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Learning Objectives
Recommender systems are software applications that provide personalized suggestions of products or services to users based on their preferences, behavior, or needs. They are widely used in various domains, such as e-commerce, entertainment, education, and social media. Recommender systems enhance user satisfaction, loyalty, and retention by helping users discover relevant and useful items.
The Personalization and Recommender Systems course introduces foundational concepts and terminology of recommender systems, such as users, items, ratings, feedback, and evaluation metrics. Collaborative Filtering, the most popular and widely used technique for recommender systems, is presented based on exploiting the similarities and preferences of users or items. This is followed by Content-Based Filtering, another common technique for recommender systems, which is based on using the features and attributes of items or users to generate recommendations. It covers various methods for feature extraction, representation, weighting, and matching.
Combining these filters results in Hybrid Recommender Systems to improve the performance and quality of recommender systems. Various hybridization methods include switching, weighting, mixing, cascading, feature augmentation, and meta-level. Large-Scale Recommender Systems are addressed with the challenges and solutions for building recommender systems that can handle massive amounts of data and users. Various techniques for scalability, such as distributed computing, parallelization, sampling, hashing, and approximation are covered.
In the end, perspectives are provided as an overview of some emerging and future directions for recommender systems research and practice.




Unit 1 – Foundation and Introduction

Study Goals
										
On completion of this unit, you will be able to …

… define recommender systems.
… decide what is important when making recommendations.
… identify which information is responsible for developing recommender systems.
… apply information to develop a solid recommendation engine.

1. Foundation and Introduction
Introduction 
How do we make purchases? How do we decide things in everyday life? We seek advice from friends or family members before making judgments. When making judgments about purchasing things online, we consider the specifications of the products compared to those of other products of a similar nature and then decide whether to purchase them. Finding reliable information will be difficult in a world where information is expanding exponentially. It will be far more difficult to convince the user to trust the search results. We rely on recommender systems to deliver the necessary and relevant information.
Recommender systems help users find the most pertinent information from a sea of internet data and offer customized services. By forecasting the user’s interest in an item based on user historical records, a recommender system seeks to make the best recommendations to a specific user (person or business). Users of recommender systems receive individualized online information, product, and service recommendations to aid in decision-making. Different recommender system frameworks, methodologies, and tools have been implemented in e-commerce, e-business, and e-government.
This unit describes the fundamental idea and overview of the algorithms for recommender systems. First, we explore the formal introduction to recommender systems, the history of recommender systems, and application domains. Second, we look at basic building blocks and user profile modeling techniques of recommender systems. Third, we examine collaborative, content-based filtering, and hybrid recommendation methods. Finally, we cover several business objectives and evaluation techniques in this area.
[bookmark: _Toc221687482]1.1 History and Application Domains of Recommender Systems
The background of recommender systems and relevant application fields are covered in this section. We first go through the overall history of recommender systems. Next, we examine the data used as input for recommender systems, various recommender methodologies, types of recommender systems, and application areas.
History of Recommender Systems
The exponential rise of web information offers fantastic prospects for creating applications across various fields. However, it has also led to issues with information overload, as consumers struggle to quickly find the relevant information they need while using the available internet search tools.
Recommender systems were introduced in the early 1990s. They are software applications that provide suggestions to the user to solve a specific problem. They help users deal with intense information and have become an important research area of information retrieval. 
What is a user profile?
Recommender systems provide a list of items according to the user profile. Items here refer to the suggestions made by the recommender system for each user. Recommender systems, for instance, can assist users in making decisions about what movies to watch, what music to listen to, where to eat, where to shop, and what things to buy.
User information, including attributes like gender, age, income, address, and marital status, is saved in the user profile. A book’s profile might include its title, genre, author, and year of publication, for instance. The item profile stores information about the item, which frequently includes domain-specific attributes.
A user’s satisfaction with an item can be measured by the rating score given by the user. Initially, users provide the rating scores for the items that are already known to them. The recommender systems then use those previous rating scores of the seen items of the users to predict the unseen items for the users. 
What are the input and output of a recommender system?
Items, users, and interactions make up a recommender system’s input data types. A list of recommendations or a score of predictions is the output data type for a recommender system. 
Items are the objects that are seen or purchased by the users and are recommended by the recommender systems to the users. Items that are used in the recommender systems can be any object, such as books, songs, movies, and news.
The person or customer who receives the recommendations is known as a system user. Recommender systems are often personalized, making user information the most important information used by recommender systems. User information includes the user’s preference for the related items, information about the relation between users, and trust levels between users.
What are transactions?
Interactions between users and items are transactions, for instance, the rating score given to an item by a user. Recommender systems mainly use four types of transactions: unary ratings (for example, if the user has read/seen/purchased the item), binary ratings (for example, user ‘like’ or ‘dislikes’ the item), numerical ratings (for example, user rates an item on 1-10 scale or 1-5 stars), and ordinal ratings (for example, user rates an item as “agree,” “strongly agree,” “neutral,” “disagree,” or “strongly disagree”).
Application Domains for Recommender Systems
Recommender systems are mainly grouped under four application domains: e-commerce (for example, books, computers, and cameras), content (for example, documents, posts, news, and articles), entertainment (for example, movies, music, and TV shows), and service (for example, consultation and traveling).
Self-Check Questions
1. Please list three key reasons to use a recommender system. 
It provides a method for assisting users in sorting through the vast amount of online data to discover the most relevant information.
It can be applied to various fields, including e-commerce, e-business, and e-government.
It can assist an organization to achieve specific business objectives by providing the best recommendations to their customers.
It can assist users in making decisions.
It can offer personalized service.
It can be used for different types of transactions.
2. Please complete the following sentence.
A recommender system aims to provide the best recommendations to a particular user by predicting the user’s interest in an item based on user history records.
[bookmark: _Toc221687504]1.2 Basic Building Blocks
Data sources (input), recommendation engine (core approach), and suggestion generation make up the archetype of recommender systems (output). A recommender system can use data from a variety of sources. This means that it can handle the information about a user, an item, and their interactions. After that, the recommendation engine processes and produces results to satisfy various needs. Depending on the application circumstances, the recommender system’s output changes.
Source of the Data
Data about users, things, and their interactions can be in many forms and come from numerous sources. We will first review a thorough explanation of the types of data the recommender system can use.
Users have a variety of tastes and goals. To offer customized recommendations, the recommender system must profile each user utilizing their associated information. When a user chooses a movie on a website, for instance, the available data about that user include demographic data, such as age, gender, nationality, and the language that person speaks; search history; selected movies; watched movies; user social relations; or user-generated tags or comments. This information can be utilized to profile the user’s preferences. 
Depending on the recommendation approach, different data selection procedures can be applied. Users can either be people or more complex entities like groups or businesses. A user might be a firm or a channel group for online movies where each participant serves a particular function. Items are any recommendations for users that need to be made. In addition to text descriptions, an item’s characteristics can include photos or a knowledge graph between related things. The characteristics of an item can have a significant impact on how recommendations are made. For instance, consumers may receive repeated recommendations for shopping, and they may listen to a lot of music or read a lot of news. 
A user may consume luxury items like a home or a cell phone after giving them significant thought. Additionally, there are some complex goods like employment, hotels, or insurance plans where recommendations heavily rely on expertise and rules. All the data a user leaves behind after using a website or an app is contained in the interactions between users and objects. These data may take various formats, including ratings, tags, and free-text comments. User feedback can be broadly classified into explicit and implicit feedback:
· The user’s star ratings are considered explicit feedback. In this situation, positive and negative user input can be seen in the rating. 
· Implicit feedback is binary values provided by user behaviors, such as whether the user has viewed, clicked, or purchased an item. Users’ negative feedback is not gathered; the implicit feedback only represents positive feedback.
Recommendation Engine
The core of the recommender system is the recommendation engine. Data extraction, transformation, and load must first be used to process data from diverse sources (ETL). The database then holds the structured data, including user and item features. The engine is to train the recommendation techniques after the data is processed. The recommendation engine has methods for making recommendations using the input data to categorize, evaluate, and match users or objects. They can also forecast a score that indicates preferences and produce recommendation lists.ETL
The process for integrating data is called ETL, or extract, transform, and load.

The following is a description of the two types of recommendation engine evaluations:
· Offline evaluation: Data engineering approaches and recommendation algorithms are validated and assessed using offline data, and then, based on how well they perform against the offline evaluation criteria, they are chosen for online serving.
· Online A/B test evaluation: Before a new recommendation mechanism is implemented, this evaluation is necessary. Recommendations produced using two distinct techniques are given to two sets of users (A and B) that are randomly chosen. To determine which recommendation approach is more effective, user feedback from groups A and B is gathered, and the significance of the difference is statistically examined as a “two-sample hypothesis test.”
Generating Recommendations
Users are shown recommendation results in the form of a ranked list of items to aid in their decision-making. Additionally, some recommender systems offer customers a package of relevant things to choose from [Zhu et al. (2014)]. The bundle recommendation can increase item sales while also integrating a pricing strategy that gives customers a variety of options and discount offers. Overall, because they have the ability to filter information, recommender systems can be utilized in a variety of settings to give customers better experiences and businesses financial benefits.
Self-Check Questions
1. Please complete the following sentence.
Users might range from straightforward individuals to complex organizations like groups or businesses.
2. Please complete the following sentence.
There are two sorts of user feedback: implicit and explicit.
1.3 Levels of Personalization and Recommender Archetypes
By predicting a user's interest in an item based on information about the items, the users, and the interactions between the items and users, a recommender system can be defined as a collection of computer programs that try to recommend the most appropriate items to specific users [Bobadilla et al. (2013)]. Users could be individuals or organizations, such as book purchasers, people looking for work, or small businesses looking for a prospective partner. Products or services like a book, movie, or collection of mobile services are examples of items. In a nutshell, recommender systems are created to determine whether an item is worth being recommended and to measure its utility. We list the primary attributes of a recommender system below in accordance with the definition of recommender systems and their numerous applications:
Attributes include the following:
· It primarily addresses the issue of information overload.
· It aids both individual and group users in making decisions. 
· It offers personalized services to users.
· It typically generates recommendations without further information from users.
· It supports a variety of business use cases and scenarios, such as data uncertain and data sparsity.
· It can simultaneously access a wide range of data sources from multiple domains.
With these attributes, we may create numerous recommender systems, employ various estimate and prediction models, and use them in various domains for diverse users to aid decision-making.
How do you deal with the overload of information and personalization?
When users choose any kind of product or service, current web platforms supply them with a vast amount of information. A large amount of information that businesses present on their goods and services is typically not explored by customers, who instead pick the ones in which they are genuinely interested. Thus, to keep clients loyal in this extremely competitive market, a corporation must assist them in managing information overload when making decisions [Schafer et al. (1999)]. Personalization Design something to meet someone's individual requirements 


Customer-specific services are a suitable solution to the information overload issue and can enhance user experience. In this approach, services provided to various users are tailored, making it simple for clients to locate what they require. Personalization is a critical component of a business's ability to please its clients by offering them tailored items and services while they are essentially acting passively. Recommender systems have a role in this. The most popular method for addressing the information overload issue caused by Web 2.0 is to employ recommender systems to offer customized services [Adomavicius and Tuzhilin (2005)]. 
According to the user's purchasing history, the recommendation process forecasts the user's probable interest (preference) in items they haven't yet purchased, providing a customized list from which customers can select. To combat information overload, recommender systems were first used in e-commerce. They were quickly expanded to personalize e-government, e-business, e-learning, and e-tourism [Lu et al. (2015)]. These days, recommender algorithms are a crucial component of websites like Meetup, Instagram, Facebook, Netflix, YouTube, Amazon, and Yahoo.
Types of Recommender Systems
Depending on the technique used to collect and estimate the user ratings, there are mainly two approaches for content recommendations: The content-based (CB) approach and the Collaborative Filtering (CF) approach. Some hybrid approaches, which combine both techniques, are also in use. The approaches are briefly described below.
There are benefits and drawbacks to each recommended approach. When using CF-based methods, for instance, it can be challenging to deal with new users or users who do not have adequate rating data (a problem known as a cold start or data sparsity problem). To counter these drawbacks and improve user experiences, the recommender system technology is improving year after year. We provide a quick overview of each of these recommendation method types here.
Content-based Approach
This method of approach generates recommendation scores for items that the user hasn't yet seen based on how similar they are to items the user has already viewed and the feedback given on those items. The unseen items with the greatest scores are those that this kind of system suggests. For instance, when recommending a movie or TV show, the recommender will look for trends like the common genre, the actors, the director, or the production company in the films or shows that the user has given high ratings and will then suggest films or TV shows that share a lot of these traits.
At its core, the content-based approach methodology has elements of information retrieval and information filtering. Due to its extensive reliance on text-based applications in the field of information retrieval and filtering, this content-based technique typically works with items that have textual information. By retaining user data in the form of user profiles, these systems outperform the conventional methods of information retrieval and filtering. 
The content-based approach basically compares and matches the values for various qualities in the user profiles with the values for the unseen items by those users to make suggestions for unseen items to users. These many properties serve as a representation of the user preferences that are saved in the system's user profiles. The three components that make up content-based recommendations are typically the content analyzer, the profile learner, and the rating predictor.
Collaborative Filtering Approach
Users can rely on decisions based on the opinions of other users who have similar interests by using recommendation systems based on CF. Model-based and memory-based CF are two categories of CF-based techniques. According to Sarwar et al. (2001), memory-based CF techniques include user-based and item-based CF. In the user-based CF, a user will be given suggestions for products that other users who like them prefer. A user will be given recommendations for products in the item-based CF that are comparable to those they have previously appreciated. Different metrics can be used to determine how similar two users or products are.
Model-based CF methods have evolved along with machine learning techniques, and they are based on the optimization of an objective function between the model prediction and the true label.
Hybrid Approach
The development of numerous hybrid recommendation systems, which integrate two or more recommendation methods, has been done to address the drawbacks of employing only one type of recommendation approach [Burke, 2002]. Combining CF-based and content-based techniques is a frequent practice, including CF that is user-based with content-based and CF that is item-based with content-based. Along with CF-based and CB recommendation approaches, knowledge-based recommendation techniques are also frequently mixed.Knowledge-based Model uses explicit domain knowledge to generate recommendations.  


Recommender Systems and User Modelling
Customized and user-focused recommendations are given to users by recommender systems. To generate these recommendations, these algorithms take into account user preferences. Recommenders gather user preferences to obtain this information and then create user models based on those models. These can be gathered through one of two methods: explicit user modelling or implicit user modelling.
Explicit User Modelling
This technique uses user input to create the User Models. Users provide feedback on items themselves in various forms such as:
· Ratings
· Like or Dislike
· Survey
· Review Comments
This type of feedback is more accurate and more dependable as users explicitly state their opinions about the items, hence it is preferred by researchers over the implicit type. But due to its need for high user effort, it is less convenient for the users and thus leads to relatively fewer rating ratios per user. Another aspect of this type of user data collection is that these user ratings may also differ in their qualities. For example, the quality of a rating of an item might be affected by how big a choice the user made while deciding on this item. A user might rate a song or a movie with less scrutiny than a laptop computer or a holiday resort. According to a study extreme explicit ratings have a higher consistency than mild feedback.
Implicit User Modelling
In this technique, the user model is created implicitly by the system. Rather than using explicit user feedback about items, the system interprets user behaviours to determine user interest or feedback on a certain item. For example, if a user spends more time than a predefined threshold value on browsing or viewing an item, it implies that the user is interested in a said item and this information can then be used by the recommender to build the user model. Or if a user purchases an item, it can be interpreted as positive feedback on the item. Below is a list of sample user behaviours that could be used to get implicit feedback. 
· Time Tracking
· Reading Progress
· Keyboard/Mouse inputs
· Clicks
· GPS Location
· Eye Tracking 
· Microphone input 
· Facial Expression 
Since implicit feedback does not require users to provide feedback, it is more convenient for the users though it might be less accurate than the ratings provided explicitly by the users.
Self-Check Questions
1. Please complete the following sentence.
Recommender Systems primarily addresses the problem of information overload and assists both individual and group users in making decisions.
2. What type of recommendation approach can be used to overcome the difficulties of using only one type of recommendation strategy?
hybrid recommendation approach
1.4 Business Goals and Evaluation Strategies
A recommender system powers almost all websites. It is becoming an essential component of the industry e-commerce. This section introduces recommender system goals, applications and evaluation strategies in the business world. First, we provide a broad overview of the use of recommender systems in industry. The advantages of creating recommender systems are then enumerated. 
Business Goals and Applications
Many industrial businesses use recommender systems, which have applications in various fields. The distinctness of each application area determines the business aim. As a result, different people, objects, situations, and business concerns require distinct recommender systems to be built. Without mentioning the methodologies employed, we provide a broad system design of the recommender system utilized in industry in this subsection. Additionally, we examine a number of well-known commercial applications as illustrations of how recommendation techniques contribute to system development and how commercial recommender systems are advantageous to industry.
Amazon was the first big business to use the recommender system [Linden et al. (2003)]. The implementation of the recommender system has assisted Amazon in increasing its profitability by about 30% (as reported by McKinsey & Company in 2017), and the item-based CF approach is used in Amazon as part of its online purchasing system. The success of Amazon has led other e-commerce companies, such as eBay and Tmall [Wang et al. (2018)], to place a high priority on the use of recommender systems. Techniques like embedding and graph embedding are used to process the enormous number of elements and the interactions among them. The recommender system is currently an essential component of online storefronts.
With the well-known Netflix Prize, e-entertainment took the next step after e-commerce [Bennett and Lanning (2007)]. YouTube uses a variety of data sources for video recommendation, ranging from unstructured data like photos and videos to structured metadata like actors and titles [Davidson et al. (2010)]. Similar to this, the music genome project has been created, and features are extracted from it that contain details about musical artists, bands, albums, genres, styles, and emotions. The CF recommendation approach, which creates music playlists for consumers, is combined with these capabilities. Additionally, social media sites like Twitter and Facebook link people to artists and their connections. In 2014, Spotify implemented Echo Nest as the recommendation engine for its music streaming service [Eriksson et al. (2019)]. Since Apple Music entered the market, all music services now suggest a playlist to consumers as soon as they open the app or website. Users may consume these online entertainment products repeatedly, especially music and recommender systems were created to meet this need.
Ad promotions and recommender systems are both closely related and frequently used. The statistic that has the strongest correlation with advertising revenue profitability is the click-through rate. Facebook employs boosted decision trees and logistic regression to increase ad click-through rates [He, Pan et al. (2014)]. To increase user participation in the activities, LinkedIn offers users a tailored feed [Agarwal et al. (2015)]. Google and Yahoo both utilize the click-through rate as a key metric for assessing news recommendations [Das et al. (2007)].
Some businesses also create cross-domain recommender systems in addition to recommender systems for a single domain. To solve the problem of data sparsity, cross-domain recommender systems can use a source domain with abundant information. They may also support the promotion of products that combine elements from several industries and broaden the range of products consumed. Microsoft has created cross-domain recommender systems that utilize Xbox Movie/TV, Apps, and News to provide users with recommendations [Elkahky et al. (2015)].
Recommender systems have emerged as one of the most crucial business intelligence tools, according to the industry's current development. Recommender systems are linked to a company's profitability because of the chances they have created in the area of promotions. Additionally, recommender systems are essential for enhancing the user experience.
Business Benefits
The benefits of recommender systems are outlined below for both customers and businesses.
· Personalized service: The personalized recommendations consumers receive from recommender systems are one of their main advantages. People can rapidly find what they need while learning about new products because users are only as knowledgeable and experienced as they are; therefore, a recommender system's personalized service can assist users to learn about new things they were previously unaware of. The user will need to spend less time looking about and seeking as a result.
· Better User Profile: Users must be accurately characterized if recommender systems are to offer users individualized recommendations. User profiles can be created by recommender systems by combining several types of user data, such as demographic data, browsing history, user preference interactions, and business knowledge. Then, business analysis can make use of these user profiles. 
· Maintain Customers' Trust: Users who are exploring a website can utilize recommender systems as a guide. They can reduce the time needed to complete a purchase and help clients find what they need more quickly. In such a scenario, users' demands are met and their interaction with the website or service is enhanced. Because it is convenient and useful, this may persuade people to continue using the service. Companies must focus on the user experience if they want to maintain customer loyalty and gain market share.
· Boost the Revenue: Users who are exploring a website can utilize recommender systems as a guide. They can reduce the time needed to complete a purchase and help clients find what they need more quickly. When there are too many options for items, especially long-tail ones, users may feel overwhelmed. Users are more likely to find a wide variety of products that they will likely find interesting.
· Recognizing Market Trends: The recommender system's ability to deliver reports on sales direction and market trends is a secondary but crucial advantage. These studies and analyses can aid a business in choosing how to move the market.
Evaluation Strategies
Our business and user preferences are always changing. Are we confident that our algorithm can adapt to the changes? Real-time recommendations based on the newest data are certainly a possibility, but they are also more challenging to sustain. On the other hand, batch processing is simpler to control but does not take into account current data changes.

