

1

	IU

	Web Interoperability

	DLMINFWAWT01
Dr. Abdullah Karatas

If you do not wish to be credited, please indicate it below:
__

Learning Objectives
This course is structured to provide an in-depth understanding of both basic and advanced aspects of Web interoperability, which is essential to the smooth operation of today’s Internet. The opening unit serves as a primer, discussing core Web technologies and programming languages such as XML, XHTML, CSS, JSON, and JavaScript. It distinguishes between the broader Internet and the specific Web, while exploring essential technologies such as Web workers and XMLHttpRequest and emphasizing their importance in creating dynamic online interactions. The second unit focuses on Web servers, examining the Hypertext Transfer Protocol (HTTP) and classifying servers as either static or dynamic based on their capabilities.
Later units explore more niche topics. Lesson 3 focuses on machine-to-machine communication, examining fundamental approaches such as Web services and RESTful architectures. It highlights the critical role of schema languages and standard documentation methods such as OpenAPI and WSDL in achieving Web interoperability. Unit 4 focuses on trust on the Web, covering the various technical, organizational, and legal mechanisms that establish online trustworthiness. Unit 5 focuses on multi-party Web architectures and how real-time integration between different Web platforms and applications can lead to a cohesive online experience. It covers aspects such as cross-domain engagement, rich mashups, and the importance of A/B testing.
Unit 6 concludes the course by venturing into the emerging area of the Semantic Web, which aims to transform the Web into a more machine-readable platform to further improve Web interoperability. This final unit focuses on techniques and methodologies aimed at bridging the gap between content that’s easy for humans to understand and data that’s easy for machines to interpret.
Suggested Readings	Comment by Hall, Dana: Please do not edit
Krug, S. (2013). *Don’t Make Me Think, Revisited: A Common Sense Approach to Web Usability*. New Riders
Hunt, A., & Thomas, D. (1999). The Pragmatic Programmer: Your Journey to Mastery. Addison-Wesley Professional
Unit 1
Robson, E., & Freeman, E. (2012). Head First HTML and CSS. O’Reilly Media
Unit 2
Fjordvald, M. B., & Nedelcu, C. (2018). Nginx HTTP Server - Fourth Edition. Packt Publishing.
Unit 3
Cerami, E. (2002). Web services Essentials. O’Reilly Media
Unit 4
Mitnick, K. D. (2017). The Art of Invisibility. Little, Brown and Company
Unit 5
Richardson, C. (2018). Microservices Patterns. Manning Publications
Unit 6
Heath, T., & Bizer, C. (2011). Linked Data: Evolving the Web into a Global Data Space. Morgan & Claypool

Required Reading
MA/MBA courses only
Unit 1 – Web-basics

Study Goals

On completion of this unit, you will be able to …

… explain the basics of the Internet and its supporting technologies, such as TCP/IP.
… learn to use markup languages such as HTML, SVG and Mathematical Markup Language (MathML).
… understand web programming languages and data formats, such as JavaScript, CSS, JSON, and XML.
… identify the importance of advanced technologies, such as XMLHttpRequest and WebWorkers.

1. Web Basics
Introduction
Understanding web basics is essential for grasping the complexities of web interoperability. This unit sets out to discern the differences between the internet, being the global network of interconnected computers, and the web, which is a collection of documents and resources linked via hyperlinks and URLs, hosted on this internet. A framework for understanding the function of web technologies for online communication will be established by looking at the Transmission Control Protocol/Internet Protocol (TCP/IP) suite.
The unit starts by introducing XML, a language used to encode documents in a format that is both human-readable and machine-readable. Mastery of XML sets the foundation for understanding other markup languages such as XHTML, which is HTML defined as an XML application, and further ones like SVG for vector graphics, and Mathematical Markup Language (MathML) for mathematical notations, both based on XML.
Building on this understanding, the unit continues to explore other key web technologies and programming languages like CSS for styling, JSON for data interchange, and JavaScript for client-side interactions. Familiarity with these technologies is crucial for creating dynamic, interactive, and aesthetically pleasing online applications.
Towards the end, this unit delves into advanced web technologies, including Web Workers and XMLHttpRequest, used for asynchronous calls to web servers and background threads, respectively.
Throughout, this unit emphasises the importance of interoperability among various web technologies and the essential role they play in curating seamless online experiences.
[bookmark: _Toc221687482]1.1 The Internet: TCP/IP
The internet is built on a set of communication protocols known as Transmission Control Protocol/Internet Protocol (TCP/IP). The TCP/IP protocol suite’s foundations, design, and how it facilitates smooth communication between multiple devices via the internet are all covered in this section.
Overview of the TCP/IP model
The design, implementation and understanding of the network protocols used on the Internet are based on the so-called TCP/IP model, sometimes referred to as the Internet Protocol Suite. It was developed in the 1970s by the US Department of Defense as part of the ARPANET project, which later became today’s Internet (Comer, 2014). The TCP/IP architecture uses a layered methodology, breaking down the difficult task of network communication into a series of more manageable, smaller tasks. Its modularity makes it easier to debug, update and improve the system, as network protocols can be created and maintained individually.
The TCP/IP model consists of four layers, each responsible for a different set of tasks and services. From top to bottom, the layers are:
1. Application Layer: Provides interface between user applications and network services.
2. Transport Layer: Manages end-to-end communication between applications and ensures reliable data delivery.
3. Internet Layer: Handles logical addressing and routing of data packets across networks.
4. Link Layer: Manages the physical transfer of data between network nodes.
These layers interact to enable data transmission between applications, regardless of the underlying hardware and network infrastructure. Each layer adds a protocol-specific header and trailer to the data of the layer above to form a data unit called a Protocol Data Unit (PDU). In the end, the data that has passed through all the layers is transmitted across the network. Once there, the PDUs are processed backwards, with each layer extracting its own header and trailer and sending the remaining data to the layer above (Kurose & Ross, 2017).
Understanding the TCP/IP model is essential for grasping the fundamentals of computer networks and the internet. In the following subsections, we will compare the TCP/IP model with the Open Systems Interconnection (OSI) model, and then explore the functions and responsibilities of each layer within the TCP/IP model in greater detail.
Comparison with the OSI model
For understanding network protocols, many people often refer to the Open Systems Interconnection (OSI) model. The OSI model, created by the International Organization for Standardization (ISO) in the late 1970s and early 1980s, offers a theoretical and all-encompassing method for describing the roles and interactions of network protocols in a layered approach (Tanenbaum & Wetherall, 2011). The OSI model consists of seven layers, which are:
1. Physical Layer: Manages the physical medium and transmission of raw bits over the network.
2. Data Link Layer: Ensures reliable and error-free communication between directly connected network nodes.
3. Network Layer: Handles the logical addressing, routing, and forwarding of all network data packets.
4. Transport Layer: end-to-end communication services that ensure the reliable and ordered delivery of data.
5. Session Layer: Oversees the establishment, maintenance, and termination of application connections.
6. Presentation Layer: Handles data representation, encryption, and compression, which ensures senders and receivers can both understand the data.
7. Application Layer: Provides the interface between user applications and network services.
While the OSI model has more layers than the TCP/IP model, many of the concepts and functionalities can be mapped between the two models (Kurose & Ross, 2017). For instance, the OSI model’s Physical and Data Link Layers are roughly equivalent to the TCP/IP model’s Link Layer, while the Network and Transport Layers of both models share similar responsibilities.
One of the main differences between the two models is that the OSI model is a more general and abstract framework, while the TCP/IP model is specifically designed around the protocols that have been widely adopted and implemented on the internet (Tanenbaum & Wetherall, 2011). The OSI model was created to promote interoperability between different network protocols and service providers, while the TCP/IP model evolved through practical experience and implementations, leading to its wide acceptance and success.
Another important difference is that the TCP/IP paradigm does not clearly specify the presentation and session layers, whereas the OSI model does. The TCP/IP paradigm frequently incorporates the session and presentation layer functions into application layer protocols or transfers such responsibilities to the underlying operating system (Kurose & Ross, 2017).
GRAPHIC TITLE: OSI and TCP/IP Comparison
[image:]
Source: Sebastian Lempert (2023) based on Gerber & Romeo (2020) and Tanenbaum et al. (2021, p. 62).
Functions and Responsibility of Each Layer
In this sub-chapter, we will explore the core functions and responsibilities of each layer of the TCP/IP model.
Application layer
The application layer is the highest level of the TCP/IP model and acts as a bridge between user applications and network services. According to Kurose & Ross (2017) and Forouzan (2012), it is responsible for providing high-level protocols that enable communication between different programs running on different devices. Typical application layer protocols include:
· HTTP (Hypertext Transfer Protocol): Used for accessing and transferring web content.
· FTP (File Transfer Protocol): Facilitates file transfers between client and server.
· SMTP (Simple Mail Transfer Protocol): Handles sending and receiving of email messages.
These protocols ensure that data is properly understood by both the sender and receiver by defining the format and rules for data exchange between applications.
Transport layer
Applications from different devices can communicate with one another via the transport layer (Wikipedia, 2023b) It provides services such as error detection, data flow control and reliable data transmission (Kurose & Ross, 2017; Forouzan, 2012). The two main transport layer protocols are:
· TCP (Transmission Control Protocol): Ensures the reliable, orderly and error-tested transmission of data. It connects devices, reassembles segmented data and manages flow control to avoid congestion (Stevens, 2011).
· UDP (User Datagram Protocol): Provides a simpler, connectionless service with no guarantee of data transmission. It is faster and has less overhead than TCP, but is suitable for applications that can tolerate data loss or errors, such as real-time audio or video streaming (Comer, 2019).
Internet layer
The Internet layer is responsible for the logical addressing and routing of data packets across networks. The Internet Protocol (IP) is required to transmit data from the transport layer to the destination device based on its IP address (Kurose & Ross, 2017; Forouzan, 2017). The Internet Control Message Protocol (ICMP) and the Internet Group Management Protocol (IGMP) are other protocols at this layer.
· IP (Internet Protocol): Provides the foundation for delivering data packets across networks using IP addresses (Postel, 1981).
· ICMP (Internet Control Message Protocol): Used for error reporting and diagnostics, such as the "ping" command (Postel, 1981).
· IGMP (Internet Group Management Protocol): Manages multicast group memberships, allowing multiple devices to receive the same data simultaneously (Cain et al.,2002).
Link layer
The actual data transmission between nearby network nodes is handled by the link layer, often referred to as the network interface layer or network access layer (Kurose & Ross, 2017; Forouzan, 2017). These protocols, which define the policies for data transmission over a given medium, include Ethernet, Wi-Fi and PPP. At the hardware level, error detection and recovery is also handled by the link layer.
· Ethernet: The most widely used wired protocol for Local Area Networks (LANs; Metcalfe & Boggs, 1976).
· Wi-Fi: A wireless protocol that allows devices to connect to a network without physical cables (Gast, 2005).
· PPP (Point-to-Point Protocol): Establishes a direct connection between two nodes, such as when dialing into an Internet Service Provider (ISP) over a phone line (Simpson, 1994).
Example: Requesting a Webpage
Let’s take the scenario of a person requesting a web page via their web browser to illustrate how the different layers of the TCP/IP model interact.
1. Application layer: When a user types a URL into their web browser, such as http://example.com, and presses Enter, the browser sends an HTTP request. The HTTP protocol, which operates at the application layer, is used to make this request.
2. Transport Layer: The transport layer receives the HTTP request from the browser and uses the TCP protocol to establish a secure connection with the web server hosting the requested web page. The browser and server exchange TCP handshake messages to establish the connection after the HTTP request is encapsulated into one or more TCP segments.
3. Internet Layer: The Internet layer next assigns source and destination IP addresses and packages the TCP segments into IP packets. The information is now prepared for online delivery.
4. Link Layer: The link layer receives the IP packets and is responsible for the actual data transmission between the devices. Using the correct hardware and standards, the packets are sent over the physical network, such as Ethernet or Wi-Fi.
5. Retrieving the web page: The process is then reversed on the web server. The server receives the data at the link layer, where it is passed to the Internet layer and processed into IP packets. The data is then sent to the transport layer, where the HTTP request is rebuilt and the TCP segments are reassembled. The requested web page is created by the server after processing the HTTP request and then sent back to the client’s browser through the same layers.
6. Display of the Webpage: After receiving the HTTP response containing the web page, the browser renders and displays the content to the user by processing HTML, CSS and JavaScript.
Self-Check Questions
1. What are the primary functions of TCP and IP in the Internet protocol suite?
TCP is responsible for establishing a connection, ensuring data is transmitted reliably, and closing the connection. IP is responsible for routing data packets between devices on the Internet.
2. Please mark the correct statement(s). Which of the following is NOT a layer in the TCP/IP model?
· Application Layer.
· Transport Layer
· Presentation Layer
· Internet Layer
1.2 Web Content: HTML, SVG, MathML
Building on the previous section that discussed the TCP/IP model, this section, "Web Content: HTML, SVG, MathML," examines how the application layer uses these technologies to create and deliver content on the Web. Web pages are essentially HTML documents sent over HTTP, an application layer protocol of the TCP/IP paradigm.
Let’s start with a look at HTML. It is a markup language for organizing and structuring content for online display. Then we’ll look at SVG, an XML-based language used to create scalable visual representations for the Web. Finally, we’ll look at MathML, an XML-based format for displaying difficult mathematical equations online.
HTML: Structure and Functionality of Web Content
HyperText Markup Language, or HTML for short, is the fundamental language for creating web content. Created by Tim Berners-Lee in 1991, HTML has undergone a number of changes, the most recent of which is HTML5 (WHATWG, 2023). HTML is the foundation of web pages, giving structure, organisation and meaning to the content displayed on the web. This section explains the origins of HTML, its basic structure and how it is used to create web content.
History of HTML
Tim Berners-Lee developed HTML in 1991 as part of the World Wide Web project at CERN (European Organisation for Nuclear Research; Wikipedia, 2023). When HTML first appeared, it was a simple markup language with a small number of tags to classify and structure text documents. Each time a new version of HTML is released, new elements, features and functions are added to improve the appearance and interactivity of web content.
HTML document structure
An HTML document is made up of a number of elements represented by tags. These tags define the structure and meaning of the content within the document. The basic structure of an HTML document consists of a DOCTYPE declaration, a header and a body (WhatWG, 2023):
<!DOCTYPE html>
<html>
<head>
 <title>Page Title</title>
</head>
<body>
 <h1>Heading</h1>
 <p>Paragraph</p>
</body>
</html>
<!DOCTYPE html>
<html>
<head>
<title>Page Title</title>
</head>
<body>
<h1>Heading</h1>
<p>Paragraph</p>
</body>
</html>

