anne discusses the complex abilities of the
human brain, he introduces her to the fast growing and impactful field of machine learn-
ing. Lukas draws similarities between the human brain and neural networks in their ability
to solve difficult tasks that require intelligence. Computers, too, can learn from past expe-
riences, without needing to be told what to do through a rigid set of rules, but rather by
continuously adapting and improving their performance as they gather more information.

Anne is intrigued by the ability of computers to mimic and expand the capabilities of the
human brain. She wants to understand how a computer can learn to make informed deci-
sions based on the input data it receives.

Machine learning is a popular and important branch of artificial intelligence that relies on
the use of algorithms and data to solve complex tasks. A machine learning system learns
through experience and gradually improves its performance. Deep learning, a subfield of
machine learning aims to learn from large amounts of data relying on algorithms inspired
by the functionalities of the human brain. The goal is to process high-volume data
received as input and to apply carefully designated algorithms to recognize underlying
relationships and draw out meaningful patterns.

Machine learning typically begins with a training phase during which the algorithm aims
to explain the characteristics of the training data by building a model that best fits them.
This model is then used to produce an output, typically when encountering data that it
has not observed before. The figure below provides an illustration.

14

Figure 1: The Machine Learning Model

Source: Evis Plaku (2023) based on Amer, (2022).

1.1 The Biological Brain
The ability of the human brain to process complex information has inspired whole fields of
computer sciences. Artificial neural networks emerged as a learning paradigm that aims to
implement a simplified model of a biological neuron (McCulloch & Pitts, 1943). The biolog-
ical neuron, the fundamental unit of the brain, is composed of a cell body containing the
nucleus, in addition to several branching extensions, known as dendrites, and a very large
extension, called the axon. The human brain contains billions of neurons, each receiving
short electrical impulses called signals. Synapses allow neurons to communicate with one
another by transmitting messages. A neuron fires a signal when it receives a sufficient
number of messages from the set of interconnected neurons (McCulloch & Pitts, 1943). An
illustration of a neuron is provided below.

15

Artificial Neural
Network

An ANN is a mathematical
model used to recognize
patterns and solve com-

plex problems.

Figure 2: Anatomy of a Biological Neuron

Source: BruceBlaus (2013). CC BY 3.0.

Individual neurons are part of a vast network containing billions of neurons, each connec-
ted to thousands of others. Seemingly simple neurons, when combined as parts of a large
network, can carry out complex computations.

Early advances of machine learning and deep learning were focused on mimicking the
abilities of the human brain. These resemblances, however, are mostly conceptual. Artifi-
cial neural networks are not strict representations of biological neurons, similar to how
airplanes, although inspired by birds, do not flap their wings when they fly.

1.2 Building Blocks of Neural Networks
An artificial neural network (ANN) is a computing system that aims to identify underlying
patterns and relationships in a set of input data. It has the ability to adapt well to changing
input and to gradually improve its performance as it gains more information. To achieve
this objective, a neural network is trained to identify a mapping between input data to the
desired output. The following are core components of an artificial neural network.

The Artificial Neuron

An artificial neuron is the central element of a neural network, often known as a node or a
unit. Each neuron receives input from other nodes or external sources. These signal inputs
are not of equal importance. Their relevance relative to other inputs is measured and
defined through multiplicative values known as weights. A neuron considers the weighted
sum of all receiving inputs and transforms it into an output using a special function com-
monly known as an activation function. An activation function is a critical part of the

16

design of a neural network as it decides if a specific neuron should be activated or not. It
helps the network to learn complex patterns in the input data by making possible the
transformation of input signals of previous neurons to outputs that will be used by subse-
quent neurons in the network.

Layers: The Building Blocks of Deep Learning

Layers are the core building blocks of a neural network. Their purpose is to process input
data and output that data into a form that is more useful and beneficial for the task at
hand. A neural network contains many layers. Typically, each network has three types of
layers: an input layer, an output layer, and at least one intermediate layer often known as
hidden layer(s). Each layer extracts a representation out of the input data and feeds it to
subsequent layers. Layers are combined into a network, similar to how LEGO bricks are
combined into forming complex structures. The figure below provides a simple illustration
of a single neuron and a neural network.

Figure 3: A Simple Representation of a Neuron and a Network

Source: Evis Plaku (2023), based on Amer (2022).

The Model

Layers are combined into a network to allow it to map and represent the interactions
between input and output data. Layers are most commonly arranged into a linear stack
that maps input to output, but a wide variety of network architectures and topologies
exist. The learning model defines the methodology used by the network to identify how to
map input data to output targets. This model is then used to categorize data that it has
not observed before. The efficacy of a model is based upon these results.

Loss Functions and Optimizers

Equipping a neural network with learning capabilities requires careful consideration of
two other fundamental components:

1. The objective of the neural network is to minimize the loss function during the learn-
ing process.

2. The optimization method determines how the neural network will be updated to
accommodate the changes suggested by the loss function and, thus, enable learning.

17

The choice of the loss function and the optimizer function is of extreme importance in the
success rate of the neural network.

The relationship between the core parts of a neural network is visually presented in the
figure below. The neural network is fed input data together with their relative weight
importance. A set of layers chained together transforms this input and maps it to an esti-
mated prediction. The loss function compares the prediction of the network with the true
value of target output data and yields a measure of how well the network can match the
expected results. This estimated score is then used by the optimizer to update the net-
work weights and adjust their relevance accordingly. This learning procedure is a continu-
ous cycle of the above steps until the loss function is minimized, thus allowing the net-
work to learn a model that explains the data well.

Figure 4: Neural Network Learning Process

Source: Evis Plaku (2023), based on Amer (2022).

Implementing our First Neural Network

Let’s start to get some hands-on experience by implementing our first neural network. The
ability to quickly recognize handwritten digits comes easily to humans. Yet, it is an impor-
tant and difficult task for a computer. Trying to write a series of rigid rules to capture the
various shapes of digits would be an almost impossible quest. However, like humans, neu-
ral networks, can learn how to recognize handwritten digits by experience. We will expose
a neural network to thousands of examples of handwritten digits and train it to learn to
identify unique features and qualities that it can use for effective classification.

18

To facilitate implementation, we will use a popular Python library known as Keras.
Because Keras contains a lot of built-in functionalities that we can take advantage, it is
able to provide an interface that facilitates the process of building artificial neural net-
works.

Our objective is to classify images of handwritten digits into ten categories (numbers from
zero to 9). We will use the classic dataset MNIST, which contains a large set of 60,000
images that can be used during the training procedure, and an additional set of 10,000
images that we will use to test the efficiency of our model (Deng, 2012). The figure below
provides an illustration.

Figure 5: MNIST Dataset Sample Digits

Source: Yann LeCun and Corinna Cortes(n.d.). CC 3.0.

The MNIST dataset is preloaded in Keras. When using it, we will divide the entire dataset
into images used for training (train_images and train_labels) and images used for
testing (test_images and test_labels). The annotated labels represent the true classi-
fication of handwritten digits, i.e., the class they belong to (e.g., our figure contains num-
bers 4, 0, 7, 3).

Loading the MNIST dataset in Keras

from keras.datasets import mnist
(train_images, train_labels), (test_images, test_labels)
 = mnist.load_data()

Note that there is a one-to-one mapping between each image and its true label category,
i.e., the class the image belongs to.

Our approach is simple: First, we will use the training data as input to the neural network.
The objective of the network is to identify underlying patterns and relationships and to be
able to associate images with their labels. Once the learning procedure is complete, we
will ask the network to provide a classification for images that it has not encountered
before, that is, the testing images. We will verify the accuracy of our network by matching
the classifications outputted by the network with the true labels of the test data.

19

Categorical cross
entropy

a loss function used for
tasks where one instance

belongs to one of many
possible categories

Building the model

A key component of a neural network is the layer, a module that processes the data it
receives by extracting representations of them and outputing the data in a more meaning-
ful representation. Taking advantage of Keras’ built-in functionalities, we can import and
use models and layers that are already implemented. In particular:

from keras import models
from keras import layers

network = models.Sequential()
network.add(layers.Dense(512, activation='relu',
 input_shape=(28 * 28,)))
network.add(layers.Dense(10, activation='softmax'))

We are using a sequential model of dense layers. In this model each layer is fully connec-
ted to its neighbor layer, that is to say, all neurons of a layer are connected to all neurons
of the neighbor layer. The input layer contains 784 neurons. It takes as input image data
encoded with 28 by 28 pixels. The hidden layer contains 512 neurons, as observed in the
above code. The activation function used is rectified linear activation function (ReLU)
which is a linear function that will output the input data directly if it is positive and will
output zero otherwise. The rectified linear activation function (ReLU) is widely used in
neural networks since it is easy to use and achieves good performance in practice. Consid-
ering that our objective is to map each digit to one of the ten possible categories, then the
second layer will return an array of ten probability estimations to measure that. A function
known as “softmax” is used in such cases to convert a vector of numbers to a vector of
probabilities. Specifically, it outputs ten values, one for each class. The output is normal-
ized, that is, the sum of all probabilities equals one.

The compilation steps

Before making the network ready for training, we choose the loss function, the optimizer,
and the metrics, as discussed previously. These elements form the compilation steps.
RMSprop optimizer is an optimization technique commonly used in neural networks. Its
objective is to reduce the overall loss and improve the accuracy of the classification by
continuously modifying weights and other attributes of the network.

For the loss function, we are using categorical cross entropy which is typically used for
multi-class classification models, as it is our case (images will be classified to one of the
ten possible categories). The loss function will measure how well our neural network is
modeling the training data. We will monitor the efficacy of our model using the “accuracy”
metric, that is, the fraction of the images that were classified correctly. All the above can
be easily implemented, as follows:

network.compile(optimizer='rmsprop',
 loss='categorical_crossentropy',
 metrics=['accuracy'])

20

Pre-processing the input data

Before training the model, it is important to pre-process the input data so it matches the
form required by the network. We will reshape the gray-scale image data in the form
expected by the network and normalize them. Our training images are stored in an array
of shapes (60000, 28, 28) that uses integer data in the [0, 255] interval to represent pixel
brightness. We will transform it into an array of the same shape, but we will store floating
point numbers in the interval [0, 1]. This can be achieved by the following Python code:

train_images = train_images.reshape((60000, 28 * 28))
train_images = train_images.astype('float32') / 255
test_images = test_images.reshape((10000, 28 * 28))
test_images = test_images.astype('float32') / 255

As a final pre-processing step, we encode the labels. Since artificial neural networks
understand only numbers and not categories, we convert categories to numbers. Through
this process, each label of our input data is assigned to a unique integer value, as shown
below by taking advantage of Keras built-in functionalities:

from tensorflow.keras.utils import to_categorical
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)

Training the model

We are now ready to train our first neural network. Keras has a built-in functionality that
allows it to fit the model to the training data, that is, it investigates and identifies underly-
ing relationships in the training data so it can build a model that best explains input data.
To train the model, we use the method “fit” which takes as parameters the image input
data and their associated labels, in addition to the number of epochs and the batch size.
Epochs denote the number of passes that our neural network has completed in the entire
training dataset. Batch size determines the number of training examples used in one itera-
tion. In our case, we are setting the number of epochs to five and are feeding input data
128 images at a time.

network.fit(train_images, train_labels, epochs=5,
 batch_size=128)

Expected output:

Epoch 1/5
469/469 [==============================]
loss: 0.2523 - accuracy: 0.9273
Epoch 2/5
469/469 [==============================]
loss: 0.1007 - accuracy: 0.9698

21

Epoch 3/5
469/469 [==============================]
loss: 0.0671 - accuracy: 0.9798
Epoch 4/5
469/469 [==============================]
loss: 0.0483 - accuracy: 0.9858
Epoch 5/5
469/469 [==============================]
loss: 0.0369 - accuracy: 0.9888

As observed, this simple neural network quickly achieves an accuracy of 98.88 percent on
the training data. Our objective, however, is to test the performance of our model in a sep-
arate set of data, which we denoted as “test data.” To do so, we call the method evaluate
and feed it as parameters the test images and their associated labels to measure the per-
formance of our model.

test_loss, test_acc = network.evaluate(test_images,
 test_labels)
print('test_acc:', test_acc)

Expected output

test_acc: 0.9785

As one can observe, our model performs well on the testing data, scoring an accuracy of
97.85 percent. It is common for machine learning models to perform slightly better on the
data used during the training procedure in comparison to data used during testing.

This illustrative example shows that with only a few lines of Python code we can build and
train a simple neural network that can be used to solve an important problem, such as
efficiently classifying handwritten digits.

1.3 Deep Versus Shallow Networks
Neural networks can be built using various structures and topologies. A network with a
hidden layer is considered a shallow network, in contrast to a deeper neural network that
contains several hidden layers. A network with one single hidden layer can produce rea-
sonable results for a variety of problems. Shallow networks can even be effective when
modeling complex functions if they have a sufficient number of neurons.

Deep networks, however, have a higher parameter efficiency. Given the same amount of
training data, a deep network is typically able to achieve a better performance while using
exponentially fewer neurons than a shallow network. In addition, many practical prob-
lems contain data that are structured and hierarchical. Deep networks take advantage of
their many layers to decompose the problem at hand into smaller portions, thus, learning

22

the model more quickly and efficiently. An illustration by Géron (2019) asks you to imagine
that you’ve been asked to draw a forest using some drawing software but you are not
allowed to copy and paste. It would require a tremendous amount of time and patience to
draw each leaf individually, and then to arrange leaves into branches, branches into trees,
and finally, to arrange the trees into a forest. But if you were allowed to copy and paste
some features, you would be able to take advantage of the repetitive structure of the for-
est and you would be drawing it in no time (Géron, 2019).

Similarly, a deep network containing several hidden layers can create various representa-
tions of the input data at each layer, which can be useful for learning. Moreover, deep net-
works allow the breakdown of various aspects of the learning procedure into smaller and
more manageable chunks. This allows the network to converge faster to an optimal solu-
tion, and it also improves the ability of the network to efficiently estimate previously
unseen data. The figure below provides a simplified illustration of two types of networks.

Figure 6: Shallow Versus Deep Networks

Source: Evis Plaku (2023).

Machine Learning Categories

Machine learning is a broad field. Though learning can take place in many different forms,
three main phases are usually observed: (1) the computer agent receives data as input, (2)
a prediction is made using the trained model, and (3) a decision or an action follows. An
illustration is provided in the figure below.

23

Supervised learning
maps input data to cate-

gories by learning a
model based on labeled

training data

Figure 7: Machine Learning Categories

Source: Evis Plaku (2023).

According to Géron (2019), learning categories are often defined based on the following:

• how the computer system is trained. Four major categories known as supervised learn-
ing, unsupervised learning, semi-supervised learning, and reinforcement learning differ
in the amount and type of supervision provided.

• how the computer system can learn. Considering that input data are often high-volume,
two major types of learning take place known as batch and online learning. In batch
learning, the computer system requires all training data for learning to take place. In
online learning, new data are incrementally fed into the learning system, either individ-
ually or in small chunks, known as mini batches.

1.4 Supervised Learning
Supervised learning is the most common case. Given a set of example training data, the
objective is to map input data to known targets, often annotated by a (human) supervisor
to denote the expected results. Most examples of deep learning, such as image classifica-
tion, speech recognition, separating spam emails, and others, fall into the category of
supervised learning. The figure below provides an illustration.

24

Figure 8: Supervised Learning: Classification

Source: Evis Plaku (2023).

Classification is a typical supervised learning task. The spam filter is a good example of
such a problem. A computer system is trained with thousands of emails along with their
class category, i.e., spam or not spam. The objective of the system is to correctly classify
new emails and decide if they should move to the inbox folder or be flagged as spam.

Another typical task of supervised learning is known as regression. The goal is to predict a
numerical value, for example, the price of a house, based on a set of features (e.g., loca-
tion, number of rooms, and area). Training the system requires feeding the learning algo-
rithms with a vast number of examples of house prices and the associated properties for
each house. Once trained, the system will produce a model that can be used to effectively
estimate the price of a house not encountered before, given its set of features. The figure
below provides an illustration.

Figure 9: Supervised Learning: Regression

Source: Evis Plaku (2023), based on Géron (2019).

25

Unsupervised learning
uses machine learning

algorithms to find struc-
ture in unlabeled data

Other important supervised learning algorithms include:

Linear regression

Linear regression is a well-known algorithm, widely used in statistics and numerous
machine learning tasks. Linear regression models aim to identify a linear relationship
between the input features and the output data.

Logistic regression

Logistic regression is a classification algorithm that maps input variables to a discrete out-
come. It is commonly used for binary outcomes (e.g., to decide if sample data fits better in
one category or in another).

K-nearest neighbors

Supervised learning classifiers rely on the notion of proximity to make predictions. The
key assumption is that similar data inputs will be found close to one another. K-nearest
neighbors can be used both for classification and regression.

Support vector machines (SVM)

SVMs are a learning model that classies data into categories by performing non-linear
classification. Data instances are considered points in space and the objective is to identify
groups of input data with maximum distance to the decision boundary.

Decisions trees and random forests

Decision trees classify input data by branching them through a series of binary “this or
that” conditions similar to a flowchart. Random forests are built from a series of decision
trees and utilize ensemble learning, i.e. They address complex problems by combining
many classifiers.

Neural networks

Neural networks aim to identify underlying relationships and patterns in the input data
through a process that mimics certain aspects of the way the human brain operates.

Unsupervised Learning

As the name suggests, unsupervised learning algorithms do not require human (or other-
wise) help to label the input data used during the training procedure. Rather, the system
learns without a teacher. These algorithms work by discovering hidden patterns or by
grouping the data into a set of related items while evaluating their properties. Unsuper-
vised learning algorithms are commonly used in the field of data analytics for purposes of
data visualization or to better understand the data at hand. The figure below provides an
illustration.

26

Figure 10: Unsupervised Learning: Clustering

Source: Evis Plaku (2023).