The recommender system ought to get better over time. While algorithms help the system "learn" the patterns, it still needs direction to provide the right outputs. We must make it better and make sure that any modifications we make advance us toward our business objective.
What are the different types of evaluation metrics for recommender systems?
The three primary categories of evaluation metrics for recommender systems are predictive accuracy metrics, classification accuracy metrics and rank accuracy metrics.
· Metrics for Predictive Accuracy: How closely a recommender's anticipated ratings match actual user ratings is the subject of predictive accuracy or rating prediction metrics. This kind of measurement is frequently used to assess non-binary ratings. It works best in usage scenarios when it is crucial to predict accurately how each product will be rated. The most crucial metrics for this are Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Normalized Mean Absolute Error (NMAE).
· Metrics for Classification Accuracy: Measures of classification accuracy aim to assess the capability of a recommendation system to make good decisions. Since they evaluate the number of correct and incorrect classifications as relevant or irrelevant items produced by the recommender system, they are helpful for user tasks like identifying nice products. The Successful Decision-Making Capacity (SDMC) measurements just quantify correct or incorrect classification, regardless of how exactly an object is rated or ranked. This kind of solution is especially well suited to e-commerce platforms that try to convince customers to do things like make purchases of goods or services. The most important metrics for this are Accuracy, Precision, Recall and F1-score.
· Metrics for Rank Accuracy: A rank accuracy or ranking prediction measure, also known as a rank correlation measurement, evaluates a recommender's capacity to anticipate the appropriate order of items based on the user's preferences. Therefore, this kind of measure is most suitable if the consumer is given a lengthy, ordered list of products that are suggested to him. A rank prediction metric, which is unrelated to the precise values determined by a recommender, uses the relative ordering of preference values. As long as the ranking is accurate, a recommender who repeatedly overestimates item ratings to be lower than true user preferences, for instance, can still receive a perfect score.
What is business-specific evaluation metrics?
The application domain and, more importantly, the company's business strategy has an impact on how businesses assess the outcomes and business value of a deployed recommender system. Such business tactics can be partially or totally supported by advertisements (e.g., YouTube or news aggregation sites). In this case, the objective might be to encourage users to use the service for longer periods of time. Businesses using an at-rate subscription model also want to increase user engagement (e.g., music streaming services).
· Click-Through Rate: A statistic that counts how many people click on recommendations is called the click-through rate (CTR). The primary premise is that recommendations will be more relevant to consumers if more people click on the suggested items.
· Conversion and Adoption: In contrast to internet business models that depend on advertisements, click-through rates are frequently not the ultimate success indicator to seek in recommendation settings. While the CTR can gauge user interest or attention, it cannot reveal whether people enjoyed the suggested news article they clicked on or whether they made a purchase as a result of a suggestion. Alternative adoption measures are therefore routinely used, presumably more suited to evaluating the efficacy of the recommendations and predicated on domain-specific factors. The concept of "long CTRs" is used by YouTube, where a user's clicks on suggestions are only counted if they see a specific percentage of a video. Similarly, Netflix uses a metric known as "take rate" to ascertain how frequently a video or movie was actually watched after being suggested.
· User Engagement: In certain application domains, such as video streaming, higher levels of user engagement are expected to contribute to higher levels of user retention, which in turn frequently instantly translates into business value. The presence of a recommender system has been proven to boost user participation in a number of real-world studies. Therefore, different metrics are employed depending on the application domain.
Self-Check Questions 
1. Please complete the following sentence. 
Cross-domain recommender systems can employ a source domain with a lot of information to address the issue of data sparsity. 
2. Please complete the following sentence. 
Users can learn about new items they were previously unaware of thanks to a recommender system's personalized service.
Summary
The creation of recommender systems attempts to give users (business or individual) customized products (items and services). One of the hottest fields in artificial intelligence today is recommender systems, which has made huge profits for businesses that are pushing the boundaries of consumer support technology. The definitions, many kinds of recommendation techniques, and the overall structure of the recommender system are all presented in this chapter. Additionally, it shows how recommender systems are designed and developed in actual use. 

[bookmark: _Toc348014754]Unit 2 Collaborative Filtering 
Study Goals

On completion of this unit, you will be able to …

… define collaborative filtering.
…. discuss different types of collaborative filtering-based recommender systems.
… explain various advantages and applications of collaborative filtering.





Unit 2 Collaborative Filtering 
Introduction 
Collaborate filtering (CF) is a type of recommendation system used in information filtering and information retrieval. It is based on the idea that people who have similar preferences or behaviors in the past are likely to have similar preferences or behaviors in the future.
In the context of recommendation systems, CF involves analyzing user data, such as ratings, reviews, or purchase histories, to find patterns of similarity among users. This data is then used to recommend items to users who have similar preferences to other users who have already expressed interest in those items.
So, the CF algorithm is a simple process that involves a few steps to generate recommendations. Each step involves a set of choices that can impact the outcome. This chapter provides a detailed overview of each step to help you understand the algorithm.
To address user demands and provide business benefits, recommendation systems in a variety of applications have tried to offer users appropriate recommendations. CF is an efficient and well-known method used in recommendation systems. A lot of websites, especially e-commerce sites, use CF technology in their recommendation systems to tailor the browsing experience for each user. Amazon raised sales by 29% [Mangalindan, 2012], Netflix increased movie rentals by 60% [Koren, et al. (2009)], and Google News increased click-through rates by 30.9% [Liu, et al. (2010)] as examples of CF in action. 
By the end of this unit, you will have learned how to implement the item-item CF algorithm used by Amazon, which is the same algorithm published in 2003. Amazon still uses this algorithm to generate its "Recommended for You" page, as shown in Figure 2.1, the algorithm identifies items that are rated similarly to those already rated or purchased by the user.
 [image: ]Figure 2.1 Recommendations for you on Amazon[image: ]
Explain CF approach
Many people reject being lumped into a particular group because they believe that they are unique. But the goal of CF is to generate recommendations from this form of segmentation. CF creates a list of suggested products for a user based on the tastes of other users who have bought products that the user hasn’t yet tried but who have similar interests. CF can be an effective approach for creating tailored recommendations despite its apparent simplicity.
Supporting one another 
CF is predicated on the idea that we can all improve by working together to better understand one another. A collaborative filtering recommender system's fundamental idea is that if two users historically shared similar interests, they would likely continue to do so in the future. 
The goal is to offer this unwatched new movie to user B if, for instance, user A and user B have similar movie tastes and user A recently watched Jurassic Park, which user B has not yet seen. One excellent example of this kind of recommender system is Netflix movie recommendations. 
This is the concept behind CF, which sounds lovely and a little clichéd, like the conclusion of a grand Hollywood production. Additionally, you must assume that people primarily retain their preferences over time and that, if you previously agreed with someone, you would probably continue to do so. Figure 2.2 shows a CF-based approach example. Before we delve into the theory of CF and how to compute it, let's try to understand the advancements, types of CF and its applications.
Figure 2.2: CF approach example
[image: Diagram
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What are the advancements in Recommendation Systems?
Recommender systems have developed over time, moving from straightforward nearest-neighbor methods to personalized and context-aware recommendations, from batch-mode recommendations to real-time recommendations, and from straightforward heuristic techniques like similarity calculation to more precise, intricate machine-learning techniques.
Only product user reviews were used to generate recommendations in the early stages of these recommender systems. Researchers only used the rating data that was readily available at the time. They merely used heuristic methods, such as cosine similarity, the Pearson coefficient, and similarity calculation using Euclidean distances. Unexpectedly, these methods still work effectively today. They were favorably appreciated.
Neighborhood approach to CF recommenders are the names of this initial generation of recommendation engines. Even though they work quite well, these recommenders have their own set of drawbacks, such as cold-start issues, which means they failed to recommend new items to users who had no ratings and recommended new products to users who had no ratings.Neighborhood approach identifies a group of items that are like the ones the target user has already liked.

Additionally, these recommenders were unable to manage situations in which there is little available data, resulting in substantially lower user ratings. New strategies have been created to get around these restrictions. Mathematical techniques like matrix factorization and singular value decomposition methods, for instance, have been utilized to handle very large user ratings with high data sparsity.
New strategies, like Content-based (CB) recommendation systems, have been developed to address the cold-start issue. These recommender systems paved the way for a host of new possibilities, including personalized recommender systems that could make specific product recommendations to each user. In this method, customer preferences and product attributes are considered rather than rating information.
In the early stages, CB recommenders used similarity calculations, but as infrastructure and technology have improved, more sophisticated methods, such as machine-learning models, have taken the place of heuristic methods. The accuracy of the recommendations has increased because of these new machine models.
Although CB recommenders have addressed many of CF’s flaws, they still have certain fundamental problems, such as serendipity—the inability to suggest new items that fall outside the user's preferences—which CF can achieve.
Researchers began merging various recommendation models to create hybrid recommendation models, which are considerably more potent than any of the separate models, to address this issue. After implementing personalized recommendation engines successfully for themselves, people began to expand personalization to additional dimensions known as contexts, such as the addition of location, time, group, and so forth, and adjusted the set of recommendations according to each situation.
Technology breakthroughs have made processing very huge databases viable, including big data ecosystems, in-memory analytical tools like Apache Spark, and real-time recommendation systems. We are currently going towards more individualized aspects, such as temporal dimension and pervasive recommendation methods. The recommendations in terms of technology are shifting from machine learning methods to more sophisticated neural network deep learning methods. Neighborhood CF-based algorithms were the first recommender systems algorithms. We will review them in detail in Section 2.1 to understand the history and evolution of these algorithms.
What are the different types of CF recommender systems?
There are two main types of CF: user-based and item-based. User-based filtering involves recommending items to a user based on the preferences of other users who are similar to them. Item-based filtering, on the other hand, involves recommending items that are similar to items that a user has already expressed interest in.
CF has become a popular technique for recommendation systems in many industries, including e-commerce, entertainment, and social media. It has been successful in providing personalized recommendations to users and increasing customer satisfaction and engagement. 
What are some of the advantages of CF? 
CF has several advantages, including:
· No domain knowledge required: CF does not require any prior knowledge or information about the items, such as their content, features, or attributes. It relies solely on the user's behavior and preferences to make recommendations.
· Scalability: CF can scale to large and sparse datasets with millions of users and items and can handle real-time and online recommendation scenarios.
· Personalization: CF can provide personalized recommendations to each user based on their unique interests and preferences and can adapt to their changing behaviors and feedback.
· Serendipity: CF can discover new and unexpected items that the user may not have known or searched for but are still relevant and interesting to them.Serendipity 
helps to broaden users' horizons, prevent the so-called "filter bubble" effect.

· Diversity: CF can recommend a diverse set of items that cover different genres, styles, or topics, and avoid the over-recommendation of popular or similar items.
· Transparency: CF can explain the reasons behind its recommendations, such as the similarity or dissimilarity between the user and the recommended items and provide a clear and intuitive justification for its decisions.
· Easy to Implement: CF can be relatively easy to implement, as it only requires user and item data, without the need for additional metadata or domain knowledge.
· Adaptability: CF can adapt to changes in user behavior over time, making it suitable for dynamic or evolving datasets.
Consequently, CF can provide personalized, scalable, and diverse recommendations to users, making it a popular and effective technique for recommendation systems in many industries. 
2.1 Neighborhood-based Approaches
Neighborhood-based recommender systems, as their name implies, consider the preferences, or likes of the neighborhood or user community of an active user before providing suggestions or recommendations to the active user [Desrosiers and Karypis (2015)].
Figure: 2.3 Neighborhood-Based CF approach
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Source: Sneha (2023). 
The concept behind neighborhood-based recommenders is quite straightforward: given user ratings, identify all past users with similar preferences to the active user, and then predict what future users will think of all unrated products that the active user hasn't rated but are being rated in their neighborhood.
We first determine how similar the other users are to the active user, taking their preferences or tastes into account, and then provide recommendations to the user based on those comparisons using unrated goods from the user community. The person to whom the system is giving recommendations in this case is the active user. These recommender systems are also known as similarity-based recommender systems because they use similarity computations. 
These recommender systems are sometimes known as CF recommender systems since preferences or tastes are considered collectively by a group of users. The users, products, and user preference data like ratings, rankings, and likes for the products are the major actors in these types of systems. An example from Amazon of a neighborhood case is shown in Figure 2.4 below.
Figure 2.4: Shopping cart recommendation aSeet Amazon
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Neighborhood-based approaches are a type of CF method used to recommend items to users based on the preferences of similar users. The main idea behind neighborhood-based approaches is that users who have similar preferences are likely to have similar preferences for items they have not yet rated or reviewed. These neighborhood methods are used when all we have are user interaction data from ratings, likes, dislikes, and views of the products. They don't consider any characteristics of the products or the user's individual preferences for the products, in contrast to CB suggestions, which will be discussed in the following chapter.
Figure 2.5: CF Recommender Engine	
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There are two main types of neighborhood-based approaches [Desrosiers and Karypis (2015b)]:
· User-based: User-based CF generates recommendations by analyzing the preferences of users in the same neighborhood. This approach involves two steps: identifying users who share similar preferences and then recommending new items to an active user based on the ratings given by similar users to items that the active user has not rated. 

· Item-based: Item-based CF generates recommendations by analyzing the neighborhood of items. Item-based CF generates recommendations by analyzing the neighborhood of items. Unlike user-based collaborative filtering, this approach first identifies similarities between items and then recommends non-rated items that are similar to the items that the active user has rated in the past. Item-based recommender systems are constructed in two steps: calculating the item similarity based on item preferences and finding the top similar items to the non-rated items by the active user, and then recommending them.
What are the neighborhood-based approach advantages?
· Scalable implementation
· Recommendations can be made without requiring any information about the content of products or users' profiles.
· Surprise recommendations of new items can be given to users.
What are the neighborhood-based approach disadvantages?
· The computational cost is high since all user, product, and rating data need to be loaded into memory for similarity calculations.
· It is ineffective for new users for whom we have no prior information, known as the "cold-start problem."
· The approach's performance is poor when we have limited data.
· Because we lack content information about users and products, generating recommendations based solely on rating information is inaccurate.
However, neighborhood-based approaches are a popular and effective method for CF, particularly in the context of recommendation systems for e-commerce, entertainment, and social media [Desrosiers and Karypis (2015b)].
Self-Check Questions 
1. Please complete the following sentence. 
User-based and Item-based are the two types of CF recommender systems. 
2. Please complete the following sentence. 
Neighborhood-based recommender systems consider the preferences or likes of the community or group of users surrounding an active user, in order to offer suggestions or recommendations to the active user.
2.2 Graph-Based Approaches 
Neighborhood-based approaches are a popular and effective method for collaborative filtering, particularly in the context of recommendation systems for e-commerce, entertainment, and social media [Desrosiers and Karypis (2015b)]. Graph-based approaches are a type of collaborative filtering method used to recommend items to users based on the relationships between users and items. In graph-based approaches, users and items are represented as nodes in a graph, and their relationships are represented as edges between the nodes [Wang et al. (2021)]. Therefore graph-based recommendation system stores user preference data in a graph structure and uses graph algorithms and various recommendation techniques to make recommendations. Compared to traditional recommendation systems, it offers two primary advantages: scalability and the ability to model diverse relationships [Wang et al. (2021)].
In contrast to existing models, the graph-based system efficiently stores user preference information and similarity calculations directly within the graph structure, rather than building a sparse matrix to predict similarity through collaborative filtering techniques. This allows for the creation of a graph using a limited number of users with the greatest similarity, using algorithms like the k-nearest neighbor (KNN) algorithm and predictions can be made with less data and computation.
This approach eliminates the need for similarity calculations during real-time recommendations, as the calculation time does not increase in proportion to the number of users or items. Additionally, unlike traditional methods, the graph-based recommendation system can use a sparse amount of user preference data to find relationships between items, addressing issues of scalability and data scarcity.
The graph-based recommendation system offers the added benefit of modeling diverse data relationships. As recommendation systems evolve into personalized systems for individual users, it is essential to visualize data to enable the model to learn about each user and diversify recommendation logic or policies. With traditional methods, this requires building models for each complex data and system.
In contrast, the graph database effectively manages the logic and relational models, simplifying the recommendation process for each user while correlating models between content. For example, by modeling relationships between content such as "movie-TAG" or "movie-actor and director," a knowledge graph of a single movie category can be built, enabling a variety of recommendation services to be offered to users.Graph database uses graph structures to store and represent data.