The DOCTYPE declaration indicates the version of HTML used, while the head section contains metadata about the document, such as the title. The body section contains the actual content of the web page, such as headings, paragraphs, images and links.
HTML elements and attributes
A web page’s HTML elements is represented by opening and closing tags like <h1> and </h1>. Elements may have attributes that provide additional information or functionality, such as the href attribute in an anchor tag (<a>) to create a hyperlink (WhatWG, 2023):
Visit Example.com

Some common HTML elements include:
· Headings: <h1> to <h6>
· Paragraph: <p>
· Images:
· Lists: (unordered), (ordered), (list item)
· Links: <a>
· Tables: <table>, <tr> (table row), <td> (table cell)
SVG: Scalable Graphics for the Web
SVG, a web-based vector image format for two-dimensional graphics, is rooted in XML. Developed by the World Wide Web Consortium (W3C) and released in 2001, SVG has gained popularity among web developers due to its adaptability, scalability, and resolution independence (W3C, 2018). However, it’s worth noting that SVG is designed solely for 2D vector graphics and isn’t suitable for 3D graphics. In that case, a technology such as VRML may be applied. This subsection will explore the merits of SVG, its syntax, and integration into HTML texts.
Benefits of SVG
This section explains the many advantages of using SVG for web graphics. Scalability is a feature of SVG images because they can be scaled to any size without losing quality, as they are resolution independent. This is particularly useful in responsive web design, where graphics need to adapt to different screen sizes and resolutions.
The smaller file size of SVG images is another advantage. Especially for large, complicated images, vector graphics often have a smaller file size than their raster counterparts. This allows web pages to load faster and perform better.
Thanks to its XML-based format, SVG is accessible. It is more accessible than raster formats such as JPEG or PNG because screen readers and other assistive technologies can easily operate and browse it.
Finally, SVG offers animation and interactivity through JavaScript and CSS, allowing developers to create dynamic web content. SVG’s adaptability makes it an excellent choice for a wide range of web graphics and applications.
SVG syntax and basic structure
An SVG image is defined by a <svg> element, which contains numerous nested elements to specify the shapes, colors and other aspects of the graphic. The basic structure of an SVG image is as follows:
<svg width="200" height="100" xmlns="http://www.w3.org/2000/svg">
 <!-- SVG elements go here -->
</svg>

The “width” and “height” attributes define the dimensions of the SVG canvas, while the “xmlns” attribute specifies the XML namespace for SVG elements.
Some common SVG elements include:
· <circle>: Creates a circle with a specified center and radius
· <rect>: Creates a rectangle with a specified position, width, and height
· <line>: Creates a line segment connecting two points
· <path>: Creates a complex shape by defining a series of commands for drawing lines, curves, and other graphical elements
Embedding SVG in HTML
There are several ways to embed an SVG image within an HTML document:
· Inline: Include the SVG markup directly in the HTML code. This makes editing with CSS and JavaScript easier, but may increase the size of the HTML content.
<svg width="200" height="100" xmlns="http://www.w3.org/2000/svg">
 		<!-- SVG elements go here -->
 </svg>

· element: Use the src attribute of the tag to point to an external SVG file. This reduces the size of the HTML file, but limits editing and interaction since it is included as an image.

· <object> or <embed> element: Embed a separate SVG file within the HTML file. This allows for individual design and interaction and reduces the size of the HTML file since the SVG is included as an independent document, meaning that it has its own DOM.
<object data="example.svg" type="image/svg+xml"></object>

In summary, SVG offers web developers a number of benefits, including scalability, smaller file sizes and interaction. Its XML-based syntax makes it easy to integrate with HTML pages, making SVG an important tool for creating rich, responsive and accessible Web content.
MathML: Presenting Mathematical Expressions on the Web
The markup language called Mathematical Markup Language (MathML), based on XML, has been created to describe and record the structure and content of mathematical notations. Originally published in 1999 by the W3C, MathML allows mathematical statements to be represented on the Web and integrated with other publications such as HTML (Carlisle et al., 2003). This subsection explains the function, syntax, and usefulness of MathML for representing complicated mathematical expressions on the Web.
MathML syntax and basic structure
The difficulties of representing mathematical content on the web have been addressed with the development of MathML. It gives mathematical notations a standardized, machine-readable format that can be understood and rendered by web browsers, search engines and assistive devices. MathML supports a wide range of mathematical expressions, including basic arithmetic, symbolic logic and advanced calculus.
MathML syntax and basic structure
The structure and semantics of mathematical expressions are described in a number of different elements that make up MathML documents. There are two types of MathML elements: presentation elements, which specify how an expression should look visually, and content elements, which explain the underlying mathematical semantics.
The presentation elements can be used to represent a simple MathML expression, such as "a + b", as follows:
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <mi>a</mi>
 <mo>+</mo>
 <mi>b</mi>
</math>

The <math> element, which specifies the XML namespace for MathML elements, is the root element of a MathML expression. Identifiers (variables) are represented by the <mi> elements, while operators are represented by the <mo> elements.
Content elements, which capture the underlying semantics, may represent the same expression:
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply>
 <plus/>
 <ci>a</ci>
 <ci>b</ci>
 </apply>
</math>

In this case, the <apply> element represents the application of a function or operator, the <plus/> element represents the addition operation, and the <ci> elements represent the variables.
Integrating MathML with HTML and SVG
If the document has the correct DOCTYPE declaration, MathML can be immediately integrated into an HTML document using the <math> element:
<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>MathML Example</title>
 </head>
 <body>
 <p>The sum of a and b is:</p>
 <math xmlns="http://www.w3.org/1998/Math/MathML">
 <mi>a</mi>
 <mo>+</mo>
 <mi>b</mi>
 </math>
 </body>
</html>

SVG and MathML can be combined to create graphics with mathematical symbols. This is achieved by overlaying an SVG <foreignObject> element with a <math> element:
<svg width="200" height="100" xmlns="http://www.w3.org/2000/svg">
 <foreignObject width="100%" height="100%">
 <math xmlns="http://www.w3.org/1998/Math/MathML">
 <!-- MathML elements go here -->
 </math>
 </foreignObject>
</svg>

MathML enables developers to create rich, accessible content that can be understood and interpreted by a variety of user agents, including web browsers, search engines, assistive technologies, and people with different needs and preferences. MathML provides a powerful, standardised way of representing mathematical expressions on the Web.
Interoperability Between HTML, SVG, and MathML
Interoperability is a critical component of web development because it enables seamless integration and interaction between different web technologies. While each language has a different function in creating web content, HTML, SVG and MathML are intended to work together to enable rich, interactive and accessible web experiences (Hindman, 2016; Amelia, B., & Dudley, S., 2015). In this part, we will talk about how these markup languages work together and how they can be integrated to enhance web content.
Combining HTML and SVG
As mentioned earlier, there are several ways to embed SVG images in HTML text, including using inline SVG markup or the , <object> or <embed> elements. By combining HTML and SVG, developers can create interactive visuals and animations that blend seamlessly with the surrounding material. The connection between HTML and SVG is further enhanced by the ability to design and modify SVG elements using CSS and JavaScript.
Integrating MathML with HTML and SVG:
As shown in the previous sections, MathML can also be inserted directly into HTML or SVG compositions. By combining MathML with HTML, developers can create Web pages that contain sophisticated mathematical equations alongside text, graphics, and other material. Similarly, mathematical notation can be incorporated into diagrams and drawings by embedding MathML in SVG graphics.
Accessibility and semantic interoperability
Improved accessibility and semantic interoperability are two of the main benefits of combining HTML, SVG and MathML. These markup languages are designed to be machine-readable, which means that a variety of user agents, including web browsers, search engines and assistive technologies, can understand and interpret them. The combination of these languages allows developers to create web content that is both visually appealing and semantically rich, improving accessibility and machine understanding.
Responsive design and cross-platform compatibility
In web development, HTML, SVG and MathML all support responsive design and cross-platform interoperability. While SVG allows graphics to adapt fluidly to different screen sizes and resolutions, HTML provides the basic framework and organization for web content. And MathML ensures that mathematical expressions are presented consistently across a range of devices and platforms. By integrating these technologies, developers can create online content that adapts smoothly to different contexts and provides a consistent user experience.
Self-Check Questions
3. What is the main purpose of HTML, SVG, and MathML in web content?
HTML is used to structure and display web content, SVG is used for creating and displaying vector graphics, and MathML is used to display mathematical notations and formulas.
4. Please mark the correct statement(s). Which type of graphics is primarily used by SVG?
· Raster graphics
· Vector graphics
· Bitmap graphics
· 3D graphics
1.3 Web Programs: JavaScript, CSS, JSON, XML
Web interoperability is the ability of different web technologies, tools, and systems to work together seamlessly, ensuring a consistent and efficient user experience. To achieve this, various web programming languages and data formats have been developed to facilitate communication and interaction between different web components. In this section, we will focus on JavaScript, CSS, JSON, and XML, examining their purposes and how they interact with one another to create an interoperable web ecosystem.
JavaScript: The Programming Language of the Web
JavaScript is a powerful and diverse programming language that plays a critical role in modern web development. Along with HTML and CSS, JavaScript is one of the internet’s core elements, enabling developers to create interactive and dynamic web experiences. In this section, we will explore the history, features, and syntax of JavaScript, as well as its capabilities in manipulating the Document Object Model (DOM) and handling events and asynchronous programming.
Overview and history
JavaScript, often abbreviated as JS, is a high-level, interpreted programming language that is widely used to add interactivity and dynamic content to websites. It was created by Brendan Eich in 1995 and originally named Mocha, then LiveScript, before being renamed JavaScript (Flanagan, 2020). JavaScript has evolved significantly since its inception and is now an essential part of modern web development, alongside HTML and CSS.
Features and syntax
The computer language JavaScript supports imperative, object-oriented and functional programming paradigms. It also enables first-class functions and dynamic typing, so that functions can be assigned variables, passed as arguments and returned as values (Flanagan, 2020).
Some key features of JavaScript syntax include:
· Variables: Variables are used to store values and can be declared using “var”, “let”, or “const”.
· Data Types: JavaScript has several data types, including “number”, “string”, “boolean”, “null”, “undefined”, “object”, and “symbol”.
· Control Structures: Conditional statements (“if”, “else if”, “else”), loops (“for”, “while”, “do...while”), and exception handling (“try”, “catch”, “finally”).
· Functions: Functions are blocks of code that can be defined and called by name, and can accept input parameters and return output values.
Here is a basic example of JavaScript syntax:
// Declare a variable
let greeting = "Hello, World!";

// Define a function
function greet(name) {
 return greeting + " My name is " + name;
}

// Call the function and output the result
console.log(greet("Alice"));

This example demonstrates variable declaration, function definition, and outputting the result of a function call using “console.log”. Running this example would print the text “Hello, World! My name is Alice” to the console.
Embedding JavaScript into HTML
JavaScript can be incorporated directly into HTML documents in two ways: inline scripting and external linking. Inline scripting involves placing JavaScript code within <script> tags in the HTML document itself. This method is suitable for small snippets of code. For instance:
<script>
 alert("Hello, World!");
</script>

The second approach, often used for longer scripts, is to link to an external JavaScript file using the src attribute in the script> tag:
<script src="script.js"></script>

This allows the HTML document to be maintained separately from JavaScript, resulting in cleaner code and easier debugging.
JavaScript and the Document Object Model (DOM)
The Document Object Model (DOM) is an API for HTML and XML documents that represents the structure of a document as a tree of objects (Mozilla Developer Network, 2023a). JavaScript can be used to manipulate the DOM, allowing developers to create, modify, or delete elements and attributes, change styles, or respond to user events (Flanagan, 2020; Mozilla Developer Network, 2023a).
Some common DOM manipulation methods include:
· “getElementById()”: Selects an element by its ID attribute.
· “querySelector()”: Selects the first element that matches a specified CSS selector.
· “createElement()”: Creates a new element with the specified tag name.
· “appendChild()”: Adds a new child element to a parent element.
· “setAttribute()”: Sets the value of an attribute on an element.
Here is an example of DOM manipulation using JavaScript:
<!DOCTYPE html>
<html>
<head>
 <style>
 .hidden {
 display: none;
 }
 </style>
</head>
<body>
 <button id="toggleButton">Toggle</button>
 <p id="hiddenText" class="hidden">This text will be
toggled on and off.</p>
 <script>
const button = document.getElementById("toggleButton");
const text = document.getElementById("hiddenText");

button.addEventListener("click", function() {
 text.classList.toggle("hidden");
});
 </script>
</body>
</html>