Imagine you have developed a brand-new website and are eager to measure visitors’ traf-
fic and discover potential target groups of similar visitors. Without any prior help or
human intervention, an unsupervised learning algorithm can take as input your data and
identify common patterns or groups, such as young readers who usually access your web-
site in the evening, or technical blogs that are usually read by people with a higher educa-
tion degree. An intuitive example of such clustering is represented in the figure above.
Common categories of unsupervised learning algorithms include the following:

• Clustering is a technique that aims to divide input data into groups consisting of similar
samples. Popular approaches include
◦ K-means
◦ hierarchical cluster analysis

• Visualization and dimensionality reduction commonly refers to the process of reducing
the number of input variables in a set of input data without significantly affecting the
quality of data and for facilitation visualization. Most used algorithms include
◦ principal component analysis (PCA)
◦ kernel PCA
◦ locally linear embedding

• Anomaly and novelty detection are techniques used to identify if new data belong to
existing observations, groups of data, or if they are significantly different from current
data and need to be cast out as outliers. Popular algorithms include
◦ one class support vector machines
◦ isolation forest

27

Semi-supervised
learning

a combination of super-
vised and unsupervised

learning

Reinforcement learning
trains a model through

trial and error, rewarding
desired behavior and
punishing undesired

behaviors

Semi-Supervised Learning

Semi-supervised learning offers a happy trade-off between supervised and unsupervised
learning. The training procedure uses a small set of labeled data for the classification
process and a larger, unlabeled set for grouping features. A good example of this kind of
algorithm is the photo recognition software on your phone. The unsupervised part of
learning clusters all photos into groups denoting that a specific person appears in several
photos. To correctly recognize the identity of that person, all it requries is a small set of
labeled data (classification). The system is then able to pinpoint that person in all the rest
of the photos. The figure below provides an illustration. The small round circles represent
data points, while triangles and squares denote two separate classes. When a new
instance is encountered, the learning model will first group it into one of the possible clus-
ters and then decide on the class category it belongs to.

Figure 11: Semi-Supervised Learning

Source: Evis Plaku (2023), based on Géron, (2019).

1.5 Reinforcement Learning
Reinforcement learning is a machine learning model that trains a computer agent by
rewarding desired behaviors and punishing undesired ones. Given an environment, the
task of the computer agent is to perceive and interpret the environment and then take
action. Considering the desired outcome, these actions will either be rewarded or pun-
ished. The agent will learn, by trial and error, an optimal strategy, known as a policy. The
policy defines what action the agent should choose in each situation.

28

For example, consider the figure below. A robot should learn how to move from a source
destination to a goal destination while situated in a given environment. It uses its sensors
to observe the environment and selects an action using its policy. Once the action is
taken, the agent will either be rewarded or punished depending on the outcome of the
action. This will lead to an update of the learning policy to accommodate the experience
of the agent. These steps will be repeated until an optimal course of action is found.

Figure 12: Reinforcement Learning

Source: Evis Plaku (2023).

Positive values (e.g., rewards) will be assigned to desired behaviors to encourage the
agent. Negative values will be associated with undesired actions. The goal of the agent is
to maximize the long-term reward to achieve an optimal solution.

Reinforcement learning differs from supervised learning. In supervised learning, the train-
ing data are annotated with the true labels so the model is trained using the expected out-
puts. In reinforcement learning, however, there is no training set, and the agent is expec-
ted to learn solely from experience. Through trial and error. Reinforcement learning finds
wide applications in fields, such as gaming, personalized recommendations, and robotics.

SUMMARY
Machine learning is focused on using data and algorithms to solve com-
plex tasks by relying on learning from experience. The notion of artificial
neural networks, inspired by biological neural networks, can perform
complex computations and process information through a vast number
of interconnected nodes, forming various layers that transmit informa-

29

tion between them until it matches the desired output. Deep learning is
a machine learning technique based on artificial neural networks that
aims to identify underlying relationships and patterns in the input data.

Shallow and deep networks were discussed by highlighting their differ-
ences in terms of architecture and learning paradigms. We explored how
shallow networks contain only one hidden layer, while deep networks
are composed of several hidden layers that allow them to generally ach-
ieve better performance on many complex tasks. We also demonstrated
how to build a simple neural network used to classify handwritten digits.

Finally, various types of learning methodologies were introduced. Super-
vised learning is a technique where learning takes place through a train-
ing procedure that uses labeled input data. In contrast, unsupervised
learning does not require annotated data, but aims to cluster and group
input data according to their intrinsic features. Another approach,
known as semi-supervised learning, is considered an intermediate
ground between the two because it uses a small portion of labeled data
to guide classification and a larger portion of unlabeled data for cluster-
ing. Reinforcement learning is a more novel learning paradigm where
the computer agent learns solely by experience. Through trial and error,
the agent takes action and is either rewarded or punished depending on
the outcome, with the objective of exploring an optimal policy by maxi-
mizing a long-term reward.

30

UNIT 2
FEED-FORWARD NETWORKS

STUDY GOALS

On completion of this unit, you will be able to ...

– understand what a feed-forward neural network is.
– distinguish between different network topologies and cost functions.
– explain how the backpropagation and gradient descent algorithm help a neural net-

work to train a model.
– build a simple feed-forward neural network used for classifying image data.
– describe how batch normalization can improve the performance of a network.

Feed-forward neural
network

A feed-forward neural
network is an artificial

network in which connec-
tions do not form a cycle.

Bias
a constant that is added
to the product of inputs

and weights

2. FEED-FORWARD NETWORKS

Case Study
Anne is a neuroscientist and Lukas is a software engineer. Anne and Lukus are also interes-
ted in fashion and they have agreed to maintain the website of a local store that displays
clothing items grouped into several categories. They want to find a way that will allow
them to organize thousands of images of clothing items quickly and effectively into their
respective categories. Doing that manually requires tremendous time and effort.

Anne has a basic understanding of neural networks and she suggests that a machine
learning algorithm can be used to automate this process. Lukas agrees that they can train
a computer system to learn how to classify these items automatically. First, the existing
set of clothing items that are already organized into categories should be used to train a
feed-forward neural network so that it learns a model that maps images to their respec-
tive categories. Then, this model can be used to classify previously unseen items, thus sav-
ing Anne and Lukas a lot of time and effort.

2.1 Architecture and Weight Initialization
Feed-forward neural networks are the backbone of deep learning, widely used to address
numerous challenging problems such as pattern recognition, computer vision, stock mar-
ket prediction, and many others. Commonly known as a multi-layered network of neu-
rons, feed-forward neural networks are thus named because information is processed
only in the forward direction.

A feed-forward artificial neural network is composed from a stack of layers, consisting of
an input layer, an output layer, and at least one hidden layer. The input layer is responsi-
ble for accepting and processing input data before passing them through to the next layer
for further processing. Typically, the number of neurons in this layer is equal to the num-
ber of attributes of the input data. The hidden layer(s) transform the received input and
pass it to subsequent layers. The activation function takes into consideration the strength
of the connections between neurons and the bias measure and decides the traversal of
neurons to subsequent layers. This process is repeated until an output is generated in the
final output layer. The most fundamental architectures of feed-forward neural networks
are presented below.

The Perceptron

One of the most basic artificial neural network (ANN) architectures is known as the per-
ceptron. Based on a model known as threshold logic unit (TLU), the perceptron consists of
binary input values, connection weights, a bias, and an activation function. Weights are
estimations that determine the strength of the connection between neurons. They play an
important role as they determine the influence that input neurons will have on the target

32

The perceptron
This is the most basic
architecture of a neural
network. It is designated
to take a number of
binary inputs and pro-
duce a binary output.

output. The bias is an additional term added to the neurons, typically to help the model fit
the given data better by allowing it to shift the activation function. The TLU computes a
weighted sum of the inputs, adds the bias, and applies an activation function to that sum
to generate the result. The mathematical equation representing it and a visual illustration
are provided below. z = f b + x · w = f b + ∑i = 1n xi · wi
where xi denotes an instance of the input data, wi the respective weights for i ∈ 1, n , b
the bias and f the activation function.

Figure 13: Perceptron Model

Source: Evis Plaku (2023), based on Géron (2019).

A single TLU is commonly used to perform a simple linear binary classification outputting
a result belonging to one of two possible categories. As one can observe, input data are
received by the input neurons. The network then computes the weighted sum of input
neurons. Weights measure the strength of the connection between neurons and define
how much influence the input will have on the desired output. The activation function
defines how these weighted sums will be transformed from one layer to another, thus
allowing the network to model relations between input and output data.

Training a perceptron

In a simple perceptron model learning takes place following an algorithm proposed by
Rosenblatt (1958) thatrelies on the assumption that the connection between two neurons
will grow stronger if one neuron triggers the other. This rule is the backbone of learning in
the perceptron model. When the perceptron receives a training instance, it makes a pre-
diction, that is then compared against the true target value. An error term measures the
difference between the prediction of the network and the true target. This helps adjust the
connection weights accordingly so that the neural network can aim to minimize the over-
all error and strengthen only those connections which achieve this objective. The mathe-
matical equation enforcing this rule is presented as

33

Multi-layered
perceptron

A multi-layered percep-
tron is a fully connected

multi-layer neural net-
work.

wi, jnext step = wi, j + η yj − yj · xi
where

• wi, j represents the weight of the connection between neuron i and neuron j.
• xi is the ith input value of the training data.
• yj is the output of the jth output neuron of the training data.
• yj is the target output of the jth output neuron of the training data.
• η is the learning rate.

Multi-Layered Perceptron

Note that this basic perceptron model is typically bounded to output linear models only
and, therefore, can encounter serious difficulties in many practical situations involving
non-linearity and complex patterns. To overcome the challenges of a simple perceptron
model to address complex problems, multi-layered perceptron models emerged as an
alternative. A multi-layered perceptron consists of an input layer, one or more layers of
TLUs known as hidden layers and a final TLU layer known as output layer. All the layers
except the output layer contain a bias neuron. Each layer is fully connected to the subse-
quent one. A multi-layer perceptron can be effectively trained to learn how to model com-
plex behaviors. The figure below provides an illustration of such architecture.

Figure 14: Multi-Layer Perceptron Model

Source: Evis Plaku (2023), based on Géron (2019).

34

2.2 Cost Functions
Once a feed-forward neural network is trained, we are interested in investigating how well
our model behaves when encountering input data that it have not been seen before. A
cost function is a measure of “how well” the neural network does during the training
phase. Choosing a well-defined and appropriate cost function is an important aspect
when designing a neural network. The cost function is denoted as a single value that rates
the overall performance of the neural network. It is typically in the formC W , B, Si, Ei
where

• W denotes the set of connection weights of the network.
• B denotes the set of biases of the network.
• Si denotes the input of a single training sample.
• Ei denotes the expected output of a sample i.

According to Nielsen (2018), the cost function is required to satisfy the following two prop-
erties:

1. The cost function C is expected to be the average of cost functions for individual train-
ing examples, as in C = 1n · ΣxCx for training examples x. By enforcing such require-
ments, it is possible to run algorithms that facilitate the learning phase by continu-
ously updating weights and tweaking parameters until the optimal solution is found.

2. The cost function must not be dependent on any activation values of the network
besides the output values. This restriction is imposed to allow the network to back-
propagate information from the output layer to previous layers, so that weights and
other parameters are updated accordingly.

Overall, the key objective of the cost function is to quantify the error measured as the dif-
ference between the predicted values and the true expected values. The choice of the cost
functions depends on the type of machine learning problem (e.g., regression or classifica-
tion tasks) and specific features of the problem at hand. The most common cost functions
are presented below.

Cost Functions for Regression Problems

Mean absolute error (MAE) measures the average error observed between predictions of
the model and the expected results, mathematically expressed asMAE = 1n · i = 1n yi − xi
where for each training instance i, the predicted value and the expected value are deno-
ted, respectively, by yi and xi for all n samples in the dataset.

35

Entropy
a measure of the average

amount of information
required to represent an
event when considering

all possible outcomes

Mean squared error (MSE)

The MSE is a widely used cost function that measures the error as the squared difference
between the predicted and expected values. Instead of calculating the absolute values of
the differences as in MAE, the MSE cost function calculates the square of individual error
measures. It is mathematically expressed asMSE = 1n · i = 1n yi − y−i 2
Root mean squared error (RMSE)

An extension of the MSE error, the RMSE, estimates the error of the cost function as the
square root of the sum of squared differences between the predictions produced by the
model and the actual expected values. RMSE is mathematically expressed as

RMSE = ∑i = 1N Predictedi − Expectedi 2N
Cost Functions for Classification Problems

The cross-entropy cost function is commonly used in classification problems to measure
the difference between two probability distributions. It is built from the idea of entropy in
information theory. In our context, it is used to measure the performance of the classifica-
tion model when the output is a probability value between zero and 1, i.e., it measures the
probability of a testing instance belonging to one of the target categories. The cross-
entropy cost function, commonly denoted as H is mathematically expressed asH x = ∑i = 1n p x · log q x
where p x denotes the probability associated with the true labels, and while q x
denotes the probability associated with the estimate of the model for all n testing sam-
ples. In practice, the cross-entropy function works best when the data is normalized.

Categorical cross-entropy

The categorical cross-entropy function is commonly used when an input data can be clas-
sified to only one category. An example of that is classifying handwritten digits and match-
ing them to only one of the ten categories representing digits (numbers zero to 9). Another
special version of categorical cross-entropy, known as binary cross-entropy, is used in
cases of a binary classification, that is, the output belongs to one of two possible classes,
for example, a classification between cats and dogs.

36

Gradient descent
is an optimization techni-
que used to train a
machine learning model
that minimizes a cost
function.

2.3 Backpropagation and Gradient
Descent
Gradient descent is a popular and widely used algorithm that is able to find optimal solu-
tions to a wide range of problems. The objective is to continuously tweak learning param-
eters until the associated cost function is minimized. To make learning possible, we need
to find a set of weights such that the cost function of our model is minimized. The gradient
descent algorithm is initialized with a set of parameters (weights and biases), and it
attempts to fine tune these parameters. The learning algorithm moves in the desired
direction by continually computing the gradient (i.e., derivative) which marks the slope of
the cost function. To minimize the cost, the learning algorithm moves in the opposite
direction of the gradient.

To get a better sense of the gradient descent algorithm, imagine that you are lost on a
mountain hike and would like to reach the lowest point as fast as possible. Without a map,
a good strategy you can follow is to quickly check the terrain and then take a downward
step in the direction where the land’s slope is the steepest. Repeating this process often
enough will allow you to descend fast to the lowest point, thus reaching a safe valley. The
gradient descent algorithm operates in a similar way. Without a map, that is, without
knowing the value of the function for every possible set of parameters, the best strategy is
to move in the direction in which the cost function reduces. To do that, the following four
steps are iteratively repeated:

1. Weights are initialized randomly.
2. The gradients of the cost function are calculated while considering the parameters of

the model.
3. Weights are then updated by an amount that is proportional to the calculated gradi-

ents.
4. This process is repeated until the cost function is minimized or a termination criterion

is met.

Denoting the set of parameters as the algorithm starts by initializing with random values.
Then, a step at a time is taken while aiming to reduce the cost function to a minimum. The
size of the steps play an important role in the efficiency and effectiveness of the algorithm.
Using small steps would require many iterations and a longer time until convergence to
the minimum. Conversely, using larger steps might cause the gradient to oscillate from
one direction to another direction, ending up in a place that is possibly worse, and causing
the algorithm to diverge. The figure below provides an illustration of both cases.

37

Figure 15: Gradient Descent Learning Rates

Source: Evis Plaku (2023), based on Géron (2019).

The gradient descent algorithm faces important challenges, especially in cases where the
cost function is not regular. Note that a function is regular if it is defined everywhere and
has a finite derivative at any point. That makes convergence to a global minimum difficult.
Note that the updates of the weights are only affected by the learning rate and the gradi-
ent at that moment. Previous steps are not considered. That causes problems when the
gradient is computed at high-level areas with little change in steepness, commonly known
as plateau areas.

In such scenarios, the update of weights is minimal and might even be potentially zero.
That causes a disruption of the learning process and makes the network stagnant. Con-
sider the illustration provided below. In the plateau region, the update of weights will lead
to minuscule changes and the gradient will move very slowly, or even get stuck. Another
issue is illustrated on the left part of the figure, where the gradient can enter a region
where it finds only a local minimum without having the possibility of converging to the
global minimum.

Figure 16: Gradient Descent Pitfalls

Source: Evis Plaku (2023), based on Géron (2019).

38

For the learning process to take place effectively, it is obligatory to search a vast space of
possibilities for a model that identifies the correct set of parameters that minimize the
cost function. Tweaking the parameters until you find the correct ones is a difficult task
that becomes even more complex when the input data contain many features. The search
resembles trying to find a needle in a hundreds-dimensional haystack. The job of the gra-
dient descent algorithm is to efficiently move toward the bottom of the haystack because
that is where the needle is located.

Variants of Gradient Descent Algorithm

There are multiple variants of the gradient descent algorithm. They usually differ in the
amount of data that is used to calculate the gradient. Considering that the computational
cost grows exponentially fast with large inputs of data, it is important to choose an algo-
rithm that can perform efficiently. Below are summarized the most-used variations of the
gradient descent algorithm.

Batch gradient descent

The batch gradient descent algorithm computes the gradient of the cost function over the
complete training set of input data, at every single step. As a result, this algorithm is very
expensive computationally, which makes the learning process slow. The gradient of the
cost function is computed with regard to each parameter of the model, say θj. It measures
by how much the cost function be affected when parameter θj changes. This is known as a
partial derivate.

Stochastic gradient descent

Batch gradient descent is very slow because it needs to use the entire training set to com-
pute the gradient for every step. Stochastic gradient descent follows an opposite strategy.
Instead of choosing the entire input dataset, only one instance is selected at random. This
drastically improves computational performance but comes with the additional cost of
introducing irregularity to the algorithms, which will be able to jump from one direction to
another quite often.

Repeating this process long enough will allow the gradient to eventually get close to the
minimum, however, it will not stop there. Forcing the algorithm to stop means that we will
find a good-enough solution, but probably not the optimal one.

The stochastic gradient descent algorithm has been proven to work well in practice. Due
to its random and irregular nature, the algorithm behaves well in situations where a local
minimum is encountered, because it jumps toward another direction, thus escaping the
local minimum.

A common improvement of pure gradient descent algorithm is to gradually reduce the
learning rate. It is typical to start with large steps that allow the algorithm to make notable
progress in reasonable time and avoid local minimums, and then to gradually reduce the
step size to help the algorithm converge on a global minimum.

39

Backpropagation
an algorithm used to fine-

tune the weights of the
neural network in the

learning process

Mini-batch gradient descent

The mini-batch gradient descent algorithm emerged as a happy middle ground between
batch and stochastic gradient descent. A set of random instances known as mini-batch are
used to compute the gradient. The algorithm generally behaves better than stochastic gra-
dient descent when it is around a minimum, as it makes more steps close to and around it.
However, it suffers more than stochastic gradient descent when encountering a local mini-
mum.