Processes
We have discussed what graph-based recommendation systems are capable of, and now it is time to explore how they work. The following are the four fundamental processes that constitute graph-based recommendation systems, using movie content recommendation services as an example.
Graph Movie Recommendation Process
1. Web scraping for data collection: This process involves gathering diverse data such as movies, users, reviews, ratings, and tags, to be utilized in the recommendation service.
2. Modelling and loading the movie knowledge graph: In this process, the knowledge graph is modelled, taking into consideration the relationships between the various data to be used in the recommendation service. The movie's different data are interconnected, and the service can search for various data about movies through the knowledge graph. Additionally, web scraping can be employed to collect movie data, such as new movies, reviews, ratings, tags, and more, which are then linked to the movie's knowledge graph for easy management.
3. Deriving potential recommendations through the graph recommendation engine: The graph recommendation system utilizes the relationship between metadata to define and construct a graph, from which a set of potential recommendations can be derived through various graph analysis techniques. The logic of the graph recommendation system can be summarized as follows:
· Similarity-based recommendation using graph: As the user's rating records are based on a 'user-movie' graph, similarity-based recommendation techniques are employed. Moreover, by storing user similarity values on the edges of the graph, graph clustering algorithms such as community detection can be utilized to determine similar preferences among user groups. 
· Building a graph of movie-related attributes and applying graph analysis: By constructing a movie graph of actors and directors using the centrality analysis technique (PageRank), the user can discover their preferred person who appears in the movie [Chen et al. (2007)]. In case a variety of tags are integrated into a graph, a tag-based recommendation service becomes accessible to the user.
4. Personalized Movie Recommendations: After generating a list of movie candidates through the recommendation logic, the movies that have already been evaluated by each individual should be excluded. The system then performs a re-ranking process by considering multiple evaluations or the average rating of the remaining movies. For each recommendation technique, the system selects 5 movies to be recommended to the users. These 5 movies can be saved as a graph, which can be periodically updated to manage the recommendation system. Users receive a real-time recommendation service based on this process.
The graph-based recommendation system is well-suited for systems that deal with a large volume of users and content, serving as a comprehensive knowledge base. However, when linking various contents, it is important to store unique values of open data with caution. It is advisable to store high-capacity data in distributed storage and perform graph modelling together.
How and where is the graph-based recommendation system applied?
The graph-based recommendation system is widely used in big video streaming platforms like Netflix, as well as e-commerce online platforms such as eBay and Auction. Distributed storage techniques combined with graph technology, linked to Elasticsearch or Hadoop’s Hbase, are already extensively utilized in the market. Many papers on graph distribution storage and the advancement of recommendation algorithms have been published recently [Wang (2019), Fan (2019)]. As a result, the demand for various data analysis has rapidly increased, and graph technology is proving to be a valuable asset in this regard.
There are two main types of graph-based approaches [Bai et al. (2019)]:
· Bipartite graph-based: In bipartite graph-based collaborative filtering, users and items are represented as two separate sets of nodes, and edges are created between users and items based on their interactions, such as ratings, reviews, or purchases. Recommendations are then made based on the similarity between users and items in the graph [(Reddy et al., 2002), (Tang et al., 2021)].
· Social network-based: In social network-based collaborative filtering, users are represented as nodes in a social network graph, and relationships between users are represented as edges between the nodes. Recommendations are then made based on the preferences of users who are connected to the social network [He and Chu (2010)].
Bipartite graph-based CF Approach
Collaborative filtering relies on the interactions between users and items, which are captured in a user-item dataset. To represent this dataset, a bipartite graph (bi-graph) is created with two sets of nodes: users and items. Relationships are only formed between nodes of different sets.
From the bi-graph, two one-node projections can be derived, showing the relationships among users and items, respectively. However, these projections may not capture all the information from the original bi-graph, such as the frequency of multiple users buying the same item. To address this, relationship weights can be added, and clustering algorithms can be applied to uncover additional insights, such as common item bundles or user segments [(Tang et al., 2021)].
The bipartite graph is a useful representation because it is compact and easy to understand, and the one-node projections can be further analyzed using various algorithms. Additionally, a nearest-neighbor network can be computed from the bi-graph, which provides a solid foundation for generating recommendations.
To compute the nearest neighbor network, there are two approaches: item-based and user-based. The item-based approach involves computing similarities between items that are purchased by the same users, while the user-based approach computes similarities between users who purchase similar items.
The process for computing similarities is similar to the content-based approach:
Choose a similarity function.
· Represent each element (item or user) appropriately for similarity computation.
· Compute similarities between homogeneous nodes (i.e., nodes of the same type).
· Sort similarity values from high to low.
· Keep the top k similarities in a graph.
This results in a non-bipartite graph from which three subgraphs can be created:
· Graph with both items and users.
· Nearest neighbor network for users, which can be analyzed using clustering algorithms to identify segments of similar users.
· Nearest neighbor network for items, which can be analyzed using clustering algorithms to identify items frequently purchased together and find items similar to a specific product.
Recommending items to users is based on relevance scores that estimate how much a user will enjoy a specific item. These relevance scores are computed from the nearest neighbor network of users or items [(Tang et al., 2021)].
To identify the nearest neighbors of a user, you need to calculate similarities between each pair of users. The same holds true for finding item neighbors, but this process is generally faster. In practice, there are usually fewer item pairs in a database than user pairs. For instance, on a movie streaming platform with thousands of movies available to millions of people, computing similarities between all user pairs in real time would be impossible. As a result, the user-based approach is not suitable for providing real-time recommendations. Instead, the item-based approach requires fewer similarity computations and can offer recommendations in real-time.
Social network-based CF Approach
Social network-based CF is an approach to recommendation systems that leverages the connections between users in a social network to improve the accuracy of recommendations [He and Chu (2010), (Mongia et al., 2020)].
In a traditional CF system, recommendations are made based on the preferences of similar users. In contrast, social network-based CF considers not only the similarity between users but also the relationships between them. This approach assumes that users who have similar tastes and are connected in a social network are more likely to have similar preferences for products or services. Social network-based CF involves two main steps:
1. The first step is to identify the social connections between users, usually by analyzing their interactions on social media platforms. 
2. The second step is to use this information to enhance the similarity calculation between users in the recommendation algorithm.
For example, suppose a user is interested in buying a book, and they have several friends in their social network who have similar interests and have previously purchased the same book. In that case, the social network-based CF approach will recommend that book to the user based on their friends' purchases, even if the user has not expressed any explicit interest in the book. Hence, social network-based CF can help improve the accuracy and relevance of recommendations by incorporating social network information [Wongkhamchan et al., 2019)].
Advantages of graph-based approaches:
Graph-based approaches have some advantages over other collaborative filtering techniques, such as the ability to handle missing data and the ability to incorporate additional information, such as metadata or context, into the recommendations. However, they also have some limitations, such as the need for large amounts of data to create accurate representations of user-item relationships and the difficulty of handling the complexity of the graph structures.
Overall, graph-based approaches are a promising and innovative method for collaborative filtering, particularly in the context of recommendation systems for social media and other applications where relationships between users and items are important.
Self-Check Questions 
1. Please complete the following sentence. 
The graph-based recommendation system is well-suited for systems that deal with many users and content, and it can also function as a complete knowledge store.
2. Please complete the following sentence. 
Because it is compact and easy to grasp, the bipartite graph is a useful representation, and the one-node projections can be further analyzed using various algorithms.
2.3 Latent Factor Models
Latent factor models are a type of collaborative filtering method that seeks to identify underlying, or “latent,” factors that influence user preferences for items [Hofmann (2004)]. These factors are not directly observable but can be inferred based on user-item interactions in a matrix. The matrix contains the ratings or reviews given by users to items, with each row representing a user and each column representing an item [Hofmann (2004)].
The basic idea behind latent factor models is to decompose the user-item interaction matrix into two lower-dimensional matrices: one representing users and the other representing items [Mongia et al. (2020)]. The new matrices are constructed such that the dot product of a user’s row and an item’s column gives an estimate of the user’s rating for that item. The lower-dimensional matrices are called latent factor matrices because they represent the hidden, or latent, factors that influence user preferences.
There are several types of latent factor models, including:
· matrix factorization: This is a basic method of decomposing the user-item matrix into latent factor matrices using techniques such as singular value decomposition (SVD) or principal component analysis (PCA).
· machine learning-based methods: This method uses machine learning to model user-item interactions and extract latent factors [Mongia et al. (2020)].

Matrix Factorization
Matrix factorization is a popular technique used in recommender systems to predict the ratings that a user would give to items that they have not yet rated. The technique involves factorizing the user-item interaction matrix into two lower-dimensional matrices, one for users and one for items, and then predicting the missing ratings based on the dot product of the corresponding user and item vectors.
The factorization is typically done using a technique called SVD or its variants, such as PCA or non-negative matrix factorization (NMF). These techniques decompose the user-item interaction matrix into two matrices, and , where represents the user matrix and V represents the item matrix.
The user matrix has m rows (one for each user) and k columns (the number of latent factors), and the item matrix has k rows (the number of latent factors) and columns (one for each item). The latent factors are unobserved variables that capture the underlying characteristics of the users and items that influence the ratings.
To predict the rating that a user would give to an item , we take the dot product of the corresponding user and item vectors, which are the  row of and the  column of , respectively. The predicted rating is shown below in Equation 2.1:
predicted rating = 							(2.1)
where  is the  row of and  is the column of .
The factorization is typically done by minimizing the error between the observed ratings and the predicted ratings, using a technique called gradient descent or its variants [Ruder (2016)]. The error is often measured using the mean squared error (MSE) or its variants [Das et al., 2004)].
Matrix factorization has been shown to be effective in many recommender system applications, especially in situations where the user-item interaction matrix is sparse or high-dimensional [Koren et al., (2009)]. However, it has some limitations, such as the inability to handle new users or items that were not present in the training data, and the lack of interpretability of the latent factors.
By decomposing a matrix into two low-rank matrices, and multiplying them back together, we can obtain a new matrix that is approximately equal to the original matrix. In the case of a rating matrix , which has dimensions , it can be decomposed into two low-rank matrices, and , both with dimensions  and  respectively. The value of is known as the rank of the matrix. For instance, in the given example, the original  matrix is decomposed into two matrices,  and  and multiplying them results in a new  matrix with values that are approximately equal to those of the original matrix [Koren et al., (2009)].
The factorization is called as a singular value decomposition of of the form where:
								(2.2)
where
· is  unitary matrix over (if , unitary matrices are orthogonal matrices)
· is   unitary matrix over , and ∗ is the conjugate transpose of 
is a diagonal  matrix with non-negative real numbers on the diagonalFigure 2.7: The image shows matrix factorization represented in Equation 2.2.
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Source: [Akbarinasaji (2022)]
The matrix factorization method has a significant benefit in that it enables us to calculate the missing values in the original matrix by utilizing the dot product of the low-rank matrices and . To achieve the goal of minimizing the error term and accurately reproducing the original matrix, it is necessary to utilize the gradient descent technique [Ruder (2016)]. This technique involves using an algorithm to iteratively find the optimal parameters of an objective function and minimize the function accordingly. In addition to this, a regularization term must be introduced to the equation. This helps to further minimize the error and ensure that the predicted values align as closely as possible with the original values [Ruder (2016)].
How can we utilize matrix factorization in the development of recommendation engines? 
This is a key question that we will focus on, rather than delving into the mathematics of the technique itself [Koren et al., (2009), Mnih (2007)]. To build effective recommendation engines, several core tasks need to be completed: identifying similar users or items, predicting non-rated preferences, and recommending new items to active users. In essence, the goal is to predict the preferences for unrated items, which is precisely what matrix factorization aims to do by predicting the values of empty cells in the original rating matrix.
But how can we justify the use of matrix decomposition with low-rank matrices for recommendation engines? 
To answer this question, we need to consider how people rate movies or other items. Typically, individuals rate items based on their story, actors, genre, and other features. When we have a rating matrix that contains user IDs, item IDs, and corresponding ratings, we can assume that users possess inherent preferences toward rating items and that items possess latent features that influence how users rate them. It is this identification and utilization of these latent features that makes matrix factorization an effective approach to building recommendation engines.
Based on the previous assumption, we can utilize the matrix factorization method to break down the rating matrix into two low-rank matrices, which are assumed to represent the user latent feature matrix and item latent feature matrix:
Figure 2.8: This image shows the user-item matrix and feature matrices.
[image: Graphical user interface, application, Teams

