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Abstract

From the early stages of human development, we rely on integrating information from multi-

ple senses to learn and perform tasks. This intersensory redundancy enhances our recognition

capabilities. Similarly, multimodal machine learning seeks to fuse insights from diverse mea-

surement devices or modalities to make accurate and reliable predictions. Over the past decade,

many algorithms have been proposed for multimodal learning, including linear, Kernel-based,

or deep learning models. The Recent advancements in multimodal deep learning, exemplified by

models like ChatGPT, have enabled machines to ”see, hear, and speak.” However, multimodal

biomedical data still poses significant challenges to these types of machine learning models.

In biomedicine, rapid technological progress enables researchers to collect large, high-throughput

biological data across multiple modalities. Techniques such as scRNA-seq, ATAC-Seq, and

SHARE-seq measure high-resolution proteomic and genomic information at the single-cell level.

Such datasets hold immense potential for analyzing intricate biological processes. However,

they also present significant challenges to machine learning models due to their limited labels,

unpaired structure, inherent noise, and the presence of high-dimensional, low-sample data.

This research is dedicated to the development of a comprehensive deep-learning framework

tailored for the processing and analysis of multimodal biomedical data. The primary objective

is to surmount challenges associated with biomedical measurements by presenting solutions for

core multimodal learning tasks, namely, representation, alignment, and fusion. Our framework

will be implemented entirely using deep learning machinery, which presents several benefits

compared to linear or kernel methods. Namely, neural network models are powerful function

estimators and provide flexibility, scalability, iterative training capabilities, and adaptability to

new domains.

Our new algorithms aim to push the boundaries of biomedicine applications. These appli-

cations include cell classification, risk gene identification, and differential expression analysis.

Enhancing the capabilities in these tasks holds the promise of creating more accurate models for

automated diagnosis, prognosis, and drug discovery. Additionally, this research will contribute

to the establishment of a theoretical foundation for deep multimodal learning, a field that is

currently understudied. We intend to accompany our algorithmic framework with theoretical

guarantees that will serve as guidelines for effectively utilizing multimodal neural networks in

the context of biomedical data.
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Part 3: Research plan

1 Scientific Background

Humans leverage complementary senses to acquire knowledge and interact with their surroundings. An

illustrative example is the utilization of lip movements to aid in the discrimination of similar-sounding

syllables [36]. Inspired by the advantages induced by the integration of sensory information, researchers

have developed multimodal learning techniques that leverage data acquired from diverse modalities.

Each modality, denoted as X l, l “ 1, ..., L, represents data obtained from distinct measurement devices,

with X l being defined as X l “ hlpθ,ψlq. Here, hl may deform the latent common variable of interest,

θ, and ψl encapsulates modality-specific information or measurement noise. By fusing complementary

information from all measurement devices tX luLl“1, multimodal learning can substantially enhance

predictive accuracy and reliability across a wide range of applications [5, 8, 42]. For simplicity of

exposition for the remainder of this section, we focus on the case of L “ 2.

In recent years, multimodal machine learning has witnessed remarkable breakthroughs driven by

deep neural network (DNN) architectures such as [12, 35]. These architectures have pushed the per-

formance boundaries in image, text, audio analysis, or synthesis and may pave the road to artificial

general intelligence (AGI) [10]. Unfortunately, existing schemes of multimodal vision-language learning

lend themselves inapplicable to biomedical data. This is because many biomedical high-throughput

measurements exhibit characteristics that render conventional approaches inapplicable. Expressly,

datasets like those seen in [31, 39] are unlabeled, unaligned, noisy, heterogeneous, imbalanced, high-

dimensional, or low sample size. These challenges motivate the development of a comprehensive

algorithmic framework capable of performing the core tasks in multimodal learning, namely, repre-

sentation, fusion, and alignment. The primary goal of this proposal is to overcome these limitations

by developing a coherent algorithmic framework for multimodal learning with biomedical data. In the

following paragraphs, we provide a concise overview of the core tasks in multimodal learning and

outline our primary goals and objectives.