The Backpropagation Algorithm

Backpropagation is a central mechanism that equips multi-layered neural networks with
the ability to learn. When a neural network is built, weights determine the strength of con-
nections between neurons of the network. As information is transmitted through the net-
work, such weights are updated and when the final layer is reached, the network makes a
prediction of the relation between the input features and the desired output. The differ-
ence between the predicted value and the actual one is considered a loss/error. The key
objective of the backpropagation algorithm is to transmit information in the opposite, i.e.,
backward direction so that it allows the weights to correct, gradually minimizing the error
term and improving the efficacy of predictions.

Ever since Rumelhart et al. (1986) introduced the backpropagation learning algorithm, it
has become a standard and efficient way of training a neural network. The backpropaga-
tion algorithm is an effective technique that continuously tweaks the connection weights
and biases of the network with the objective of gradually reducing the overall error. It
computes the gradient of the error of the network for every parameter of the model. That
provides information on how to fine-tune weights of connected neurons and the associ-
ated biases so that the overall error is minimized, and the network converges to an opti-
mal solution. The algorithm contains two main phases: a forward pass and a backward
pass. The main steps are as follows:

1. The algorithm starts by using one mini-batch at a time from the full set of training
data. The process is repeated multiple times. Each pass is commonly referred to as an
epoch.

2. The input layer receives the mini-batch and passes it through to the first hidden layer.
For each instance of the mini batch, the backpropagation algorithm computes the
outputs of all the neurons in this hidden layer.

3. The intermediate output results are transformed through the whole set of hidden lay-
ers, each receiving information from the previous layer, processing it, and outputting
the results to the subsequent layer until the last layer, namely the output layer per-
forms the same process. This is the forward pass. Note that intermediate results are
also stored, as they are needed for the backward pass of the algorithm.

4. Once the forward pass is complete, the output error of the network is calculated using
a loss function that measures the difference between the desired and the actual out-
put.

40

5. This measure of the error is then distributed to each connection of the output to
determine how much they influenced the overall error. This process is repeated back-
wards from the output layer up until the input layer. This reverse step helps measure
the influence that network weights have on the current result.

6. When the backward pass is completed, the algorithm performs a gradient descent
step to fine-tune all the connection weights in the network using the error gradients
computed from the previous steps.

In summary, the algorithm works through a forward pass in which a prediction is made
given the training data, and then an equally important backward pass that measures the
role played by each connection weight in the overall error. The gradient descent step is
used to tweak connection weights to reduce the error.

It is important to note that, for the backpropagation algorithm to work effectively in prac-
tice, all the connection weights of the hidden layers must be initialized at random. Doing
otherwise will severely impact the training process, causing it to possibly fail. Imagine the
opposite, that is, initializing all weights and biases to the same value, say zero. Then, all
the neurons of a layer will be identical to one another. Since the backpropagation algo-
rithm will affect them in the same way, they will continue to remain identical. That means
that the network will behave as if it has only one neuron per layer, despite having hun-
dreds of them. Initializing connection weights at random provides an opportunity to train
a network that is not symmetrical, thus empowering the backpropagation algorithm to
train a diverse team of neurons into efficiently learning a generalized model from the
input data.

Activation functions used in the backpropagation algorithm

An activation function defines how the weighted sum of inputs will be transformed to an
output in any given layer of the neural network. The choice of an activation function is an
important step of building a network. When implementing the gradient descend algo-
rithm, the activation function should have a derivative that never becomes zero, thus
allowing the gradient to make progress at every single step. Several activation functions
have been proven to work well in many practical applications:

• The step function is commonly used in the perceptron model. It uses a threshold value
and, if the input sum is above that threshold, then the output will be a certain value, say
1, and another value, say 0, otherwise.

• The logistic function, otherwise known as the sigmoid function, is commonly used to
add non-linearity to the learning model. Its key characteristics is that it can map any
real-value input to an output between zero and 1. It is mathematically defined asσ z = 11 + e−z . When plotted, the function forms an “S” shape, as denoted in the figure

below.
• A disadvantage of the sigmoid function is that the function gets flat if z is a large posi-

tive or negative value. The hyperbolic tangent function is an alternative example of a
function that is continuous and differentiable. The output values however range
between -1 and 1. The advantage is that negative inputs will be mapped to strong nega-

41

tive values and zero inputs will be mapped to values near zero in the tangent graph. The
hyperbolic tangent function is mathematically defined as: tanh z = 2σ 2z − 1 forσ z = 11 + e−z .

• The rectified linear unit function, mathematically defined as ReLU z = max 0, z is a
function that tends to work quite well in practice and is very fast to compute. The func-
tion is continuous, but, unlike the sigmoid or the hyperbolic tangent function, is not
differentiable when z = 0 and the derivative of the function is zero when z is negative.

The figure below provides a visualization of these commonly used family of activation
functions and their derivatives.

Figure 17: Activation Functions and Their Derivatives

Source: Evis Plaku (2023).

Note that our networks are a chain of layers that transform input values to desired target
values. The role of activation functions is crucial because it allows us to introduce non-
linearity in our inputs. Alternatively, without using such functions, all the transformations
would be linear (chaining several linear functions still yield a linear function) and that
would not be effective in learning complex models that are non-linear. That is often the
case of the models that are learned by neural networks.

42

Implementation: Building an Image Classifier Neural Network

We will now demonstrate how to build a neural network that can be used to classify
images of items of clothing. We will use a popular dataset known as Fashion MNIST which
consists of 70,000 grayscale images of 28 by 28 pixels each, categorized in ten separate
classes, each representing a fashion item (Xiao et al., 2017). The figure below provides an
illustration.

Figure 18: Samples from Fashion MNIST Dataset

Source: Evis Plaku (2023), based on Zalando (2017).

Note that the classes are diverse and the set of clothes belonging to a particular category
contain a large variety of features. We will take advantage of Keras library and preload the
dataset directly from it. Loading the dataset as

43

from keras.datasets import fashion_mnist
fashion_mnist = keras.datasets.fashion_mnist
(X_train_full, y_train_full), (X_test, y_test) =
 fashion_mnist.load_data()

We split the dataset into a training set and a testing set, and we also create a validation
set. Our neural network will rely on the gradient descent algorithm to learn a model out of
the input data. We will also scale the features to a zero to one range by dividing each pixel
by 255.0. This allows to represent the color as floats (0.0 to 1.0) rather than integers (0 to
255):

X_valid, X_train = X_train_full[:5000] / 255.0,
 X_train_full[5000:] / 255.0
y_valid, y_train = y_train_full[:5000],
 y_train_full[5000:]

To better understand the classification categories, we can encode them with meaningful
class names:

class_names = ["T-shirt/top", "Trouser", "Pullover",
 "Dress", "Coat", "Sandal", "Shirt",
 "Sneaker", "Bag", "Ankle boot"]

Building the neural network

We will build our neural network using a sequential model that is a stack of layers connec-
ted sequentially to one another. The first layer will be a Flatten layer which has the objec-
tive of preprocessing the input data by converting the 28 by 28 pixels of each image into a
one-dimensional array. Next, we will use two hidden layers. The first is a dense hidden
layer composed of 300 neurons. The activation function of choice is the rectified linear
activation function (ReLU) function. This layer also contains the weights matrix denoting
the connection weights between the neurons of the layer and their input. Another dense
hidden layer will be added that contains 100 neurons and also uses the ReLU activation
function. Finally, since our classification problem aims to categorize clothing items in ten
disparate class, we will add an output layer with ten neurons using the softmax activation
function to better capture the fact that the categories are exclusive:

model = keras.models.Sequential([
 keras.layers.Flatten(input_shape=[28, 28]),
 keras.layers.Dense(300, activation="relu"),
 keras.layers.Dense(100, activation="relu"),
 keras.layers.Dense(10, activation="softmax")

44

Building the model

Now that the model is created, we need to compile and run it. To do so, we need to deter-
mine the loss function and the optimizer. In addition, we will also define the metrics that
will be used during training and evaluation. Note that each instance of our input data
belongs to an exclusive label category (10 not-overlapping classes). We will use the
“sparse_categorical_crossentropy” cost function and we will train the model using the
stochastic gradient descent algorithm, i.e., we will implement the backpropagation algo-
rithm described earlier. In the following code, the Stochastic Gradient Descent algorithm is
denoted by “sgd.”

model.compile(loss="sparse_categorical_crossentropy",
 optimizer="sgd",
 metrics=["accuracy"])

Training and evaluating the model

The model is now ready to be trained. The training algorithm will be fed the input features
along with the target categories, in addition to the number of epochs we will use for the
training procedure. To carefully investigate how our model will behave on data it has not
encountered before, we will provide an additional set of validation data:

model_history = model.fit(X_train, y_train, epochs=40,
 validation_data=(X_valid, y_valid))

Output

Epoch 30/30
1719/1719 [==============================] - 3s 2ms/step - loss: 0.2265
- accuracy: 0.9180 - val_loss: 0.3276 - val_accuracy: 0.8828

The model is now trained. The accuracy of the model is approximately 92 percent on the
training data and 88 percent on the validation data. To get a better understanding of how
the model learned during each epoch, we can plot the history of training and validation
accuracy and error. We rely on pandas and matplotlib libraries to achieve that:

import pandas as pd
import matplotlib.pyplot as plt
pd.DataFrame(history.history).plot(figsize=(8, 5))
plt.gca().set_ylim(0, 1)
plt.show()

As the figure below denotes, both the training and the validation accuracy grow signifi-
cantly during the training procedure while the training and the validation loss decrease
steadily. The training and validation lines walk closely to one another, which means that
the model behaves well enough even with data that it has not encountered before.

45

Figure 19: Training and Validation Accuracy and Loss

Source: Evis Plaku (2023).

This example demonstrates that, by taking advantage of Keras library and its built-in mod-
els and functions, we can build, train, evaluate, and test a feed-forward neural network
that implements the stochastic gradient descent algorithm and backpropagation while
using typical cost and activation functions in an easy-to-understand manner.

2.4 Batch Normalization
Training deep forward neural networks that are composed of many layers is challenging.
The key objective of the training phase is to produce a model that generalizes well to new
data. Training, however, can become highly sensitive to the initial distribution of connec-
tion weights. Also, the weight update can cause the distribution of inputs to layers to
change. This can make the network chase a target that is continuously moving.

To address such issues, normalization is used as a vast category of techniques that aims to
make samples that are fed to a machine learning model more similar to one another.
Standardizing the input helps the model to generalize with previously unseen data, but it
also has the effect of significantly reducing the number of iterations required to train the
model. A common example of normalization is the assumption that the training data are
distributed according to a normal (Gaussian) distribution which is centered and scaled
accordingly. For example, by subtracting the mean of the data from each data point and
dividing them by their standard deviation, it causes the data to follow a normal distribu-
tion centered on zero with a unit standard deviation.

46

Batch Normalization
a technique used to
standardize the inputs
received by a neural net-
work’s layers

Batch normalization is a normalization technique that continuously normalizes the input
data during the training phase, even as the mean and variance of data changes during the
training phase. An extra layer is added in the feed-forward network with the purpose of
standardizing the inputs received from previous layers before transmitting them to the
subsequent layers. Since the input is typically trained in batches, the normalization proc-
ess is also performed in batches, and not in single inputs.

Batch normalization helps with gradient propagation, but it also helps to speed up the
training process and smoothens the loss function as demonstrated by Ioffe and Szegedy
(2015). The process of batch normalization adds a layer of complexity to the model
because of the extra operations that need to be performed. This comes with an additional
computation cost; however, since convergence is typically faster with batch normalization,
the technique provides overall benefits during the training phase of the network.

Implementing Batch Normalization

The Keras library provides built-in, easy-to-use functionalities for implementing batch nor-
malization. Typically, a batch normalization layer is added before or after calling the acti-
vation function of a hidden layer. To start the training phase with normalized input, a
batch normalization layer can also be added as the first layer of the model, as shown in
the following example.

model = keras.models.Sequential([
keras.layers.Flatten(input_shape=[28, 28]),
keras.layers.BatchNormalization(),
keras.layers.Dense(300, activation="relu",
 kernel_initializer="he_normal"),
keras.layers.BatchNormalization(),
keras.layers.Dense(100, activation="relu",
 kernel_initializer="he_normal"),
keras.layers.BatchNormalization(),
keras.layers.Dense(10, activation="softmax")
])

The example is an illustration of a simple model containing only two hidden layers. The
effects of batch normalization will significantly increase as the network becomes deeper
containing a larger number of hidden layers.

SUMMARY
In this unit, you learned that feed-forward neural networks are widely
used to address a variety of challenging problems. You were presented
with fundamental neural network architectures while discussing the role
of each component. A simple perceptron model and the multi-layered
perceptron were presented as examples of such networks.

47

We investigated the importance of cost functions in measuring how well
the neural network behaved during the training phase and presented
key characteristics of good cost functions, in addition to discussing com-
monly used functions for regression and classification tasks. Cost func-
tions such as the mean absolute error, mean squared error, root mean
squared error, cross entropy and categorical cross-entropy were presen-
ted and defined.

You also learned that the backpropagation and the gradient descent
algorithm can be used effectively to facilitate the learning process of our
network by continuously tweaking parameters until a nearly optimal sol-
ution is found that minimizes the cost function. Variants of the gradient
descent algorithm such as batch gradient descent, stochastic gradient
descent and batch gradient descent were discussed, in addition to com-
mon activation functions. An implementation of a neural network used
to classify images denoting clothing items in ten disparate categories
was also provided.

Finally, you learned that batch normalization is a generalization techni-
que that helps a neural network not only learn how to explain the train-
ing data, but also to be able to effectively make predictions on data it
has not encountered before.

48

UNIT 3
OVERTRAINING AVOIDANCE

STUDY GOALS

On completion of this unit, you will be able to ...

– understand the concept of overtraining a machine learning model.
– distinguish between different regularization techniques.
– describe common regularization strategies, such as early stopping, l1 and l2 regulariza-

tion, dropout, and weight pruning.
– analyze the effects of regularization techniques in improving the performance of a

machine learning model.

Overfitting
results when a machine
learning model predicts

training examples with

3. OVERTRAINING AVOIDANCE

Case Study
Anne and Lukas are eager to expand their practical knowledge on neural networks. Anne is
a neuroscientist and Lukas is a software engineer. They have carefully gathered a large
dataset containing images of clothing items separated into various categories. They want
to train a neural network to discover underlying patterns and relations in the input data
and then use this model to classify a large number of previously unseen images of clothing
items.

To achieve this objective, Anne and Lukas extensively increase the number of training iter-
ations and use all the image data they have in the training procedure. Once the training is
over, something unusual happens. The model is able to predict the training data with a
very high accuracy. Yet, when tested against image data of clothing items that it has not
encountered before, the model behaves poorly. It is as if the model learned to memorize
the entire training set, but it gets easily disoriented when observing new instances. In such
cases, the classification error is high.

After carefully researching and investigating the issue, Anne and Lukas learned the hard
way that what occurred is a common problem affecting many machine learning models,
commonly known as overtraining. They are now very interested in learning how to deal
with such a problem and be able to overcome it.

3.1 What is Overtraining?
A machine learning model leverages input data to train a model that is able to learn
underlying patterns and relationships such that it can effectively map input features to
target outputs. It happens that when the model is too complex or it trains for too long, it
can start learning irrelevant information, or noise. The model then starts to “memorize”
the training data, i.e., it fits the training data too closely. This can be a problematic issue
because the model will suffer when it encounters new data.

Recall that the objective of the training phase is to adjust the model and its parameters to
achieve the best performance possible for the given data. This process is commonly
known as optimization. However, when a machine learning model is built, the ultimate
purpose is to effectively use it on a set of data that it has not encountered before. This
process is known as generalization. There are situations in which the model behaves well
on the training data, but it does not generalize well to previously unseen data. This issue is
known as overfitting.

Optimization and generalization are often correlated. The objective is to gradually
improve the accuracy of prediction both in the training and the testing data. Though this
happens quite often in the earlier iteration steps of the learning phase as the neural net-

50

high accuracy but per-
forms poorly with previ-
ously unseen data

work attempts to model relevant patterns, it might happen that generalization stops
improving, or worse, degrades, while the training accuracy continues to grow. When this
happens, the model is said to be overtraining.

In other words, the neural network and the machine learning model in general, is explor-
ing the training data so deeply that it is starting to learn patterns that are too specific only
for the training data but are either irrelevant or misleading for new data. Imagine if we
attempt to memorize the solution to a difficult math problem, but do not understand the
underlying mathematical rules that can help us to solve other similar problems.

Similarly, when overfitting, the neural network is memorizing only the training data; it
does not behave well when it encounters input data that it has not seen before, often lead-
ing to inaccurate predictions. In such cases, the error measuring the accuracy of predic-
tion steadily decreases for the training set, but when encountering new testing data the
error typically begins to stall for a while before noticeably increasing as more data are
encountered. The figure below provides an illustration of such a scenario.

Figure 20: Overfitting Illustration

Source: Evis Plaku (2023).

Deep neural networks, and complex machine learning models in general, are often prone
to the risk of detecting very subtle patterns in the data, or the noise itself. When these
events happen, generalizing to new instances will be problematic.

51

Underfitting
happens when the model

cannot capture substan-
tial relationships between

input features and target
output which results in

high error rates

Underfitting the training data

When training a machine learning model, one can encounter the opposite problem of
overfitting, that is, underfitting. It occurs when the model is too simplistic to learn and
discover meaningful underlying patterns in the data it observes. In such cases, the nature
of the data is far more complex than the model; therefore, predictions will be inaccurate,
even on the training data.

Underfitting usually occurs when the input features are not significant enough, thus the
network is unable to determine a relevant relationship between input and output data. A
model can be underfitted if its complexity is too low or the model is not trained for the
necessary amount of time. Insufficient availability of training data is another reason for
underfitting. Several strategies might be followed to deal with underfitting, including the
following:

• identifying a more powerful model that usually contains a larger number of parameters
• exploring the features of the learning algorithm to identify features that can have a

larger impact on the accuracy of the model
• removing noise from the training data
• increasing the number of training iterations

The graphs below provides an illustration of how different models can potentially fit
against previously unobserved data. The left graph demonstrates a model that underfits
the data. In such a case, both the training and testing error are high. The right graph shows
a far too-complex model that overfits the training data. The middle graph presents the
middle-ground; a more optimal model that has a low training error, but that also general-
izes well to new data.

Figure 21: Underfitting, Overfitting, and a More Accurate Model

Source: Evis Plaku (2023).