Description automatically generated]
Source: [Akbarinasaji (2022)]
Researchers have started to use matrix factorization techniques to develop recommender systems based on these assumptions [Koren et al., (2009)]. One advantage of using matrix factorization is that, as a machine learning model, is able to learn feature weightings over time, the accuracy of the model could be improved.
Singular value decomposition (SVD) 
Singular value decomposition (SVD) is a popular matrix factorization technique used in machine learning and data analysis. In the context of matrix factorization, SVD breaks down a matrix into three component matrices: a left singular matrix, a diagonal matrix of singular values, and a right singular matrix [Kalman (1996)]. The left singular matrix represents the row-wise relationships between the data, the right singular matrix represents the column-wise relationships, and the diagonal matrix of singular values represents the importance of each component.
SVD can be used for dimensionality reduction and noise reduction, as well as for uncovering latent features or patterns in data. It is widely used in various applications, such as collaborative filtering for recommendation systems, image compression, and data analysis [Kalman (1996)].The low-rank matrices obtained through SVD can be effectively used in recommender systems as they offer the most optimal approximations of the original matrix. To apply the SVD approach to recommendation systems, consider a rating matrix of size  that has numerous empty cells. As with matrix factorization, the aim is to compute an approximate rating matrix that closely resembles the original matrix, with the missing values being predicted.
SVD is a powerful tool in linear algebra and matrix theory, and it has numerous applications in data analysis, signal processing, image compression, and recommendation systems. It provides a way to decompose a complex matrix into simpler and more interpretable components, and it can be used to reduce the dimensionality of data while preserving the most important information.
Machine Learning Techniques
In the following section, we will explore the primary machine-learning techniques that can be employed in developing recommendation engines.
Regression Models 
Regression models can be used in recommender systems to predict the ratings or scores that a user would give to a particular item, based on their historical ratings and preferences. Regression models are commonly used in recommender systems for explicit feedback, where the ratings are given on a numerical scale, and the goal is to predict the exact value of the rating [Agarwal and Chen (2015), Zhang et al. (2020) and Koren et al., (2009)]. 
In the context of recommender systems, regression models can be used to model the relationship between the user-item features and the ratings and predict the ratings for new items that the user has not rated yet. The user-item features can include various information about the user and the item, such as user demographics, item attributes, item popularity, or item similarity.
Some examples of regression models that can be used in recommender systems are described in the following sections.
Linear regression
Linear Regression is a simple and interpretable model that can be used in Recommender Systems to predict the ratings or scores that a user would give to a particular item, based on their historical ratings and preferences. Linear Regression works by modeling the linear relationship between the user-item features and the ratings and estimating the coefficients of the model that best fit the training data. 
Linear Regression can handle both continuous and categorical features and can be extended to handle interactions between the features using polynomial or interaction terms. Linear Regression can also provide interpretable coefficients that indicate the strength and direction of the relationship between each feature and the rating.
Ridge regression
Ridge Regression is a variant of Linear Regression that adds a regularization term to the loss function to prevent overfitting and improve the generalization performance. Ridge Regression works by minimizing the sum of squared errors between the predicted ratings and the actual ratings, subject to a penalty term that penalizes large values of the regression coefficients. 
Ridge Regression can also handle high-dimensional and sparse data, which is common in Recommender Systems, by shrinking the coefficients of the less important features toward zero. This helps to avoid overfitting and improve the generalization performance, especially when the number of features is much larger than the number of observations.
Lasso regression
Lasso Regression is another variant of Linear Regression that adds a regularization term to the loss function to prevent overfitting and improve the generalization performance. However, unlike Ridge Regression which penalizes the sum of squared coefficients, Lasso Regression penalizes the sum of the absolute values of the coefficients. 
Lasso Regression can also perform feature selection by setting the coefficients of the less important features to zero, which helps to simplify the model and improve its interpretability. This is especially useful in Recommender Systems, where the number of features can be very large and only a few of them may be relevant for predicting the ratings.
Elastic net regression
Elastic Net Regression is a variant of Linear Regression that combines the L1 regularization (Lasso) and L2 regularization (Ridge) to overcome their limitations and achieve a better trade-off between sparsity and accuracy. Elastic Net Regression works by minimizing the sum of squared errors between the predicted ratings and the actual ratings, subject to a penalty term that penalizes large values of the regression coefficients. 
So, this is a hybrid model that combines the penalties of Ridge and Lasso Regression and can handle both the sparsity and smoothness of the coefficients. It can help balance the bias and variance of the model and provide a trade-off between interpretability and accuracy. It can perform both feature selection and feature grouping, by setting the coefficients of the less important or highly correlated features to zero or to similar values, respectively. This helps to simplify the model and improve its interpretability, while still retaining the predictive power of the important features.
Random forest regression
An ensemble of decision trees that combine the predictions of multiple trees to improve accuracy. Random forest regression is a regression model that uses a combination of decision trees to predict the output variable. It is an ensemble method, which means that it combines the predictions of multiple individual models to improve the accuracy and stability of the predictions. In random forest regression, many decision trees are trained on different subsets of the training data, using random samples of the input features. Each decision tree makes a prediction based on its own subset of features and the majority vote of the trees is used to make the final prediction. The random sampling of features and training data helps to reduce overfitting and improve the generalization performance of the model. To predict the output variable using a random forest regression model, we start by passing the input features through each of the individual decision trees in the forest and obtaining a prediction for each tree. The final prediction is then obtained by aggregating the predictions of all the trees, typically by taking the mean or median value. 
Random forest regression is a powerful and versatile regression model that can be used for a wide range of applications, including recommender systems, predicting the price of a house based on its features or estimating the amount of rainfall in a region based on meteorological data. It is also commonly used in feature selection, where it can help to identify the most important features by analyzing the feature importance of the individual decision trees in the forest. Random Forest Regression can handle missing values and outliers and can provide feature importance measures and interactions.
Support vector regression
Support Vector Regression (SVR) is a regression model that uses the same principles as Support Vector Machines (SVMs) for classification. SVR attempts to find a linear function that can accurately predict the output variable given a set of input variables. The basic idea of SVR is to map the input variables to a higher-dimensional space, where the linear function can more accurately separate the data points. In this higher-dimensional space, the input variables are transformed using a kernel function, which measures the similarity between pairs of input variables. The most common kernel functions used in SVR are the linear kernel, polynomial kernel, and Gaussian (or radial basis function) kernel. 
In SVR, the goal is to find a hyperplane that maximizes the margin between the predicted values and the true values, subject to a constraint on the amount of error that is allowed. The amount of error that is allowed is controlled by a hyperparameter called C. If C is set to a small value, the model will allow more errors in the prediction, while if C is set to a large value, the model will try to minimize the errors as much as possible. The SVR model can also include an epsilon-insensitive tube, which is a range of values within which errors are ignored. If a prediction falls within the epsilon-insensitive tube, it is accurate, even if it does not match the true value exactly. The width of the epsilon-insensitive tube is controlled by another hyperparameter called epsilon. SVR can be applied to both linear and non-linear regression problems and is particularly useful when dealing with high-dimensional data. It is commonly used in applications such as recommender systems, stock price prediction, weather forecasting, and image processing. 
Regression models have several advantages for Recommender Systems, such as the ability to predict the exact value of the rating, the ability to handle both continuous and categorical features, and the ability to provide interpretable results. However, Regression models may not be suitable for handling implicit feedback, where the ratings are not given explicitly but are inferred from the user behavior and may require careful feature engineering and hyperparameter tuning to achieve optimal performance. To overcome these limitations, other machine learning methods such as Matrix Factorization or Neural Networks can be used, or hybrid or collaborative filtering methods can be used in conjunction with Regression models. 
Classification models 
Classification models can be used in Recommender Systems to predict the likelihood of a user liking or disliking a particular item, based on their ratings for the existing items [Park et al. (2012)]. In this context, each item can be considered as a feature, and the rating given by the user to the item can be considered as the label. The goal is to build a model that can predict the probability of a user liking a new item, based on their ratings for the existing items. In a Recommender System, the user-item matrix can be transformed into a binary matrix, where each entry represents whether the user liked or disliked the item, and the ratings are transformed into binary labels based on a threshold value. 
There are several classification models that can be used in Recommender Systems, including:
Naive Bayes Classification
Naive Bayes Classification is a probabilistic model that can be used in Recommender Systems to predict the likelihood of a user liking or disliking a particular item, based on their ratings for the existing items. Naive Bayes assumes that the probability of each feature (i.e., the rating of each item) given the label (i.e., whether the user liked or disliked the item) is independent of the other features, given the label. This is called the "naive" assumption because it assumes that there are no dependencies between the features.
The Naive Bayes Classification can then be trained on the binary matrix, using the transformed binary labels as the response variable, and the remaining entries can be used for testing the model. The Naive Bayes algorithm computes the likelihood of each feature given the label and uses Bayes' theorem to compute the posterior probability of the label given the features. The label with the highest posterior probability is then predicted as the output of the model.
Naive Bayes Classification has several advantages for Recommender Systems, such as the ability to handle high-dimensional and sparse data, the ability to handle missing values and outliers, and the ability to provide interpretable results. 
Logistic regression
Logistic Regression is a type of linear model that models the probability of a binary outcome as a function of the input features. Logistic Regression can be used in Recommender Systems to predict the likelihood of a user liking or disliking a particular item. In this context, the rating given by the user to the item can be transformed into a binary label, such as "liked" or "not liked", based on a threshold value. The goal is to build a model that can predict the probability of a user liking a new item, based on their ratings for the existing items.
Logistic Regression is a type of linear model that models the probability of a binary outcome as a function of the input features. In a Recommender System, the input to the logistic regression can be a sparse matrix where each row represents a user and each column represents an item, and the entries represent the ratings given by the users to the items. The logistic regression can be trained on a subset of the matrix, using the transformed binary labels as the response variable, and the remaining entries can be used for testing the model. The coefficients of the logistic regression can then be used to predict the likelihood of a user liking a new item, based on their ratings for the existing items.
Logistic Regression has several advantages for Recommender Systems, such as the ability to model the probability of a binary outcome in an interpretable manner, the ability to handle high-dimensional and sparse data, and the ability to handle missing values and outliers.
Random forest classification
Random Forest Classification can be used in Recommender Systems to predict the preference of a user for a particular item. In this context, each item can be considered as a feature, and the rating given by the user to the item can be considered as the label. The goal is to build a model that can predict the rating of a user for a new item, based on their ratings for the existing items.
Random Forest Classification is a type of ensemble method that combines multiple decision trees to improve the accuracy and robustness of the model. Each tree in the random forest is trained on a random subset of the features and a random subset of the samples, using a criterion such as the Gini impurity or the entropy to split the data into homogeneous subsets. The predictions of the individual trees are then aggregated to produce the final prediction, using a majority vote or a weighted average.
Random Forest Classification has several advantages for Recommender Systems, such as the ability to handle high-dimensional and sparse data, the ability to capture nonlinear and interaction effects between the items, and the ability to handle missing values and outliers. However, it may not be suitable for a cold-start or new-item recommendation, where there is no rating history available for the item and may not be able to capture long-term or temporal effects in the data. To overcome these limitations, hybrid or collaborative filtering methods can be used in conjunction with Random Forest Classification [Amatriain et al. (2010b), Chen et al. (2018)].
Gradient boosting
Gradient Boosting is an ensemble method that combines multiple weak learners (i.e., decision trees) to make a final prediction. Based on past ratings and preferences, Gradient Boosting is a machine-learning method that can be used in recommender systems to determine whether a user will like or dislike a specific item. With the help of several weak learners, such as decision trees, gradient boosting creates a final prediction.
The Gradient Boosting algorithm builds a collection of decision trees, where each tree tries to correct the errors of the previous tree. The algorithm starts with a simple model (e.g., a decision stump), and iteratively adds more trees to the model, each trained on the residuals of the previous trees. The final prediction is then made by aggregating the predictions of all the trees.
Gradient Boosting has various benefits for Recommender Systems, including the capacity to handle high-dimensional and sparse data, capture nonlinear and interaction effects between items, and handle uneven or unusual classes in the data. Gradient Boosting can also yield interpretable findings by allowing us to examine the feature importance scores and decision rules of individual trees. However, it may not be suitable for dealing with missing values or outliers, and careful tuning of the hyperparameters may be required to avoid overfitting.
Support vector machines
Support Vector Machines (SVM) are a type of linear and nonlinear model that map the input features into a high-dimensional space and find the hyperplane that maximally separates the data points. SVM is a machine learning algorithm that can be used in Recommender Systems to predict whether a user will like or dislike a particular item, based on their historical ratings and preferences. 
SVM is a popular algorithm for classification tasks and is known for its ability to handle complex and high-dimensional data. The SVM algorithm tries to find a hyperplane that separates the positive and negative examples with the largest margin, where the margin is defined as the distance between the hyperplane and the closest data points (also called support vectors). If the data cannot be separated by a linear hyperplane, the SVM algorithm can use a kernel function to map the data into a higher-dimensional space, where a linear hyperplane can be used to separate the data.
SVM has several advantages for Recommender Systems, such as the ability to handle high-dimensional and sparse data, the ability to capture nonlinear and complex patterns in the data, and the ability to handle imbalanced or rare classes in the data. Additionally, SVM can provide interpretable results, by allowing us to inspect the support vectors and the decision boundaries. However, SVM may not be suitable for handling missing values or outliers and may require careful tuning of the hyperparameters to avoid overfitting.
These classification models can be trained on a subset of the user-item matrix, using the ratings of the users for the items as labels, and the remaining entries can be used for testing the model. The predictions of the models can then be used to recommend the items with the highest predicted probabilities to the users.
What are the advantages of Latent Factor Models?
Latent factor models have several advantages over other collaborative filtering techniques. They can handle missing data, can be applied to new users or items without existing data, and can handle large datasets. They are also effective in capturing the complex relationships between users and items, particularly in cases where the user-item matrix is sparse or noisy.
The Latent Factor Models are a powerful and widely used method for Collaborative Filtering, particularly in recommendation systems for e-commerce, entertainment, and social media.
Self-Check Questions 
1. Please complete the following sentence. 
Classification models can be used in Recommender Systems to forecast whether a user will like or dislike a certain item based on their ratings for existing items.
2. Please complete the following sentence. 
SVD can be used to reduce dimensionality and noise in data, as well as to identify latent characteristics or patterns.
2.4 Bayesian Personalized Ranking (BPR)
Bayesian Personalized Ranking (BPR) is a type of Collaborative Filtering method that focuses on personalized item ranking for each user [Rendle (2012)]. Unlike other Collaborative Filtering methods that predict ratings or preferences for individual items, BPR predicts the relative ranking of items for a user based on their interactions with those items.
BPR assumes that users have an intrinsic preference for certain items that are independent of the preferences of other users. The method models the user-item interactions as binary events, where a user either interacts with an item or not. The goal of BPR is to learn a ranking function that assigns higher scores to items that a user is more likely to interact with.
The ranking function in BPR is learned using Bayesian inference, which allows the method to incorporate prior knowledge and uncertainty into the model. BPR uses a matrix factorization approach to model user-item interactions and extract latent factors. However, unlike other matrix factorization methods, BPR uses a pairwise approach to optimize the ranking function. This means that BPR optimizes the difference in ranking scores between a positive item (i.e., an item the user interacted with) and a negative item (i.e., an item the user did not interact with). 
BPR uses a stochastic gradient descent (SGD) optimization algorithm to minimize the negative log-likelihood of the pairwise ranking, subject to a regularization term that prevents overfitting and improves the generalization performance of the model. BPR can be extended to handle various types of feedback, such as explicit ratings, implicit feedback, or binary feedback, and can be used in both cold-start and warm-start scenarios.SGD is a popular optimization algorithm commonly used in tasks like regression and classification.

BPR has several advantages over other CF algorithms, such as its ability to handle large and sparse datasets, its scalability to millions of users and items, its robustness to noise and outliers, and its interpretability and explainability. It is particularly effective in handling implicit feedback data, such as clicks, views, or purchases, which are often more abundant than explicit feedback data, such as ratings or reviews. It is also capable of handling new items or users without existing data, and it can provide personalized item ranking for each user. BPR has been successfully applied in various recommendation domains, such as movies, music, books, and products, and has been shown to outperform many state-of-the-art CF algorithms in terms of accuracy, diversity, novelty, and coverage. 
However, BPR may still have some limitations, such as its sensitivity to the choice of hyperparameters, its inability to handle long tail or rare items, and its lack of explicit modelling of the user or item features. But overall, Bayesian Personalized Ranking (BPR) is a powerful and widely used method for Collaborative Filtering, particularly in recommendation systems for e-commerce, advertising, and social media.
What are the different applications of CF?
CF has numerous applications in different industries, some of which include:
· E-commerce: CF is widely used in e-commerce platforms to recommend products to users based on their browsing and purchase history.
· Entertainment: CF is used in streaming services to recommend movies, TV shows, and music to users based on their viewing and listening history.
· Social media: CF is used in social media platforms to recommend content, such as posts, articles, and videos, to users based on their likes, shares, and interactions.
· Travel: CF is used in travel websites to recommend destinations, hotels, and activities to users based on their past travel history and preferences.
· Healthcare: CF is used in healthcare applications to recommend treatments and medications to patients based on their medical history and symptoms.
· Education: CF is used in e-learning platforms to recommend courses and learning materials to students based on their past performance and preferences.
· News: CF is used in news websites to recommend articles to users based on their reading history and interests.
CF has a wide range of applications in different industries, helping to provide personalized recommendations to users and increasing customer engagement and satisfaction.
Self-Check Questions 
1. Please complete the following sentence. 
BPR employs a stochastic gradient descent (SGD) optimization technique to minimize the pairwise ranking's negative log-likelihood, subject to a regularization term that minimizes overfitting and enhances the model's generalization performance.
2. Please complete the following sentence. 
BPR may still be constrained by factors including its sensitivity to the selection of hyperparameters, incapacity to handle long tail or rare items, and dearth of explicit modelling of user or item attributes.
Summary
Overall, CF is a popular technique used in recommendation systems. This summary outlines four different approaches within CF that are covered in this chapter.

The neighborhood-based approach focuses on finding similar users or items based on their ratings or preferences. It uses similarity measures to identify neighbors and then makes recommendations based on the ratings of these neighbors.
The graph-based approach represents user-item interactions as a graph, where users and items are nodes, and edges represent connections. Graph-based algorithms utilize the graph structure to make recommendations by considering the relationships and connections between users and items.
The latent factor model represents users and items as vectors in a latent space. These models capture the underlying factors that influence user-item interactions. By mapping users and items to this latent space, recommendations can be made based on the similarity of their latent representations.
BPR is a method that focuses on ranking items based on user preferences. It formulates the recommendation task as a pairwise ranking problem and uses Bayesian techniques to estimate the probability of user preferences for different items.
These four approaches represent different strategies for CF, each with its own strengths and weaknesses. Researchers and practitioners often explore and combine these approaches to improve the accuracy and effectiveness of recommendation systems.
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Unit 3 Content-Based Filtering
Introduction 
Content-based (CB) filtering is a type of recommendation system that suggests items to users based on their previous interactions with similar items. In CB filtering, items are represented as a set of features or attributes, and the system recommends new items to users that have similar features or attributes to the ones they have interacted with before.
We exclusively consider user-item preferences when developing recommender systems for CF. This method is correct; however, it makes more sense to design recommendation engines that take user properties and item properties into account. When developing CB recommendation engines, we leverage item properties and user preferences in addition to the item properties, unlike CF.
A CB recommender system, as the name suggests, builds the recommendation model using the item's content information. A user profile generation phase, item profile generation step, and model building step are commonly included in a content recommender system to create recommendations for an active user. The content-based recommender system uses user-profiles and the features or content of the items it recommends to users. For instance, if you search for videos of Lionel Messi on YouTube, the CB recommender system will learn your preferences and suggest additional football- and Lionel Messi-related films.
Figure 3.1 CB filtering-based recommendations.
[image: ]
Simply said, the algorithm suggests products that are comparable to ones that the consumer has previously enjoyed. According to the qualities of the other objects being compared and the user's previous choices, the similarity of the items is determined. 
We think about the following issues when developing a CB recommendation system:
· How do we select the product's features or content?
· How can we make user profiles whose interests match those of the content of the product?
· How can we make objects comparable depending on their features?
· How can we continuously create and update user profiles?
Define CB filtering from a historical perspective.
CB filtering has a rich historical perspective that has evolved alongside the development of recommendation systems. Let's delve into the historical journey of content-based filtering to gain a comprehensive understanding of its evolution [Javed (2021)].
· Early Stages: The concept of content-based filtering originated in the early days of information retrieval and recommender systems. In the 1960s and 1970s, research focused on developing information retrieval systems that could recommend relevant documents based on their textual content. Techniques like keyword matching and vector space models were employed to analyze document features and user queries, forming the foundation of content-based filtering.
· Information Filtering and Personalization: In the 1980s, the field of information filtering emerged, aiming to deliver personalized content recommendations to users. The research focused on developing systems that could filter and prioritize information based on user profiles and preferences. Content-based filtering played a crucial role in this era, as it utilized the characteristics of items and user preferences to generate personalized recommendations.Information Filtering technique used to select and present relevant information to users based on their preferences.