This example demonstrates selecting elements using “getElementById”, attaching an event listener to a button, and toggling a CSS class on a paragraph element when the button is clicked. In this example clicking the button results in displaying a text “hiddenText” if it was previously hidden to the user and vice versa.
Event handling and asynchronous programming
JavaScript allows developers to respond to user interactions and events, such as clicks, key presses, or page loads. Event listeners can be attached to elements, and a specified function will be executed when the event occurs. Asynchronous programming is also an important aspect of JavaScript, enabling non-blocking operations through callbacks, promises, and async/await (Flanagan, 2020).
Some common event handling techniques include:
· “addEventListener()”: Attaches an event listener to an element.
· “removeEventListener()”: Removes an event listener from an element.
· “preventDefault()”: Prevents the default action of an event.
Here is an example demonstrating event handling and asynchronous programming using JavaScript:
// Simulate a slow API request using a Promise
function fetchApiData() {
 return new Promise((resolve) => {
 setTimeout(() => {
 resolve("API data");
 }, 2000);
 });
}

// Attach an event listener to a button
document.getElementById("fetchButton").addEventListener("click", async function() {
 // Disable the button and display a loading message
 this.disabled = true;
 const message = document.getElementById("message");
 message.textContent = "Loading...";

 // Fetch the API data asynchronously
 const data = await fetchApiData();

 // Re-enable the button and display the fetched data
 this.disabled = false;
 message.textContent = data;
});

In this example, we simulate a slow API request using a Promise that resolves after a 2-second delay. We then attach an event listener to a button, which fetches the API data asynchronously when clicked. The button is disabled and a loading message is displayed while the data is being fetched. Once the data is fetched, the button is re-enabled, and the fetched data is displayed.
Cascading Style Sheets (CSS): Styling the Web
Cascading Style Sheets (CSS) is a stylesheet language that controls the visual appearance and layout of an HTML document. The concept of separating "content from presentation" refers to distinguishing what is displayed (the content, defined by HTML) from how it is displayed (the presentation, manipulated by CSS).
For instance, consider a piece of text marked as a level 1 headline in an HTML document; this defines our content. With CSS, we can control the presentation of this headline - say, adjusting the font type, size, and color for all such level 1 headlines.
This separation simplifies the process of maintaining and updating a website’s design and layout. It ensures that modifications to the presentation do not impact the structure of the content, and vice versa, providing ease of management.
In this section, we will explore the history and overview of CSS, its syntax and selectors, the box model and layout techniques, and responsive design and media queries. By understanding these concepts, students will be able to create visually appealing and accessible web pages.
Overview and history
CSS was first proposed by Håkon Wium Lie in 1994 as a way to improve the stylistic capabilities of HTML (Lie & Bos, 2005). The first official specification, CSS1, was published by the World Wide Web Consortium (W3C) in 1996. Since then, CSS has evolved through multiple versions, with CSS2 in 1998 and the ongoing development of CSS3, which introduced modular specifications and new features such as animations, gradients, and advanced selectors (Meyer & Weyl, 2017).
CSS plays a crucial role in modern web development alongside HTML and JavaScript, enabling developers to create visually appealing and accessible web pages by controlling the layout, colors, fonts, and other stylistic aspects of the content.
Syntax and selectors
CSS is comprised of a series of rules that determine how elements in an HTML document should be displayed. A CSS rule consists of a selector and a declaration block, which includes one or more declarations enclosed within curly braces (Meyer & Weyl, 2017). Each declaration is made up of a property and a value, separated by a colon, and declarations are delimited by semicolons.
Here is an example of a simple CSS rule:
p {
 font-size: 16px;
 color: blue;
}

In this example, the selector “p” targets all paragraph elements in the HTML document. The declaration block contains two declarations that set the “font-size” and “color” properties of the targeted elements.
Selectors are a powerful feature of CSS, allowing developers to target specific elements, groups of elements, or elements that meet specific criteria. There are several types of selectors, including (Meyer & Weyl, 2017):
· Element selectors: Target elements based on their HTML tag name (e.g., “p”, “h1”, “div”).
· Class selectors: Target elements based on their “class” attribute. Class selectors are preceded by a period (e.g., “.classname”).
· ID selectors: Target a unique element based on its “id” attribute. ID selectors are preceded by a hash (e.g., “#elementID”).
· Attribute selectors: Target elements based on the presence, value, or partial value of a specific attribute (e.g., “[attr]”, “[attr=value]”, “[attr^=value]”).
· Pseudo-class selectors: Target elements based on their state or position in the document (e.g., “:hover”, “:first-child”, “:nth-child()”).
· Pseudo-element selectors: Target specific parts of an element, such as the first letter or first line (e.g., “::first-letter”, “::before”, “::after”).
· Combinators: Combine multiple selectors to target elements based on relationships or hierarchies (e.g., descendant combinator “ “, child combinator “>“, adjacent sibling combinator “+”, general sibling combinator “~”).
Understanding the various types of selectors allows developers to create efficient and targeted styles for their web pages, ensuring a consistent and visually appealing presentation of content.
The box model and layout techniques
The CSS box model describes the rectangular boxes generated for each HTML element and their layout on a web page. The box model consists of four components: content, padding, border, and margin, which together determine the size and positioning of an element (Meyer & Weyl, 2017).
· Content: The actual content of an element, such as text or images.
· Padding: The space between the content and the border, which can be set using the “padding” property.
· Border: The line that surrounds the padding and content, which can be set using the “border” property.
· Margin: The space outside the border, which separates the element from other elements and can be set using the “margin” property.
[image:]
[image:]
The box model is crucial for understanding how elements are sized and positioned on a web page. Developers can control the size, position, and alignment of elements using various layout techniques, including (Meyer & Weyl, 2017):
1. Normal Flow: The default layout method where elements are positioned in the order they appear in the source code, with block-level elements stacking vertically and inline elements flowing horizontally.
2. Floats: A technique that allows elements to be positioned to the left or right of their containing block, with other content flowing around them. Floats are primarily used for text wrapping around images or creating simple multi-column layouts.
3. Positioning: A method that allows developers to place elements at specific positions relative to their normal position, parent element, or the viewport using the position property with values such as “relative”, “absolute”, “fixed”, or “sticky”.
4. Flexbox: A modern layout model that provides a more efficient way to align, distribute, and size elements within a container, even when the size of the container or its contents are unknown or dynamic. Flexbox is controlled using the “display: flex” property on the container and various alignment and sizing properties on its children.
5. Grid: A powerful two-dimensional layout system designed for creating complex and responsive grid-based designs. Grid layouts are created using the “display: grid” property on the container and various grid-specific properties to define columns, rows, and areas for child elements.
By understanding the box model and various layout techniques, developers can create flexible, accessible, and responsive designs that cater to a wide range of devices and screen sizes.
Responsive design and media queries
Responsive design aims to visually optimize websites across a wide range of devices, from desktop computers to mobile phones. It involves designing and coding a website to respond to the user’s device, screen size, and orientation, ensuring that the layout, images, and other elements adapt accordingly (Marcotte, 2011).
Media queries are a key tool in implementing responsive design, as they allow developers to apply specific CSS rules based on the characteristics of the user’s device or browser window. With media queries, developers can define breakpoints that trigger different styles based on conditions such as screen width, height, resolution, or orientation (Meyer & Weyl, 2017).
Here is an example of a simple media query:
/* Base styles for all devices */
body {
 font-size: 16px;
}

/* Styles for screens with a minimum width of 768px (e.g., tablets) */
@media (min-width: 768px) {
 body {
 font-size: 18px;
 }
}

/* Styles for screens with a minimum width of 1024px (e.g., desktops) */
@media (min-width: 1024px) {
 body {
 font-size: 20px;
 }
}

In this example, different font sizes are applied to the “body” element based on the width of the user’s screen. As the screen width increases, the font size increases accordingly.
While media queries are an important aspect of responsive design, other techniques such as fluid grids, flexible images, and progressive enhancement also contribute to creating a seamless user experience across various devices (Marcotte, 2011).
JSON: A Lightweight Data Interchange Format
JavaScript Object Notation, commonly known as JSON, serves as a streamlined data-exchange format. It’s designed in such a way that it’s simple for humans to both read and write, while also being easily parsed and generated by machines. Though JSON is text-based and completely independent of any particular language, its structure utilizes conventions known to programmers from a variety of languages in the C family. This includes languages such as C, C++, C#, Java, JavaScript, Perl, Python, among others. This makes JSON a highly effective language for data interchange" (JSON, n.d.). In this section, we will explore the history and overview of JSON, its syntax and data types, JSON.parse() and JSON.stringify() methods, and various use cases and applications. Understanding JSON is essential for modern web developers, as it is widely used for data exchange between client and server applications.
Overview and history
JSON was first introduced by Douglas Crockford in the early 2000s as a simpler alternative to XML for data interchange between client and server applications (Crockford, 2006). JSON’s primary goal was to provide a more human-readable and less verbose format for data representation. Over time, JSON has gained widespread adoption and has become the de facto standard for data exchange in web applications, APIs, and other systems that require data serialization.
The simplicity and ease of use of JSON have contributed to its rapid adoption and success in the web development community. JSON is now natively supported in most programming languages and platforms, making it a diverse and interoperable format for data exchange.
Syntax and data types
JSON is a simple text format that represents data as key-value pairs, making it easy to understand and work with. JSON data types are similar to those found in JavaScript, and include the following (ECMA International, 2017):
· String: A sequence of zero or more Unicode characters, enclosed in double quotes (e.g., "Hello, World!").
· Number: A numeric value, which can be an integer or a floating-point number (e.g., “42”, “3.14”).
· Boolean: A true/false value, represented as "true" or "false".
· Object: An unordered collection of key-value pairs, enclosed in curly braces (e.g., {"key": "value"}). Keys must be strings, while values can be any valid JSON data type.
· Array: An ordered collection of zero or more values, enclosed in square brackets (e.g., [1, 2, 3]). Array elements can be any valid JSON data type.
· null: A special value representing the absence of a value or the presence of an unknown value.
Here is an example of a JSON object representing a person:
{
 "name": "Person Name",
 "age": 30,
 "isStudent": true,
 "courses": ["math", "history", "chemistry"],
 "address": {
 "street": "123 Main St",
 "city": "Mannheim",
 "state": "Baden Wuerttemberg",
 "postalCode": "68165"
 }
}

In this example, the JSON object contains a mix of strings, numbers, booleans, arrays, and nested objects. Note that JSON syntax requires keys in objects to be enclosed in double quotes.
Understanding the syntax and data types of JSON is essential for working with data in web applications, as it allows developers to easily read, write, and manipulate data exchanged between client and server applications.
JSON.parse() and JSON.stringify()
JSON is often used in web applications to exchange data between the client and server. To work with JSON data in JavaScript, developers need to convert JSON strings into JavaScript objects and vice versa. This is where the JSON.parse() and JSON.stringify() methods come in handy (Mozilla Contributors, 2023).
· JSON.parse(): This method takes a JSON string as input and returns a JavaScript object corresponding to the parsed JSON data. For example:
const jsonString = ‘{"name": "Person Name", "age": 30}’;
const jsonObj = JSON.parse(jsonString);
console.log(jsonObj.name); // Output: "Person Name"

· JSON.stringify(): This method takes a JavaScript object or value as input and returns a JSON string representation of the object or value. For example:
const jsonObj = {
 name: "John Doe",
 age: 25
};
const jsonString = JSON.stringify(jsonObj);
console.log(jsonString); // Output: ‘{"name":"John Doe","age":25}’

These two methods are essential for working with JSON data in JavaScript, as they enable developers to easily convert between JSON strings and JavaScript objects, facilitating seamless data exchange between client and server applications.
Use cases and applications
JSON has become the de facto standard for data interchange in web applications due to its lightweight nature, ease of use, and compatibility with most programming languages. Some of the most common use cases and applications of JSON include (RESTful API, n.d.; Crockford, 2006; Mozilla Contributors, 2023):
1. Web APIs: JSON is widely used for transmitting data between clients and servers via web APIs. When a client requests data from a server, the server often returns the requested data in JSON format, which can be easily parsed and manipulated by the client.
2. Configuration Files: Many software applications use JSON to store configuration data because it provides a human-readable format for representing structured data. However, it is worth noting that yaml files are increasingly being used for configuration files because they are easier for many people to read and write.
3. Data Serialization: JSON is frequently used for serializing data structures in applications where data needs to be stored or transmitted across the network. For instance, it is commonly used for storing user preferences, caching data, or communicating between different components of an application.
4. Database Storage: Some NoSQL databases, such as MongoDB, use JSON-like documents for data storage, allowing developers to work with data in a format similar to JSON.
5. Real-time Communication: JSON is used in real-time communication applications, such as websockets and server-sent events, to transmit data between the client and server quickly and efficiently.
Understanding the various use cases and applications of JSON is essential for web developers, as it highlights the importance of JSON as a data interchange format in modern web development. By recognizing when and how to use JSON, developers can build efficient, flexible, and scalable applications that leverage the power of JSON for data exchange and storage.
XML: A Markup Language for Data Representation
The Extensible Markup Language (XML) is a markup language used to represent structured data in a human-readable and machine-readable format. XML was designed to be both self-descriptive and extensible, meaning that it can be used to represent a wide variety of data structures and can be easily extended to accommodate new data types or requirements. In this section, we will explore the history and overview of XML, its syntax and structure, XML namespaces and schema, and various use cases and applications. Understanding XML is important for web developers, as it is still used for data exchange and representation in many web applications and services.
Overview and history
XML was developed by the World Wide Web Consortium (W3C) in 1998 as a simpler and more flexible alternative to the Standard Generalized Markup Language (SGML) for representing structured data on the web (W3C, 2008). XML was designed to be platform- and language-independent, making it suitable for data exchange between heterogeneous systems and applications.
Over the years, XML has become a widely adopted standard for data representation and exchange in various domains, such as finance, healthcare, and publishing. Although JSON has gained popularity in recent years due to its lightweight nature and compatibility with JavaScript, XML is still used in many contexts where its robustness, extensibility, and support for schemas and namespaces are advantageous.
Syntax and structure
In XML, elements are identified by tags, and attributes are used to offer more information about those elements (Wikipedia, 2023c). The basic syntax and structure of an XML document include the following components (W3C, 2008):
· Prolog: An optional declaration that specifies the XML version and character encoding used in the document. For example:
<?xml version="1.0" encoding="UTF-8"?>