The bias-variance tradeoff

As shown in the work of Sammut (2010), the generalization error that often occurs in neu-
ral networks, and machine learning models in general, can be expressed in terms of three
different types of errors:

52

1. Bias denotes an error that occurs when wrong assumptions are made for the input
data. For example, assuming the input features have a linear relationship when, in
fact, the relationship is more complex, leads to a bias error. A model that has a high
bias tends to underfit the training data.

2. Variance expresses the error related to the excessive sensitivity of the model on the
training data as a result of representing minor variations in input. Such an error
occurs more often when the model is far too complex, thus leading to an overtrained
model.

3. Irreducible error denotes the noise associated with the data itself. Detecting and/or
removing outliers in the input data or improving the quality of the received data (for
example, data received from sensors) might lead to reducing this type of error.

Training a neural network, or a machine learning model in general, is often a process of
calibrating the bias variance trade-off. Typically, when the complexity of the model is
increased, the variance is increased as well, while the bias error is reduced. Conversely,
when the complexity of a model is reduced, the variance is also reduced, but the bias is
increased. The figure below provides a typical illustration of the bias-variance tradeoff.

The blue line denotes the bias that decreases as the model becomes more complex, while
the red line denotes the variance which grows with the growing complexity of the model.

Figure 22: Bias Variance Trade-Off

Source: Evis Plaku (2023).

Four distinct cases can be identified using possible combinations of variance and bias
errors. A model with low variance and low bias is always desired. On the other hand, the
opposite of that scenario, namely a model with high bias and high variance, is one that
needs to be avoided at all cases. Models that exhibit low variance, but high bias are typi-

53

Early stopping
a regularization techni-
que used to avoid over-
training by interrupting

training if the validation
error starts to increase

cally models that suffer from underfitting, while a model with high variance and low bias
usually overfits. Building a neural network requires careful investigation in order to decide
which tradeoff between bias and variance might be the more effective.

Fighting the issue of overtraining is a crucial phase in building effective neural networks.
The next sections provide insight in some of the most common techniques that address
overtraining.

3.2 Early Stopping
Overtraining is combatted using a general set of techniques referred to as regularization.
Early stopping is one of these strategies. The idea of early stopping is simple: during the
training phase, the objective of the machine learning model is to gradually improve the
accuracy of prediction, and, therefore, reduce the overall error. To effectively estimate its
performance, the learned model is tested against a validation set composed of previously
unseen data.

When it is observed that the validation error reaches a stalling point and then steadily
increases, the algorithm stops iterating at the critical point. This strategy is known as early
stopping.

To determine the stopping point, the training error and the validation error are monitored
closely. Though the training error typically decreases steadily, there comes a moment
where the validation error stops decreasing and starts increasing. That is usually the point
where the model starts to overfit the training data. Stopping the training phase will allow
the model to have a lower variance and a better generalization.

The graph below provides an illustration. The blue line denotes the error measured on the
training data. As one can observe, the training error is gradually reduced during the train-
ing phase. The red line illustrates how the validation error stops decreasing after a certain
point and starts to increase. When implementing the early stopping regularization strat-
egy, we can stop the learning process as soon as the validation error reaches the minimum
in order to fight overtraining.

54

Figure 23: Early Stopping Regularization

Source: Evis Plaku (2023).

Early stopping implementation in Keras

In practice, early stopping is often implemented by allowing a neural network to train for
an arbitrarily large number of epochs and then monitoring closely the performance of the
model. The training procedure will stop as soon as there is no sign of improvement on the
validation error.

In Keras, early stopping can be implemented by taking advantage of callbacks which pro-
vide a way to interact automatically with the training model. Callbacks allow to specify the
performance measure that will be used to monitor the training process and interrupt it
when the trigger signal occurs. An example is shown in the code below.

model.fit(train_X, train_y,
validation_split=0.3,
callbacks=EarlyStopping(monitor=’val_loss’)
)

Note that the “monitor” argument determines the performance measure that will be used
as a criterion for terminating the training phase. In this particular case, the validation loss
will be used as a performance measure metric. Another argument could be used to deter-
mine if the chosen metric is to increase (i.e., maximize) or decrease (i.e., minimize). For
example, we would seek to minimize the validation loss, but to increase the validation
accuracy.

55

Once the chosen metric stops improving, the training procedure will stop. To identify the
stopping point, i.e., the epoch number in which the training procedure stopped, we can
use an additional argument known as “verbose” similarly to the example code shown
below.

EarlyStopping(monitor='val_loss', mode='min', verbose=1)

In practice, it is often the case that the very first sign of no improvement in the chosen
metric is not the best point to stop the training phase. Consider the case where the model
moves slowly in a plateau region (there is no sign of improvement for a while; in some
cases, it can also get a little worse before it gets better in terms of the loss function). To
account for such cases, an additional parameter known as “patience” can be set up. It
denotes the number of epochs we will patiently wait – even though the model does not
show any sign of improvement. The code below shows an example:

EarlyStopping(monitor='val_loss', mode='min', verbose=1,
 patience=50)

Determining the exact number of steps to wait may vary based on the given problem. It
often helps to visualize the performance measure. Another important aspect to consider in
practice is the rate of improvement. Typically, we might be interested in avoiding very
minor changes as improvement, and set a specific parameter known as “min_delta” to
determine the satisfactory improvement rate. For example,

EarlyStopping(monitor='val_accuracy', mode='max',
 min_delta=1)

3.3 L1 and L2 Regularization
Occam’s razor is an important philosophical principle that states that given two different
explanations for a specific situation, the simplest one is more likely to be correct. A similar
principle finds wide implementation when building machine learning models. Given input
training data and a desired target, there might exist several models that explain the train-
ing data. The underlying principle is that simpler models are less likely to suffer from over-
fitting compared to more complex models.

The goal is to develop algorithms that perform well both on the training data and new pre-
viously unseen samples. The so-called regularization techniques refer to a set of methods
that help to lower the over-complexity of the model and to develop simpler models that
promote generalization, thus preventing overfitting. Regularization techniques play a cru-
cial role in improving the performance of machine learning models, and neural networks
in particular. An effective regularization technique will identify a favorable tradeoff
between bias and variance, yielding a model with significant reduction in variance, but
that does not overly increase bias.

56

L1 regularization
a technique used to fight
overtraining by helping
control the complexity of
the model by focusing on
the total number of fea-
tures

L2 regularization
a technique used to fight
overtraining by helping
control the complexity of
the model, focusing on
the weight of features

In our context, a simpler model is one that has fewer parameters. Therefore, with the
objective of fighting overfitting, a good strategy would be to enforce constraints on the
complexity of the model, in order to favor simpler models. To achieve that, a small penalty
is typically added to the model’s weight parameters to force weights to take smaller val-
ues, which, in turn, makes their distribution more regular. This process is commonly
known as weights regularization. There exist two types of weights regularization.

L1 Regularization

Weights decay and weights regularization are techniques that penalize the neural network
for having large weights, and therefore add a cost to the training loss. L1 regularization
occurs when the added cost is a fraction of the absolute value of the weight coefficients.
More formally, we denote the objective function as f X, y, W , where X, y and W rep-
resent respectively the inputs, output and weight parameters. A hyperparameter, say λ,
will control the extent of the added cost. In particular, L1 regularization can be defined asL1 X, y, W = f X, y, W + λ · ∑i = 1n wi
That is, L1 regularization on the model parameter is defined as the sum of absolute values
of individual parameters. The L1 regularization technique results in a solution that is more
sparse. In our context, sparsity refers to some parameters having a value of zero. In other
words, it means that L1 regularization can lead to a neural network whose neurons only
use a subset of their most important inputs and are not significantly affected by “noisy” or
irrelevant inputs.

L1 regularization aims to optimize the parameters of a neuron or a layer. It is relatively
easy to be implemented and has shown to provide robust solutions when dealing with
outliers in the input data.

In the context of a neural network, the L1 regularization technique affects all the weights
of the network. What that means is that the network will undergo a continuous transfor-
mation while its learnable parameters are tweaked to fight overfitting and produce a
model that generalizes well and is able to perform effectively when facing new data it has
not encountered before.

L2 Rregularization

L2 regularization, also known as “weight decay,”is the most common form of regulariza-
tion techniques. The strategy behind L2 regularization is to drive the weights closer to the
origin by adding a regularization term in the objective function. The cost that is added is
proportional to the square of values of the weight coefficients. More formally, following a
similar representation as above, L2 regularization can be defined asL2 X, y, W = f X, y, W + λ · ∑i = 1n wi2
Note that when calculating the square of the parameters, the resulting values will always
be positive numbers, and ,therefore, their sum will also be a positive number that will
never go down to zero. As one can observe, L2 regularization penalizes the squared mag-

57

nitude of all parameters favoring dispersed weight vectors. In more practical terms, this
encourages the neural network to rely on all its inputs, even if some of them have a small
influence, rather than relying heavily on a minor set of inputs.

L2 regularization is proven to behave well in practice when most, or all, of the input fea-
tures influence the output target and the network’s weights are approximately of the same
size. In contrast with L1 regularization, weights are not decayed to zero, though they
become relatively small. Though L2 regularization might not be robust to outliers, it is an
effective technique used to help learn complex data patterns.

Comparison of L1 and L2 Regularization

Both L1 and L2 regularization techniques share the common trait of helping the neural
network perform well, not only on the training data, but also on new, previously unseen
inputs. They aim to reduce the test error while not increasing the training error and
improving the generalization capabilities of the model.

A key distinction between these two regularization techniques is the fact that L2 regulari-
zation encourages weights toward zero (yet, not exactly zero), while L1 regularization
encourages weight values to be zero, thus resulting in a solution that is more sparse.
Observe that smaller weights help by lowering the influence of hidden neurons. Therefore,
the neural network learns to neglect those neurons, while its overall complexity gets
reduced. L1 regularization generates models that are simpler and more interpretable but
suffer when they have to learn complex data patterns.

L2 regularization, conversely, is used more effectively to learn complex data patterns. It
performs better in cases where a fully connected network better represents the relation-
ship between the output variable and the input features. L2 regularization is usually more
efficient computationally.

Both techniques are important tools in fighting overtraining. In fact, both methods are
often combined in practice to yield better results. In their work, Zou and Hastie (2005)
introduced a new regularization technique, known as elastic net, which is a linear combi-
nation of L1 and L2 regularization aiming to take advantage of the major benefits of each.
Elastic net regularization offers a sparse model with high prediction accuracy while
encouraging grouping of strongly correlated predictors.

In summary, L1 and L2 regularization help control the complexity of the model, which is
not merely a matter of identifying the right size of the network with the right number of
parameters. Rather, it is aimed to find a model that is regularized appropriately, robust to
noises or irrelevant information, that generalizes well, and can perform effectively, both
on training input and previously unencountered data.

Implementation of L1 and L2 Regularization

L1 and L2 regularizations can be implemented in Python by taking advantage of the built-
in functions of the Keras library. Typically, a kernel regularizer is added to the network’s
layers, as demonstrated in the code below:

58

Dropout
a regularization techni-
que where randomly
selected neurons are
ignored during the train-
ing phase

from keras import regularizers

model = models.Sequential()

model.add(layers.Dense(16,
kernel_regularizer=regularizers.l2(0.001),
activation='relu', input_shape=(10000,)))

model.add(layers.Dense(16, kernel_regularizer=regularizers.l2(0.001),
activation='relu'))

model.add(layers.Dense(1, activation='sigmoid'))

This code shows a sequential model that contains three dense, i.e., fully connected layers,
using the rectified linear unit (relu) activation function in the first two layers and the sig-
moid function in the last layer. Note that “l2(0.001)” means that l2 weight regularization is
being implemented by adding to the total loss of a network a coefficient of 0.001 in the
weights’ matrix of that respective layer. Weight regularization has been proven an effec-
tive technique in many practical applications resulting in models that are more resistant
to overtraining.

3.4 Dropout
Another technique used for fighting overtraining has been proposed by Srivastava et. al.
(2014), commonly known as dropout. The idea is to introduce a probability of dropping
out, i.e., totally ignoring, a particular set of neurons in the hidden units during a step of the
training phase. Note that such neurons might be activated again at other steps of the
training procedure.

Though the strategy might seem simplistic and arbitrary, it has proven to be very effective
in many practical situations. The authors illustrated the dropout technique with the exam-
ple of how banks continuously move their tellers to random positions, so that it would be
more difficult for tellers to cooperate to defraud the bank. In the context of neural net-
works, randomly removing a set of neurons at each iteration step would help to avoid the
creation of random patterns that do not have any significance in mapping the input data
to the target output.

Dropout in a Neural Network

Training a neural network with the addition of the dropout technique prohibits neurons to
adapt only with their neighbors and forces them to be as impactful as possible. This way,
as the dropout continues removing random neurons at each step, the neural network
learns to not depend only on a particular set of neurons and becomes stronger, more resil-
ient, and more robust. Thus, the network is generally less affected by minor changes in the
input, and, overall, learns how to better adapt and generalize.

59

Pruning
a regularization techni-

que that fights overtrain-
ing by shrinking a neural

network while minimizing
the loss in accuracy and

performance

To better understand the effect of the dropout technique in fighting overtraining, note the
following: because of the random dropout, a unique neural network is generated at each
step of the training phase. Since each neuron can either be present or absent, then the
number of possible networks grows exponentially. Of course, such networks are not inde-
pendent, because they share a large number of weights, but still, the multitude of poten-
tial networks are different. This allows the resulting neural network to be treated as an
average ensemble of all these different networks. That can be a practical advantage in
combatting overtraining as it produces more robust neural networks.

Implementing the Dropout Technique in Keras

The dropout technique is relatively easily implemented using the Keras library. During the
training phase, a dropout layer is added which randomly drops out some inputs by setting
them to zero. When the training phase is completed, inputs are passed to subsequent lay-
ers. The following code, as shown in Géron (2019) applies a dropout rate of 20 percent
before every dense layer of the neural network:

model = keras.models.Sequential([
keras.layers.Flatten(input_shape=[28, 28]),
keras.layers.Dropout(rate=0.2),
keras.layers.Dense(300, activation="elu", kernel_initializer="he_normal"),
keras.layers.Dropout(rate=0.2),
keras.layers.Dense(100, activation="elu", kernel_initializer="he_normal"),
keras.layers.Dropout(rate=0.2),
keras.layers.Dense(10, activation="softmax")
])

In practice, it is not always straightforward to know which dropout rate to choose for a
better efficacy of the neural network. A good practice is to increase the dropout rate if the
model starts to overfit the training data, and to decrease the dropout rate if the model
underfits the training data. Furthermore, another common practice is to keep the dropout
rate in proportion to the size of the layer, i.e., a larger dropout for a larger layer.

Adding extra dropout layers comes with an additional computational cost. However, since
the dropout technique typically enhances the performance of the neural network, it is
worth the time and the effort.

3.5 Weight Pruning
Neural networks typically increase in size especially when aiming to learn complex pat-
terns. This growth, however, often comes with an additional computational cost. Pruning
a neural network is a regularization technique which aims to compress the size of a neural
network while attempting to minimize the losses in the accuracy or the performance of
the network. The ultimate goal of the pruning process is to convert a large network to a
smaller one while aiming to keep the same accuracy and performance.

60

In principle, pruning is the process of shrinking a neural network by removing parts of it.
These parts might include individual parameters, such as weights, or even larger units,
such as neurons. Knowing what and how to prune becomes an issue of crucial impor-
tance. Typically, there are two different modes to prune a neural network. First, we can
prune the weights of a network. This is achieved by setting some of the weights to zero.
This technique decreases the number of parameters of the network while keeping the
architecture the same. Alternatively, a second way to prune a neural network would be to
remove entire nodes. This causes a change in the architecture of the neural network while
aiming to maintain the same level of accuracy. The figure below provides an illustration. A
fully connected neural network is pruned both in terms of removing some connection
weights, but also entire nodes. As one can observe, after pruning, the neural network con-
tains fewer parameters and fewer nodes.

Figure 24: Pruning a Neural Network

Source: Evis Plaku (2023).

How to prune

Extensive research has focused on addressing the issue of how to prune. Pruning based on
weights has become popular as it is a technique that does not affect the structure of the
network. It requires, however, to deal with sparse computations because of setting some
of the parameters to zero. Conversely, pruning the nodes allows dense computations but
comes with the cost of changing the structure of the network, which can potentially dam-
age the accuracy of the model. Regardless of which pruning technique is chosen, the key
objective remains the same: to remove the less important parameters or nodes so the
accuracy and performance of the network is not affected. General guidelines commonly
involved when deciding what to prune are listed below:

• Determine the significance of each neuron.
• Rank neurons according to their significance, assuming there is a strictly defined meas-

ure for comparing neurons according to their relevance.
• Prune the least significant neurons.
• Decide when to stop pruning based upon a termination condition.

61

A common pruning technique, known as weight magnitude criterion, is based on the
weight value. Weights that are close to zero (comparison based upon a threshold) are
removed from the network. Another criterion that is used for pruning is based upon how
often a neuron is activated during the training phase. The assumption is that neurons that
are rarely activated are less likely to have a significant impact in building the model, there-
fore, they are good candidates to be removed. Other techniques remove neurons that
seem to be redundant. That means that if two neurons in a certain layer have very similar,
if not identical, weights and activations, they are behaving almost the same way. Remov-
ing them from the network should not diminish the learning capabilities of the network.

One other aspect that needs to be considered is to decide how to apply the chosen crite-
rion for pruning. Two choices are typically available: global or local pruning. Global prun-
ing means that the selected pruning criterion will be applied globally to all parameters of
the network. Oftentimes, this technique leads to better results, though it suffers from
cases when a certain layer can collapse by being pruned completely.

An alternative to avoid these issues is to perform local pruning, which allows to prune only
at layer-level, that is, pruning at the same rate at each layer. The figure below provides an
illustration. Observe that the left part of the figure, which denotes local pruning, applies
the same pruning rate to each layer. The right side of the figure illustrates how global
pruning applies the selected criteria to the neural network as a whole.

Figure 25: Local Versus Global Pruning

Source: Evis Plaku (2023).

When to prune?

Another important aspect in the pruning process is deciding when to prune. A common
approach is “train, prune and fine-tune.” As the name inplies, this strategy performs the
pruning process after the training phase is completed. However, it might be often the case
that the performance of the model suffers from (additional) pruning. To address such an
issue, the neural network is trained again for a few extra iterations so it can recover from
the loss caused by the pruning process. The last two steps can be iterated, while the per-

62

formance of the model is monitored closely. In practice, iterating has shown to improve
the overall performance of the model, but it comes with the additional cost of increased
computation and training time.