Representation learning involves learning embedding functions f1pX 1q and f2pX 2q, designed to

extract meaningful structures of interest, for example, the latent common (θ) or modality-specific

(ψ1,ψ2) components. This task is unsupervised but requires access to a bijective correspondence

between the realizations. In the discrete setting, the matrices X1 P RD1ˆN and X2 P RD2ˆN each

contain N (corresponding) samples with D1 and D2 features from X 1 and X 2 respectively. The

task of representation learning can be traced back to Hotelling 1936, which proposed the celebrated

Canonical Correlation Analysis (CCA) [14]. CCA, along with its nonlinear extensions, such as Kernel

CCA [2] or Deep CCA [1], seek to embed the datasets X1 and X2 into a new coordinate system in

which the observations are maximally correlated. A recent notable development is CLIP (Contrastive

Language-Image Pre-training) [35], which extracted remarkable image-text embeddings by training a

model to classify image-caption correspondences.

Fusion endeavors to integrate information from all measurement devices to enable accurate and reli-

able predictions of a target variable y (e.g., class label or regression value). Given paired observations

(with bijective correspondence), represented as tx1
nuNn“1 and tx2

nuNn“1, the goal of modality fusion,
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denoted as rpx1
n,x

2
nq, can be formalized using empirical risk minimization

Rpf , rq “
1

N

ÿ

n“1

Lpf ˝ rpx1
n,x

2
nq, ynq.

Here, f is a prediction function, and L denotes the desired loss, which could be, for instance, cross-

entropy or mean squared error. Broadly speaking, fusion schemes can be categorized as early and late.

Early fusion focuses on combining low-level features into new complementary features useful for the

supervised task [15, 44]. In contrast, late fusion is typically executed at the prediction level. Examples

of late fusion frameworks include DNN-based approaches [32, 40], as well as ensemble methods [17, 28].

Alignment seeks to identify a representation that aligns samples across modalities with the same

semantic meaning. Unlike the previously discussed tasks, here, no prior knowledge of sample cor-

respondence is assumed. In other words, x1
i and x2

j are not necessarily measurements of the same

value of θ), even when i “ j. The multimodal alignment objective is to learn to mapping functions

γ1pq and γ2pq such for each x1
i , i “ 1, ..., N we can find an index j such that γ1px1

i q „ γ2px2
j q. This

similarity signifies that the latent representations of x1
i and x2

j correspond to the same (or nearly the

same) latent value, θ. The quality of this alignment can also assessed by applying a distance metric

to γ1px1
i q and γ2px2

j q. Existing multimodal alignment frameworks employ techniques such as cross

attention [30] or contrastive learning [7, 19].

The goal of this research is to tackle the main challenges in multimodal learning with biomedical data

by developing a coherent deep-learning methodology accompanied by

theoretical guarantees, publicly available software, and verifications on real-world applications.

Below is a short summary of our aims.

(A1) Simultaneous Alignment and Representation Learning: To address the absence of bijec-

tive correspondence in biomedical data, we will develop a method to embed and permute observations

simultaneously. This approach will yield aligned multimodal data representations, enhancing our abil-

ity to work with unpaired observations.

(A2) Self-supervised Multimodal Fusion: We aim to leverage self-supervised learning for making

accurate, reliable cluster assignments from multi-omics data.

(A3) Representation Learning with Partially Overlapped observations. We will derive

a DNN-based manifold learning framework to obtain canonical representations from partially over-

lapped multimodal measurements. This will enhance our ability to extract meaningful information

from complex data with partial overlap.

(A4) Automatic Identification of Driving Biological Variable. This objective is centered on

identifying subsets of informative features from high-dimensional multimodal data. To achieve this,

we will develop a multilevel, unsupervised feature selection scheme that operates at the global, local,

and group levels, enabling a more flexible approach to recovering driving biological factors.