· Profile-based Filtering: During the 1990s, the emphasis shifted to profile-based content filtering systems. These systems created user profiles based on their explicit preferences, such as ratings or feedback, and employed content analysis techniques to match items with similar attributes. The use of machine learning algorithms and CF techniques further enhanced the accuracy and effectiveness of content-based recommendations.
· Advancements in Feature Extraction: With the advent of the internet and the explosion of online content, feature extraction techniques became more sophisticated. The 2000s saw the rise of techniques such as TF-IDF [Aizawa (2003)], latent semantic analysis [Blei (2001)], and word embeddings [Almeida (2019)], which enabled the extraction of deeper semantic meaning from textual data. These advancements significantly improved the quality of content-based recommendations by capturing more nuanced relationships between items and user preferences.
· Integration with Machine Learning: In recent years, content-based filtering has embraced machine learning techniques to enhance recommendation accuracy. Approaches like Factorization Machines (FMs) have been introduced to capture complex feature interactions and improve the performance of CB filtering systems [Rendle (2012a)]. FMs enable the modelling of both linear and non-linear relationships among features, leading to more accurate recommendations.
· Hybrid Approaches In the pursuit of more accurate and diverse recommendations, hybrid recommendation systems have gained prominence [Burke (2002)]. These systems combine content-based filtering with other approaches, such as CF, CB filtering, and matrix factorization. Hybrid models leverage the strengths of different techniques to overcome limitations and provide comprehensive recommendations.
How are CB recommendations generated?
The recommendations generated in the CF approach showed that only user ratings or interactions with the products were considered. This means that new items suggested for an active user are based on the ratings given to those new items by other users who are similar to the active user.
Take the example of someone who gave a movie a 4-star rating. Only this rating information is used in a collaborative filtering strategy to generate suggestions. In the real world, people evaluate films based on their features or content, such as their genre, actors, directors, stories, and screenplays. Additionally, based on their own preferences, the user watches a movie. The recommendations should be based on the preferences of the individual users and the contents of the products when we are developing a recommendation engine to target consumers on a personal level rather than on the tastes of other people who have similar preferences.
A CB recommender system is one that uses individual preferences and the contents of the items to provide recommendations that are targeted at a personalized level.
The fact that CB recommendation engines address the cold start issue that new users of CF confront is another reason for developing them. When a new user joins, we can make suggestions for new things that are similar to their tastes depending on the person's preferences.
The process of developing CB recommender systems involves the following three basic steps:
· Creating content for product information.
· Establishing a user profile and preferences in relation to the product characteristics.
· Making suggestions and anticipating a selection of products the user might like:

Figure 3.2 Recommendations generated by a CB recommender System. [image: A diagram of a product

Description automatically generated with medium confidence]
Source: Sneha (2023). 
Generation of the Item Profile: 
In this phase, we take the features that best describe the product. The vector space model most frequently uses product names as rows and features as columns to represent the content of the products. Typically, the products' content will either be structured data or unstructured data.
Databases will provide the structured data, while websites' reviews, tags, and textual attributes would provide the unstructured elements. We must extract pertinent features and their relative relevance score from the product throughout the item profile generation process.
The term frequency-inverse document frequency (tf-idf), which calculates the feature relative importance associated with the item, is used to generate the item profile. We can utilize tf-idf since we express the item features as vectors commonly used in Recommendation Engines.
Let's use an illustration to try to better comprehend. As previously noted, we need extra content details on movies to provide recommendations based on content:
Table 3.1 Movie and their respective Genre representation.
[image: ]
Source: Sneha (2023). 
Initially we need to do is use tf-idf to establish an item profile by following these steps [Aizawa (2003)]:
· First, we need to have a collection of items that we want to recommend, such as books, movies, products, etc. In our case, we have a movie collection as shown in Table 3.1. Each item should have some textual content associated with it, such as a title, a description, a summary, a review, etc. For example, in our case, we are using the genre of the movie. This content will be used to represent the item’s features and characteristics.
· Second, we need to calculate the term frequency (tf) and the inverse document frequency (idf) for each word in each item’s content. The term frequency is the number of times a word appears in an item’s content divided by the total number of words in that content. The inverse document frequency is the logarithm of the total number of items divided by the number of items that contain the word. The tf-idf score for a word in an item’s content is the product of its tf and idf values. The tf-idf score reflects how important and distinctive a word is for an item’s content.
· Third, we need to create a vector for each item that contains the tf-idf scores for all the words in its content. This vector is called the item profile and it represents the item’s features and characteristics in a numerical way. We can use different methods to create and store these vectors, such as sparse matrices, dictionaries, or data frames.
· Fourth, we need to use these item profiles to measure the similarity between items and recommend items that are similar to each other or to a user’s preferences. We can use different methods to measure the similarity between vectors, such as cosine similarity, euclidean distance, jaccard index, etc.
So, let’s count the frequency of each term in each document, or in our example as shown in Table 3.2, the presence of each genre in each movie, to create a term frequency matrix. The genre is represented by the number 1, and the absence of the genre is represented by the number 0:
Table 3.2 Movie and their respective Genre score representation.
[image: ]
Source: Sneha (2023). 
First, we create the inverse document frequency using the following formula:

In this case, the total number of documents is equal to the number of movies, and the document frequency is the sum of all the instances of them in all the documents:
Table 3.3 Genre score representation.
[image: ]
Source: Sneha (2023). 
Now the final step is to create a tf-idf matrix given by the following formula:


Table 3.4 TF-IDF score representation. 
[image: ]Source: Sneha (2023). 
Generation of User Profiles
We create the user profile or preference matrix that corresponds to the product content in this step. Since it makes more sense to compare both user and item profiles and determine how similar they are, we typically develop the user profile or attributes that are shared with the product content.
Let's have a look at the dataset below, which displays each user's viewing history. The user has watched the film if the matrix cell contains a value of 1.
This data reveals their preferred genres of movies:
Table 3.5 User to Movie preference representation.

[image: ]
Source: Sneha (2023). 

With the use of the previously mentioned data, we will now develop a user profile that can be compared to the item profile; more specifically, we generate a user profile that includes the user's preferences for the item attributes, in this example, genres. The user's affinity for each of the genres is determined by the dot product between the tf-idf and user preference matrix, as illustrated in the following table:


Table 3.6 User to Genre score representation. [image: ]
Source: Sneha (2023). 
The next stage would be to predict how much the user will favor each of the items given the user profiles and item profiles in hand. Now, we can compute the user preference for each of the items using cosine similarity. The cosine similarity between the user and item profiles in our scenario yields the following outcomes:


Table 3.7 User to Movie score representation. [image: ]
Source: Sneha (2023). 
Cosine similarity is a measure of how similar two vectors are based on the angle between them [Mana and Sasipraba (2021)]. It is calculated by taking the dot product of the two vectors and dividing it by the product of their magnitudes. The cosine similarity ranges from -1 to 1, where -1 means the vectors are opposite, 0 means they are orthogonal (perpendicular), and 1 means they are identical.
Cosine similarity can be used for movie recommendation by representing each movie as a vector of features, such as genres [Mana and Sasipraba (2021)]. The similarity between two movies can then be computed by applying the cosine similarity formula to their vectors. The higher the cosine similarity, the more similar the movies are in terms of their features.
Therefore, the above Table 3.7 enables us to draw the conclusion that a user is more likely to enjoy a movie and can thus be recommended to them if the cosine angle is greater. 
There are often two methods for collecting user data, which are as follows:
1. Ask the user explicitly for their preferences regarding the product's characteristics and save them.
2. Capture implicit user interaction data about products, including surfing history, rating history, and purchase history, and construct user preferences for product features.
Our current method of developing a CB recommendation system is based on a similarity calculation. We can use supervised and unsupervised machine learning techniques to identify the things a customer will find appealing most likely [Panagiotakis et al. (2020)]. Model-based systems are recommender systems that use machine learning or any other mathematical, statistical models to produce recommendations. To determine whether a user will like or dislike an item, classification-based techniques, which are a subset of model-based recommender systems, first develop a machine-learning model using the user profile and item profile. You can employ supervised classification tasks like logistic regression, KNN classification techniques, probabilistic techniques, and more [Panagiotakis et al. (2020)].
What are some of the advantages of CB filtering?
There are several advantages to using content-based filtering for recommendation systems. 
· Recommending Niche Items: One main advantage of content-based filtering is that it can work well for recommending niche items that are not popular among the general population but may be of interest to a specific user based on their past interactions.Niche Items 
This means items that are rare, unpopular, or long tail. 


· Personalization: Content-based filtering can provide highly personalized recommendations based on a user's past interactions with similar items. It focuses on the features of items that are relevant to the user's interests and preferences.
· Domain-specific: Content-based filtering can be effective in recommending items in niche domains or areas of interest. By analyzing the features of items, it can identify similarities that may not be apparent through other means.
· User independence: Content-based filtering does not require information about other users to make recommendations. It can be useful in situations where user data is limited or not available, such as in cold-start scenarios.
· Transparency: Content-based filtering is transparent, as the recommendations are based on the features of items and not on complex algorithms or user behavior. Users can understand why a particular item is recommended to them.
· New items: Content-based filtering can recommend new items that have not been seen by the user before but are similar to items they have interacted with in the past. This can help users discover new and relevant items.
However, it also has limitations, as it relies on the availability and accuracy of item features and does not consider social or contextual factors that may influence user preferences. Therefore, content-based filtering can provide a personalized and transparent recommendation experience for users, especially in situations where user data is limited, and there is a need to recommend niche items.
3.1 Content Types & Strategies Across Domains 
Content types and strategies for content-based filtering can vary across different domains and applications. Here are some examples:
· Movie and TV show recommendations:
· Content types: genre, director, actors, release year, plot, language, rating, awards.
· Strategies: Recommend movies/TV shows with similar genres, directors, actors, or themes to ones the user has watched and enjoyed in the past.
· Music recommendations:
· Content types: artist, genre, tempo, lyrics, instruments, mood, album, year, popularity.
· Strategies: Recommend songs or albums with similar artists, genres, or moods to ones the user has listened to and enjoyed in the past.
· News and article recommendations:
· Content types: topic, author, keywords, length, publication date, source, reading time.
· Strategies: recommending news articles or blog posts with similar topics or keywords to ones the user has read and found interesting.
· E-commerce product recommendations:
· Content types: product category, brand, price, color, material, size, specifications, popularity.
· Strategies: recommending products with similar categories, brands, or specifications to ones the user has purchased or expressed interest in.
· Travel recommendations:
· Content types: destination, travel dates, budget, travel type, accommodation, activities, language, weather.
· Strategies: recommending travel packages or destinations with similar locations, activities, or budgets to ones the user has booked or expressed interest in.
Generally, the content types and strategies used for CB filtering depend on the domain and the specific needs of the application. However, the common approach is to analyze features or attributes of items and recommend items that are similar to ones the user has interacted with in the past.
Self-Check Questions 
1. Please complete the following sentence. 
In the generation of the item profile stage, we select the features that most accurately characterize the product. Product names are often represented as rows in the vector space model whereas characteristics are typically represented as columns.
2. Please complete the following sentence. 
In general, the domain and the unique requirements of the application determine the content kinds and tactics utilized for CB filtering.
3.2 Factorization Machines & ClassificationClassification
Categorizing users or items in predefined groups or classes based on certain attributes.


Factorization Machines (FMs) and classification are powerful techniques used in machine learning for various tasks, including recommendation systems and CB filtering. Let us explore each of these techniques in detail:
Factorization Machines (FMs):
FMs are supervised learning models that excel in capturing feature interactions, especially in scenarios with high-dimensional and sparse data. Introduced by Steffen Rendle in 2010, as a generalization of matrix factorization, FMs factorize the feature matrix into low-rank matrices to model interactions between features [Rendle (2010)]. This allows them to capture both linear and non-linear relationships among features, making them well-suited for recommendation systems and CB filtering.
In CB filtering, FMs can be utilized in various ways. They can learn user-item interactions and predict item relevance based on features and user preferences. FMs offer flexibility in incorporating different types of features, such as textual, numerical, or categorical, and can effectively handle sparse data where many feature interactions are missing.
In classification tasks, FMs can predict the probability of an instance belonging to a certain class. By factorizing feature interactions into a low-dimensional space, FMs learn latent factors that capture the underlying relationships between features. During training, weights for each feature and latent factor are learned to predict class probabilities. FMs can be trained using optimization methods like stochastic gradient descent or alternating least squares.
FMs have several advantages. They can capture both linear and non-linear feature interactions, making them suitable for problems with complex relationships. They handle high-dimensional data efficiently and provide fast predictions. FMs are versatile, and applicable for both classification and regression tasks, particularly when data is sparse and feature interactions are intricate.
Classification
Classification is a fundamental task in machine learning that involves assigning predefined labels or categories to instances based on their features. It is widely used for various applications, including sentiment analysis, image recognition, and spam filtering.
In the context of content-based filtering, classification techniques can be employed to predict the relevance or preference of items for users. The goal is to classify items into relevant or non-relevant categories based on their features and user preferences. Classification models learn from labeled data, where item-user pairs are labeled with their relevance or preference information.
Different classification algorithms can be utilized, such as logistic regression, support vector machines (SVMs), decision trees, random forests, or neural networks. These algorithms learn from the training data and build models that can generalize to classify new items accurately.
Classification in CB filtering can be used in combination with other techniques, such as FMs. For instance, FMs can capture the interactions between features, while classification models can make the final relevance prediction based on the learned interactions and user preferences.
Factorization Machines (FMs) and classification are powerful techniques used in machine learning, particularly in the context of recommendation systems and CB filtering. FMs excel in capturing feature interactions, allowing for more accurate modelling of item-user relationships. Classification algorithms, on the other hand, provide a mechanism for predicting the relevance or preference of items based on their features and user preferences. By leveraging the strengths of both FMs and classification, content-based filtering systems can generate more precise and personalized recommendations for users.
Self-Check Questions 
1. Please complete the following sentence. 
In situations with high-dimensional and sparse data, FMs are supervised learning models that are excellent at capturing feature interactions.
2. Please complete the following sentence. 
On the other hand, classification algorithms offer a framework for anticipating the relevance or preference of objects based on their characteristics and user preferences.
Summary
In this chapter, we studied CB filtering. CB filtering is a technique used in recommendation systems that focuses on the characteristics or attributes of items to make recommendations. The following summary provides an overview of two key aspects of CB filtering that are covered in this chapter.
CB filtering considers various types of content or features associated with items in different domains. These features can include textual information, metadata, images, audio, or any other relevant attributes. Strategies for utilizing this content can vary across domains, such as using text analysis techniques for textual content or image processing methods for visual content. By analyzing and comparing these features, recommendations can be made based on the similarity between items and user preferences.
FMs are a popular approach used in CB filtering. FMs can capture interactions between features and can handle both numerical and categorical data effectively. By learning the patterns and relationships between features, FMs can make accurate predictions and recommendations. In addition to FMs, classification algorithms can also be employed in CB filtering to assign items to predefined categories or classes, allowing for more targeted recommendations based on user preferences.
CB filtering focuses on utilizing item attributes and characteristics to make personalized recommendations. By considering the content types and employing techniques like Factorization Machines and classification algorithms, CB filtering can effectively match user preferences with relevant items.
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4. Hybrid Recommender Systems
Introduction 
A hybrid recommender system is a type of recommendation system that combines two or more different approaches or techniques to generate recommendations. The goal of a hybrid recommender system is to leverage the strengths of different recommendation techniques and overcome their individual weaknesses.
For example, a hybrid recommender system might combine a CB approach (which recommends items based on their similarity to items the user has liked before) with a CF approach (which recommends items based on the preferences of similar users). By combining these two approaches, the hybrid recommender system can provide more accurate and diverse recommendations than either approach alone.
Hybrid recommender systems can be constructed using a variety of techniques, including rule-based methods, model-based methods, and machine-learning algorithms [Burke (2002)]. The specific combination of techniques used in a hybrid recommender system will depend on the data available, the specific problem being addressed, and the desired performance characteristics. 
What are some of the advantages of a Hybrid recommendation system?
There are several advantages of hybrid recommender systems compared to other types of recommendation systems. 
· Improved recommendation quality: By combining multiple recommendation techniques, hybrid systems can provide more accurate and diverse recommendations compared to single-technique systems. This is because different techniques may be better suited to different types of data or user behaviour.
· Robustness: Hybrid systems are often more robust to changes in user behaviour or data compared to single-technique systems. This is because if one technique is not effective in a particular context, another technique can be used instead.
· Flexibility: Hybrid systems can be customized to specific use cases or domains by selecting and combining different recommendation techniques. This means that they can be adapted to a wide range of applications and user preferences.
· Reduced cold start problem: Hybrid systems can address the "cold start" problem, where there is not enough data about new items or users to generate recommendations. By combining different techniques, a hybrid system can generate recommendations based on a variety of data sources, which can help overcome this problem.
As a result, hybrid recommender systems are a preferred option in many recommendation applications because they may offer recommendations that are more precise, varied, and robust than single-technique systems.
4.1 User- vs. Item-based Recommendations
User-based and item-based recommendations are two common approaches in CF, which is a technique for making personalized recommendations based on the preferences and behaviors of similar users or items.
User-based recommendations rely on the similarity between users to make recommendations. This means that the system identifies other users who have similar preferences or behaviors as the target user and recommends items that similar users have liked or consumed. User-based CF tends to work well when the user-item matrix is dense, and the user preferences are stable over time.
Item-based recommendations, on the other hand, rely on the similarity between items to make recommendations. This means that the system identifies other items that are similar to the ones the target user has liked or consumed and recommends those similar items. Item-based CF tends to work well when the item-item matrix is dense, and the items have stable features.
Some of the advantages of user-based recommendations are that they tend to be more diverse and can capture the long-tail items, as they rely on the behavior of other users with similar preferences. Item-based recommendations, on the other hand, are more scalable and can handle larger item inventories, as they rely on the similarity between items rather than users.
In practice, both user-based and item-based recommendations can be used together to improve the overall performance and coverage of the recommendation system. The choice between the two approaches depends on the specific characteristics of the data and the problem and may require experimentation and evaluation to determine the best approach.
User-based Recommender System
A user-based recommendation system is a type of recommendation system that generates recommendations for a user based on the preferences of other similar users. The basic idea behind a user-based recommendation system is that if two users have similar preferences for certain items, then one user is likely to be interested in items that the other user likes.
To generate recommendations using a user-based approach, the system first creates a user-item matrix that represents the ratings or preferences of each user for each item. The system then calculates the similarity between users based on their ratings or preferences. This similarity can be calculated using a variety of techniques, such as cosine similarity or Pearson correlation. Another approach to deriving such user representation can be achieved through the semantic understanding of items in the form of their embedding-based representations. These embeddings can then be aggregated over in the latent space to generate dense user vectors [Zhao (2021)].
Once the system has determined the most similar users for a given user, it can then generate recommendations for that user, based on the items that the similar users have rated highly. The system can use various techniques to determine which items to recommend, such as calculating the average rating of each item among similar users or using more complex algorithms that consider factors like item popularity and user bias.
One advantage of user-based recommendation systems is that they are easy to implement and understand, as they rely on a simple and intuitive concept of similarity between users. However, they can suffer from the "cold start" problem when there is not enough data about a new user or item to make accurate recommendations. Additionally, user-based recommendation systems can be computationally expensive as the size of the user-item matrix grows, and they may not perform well when there is a large amount of noise or sparsity in the data. Cold start where the system faces difficulties in making accurate predictions or recommendations for new users or items

What are the types of user-based recommendation systems?
There are several types of user-based recommendation systems, each of which uses a different approach to calculate user similarity and generate recommendations. Here are some common types of user-based recommendation systems:
· Nearest neighbor: Nearest neighbor algorithms calculate user similarity by comparing the preferences of a given user to the preferences of all other users in the system. The most similar users are then used to generate recommendations.
· User clustering: User clustering algorithms group similar users into clusters based on their preferences, and generate recommendations based on the preferences of other users in the same cluster.
· Item-based collaborative filtering: Item-based collaborative filtering algorithms generate recommendations by first identifying items that are similar to those the user has already rated highly and then recommending those similar items to the user.
· Rating prediction: Rating prediction algorithms attempt to predict how a user will rate an item based on the ratings of similar users, and then generate recommendations based on those predicted ratings.
· Demographic filtering: Demographic filtering algorithms generate recommendations based on demographic data such as age, gender, and location.
Each of these types of user-based recommendation systems has its strengths and weaknesses, and the choice of which approach to use will depend on factors such as the available data, the domain of the recommendation system, and the desired performance characteristics [(Yago et al. (2018)].
How can the user-based approach be implemented? 
To implement a user-based recommendation approach, you need to follow these steps:
· First, we need to collect data about the users and the items that they interacted with. This can be done by asking users to rate or review items, or by tracking their actions such as browsing, clicking, or purchasing items. The data can be stored in a user-item matrix, where each row represents a user, each column represents an item, and each cell contains the rating or interaction value for that user-item pair.
· Second, we need to measure the similarity between users based on their ratings or interactions. This can be done by using various similarity metrics, such as cosine similarity, Pearson correlation, Jaccard index, etc. The similarity metric should capture how closely two users agree on their preferences for the items. The similarity values can be stored in a user-user matrix, where each cell contains the similarity score between two users.Cosine Similarity
Determine the similarity between two non-zero vectors in multi-dimensional space.