SUMMARY
In this unit, you learned that overtraining is a common pitfall for
machine learning algorithms. It happens in the cases where the model
tries to fit the training data entirely, as if it memorizes not only patterns
and relations in the data, but also random fluctuations and noise. These
models behave poorly when applied to a different set of data that it has
not encountered before. Such models are said to not be able to general-
ize well to previously encountered instances.

We investigated a set of approaches used to fight overtraining, known as
regularization techniques, and discussed their effects in improving the
performance of a machine learning model.

You learned that early stopping is a regularization technique that contin-
uously measures the overall error of prediction against a validation set
and interrupts the training phase when it observes that the validation
error increases, even though the training error might continue to
decrease. In addition, you were presented with L1 and L2 regularization
strategies which aim to combat overtraining based on the underlying
principle that simpler models are less likely to overfit. Such techniques
penalize models that have a larger number of parameters.

You were also presented another regularization technique, dropout,
which introduces a probability of eliminating certain neurons during a
step of the training phase. The goal is to allow neurons to be as impact-
ful as possible and to make the network stronger, more resilient, and
more robust. Pruning was also introduced as a regularization technique
that aims to compress a network by removing only those connections or
neurons that do not play an important role in the learning process of the
network, and thus, will not (significantly) affect its performance.

63

UNIT 4
CONVOLUTIONAL NEURAL NETWORKS

STUDY GOALS

On completion of this unit, you will be able to ...

– understand the inspiration behind convolutional neural networks and their many
applications.

– explain the role of different types of layers in a convolutional neural network.
– learn the purpose and importance of the architectural design of a convolutional neural

network.
– analyze popular convolutional neural networks and highlight their key advantages.

convolutional neural
networks

a deep learning algorithm
commonly used to iden-

tify and recognize objects
in image data

4. CONVOLUTIONAL NEURAL NETWORKS

Case Study
Lukas is a software engineer and his friend Anne is a neuroscientist. “Look around you,”
Anne said to Lukas. “What do you see? Is it merely shapes or symbols, or is it more? How
amazing it is that we can recognize the objects that surround us instantaneously, with lit-
tle to no effort, and then after detecting them, we convey meaning. I know that computers
can do the same,” she continued. “They can observe basic shapes, colors, and textures
and then learn how to assemble it all together into detecting and recognizing whole
objects.”

Lukas felt a bit surprised, but soon he understood that she was talking about convolu-
tional neural networks (CNN): a special class of neural networks which is most com-
monly applied to analyze visual information. “CNNs are the “eyes” of the computer,” Lukas
said, “and I want to learn more about them. I want to learn what they are composed of,
and how we can build CNNs to learn how to recognize objects. I wonder,” Lukas added, “if
we can effectively do that for large sets of images that contain a wide range of objects.”

4.1 Motivation and Applications
Since the rise of artificial intelligence (AI), a lot of work has focused on building computer
models that are able to effectively perform tasks that, for humans, might seem trivial. The
ability to quickly recognize a cute dog in a picture is something that all humans proudly do
almost effortlessly. Yet, it was not until recently that a computer program could reliably
identify the cute dog, or any other specific object in an image.

Convolutional neural networks (CNNs) are a type of neural network that have been
inspired from the study of the brain’s visual cortex and have been used to recognize
objects in image data for several decades now. However, in the last few years, due to the
significant increase in computers’ computational power and the large availability of train-
ing data, CNNs have been used extensively and with remarkable results in many complex
tasks.

Convolutional neural networks have a lot of similairities to common neural networks.
Their core unit is the neuron and they both aim to use training data to learn a model that
identifies patterns and underlying relationships between input features and target out-
puts, while continuously tweaking the network’s parameters as they learn. So, then, what
is different? Why are convolutional neural networks so popular?

Regular neural networks typically suffer from a rapid increase of the number of parame-
ters when the number of layers in the network is increased. This adds an important com-
putational burden. Moreover, tuning a large number of parameters becomes a huge task.
Convolutional neural networks perform more effectively not only in terms of computa-

66

tional time, but also in their ability to diminish the number of parameters without affect-
ing the quality of the model. This is a remarkable achievement, especially when dealing
with image data, because the values at each pixel of the image are considered as a feature.

Furthermore, convolutional neural networks have demonstrated noteworthy abilities in
better “understanding” abstract concepts in image data. CNNs work well in gradually con-
structing a model that detects a particular object by moving from rudimentary shapes,
such as lines or arcs, to learning how to represent more generic concepts, such as a partic-
ular piece of the object until being able to fully recognize it.

Another advantage of CNNs is that they learn how to perform feature extraction effec-
tively. The key assumption is that the input data are images that encode certain specific
properties into the architecture of the network. The CNN then assigns the relative impor-
tance (in terms of weights and biases) to various aspects of the image and further pro-
cesses them to generate invariant features that are passed from one layer to another with
the aim of achieving one final output that allows to correctly classify the object.

Convolutional neural networks generally require less preprocessing of the input data com-
pared to other classification algorithms and have demonstrated good abilities to learn
intrinsic characteristics of image input data. CNNs have been successful in addressing
many complex computer vision problems, including the following:

• object detection: CNNs have been effectively applied to recognize objects in an image
by classifying them based upon key features and/or patterns identified in the image.
The detected objects vary from a large and wide range, including everyday items, ani-
mals, or objects that can be used in drones or self-driving cars.

• face and facial emotion recognition: A lot of CNN frameworks have been equipped with
the ability to recognize faces within an image by detecting various features, such as
eyes, nose, and mouth with great accuracy. CNNs have been used to reduce the amount
of distortion in a face and even to help differentiate between various facial expressions
that represent emotions, such as happiness or anger.

• self-driving autonomous cars: The development of autonomous self-driving cars is a
challenging task. CNNs have helped in the process of detecting traffic signs or obstacles
lying in the road. In this context, convolutional neural networks have been used in inte-
gration with other techniques, such as reinforcement learning to help the model learn
how to respond appropriately when encountering this visual information.

• words recognition, prediction, and translation: A common application of convolutional
neural network is that of training a model to distinguish handwritten characters in vari-
ous languages and contexts. Important progress is being made in the ability of CNNs to
even predict the next word that might follow in a particular sentence. CNNs have also
been used to facilitate automatic translation between languages with a high degree of
accuracy.

• medical analysis: A common implementation of CNNs include detecting abnormalities
in medical images. Convolutional neural networks that have been trained on large med-
ical image datasets have shown good accuracy in identifying such abnormalities, in
some cases, even outperforming human doctors.

67

4.2 Convolution and Image Filtering
The work of David H. Hubel and Torsten Wiesel on the structure of the brain’s visual cortex
gained them a Nobel prize in Medicine in 1981. They performed a series of experiments on
cats and monkeys and demonstrated that many neurons only react to a visual stimulus
that is located in a limited region of the visual field (Hubel & Wiesel, 1959;1968). Further-
more, the authors showed that some neurons react only to images of horizontal lines,
while others react to lines with different orientations. They also observed that some neu-
rons react more vividly to complex patterns that are formed as a result of combinations
from lower-level patterns. This architecture empowers the visual cortex to detect all sorts
of complex patterns in the visual field.

The figure below provides a simplified illustration. An object (in this case, a house) is part
of a larger image. The dotted lines represent the local receptive fields of the visual cortex.
The objective is to extract features from the received visual information, build upon those
features, and construct different layers of abstractions, such that a convolutional neural
network is finally able to process the information it receives in such a way such that it can
learn how to effectively classify the object as a house.

Figure 26: Local Receptive Fields in the Visual Cortex

Source: Evis Plaku (2023) based on Géron (2019).

Convolutional neural networks, in contrast with common neural networks, have three
main types of layers, the convolutional layer, pooling layer, and fully connected layer. The
objective of the CNN is to reduce the image data it receives into a simpler form that is eas-
ier to process without losing features that are important for achieving a high accuracy pre-
diction. Typically, each convolutional neural network contains a convolutional layer as the
first layer of the network, which is then followed by other convolutional or pooling layers.
The fully connected layer is usually the final layer of the CNN. As the image data gets pro-
cessed through the layers of the CNN, classification starts with simple features (e.g., color
and edges) and builds up to identify larger elements (e.g., shapes) and larger abstractions
until the whole object is finally recognized.

68

Convolutional layer
As the main building
block of a CNN, it con-
tains a set of filters,
parameters of which are
to be learned throughout
training

Convolutional Layer

The convolutional layer is a crucial building block of a CNN. Given an image input data,
the neurons of the first convolutional layer are connected only to pixels of the image that
are in their respective receptive field, and not to every single pixel of the image. Similarly,
neurons of the second convolutional layer are only connected to a small receptive area
coming in from the first layer. This hierarchical structure allows the network to first con-
centrate on a small set of low-level features and then learn how to assemble them
together into more general features in the subsequent layers. The image below provides
an illustration. The input image data is processed via two convolutional layers where each
layer is represented in two dimensions.

Figure 27: CNN Layers With Rectangular Local Receptive Fields

Source: Evis Plaku (2023), based onGéron (2019).

The convolutional layer works by relying on several key components such as the input
data, a filter, and a feature map. Typically, the input data is an image, for example, a color
image composed of a matrix of pixels represented in three dimensions: width, height, and
depth which correspond to the red-green-blue values of an image. The filter is a kind of
feature detector that moves across the image data checking if the feature is present in the
respective local receptive field. Each filter has a relatively small width and height and it
moves through the image covering also its full depth. For example, a filter might have a
size of 5 x 5 x 3 meaning that it has a width and height of five pixels, and a width of three
pixels corresponding to the three-color channels.

A process known as convolution represents the filter moving across the image data to
check if the feature is present. In particular, the filter is applied to a portion of the image
data and computes the dot product between the respective pixels of the image and the
filter itself. It then slides to another part of the image and repeats the same procedure. At
the end, this yields the aggregated results in the form of a two-dimensional map called a

69

feature map, or activation map. Eventually, the convolutional neural network will learn fil-
ters that activate when they encounter some type of visual features. These visual features
usually denote very simple properties in the first layers and more complex and general
ones in the other layers. When the whole process terminates, we will have a separate set
of activation maps produced by these filters. The activation maps are stacked together to
generate a final output.

Figure 28: Example of Applying a Filter to an Image Array of Weights

Source: Evis Plaku (2023).

The figure above provides an illustration. Part of an input image is represented as a two-
dimensional array of weights, as shown in the left-hand side of the figure. A 3 x 3 filter
matrix represents in our context the dimensions of the receptive field. This filter is applied
to the highlighted area of the image producing the dot product as a result. This process
will be repeated until the filter is applied throughout the whole image input data. Note
that an output value in the feature maps does not connect to each pixel in the image data.
In fact, it only connects to the respective receptive field that is applying the filter.

This characteristic of connecting the convolutional layers only partially is also called local
connectivity. The depth axis of the filter is usually the same as the depth dimension of the
input volume. However, the weight and height are only mapped partially, not fully. This
asymmetry in spatial dimensions is a key element of convolutional neural networks.

Spatial arrangement

So far, we have discussed the structure of the convolution layer, but have not yet
explained how the neurons are arranged in the output volume. The three hyperparame-
ters that determine the size of the output volume are as follows:

70

Stride
The stride is a parameter
of the CNN’s filter that
determines the amount of
movement over the
image data.

Padding
refers to the number of
pixels added to an image
when it is being pro-
cessed by the filter of a
CNN

1. The first hyperparameter is the depth of the output volume. It denotes the number of
filters to be used. For example, if we use three distinct filters then we would create
three different feature maps leading to a depth of three.

2. The second hyperparameter is known as the stride. It determines the step size that
we use to slide through in the input matrix while using the filter. Typically, we use a
stride of one or two. Note that the larger the stride, the smaller the output.

3. It is often desirable to have the same dimensions of the input and output. To achieve
that, we add a padding to the input volume by surrounding it with zeroes around the
border. This procedure allows the filters to fit the input image and it is controlled by
another hyperparameter, known as padding.

There are three types of padding:

1. Valid padding, which is also known as zero padding, assumes that all dimensions are
valid so that the input image data can be covered by the specified filter and stride.

2. Same padding, which denotes a case where the output produced is of the same size
as the input.

3. Full padding, which increases the output size by surrounding it with zeros alongside
the borders.

Convolution layers have a key distinctive feature compared to fully connected layers that
are typical for regular neural networks. Dense layers aim to learn global patterns from
their input feature space, while convolution layers focus on learning local patterns. An
image, for example, can be broken down into smaller pieces that convey patterns and
meaning, such as edges, textures and so on.

These local patterns are not affected by translation of position. What that means in prac-
tice is that if a CNN is able to learn how to identify a part of an object (for example, the
nose of a cat) in the lower part of an image, it is able to detect it in all other parts of the
image as well. This increases efficiency because fewer training instances are needed to
learn a model that generalizes well. Additionally, CNNs are able to learn hierarchical pat-
terns that move from small units, such as edges or corners, to bigger levels of abstractions
(for example, body parts) until the object is finally detected as a whole. The figure below
provides an illustration.

71

Pooling layer
The pooling layer is a

component of the CNN
whose objective is to pro-
gressively reduce the spa-
tial dimensions and num-

ber of parameters in the
network.

Figure 29: Visual Spatial Hierarchy

Source: Evis Plaku (2023).

Consider, for example, two different objects: a cat and a bicycle. If our convolutional neu-
ral network is trying to detect the object contained in an image, it might consider the
object as the sum of its parts. For example, a bicycle would be comprised of wheels, ped-
als, frame, etc., while a cat will be comprised of ears, nose, and eyes, to name a few. Ini-
tially, a convolution layer would be able to detect only low-level patterns, such as lines,
edges or shapes, but then, at higher-level layers it would discover and identify some parts
of the object (for example the nose of a cat or the wheel of a bicycle). Moving up in the
hierarchy of layers would empower the convolutional neural network to assemble these
smaller parts into higher-level representations and finally be able to detect the whole
object.

Pooling Layer

The key objective of a pooling layer is to reduce the dimensions of the input image to
lighten the computational burden and to reduce the number of parameters used. Continu-
ously shrinking input images also helps control overtraining. Similarly to the convolution
layer, the pooling layer also operates with a filter that slides across the input image. This
filter, however, does not have any weights. Instead, it identifies the neurons located with
the receptive field and aggregates the inputs using an aggregation function such as the
maximum of the mean. This gives rise to two different types of pooling:

1. Max pooling: When the filter slides across the input image, it selects the pixel with the
maximum value and sends it to the output array. The filter then moves across to
swipe the whole input image repeating the same procedure. This type of pooling is
used more commonly than average pooling.

2. Average pooling: This calculates the average value among the pixels identified by the
filter in its local receptive field and sends the selected value to the result array.

Regardless of the type of pooling used, a lot of information is lost. Yet, this process is bene-
ficial for the CNN because it helps reduce the complexity of the network and fights overfit-
ting.

72

Fully connected layer
aims to compile the data
extracted from the previ-
ous layers to form the
final output

The figure below provides an illustration. Given a small representation of an image matrix,
a 2 x 2 filter slides across the image, as denoted by the different colored boxes. Max pool-
ing selects the pixel with the highest value, while average pooling calculates the average
of pixels in each box (representing the local receptive field).

Figure 30: Types of Pooling

Source: Evis Plaku (2023).

Fully Connected Layer

The main objective of the fully connected layer is to empower the neural network to
learn non-linear relationships that map input features into the desired target. In convolu-
tional neural networks, as in regular ones, a fully connected layer is the one whose neu-
rons have full connections to the neurons of the previous layers.

A convolutional neural network might have more than one fully connected layer. The first
fully connected layer receives input (from the final pooling or convolution layer) and flat-
tens it. What flattening means is that it unrolls the output received as a three-dimensional
matrix into a one-dimensional vector and then applies the activation function. The activa-
tion function continuously transforms weights and biases, allowing the network to tweak
parameters and increase its learning capabilities. Next, the role of the last layer is to out-
put the final probabilities that an instance belongs to any of the classification categories.
For that reason, such a layer typically uses a “softmax” activation function that assigns an
estimated probability ranging from zero to 1.

73

4.3 CNN Architecture
The architecture of a convolutional neural network plays a crucial role in the ability of the
network to learn complex patterns and effectively classify new instances. Though there
are many variations and architectures of CNNs, they share common traits. A typical CNN
contains a stack of a few convolution layers, followed by at least one pooling layer, and
then again, several convolution layers followed by pooling layer(s). This arrangement
might be repeated a few times before a few fully connected layers empower the network
to learn non-linear relationships and output a model that classifies the input data it
receives.

The general objective of these architectures is to continuously shrink the image size (this
diminishes the computational load and the number of parameters used) as we progress in
the stack of layers, but to do that without compromising the ability of the network to learn
meaningful patterns. Because of the convolution layers, a CNN is able to go deeper and
deeper in extracting patterns and it can move from learning basic properties to learning
more complex abstractions until a full representation and classification of the object is
achieved.

Figure 31: Architecture of a Convolutional Neural Network

Source: Evis Plaku (2023).

The figure above presents an illustration of a convolutional neural network containing sev-
eral convolution layers followed by pooling layers, and then again, the same arrangement
before containing a few fully-connected layers and a final layer that outputs the prediction
of the model.

Implementing a CNN

We can implement a simple CNN by taking advantage of Keras built-in functionalities. For
instance, we can use such a network to classify instances of the famous fashion MNIST
dataset containing clothing items categories in ten different classes as follows (Xiao et al.,
2017) (Géron, 2019):

from functools import partial

DefaultConv2D = partial(keras.layers.Conv2D,
kernel_size=3, activation='relu', padding="SAME")

74

model = keras.models.Sequential([

DefaultConv2D(filters=64, kernel_size=7,
 input_shape=[28, 28, 1]),

keras.layers.MaxPooling2D(pool_size=2),

DefaultConv2D(filters=128),
DefaultConv2D(filters=128),
keras.layers.MaxPooling2D(pool_size=2),

DefaultConv2D(filters=256),
DefaultConv2D(filters=256),
keras.layers.MaxPooling2D(pool_size=2),

keras.layers.Flatten(),
keras.layers.Dense(units=128, activation='relu'),
keras.layers.Dropout(0.5),
keras.layers.Dense(units=64, activation='relu'),
keras.layers.Dropout(0.5),
keras.layers.Dense(units=10, activation='softmax'),
])

Observe how the architecture of this simple CNN is mapped into code:

• The “partial” function allows us to wrap the hyperparameters we will commonly use
throughout the network in the defined “DefaultConv2D” class.