(A5) Theoretical Foundations for Multimodal Deep Learning. To offer practical guidelines

for practitioners, we will establish theoretical guarantees and limitations of deep multimodal learn-

ing. Specifically, we will analyze convergence guarantees and the optimization aspects of applying

stochastic gradient descent (SGD) to deep CCA objectives [1].
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2 Research Objectives and Expected Significance

The overarching objective of this proposal is to formulate and implement a comprehensive deep-

learning framework tailored for biomedical data, leveraging the power of deep multimodal learning.

This framework will enhance data processing or analysis and enable more accurate and reliable pre-

dictions. Our research objectives have been crafted in response to the critical challenges posed by

biomedical measurements, including the scarcity of labeled data, the absence of bijective correspon-

dence, the presence of nuisance variables, and the disparity between the number of features and

available samples.

Here are our research objectives, each of which has the potential to advance the field significantly.

The successful completion of „ 80% of these objectives would be considered a significant achievement,

likely resulting in 4-6 publications.

2.1 Objective 1: Simultaneously Alignment and Representation Learning

As discussed in the scientific background, most multimodal representation learning schemes require

paired datasets. Namely, that there is a bijective correspondence between samples in all modalities,

e.g., sample x1
i and x2

i correspond to the same observation. However, this assumption is not valid for

most sequencing technologies, which cannot simultaneously profile a cell with independent modalities.

This topic of multimodal representation learning for unpaired measurements is an understudied area,

with only a limited number of works, such as [13], exploring this more general setting.

Under this objective, we will develop a method to simultaneously align multimodal datasets and

learn representations capturing shared latent information (θq. For simplicity, we assume access to

N samples from each modality, namely X1 P RD1ˆN and X2 P RD2ˆN . Given the absence of

a bijective correspondence, classic representation learning methods such as cite cannot be directly

applied. Instead, we propose a novel approach involving learning to project the data into a shared

space while simultaneously learning a permutation matrix Π to maximize correlation in this shared

space. The optimization problem can be formulated as follows:

max
ΠPPN

corrpf1pX1Π; θ1q, f2pX2;θ2qq “
f1pX1Π;θ1qfT

2 pX2;θ2q

}f1pX1;θ1q}2}fT
2 pX2;θ2q}2

, (1)

where f1,f2 represent neural networks with parameters θ1 and θ2, and PN is the set of all permutation

matrices of size N ˆ N . Due to the discrete nature of Π, traditional gradient-based optimization

methods cannot be directly employed to maximize Equation 1. To address this challenge, we propose

a probabilistic relaxation for Eq. 1 (as outlined in Section 3.3) and demonstrate its applicability

using synthetic data. Additionally, we will assess a more relaxed alignment objective, which involves

aligning the data distributions in the latent spaces by leveraging techniques like [4, 6].

2.2 Objective 2: Late Fusion of Unlabeled Data

Many existing fusion schemes for multimodal fusion heavily rely on labeled data, for example, in vision

and NLP [11, 47]. However, in the context of biological data, obtaining reliable sample annotations is

a formidable challenge. Biologists often resort to manual cell annotation via dimensionality reduction
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and clustering, which induces many false annotations. These can later propagate and induce errors in

downstream tasks, such as drug discovery, personalized treatment, and more. Given this challenge, we

propose an innovative approach to perform representation learning and fusion without needing labeled

data. Specifically, we treat the fusion problem as a self-supervised co-clustering task. We formulate

an objective for learning the reduced representation via a deep CCA objective while simultaneously

learning multi-modal cluster assignments using a prediction head trained with self-supervision.

Our focus is on clustering multimodal data points, denoted asXℓ, ℓ “ 1, ..., L, whereXℓ “ txℓ
iu

N
i“1,

into matching clusters, denoted as Y “ tyiu
N
i“1. Here, xℓ

i P RDℓ
represents Dℓ-dimensional vector-

valued observations of general type, i.e., tabular that do not adhere to any specific feature structure.