· Elements: Elements are the building blocks of an XML document and are defined by start and end tags. Elements can contain other elements, text, or a mix of both. For example:
<person>
 <name>Person Name</name>
 <age>30</age>
</person>

· Attributes: Attributes are used to provide additional information about elements and are specified within the start tag of an element. Attribute values must be enclosed in single or double quotes. For example:
<person id="1">
 <name>Person Name</name>
 <age>30</age>
</person>

· Text: Text is the actual content of an XML document and can be placed within elements.
· Comments: Comments can be added to an XML document to provide additional information or notes for developers. Comments are enclosed between “<!--” and “-->“. For example:
<!-- This is a comment -->

· CDATA Selection: CDATA sections are used to include text that should not be parsed by the XML parser, such as code snippets or special characters. CDATA sections are enclosed between “<![CDATA[“ and “]]>“. For example:
<code><![CDATA[<h1>Hello, World!</h1>]]></code>

XML documents must be well-formed, meaning that they must adhere to the syntax rules defined by the XML specification. Some of these rules include having properly nested elements, using quotes for attribute values, and having a single root element that contains all other elements.
XML namespaces and schema
XML Namespaces and Schema are important concepts in XML that enable developers to create more structured and well-defined XML documents.
XML namespaces are used to avoid naming conflicts when combining XML documents from different sources or when using XML documents with different vocabularies. An XML namespace is declared using the xmlns attribute in the opening tag of an element (W3C, 2008). For example:
<person xmlns="http://www.example.com/person">
 <name>Person Name</name>
 <age>30</age>
</person>

In this example, the “person” element is associated with the namespace “http://www.example.com/person”. By using namespaces, developers can ensure that their XML documents remain unambiguous and modular.
XML Schema is a language for defining the structure, content, and constraints of XML documents (W3Schools, n.d.). XML Schema provides a more powerful and expressive way to define the structure and constraints of XML documents compared to Document Type Definitions (DTDs), which were used in earlier versions of XML. XML Schema is itself an XML-based language and is used to create schema documents that describe the rules and constraints for a particular type of XML document.
An XML schema defines the elements, attributes, data types, and structure that an XML document must follow to be considered valid according to the schema. XML schema documents have the file extension “.xsd”. Developers can use XML Schema to ensure that their XML documents are well-formed and adhere to a specific structure or set of rules, which is particularly useful for data validation and exchange.
Use cases and applications
XML has been widely adopted as a standard for data representation and exchange in various industries and applications. Some common use cases and applications of XML include (W3C, 2008; IBM, 2021):
1. Web Services: XML is used as the data format for Web service protocols like SOAP (Simple Object Access Protocol), which enables data exchange between heterogeneous systems and applications over the internet.
2. Data Exchange: XML is used to exchange data between different applications or systems, as it provides a platform- and language-independent way to represent structured data.
3. Document Storage and Processing: XML is used to store and process documents, such as technical documentation, user manuals, and books, in a structured and machine-readable format. XML-based languages like DocBook and DITA are specifically designed for this purpose.
4. Metadata Representation: XML is used to represent metadata in various contexts, such as the Resource Description Framework (RDF) for describing resources on the web or the Dublin Core Metadata Initiative for describing digital resources in libraries and archives.
Although JSON is becoming increasingly popular for web-based applications, XML still plays an important role in many areas because of its robustness, extensibility, and support for schemas and namespaces.
Self-Check Questions
5. How do JavaScript and CSS contribute to the development of a web page or application?
JavaScript is used for creating dynamic and interactive web content, while CSS is used for styling and formatting web pages.
6. Please mark the correct statement(s). Which data interchange format is known for its lightweight and easy-to-read syntax?
· JSON
· XML
· CSV
· YAML
1.4 Advanced topics: XMLHttpRequest, Web-Workers
This section will enhance your understanding of two advanced topics crucial for efficient web development: XMLHttpRequest and Web Workers.
First, we will delve into XMLHttpRequest, a vital component of AJAX programming techniques. The acronym AJAX stands for the concept of Asynchronous JavaScript and XML, in which data is transferred asynchronously between the Web client and the web server and requests to the web server can thus be decoupled from user input in the Web client. This makes it possible to reload or modify parts of an HTML page already displayed in the Web client as needed and to update them when the asynchronous response from the Web server arrives. This means that, in contrast to the classic model of a Web application, the entire HTML page does not have to be retransmitted and re-rendered every time a user interacts with it. By facilitating asynchronous communication between web applications and servers, XMLHttpRequest allows developers to create more interactive and dynamic web content (Mozilla, 2023c). We will examine the syntax, methods, and handling of responses and errors associated with XMLHttpRequest.
Next, we will explore Web Workers, a powerful technology that enables web applications to execute background tasks concurrently without impacting the main thread’s performance (Mozilla, 2023b). Our discussion will encompass the various types of Web Workers, communication with the main thread, and the limitations and best practices related to their use.
XMLHttpRequest: Introduction and Use Cases
The XMLHttpRequest is a JavaScript API that provides an easy way to make asynchronous HTTP requests from web browsers to servers or APIs, enabling web applications to retrieve and manipulate data without requiring a full page refresh (Mozilla, 2023c). This API has played a significant role in the development of modern web applications, as it allows for more interactive and dynamic user experiences.
Use cases for XMLHttpRequest include fetching data from a server, submitting form data, and updating parts of a web page without reloading the entire page. Despite the rise of more modern APIs like the Fetch API, XMLHttpRequest remains an important and widely used technology in web development.
Syntax and methods
The basic syntax for using XMLHttpRequest involves creating a new XMLHttpRequest object, configuring the request, and handling the response (Mozilla, 2023c). Here’s an example:
// Create a new XMLHttpRequest object
var xhr = new XMLHttpRequest();

// Configure the request
xhr.open("GET", "https://api.example.com/data", true);

// Set up a callback function to handle the response
xhr.onreadystatechange = function() {
 if (xhr.readyState === 4 && xhr.status === 200) {
 // Process the response (e.g., update the web page)
 var data = JSON.parse(xhr.responseText);
 console.log(data);
 }
};

// Send the request
xhr.send();

Some key methods and properties of XMLHttpRequest include:
· “open(method, url, async)”: Configures the request with the HTTP method (e.g., "GET", "POST"), the target URL, and a boolean indicating whether the request should be asynchronous (true) or synchronous (false).
· “send(data)”: Sends the request, optionally with data (e.g., for POST requests).
· “onreadystatechange”: A callback function that is called whenever the “readyState” property changes.
· “readyState”: The current state of the request, ranging from 0 (unsent) to 4 (completed).
· “status”: The HTTP status code returned by the server (e.g., 200 for "OK", 404 for "Not Found").
· “responseText”: The response data as a string, which can be parsed (e.g., with “JSON.parse()”) if it’s in a structured format like JSON.
Understanding XMLHttpRequest is crucial for web developers, as it provides a foundation for working with asynchronous data in web applications and serves as a stepping stone to more modern APIs like Fetch.
Handling responses
Handling responses in XMLHttpRequest involves defining a callback function that will be executed when the server’s response is received. This callback function is assigned to the onreadystatechange property of the XMLHttpRequest object and is responsible for processing the response data (Mozilla, 2023c).
The following steps outline how to handle responses with XMLHttpRequest:
1. Check the “readyState” property: The “readyState” property represents the current state of the request, with a value of 4 indicating that the request has been completed and the response has been received. The callback function should only proceed if the “readyState” is 4.
2. Check the “status” property: The “status” property represents the HTTP status code returned by the server. A status code of 200 indicates a successful request, while other status codes (e.g., 404) indicate errors. The callback function should only process the response data if the “status” is 200.
3. Parse and process the response data: The response data can be accessed through the “responseText” property of the XMLHttpRequest object. If the response data is in a structured format like JSON, it should be parsed (e.g., with “JSON.parse()”) before processing. After parsing, the data can be used to update the web page, store it in local storage, or perform other actions.
Here’s an example of how to handle responses with XMLHttpRequest:
var xhr = new XMLHttpRequest();
xhr.open("GET", "https://api.example.com/data", true);

xhr.onreadystatechange = function() {
 if (xhr.readyState === 4 && xhr.status === 200) {
 // Parse the response data
 var data = JSON.parse(xhr.responseText);

 // Process the data (e.g., update the web page)
 console.log(data);
 }
};

xhr.send();

Understanding how to handle responses in XMLHttpRequest is essential for web developers, as it allows them to work with data returned from servers and APIs and create more dynamic and interactive web applications.
Error handling and best practices
Error handling and following best practices are crucial when working with XMLHttpRequest to ensure that web applications function smoothly and provide a good user experience. Here are some key aspects to consider when using XMLHttpRequest (Mozilla, 2023c; Flanagan, 2011):
1. Handle non-200 status codes: When checking the “status” property in the “onreadystatechange” callback, be sure to handle non-200 status codes appropriately. This may involve displaying an error message to the user or retrying the request.
2. Use asynchronous requests: Asynchronous requests (i.e., setting the third parameter of the “open()” method to “true”) are generally preferred, as they do not block the main thread and allow the web page to remain responsive while the request is being processed. Synchronous requests can lead to poor user experience due to blocking the main thread, and their use is discouraged.
3. Handle network errors: Network errors can occur during the request process, such as when a server is unreachable or the user is offline. To handle these errors, use the “onerror” event of the XMLHttpRequest object:
xhr.onerror = function() {
 console.error("An error occurred during the request.");
};

4. Set timeouts: To prevent requests from taking too long and potentially causing performance issues, set a timeout value for the XMLHttpRequest using the “timeout” property:
xhr.timeout = 5000; // Timeout after 5000 milliseconds (5 seconds)
xhr.ontimeout = function() {
 console.error("The request timed out.");
};

5. Use modern alternatives when possible: While XMLHttpRequest remains widely used, modern alternatives like the Fetch API provide a more convenient and flexible way to work with HTTP requests. Consider using the Fetch API or other modern APIs when they are available and supported by the target browsers. For more information about fetch APIs, (W3Schools, n.d.b) can be used.
Web Workers: Introduction and Use Cases
Web Workers are a JavaScript feature that allows developers to run scripts in the background, separate from the main execution thread (Mozilla, 2023b). This enables web applications to perform computationally intensive tasks without blocking the user interface, resulting in a more responsive and smoother user experience.
Use cases for Web Workers include data processing, complex calculations, image manipulation, and fetching data from a server. By offloading these tasks to a separate thread, web applications can remain responsive and performant even during heavy processing.
Types of web workers
There are two primary types of Web Workers: Dedicated Workers and Shared Workers.
· Dedicated Workers: These workers are dedicated to a single web page and cannot be shared across different pages. They are created using the “Worker” constructor and can communicate with the main thread using the “postMessage()” method and the “onmessage” event (Mozilla, 2023b).
· Shared Workers: These workers can be shared across multiple pages from the same domain. They are created using the “SharedWorker” constructor and use a different communication model, utilizing a “MessagePort” object to send and receive messages (Mozilla, 2023b).
Communication with the main thread
Communication between Web Workers and the main thread is done using the “postMessage()” method and the “onmessage” event. The “postMessage()” method sends data to the worker or main thread, while the “onmessage” event is triggered when a message is received (Mozilla, 2023b).
Here’s an example of communication between a dedicated worker and the main thread:
// Main thread
var worker = new Worker("worker.js");
worker.postMessage("Hello, worker!");
worker.onmessage = function(event) {
 console.log("Message from worker: " + event.data);
};

// worker.js
self.onmessage = function(event) {
 console.log("Message from main thread: " + event.data);
 self.postMessage("Hello, main thread!");
};

Limitations and best practices
When working with Web Workers, there are some limitations and best practices to keep in mind (Mozilla, 2023b):
· Web Workers do not have access to the DOM, so they cannot directly manipulate the web page. Instead, they must communicate with the main thread to make any necessary updates.
· Web Workers run in a separate global context, so they do not have access to the parent page’s global variables or functions.
· Data passed between the main thread and workers is copied, not shared. However, transferable objects can be used to pass data more efficiently when necessary.
· Consider using Web Workers for tasks that are computationally intensive and may block the main thread, but avoid using them for simple tasks that do not require a separate thread.
Self-Check Questions
7. What is the primary purpose of XMLHttpRequest in web applications?
XMLHttpRequest enables asynchronous communication between a web application and a server, allowing data to be exchanged without reloading the entire web page.
8. Please mark the correct statement(s). What is the main advantage of using Web Workers in web applications?
· Improved performance through concurrent execution of JavaScript code
· Easier debugging of JavaScript code
· Reduced need for server-side processing
Summary
This unit offers a comprehensive study of the principles of web basics and interoperability, distinguishing between the internet as a global network of interconnected computers, and the web, a collection of documents and resources linked through hyperlinks and URLs. Key web technologies such as XML, XHTML, SVG, MathML, CSS, JSON, and JavaScript are explored to foster a better understanding of online communication. The unit also covers advanced web technologies like Web Workers and XMLHttpRequest, used for creating dynamic, interactive online experiences.
It begins with an examination of the internet, focusing on the Transmission Control Protocol/Internet Protocol (TCP/IP), a fundamental communication protocol on which the internet is built. The next sections delve into web content, studying HTML, SVG, and MathML, explaining how these technologies, sent over HTTP, construct web content.
The unit then moves to an exploration of programming languages and data formats essential for web interoperability, including JavaScript, CSS, JSON, and XML. These tools ensure seamless communication and interaction among different web components.
Finally, advanced topics such as XMLHttpRequest and Web Workers are discussed. XMLHttpRequest is integral to AJAX programming techniques, enabling asynchronous communication between web applications and servers. Web Workers allow web applications to carry out concurrent background tasks without hampering the main thread’s performance. The unit underscores the significance of interoperability among various web technologies, crucial for curating seamless online experiences.
Unit 2 – Web Servers