• The first layer uses a large kernel size of 7 x 7 to swipe across the input images that have
dimensions of 28 x 28 pixels and only one color channel (i.e., grayscale).

• The max pooling layers allows the network to shrink the input images by a factor of two,
as denoted by the “pool_size” parameter.

• Then, a structure formed of two convolutional layers followed by a pooling layer is
repeated twice. Note that if the image size were larger, we could have repeated this
block more often to be able to reduce the dimensionality of the images and to go
deeper into understanding underlying patterns.

• Another interesting pattern to denote is the fact that the number of filters increases as
the network moves from the input to the output layer. Note that the number of basic
features is relatively low (e.g., lines, circles, and irregular shapes), but as we progress
toward the output there are many different ways how to combine them into forming
object parts. Since we are shrinking the image dimensions by a factor of two, then
increasing the number of feature maps by the same factor will not lead to an unman-
ageable computational load.

• Finally, the fully connected layer flattens the output, two dropout layers are added to
combat overtraining and to help the model generalize before the last dense layer is
added, which outputs the classification into the ten categories of the fashion MNIST
dataset.

75

4.4 Popular Convolutional Networks
Remarkable advancements have been made over the years in using convolutional neural
networks for image detection and classification. Researchers have developed a wide vari-
ety of architectures, which are often tested in a popular competition such as the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) (Russakovsky et al., 2014). In this com-
petition, CNN models are tested against high volume datasets containing images of over
1,000 classes of objects, some of which have only very minor differences. Trying to cor-
rectly classify more than 100 different dog breeds seems like an impossible task for a
human, and yet these CNN models have done an outstanding job. Some of the most popu-
lar CNN architectures are presented below.

LeNet-5

Created by LeCun et al. (1998), the LeNet-5 architecture is a classic example. It is widely
used to classify images of hand-written digits like the famous MNIST dataset. It grew in
popularity because the model is simple, straightforward, and effective. The architecture of
LeNet-5 is composed of three sets of convolutional layers alternated with two sets of aver-
age pooling layers, and is then followed by two sets of fully-connected layers. The table
below presents details of the most important components of LeNet-5 architecture.

Table 1: LeNet-5 Architecture

Layer Type Maps Size Kernel size Activation

Out Fully connected 10 RBF

F6 Fully connected 84 tanh

C5 Convolution 120 1 x 1 5 x 5 tanh

S4 Average pooling 16 5 x 5 2 x 2 tanh

C3 Convolution 16 10 x 10 5 x 5 tanh

S2 Average pooling 6 14 x 14 2 x 2 tanh

C1 Convolution 6 28 x 28 5 x 5 tanh

In Input 1 32 x 32

Source: Evis Plaku (2023).

Note the following important points:

• The input layer receives images composed of 28 x 28 pixels, but the images are padded
so that they become 32 x 32 pixels. The input layer, however, is the only layer that uses
padding. As the image data are processed in the next layers of the network, they contin-
uously shrink in size.

• Layer C1 is a convolution layer containing six convolution kernels of dimensions 5 x 5.
The activation map is 28 x 28.

76

• Next, the average pooling layer S2 generates six maps of size 14 x 14. Each cell in the
function map is connected to a 2 x 2 neighbor at the respective function in layer C1.

• Similarly, the input image data gets processed in the next convolution and pooling lay-
ers. Note that according to the architecture proposed by LeCun et al., the average pool-
ing layers behave in a slightly more complex manner. In particular, the mean of input
neurons is multiplied by a learning coefficient and added to a bias term. These opera-
tions are performed for each map, and then the activation function is finally applied.

• The final output layer receives the information produced from the earlier steps and
yields an output that estimates a probability that a particular input belongs to each of
the ten possible digit classes.

AlexNet

The AlexNet architecture demonstrated remarkable success as it won the famous ILSRVC
ImageNet challenge in 2012 by a large margin to its closest competitor (Krizhevsky et al.,
2012). The architecture of AlexNet is similar to that of LeNet-5 in structure, but much larger
and deeper. The presented model stacks convolution layers on top of each other, instead
of putting a pooling layer on top of a convolution one, as we discussed in LeNet-5 architec-
ture. The table below presents the architecture in more detail, including the rectified lin-
ear activation function (ReLU).

Table 2: AlexNet Architecture

Layer Type Maps Size Kernel size Activation

Out Fully connected 1000 Softmax

F9 Fully connected 4096 ReLU

F8 Fully connected 4096 ReLU

C7 Convolution 256 13 x 13 3 x 3 ReLU

C6 Convolution 384 13 x 13 3 x 3 ReLU

C5 Convolution 384 13 x 13 3 x 3 ReLU

S4 Max pooling 256 13 x 13 3 x 3

C3 Convolution 256 27 x 27 5 x 5 ReLU

S2 Max pooling 96 27 x 27 3 x 3

C1 Convolution 96 55 x 55 11 x 11 ReLU

In
Input

3
(RGB)

227 x
227

Source: Evis Plaku (2023).

To fight overfitting (note that a model overfits when it behaves well while using training
data, but poorly when encountering new data), Krizhevsky et al. applied two regulariza-
tion techniques. First, they used the dropout technique by introducing a probability of 50

77

percent of simply ignoring a neuron during the training phase. Next, they performed a
technique called data augmentation, which artificially increases the size of an image dur-
ing the training phase by generating multiple variants of that image. These variations are
created by randomly shifting the training images by various offsets, for example, changing
lighting conditions. These techniques help the model to become more robust to changes
and, therefore, to yield better results when tested against data it has not encountered
before.

Another distinctive feature of AlexNet is the use of a normalization step called local
response normalization. It aims to enforce a competitive activation of neurons by allowing
stronger neurons to restrain other neurons in neighboring areas. This encourages the dif-
ferentiation and specialization of various feature maps, empowering them to explore a
wider range of features. This technique, too, helps with generalization.

GoogLeNet

The GoogLeNet architecture showed a great performance by winning the ILSVRC chal-
lenge in 2014. The model proposed Szegedy and his colleagues from Google Research was
a much deeper network than the current state of the art (Szegedy et al., 2015). A funda-
mental advantage of the proposed model was the ability to use parameters more effec-
tively than other architectures by introducing the notion of sub-networks, known as
inception modules. The figure below illustrates the GoogLeNet architecture.

Figure 32: Inception Module of GoogLeNet Architecture

Source: Evis Plaku (2023).

The input data are transmitted to four different layers. The rectified linear unit (ReLU) acti-
vation function is used by all convolutional layers. Observe that the notation 1 x 1 + 1(S)
means that the layer uses a kernel of size 1 x 1, with stride one and SAME padding. That

78

means that the outputs of the layer will have the same spatial dimensions as its inputs. To
be able to better capture patterns in different scales, the GoogLeNet architecture uses dif-
ferent kernel sizes (1 x 1, 3 x 3, and 5 x 5) in the second set of convolution layers. Finally,
the depth concat layer allows to concatenate all outputs along the depth dimension by
stacking the activation feature maps from all convolutional layers.

An interesting element of the GoogLeNet architecture is the usage of layers with kernels
that have dimensions of 1 x 1. These layers observe only one pixel at a time and therefore
it is impossible for them to capture any features. Yet, they serve the following purposes:

• Kernels of size 1 x 1 are still able to capture patterns along the depth dimension, even
though they cannot capture patterns in the width and height dimensions.

• They output fewer feature maps than their inputs, thus forming a kind of a bottleneck
layer used to reduce the dimensionality of the input data, and therefore improve the
performance of the model in terms of computational cost and number of parameters.

• Each pair of combined convolution layers (for example, a layer of size 1 x 1 with layer of
size 3 x 3 or 5 x 5) can serve as a more powerful convolution layer that is able to capture
even more complex patterns than each kernel individually.

The architecture of the GoogLeNet convolutional neural network is a deep model that
includes nine inception modules as the ones described above. The ReLU activation func-
tion is used by all convolutional layers. An illustration of the architecture is presented in
the figure below alongside some key characteristics of the CNN.

79

Figure 33: GoogLeNet Architecture

Source: Evis Plaku (2023).

Upon receiving the image input data, the GoogLeNet architecture reduces the computa-
tional load by dividing the area of the image by 16. This process is performed in the first
two layers. Note that the first convolution layer uses a relatively large kernel size of 7 x 7
pixels in order to preserve a considerable amount of the initial information. As discussed
above, the goal of the local response normalization layer is to empower the previous lay-
ers to learn a wide variety of features in different levels of abstraction.

The next two convolution layers serve as bottleneck layers to shrink the dimensionality of
the input and to reduce the number of parameters needed for the model to learn the nec-
essary patterns. Another local response normalization layer follows. Then, to speed up
computations, a max pooling layer reduces the image size while aiming to pertain the
same quality of features and information.

80

Once these operations are completed, the GoogLeNet architecture focuses on a large
stack of nine inception modules that work with two pooling layers that help reduce
dimensionality and speed up computations. The role of the inception modules is crucial in
the architecture of GoogLeNet, as discussed above.

The role of the average pooling layer is to output the mean of each feature map and dis-
card any spatial information left at this point. Note that input image data are typically of
size 224 x 224 pixels for the GoogLeNet model. These dimensions are reduced in half by
each of the five max pooling layers yielding images of size 7 x 7 pixels. Considering that
this is a drastic reduction in the dimensionality of the image data, there is no need for this
architecture to stack several fully connected layers on top, as was the case of the previ-
ously discussed architectures. This way the number of parameters used is considerably
reduced.

Finally, the last layers perform a dropout regularization technique and use a fully connec-
ted layer with 1,000 units to account for the fact that there are 1,000 possible categoriza-
tion classes. The role of the softmax function is to output the estimated probabilities of
each input data belonging to each of the possible categories.

The GoogLeNet architecture is a highly effective and well-researched model. Several other
architectures have been proposed as variants of it, which have achieved even better per-
formance by further exploring and improving the inception modules.

ResNet

In 2015, the popular ILSVRC contest was won by a model proposed by Kaiming He and his
colleagues, who used a Residual Network composed of 152 layers (He et al., 2016). Observ-
ing the history of the most successful architectures confirmed a trend: deeper models rely
on effective architectures to actually use fewer parameters while getting better at detect-
ing and classifying objects in image input data. Though usually deeper models are associ-
ated with more parameters, the key to achieving the drastic improvement in the context of
ResNet is by using what the authors denote as a “skip connection” which allows to add the
signal that contributes to a layer to the output of another layer that is located higher in the
stack.

This approach addresses the challenges associated with training very deep networks by
introducing the notion of residual blocks that allow to have direct connections that skip
some layers of the model. Typically, the output of a layer is provided as input to the next
layer. Residual blocks make possible to bypass several layers and connect two distant lay-
ers directly. This connection is known as skip connection or shortcut connection and
allows to train deeper networks more effectively. The shortcut connection performs what
is known as identity mapping, i.e., adding the output of these connections to the output of
the stacked layers. Note that this process does not require any extra parameters, nor does
it require more computational time.

To better understand the importance of residual blocks in speeding up and improving
learning, consider the following. The objective of training a neural network is to be able to
learn how to model a target function, say ℎ x . But, if we add to the output of the network

81

the input x, then in fact we are skipping connections and the network should now learn
how to model the function f x = ℎ x − x rather than simply ℎ x . This process is
known as residual learning. The figure below provides an illustration.

Figure 34: Residual Learning

Source: Evis Plaku (2023), based on He et al. (2016).

The following highlights an important difference between the residual network and regu-
lar networks. When the weights of a regular network are close to zero (e.g., during initiali-
zation), the outputs will also be close to zero. However, if we add a skip connection, the
network will now output a copy of its input. In other words, it will model the identity func-
tion. Since it is often the case that the target function is close to the identity function, the
training process will be completed considerably faster. Another advantage of skip connec-
tions is that it allows the network to make progress in learning even in the cases when
some layers have not yet started learning. Each residual unit can be considered a smaller
network containing skip connections.

The figure below presents the ResNet architecture. Observe that it contains a lot of simi-
larities to the GoogLeNet architecture, especially at its beginning and end. The middle
part contains a large stack of residual units where each unit is made of two convolution
layers using batch normalization and ReLU activation function.

82

Figure 35: ResNet Architecture

Source: Evis Plaku (2023). based on He et al. (2016).

SUMMARY
In this unit, you learned that convolutional neural networks emerged as
a new type of neural networks most commonly applied to analyze image
input data in order to detect and classify objects. We discussed how
CNNs typically perform more effectively than regular neural networks in
terms of computational time and by using fewer parameters. Convolu-
tional neural networks have been successfully applied to a wide range of
fields, including, but not limited to, object detection, medical analysis,
face and facial emotion recognition, and self-driving autonomous cars.

We expanded our discussion of CNNs and provided insight into their
architecture and the type of layers they are composed of. We addressed
how the convolutional layer plays a crucial role in the CNN by continu-
ously transforming the input image data to extract relevant features. The
pooling layer then is used mainly to shrink the size of the feature maps
and reduce the number of parameters needed by the model. The fully
connected layers allow the network to compile the data extracted by the
previous layers to form the final output classification.

We also investigated how the architecture of a convolutional neural net-
work plays an important role in its effectiveness and the ability of the
network to extract meaningful features. This can form various levels of

83

hierarchical abstractions until the whole object is effectively recognized
and detected. We presented several state-of-the-art architectures that
demonstrate the remarkable advancements that have been made over
the years in using convolutional neural networks for image detection
and classification.

84

UNIT 5
RECURRENT NEURAL NETWORKS

STUDY GOALS

On completion of this unit, you will be able to ...

– understand what recurrent neural networks are and how they work.
– know what memory cells are and the role they play in a recurrent neural network.
– identify the major challenges encountered when training recurrent neural networks.
– comprehend what a long short-term memory unit is and why it performs better on long

sequences than a naive recurrent neural network.
– develop a simple recurrent neural network to process sequence data.

Recurrent neural
networks

a special type of neural
network distinguished by

their “memory,” which
allows them to maintain a
state of what the network

has observed thus far

5. RECURRENT NEURAL NETWORKS

Case Study
Lukas is a software engineer who is experimenting with training a neural network to per-
form automatic translation. He finds this problem interesting, but challenging, as he is
overwhelmed by the many flavors of grammatical rules and the peculiarities of the lan-
guage. He is discussing this challenge with his friend, Anne, who is a neuroscientist.

“I think context is everything,” Lukus says. “I want to make the network remember the
words and the sentences it has read before, but it seems to forget so easily. My network
behaves like an inattentive reader: as soon as some new information comes up, every-
thing that was read until that moment slips away from memory.”

“If only there was a way to help the network remember prior information,” Lukas contin-
ued. “This way, it would take into consideration past information and build up its under-
standing based on previous words and sentences. It would not throw everything away to
start from scratch, but it would have a persistent memory.”

“I know what you need,” Anne answered. “You need to develop a recurrent neural network
that saves information not only short term, but also works well when facing long sequen-
ces. Let's build and train it together.”

5.1 Recurrent Neurons
Imagine you are watching a baseball game. The batter hits a hard ball that flies high. You
observe the left-fielder rushing in the direction of the ball, anticipating its trajectory, and
adapting their movements accordingly until they finally catch the ball. In what appears to
be a common baseball game movement, we can observe how tracking the ball’s move-
ments requires “predicting” the near future by relying on past observations and actions.
As humans, we inadvertently do it all the time when we finish each other's sentences or
get an accurate gut feeling on how a movie ends.

In this section, we will discuss recurrent neural networks (RNN), a class of neural net-
works that are built upon the same promise: to predict the future, at least to a certain
point. More realistically, these special types of networks have been used successfully to
analyze time series data, such as retail sales, stock prices, or rainfall measurements; on
autonomous driving aiming to anticipate and avoid dangerous trajectories; on natural lan-
guage processing tasks, such as automatic translation and sentiment analysis, and many
other challenging real-world tasks.

86

Memory in RNN
The memory in RNN
refers to the ability of the
network to store informa-
tion from prior inputs per-
sistentantly.

What are Recurrent Neural Networks?

A major characteristic of regular feed-forward neural networks or convolutional neural
networks is that they have no memory. As they receive data, these inputs are processed
independently without remembering any intermediate information. However, in many
practical cases it is important to recollect what came before. We, as humans, adopt this
principle quite often. In fact, as you are reading this text, you are processing it word by
word while (hopefully) creating an internal model that is built upon past information and
is continuously updated when new information comes in.

RNNs embrace a similar principle. Their distinctive feature is that to predict an output,
they rely on information from prior inputs while maintaining a state of what the network
has observed up to that point. In fact, RNNs use a looping mechanism that allows informa-
tion to flow from one step to the next. Hence, they can effectively process a sequence of
information that affects the final output. RNNs possess a kind of internal memory that
empowers them to make past information persist. For that reason, memory in RNNs are
especially powerful in problems that involve sequential data and in scenarios where the
context plays a critical role in predicting the outcome.

Because of their internal memory, recurrent neural networks can recollect crucial informa-
tion about the input they receive at different timesteps and can learn how to form a much
deeper, more meaningful understanding of the sequence of input data they are processing
while leveraging on past inputs.

In traditional neural networks, each input shown to the network is processed independ-
ently, i.e., apart from the connection weights the network does not keep any state
between inputs. If such a network, for example, needs to process a sequence or a tempo-
ral series of data, the entire sequence must be processed at once by the network. A recur-
rent neural network, however, will process the sequence by iterating through its elements
and maintaining a state that contains information regarding what the network has
observed thus far. This peculiar characteristic makes RNNs a powerful and robust type of
neural networks in many practical applications, especially when involving sequential or
temporal series of data.

Information Flow in Recurrent Neural Networks

Neural networks are composed of nodes that process information through a set of con-
nected layers. In a regular feed-forward neural network, information flows in forward
direction (from the input layer toward the output layer, passing through hidden layers).
These types of networks, however, do not have a notion of the order in time in which they
receive information. They have no memory of the input they have received in previous
timesteps. This can cause a serious limitation, especially when dealing with problems
where, in order to predict what is coming next, it is critical to consider the state of informa-
tion in several prior timesteps.

87

Recurrent neural networks, converesly, are structured in a way that facilitates the trans-
mission of information through a cycle. When a given node needs to make a decision, it
considers not only the current input, but also what it has learned from prior inputs.
Because of their internal memory, RNNs are designed to pass information in two direc-
tions. This enables them to effectively process sequential and temporal data.