Our objective is to establish an end-to-end deep learning model that seamlessly combines embedding

and clustering. We aim to learn encoders hℓpxℓ
iq “ ψℓ

i and clustering heads f ℓpψℓ
iq “ ŷi, where

ŷi P 1, 2, ...,K, represent an accurate clustering assignment. Our key innovation lies in learning the

parameters of hℓ and f ℓ by employing a representation learning objective on ψℓ
i , while leveraging

self-supervised techniques for late fusion. This enables us to reliably predict cluster assignments based

on the embedded information from all modalities, even in the absence of labeled data.

2.3 Objective 3: Multimodal Representation Learning with Partial Overlap

In many dynamical systems, each modality may have a good resolution of a different subset of the

biological process. Hence, integrating all modalities can yield a more comprehensive understanding

of the system. To accomplish this, we aim to develop a method for integrating partially overlapping

modalities while learning a representation that aligns with the geometry of the latent factors of interest.

In this context, we make certain foundational assumptions: (i) The latent domain of interest is a d-

dimensional path connected manifold M. (ii) The data is obtained with K different measurement

devices capture specific regions of M, denoted by M1, . . . ,MK Ă M, and that the union of these

regions is path-connected. (iii) Each measurement device is characterized by a smooth and injective

function that maps the respective region Mi to its observation space. These functions are denoted as

f1, . . . ,fK , and the observation spaces are X 1 Ă RD1 , . . . ,XK Ă RDK , with D1, . . . , Dk ě d.

We present an illustration of the problem in Fig. 1. The brown area represents the latent manifold,

which is observed through multiple measurement devices or ”modalities.” These devices capture the

system’s states using a perturbed sampling mechanism, where multiple observations are captured for

each state, referred to as a ”burst” (depicted as points within black circles). These bursts represent sets

of samples within the neighborhood of the captured state in the latent space. This strategy was used

in prior work on manifold learning [34, 38]. Our primary objective is to integrate information from

all modalities, represented as the projected oval shapes, and discover a representation that faithfully

represents the underlying latent manifold.
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Figure 1: The latent representation of the data (center, three-dimensional) is observed by three
different modalities/measurement devices (on the coordinate planes, two-dimensional). As depicted
in the figure, each modality is capable of capturing only a specific subset of the latent domain and
introduces its own unique deformation to the data. Local neighborhoods of points in the latent space
are transformed into elliptical shapes when observed in the modalities. Within the intersection regions,
some points are observed by more than one modality.

2.4 Objective 4: Global, local, and group unsupervised feature selection

In high-throughput biological observations, many observed variables are nuisance and do not carry

information about the phenomenon of interest. In such cases, the large number of nuisance variables,

which often exceeds the number of measurements, may lead to overfitting commonly used multimodal

learning schemes [1, 14]. To overcome this limitation, several authors have proposed using unsupervised

feature selection to attenuate the influence of nuisance features.

Under this objective, we aim to develop a deep learning framework for unsupervised feature se-

lection (FS) in the context of multimodal observations. Our primary objective is to provide a feature

selection mechanism that operates at three distinct levels of granularity:

1. Global FS: This represents the classic setting in which the selected features are shared across

all samples, providing a global sparsification of the feature space.

2. Local FS: This level of granularity is designed to handle the inherent heterogeneity often ob-

served in biomedical data. By enabling sample-specific feature selection, the FS model can learn

the unique characteristics of different subsets in the population.

3. Group FS: In this approach, we aim to simultaneously identify groups of correlated features and

perform feature selection at the group level. This approach is particularly useful for identifying

clusters of related variables and selecting the clusters of the most informative features.

By providing these three levels of granularity for the feature selection mechanism, we aim to

enhance the flexibility and adaptability of the framework, making it well-suited for various scenarios
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and datasets in the realm of high-throughput biological observations.

2.5 Objective 5: Theoretical Foundation of Deep Multimodal Learning

In recent years, researchers have significantly advanced our understanding of deep learning, yielding

several theoretical explanations for its success. These explanations encompass vital concepts such as

the double descent phenomenon [3], neural collapse [33], and various optimization aspects associated

with stochastic gradient descent (SGD) [43, 49]. However, most of these works primarily concentrate

on supervised learning settings, with only a limited number of studies delving into the theoretical

aspects of multimodal deep learning.