Study Goals

On completion of this unit, you will be able to …

… understand the basics of hypertext transfer protocols (HTTP) and their role in web communication.
… identify common web server environments and their features.
… describe the concept of content distribution networks and their benefits for website performance.
… explain the role of caching in web server optimization and performance

2. Web Servers
Introduction
Today’s Internet environment is highly dependent on web servers. They make it easier for users to browse and use many websites and online applications by allowing information to be exchanged between clients and servers. The Hypertext Transfer Protocol (HTTP) or its secure version, HTTPS, is used by a web server, which is a software or hardware device that delivers material such as web pages, photographs and other media over the internet (Fielding et al., 1999; Rescorla, 2018). Storing, processing and delivering web content to client devices such as browsers or mobile applications is the primary function of web servers.
Static and dynamic web servers can be divided into two categories. While dynamic web servers process server-side scripting languages such as PHP, Python and JavaScript and can dynamically create web pages based on user input or other criteria, static web servers process and serve static material (such as HTML, CSS and images; Mozilla Developer Network, 2023c).
Starting with hypertext transfer protocols, in the following sections we will examine different facets of web servers and their function in web interoperability.
2.1 The Hypertext Transfer Protocols
Hypertext Transfer Protocols (HTTP) are the building blocks of data communication on the Web. It is the standard protocol for transferring resources such as hypertext documents between clients and servers. This section covers the evolution of HTTP, its various iterations, the importance of HTTPS for secure communication, and HTTP status codes and techniques.
Evolution of HTTP
An important application layer protocol for the World Wide Web is the Hypertext Transfer Protocol (HTTP). It allows clients (often web browsers) and servers to communicate data and resources. Since its introduction, HTTP has undergone numerous changes that have improved its functionality, security and performance.
· HTTP/0.9 (1991): Tim Berners-Lee developed the first version of HTTP, a simple text-based protocol with only the GET function. It was designed to facilitate the retrieval of HTML documents from servers (Gamage, 2017).
· HTTP/1.0 (1996): The formalisation of HTTP/1.0 in RFC 1945 provided new features such as support for HEAD and POST methods, status codes and HTTP headers. In terms of communication and content negotiation between clients and servers, this version provided additional flexibility (Fielding et al., 1996).
· HTTP/1.1 (1997): Major improvements have been made to HTTP/1.1, first defined in RFC 2068 and then modified in RFC 2616. These changes include persistent connections, chunked transfer encoding, and request pipelining. These improvements increased the efficiency and performance of HTTP communication (Fielding et al., 1996; Franks et al., 1999).
· HTTP/2 (2015): The HTTP/2 protocol described in RFC 7540 has significantly changed the way data is transferred between clients and servers. It introduced multiplexing, which allows multiple requests and responses to be transmitted simultaneously over a single connection, reducing latency and improving the overall performance of web applications. In addition, HTTP/2 includes binary framing, server push and header compression (Belshe et al., 2015).
· HTTP/3 (2021): The latest version of the protocol is HTTP/3, described in RFC 9000. By using QUIC instead of TCP, the underlying transport layer protocol, real-time applications are better supported, congestion is more effectively controlled and latency is reduced (Bishop, 2021).
The development of the HTTP protocol has been instrumental in shaping today’s Internet, enabling the development of more complex and powerful online applications that provide users with a secure and reliable browsing environment.
The HTTP protocol has been continuously improved and developed to meet the ever-increasing demands of the World Wide Web. HTTP is likely to continue to evolve to support these advances as Web applications and Web sites evolve to provide a smooth and effective user experience. To keep up with the rapid pace of change, it is important for students of web technology to keep abreast of the latest developments and trends in the industry.
HTTP/1.0, HTTP/1.1, and HTTP/2: Key Differences
In the section we will examine the differences between HTTP/1.0, HTTP/1.1 and HTTP/2 in more detail, building on the knowledge presented in the subsection called " Evolution of HTTP".
HTTP/1.0 vs. HTTP/1.1
There are many similarities between HTTP/1.0 and HTTP/1.1 but there are also some important differences. These differences include (Fielding et al., 1996; Fielding et al., 1999):
· Persistent connections: The introduction of persistent connections in HTTP/1.1 reduced the overhead of opening a new connection for each request, as many requests could be made over a single connection. The throughput and latency of HTTP/1.0 was worse because a new connection had to be opened for each request.
· Request pipelining: Request pipelining is a feature added to HTTP/1.1 that allows clients to send many requests simultaneously without having to wait for each response. According to, this element increases the overall efficiency of communication.
· Host header: Thanks to HTTP/1.1, which requires the "host" header in requests, multiple domains can be hosted under a single IP address. This was not possible with HTTP/1.0.
HTTP/1.1 vs. HTTP/2
The goal of HTTP/2 is to address the shortcomings of HTTP/1.1 and improve online performance. The main differences between these versions are listed below (Belshe et al., 2015):
· Multiplexing: Multiplexing is a feature of HTTP/2 that allows multiple requests and responses to be sent simultaneously over a single connection. This reduces latency and improves performance, especially for resource-intensive websites.
· Binary framing: While HTTP/1.1 transmits data in clear text, HTTP/2 uses binary framing, which is more efficient and less prone to error.
· Header compression: According to Belshe et al. (2015), HTTP/2 uses the HPACK algorithm for header compression, reducing the amount of data that needs to be sent over the network (Belshe et al., 2015).
· Server push: With HTTP/2, servers can proactively provide resources to clients before they are specifically requested, making websites load even faster.
To optimize web applications and provide the best user experience, it’s important to understand the key differences between these two versions of HTTP. It’s important to keep up with the latest advances in Web standards and protocols. To further improve online performance and security, additional versions of HTTP are being developed, such as HTTP/3 (Bishop, 2021), which uses the QUIC transport protocol.
The Role of HTTPS in Secure Communication
In the context of the section “The Hypertext Transfer Protocols”, it is necessary to talk about HTTPS (Hypertext Transfer Protocol Secure) for secure internet communication. In order to keep sensitive information secret and protect it from eavesdropping and manipulation, HTTPS provides a secure and encrypted channel for data exchange between clients and servers (Rescorla, 2018).
How HTTPS Works
To encrypt data sent between clients and servers, HTTPS uses Transport Layer Security (TLS) or its predecessor Secure Sockets Layer (SSL). Three key security features of TLS/SSL are as follows (Rescorla, 2018):
· Confidentiality: Ensure that data transmitted between clients and servers remains private and cannot be intercepted or read by unauthorized third parties.
· Integrity: Confirmation that data has not been altered during transmission.
· Authentication: Verify the identity of the server, and occasionally the client, to ensure that communication is with the intended recipients.
The TLS handshake, which takes place when a client connects to an HTTPS server, establishes a secure connection. The server and client exchange cryptographic keys during the handshake, allowing them to establish a secure communication channel (Rescorla, 2018).
Importance of HTTPS for web applications
Due to growing concerns about data breaches, privacy and security, HTTPS has become increasingly important for web applications. There are a number of benefits to using HTTPS.:
· Protection of sensitive information: HTTPS ensures the security of sensitive data, including login details, personal information and financial transactions, by encrypting the data.
· Improved SEO and user trust: Modern browsers display a padlock icon or other visual indicators to tell users that the connection is secure, and search engines such as Google favor HTTPS sites in their search rankings. This makes the site more trustworthy and credible (Google Security Blog, 2014).
· Compliance with regulations: Websites must protect user data in accordance with a number of data protection laws, including the General Data Protection Regulation (GDPR). A critical component of meeting these requirements is putting HTTPS into practice.
HTTP Methods and Status Codes
To convey information about the outcome of a request and to specify the exact action a client wants to take with a resource, HTTP status codes and methods are essential elements of the HTTP protocol.
HTTP Methods
The action that a client wants to perform on a resource is represented by HTTP methods, commonly referred to as HTTP verbs. The main HTTP techniques are (Nottingham & Fielding, 2014):
· GET: Requests a representation of the specified resource.
· POST: Submits data to be processed by the specified resource.
· PUT: Updates the specified resource with the supplied data.
· DELETE: Deletes the specified resource.
· PATCH: Applies partial modifications to a resource.
· HEAD: Requests the headers of the specified resource without the actual data.
HTTP Status Codes
HTTP status codes are three-digit numbers used to describe the outcome of an HTTP request. They are divided into five classes based on the first digit:
· 1xx (Informational): The request was received, and the server is continuing to process it.
· 2xx (Successful): The request was successfully received, understood, and accepted.
· 3xx (Redirection): Further action is required to complete the request.
· 4xx (Client Error): The request contains bad syntax or cannot be fulfilled by the server.
· 5xx (Server Error): The server failed to fulfill a valid request (Nottingham & Fielding, 2014).
Some common HTTP status codes include:
· 200 OK: The request was successful, and the server has returned the requested data.
· 201 Created: The request was successful, and the server has created a new resource as a result.
· 400 Bad Request: The server cannot process the request due to invalid syntax.
· 404 Not Found: The requested resource could not be found on the server.
· 500 Internal Server Error: The server encountered an error while processing the request (Nottingham & Fielding, 2014).