· Third, we need to find the most similar users to the target user based on their similarity scores. This can be done by selecting a fixed number of users (k) who have the highest similarity scores with the target user, or by setting a threshold for the minimum similarity score required. These users are called the neighbors or the neighborhood of the target user.
· Fourth, we need to generate recommendations for the target user based on the ratings or interactions of their neighbors. This can be done by aggregating or averaging the ratings or interactions of the neighbors for each item, and then ranking the items by their aggregated or averaged values. The items with the highest values are then recommended to the target user.
Let’s use an illustration to try to better understand the user-based approach:
Problem Proposition: Assume we have the dataset shown in Table 4.1 below which contains the ratings that critics have assigned to films on movie review websites. The objective is to give the reviewers’ movie recommendations. We should create recommendations for the intended user by considering the ratings or engagements of users who are similar to them.

Table 4.1: Movie/User Dataset[image: ]
Source: Sneha (2023). 

Evaluating the available data is the initial step before learning the recommendation strategy. Let's examine the data step-by-step as follows:
· A list of users that have used the app and interacted with it.
· A list of all of the movies that are currently available.
· We have user-submitted ratings of movies.
It should be noted that each user has only rated a few movies from the total catalogue.
The initial phase is to discover similar users to a current user and then recommend new movies that this active user hasn't seen but that similar users have.
In brief, the process can be broken down into two steps:
· Determine the similarity between users by analyzing the rating data for movies.
· For each active user, examine the movies that other users have rated but the active user has not. Predict the unknown ratings for these unrated movies based on the user similarity data.
Given the Table 4.1 above, we can generate movie recommendations for Jacky using the following steps:
· Identify users who are similar to Jacky by analyzing the data. In this case, Genny and Mickey are found to be highly similar to Jacky.
· The similarity between users is typically computed based on their movie ratings. Common methods for calculating similarity include the Euclidean distance and the Pearson correlation coefficient.The Pearson correlation coefficient is a statistical measure that quantifies the linear relationship between two variables [Kumar et al. (2015)]. It is calculated by dividing the covariance of the two variables by the product of their standard deviations. The formula for the Pearson correlation coefficient is:

· In this formula, x is the independent variable, y is the dependent variable, n is the sample size, and Σ represents a summation of all values. The Pearson correlation coefficient ranges from -1 to 1, where -1 indicates a perfect negative correlation, 0 indicates no correlation, and 1 indicates a perfect positive correlation.
· The Pearson correlation coefficient can be used to test whether there is a significant linear association between two variables, or to compare the strength and direction of different linear relationships [Kumar et al. (2015)]. For example, if you want to know how the height and weight of a group of people are related, you can calculate the Pearson correlation coefficient between these two variables and see if it is close to 1 (positive correlation), close to -1 (negative correlation), or close to 0 (no correlation).
· Also, the Euclidean distance can be used to calculate similarity, utilizing the following equation where p and q are two points with n coordinates each, and ​ and ​ are the i-th coordinates of p and q respectively:
 
The reasoning behind utilizing Euclidean distance is based on the notion of representing users, movies, and ratings as coordinates in a vector space, where users are plotted on the x-axis, movies on the y-axis, and ratings as points within the space [Kumar et al. (2015)]. By projecting our data into this vector space, we can assess the similarity or proximity between two points using the Euclidean distance or the Pearson correlation coefficient.
Normalized Euclidean distance is a measure of how dissimilar two users are based on their ratings for the movies that they have both rated, scaled to have a common range between 0 and 1. The lower the normalized Euclidean distance, the more similar the users are.
To calculate the normalized Euclidean distance values for all users, we need to follow these steps:
First, we need to calculate the Euclidean distance between each pair of users based on their ratings for the movies that they have both rated. The formula for Euclidean distance is:
}
where x, y, z, …, n are the ratings for each movie.
For example, the Euclidean distance between Claire and Genny is:





Similarly, we can calculate the Euclidean distance between other pairs of users and get a matrix of Euclidean distances for all users.
Second, we need to normalize the Euclidean distances to have a common range between 0 and 1. This can be done by using the min-max normalization technique, which is defined as:

where  is the normalized value, is the original value,  is the minimum value in the data set, and  is the maximum value in the data set.
For example, the normalized value of the Euclidean distance between Claire and Genny is:




Similarly, we can normalize the other Euclidean distances and get a matrix of normalized values for all users.
The final result as shown in Table 4.2 is a matrix of normalized Euclidean distance values for all users that shows how dissimilar each user is to each other based on their ratings for the movies.

Table 4.2: User/User Dissimilarity Matrix[image: A white sheet with black text
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Source: Sneha (2023). 
It is apparent from Table 4.2 that Genny is the reviewer who shares the highest similarity with our active user, Mickey.
Now let’s say we want to calculate the Euclidean distance for Date Night for Jacky, and to do that we need to follow these steps:
First, we need to find the other users who have rated Date Night and compare their ratings with Jacky’s ratings for the other movies. For example, in this case, Claire, Genny, Lily, and Mickey have rated Date Night, so we can compare their ratings with Jacky’s ratings for The Water Horse, Shark Night, Superman, and Nocturnal Animals.
Second, we need to apply the formula for Euclidean distance to each pair of users and get the distance values. The formula for Euclidean distance is:

where  are the ratings for each movie.
For example, the Euclidean distance between Jacky and Claire is:





Similarly, the Euclidean distance between Jacky and Genny is:





And so on for the other users.
Third, we need to convert the Euclidean distances into similarity scores by using a function that maps smaller distances to higher scores and larger distances to lower scores. One such function is the inverse function, which is defined as:

where s is the similarity score, and d is the Euclidean distance.
For example, the similarity score between Jacky and Claire is:



Similarly, the similarity score between Jacky and Genny is:



And so on for the other users.
Fourth, we need to calculate the weighted average of the ratings for Date Night by multiplying each rating by its corresponding similarity score and then dividing by the sum of all similarity scores. The formula for weighted average is:

where is the weighted average,  is the rating, and  is the similarity score.
For example, the weighted average of the ratings for Date Night for Jacky is:



Therefore, we can estimate that Jacky would rate Date Night as 2.35.
The equation presented above involves the multiplication of the similarity scores between Jacky and all the reviewers with the ratings they assigned to the movie "Date Night." The products obtained are added to obtain the total sum. This sum is then divided by the sum of similarity values to normalize the final rating. By using a similar approach, we can forecast the ratings of other unknown movies for all the reviewers and subsequently make recommendations based on the predictions.
Item-Based Recommendation System
An item-based recommendation system is a type of recommendation system that generates recommendations for a user based on the similarity between items. The basic idea behind an item-based recommendation system is that if two items are similar, then a user who likes one item is likely to be interested in the other item as well [Karamuftuoglu, M. (1998)].
To generate recommendations using an item-based approach, the system first creates an item-item similarity matrix that represents the similarity between each pair of items in the system. This similarity can be calculated using various techniques, such as cosine similarity or Pearson correlation. 
Once the system has determined the most similar items for a given item, it can then generate recommendations for that item based on the items that are most similar to it. The system can use various techniques to determine which items to recommend, such as calculating the average rating of each item among users who have rated both the given item and similar items, or using more complex algorithms that take into account factors like item popularity and user bias.
One advantage of item-based recommendation systems is that they are often more scalable than user-based recommendation systems, as the size of the item-item similarity matrix is typically smaller than the user-item matrix used in user-based systems. Additionally, item-based systems can perform well even when there is a large amount of noise or sparsity in the data. However, they can suffer from the "cold start" problem when there is not enough data about a new item to make accurate recommendations.
How can implement the item-based approach? 
Item-based approach systems differ from user-based approach systems in that they utilize the similarity between items rather than the similarity between users. The fundamental concept behind item-based recommender systems is that if a user enjoyed item A previously, they are likely to appreciate item B, which is similar to item A:

Figure 4.6: Item-based approach[image: Diagram
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Source: Sneha (2023). 
User-based approach has some drawbacks, which are:
· The system's performance may suffer if the user ratings are sparse, which is a common scenario in the real world, where users tend to rate only a small fraction of the vast catalogue of items.
· The computation cost for calculating the similarity values between all users can be very high, especially for large datasets.
· If user profiles or inputs change frequently, we have to re-calculate the similarity values, which incurs a substantial computational cost.
To overcome these limitations, item-based recommendation engines calculate the similarity between items or products instead of computing the similarity between users. This approach reduces the computational cost significantly. Additionally, since the item catalogue doesn't undergo frequent changes, we don't need to recalculate the similarity values frequently.
Similar to the user-based approach, the item-based approach also involves two steps:
· Computing the similarity between items.
· Forecasting the ratings for an unrated item of an active user by leveraging the ratings assigned to other similar items in the past.
Cosine similarity is the most widely used similarity measure in item-based collaborative filtering. It determines the similarity between two n-dimensional vectors based on the angle between them in the vector space. The following equation represents the cosine similarity:

In the context of recommender systems, cosine similarity treats each item column as an n-dimensional vector and evaluates the similarity between two items based on the angle between them. The closer the angle between two items, the more similar they are. For instance, to predict Tony's rating for the movie "The Water Horse" using the previous dataset, we need to identify the movies that are similar to " The Water Horse." To achieve this, we can utilize the cosine equation mentioned earlier to compute the similarity values for all the movies. The subsequent table presents the similarity values for all the movies:

Table 4.3: Movie-Movie Similarity Values[image: ]
Source: Sneha (2023). 
Based on the above table, it is evident that “The Water Horse” has the highest similarity to “The Wedding Ringer,” with a similarity value of 0.88.
What are the types of item-based recommendation systems? 
Here are some common types of item-based recommendation systems:
· Nearest neighbor: Nearest neighbor algorithms calculate item similarity by comparing the ratings or features of a given item to the ratings or features of all other items in the system. The most similar items are then used to generate recommendations.
· Content-based filtering: Content-based filtering algorithms generate recommendations based on the attributes or features of items, such as genre, actors, or keywords. Items that are similar in terms of their attributes or features are recommended to the user.
· Collaborative filtering: Collaborative filtering algorithms generate recommendations based on the ratings or preferences of other users who have rated or interacted with similar items. Items that are highly rated or popular among users who have similar preferences to the given user are recommended.
· Association rule mining: Association rule mining algorithms identify patterns and relationships between items based on the frequency of their co-occurrence in transactions or user behaviour. Items that are frequently purchased or used together are recommended.
· Hybrid: Hybrid recommendation systems combine multiple approaches, such as item-based and user-based filtering, to generate more accurate and diverse recommendations.
How can we leverage an item-based recommendation system?
To leverage an item-based recommendation system to suggest new items to users, you can use the following approach:
· Collect item features: Collect data on the features of the items in your system. This might include attributes like genre, artist, director, release year, etc. The more detailed and relevant the features, the better your recommendations will be.
· Compute item similarities: Use a similarity metric like cosine similarity or Pearson correlation to compute the similarity between items based on their features. This will generate an item-item similarity matrix, which represents how similar each item is to every other item in the system.
· Identify similar items: For a given item, identify the most similar items based on the item-item similarity matrix. This can be done by sorting the items by their similarity score and selecting the top N items.
· Recommend similar items: Once you have identified the most similar items, you can recommend them to the user. You might recommend the items directly, or you might use them to generate personalized recommendations based on the user's history and preferences. 
· Update the system: As users interact with the system and provide feedback on recommended items, you can update the item-item similarity matrix to improve the quality of future recommendations.
By leveraging an item-based recommendation system in this way, you can suggest new items to users based on their preferences and history, as well as the features of the items themselves. This can help users discover new and relevant items that they might not have found otherwise.
How to combine the two? 
Combining user-based and item-based recommendation systems can lead to more accurate and personalized recommendations. Here are some ways to combine the two approaches:
· Weighted average: In this approach, the recommendations from the user-based and item-based systems are combined using a weighted average, where the weights represent the importance of each approach. For example, you might give more weight to the user-based approach if the user has a long and active history in the system.
· Cascade: In this approach, the user-based system is used to generate a set of candidate items, which are then filtered and ranked using the item-based system. This approach can be particularly effective when there is a large number of items in the system and users have diverse preferences.
· Switching: In this approach, the system switches between the user-based and item-based approaches based on the user's history and preferences. For example, the user-based approach might be used for new users or users with sparse data, while the item-based approach might be used for more established users with a larger history in the system.
· Hybrid models: In this approach, the user-based and item-based systems are combined into a single model that captures both user and item features. For example, you might use a neural network or other machine learning model that incorporates both user and item features to generate recommendations.
Ultimately, the best approach will depend on the specific characteristics of your system and user base. Experimentation and evaluation can help you determine which approach works best for your use case [Kavinkumar et al. (2015)]. 
Self-Check Questions 
1. Please complete the following sentence. 
In situations with high-dimensional and sparse data, FMs are supervised learning models that are excellent at capturing feature interactions.
2. Please complete the following sentence. 
On the other hand, classification algorithms offer a framework for anticipating the relevance or preference of objects based on their characteristics and user preferences.
4.2 Monolithic, Mixed Hybrid, and Ensemble Recommenders
Monolithic, Mixed Hybrid, and Ensemble recommenders are three different approaches to building recommendation systems. Here are some of the differences between them [Aggarwal (2016)]:
Monolithic recommenders: A monolithic recommender is a single, integrated system that uses one algorithm or model to generate recommendations. These systems are relatively simple to implement and maintain, but they may not be as accurate or flexible as other approaches.
Mixed Hybrid recommenders: A mixed hybrid recommender combines two or more recommendation approaches, such as user-based and item-based filtering, to generate recommendations. These systems can be more accurate and flexible than monolithic recommenders, but they may also be more complex and require more resources to implement and maintain.
Ensemble recommenders: An ensemble recommender combines the outputs of multiple recommendation models or algorithms to generate a final set of recommendations. These systems can be highly accurate and flexible, but they may also be more complex and require more resources to implement and maintain. 
Some other differences between these approaches include:
Monolithic recommenders may be more suitable for smaller systems with relatively simple data structures, while mixed hybrid and ensemble recommenders may be more suitable for larger systems with more complex data structures.
Mixed hybrid and ensemble recommenders typically require more advanced machine learning techniques and algorithms, such as deep learning or reinforcement learning, than monolithic recommenders [Aggarwal (2016)].
Ensemble recommenders can be more computationally expensive than monolithic or mixed hybrid recommenders, as they require multiple models to be trained and evaluated.
What are Monolithic Recommendation Systems?
A Monolithic Recommendation System is a type of recommendation system that uses a single, integrated algorithm or model to generate recommendations. This approach involves using one algorithm or technique to analyze the user-item interaction data and generate recommendations based on that analysis. Monolithic recommenders are often used for smaller datasets or simpler recommendation problems, where a single algorithm or model can generate reasonably accurate and effective recommendations.
Examples of Monolithic Recommendation Systems include:
· Content-based recommendation systems: These systems recommend items to users based on the similarity of their attributes or features. For example, a music recommendation system might recommend songs to a user based on the similarity of their genre, tempo, or artist. 
· Collaborative filtering recommendation systems: These systems recommend items to users based on the similarity of their behavior or preferences. For example, a movie recommendation system might recommend movies to a user based on the ratings or preferences of other users who have similar tastes.
· Demographic recommendation systems: These systems recommend items to users based on their demographic characteristics, such as age, gender, or location. For example, a clothing recommendation system might recommend clothing items to users based on their age or gender.
One advantage of Monolithic Recommendation Systems is that they are often simpler to implement and maintain than more complex systems that combine multiple algorithms or techniques. However, they may not be as accurate or effective as other approaches, particularly for more complex recommendation problems.
What are Mixed Hybrid Recommendation Systems?
Mixed Hybrid Recommendation Systems are a type of recommendation system that combines two or more different recommendation techniques or algorithms to generate recommendations [Aggarwal (2016)]. This approach involves using a combination of techniques to analyze the user-item interaction data and generate recommendations based on that analysis. The goal of mixed hybrid recommendation systems is to leverage the strengths of each individual technique to produce more accurate and effective recommendations.
Examples of Mixed Hybrid Recommendation Systems include: 
· Weighted Hybrid Recommendation Systems: These systems use a weighted combination of two or more recommendation techniques or algorithms to generate recommendations. The weights are typically determined based on the performance of each individual technique or algorithm in predicting user preferences.
· Switching Hybrid Recommendation Systems: These systems use multiple recommendation techniques or algorithms and switch between them based on the characteristics of the user-item interaction data. For example, if the data is sparse, a content-based technique might be used, while if the data is dense, a collaborative filtering technique might be used.
· Feature Combination Hybrid Recommendation Systems: These systems use multiple recommendation techniques or algorithms to generate recommendations based on different features of the items being recommended. For example, a movie recommendation system might use a content-based technique to recommend movies based on genre and a collaborative filtering technique to recommend movies based on ratings.
One advantage of Mixed Hybrid Recommendation Systems is that they can be more accurate and effective than Monolithic Recommendation Systems, as they can leverage the strengths of multiple techniques or algorithms [Aggarwal (2016)]. However, they can be more complex to implement and maintain, as they require integrating multiple techniques or algorithms. 
What are Ensemble Recommendation Systems?
Ensemble Recommendation Systems are a type of recommendation system that combines the predictions of multiple individual recommendation models or algorithms to generate recommendations. The goal of ensemble methods is to leverage the strengths of each individual model or algorithm to produce more accurate and effective recommendations. Ensemble methods have been shown to be particularly effective in reducing the impact of individual model or algorithm biases and in improving the stability of recommendations over time [Aggarwal (2016)].
Examples of Ensemble Recommendation Systems include:
· Stacking Ensemble Recommendation Systems: These systems use multiple individual recommendation models or algorithms to generate predictions for a given user-item interaction data set, and then combine these predictions using a higher-level model to generate the final recommendation. The higher-level model can be a simple averaging or weighting of the individual model predictions, or it can be a more complex machine learning model.
· Bagging Ensemble Recommendation Systems: These systems generate multiple data sets by randomly sampling the user-item interaction data set with replacement, and then use these data sets to train multiple individual recommendation models or algorithms. The final recommendations are generated by aggregating the predictions of the individual models.
· Boosting Ensemble Recommendation Systems: These systems sequentially train multiple individual recommendation models or algorithms, with each model trained to minimize the errors of the previous models. The final recommendations are generated by aggregating the predictions of all the individual models.
One advantage of Ensemble Recommendation Systems is that they can be more accurate and effective than both Monolithic and Mixed Hybrid Recommendation Systems, as they can leverage the strengths of multiple individual models or algorithms. However, they can be more complex to implement and maintain, as they require training and integrating multiple models or algorithms.
Self-Check Questions 
1. Please complete the following sentence. 
Due to its ability to combine the strengths of many methodologies or algorithms, mixed hybrid recommendation systems have the potential to be more accurate and efficient than monolithic recommendation systems.
2. Please complete the following sentence. 
A form of recommendation system known as a monolithic recommendation system produces recommendations using a single, integrated algorithm or model.
Summary
In this chapter, we study hybrid recommender systems that combine multiple recommendation techniques to improve the accuracy and effectiveness of recommendations. The chapter highlights two key aspects of hybrid recommender systems.
User- vs. Item-based Recommendations: Hybrid systems can combine user-based and item-based recommendation approaches. User-based recommendations identify users with similar preferences and make recommendations based on the items liked by those similar users. Item-based recommendations, on the other hand, focus on the similarity between items and make recommendations based on items that are similar to the ones liked by the user. By combining these approaches, hybrid systems can leverage the strengths of both methods and provide more accurate and diverse recommendations.
Monolithic, Mixed Hybrid and Ensemble Recommenders: Hybrid systems can be categorized into different architectures. Monolithic recommenders integrate multiple recommendation techniques into a single unified model. Mixed hybrid recommenders use separate recommendation models and combine their outputs to provide recommendations. Ensemble recommenders utilize techniques like voting, weighted averaging, or stacking to combine the predictions of multiple recommendation models. These different architectures offer flexibility in combining recommendation techniques and allow for customized hybrid systems based on specific needs and performance requirements.
Hybrid recommender systems aim to overcome limitations and enhance recommendation quality by combining multiple approaches. By incorporating both user-based and item-based recommendations and adopting various architectural strategies, hybrid systems can provide more accurate, diverse, and personalized recommendations to users.
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Unit 5 Large-Scale Recommender Systems
Introduction
A large-scale recommender system provides personalized suggestions to many users based on their preferences, behavior, and context. Some examples of large-scale recommendation systems are YouTube, Netflix, Amazon, and Spotify (Ricci et al. (2010)]. They have the capability to provide recommendations for a wide range of purposes, including guiding individuals in locating solutions to queries, selecting movies for viewing, making purchasing decisions for products, determining which advertisements to display, and aiding in the diagnosis of medical conditions.
Major factors that make a recommendation system large-scale are:
· Scale: The system must handle a huge amount of data, such as user profiles, item features, user-item interactions, and contextual information. The system must also be able to scale up as the data grows over time.
· Latency: The system must provide fast and responsive recommendations to the users, often in real-time or near-real-time. The system must also cope with dynamic changes in user preferences and item availability.Latency
Is the time it takes for data to pass from one point on a network to another.