In the context of multimodal high-throughput biomedical observations, a common challenge arises

from the fact that the number of variables often exceeds the number of actual measurements. In

such a scenario, most conventional multimodal learning schemes face difficulties and may overfit. In

this context, our goal is to gain a deeper understanding of the capabilities and limitations of deep

multimodal learning when applied to high-dimensional biomedical data. We focus on sparse extensions

of the well-celebrated Deep Canonical Correlation Analysis (DCCA). Specifically, we will use the ℓ0-

DCCA model to address the following fundamental questions:

(Q1) What is the sample complexity of ℓ0-DCCA?

We start by presenting the sparse CCA objective under a linear data model assumption. Using

modalitiesX1 P RD1ˆN andX2 P RD2ˆN , which are centered and haveN samples withD1 andD2 fea-

tures, respectively, the goal of CCA is to find canonical vectors a P RD1
, and b P RD2

, such that ,u “

aTX1, and v “ bTX2, will maximize the sample correlations between the canonical variates, i.e.

max
a, b‰0

corrpaTX, bTX2q “
aTX1pX2qT b

}aTX}2}bTY }2
. (2)

To study the sample complexity of the solution we follow [41] using the data generated from the

following distribution

˜

X1

X2

¸

„ Np

˜

0

0

¸

,

˜

Σ1 Σ12

Σ21 Σ2

¸

q, where Σ12 “ ρ0Σ1pϕηT qΣ2.

Based on this data model, the canonical vectors a and b maximizing the correlation objective in Eq.

2 are ϕ P RD and η P RD, respectively (see Proposition 1 in [41]).

In many biological datasets, only a small subset of variables capture the common latent variables.

Therefore, we consider vectors ϕ,η that are sparse with only k nonzero elements. The indices of the

active elements are chosen randomly with values equal to 1{
?
n, and ρ0 controls the total correlation

between modalities. In this setting, we will study the consistency of the sparse ℓ0 CCA estimator [].

Namely, for a sparse estimate of the canonical vector ϕ̂ (and similarly for η̂) we will study how N

affects the probability P
”

E
”

}ϕ̂´ ϕ̂}22

ı

ą δ
ı

for some δ ą 0 (and similarly for η).

To answer this question, we will use similar techniques as in []. If successful, we will attempt to

extend the sample complexity analysis to a more general setting of a nonlinear data model with a

DCCA objective.
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(Q2) Should small batches be used for multimodal learning? The choice of batch size

in neural network training, specifically its effects on the training dynamics, is a crucial aspect. Our

research will explore how small batch training, which relies on Stochastic Gradient Descent (SGD),

influences multimodal deep learning. This fundamental question is rooted in the understanding that

small batches impact the training dynamics and shape the stochastic gradient noise. Multiple studies

have analyzed theoretical and empirical properties involved in small-batch training for supervised

learning [24, 25]. Here, we intend to investigate how small-batch training can affect multimodal deep

learning.

Addressing (Q1) and (Q2) will provide valuable guidelines for practitioners, offering insights into

effectively employing DCCA models for multimodal learning in the challenging landscape of high-

dimensional biomedical data.

2.6 Impact and Significance:

This research is driven by the emergence of many high-throughput technologies enabling the collection

of multimodal information about complex biological systems. Examples of such multimodal measure-

ments include SHARE-seq [31], DBiT-seq [29], CITE-seq [39], etc., which have provided biological

insights and advancements in applications such as transcription factor characterization [16], cell type

identification in human hippocampus [45], and immune cell profiling [18]. These types of modalities,

commonly formed as tables, still pose a significant challenge to standard multimodal techniques. This

proposal is geared towards offering a complete deep-learning framework for multimodal biomedical

data. We expect our contributions to impact the following aspects:

Algorithmic framework: The methodology developed under this research will serve as a reliable

NN framework for analyzing multimodal biomedical data. This framework will offer several advan-

tages over existing linear models or kernel methods. Neural networks are known for their flexibility,

scalability to large datasets, iterative training capabilities, adaptability to new domains, and extensi-

bility to incorporate additional modalities. One significant implication of this work is the potential to

establish a foundation multimodal model for biomedical data. foundations models have recently revo-

lutionized various fields, including natural language processing (NLP) and computer vision. Applying

similar principles to biomedical data can lead to groundbreaking advancements in the understanding

and application of complex biological systems.