GRAPHIC TITLE: HTTP Methods and Status Codes
[image:]
Source: Abdullah Karatas (2023).
Self-Check Questions
9. What are the key differences between HTTP/1.1 and HTTP/2?
The main differences include binary framing, multiplexing, header compression, and server push in HTTP/2.
10. Which protocol ensures secure communication over the web?
The main differences include binary framing, multiplexing, header compression, and server push in HTTP/2.
11. Please mark the correct statement(s). Which of the following are common HTTP methods?
· GET
· POST
· DELETE
· MODIFY
2.2 Common Web Servers
In this section we are talking about common web servers. Acting as an intermediary between users and web sites, web servers are essential to the process of delivering content to customers over the Internet. When creating and maintaining web applications and services, it is important to understand the many server environments that are commonly used. This section provides an overview of the Apache HTTP Server, Nginx and Microsoft Internet Information Services (IIS) web server environments. A comparison of their features, advantages and disadvantages in the concluding section will provide information on how well they suit different scenarios and applications.
Apache HTTP Server
One of the most popular web servers is the Apache HTTP Server, usually referred to simply as Apache for a number of reasons, including its open source status, customisability and extensive support (Netcraft, 2023). Since its beginnings as an open source project in 1995, Apache has been developed and maintained by the Apache Software Foundation (Apache Software Foundation, 2023). The server is compatible with a range of operating systems, including Windows, MacOS and Unix-based computers. It is also highly extensible, with a modular architecture that allows developers to add new modules to extend its capabilities.
Architecture and performance
Because of its modularity, Apache’s architecture allows users to change its functionality by adding or removing modules as needed (Apache Software Foundation, 2023). This modular design consists of a core server and several optional modules that can be turned on or off depending on the user’s needs. Modules can extend the functionality of Apache by adding new features such as support for other programming languages, authentication systems, or server-side scripting. For example, the “mod_rewrite” module provides the ability to rewrite URLs, while the “mod_php” module provides compatibility with PHP.
Several multi-processing modules (MPMs) are supported by the Apache architecture, and these MPMs control how the server responds to incoming client requests (Apache Software Foundation, 2023). The prefork, worker and event MPMs are the most commonly used MPMs in Apache. The worker and event MPMs use multiple threads within a single process to handle requests, while the prefork MPM is process-based, creating a separate process for each client request. The choice of MPM can affect performance, as each MPM has unique benefits and limitations depending on the use case.
Despite its adaptability and reliability, Apache has traditionally struggled to handle high performance scenarios with many concurrent connections. This limitation may be due in part to its process-based architecture, which splits each connection into a thread or process, potentially consuming resources and degrading performance when processing large numbers of connections (Apache Software Foundation, 2023).
Community, support, and security
Apache’s large community and support network is one of its greatest assets. Apache benefits from a large community of developers who participate in maintaining and improving the open source project. In addition, the Apache Software Foundation provides forums, email lists and documentation to help users with questions or problems (Apache Software Foundation, 2023). The security of Apache is generally considered to be high, and there is a long history of patching security vulnerabilities as they arise. Access control, encryption and Secure Sockets Layer (SSL) compatibility are just some of the security features that can be implemented on the server thanks to its modular design. The security of the server is also maintained through regular updates and patches (Apache Software Foundation, 2023).
Nginx
Another well-known web server environment is Nginx (pronounced "engine-x"). It was first made available by Igor Sysoev in 2004 and has recently gained prominence due to its excellent performance, reliability and economical use of resources (Nginx, 2023a). Nginx can act as a reverse proxy, load balancer and mail proxy, and is also capable of serving static content effectively. It supports a range of operating systems, including Windows, MacOS and Unix-based systems.
Architecture and performance
Due to its event-driven, asynchronous design, Nginx is particularly well suited to managing many concurrent connections (Reese, 2008). Compared to the process-based architecture of Apache, this architecture has many advantages in terms of performance and resource usage.
The event-driven model underlying the design of Nginx uses a single main/master process that oversees multiple worker processes (Nginx, 2023a). The main/master process is responsible for controlling the worker processes, reading configuration and processing signals. Incoming requests are handled by the worker processes, which also perform the actual data processing. Thanks to Nginx’s asynchronous approach based on non-blocking I/O operations and effective event notification methods provided by the underlying operating system, such as epoll on Linux or kqueue on FreeBSD, each worker process can handle multiple connections simultaneously (Reese, 2008).
Because of its event-driven architecture, Nginx can achieve high performance with low resource consumption. Nginx minimizes resource consumption and context switching by preventing the creation of a new thread or process for each connection, so it maintains high performance even under heavy load (Reese, 2008). In fact, Nginx has been shown to outperform traditional process-based servers with high parallelism in some circumstances, making it an increasingly attractive option for high-traffic websites and applications.
Features and use cases
As well as being a high performance web server, Nginx offers features such as reverse proxying, load balancing and mail proxying (Nginx, 2023a). It is an excellent option for websites with a lot of static content, as it serves static files very effectively. Nginx can also act as a load balancer, distributing incoming requests across multiple backend servers to increase performance and fault tolerance thanks to its reverse proxy capabilities. Because of its adaptability, Nginx can be used in a variety of environments, both as a standalone web server and as a component in more complex web designs.
Community, support, and security
Users and developers who actively participate in the Nginx community contribute to the growth and maintenance of the system. To support users, the Nginx project provides extensive documentation, mailing lists and forums" (Nginx, 2023b; Mailman.nginx.org, 2023; Nginx, 2023b). Nginx is considered to be secure and reliable in terms of security, with a proactive approach to addressing security issues as they arise. The server offers a number of security features to defend against common web-based threats, including rate limiting, access control and SSL/TLS encryption.
Microsoft Internet Information Services (IIS)
Microsoft has developed a web server environment known as Internet Information Services (IIS). Since Windows NT 4.0, IIS has been an integral part of the Windows Server operating system (Microsoft, 2023a). IIS is a popular option for hosting .NET applications because of its tight integration with the .NET Framework. Other programming languages and frameworks supported by the server environment include PHP and Python.
Architecture and performance
Similar to Apache, IIS uses a modular architecture that allows users to change the functionality of the server by adding or removing modules as needed (Microsoft, 2023a). The modularity of IIS allows it to support a variety of functions such as authentication, caching and compression, as well as the integration of multiple programming languages and frameworks such as ASP.NET, PHP and Node.js.
To process incoming requests, IIS uses a hybrid architecture that combines both process-based and thread-based approaches (Microsoft, 2023a). By adapting to different workloads and usage conditions, this approach allows IIS to optimise performance and resource usage. IIS is tightly coupled to the underlying platform and can benefit from Windows-specific optimisations, so it generally offers competitive performance, especially when running on the Windows operating system.
Features and use cases
The smooth interaction of IIS with other Microsoft technologies, such as the .NET Framework and SQL Server, is one of its key advantages and makes it a desirable choice for organisations with significant investments in the Microsoft ecosystem (Microsoft, 2023a). IIS can support a wide range of web applications and scenarios thanks to its support for a number of additional features such as URL rewriting, WebSocket support and WebDAV.
Community, support, and security
As a commercial product, IIS enjoys dedicated support from Microsoft, which includes access to documentation, product upgrades and customer support channels (Microsoft, 2023a). Although the IIS community is smaller than the communities around open source projects such as Apache and Nginx, it still provides useful tools such as forums and blogs to help users with questions and problems. Because Microsoft aggressively fixes vulnerabilities and regularly releases security updates, IIS security has improved significantly in recent years. To defend against common web-based attacks, the server also offers a range of security features such as SSL/TLS encryption, access control and application isolation.
Self-Check Questions
12. List two popular web server software?
Apache and Nginx are two popular web server software.
13. Fill in the gaps: Why is Nginx so performant?
Because of its event-driven architecture, Nginx can achieve high performance with low resource consumption. Nginx minimises resource consumption and context switching by preventing the creation of a new thread or process for each connection, so it maintains high performance even under heavy load.
2.3 Content Distribution Networks
The need for effective, secure and high-performance web content distribution has increased dramatically with the growth and transformation of the Internet. The need to meet these expectations has led to the emergence of Content Distribution Networks (CDNs), which enable websites to deliver content to users around the world with lower latency, higher reliability and improved security. This chapter discusses the basic ideas, underlying architecture, major vendors, and performance and security improvements that CDNs offer.
The "Introduction to CDNs and their purpose" subsection is the first of the section, and here we lay a solid foundation for the principles of CDNs and their main objectives.
Introduction to CDNs and Their Purpose
As a solid foundation for understanding the more complex topics that follow, it is important to develop a thorough understanding of the basic ideas and goals of CDNs in this section.
Large-scale networks of geographically distributed computers, known as Content Distribution Networks (CDNs), have been created specifically to deliver web content to end users with lower latency, higher reliability and improved security (Pathan et al., 2008). The main aim of CDNs is to reduce the distance between users and the content they are accessing. This reduces page load times and improves the user experience. Sites with a large amount of static or dynamic content, such as photos, videos or sites with a global audience, should pay particular attention to this aspect.
CDNs achieve this by caching and storing web material on a large number of servers, called edge servers, which are strategically located close to end users (Pathan et al., 2008). The CDN forwards a user’s request for content to the nearest edge server, which then sends the requested content to the user’s browser. The content is retrieved from the origin server and cached for later use if it is not already available on the edge server. Because consumers can immediately access content from nearby edge servers, rather than waiting for it to be sent long distances from the origin server, this technique significantly minimises latency.
CDNs also improve the security and reliability of the distribution of digital material. CDNs can reduce the impact of traffic spikes and defend against distributed denial of service (DDoS) attacks by spreading the load across multiple servers (Pathan et al., 2008). To further protect content and user data, they often offer built-in security measures such as SSL/TLS encryption and web application firewalls (WAFs).
CDN Architecture and Components
The structural elements and components that make up a typical CDN are explained in more detail in this section. This will help you understand the complex details of CDN functionality and design.
Edge servers, origin servers, DNS servers, content distribution and caching systems and other key components make up the CDN architecture (Pathan et al., 2008). Each element is essential to the effective delivery of online content to visitors.
· Edge servers: At the heart of the CDN architecture are these servers, carefully located close to end users. Edge servers ensure the rapid delivery of content to nearby users by caching and storing web content. By reducing the distance between users and the content they request, the distribution of these servers minimises latency (Pathan et al., 2008).
· Origin servers: The origin server hosts the original copies of web content and is the primary source from which edge servers fetch content that is not already cached. Origin servers are typically managed by the content owner and can be located in a single data center or distributed across multiple locations (Pathan et al., 2008).
· DNS servers: Domain Name System (DNS) servers play a critical role in CDN functionality by resolving the domain names of requested content to the IP addresses of the most appropriate edge servers. This ensures that user requests are routed to the nearest edge server for optimal performance (Pathan et al., 2008).
· Content distribution and caching systems: These systems are responsible for managing the efficient distribution of content from origin servers to edge servers, as well as maintaining cache consistency and expiration policies. Content distribution systems employ various algorithms to determine when and where to cache content based on factors such as popularity, geographic location, and user preferences (Pathan et al., 2008)
In summary, the design of a CDN consists of interrelated parts that work together to reduce latency, increase reliability of content delivery and improve security.
GRAPHIC TITLE: CDN Servers
[image:]
Source: Abdullah Karatas (2023).
Popular CDN Providers (e.g., Cloudflare, Akamai, and Amazon CloudFront)
In this subsection,P “Popular CDN providers (e.g. Cloudflare, Akamai, Amazon CloudFront)”, we will look at some of the top CDN providers on the market.
· Cloudflare: With a network of data centres in over 200 locations in more than 100 countries, Cloudflare is a well-known CDN service known for its extensive global coverage (Cloudflare, n.d.). In addition to its ability to distribute information, Cloudflare also provides a number of security features, such as SSL encryption, DDoS prevention and a web application firewall (WAF). In addition, Cloudflare offers performance enhancement solutions such as image compression, intelligent routing, and HTTP/2 prioritisation (Cloudflare, n.d.).WAF
A WAF is a specialized firewall that monitors and filters data packets, protecting web applications from various internet-based threats like XSS, SQL injection, and DDoS attacks.

· Akamai: Akamai, a leader in the CDN sector, has a large global network of servers that it uses to deliver material to users more reliably and with less latency (Akamai Technologies, n.d.). In addition to content delivery, video streaming, performance optimisation and security solutions, Akamai offers a wide range of services. DDoS protection, WAF and bot management are just some of the security services they offer (Akamai Technologies, n.d.).
· Amazon CloudFront: For those currently using the AWS ecosystem, Amazon CloudFront is a popular option as it is part of the Amazon Web services (AWS) suite and works seamlessly with other AWS services (AWS, n.d.a). With a pay-as-you-go pricing plan and a large network of edge sites, CloudFront is an affordable choice for many businesses. In addition, CloudFront offers security tools such as WAF, SSL/TLS encryption and DDoS protection (AWS, n.d.a).
Although there are many CDN providers, each with their own features, pricing structures and coverage areas, Cloudflare, Akamai and Amazon CloudFront stand out as the most popular options among specialists in the field.
Performance and Security Enhancements Using CDNs
In the final subsection, we will explore the various performance and security benefits of CDNs. Understanding these improvements is critical as they consider implementing CDNs in their web projects to optimise the user experience and protect their online assets.
· Performance enhancements: CDNs offer several performance improvements, including reduced latency, faster page load times, and decreased server load due to caching (Pathan et al., 2008). By serving content from geographically distributed edge servers, CDNs minimize the distance between users and the content they request, leading to more efficient content delivery. Additionally, CDNs use various optimization techniques such as compression, smart routing, and HTTP/2 prioritization to further enhance performance (Pathan et al., 2008).
· Security enhancements: CDNs provide an additional layer of security for web content delivery. They can mitigate Distributed Denial of Service (DDoS) attacks by absorbing and distributing the excessive traffic across their extensive network of servers (Pathan et al., 2008). Furthermore, CDNs offer built-in security features such as SSL/TLS encryption for secure data transmission and Web Application Firewalls (WAFs) to protect against application-layer attacks (Pathan et al., 2008). Some providers also offer advanced security solutions such as bot management and real-time threat intelligence.
In summary, CDNs play a significant role in enhancing the performance and security of web content delivery. By reducing latency, optimizing content delivery, and providing robust security features, CDNs help create a seamless and secure user experience.
Self-Check Questions
14. Fill in the gaps: What is the primary purpose of a Content Distribution Network (CDN)?
A CDN’s primary purpose is to distribute web content to users from a server that is geographically closer, thus reducing latency and improving site performance.
15. Multiple choice: Which of the following are benefits of using a CDN?
· Reduced latency
· Increased server load
· Enhanced security
· Limited content availability
2.4 Caching
This section examines the various facets of caching in the context of web servers. A technique called caching is used to store and provide copies of frequently accessed data or materials, thereby reducing system load and improving performance. Caching is essential for improving response times, reducing server load and maximising resource usage in web servers. The importance of caching in web servers, browser caching, server-side caching, reverse proxy caching and cache control headers, and best practices are covered in the following subsections.
Importance of Caching in Web Servers
Web servers need to implement caching because it improves usability and overall speed. In this section, we explain the main benefits of web server caching and how it helps web applications run more efficiently.
Reduced latency: Caching helps to minimize the time taken to serve a requested resource. By storing a copy of frequently accessed content, web servers can quickly serve it to the users, reducing the latency (Microsoft, 2023). As a result, users experience faster page loads and more responsive websites, leading to a better overall experience.
Lowered server load: By providing users with cached content rather than dynamically creating it for each request, caching also has the distinct advantage of reducing the load on the web server. According to (AWS, n.d.b), this load reduction can help minimise server congestion and ensure consistent performance. In addition, a reduced server load allows for more effective resource management, which can reduce the cost of running the web server.
Bandwidth savings: By serving cached content, web servers can reduce the amount of data transmitted over the network. This results in bandwidth savings and faster content delivery to end-users (Gill et al., 2007). In environments where bandwidth is limited or expensive, this can be a crucial factor in optimizing the performance of web applications.
Improved scalability: Caching allows web servers to handle a larger number of requests with limited resources. As cached content can be served more quickly and with fewer resources, web servers can efficiently serve a greater number of users (Podlipnig & Böszörmenyi, 2003). This improved scalability enables web applications to grow and accommodate increasing traffic without requiring significant additional investment in infrastructure.
Browser Caching
An important component of online caching is browser caching, which focuses on storing and serving content directly to the user’s web browser. By minimising repeated requests for static resources such as images, style sheets and scripts, this strategy can significantly improve web performance and reduce server load. This section covers the basic components of browser caching and some typical browser-specific caching algorithms.
Web browsers employ various caching mechanisms to store resources locally, including:
1. Memory Cache: Stores resources in the browser’s memory for fast retrieval during the browsing session. Memory cache is typically used for short-lived or small-sized resources, as the data is discarded once the browsing session ends (Krishnamurthy & Wills, 2000).
2. Disk Cache: Stores resources on the user’s hard drive, enabling the browser to reuse these resources across multiple browsing sessions. Disk cache is suitable for larger or frequently accessed resources, as it persists even after the browsing session ends (Krishnamurthy & Wills, 2000).
3. Service Workers: Advanced browser caching mechanism that allows developers to create custom caching strategies and control resource retrieval programmatically. Service workers enable features such as offline access and background synchronization, further enhancing web performance (Google Developers, 2023).
GRAPHIC TITLE: Browser Cashing Mechanims
[image:]
Source: Abdullah Karatas (2023).
Browser caching offers numerous benefits, such as:
· Faster page load times, as the browser can use cached resources instead of downloading them again (O’Reilly & Totty, 2002).
· Reduced server load and bandwidth consumption, as fewer requests are made to the server (Mwangi, 2021).
· Improved user experience, as users spend less time waiting for resources to load.
In summary, browser caching is an essential component of web caching that has a major impact on user experience, server load and performance. Online developers can improve the performance of their online applications by understanding and using efficient browser caching methods.
Server-Side Caching
Another essential component of online caching is server-side caching, which focuses on storing and serving content directly on the web server. This strategy optimises resource usage, shortens response times and reduces server load (Chakrabarti & Kumar, 2011). In this section, we will explain the main components, benefits and common implementation methods of server-side caching.
Server-side caching involves storing frequently accessed data or precomputed results on the server. When a user requests a resource, the server can serve the cached content instead of dynamically generating it, reducing the processing time and resources required (Chakrabarti & Kumar, 2011). Some common types of server-side caching include:
1. Full-page caching: In this approach, the server caches entire HTML pages and serves them in response to user requests. This method is particularly effective for static content or content that does not change frequently (Challenger et al., 2000).
2. Partial-page caching: This technique involves caching specific parts of a web page, such as frequently used components or sections. When a user requests a page, the server can combine cached parts with dynamically generated content to construct the final response (Challenger et al., 2000).
3. Database caching: Database caching involves storing the results of database queries or precomputed aggregates, which can help to reduce the load on the database server and improve query performance (Soundararajan & Amza, 2006).