· Diversity: The system must be able to recommend a diverse set of items that match the user’s interests and needs and avoid overfitting to the user’s past behavior or popular items.
· Reproducibility: The system must ensure that the recommendations are consistent and stable across different requests, queries, or devices. The system must also avoid random fluctuations or errors in the recommendation process. [Eirinaki et al. (2017), Gil et al. (2022)].
5.1 Information Retrieval DichotomyDichotomy

Splitting or dividing something into two completely different parts or categories that are opposite to each other. 

Information retrieval (IR) is a field of study that deals with finding, storing, and accessing information from large and diverse collections of data. Information retrieval systems are widely used in various domains and applications, such as web search engines, digital libraries, recommender systems, question-answering systems etc. [Ibrihich et al. (2022)]. These systems aim to satisfy the information needs of users by providing relevant and useful information in response to their queries or requests. 
IR is an interdisciplinary field that draws upon theories and methods from computer science, information science, linguistics, statistics, and artificial intelligence [Ibrihich et al. (2022)]. It involves various aspects and challenges, such as:
· Representing and indexing the information items (such as documents, images, sounds, etc.) in a way that facilitates efficient and effective retrieval.
· Modelling and understanding the information needs of users and their queries or requests.
· Developing and applying retrieval models and algorithms that match the queries or requests with the information items and rank them according to their relevance or utility.
· Evaluating and improving the performance and quality of IR systems using various measures and feedback mechanisms.
· Incorporating advanced techniques such as natural language processing, machine learning, data mining, and ontology to enhance the retrieval process and results.
IR is a dynamic and evolving field that constantly adapts to new types of data, users, tasks, and technologies [Larson (2010)]. IR research aims to address the current and future challenges and opportunities in designing and developing effective and efficient IR systems that can meet the diverse and complex information needs of users in various contexts and scenarios [Manning et al. (2012)].
IR systems can be evaluated by various measures that assess how well they return relevant and useful results to the user [Larson (2010)]. Two common measures are precision and recall. Precision is the fraction of retrieved documents that are relevant to the query, while recall is the fraction of relevant documents that are retrieved by the query [Gordon et al. (1989)]. For example, if a query returns 10 documents, out of which 8 are relevant, then the precision is 8/10 = 0.8. If there are 20 relevant documents in the collection, then the recall is 8/20 = 0.4. A high precision means that the system returns more relevant results than irrelevant ones, while a high recall means that the system returns most of the relevant results in the collection.
However, precision and recall are not independent measures but rather reflect a trade-off between retrieving as many relevant documents as possible and avoiding retrieving irrelevant documents [Gordon et al. (1989)]. This trade-off can be influenced by various factors, such as:
· The size and composition of the document collection: A larger and more diverse collection may contain more relevant documents, but also more irrelevant documents, making it harder to achieve high precision and recall simultaneously.
· The nature and complexity of the user query or request: A more specific and focused query may result in higher precision, but lower recall, as it may exclude some relevant documents that do not match the query exactly. A more general and broader query may result in higher recall, but lower precision, as it may include many irrelevant documents that match the query loosely.
· The retrieval model and algorithm: Different models and algorithms may have different assumptions and criteria for ranking and selecting documents for retrieval. Some models may favor precision over recall, or vice versa, depending on how they weigh the relevance and importance of documents.
· The threshold or cut-off point for determining relevance: The threshold or cut-off point is the value or level that determines whether a document is considered relevant or not for a given query or request. A higher threshold may result in higher precision, but lower recall, as it may filter out some relevant documents that do not meet the threshold. A lower threshold may result in higher recall, but lower precision, as it may allow some irrelevant documents that meet the threshold.Threshold

Is a value that separates two regions or categories.

The IR dichotomy refers to the phenomenon that there is no single optimal way to evaluate IR systems, but rather a range of possible trade-offs that depend on the context and purpose of the evaluation [Manning et al. (2008)]. Different users or tasks may require different levels of precision and recall, depending on their information needs and goals. For example, a user who is looking for a fact or answer may prefer high precision over high recall, as they do not want to waste time browsing through many irrelevant documents. A user who is looking for an overview or survey of a topic may prefer high recall over high precision, as they do not want to miss any important or relevant documents [Manning et al. (2008)].
To account for the information retrieval dichotomy, several methods and techniques have been proposed and developed in IR research, such as [Gordon et al. (1989)]:
· Using multiple measures or metrics to capture different aspects of retrieval performance, such as F-measure (the harmonic mean of precision and recall), average precision (the average of precision values at different recall levels), normalized discounted cumulative gain (a measure that considers the rank order and relevance score of retrieved documents), etc. [Buckland et al. (1994)].
· Using graphical methods or tools to visualize and compare different trade-offs between precision and recall, such as precision-recall curves (plots of precision versus recall values at different cut-off points), receiver operating characteristic curves (plots of true positive rate versus the false positive rate at different cut-off points), and Area Under the Curve (AUC) is a single metric that summarizes the trade-off between the true positive rate (TPR) and the false positive rate (FPR) for a classifier across all possible thresholds. A higher AUC means that the classifier is better at distinguishing between the positive and negative classes, regardless of how the threshold is chosen. [Buckland et al. (1994)].
· Using user feedback or interaction to adjust or optimize the trade-off between precision and recall, such as relevance feedback (a technique that allows users to indicate which documents are relevant or not for their query, and then uses this information to refine the query or ranking), query expansion (a technique that adds more terms or phrases to the original query based on user feedback or other sources), query reformulation (a technique that modifies or changes the original query based on user feedback or other sources), etc. [Buckland et al. (1994)].
Self-Check Questions 
1. Please complete the following sentence. 
The IR dichotomy pertains to the observation that there isn't a singular, optimal approach to evaluating IR systems.
2. Please complete the following sentence. 
Precision represents the proportion of retrieved documents that are deemed relevant to the query, whereas recall signifies the proportion of relevant documents that are successfully retrieved by the query.
5.2 Approximate Nearest Neighbor Search
Approximate Nearest Neighbor Search (ANN) is a form of similarity search that aims to find the points in each set that are closest (or most similar) to a given query point. Closeness is typically expressed in terms of a dissimilarity function, such as Euclidean distance or cosine similarity [Solbakken (2020)]. ANN is different from exact nearest neighbor search (NNS) in that it allows some error in the results, meaning that it may not always return the true nearest points. The advantage of ANN is that it can run much faster and scale to larger datasets than NNS, which often suffers from the curse of dimensionality [Solbakken (2020)].
The problem of finding the nearest points to a query point can be formulated as an optimization problem, where we want to minimize the dissimilarity function between the query point and the points in the set [Solbakken (2020)].
However, this problem can be very hard to solve exactly, especially when the points are high-dimensional vectors, such as those produced by modern machine learning models for text, images, or other types of content. This is because the number of possible comparisons grows exponentially with the dimensionality, and the distance between any two points becomes less meaningful as the dimensionality increases [Tepper et al. (2021)].
To overcome this challenge, ANN algorithms use various techniques to reduce the search space and avoid comparing the query point to every point in the set. These techniques include using data structures such as trees, graphs, or hashes to organize the points based on their similarity or locality and using heuristics or randomization to prune or sample the points during the search process [Tepper et al. (2021)].
The result of these techniques is that ANN algorithms can find points that are close enough to the query point with high probability, but not necessarily the exact nearest points. This trade-off between accuracy and speed is acceptable for many applications that require fast and scalable similarity search, such as recommendation systems, image retrieval, or semantic search [Mehta (2022)]. In these applications, an approximate nearest neighbor is often good enough for the user’s needs.
There are many algorithms for ANN search, each with different trade-offs between speed, accuracy and memory. Here are some of the state-of-the-art algorithms and their use cases [Mehta (2022)]:
Locality-Sensitive Hashing
Locality-sensitive hashing (LSH) is a family of algorithms that use hash functions to map points to buckets, such that points that are close to each other are likely to be hashed to the same or nearby buckets. The idea is to reduce the search space by only comparing the query point to the points in the same or neighboring buckets. LSH can be applied to different types of data and dissimilarity functions, such as Euclidean distance, cosine similarity, Jaccard similarity, etc.
LSH is suitable for large-scale ANN search, as it can achieve sublinear query time and linear space complexity. However, it may require many hash functions and buckets to achieve high accuracy, which can increase the preprocessing and storage costs. Moreover, LSH may not work well for very high-dimensional data or data with intrinsic low dimensionality, as the hashing may lose too much information or introduce too much noise.
Hierarchical Navigable Small World Graphs
Hierarchical navigable small world graphs (HNSW) are an algorithm that builds a multi-layer graph structure on the data points, such that each layer contains a subset of points from the previous layer, and each point is connected to its nearest neighbors within the same layer. The idea is to use a greedy search algorithm that starts from a random point in the top layer and descends to lower layers by following the edges that minimize the distance to the query point.
HNSW is an efficient and accurate algorithm for ANN search, as it can achieve near-linear query time and near-optimal recall. It can also handle high-dimensional data and different distance metrics. However, it may require more memory than LSH, as it needs to store multiple graphs with different levels of granularity. Moreover, it may have a high preprocessing cost, as it needs to construct the graphs by finding nearest neighbors for each point.
Navigating Spread-out Graphs (NSG)
Navigating spread-out graphs (NSG) is an algorithm that builds a single graph structure on the data points, such that each point is connected to its nearest neighbors that are sufficiently spread out from each other. The idea is to use a bidirectional search algorithm that starts from two points in the graph (one close to the query point and one far away) and converges to the approximate nearest neighbor by following the edges that reduces the distance gap between them.
NSG is a fast and simple algorithm for ANN search, as it can achieve logarithmic query time and linear space complexity. It can also handle high-dimensional data and different distance metrics. However, it may have lower accuracy than HNSW, as it uses a single graph with fixed granularity. Moreover, it may have a high preprocessing cost, as it needs to construct the graph by finding the nearest neighbors and spread-out neighbors for each point.
Use Cases
ANN search algorithms have many applications in various domains, such as:
· Image recognition: finding similar images based on their features or embeddings.
· Statistical classification: assigning labels to data points based on their nearest neighbors.
· Recommendation systems: finding similar items or users based on their preferences or behavior.
· Semantic search: finding relevant documents or web pages based on their content or keywords.
· Data compression: finding representative points or clusters based on their proximity.
Self-Check Questions 
1. Please complete the following sentence. 
Approximate Nearest Neighbor Search is a type of search method designed to identify the points within a set that are nearest or most similar to a provided query point.
2. Please complete the following sentence. 
The algorithm known as Hierarchical Navigable Small World constructs a multi-layer graph structure for data points. In this structure, each layer consists of a subset of points from the previous layer, and each point establishes connections with its closest neighbors within the same layer.
5.3 Serving Recommendations in Production
Serving recommendations in large-scale production recommender systems is the process of scoring and ranking a set of candidate items for each user request and presenting them in a user interface. It involves several challenges and solutions, such as [Greenberg (2022)]:
· Scalability: Recommender systems need to handle millions or billions of items and users and provide fast and accurate responses within strict latency constraints. To achieve this, some techniques include using distributed learning algorithms, approximate nearest neighbor search, candidate sampling, hashing, and model compression.
· Freshness: Recommender systems need to adapt to the dynamic changes in user preferences and item popularity over time. To achieve this, some techniques include using online learning, exploration policies, feedback loops, and example age features.
· Noise: Recommender systems need to deal with the sparsity and uncertainty of user feedback and item metadata. To achieve this, some techniques include using implicit feedback, regularization, embedding, feature engineering, and model interpretability.
Some of the main aspects of serving recommendations are [Greenberg (2022)]:
· Candidate generation: This is the first stage of recommendation, where a large corpus of items is narrowed down to a small subset that may be relevant to the user. This can be done by using collaborative filtering, content-based filtering, or hybrid methods. The goal is to achieve high recall and broad personalization.
· Ranking: This is the second stage of recommendation, where the candidates are scored and sorted according to a desired objective function. This can be done by using logistic regression, neural networks, or other methods. The goal is to achieve high precision and fine-level personalization.
· Evaluation: This is the process of measuring the effectiveness and quality of the recommender system. This can be done by using offline metrics (such as precision, recall, ranking loss, etc.), online metrics (such as click-through rate, watch time, etc.), or user satisfaction surveys. The goal is to optimize the trade-off between relevance and diversity.
Self-Check Questions 
1. Please complete the following sentence. 
In the realm of large-scale production recommender systems, serving recommendations entails the task of evaluating and prioritizing a collection of potential items for every user's request and presenting them within a user interface. 
2. Please complete the following sentence. 
Recommender systems face the challenge of managing a vast number of items and users, numbering in the millions or billions while delivering prompt and precise responses within tight latency limits.
Summary
Large-scale recommender systems are a crucial part of many online platforms, and several key aspects need to be considered when building them. In this context, three important topics are discussed.
Firstly, the IR dichotomy addresses the fundamental trade-off between precision and efficiency in recommender systems. Precise recommendations require exhaustive computations, which can be computationally expensive for large-scale systems. Different approaches, such as content-based filtering or collaborative filtering, can be employed to strike a balance between accuracy and efficiency.
Secondly, ANN search is a technique used to find similar items efficiently in large-scale recommender systems. As the size of the dataset grows, performing exact nearest neighbor search becomes impractical. Approximate methods, like locality-sensitive hashing or tree-based algorithms, offer faster and scalable solutions to identify relevant items for recommendation.
Finally, serving recommendations in production focuses on the practical challenges of deploying recommender systems at scale. Factors such as scalability, response time, noise and robustness become crucial when serving recommendations to millions of users in real time. Various strategies, like distributed computing, caching, or precomputation, candidate generation, and ranking are employed to ensure efficient and reliable recommendation delivery.
These three topics highlight the key considerations and techniques involved in developing large-scale recommender systems, enabling platforms to provide accurate recommendations efficiently and at scale.
6. Perspectives
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Unit 6 Perspectives
Introduction
Recommender systems are powerful tools that can help users discover relevant and personalized items from a large and diverse set of options. However, building effective and efficient recommender systems is not a trivial task, as it involves many challenges and trade-offs. In this unit, we will explore some of the advanced topics and perspectives that are currently being researched and developed in the field of recommender systems. 
(Contextual) Multi-Armed Bandits: This is a framework that models the problem of online learning and exploration-exploitation trade-off in recommender systems. It aims to balance the trade-off between exploiting the best-known item for a user and exploring new items that may lead to better outcomes in the long run. Contextual multi-armed bandits extend this framework by incorporating contextual information about the users and items, such as their features, preferences, or feedback. 
Deep Learning and Reinforcement Learning Based Approaches: These are methods that leverage the power of deep neural networks and reinforcement learning algorithms to learn complex and nonlinear patterns from large-scale and high-dimensional data. They can help to overcome some of the limitations of traditional recommender systems, such as data sparsity, cold start, scalability, and diversity.
Causality-Aware Approaches: These are approaches that aim to understand and measure the causal effects of recommendations on user behavior and outcomes. They can help to address some of the challenges of evaluating recommender systems, such as confounding factors, feedback loops, selection bias, and counterfactual reasoning.
Multi-Stakeholder and Multi-Objective Recommender Systems: These are recommender systems that consider the interests and objectives of multiple parties involved in the recommendation process, such as users, providers, platforms, or society. They can help to optimize for multiple criteria, such as accuracy, fairness, diversity, profitability, or social welfare.
By the end of this unit, you will have a deeper understanding of these topics and perspectives, and how they can enhance the design and performance of recommender systems. You will also learn how to apply some of the state-of-the-art techniques and frameworks to real-world problems and scenarios.Bandits