Theory: One hurdle in advancing deep learning stems from a lack of a complete theoretical un-

derstanding of frequently used modules. A crucial component of this research is the accompanying

theoretical analysis. By delving into the theoretical underpinnings of multimodal deep learning, we

aim to contribute to a better understanding of the critical modules commonly used in this field. This

understanding can help break current barriers and provide valuable insights into the interplay between

sample size, feature count, and model performance. The resulting theoretical guarantees will serve

as guidelines for effectively utilizing multimodal neural networks in the context of biomedical data.

Furthermore, such theoretical insights can enhance trust in neural network-based predictions, a critical

quality in biomedicine.
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Application: The impact of this proposal extends to the practical application of multimodal learn-

ing in the analysis of high-throughput biological data. Even partial success has the potential to

revolutionize the way researchers approach the analysis of such data. The ability to reliably integrate

diverse data types, including genomics, proteomics, and imaging, will enable a more comprehensive

understanding of complex biological systems. In genomics, the framework can contribute to predicting

risk genes, identifying regulatory elements, and uncovering gene-to-gene interactions, paving the way

for significant advancements in genetics research. Applications in proteomics could include automated

diagnosis, prognosis, and personalized treatment, which have substantial implications for improving

human healthcare and personalized medicine.

Impact: advancing state of the art in multimodal biomedical data analysis, providing powerful tools

and insights that can benefit a wide range of scientific and medical applications.

3 Detailed Description of the Proposed Research

3.1 Working Hypothesis

Multimodal biomedical data involves information from various sources, such as genomics, proteomics,

clinical data, and more. Such measurements typically consist of nonlinear interconnections between

the observed variables; therefore, linear models can fail to capture these complex interactions. Deep

learning is a powerful machinery that is a powerful non-linear function estimator. Our main working

hypothesis is that a multimodal deep-learning framework will enhance the analysis and interpretation

of complex biomedical data by integrating information from multiple sources, improving disease di-

agnosis, treatment planning, and patient outcomes. This hypothesis induces the goal of our research,

which is to develop a complete DNN methodology for the representation, fusion, and alignment of

multimodal biomedical observations. Our methods will be accompanied by a theoretical analysis and

application to real-world use cases.

In the following subsections, we provide a mathematical description of our methodological strategy

for solving each posed objective. Some of these subsections include empirical results supporting the

presented solutions. We note that most of the results are based on synthetic or simplified settings;

therefore, there is still much work to be done in the development, evaluation, and analysis of the

method.

3.2 Research Design and Methodologies

We now provide more technical details about our strategy for achieving our goals. Throughout the

following section, we focus for simplicity, on the coupled setting of two modalities. We are given

realizations (observations) from two modalities tx1
nuNn“1 and tx2

nuNn“1 either paired (with bijective

correspondence) or unpaired.

3.3 Preliminary Results

Under construction...
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4 Infrastructure and Human Resources

The research will be carried out at Bar Ilan University. Dr. Ofir Lindenbaum is a senior lecturer

in the Faculty of Engineering. He has had very productive collaborations with biologists, physicians,

applied mathematicians, data scientists, and engineers. Driven by real-world problems, his research

primarily focuses on developing supervised and unsupervised machine learning methods for identifying

meaningful parameters from raw empirical measurements. In the past decade, he extensively studied

the problems of multimodal learning, sparse recovery, and feature selection. He is an expert on

multi-modal data fusion, and has published several articles on the problem [20, 22, 26, 27, 37]. He

serves as the first (or co-first author) on several publications studying the feature selection problem

[23, 24, 25, 46]. Furthermore, he has an ongoing collaboration in several biomedical studies [9, 21, 48].
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