GRAPHIC TITLE: Server-Side Caching
[image:]
Source: Abdullah Karatas (2023).
Server-side caching offers several benefits, such as:
1. Improved response times, as the server can serve cached content more quickly than dynamically generated content (Chakrabarti & Kumar, 2011).
2. Reduced server load and resource usage, as caching allows the server to avoid repeatedly generating the same content (Challenger et al., 2000).
3. Enhanced scalability, as cached content can be served more efficiently, allowing the server to handle a larger number of requests (Soundararajan & Amza, 2006).
Reverse-Proxy Caching (e.g., Varnish)
Reverse-proxy caching is a powerful technique used to improve web performance by placing a caching proxy server between clients and the web server (NGINX, 2023). The idea of a reverse proxy cache is illustrated in Figure 2.4.1, a network architecture diagram of a typical web infrastructure. The diagram illustrates how a reverse proxy cache can improve web performance by intercepting and caching content as it travels through the online infrastructure. The client device, the web server and the reverse proxy cache are the three main components shown in the diagram. The reverse proxy cache intercepts and stores the material when the client device sends a request to the web server. The cached content is then stored on the server, separate from the reverse proxy cache server. The reverse proxy cache can significantly reduce the load on the web server and shorten the time required to develop and deliver content by caching frequently visited content.
GRAPHIC TITLE: Benefits of Reverse-Proxy Code in Web Architecture
[image:]
Source: Abdullah Karatas (2023).
Figure 2.4.1: Visualization of the benefits of a reverse proxy cache in the web architecture
One popular reverse-proxy caching solution is Varnish, an open-source HTTP accelerator designed for content-heavy web applications (Varnish Software, 2023). In this section, we will discuss how reverse-proxy caching works, its benefits, and how Varnish exemplifies this approach.
Where possible, reverse proxy caching delivers content that has already been cached to the web server without client requests. The reverse proxy determines whether the cached copy of the resource is accessible and valid when a client requests it. If it is not, it forwards the request to the web server, caches the response and delivers it to the client (Apache Traffic Server, 2023). If this is the case, the cached content is served.
Varnish is a widely used reverse-proxy caching solution that offers features such as (Varnish Software, 2023):
· High-performance caching, with support for both in-memory and disk-based storage.
· Flexible cache invalidation using cache tags or time-to-live (TTL) values.
· A powerful configuration language (Varnish Configuration Language, or VCL) that allows developers to customize caching behavior and implement advanced cache policies.
Reverse-proxy caching, as exemplified by Varnish, offers several benefits, such as:
· Improved performance and response times, as the reverse proxy can serve cached content faster than the web server (Nginx, 2023).
· Reduced server load, as the reverse proxy intercepts requests and serves cached content, reducing the number of requests that reach the web server (Nginx, 2023).
· Enhanced scalability, as the reverse proxy can efficiently serve a large number of clients, allowing web applications to accommodate growing traffic (Varnish Software, 2023).
Cache Control Headers and Best Practices
Cache control headers play a significant role in managing web caching behavior, as they provide guidelines to browsers and caching proxies on how to cache and serve resources (Fielding et al., 1999). In this section, we will discuss common cache control headers, their usage, and best practices for implementing effective caching strategies.
Some common cache control headers include (Fielding et al., 1999):
1. Expires: Sets an expiration date for the resource, after which it is considered stale and must be revalidated or fetched again from the server.
2. Cache-Control: Offers granular control over caching behavior using directives such as “max-age”, “no-cache”, “no-store”, “private”, and “public”.
3. ETag: Provides a unique identifier for the resource, enabling the server to determine if the cached resource is still valid.
4. Last-Modified: Indicates the date and time when the resource was last modified, which can be used by browsers and caching proxies to determine if the cached resource is up to date.
To implement effective caching strategies, consider the following best practices:
· Set appropriate expiration times: Choose suitable expiration times based on the type and frequency of updates of your resources. Static resources, such as stylesheets and images, can usually have longer expiration times, while dynamic content may require shorter expiration times or even no caching at all (Krishnamurthy & Wills, 2000).
· Use Cache-Control directives wisely: Utilize the various Cache-Control directives to customize caching behavior. For instance, use private for user-specific content, no-cache for resources that should be revalidated with the server, and max-age to set the maximum time a resource should be cached (Krishnamurthy & Wills, 2000).
· Leverage ETags and Last-Modified headers: Employ ETag and Last-Modified headers to enable conditional requests and efficient revalidation of resources. This can help reduce bandwidth usage and improve performance, especially for resources that change infrequently (Krishnamurthy & Wills, 2000).
· Consider cache hierarchy: Be aware of the cache hierarchy, which includes browser caching, server-side caching, and reverse-proxy caching. Implement caching strategies that take advantage of each level of caching while considering the trade-offs in terms of performance, server load, and resource usage (Challenger et al., 2000).
Self-Check Questions
16. What are the three main types of caching in web servers?
Browser caching, server-side caching, and reverse-proxy caching.
17. Fill in the gaps: Why is caching important in web servers?
Caching improves performance by reducing latency, decreasing server load, and speeding up content delivery.
Summary
This unit explores the role of web servers in internet communication, focusing on static and dynamic servers that process and serve content. It discusses Hypertext Transfer Protocols (HTTP), used to transfer resources like hypertext documents, and highlights the importance of HTTPS for secure communication.
The unit also covers popular web servers like Apache HTTP Server, Nginx, and Microsoft Internet Information Services (IIS), offering a comparison of their features. It further explains Content Distribution Networks (CDNs) that enhance global content delivery, ensuring lower latency, and improved reliability and security.
Finally, the unit examines caching, a technique that stores frequently accessed data, reducing system load and improving performance. It provides insights into browser caching, server-side caching, and best practices in caching to optimize web server resource usage.
Unit 3 – Machine-to-Machine Communication

Study Goals

On completion of this unit, you will be able to …

… explain the role of Web services in achieving software interoperability.
… understand the principles and use-cases of the REST architectural style.
… describe the importance and application of schema languages in data consistency.
… illustrate the necessity of Web service documentation using WSDL and OpenAPI.

3. Machine-to-Machine Communication
Introduction
The advent of the World Wide Web has revolutionized information transfer and communication, spawning numerous innovations across various industries. As the Web grows in size and complexity, so too does the need for effective and efficient ways for different systems to interact, collaborate, and share information. This chapter introduces the concept of “Machine-to-Machine communication”, a critical aspect of Web interoperability, and explores its fundamental components and their significance in Computer Science.
This chapter’s topics are integral to understanding Web interoperability. Web-services and REST architecture are fundamental techniques for achieving interoperability on the Web, while schema languages enable clear, unambiguous communication between different systems. Finally, documenting Web services using standards like OpenAPI and WSDL ensures they can be easily understood and utilized by developers, facilitating trust and promoting interoperability.
3.1 Web Services
Web services play a critical role in software interoperability, the ability of distinct systems to interact seamlessly. These standards-based interfaces, accessible over the internet or private networks, allow varied software systems to communicate and exchange data, irrespective of their underlying architecture or platform (Curbera, et al., 2002).
Web services enable machine-to-machine communication with minimal human intervention and find applications across diverse domains from e-commerce to healthcare (Papazoglou, 2003). To facilitate this communication, there are different ways to implement web services, including but not limited to SOAP (Simple Object Access Protocol), REST (Representational State Transfer), RPC, and WebDAV. Among these, SOAP and REST are often considered primary types due to their wide usage and unique strengths in different use cases (Stackify, 2017).
However, creating effective Web services is not just about facilitating communication; considerations like security, scalability, reliability, and performance are also crucial.
Introduction to Web-services
Web services, which are application programming interfaces (APIs), aid in the transmission of data across the internet by utilizing standard protocols like HTTP (Hypertext Transfer Protocol). They serve as a vital tool for machine-to-machine interaction and are crucial for attaining web interoperability (Pautasso et al., 2008). These Web services enable different applications to communicate, irrespective of the specific programming language, platform, or internal protocols in use.
The principles of service-orientation, including reusability, loose coupling, and abstraction, underlie Web services, contributing to a flexible and dynamic software architecture (Erl, 2007). These services are widely employed for an array of applications such as consolidating business processes, data exchange, and the development of composite applications and services.
[image:]
Figure 1: A simplified representation of Web services communication.
Let’s look at a simple example. Consider an e-commerce site that needs to provide shipping estimates to its customers. Instead of calculating this in-house, the site could leverage a Web service from a third-party logistics company. This Web service would take the shipping details as input (origin, destination, package weight, etc.) and return the estimated shipping cost. Both systems, the e-commerce site and the logistics company, need not know the internal workings of each other. They only need to understand the shared language of the web service.
In the subsequent sections, we will delve deeper into the SOAP and REST Web service types, their application, advantages, and disadvantages.
Protocols for Web-services: SOAP and REST
Web services principally operate on certain protocols that determine how they interact with other systems. SOAP (Simple Object Access Protocol) and REST (Representational State Transfer) are two such protocols that enjoy widespread usage (Stackify, 2017).
Initially crafted by Microsoft, SOAP is a protocol for the interchange of structured data in Web services employing XML (Box, et al., 2000). Encoded in XML, SOAP messages can be transmitted over any transport protocol like HTTP, SMTP (Simple Mail Transfer Protocol), or even JMS (Java Messaging Service). Although this versatility gives SOAP a high degree of flexibility, it can also make it more complex and resource-hungry than alternative approaches (Erl, 2005).
SOAP often finds its use in enterprise-scale web services, where transactional dependability and security are critical. It facilitates WS-Security, a set of extensions offering various security features like message integrity, confidentiality, and single sign-on (OASIS Standard, 2004). SOAP also accommodates WS-ReliableMessaging, ensuring message delivery even during network failures (OASIS Standard, 2007). (NEED TO ADD SIDEBOX - WS-* refers to a collection of evolving Web service specifications, including but not limited to WSDL, SOAP, and UDDI. These are not governed by a single body. More details can be found in (Wikipedia, 2023d))
In contrast, Roy Fielding proposed REST as an architectural style rather than a protocol in his doctoral dissertation (Fielding, 2000). RESTful Web services take advantage of HTTP’s simplicity and widespread use by using its standard HTTP methods for operations (GET, POST, PUT, and DELETE).
RESTful services, in contrast to SOAP, operate statelessly; each request must contain all information required for the server to understand and act upon it. This factor encourages simple service scalability and reduces the complexity of the server architecture (Richardson & Ruby, 2007).
In most cases, JSON (JavaScript Object Notation) is used by RESTful services to exchange data because it is simpler and lighter than XML, especially in web and mobile applications. Although these can be added using other technologies like OAuth for security and HTTP headers for reliability, REST does not naturally offer the same level of security and transactional reliability as SOAP.
Let’s look at an illustration to better understand these ideas. A request to retrieve book information from a library system using a SOAP-based Web service might look like this:
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:web="http://www.example.com/">
 <soapenv:Header/>
 <soapenv:Body>
 <web:GetBookDetails>
 <web:BookId>123</web:BookId>
 </web:GetBookDetails>
 </soapenv:Body>
</soapenv:Envelope>