The figure below provides an illustration of the difference in information flow between
recurrent neural networks and regular feed-forward neural networks. As observed, the
node containing a cycle represents the ability of the RNN to allow information to persist,
as in the form of a short-term memory. This memory stored in the hidden state of the net-
work represents the “context” created from prior inputs.

Figure 36: Recurrent Neural Networks Versus Feed-Forward Neural Networks

Source: Evis Plaku (2023).

Architectural Types of Recurrent Neural Networks

While regular feed-forward neural networks usually map one input to one output, recur-
rent neural networks are not restricted in this regard. Instead, input and outputs of RNNs
can differ in length. In this context, four common types of recurrent neural networks can
be distinguished. This broad category empowers RNNs to be used effectively in many dis-
tinct scenarios, such as sentiment analysis, music generation, or automatic translation.

One-to-one

The simplest form is a RNN that maps one input to one output, called a one-to-one net-
work. The input and output sizes are fixed. In this case, the RNN behaves similarly to a
regular neural network.

One-to-many

A one-to-many RNN allows a single input to be mapped to multiple outputs. Such a net-
work receives an input of a fixed length but produces a sequence of outputs. Wide applica-
tions of such networks are found in music generation and image captioning.

88

Many-to-one

Many-to-one refers to those types of recurrent neural networks where a series of inputs
generate only one single output. A typical use of this type of network is sentiment analysis
where pieces of text are analyzed and then classified to represent a sentiment that catego-
rizes the opinions expressed in the text.

Many-to-many

A many-to-many recurrent neural network uses a series of input data and generates a ser-
ies of outputs. The number of inputs and outputs can be the same size, leading to a sub-
category commonly known as equal unit size; if the input and output sequences have dif-
ferent sizes, this leads to unequal unit size RNNs. The former finds applications in name-
entity recognition problems (i.e., seeking to locate and classify named entities found in
unstructured texts), while the latter is typically used in automatic machine translation.
The figure below provides an illustration of the above cases.

Figure 37: Types of Recurrent Neural Networks

Source: Evis Plaku (2023).

Implementing a Simple RNN in Keras

The Keras library provides built-in functionalities for implementing a simple recurrent
neural network. To illustrate the concept, we will build a simple RNN to address the Inter-
net Movie Database (IMDb) movie review classification problem. Note that the dataset pre-
sented by Maas et al. (2011) contains IMDb movie reviews that are labeled according to the
sentiment they represent (i.e., positive or negative).

Sentiment analysis is an important and challenging problem. In our context, note that the
movie reviews are stored as a sequence of integers. These integers represent identification
numbers that have been pre-assigned to individual words, while target labels are denoted
by either zero (negative sentiment) or one (positive sentiment). This representation of
pure textual information into a sequence of data makes the problem suitable to be
addressed by a recurrent neural network.

89

As shown in Chollet (2017), before we can start building a recurrent neural network, we
need to preprocess the data to determine the number of features to be used, their length,
the batch size used for training, and other relevant aspects for the training phase. The data
is processed as follows:

from keras.datasets import imdb
from keras.preprocessing import sequence
from keras.utils import pad_sequences
max_feat = 10000
max_len = 500
batch_size = 32

loading the data
(X_train, y_train), (X_test, y_test) =
 imdb.load_data(num_words=max_features)

shape of input train and test data
X_train = pad_sequences(X_train, maxlen=max_len)
X_test = pad_sequences(X_test, maxlen=max_len)

print('shape of input training data:', X_train.shape)
print(shape of input test data:', X_test.shape)

Note that we start by importing the necessary libraries to load the dataset to process it.
Then, we determine the number of words to consider as features to 10,000. The maximum
length of 500 denotes that after this many words we will cut off the text and not consider
the rest of it. In addition, we determine a batch size of 32. After we load the dataset, we
determine that the dimensions of the data used for training and for testing, both having a
shape of 25,000 x 500.

Training the model with embedding and SimpleRNN layers

After loading the dataset and preprocessing the data, it is time to train a model using an
embedding and a simple RNN layer. The role of the embedding layer is to transform each
word into a fixed length vector of defined size. In order to deal with textual data, our recur-
rent neural network need to have the data transformed into numbers before the learning
phase can start. Next, we use a simple RNN layer so that our network can identify patterns
in the data and learn how to map input features to the target output. In addition, we also
use a fully connected dense layer with the sigmoid function whose objective is to convert
the output of the model in a probability score. This can be achieved using the code below.

from keras.layers import Dense

network = Sequential()
network.add(Embedding(max_feat, 32))
network.add(SimpleRNN(32))
network.add(Dense(1, activation='sigmoid'))

90

network.compile(optimizer='rmsprop', metrics=['acc'],
 loss='binary_crossentropy',)
history = model.fit(X_train, y_train, epochs=10,
 batch_size=128, validation_split=0.2)

As one can observe, the model is trained using the root mean squared propagation, which
is a variant extension of the gradient descent algorithm. Our chosen metric is the accuracy
of prediction. The model is trained for ten epochs with a batch size of 128 and using a split
of 20 percent for testing data.

Displaying the results

To get a better understanding of the results, we can plot the accuracy of the model with
the training and the testing data and, similarly, we can also show the training and valida-
tion loss. To do so, we take advantage of the “matplotlib” library. We keep track of the his-
tory (steps and results) of the training procedure for the training and validation accuracy
and loss. Then, as shown in Chollet (2017), the data is plotted against the number of
epochs used:

import matplotlib.pyplot as plt

acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']

epochs = range(1, len(acc) + 1)
plt.plot(epochs, acc, 'o', label='Training accuracy')
plt.plot(epochs, val_acc, label='Validation accuracy')
plt.title('Training and validation accuracy')
plt.legend()

plt.plot(epochs, loss, 'o', label='Training loss')
plt.plot(epochs, val_loss, label='Validation loss')
plt.title('Training and validation loss')
plt.legend()

91

Exploding gradients
occur when large error
gradients accumulate,

resulting in unreasonably
large updates to the

weights of the network

Figure 38: Training and Validation Accuracy and Loss

Source: Evis Plaku (2023).

The figure above demonstrates the results. Note that this simple recurrent neural network
achieves a validation accuracy of approximately 85 percent, while, as expected, it per-
forms better on the training data. Note that we only considered the first 500 words rather
than the full sequence, which in some cases might be longer, and this might be an issue
that could affect the performance of our model. Another, more fundamental issue is the
fact that RNNs in their simple basic form suffer when processing long sequences, such as
text. As we will discuss in the next sections, there are more advanced types of layers that
generally yield a better performance.

Two Issues of Standard RNNs

Recurrent neural networks must deal with two major obstacles that influence the effec-
tiveness of the learning process in an RNN. Both issues are related to “gradient” problems.
Recall that the gradient is the derivative of a function. In simpler terms, the gradient meas-
ures how much the output of a function changed if the input changes just by a little bit. In
our context, the gradient estimates the change in all weight parameters with regard to the
change in the error. The higher the gradient, the steeper the slope of the function and
therefore the faster a model can learn. However, a slope equal or close to zero would
mean that the model is not learning.

Since recurrent neural networks are equipped with memory units, they establish a con-
nection between the target output and input events that have occurred on earlier time-
steps. However, in practice, it is difficult to correctly assign importance to far remote
inputs. This leads to two important issues as discussined in the following paragraphs.

Exploding gradients

Exploding gradientsrefer to the problem where the learning algorithm assigns unreason-
ably high importance to weights. Large error gradients accumulate, and this leads to
major updates of network weights during the training phase. It causes the network to
become unstable and ultimately unable to learn well from the training data.

92

Vanishing gradient
the problem of the recur-
rent neural network being
unable to propagate use-
ful gradient information
from the output of the
model back to the layers
near the input of the
model

In practice, exploding gradients often occur by repeatedly multiplying gradient values
larger than one causing an exponential growth that results in overflow, similar to the
effect of the proverbial butterfly whose flapping wings cause a distant hurricane. Usually
when a model suffers from exploding gradient it might show the following signs:

• The model is unstable, meaning that major changes occur from one update to another.
• The model is unable to learn meaningful patterns out of the training data.
• The model weights become unreasonably large during training phase and/or the error

gradient values are regularly larger than 1.0 for most nodes.

When these signs occur, one needs to confirm the issue of exploding gradients. To address
the challenge, gradients are often truncated or compressed. Typical measures include
redesigning the network to have fewer layers or to use a smaller batch size during the
training phase. A common approach in recurrent neural networks is to allow updating in
more recent time-steps, otherwise known as truncating through time, which will be dis-
cussed in more detail in the upcoming sections. Limiting the size of the gradients during
the training phase (commonly known as clipping) is another common technique that is
used to deal with the exploding gradients problem.

Vanishing gradients

The learning process in a recurrent neural network requires propagating a feedback signal
from the output back to earlier layers. Sending messages in the backward direction
empowers the network to learn from its errors and adjust its weight parameters accord-
ingly. However, since the recurrent neural network can be a deep network comprised of
many layers, it may occur that the signal becomes weak or even gets entirely lost as it
travels back. This issue is known as the vanishing gradient problem and might cause the
network to become untrainable. Vanishing gradients can become too small (i.e., close to
zero) and, therefore, it becomes difficult, if not impossible, for the network to learn mean-
ingful patterns out of the input data.

The vanishing gradient problem is an important barrier for recurrent neural networks. To
address this issue, weight initialization is proposed as a technique that algorithmically
creates initial values that prevent the backpropagation algorithm from updating weights
to unrealistically small values. Though many techniques have been tried out, a special
type of recurrent neural networks, known as long short-term memory networks, have
emerged as an effective and robust approach that deals with the vanishing gradient prob-
lem in a principled manner. This type of network is discussed in detail in the next section.

5.2 Memory Cells
Consider an idiom that comes unexpectedly in this text, such as “out of the blue.” For the
idiom to make sense, one needs to not only understand the individual words, but also
how they are aligned. A recurrent neural network, in this simple analogy, needs to con-
sider a sequence of words and the position of each word before assembling all that infor-
mation to make a prediction about the next word in the sequence.

93

A recurrent neural network has a form of memory. More formally, at a given time step t,
the output of a recurrent neuron is dependent on inputs from previous timesteps.
Because the recurrent neuron preserves information in a state across different timesteps,
this state is often called a memory cell. Various cell types have been developed, ranging
from basic cells to more advanced ones, as we will discuss in more detail in the following
sections.

Let us denote a cell at a given timestep t as ℎt where "ℎ" stands for hidden. The state of a
cell is a function of the state at a previous timestep, and the inputs received at the current
timestep, as in ℎt = f ℎt − 1, Xt where Xt denotes the inputs at timestep t and ℎt − 1
represents the hidden state at the previous timestep. Let us denote the output at timestept as Y t. The figure below provides an illustration. In the context of our earlier example, the
left side of the figure represents the network, which has built a model that is able to pre-
dict the entire phrase. The right side of the figure, however, represents how the expression
is unrolled through several time-steps, each mapping (for instance) a single word.

Figure 39: A Memory Cell with Hidden States

Source: Evis Plaku (2023).

The structure of a simple cell in the hidden layer of a recurrent neural network is exempli-
fied by the following figure. Note that w is used to represent the weight coefficient matrix.
For example, wxℎ represents the weight coefficient matrix of the input layer to the hidden
layer. The bias vector is denoted by b, as, for instance, bℎ represents the bias vector of the
hidden layer. Finally, the activation function used by the memory cell is denoted by f.

94

LSTM
A long short-term mem-
ory unit is a special type
of recurrent neural net-
work capable of success-
fully handling long-term
dependencies

Figure 40: Simple RNN Cell Structure in the Hidden Layer

Source: Evis Plaku (2023).

As one can observe the resulting state ℎt at timestep t is dependent on the state ℎt − 1 at a
previous timestep and the current inputs Xt are adjusted accordingly by the weight
parameters and the bias term, which after applying the activation function, yields the out-
put Y t.
5.3 LSTMs
Basic recurrent neural networks are simplistic models that are rarely used in practice in
their pure form. Although they were built on the premise of being able to retain informa-
tion obtained many timesteps before, in practice many barriers prevent RNNs from learn-
ing these long-term dependencies. The vanishing gradient problem discussed earlier
poses an important challenge. Moreover, the deeper the network, the more impenetrable
it becomes for information to flow back smoothly and for the network to remember what
happened in earlier remote steps.

To address this issue, German researchers Hochreiter and Schmidhuber (1997) proposed a
robust solution by developing a variant of a recurrent neural network known as long-
short-term memory units (LSTM)

. LSTMs are a type of recurrent neural networks able to handle long-term dependencies.
They preserve relevant information from earlier sequences and carry it forward in the net-
work. These types of networks can even learn from events that have a significant time lag
between them.

95

The image of a conveyor belt is often used to describe an LSTM. Information from a
sequence that is being processed by the network can jump on the conveyor belt at any
given point, and it is then transported to later timesteps before jumping off, all intact, and
is used whenever it is needed by the network. An LSTM is able to save information, thus
preventing it from gradually getting lost in the deep layers of the network.

Consider a simple LSTM cell, as shown in the figure below. Note that Wout and Uout
denote output weight matrices. An LSTM carries information across various timesteps. In
our illustration, we denote ct by the information that is carried at timestep t. A cell will
combine the input connection with the recurrent connection and the information it has
carried, thus affecting the state that is being transmitted to the next timestep. The objec-
tive is to yield the next state and the output.

Figure 41: A LSTM With a Carry Track

Source: Evis Plaku (2023) based on Chollet (2017).

The particularity of a long short-term memory unit is the way that the next state of the
carried information is computed. The LSTM can add or remove information from the cell
state based on regulations imposed by some special structures, known as gates. The role
of gates is to decide if information will pass through or not. To achieve that, they typically
use a sigmoid neural net layer. Recall that a sigmoid layer uses a sigmoid function that
receives an input and outputs a result ranging from zero (let nothing pass) to one (let
everything pass). Three distinct transformations are involved that are described by three
types of gates that control the flow of information in the cell state.

96

The forget gate

An LSTM has to decide which information is relevant to keep from the prior cell state. The
forget gate is charged with this task. The figure below provides an illustration. The arrows
represent the information flow in the forget gate, while the rest of the figure demonstrates
the other composing parts of the LSTM cell, whose discussion follows this section.

Figure 42: The Forget Gate

Source: Evis Plaku (2023).

To make a decision, the forget gate considers the input at a given timestep Xt and the hid-
den state ℎt − 1 and applies on them the sigmoid function, which generates a result
between zero and 1. Values of zero denote information that is discarded, while values of
one shows information that is remembered. Values in between represent information that
is partially remembered. The value of the forget gate, denoted by ft will be used by the cell
on future steps.

Consider as an example a system that aims to perform an automatic prediction on the
next word that should come up in a sentence. If, for instance, the cell state contains infor-
mation about the gender of a subject so that it can use the correct pronouns, when a new
subject is encountered in the sentence, it might be a good decision to forget the gender of
the previous subject.

The input gate and update state

The role of the input gate is to identify the elements that need to be added to the cell state
and the long-term memory of the network. The input gate layer decides which values will
be updated. To achieve that, a sigmoid function is applied on the current state Xt and the
hidden state ℎt − 1 , transforming the values in the range zero (not relevant) to one (rele-
vant). In order to better regulate the network, the tangent function is also applied yielding

97

an output between -1 and 1. These outputs are multiplied together in a process in which
the input gate is charged with the task of deciding what information is relevant to update
in the current cell state of the LSTM unit. The figure below provides an illustration.

Figure 43: The Input and Update State

Source: Evis Plaku (2023).

At this point, the network has enough information to calculate the cell state and it is ready
to store the information in it. When this transformation takes place, it allows to transition
from the old cell Ct − 1 to the new oneCt. The previous cell Ct − 1 is multiplied with the
forget vector ft and then the network performs pointwise addition with the input vector.
This allows it to update the cell state to the values that are found relevant. Note that dur-
ing this step, the old state does not carry out the information that we decided to forget. In
the context of our example, we would discard the information about the gender of the pre-
vious subject and replace it with the gender of the new one.

The output gate

The objective of the output gate is to decide what to output from the memory cell. It con-
tains information on previous inputs and decides the value of the next hidden state. The
operations performed on the output gate start with a sigmoid function being applied to
the hidden state and the current input. Then, the modified state is passed to the tangent
function. The result is multiplied with the Sigmoid function, which decides what parts of
the cell state to output. The figure below provides an illustration of the above operations,
denoted by the red arrows.

98

Figure 44: The Output Gate

Source: Evis Plaku (2023).

We provide a filtered version of the cell state containing only the parts that we decided to
keep. The new cell and the new hidden state carried out in the next steps of the process.

Implementing the LSTM Layer in Keras

Earlier we showed how we can implement a simple RNN layer in Keras. Similarly, we can
implement a more advanced layer, such as an LSTM, to tackle the same problem, namely
the IMDB movie review classification. To do so, we update the code used previously to
denote the fact that we are now using an LSTM layer. The other aspects of the model
remain the same:

from keras.layers import LSTM

network = Sequential()
network.add(Embedding(max_feat, 32))
network.add(LSTM(32))
network.add(Dense(1, activation='sigmoid'))

Plotting the results as we did in the previous section, would show that, this time, we ach-
ieve an accuracy of 89 percent which is a better result. In contrast with a simple RNN cell,
LSTMs suffer less from vanishing gradient problems.

99

Gated Recurrent Units
A GRU is an advancement

of a standard RNN that
leverages connections
through a sequence of

nodes to address the van-
ishing gradient problem
and effectively perform
machine learning tasks.

Figure 45: LSTM Training and Validation Accuracy and Loss

Source: Evis Plaku (2023).

Gated Recurrent Unit Networks

Gated recurrent units (GRU) are a type of recurrent neural network developed by Cho
et.al (2014) to address the vanishing gradient problem. Similar to long short-term memory
units, GRUs rely on gates to control information flow. However, they have a simpler archi-
tecture, use less memory, and typically require less time to train. GRUs do not have a cell
state and they use the hidden state to pass on information. They are composed of two
gate operating mechanisms commonly referred to as the update gate and the reset gate.
Their key objective is to retain information from earlier timesteps and use that to decide
what information should be passed to the output.

Update gate

The role of the update gate is to decide the amount of previous information that will be
passed into the next state. More formally, at a given timestep t, the update gate zt is calcu-
lated as zt = σ W z · xt + Uz · ℎt − 1
Note that the input xt at timestep t is multiplied by its weight parameters W z . Similarly,
the information from the previous timesteps stored in ℎt − 1 is multiplied by the respec-
tive weight parameters Uz. These results are added together, multiplied by a coefficient σ,
and then a sigmoid activation function is applied to output results that fall between zero
and 1. This way the update gate controls how much information from earlier timesteps
should be passed on in future calculations of the model.