Known as multi-armed bandits, are a class of machine learning algorithms used for solving the exploration-exploitation dilemma in decision-making scenarios.

6.1 (Contextual) Multi-Armed Bandits
Multi-armed bandits are a framework for sequential decision-making under uncertainty, where an agent must choose among a set of actions (or arms) that yield stochastic rewards. The agent’s goal is to maximize its cumulative reward over time while learning from its own experience which actions are more rewarding. Multi-armed bandits capture the trade-off between exploration (trying out new actions to gain information) and exploitation (using the best action according to the current knowledge) [Kuleshov et al. (2014)]. These have many applications in machine learning, such as online advertising, recommendation systems, clinical trials, adaptive routing, portfolio optimization and more [Kuleshov et al. (2014)]. They also provide a simple but powerful model for reinforcement learning, where an agent interacts with an environment and learns from feedback.
There are different variants of the multi-armed bandit's problem, depending on the assumptions and the information available to the agent [TF-Agents (2023)]. Some of the most common ones are:
· IID rewards: The rewards of each action are independent and identically distributed (IID) according to some unknown probability distribution. The agent only observes the reward of the chosen action at each time step. This is the basic model, also known as the stochastic multi-armed bandit's problem.Adversarial

refers to situations where entities are in direct opposition or conflict with each other.

· Adversarial rewards: The rewards of each action are arbitrary and possibly adversarially chosen. The agent may observe the reward of the chosen action or the rewards of all actions at each time step. This is a more challenging model, also known as the non-stochastic or worst-case multi-armed bandits’ problem.
· Contextual rewards: The rewards of each action depend on some observable context or feature vector that is revealed to the agent at each time step. The agent has to learn a mapping from contexts to actions that maximize the expected reward. This is a more realistic model, also known as the contextual multi-armed bandit’s problem.
The performance of an agent is usually measured by its regret, which is the difference between the expected reward of the optimal action and the expected reward of the chosen action, summed over all time steps. A good agent should minimize regret by learning quickly and exploiting effectively.
There are many algorithms that have been proposed for solving different MAB problems, with various theoretical guarantees and empirical results [TF-Agents (2023), Slivkins (2019)]. Some of the most well-known ones are:
· Upper Confidence Bound (UCB): A family of algorithms that use confidence intervals to balance exploration and exploitation for IID rewards. UCB algorithms achieve logarithmic regret in the stochastic MAB problem.
· Thompson Sampling: A Bayesian approach that samples actions according to their posterior probability of being optimal for IID rewards. Thompson Sampling also achieves logarithmic regret in the stochastic MAB problem and can handle contextual rewards as well.
· Exp3: An algorithm that uses exponential weighting to assign probabilities to actions for adversarial rewards. Exp3 achieves sublinear regret in the non-stochastic MAB problem.
· LinUCB: An algorithm that combines linear regression and UCB for contextual rewards. LinUCB achieves sublinear regret in the contextual MAB problem under some assumptions on the reward function.
Contextual multi-armed bandits are a generalization of the multi-armed bandit problem, where the agent has access to some additional information (or context) that may influence the reward distribution of each action. The agent’s goal is still to maximize its cumulative reward over time while learning from its own experience which actions are more rewarding in different contexts [Slivkins (2019)].
This contextual problem is more realistic and challenging than the basic multi-armed bandit problem because it allows for more complex and dynamic reward structures that depend on external factors [Slivkins (2019)]. For example, in online advertising, the click-through rate of an ad may vary depending on the user’s profile, location, time of day, etc. The agent has to learn which ad to show to which user in which situation.
It is also more general and flexible than the adversarial multi-armed bandit problem because it does not assume that the rewards are completely unpredictable and hostile. Instead, it assumes that there is some underlying structure or relationship between the contexts and the rewards that can be learned and exploited by the agent [Slivkins (2019)]. For example, in recommendation systems, there may be some latent preferences or similarities among users and items that can be leveraged to provide better recommendations.
Self-Check Questions 
1. Please complete the following sentence. 
Contextual multi-armed bandits address the balance between exploration (experimenting with new actions to gather information) and exploitation of known rewarding actions. 
2. Please complete the following sentence. 
Observable context or feature vectors are provided to the agent at each time step, influencing the rewards associated with each action taken.
6.2 Deep Learning and Reinforcement Learning-Based Approaches
Deep learning and reinforcement learning are two powerful paradigms in machine learning that have been successfully applied to various domains, such as computer vision, natural language processing, robotics, and games. Recently, there has been a growing interest in combining Deep Learning and Reinforcement Learning for recommendation systems, which aim to provide personalized suggestions to users based on their preferences and behaviors. Deep Learning can help recommendation systems to capture complex and non-linear user-item interactions, deal with heterogeneous and high-dimensional data sources, and learn effective feature representations [Afsar et.al (2022)]. Reinforcement Learning can help recommendation systems to model the sequential and dynamic nature of user-system interactions, balance the trade-off between exploration and exploitation, and optimize long-term user satisfaction and engagement. [Afsar et.al (2022), Glanz et.al (2010), Chen et al. (2023)].
Some examples of Deep Learning and Reinforcement Learning based approaches for recommendation systems are:
· Deep reinforcement learning-based recommendation with explicit user interactions (DRR): A framework that treats recommendation as a sequential decision-making procedure and adopts an actor-critic Reinforcement Learning scheme to model the interactions between the users and recommender systems [Liu (2018b)]. The actor network generates recommendations based on the current state of the user, which is represented by a recurrent neural network (RNN). The critic network evaluates the recommendations based on explicit feedback from the user, such as clicks, ratings, or purchases. The framework can consider both the dynamic adaptation and long-term rewards of recommendation. [Huang er al. (2021)]
· Neural combinatorial optimization with reinforcement learning (NCO): An approach that applies Reinforcement Learning to solve the combinatorial optimization problem of generating a list of items for recommendation. The approach uses a pointer network, which is a variant of the sequence-to-sequence model with an attention mechanism, to encode the input items and output a permutation of them. The approach uses a policy gradient method to train the pointer network based on a reward function that measures the quality of the generated list. The approach can handle large-scale item sets and diverse user preferences [ Bello et al. (2017)].
· Deep reinforcement learning for news recommendation (DRLNR): A method that leverages Reinforcement Learning to optimize news recommendation for online platforms. The method uses a deep Q-network (DQN) to learn a policy that selects news articles to display to users based on their historical behaviors and contextual information. The method uses a dueling network architecture to separate the estimation of state values and action advantages, and a prioritized experience replay to sample more informative transitions for training. The method can improve user click-through rates and retention rates [Zheng et al. (2018)].
Self-Check Questions 
1. Please complete the following sentence. 
Deep Learning has the potential to assist recommendation systems in comprehending intricate and non-linear user-item interactions, managing diverse and high-dimensional data sources, and acquiring valuable feature representations.
2. Please complete the following sentence. 
The approach employs a deep Q-network (DQN) to acquire a policy that utilizes users' historical behaviors and contextual information to determine the news articles to present.
6.3 Causality-Aware Approaches
Causality-aware approaches for recommendation systems (RS) aim to estimate and optimize the causal effect of recommendations on user behaviors and outcomes, such as clicks, purchases, satisfaction, and retention. Unlike traditional RS which rely on observational data and correlation-based methods, causality-aware RS uses causal inference techniques to account for the confounding factors and selection bias that may affect the user feedback and the recommendation policy. Causality-aware RS can provide more accurate and robust recommendations, as well as interpretable and actionable insights into how and why recommendations work [Afsar et.al (2022), Glanz et.al (2010), Chen et al. (2023)].
Some examples of causality-aware approaches for RS are:
· Causality-aware neighborhood methods (CNM): A framework that unifies traditional neighborhood-based RS with the matching estimator, which is a causal inference method that matches similar users based on their covariates and compares their outcomes under different treatments. CNM can generate item rankings based on the causal effect of recommendations and can also enhance the estimation by mixing the own and neighbor observations and introducing shrinkage for potential outcome estimates [Sato M. (2020), Sato et al. (2021)].
· Contrastive counterfactual learning (CCL): A method that leverages contrastive self-supervised learning (SSL) to reduce the exposure bias caused by the underlying exposure mechanism, which determines which items are shown to users. CCL uses inverse propensity scores and expands the positive sample set by using three novel positive sampling strategies based on estimated exposure probability or random counterfactual samples. CCL can improve the accuracy and interpretability of RS [Zhou (2022)].
Self-Check Questions 
1. Please complete the following sentence. 
The Causal Network Model (CNM) has the ability to produce item rankings by considering the causal impact of recommendations.
2. Please complete the following sentence. 
Contrastive counterfactual learning (CCL) is an approach that utilizes contrastive self-supervised learning (SSL) to mitigate the exposure bias arising from the underlying exposure mechanism, which dictates the selection of items presented to users.
6.4 Multi-Stakeholder and Multi-Objective Recommender Systems
Traditionally, RecSys focus on optimizing a single objective, such as rating prediction accuracy or ranking quality, based on the preferences of the users [Zheng (2021)].
However, in many real-world scenarios, there are multiple stakeholders involved in the recommendation process, such as users, providers, platforms, advertisers, regulators, etc. Each stakeholder may have different and sometimes conflicting goals, preferences, constraints, and expectations from the RecSys. For example, users may want relevant, diverse, and surprising recommendations; providers may want fair exposure and revenue; platforms may want user satisfaction, retention, and profit; advertisers may want click-through rate and conversion; regulators may want privacy protection and social welfare [Kermany et al. (2021)]. Therefore, designing a RecSys that can balance the needs and interests of multiple stakeholders is a challenging but important task. This is called multi-stakeholder recommendation [Kermany et al. (2021)].
Moreover, even within a single stakeholder group, there may be multiple objectives or criteria that need to be considered simultaneously. For example, users may care about both accuracy and diversity of recommendations; providers may care about both exposure and revenue; platforms may care about both user satisfaction and system efficiency. These objectives are often not independent or compatible with each other, meaning that improving one may deteriorate another. Therefore, designing a RecSys that can optimize multiple objectives or criteria in a trade-off manner is another challenging but important task. This is called multi-objective recommendation [Zheng (2021)].
Multi-stakeholder and multi-objective recommender systems are important because they can provide more comprehensive, fair, and robust solutions for complex and dynamic recommendation problems. They can also enhance the user experience, provider satisfaction, system performance, and social welfare of RecSys.
There are many domains and applications where multi-stakeholder, and multi-objective recommender systems are relevant and useful. Here are some examples:
· E-commerce: In e-commerce platforms such as Amazon or eBay, there are multiple stakeholders involved in the recommendation process, such as buyers, sellers, platform owners, advertisers, etc. Each stakeholder may have different objectives or criteria for the recommendations, such as relevance, diversity, novelty, profitability, fairness, etc. A multi-stakeholder and multi-objective recommender system can help balance these objectives or criteria and provide better recommendations for all parties [Jannach (2023)].
· Online education: In online education platforms such as Coursera or edX, there are multiple stakeholders involved in the recommendation process, such as learners, instructors, course providers.
Multi-stakeholder and multi-objective recommender systems research is a relatively new and emerging area that poses many challenges and opportunities for both academia and industry. Here are some of them:
· Identifying and modelling the stakeholders and objectives: One of the first steps in designing a multi-stakeholder and multi-objective recommender system is to identify who are the relevant stakeholders and what are their objectives or criteria for the recommendations. This may require domain knowledge, user studies, stakeholder analysis, objective elicitation, etc. Moreover, the objectives or criteria may not be explicitly given or easily measurable and may change over time or context. Therefore, modelling the stakeholders and objectives in a formal and dynamic way is a challenge [Zheng (2017), Zheng (2021)].
· Optimizing and evaluating multiple objectives: Another challenge is how to optimize and evaluate multiple objectives or criteria in a trade-off manner. There are different methods and techniques for multi-objective optimization, such as scalarization, Pareto optimality, evolutionary algorithms, etc. However, these methods may have different assumptions, limitations, and computational costs. Moreover, evaluating the performance of a multi-objective recommender system is not straightforward, as there may not be a single optimal solution or metric, but rather a set of trade-off solutions or metrics. Therefore, choosing appropriate optimization and evaluation methods for different scenarios is a challenge [Zheng et al. (2021), Kermany et al. (2021)].
· Balancing the interests of multiple stakeholders: A further challenge is how to balance the interests of multiple stakeholders in a fair and ethical way. There may be conflicts or trade-offs between the objectives of different stakeholders, such as user satisfaction vs. provider revenue, user privacy vs. system efficiency, user diversity vs. social welfare, etc. Moreover, there may be ethical or legal issues involved in the recommendation process, such as discrimination, manipulation, transparency, accountability, etc. Therefore, designing a multi-stakeholder recommender system that can balance the interests of multiple stakeholders in a fair and ethical way is a challenge [Zheng et al. (2017), Kermany et al. (2021)].
· Explaining and interacting with multi-objective recommendations: A final challenge is how to explain and interact with multi-objective recommendations. Users may not be aware of the existence or rationale of multiple objectives or criteria in the recommendation process and may have different preferences or expectations for them. Moreover, users may want to provide feedback or adjust the trade-offs between different objectives or criteria according to their needs or contexts. Therefore, designing a user interface that can explain and interact with multi-objective recommendations in an effective and intuitive way is a challenge [Zheng et al. (2021), Kermany et al. (2021)].
Self-Check Questions 
1. Please complete the following sentence. 
Multi-stakeholder and multi-objective recommender systems play a crucial role in offering comprehensive, equitable, and resilient solutions to address intricate and ever-changing recommendation problems.
2. Please complete the following sentence. 
At the onset of designing a multi-stakeholder and multi-objective recommender system, an initial task involves determining the pertinent stakeholders and discerning their objectives or criteria pertaining to the recommendations.
Summary
The unit explores the perspective of contextual multi-armed bandits. This approach involves using algorithms that dynamically allocate resources (such as recommendations) based on contextual information, allowing for more personalized and adaptive recommendations.
Another perspective discussed is the utilization of deep learning and reinforcement learning techniques in recommender systems. These approaches leverage large amounts of data to train models that can make accurate predictions and optimize recommendations over time through interaction and learning. 
The unit also highlights the importance of causality-aware approaches in recommender systems. By considering causal relationships between user actions and recommendations, these approaches aim to understand the underlying factors influencing user behavior and provide more interpretable and explainable recommendations.
The final perspective discussed is the design of recommender systems that consider multiple stakeholders and objectives. Traditional recommender systems primarily focus on satisfying the preferences of individual users, but multi-stakeholder and multi-objective approaches aim to incorporate the needs and preferences of various parties involved, such as users, service providers, and advertisers.
Overall, the unit explores these perspectives to provide a comprehensive understanding of different approaches and considerations in the development of recommender systems.
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