Reset gate

The purpose of the reset gate is to help the model the decide how much of the informa-
tion from earlier timesteps it should forget. The formula for the reset gate is the same as
the update gate:

100

zt = σ W z · xt + Uz · ℎt − 1
However, the key differences rely on the weights and the use of gates. The operations per-
formed at this gate include multiplying the input xt and the hidden state ℎt − 1 with their
respective weights, adding the results and applying the sigmoid function to squash the
output.

Gates in action

The figure below provides an illustration of the update and reset gate operation in a GRU
network.

Figure 46: Gated Recurrent Unit

Source: Evis Plaku (2023).

First, the reset gate determines which information from earlier timesteps will be stored in
the new memory. Input vector xt and hidden state ℎt − 1 are multiplied with their respec-
tive weights and an element-wise multiplication is performed between the previous hid-
den state and the reset gate. The results are summed and a non-linear activation function
is applied yielding the current memory content ℎt′.
At the current timestep t, the network must calculate the hidden state ℎt. To achieve that,
it will heavily rely on the role of the update gate, because it holds information for the cur-
rent unit and will transport it forward in the network. The update gate will decide which
information to use from current memory content ℎt and earlier timesteps ℎt − 1. In particu-
lar, the update gate and ℎt − 1 perform element-wise multiplication and the result is sum-
med with the product operation between the current memory content ℎt′ and 1 − zt,
where zt is the update gate at timestep t.

101

Backpropagation
through time

BPTT is a gradient-based
technique used for train-

ing certain types of recur-
rent neural networks,

such as long short-term
memory networks.

Let’s illustrate these operations with an example. Assume the goal of our network is to
consider movie reviews and determine the sentiment (i.e., positive or negative) associated
with them. Consider this review: “Home Alone is a splendid movie. Leaving a child alone
can be alarming. The movie evokes all sorts of scary nostalgia.” As we can notice, the most
relevant information is of the review is positioned in the beginning of the text. Without the
ability to store past information, the network could be led to make wrong predictions.
However, because of the architecture described, the model can learn to set the vector zt
close to one (hence, 1 − zt will be close to 0) and therefore ignore a large portion of more
recent text which explains the movie plot and is irrelevant for the prediction.

To summarize, GRUs allow the network model to store and filter information relying on
the update and reset gates. That helps the network to learn because relevant information
is kept through timesteps and does not vanish as new information comes in.

In practice, both LSTMs and GRUs are used widely. GRUs typically need less time to train
and use fewer parameters, but LSTMs tend to perform better on larger datasets. Both
types of recurrent neural networks are state-of-the-art approaches that can perform well
in many complex problems.

5.4 Training RNNs: Unrolling Through
Time
A common strategy used to train recurrent neural networks is backpropagation through
time (BPTT). The key elements of this approach include unrolling the RNN (as we did ear-
lier) and then applying the backpropagation algorithm.

Backpropagation is a standard algorithm in machine learning, which in our context is used
to calculate the gradient of the error function with respect to the weights of the network. A
neural network uses forward propagation to generate an output of the model. An error
term measures if this output is correct or not. Backpropagation allows to move backwards
through the neural network to compute the partial derivatives of the error. A gradient
descent algorithm adjusts the weights of the network accordingly with the objective of
minimizing an error function, thus enabling the neural network to learn during the train-
ing phase.

In our case, backpropagation through time is the application of the backpropagation algo-
rithm to a recurrent neural network. Conceptually, we need to unroll all input timesteps to
apply BPTT. At each timestep, the algorithm will consider one input and one output time-
step and a copy of the recurrent neural network. At each timestep, the errors will be calcu-
lated, then accumulated together. In particular, if the training phase of the network starts
at time t0 and ends at time tn then the total cost function is calculated as the sum over
time of the standard error function Et at each timestep t:Etotal t0, tn = ∑t = t0tn E t

102

When the network is rolled back up, the weights will be updated. Note that when the gra-
dient descent considers the weight updates wij they will have contributions from each
timestep: Δwij = − η δ Etotal to, tnwij = − η∑t = t0tn δE tδwij
• The partial derivatives δ Ewij will be affected by multiple instances of each weight and

will be dependent on the activations of input and hidden units at previous timesteps.
• The following key steps of the backpropagation through the time algorithm are repea-

ted: Consider a sequence of input and output timesteps.
• Unroll the recurrent neural network and at each timestep calculate and accumulate the

errors.
• Roll the network back up and update the weights accordingly.

Two main phases, commonly known as forward pass and backward pass, compose the
backpropagation through the time algorithm.

Forward Pass

During the forward pass, the input vector xt and hidden state from the previous timestepℎt − 1 are multiplied by the respective weight matrices, say W xℎ and W ℎℎ , and then are
summed together. A non-linear function, say tanh, receives the result and generates the
input for the next timestep. It processes the information for performing classification, out-
putting the result yt. More formally, the equation can be written asℎt = tanh W xℎ · xt + W ℎℎ · ℎt − 1 and yt = W ℎy · ℎt
Backward Pass

The objective of the backward pass is to start from the end and move backwards to com-
pute the gradient of the classification loss with respect to the weight matrix and the hid-
den state. Note that sequence data are processed one step at a time, while during the
backward pass of the backpropagation algorithm the gradients move across timesteps.
Hence, the name backpropagation through time.

The figure below provides an illustration. The W , b pair denotes the weights and bia-
ses. The dashed arrows represent the forward pass through the unrolled network. A cost
function is used to evaluate the output sequence. The gradients of the cost function are
propagated backwards through the unrolled network, as denoted in the figure by the solid
arrows. The gradients computed during the BPTT algorithm are used to update the
weights of the network. Note that the information about the gradients is transmitted back-
wards through all the outputs and not just the final output. In our example, it means that
the cost function is computed by using three outputs of the network (Y 1, Y 2, Y 3), and
therefore, the gradient will affect those, but not output Y 0.

103

Figure 47: Backpropagation Through Time

Source: Evis Plaku (2023).

Practical Considerations for the BPTT Algorithm

Due to their architectural characteristics, recurrent neural networks can become increas-
ingly complex when unfolded. Keeping track of all components at multiple timesteps is
burdensome. This is a problematic issue for most recurrent neural networks. Note that
weights are updated at each timestep. Therefore, it requires a large storage to keep track
of a complete history of changes of inputs and network states at earlier timesteps. In order
to make the network computationally feasible, it might be helpful to ignore very early
information, and, thus, to truncate the network after a certain number of timesteps.

The rationale behind this strategy is that the update of weights is affected less by contri-
butions that come from timesteps further back in time, in comparison to more recent
steps. This idea has led to an enhanced algorithm known as truncated backpropagation
through time (TBPTT).

In TBPTT, the forward and backward passes are executed in chunks of sequences rather
than the entire sequence. This helps reduce the computational complexity of the algo-
rithm during the training phase. However, it might come with the cost of not being able to
learn dependencies as long as the original BPTT algorithm because of the limit imposed
by the truncation procedure.

In more detail, this modified version works by processing the sequence of inputs one time-
step at a time and then every k1 timestep, the BPTT update is performed back for a certain
number of timesteps, for example, k2. This periodic processing and backpropagation
make the method a practical and effective way of training an RNN.

104

Note that if k2 – the number of timesteps for which BPTT is performed – is sufficiently
small, then the parameter update cost will not be computationally expensive. On the con-
trary, its hidden states have still been exposed to many timesteps and, therefore, contain
useful information about earlier timesteps, which can be effectively used during the train-
ing procedure.

Observe that both parameters play an important role, because k1 determines the number
of forward-pass timesteps between updates. The frequency of weights updates affects
how fast or slow the training phase will be. The k2 parameter determines the number of
steps for which to apply BPTT. Therefore, it should be large enough to be able to capture
meaningful and relevant information in earlier timesteps, so that the network can effec-
tively learn.

In comparison with BPTT, the following steps are repeated in the enhanced version of the
truncated backpropagation through time algorithm:

1. Consider a sequence of of k1 input and output timesteps.
2. Unroll the recurrent neural network and at each timestep calculate and accumulate

the errors for k2 timesteps.
3. Roll the network back up and update the weights accordingly.

The backpropagation through time algorithm and the enhanced version using truncation
have proven to be effective approaches to train recurrent neural networks that address
complex and challenging problems.

SUMMARY
In this unit, you learned that recurrent neural networks are a class of
neural networks that rely on maintaining information from prior obser-
vations and using that for future predictions. We discussed how this dis-
tinctive characteristic makes RNNs especially powerful in many scenar-
ios where the context plays an important role in predicting the outcome,
such as in automatic translation, language modeling, text generation,
speech recognition, and many others.

We also discussed the different types of recurrent neural networks and
their composing parts. We presented the memory cells as core units of
an RNN and identified how the issues of exploding gradients and vanish-
ing gradients can deter and even prevent an RNN from learning effec-
tively.

To address these challenges, the long short-term memory unit was then
presented as a robust approach that addresses these issues and that
empowers a network to learn effectively while remembering remote
events and using that information to predict target outputs. In particu-

105

lar, we discussed the role of different gates such as forget, and the input
and output gates, in transmitting information and deciding which are
the most relevant parts that need to be propagated in the other steps.

Furthermore, we demonstrated how we can build a simple recurrent
and LSTM layer using Keras. We discussed how a recurrent neural net-
work can learn through the backpropagation through time algorithm. In
addition, truncation was presented as an enhancement that provides
computational convenience and leads to effective practical implementa-
tions of recurrent neural networks in many challenging domains.

106

BACKMATTER

LIST OF REFERENCES
Amer, M. (2022). A visual introduction to deep learning [Image]. kDimensions.

BruceBlaus (2013, September 30). Multipolar Neuron [Image]. Wikipedia Commons. CC BY
3.0. https://en.wikipedia.org/wiki/Multipolar_neuron

Cho, K., van Merrienboer, B., Bahdanau, D., & Bengio, Y. (2014). On the properties of neural
machine translation: Encoder-decoder approaches. Proceedings of the Eighth Work-
shop on Syntax: Semantics and Structure in Statistical Translation, 103–111. https://ac
lanthology.org/W14-4012.pdf

Chollet, F. (2017). Deep learning with Python. Manning Publications.

Deng, M. (2012). The mnist database of handwritten digit images for machine learning
research. IEEE Signal Processing Magazine, 29(6), 141–142.

Géron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras and TensorFlow: Con-
cepts, tools, and techniques to build intelligent systems. O’Reilly.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition
[Image]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–
778. https://ieeexplore.ieee.org/document/7780459

Hochreiter, S., & Schmidhuber, Jürgen. (1997). Long short-term memory. Neural Computa-
tion, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

Hubel, D. H., & Wiesel, T. N. (1959). Single unit activity in striate cortex of unrestrained cats.
Journal of Physiology, 147(2), 226–238. https://www.ncbi.nlm.nih.gov/pmc/articles/PM
C1357023/

Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey
striate cortex. Journal of Physiology, 195, 215–243. http://10.1113/jphysiol.1968.sp008
455

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by
reducing internal covariate shift. https://arxiv.org/abs/1502.03167

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep con-
volutional neural networks. Advances in Neural Information Processing Systems, 1097–
1105. https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-P
aper.pdf

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 2278–2324. https://ieeexplore.ieee.org
/document/726791

108

https://en.wikipedia.org/wiki/Multipolar_neuron
https://aclanthology.org/W14-4012.pdf
https://aclanthology.org/W14-4012.pdf
https://ieeexplore.ieee.org/document/7780459
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1357023/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1357023/
http://10.1113/jphysiol.1968.sp008455
http://10.1113/jphysiol.1968.sp008455
https://arxiv.org/abs/1502.03167
https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://ieeexplore.ieee.org/document/726791
https://ieeexplore.ieee.org/document/726791

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A., & Potts, C. (2011). Learning word vec-
tors for sentiment analysis. ACL. https://aclanthology.org/P11-1015/

Mcculloch, W., & Pitts, W. (1943). A logical calculus of ideas immanent in nervous activ-
ity. Bulletin of Mathematical Biophysics, 5, 127–147. https://www.cs.cmu.edu/~./epxing
/Class/10715/reading/McCulloch.and.Pitts.pdf

Nielsen, M. A. (2018). Neural networks and deep learning [misc]. Determination Press.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for the information storage
and organization in the brain. Psychological Review, 65(6), 386–408. https://doi.org/10.
1037/H0042519

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations
by error propagation. Parallel Distributed Processing: Explorations in the Microstructure
of Cognition, 1, 318–362. https://doi.org/10.1016/B978-1-4832-1446-7.50035-2

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,
Khosla, A., Bernstein, M., Berg, A. C., & Fei-Fei, L. (2014). ImageNet large scale visual
recognition challenge. Springer. https://doi.org/10.1007/s11263-015-0816-y

Sammut, C. (2010). Bias-variance trade-offs. Encyclopedia of Machine Learning. Springer.
pp. 110–110.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Drop-
out: A simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research 15(56), 1929–1958. https://jmlr.org/papers/v15/srivastava14a.html

Srivastava (2019). Dropout in a neural network [Image].

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. E., Anguelov, D., Erhan, D., Vanhoucke, V.,
& Rabinovich, A. (2015). Going deeper with convolutions. 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 1–9. https://ieeexplore.ieee.org/doc
ument/7298594

Xiao, H., Rasul, K., & Vollgraf, R. (2017). Fashion-MNIST: A novel image dataset for bench-
marking machine learning algorithms. arXiv https://arxiv.org/abs/1708.07747v2

Yann LeCun and Corinaa Cortes (n.d.) MNIST dataset sample digits [Image] CC 3.0.

Zou, H., Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal
of the Royal Statistical Society, 67(2), 301–320. https://www.jstor.org/stable/3647580

Zalando, (2017). Samples from fashion MNIST dataset [Image]. The MIT License.

109

https://aclanthology.org/P11-1015/
https://www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
https://www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
https://doi.org/10.1037/H0042519
https://doi.org/10.1037/H0042519
https://doi.org/10.1016/B978-1-4832-1446-7.50035-2
https://doi.org/10.1007/s11263-015-0816-y
https://jmlr.org/papers/v15/srivastava14a.html
https://ieeexplore.ieee.org/document/7298594
https://ieeexplore.ieee.org/document/7298594
https://arxiv.org/abs/1708.07747v2
https://www.jstor.org/stable/3647580

LIST OF TABLES AND
FIGURES

Figure 1: The Machine Learning Model . 15

Figure 2: Anatomy of a Biological Neuron . 16

Figure 3: A Simple Representation of a Neuron and a Network . 17

Figure 4: Neural Network Learning Process . 18

Figure 5: MNIST Dataset Sample Digits . 19

Figure 6: Shallow Versus Deep Networks . 23

Figure 7: Machine Learning Categories . 24

Figure 8: Supervised Learning: Classification . 25

Figure 9: Supervised Learning: Regression . 25

Figure 10: Unsupervised Learning: Clustering . 27

Figure 11: Semi-Supervised Learning . 28

Figure 12: Reinforcement Learning . 29

Figure 13: Perceptron Model . 33

Figure 14: Multi-Layer Perceptron Model . 34

Figure 15: Gradient Descent Learning Rates . 38

Figure 16: Gradient Descent Pitfalls . 38

Figure 17: Activation Functions and Their Derivatives . 42

Figure 18: Samples from Fashion MNIST Dataset . 43

Figure 19: Training and Validation Accuracy and Loss . 46

Figure 20: Overfitting Illustration . 51

110

Figure 21: Underfitting, Overfitting, and a More Accurate Model . 52

Figure 22: Bias Variance Trade-Off . 53

Figure 23: Early Stopping Regularization . 55

Figure 24: Pruning a Neural Network . 61

Figure 25: Local Versus Global Pruning . 62

Figure 26: Local Receptive Fields in the Visual Cortex . 68

Figure 27: CNN Layers With Rectangular Local Receptive Fields . 69

Figure 28: Example of Applying a Filter to an Image Array of Weights 70

Figure 29: Visual Spatial Hierarchy . 72

Figure 30: Types of Pooling . 73

Figure 31: Architecture of a Convolutional Neural Network . 74

Table 1: LeNet-5 Architecture . 76

Table 2: AlexNet Architecture . 77

Figure 32: Inception Module of GoogLeNet Architecture . 78

Figure 33: GoogLeNet Architecture . 80

Figure 34: Residual Learning . 82

Figure 35: ResNet Architecture . 83

Figure 36: Recurrent Neural Networks Versus Feed-Forward Neural Networks 88

Figure 37: Types of Recurrent Neural Networks . 89

Figure 38: Training and Validation Accuracy and Loss . 92

Figure 39: A Memory Cell with Hidden States . 94

Figure 40: Simple RNN Cell Structure in the Hidden Layer . 95

Figure 41: A LSTM With a Carry Track . 96

111

Figure 42: The Forget Gate . 97

Figure 43: The Input and Update State . 98

Figure 44: The Output Gate . 99

Figure 45: LSTM Training and Validation Accuracy and Loss . 100

Figure 46: Gated Recurrent Unit . 101

Figure 47: Backpropagation Through Time . 104

112

IU Internationale Hochschule GmbH
IU International University of Applied Sciences
Juri-Gagarin-Ring 152
D-99084 Erfurt

Mailing Address
Albert-Proeller-Straße 15-19
D-86675 Buchdorf

media@iu.org
www.iu.org

Help & Contacts (FAQ)
On myCampus you can always find answers
to questions concerning your studies.

	Introduction
	Signposts Throughout the Course Book
	Basic Reading
	Further Reading
	Learning Objectives

	Introduction to Neural Networks
	The Biological Brain
	Building Blocks of Neural Networks
	Deep Versus Shallow Networks
	Supervised Learning
	Reinforcement Learning

	Feed-forward Networks
	Architecture and Weight Initialization
	Cost Functions
	Backpropagation and Gradient Descent
	Batch Normalization

	Overtraining Avoidance
	What is Overtraining?
	Early Stopping
	L1 and L2 Regularization
	Dropout
	Weight Pruning

	Convolutional Neural Networks
	Motivation and Applications
	Convolution and Image Filtering
	CNN Architecture
	Popular Convolutional Networks

	Recurrent Neural Networks
	Recurrent Neurons
	Memory Cells
	LSTMs
	Training RNNs: Unrolling Through Time

	Backmatter
	List of References
	List of Tables and Figures