The same task would be executed in a RESTful service by dispatching a simple HTTP GET request to a specific URL, for instance, http://www.example.com/books/123.
When developing a web service, understanding the advantages and limitations of both SOAP and REST is crucial as the protocol selected can significantly influence the service’s capabilities, scalability, and reliability.
Web-services Standards
To function effectively and reliably, Web services rely on a set of standards. These standards, put forth by international bodies such as the World Wide Web Consortium (W3C) and the Internet Engineering Task Force (IETF), ensure interoperability between different systems and platforms.
In the world of SOAP-based web services, several standards govern its operation, including SOAP itself, WSDL (Web services Description Language), and UDDI (Universal Description, Discovery, and Integration).
As mentioned earlier, SOAP is a protocol that enables the sharing of formatted and typified data between systems through XML, accommodating a range of transport protocols (Box et al., 2000). A deeper understanding of web services requires an exploration of the foundational principle of service-oriented architecture (SOA). SOA functions as a blueprint that guides coordinated interactions between different services on the internet to implement business functions. This structure is upheld by three primary entities: the service provider who offers the web service, the service registry that serves as a hub for service descriptions, and the service consumer that finds and employs the services documented in the registry. This triumvirate is central to the SOA blueprint, creating an environment where services engage effortlessly. This idea, frequently illustrated as the "SOA triangle," is elucidated further in the resources found (Wikipedia, 2023e) and (Wikipedia, 2023f).
Advancing from this base, it is appropriate to discuss WSDL and UDDI, which are essential constituents of web services. WSDL, a language grounded in XML for detailing interfaces, outlines the services a web service provides. It stipulates the requisite input and output parameters for these services, along with vital specifications like the communication protocol and message formatting (Christensen et al., 2001).
Contrastingly, UDDI operates as a protocol allowing companies to catalogue and find each other’s web services. Although its prevalence has waned, UDDI played a central role in the early development phase of web services, aiding in the fluid discovery of services in a business-to-business (B2B) scenario (Clement, Hately, von Riegen & Rogers, 2004).
In contrast, RESTful Web services utilize standards such as HTTP and JSON. As previously discussed, REST capitalizes on the simplicity and ubiquity of HTTP, reflecting CRUD (Create, Read, Update, Delete) actions, that are classically used for data management in software development, through HTTP methods (GET, POST, PUT/PATCH, DELETE).
[image:]
Table X: Using HTTP requests for data management in Web applications
Known as JavaScript Object Notation, or JSON, this lightweight data-exchange format is easy for both humans and computers to read and write (Crockford, 2006a). Due to its simplicity and compact nature compared to XML, JSON is frequently the format of choice for data exchange in RESTful web services.
A representation of a book in JSON might look something like this:
{
 "title": "Web Interoperability",
 "author": "Prof. XYZ",
 "year": 2023,
 "publisher": "University Press"
}

In this case, the information about the book is contained within a JSON object, where each attribute of the book is represented by a distinct key-value pair.
Gaining a thorough understanding of these standards is essential if you want to design, develop, and run Web services effectively. When creating web services, they help developers follow best practices and ensure compatibility.
Security Considerations in Web services
Web services, as with all technologies that facilitate data transfer across networks, must address a host of security concerns. These encompass, but aren’t limited to, ensuring data integrity, confidentiality, authentication, and authorization (Bertino et al., 1999).
Data integrity ensures the data transmitted from origin to destination remains unaltered throughout the transfer. This is often maintained using cryptographic techniques like hashing and digital signatures.
Contrarily, confidentiality guarantees that only authorized recipients can comprehend the transmitted data. This is frequently safeguarded by encryption methods, transforming data into a format that can only be interpreted by authorized individuals (Schneier, 1995).
Authentication is centered around validating the identities of parties participating in the communication. It’s crucial to mitigate impersonation attacks where an attacker masquerades as a valid user or system. Authentication protocols vary from basic username-password pairings to stronger solutions like digital certificates and two-factor authentication.
Authorization is about verifying that an authenticated user or system possesses the necessary permissions to carry out requested actions. For instance, a user may be authenticated to access a web service, but they may lack the authorization to access all data or perform all functions offered by the service (Ferraiolo & Kuhn, 1992).
In SOAP-based web services, security is typically managed via the WS-Security standard. WS-Security provides an array of security measures including message integrity via XML Signature, confidentiality via XML Encryption, and single sign-on via Security Assertion Markup Language (SAML). It also supports multiple security tokens, including X.509 certificates, Kerberos tickets, and username/password tokens (OASIS Standard, 2004).
Alternatively, RESTful Web services largely depend on the inherent security mechanisms of the HTTP protocol. HTTPS, the secure variant of HTTP, provides data integrity and confidentiality via Transport Layer Security (TLS). RESTful services often manage authentication and authorization through standards such as OAuth and OpenID Connect, or via HTTP Basic or Digest authentication (Parecki, et al., 2019).
To illustrate how HTTPS maintains data privacy and integrity, consider a scenario where a client transmits a GET request to a RESTful service utilizing HTTPS. In the SSL/TLS handshake phase, the client utilizes the server’s public key to encrypt a pre-master secret, which it then dispatches to the server. Using its private key, the server decrypts the pre-master secret. Following this, both parties independently generate identical session keys derived from the pre-master secret, to be used in the encryption and decryption process. As either party, the client or server, sends a request or response, this data is encrypted using the corresponding session keys, effectively shielding it from unauthorized third-party access. Only the server has the means to decrypt the request through its session key, and in contrast, only the client can decrypt the server’s reply through its distinct session key. This mechanism guarantees the confidentiality of the communication, preventing unauthorized entities from decrypting the intercepted data without the exclusive session keys held by the original communicating parties.
Grasping these security considerations is vital for any computer science professional dealing with web services. It aids not only in architecting secure services but also in recognizing and countering potential security threats.
Self-Check Questions
18. Multiple Choice: What are the two primary types of Web services and what unique strengths do they offer?
· SOAP and REST
· HTTP and XML
· JSON and XML
· HTTP and SMTP
19. Fill in the gaps: Describe the role of standards in web services.
Standards in Web services such as SOAP, WSDL, HTTP, and JSON, among others, ensure interoperability and provide best practices for developers.
20. Multiple Choice: Which of the following security measures is often employed in RESTful Web services to ensure data confidentiality and integrity?
· XML Encryption
· WS-Security
· HTTPS
· SOAP envelope
3.2 The REST Architecture Style
Representational State Transfer, often abbreviated as REST, is an architectural style that has significantly shaped contemporary web application design. Conceived by Roy Fielding in his 2000 doctoral dissertation, REST introduces a series of design guidelines for establishing scalable, stateless, cacheable services that utilize the web’s protocols and conventions (Fielding, 2000).
In contrast to protocol-specific styles like SOAP, REST isn’t tied to any protocol, although it’s typically implemented via HTTP. REST employs standard HTTP methods such as GET, POST, PUT, and DELETE to perform actions on web resources, which are distinctively identified by URIs (Uniform Resource Identifiers). REST’s stateless nature—each request holds all the data necessary for its understanding and processing—facilitates the effortless scalability of RESTful services.
We will examine the guiding principles of REST and weigh its benefits and shortcomings in this section. We’ll delve into the specifics of RESTful web services, including their architecture and application. We’ll also go over how to create REST APIs and provide examples to help make these ideas clearer.
In-depth knowledge of the REST architectural style and its significance in contemporary web development are the goals of this section. Aspiring computer scientists, learning about REST and its applications will equip you with the knowledge and abilities necessary to design and implement efficient, scalable, and resilient web services.
Principles of REST
The architectural style of REST, as proposed by Fielding (2000), is built upon six central principles that steer the conception and development of RESTful services. Grasping these principles can establish a robust base for creating effective and scalable web services.
1. Client-Server Architecture: REST endorses a clear delineation between the client (frontend) and the server (backend), which boosts the portability of the user interface and enhances the scalability of server components. This separation also allows for the independent evolution of both.
2. Stateless: REST dictates that each client’s request to a server must reply all the essential data for the server to interpret and cater to the request. The server shouldn’t retain any client context between requests, leading to improved scalability as the server isn’t required to preserve, update, or relay session state.
3. Cacheable: Server responses can be marked as cacheable or non-cacheable. Reusable cacheable responses can be leveraged for identical responses in the future, improving efficiency, responsiveness, and diminishing server load.
4. Uniform Interface: The standardization of the interface streamlines the architecture, enhances visibility, and detaches the client from the server. The interface is characterized by four constraints: resource identification, resource manipulation through representations, self-descriptive messages, and hypermedia as the engine of application state (HATEOAS).
5. Layered System: The architecture may consist of layered components, each with its unique functionality. Generally, a client cannot distinguish whether it’s connected directly to the end server or to an intermediary layer, which fosters separation of concerns.
6. Code on Demand (optional): Servers can momentarily augment or customize a client’s functionality by transmitting executable code.
Let’s explore a basic example to illustrate these principles:
import requests

Client-Server Architecture: Client makes a request to the server.
Stateless: The server doesn’t need to know previous requests.
response = requests.get(‘https://api.example.com/resources/1’)

Cacheable: Responses can be cached and used for future requests.
cached_responses = {}
cached_responses[‘https://api.example.com/resources/1’] = response.json()

In the above script, we have illustrated the client-server architecture, the stateless nature of REST, and how responses can be cached for future use.
To further illustrate the principle of “resource manipulation through representations,” let’s consider a scenario where the client modifies a resource on the server by sending a representation of the resource with the changes. Here is how it can be done:
Uniform Interface: Resource manipulation through representations.
The client sends a JSON representation of the resource with the changes to the server.
updated_data = {‘name’: ‘New Resource Name’}
response = requests.put(‘https://api.example.com/resources/1’, json=updated_data)

In this extended example, the client is manipulating the resource by sending a JSON representation of the resource with the desired changes to the server using a PUT request. This is in line with the REST principle that allows clients to manipulate resources through representations. You can read more about this principle in (Wikipedia, 2023g).
Benefits and Limitations of REST
When considering the adoption of the Representational State Transfer (REST) architectural style for designing and implementing web services, it’s essential to weigh its benefits and drawbacks. Fielding, who introduced REST, aimed to optimize the architecture for the World Wide Web. As a result, REST is equipped with features that effectively meet the requirements of web-based applications. However, it also presents certain challenges that developers must be prepared to handle (Fielding, 2000).
Benefits of REST
1. Ease of Use: The operation of REST is grounded in HTTP, employing its standard methods, which contributes to its comprehensibility and ease of implementation. The uniformity of its interface and its stateless operations streamline interactions between the client and server, lowering the learning burden on developers (Fielding & Taylor, 2002).
2. Capacity to Scale: RESTful services being stateless, servers aren’t required to store individual session details for each client, thus reducing server load. This functionality improves bolsters the scalability of RESTful services, granting them the ability to manage a essential amount of requests (Pautasso et al., 2008).
3. Capability for Caching: REST provides the option to designate responses as cacheable, leading to performance enhancements and decreased server load. Cacheable responses can then be repurposed for matching requests in the future, negating the need to contact the server each time (Fielding & Taylor, 2002).
4. Interoperability: RESTful services, thanks to their reliance on standard web protocols, demonstrate broad compatibility with a range of platforms and technologies. This interoperability encourages the integration of varied systems, a frequent necessity in our modern, interconnected digital environment (Pautasso et al., 2008).
Although REST brings several advantages to the table, it doesn’t serve as a universal solution. It comes with its own set of constraints that must be acknowledged during the design phase of web services.
Limitations of REST
1. Statelessness Drawbacks: While statelessness boosts scalability, it can also inflate overheads in situations where the client needs to transmit a essential amount of data with every request to provide the required context (Richardson & Ruby, 2007).
2. Security Concerns: REST places its security infrastructure on the foundational protocol (generally HTTP or HTTPS), employing it for encryption, authentication, and authorization tasks. This arrangement might meet many application needs, but for those with strict security necessities, it may fall short, necessitating additional security implementations (Richer et al., 2017).
3. Standardization Deficit: Even though the uniform interface aids in design simplification, REST falls short in terms of the extensive standards provided by protocol-specific methods like SOAP. This lack could trigger varied interpretations and implementations, which might impact interoperability adversely (Pautasso et al., 2008).
To illustrate the benefits and limitations of REST, consider the following Python code example:
import requests

Making a GET request with additional parameters
params = {‘filter’: ‘recent’, ‘limit’: 10}
response = requests.get(‘https://api.example.com/resources’, params=params)

if response.status_code == 200:
 data = response.json()
else:
 print(‘Failed to get data:’, response.status_code)

Observe how effortless it is to make a RESTful request using HTTP methods and manage responses in this instance. The stateless characteristic of the interaction shines through, as each request stands alone, carrying all required data. However, the security aspect is intrinsically dealt with by the HTTPS protocol, and if more robust security is demanded, extra precautions would be necessary.
In summing up, your particular application should dictate the decision to utilize REST. It is indeed a potent architectural style, yet a thorough comprehension of its strengths and shortcomings is essential for a successful execution.
Restful Web services
In an era where data is expanding at an extraordinary pace, RESTful Web services have become increasingly popular as a scalable and efficient tool for facilitating machine-to-machine interactions over the internet. These services are constructed using the REST architectural style, employing HTTP methods and status codes, Uniform Resource Identifiers (URI), various media types, and the principle of stateless communication.
RESTful Web services introduce a consistent interface that exposes specific functionalities of a system, hiding the system’s underlying complexities behind straightforward, easy-to-understand interfaces. They interact with web resources via standard HTTP methods: GET for retrieval, POST for creation, PUT for updates, and DELETE for removal of resources.
Take, for example, a RESTful Web service revealing the data of an online library. It might provide an URI such as “https://api.library.com/books/1” to denote a particular book. A client can then engage with this book resource utilizing HTTP methods. A GET request may fetch the book’s details, a PUT request could modify those details, a POST request could introduce a new book, and a DELETE request would eliminate the book.
import requests

GET the details of book 1.
response = requests.get(‘https://api.library.com/books/1’)
print(response.json())

POST to add a new book.
new_book = {"title": "New Book", "author": "Author Name"}
response = requests.post(‘https://api.library.com/books’, data=new_book)
print(response.status_code)

PUT to update the details of book 1.
updated_book = {"title": "Updated Book", "author": "Updated Author"}
response = requests.put(‘https://api.library.com/books/1’, data=updated_book)
print(response.status_code)

DELETE book 1.
response = requests.delete(‘https://api.library.com/books/1’)
print(response.status_code)

In this Python instance, HTTP methods are employed to engage with the resources unveiled by the RESTful web service. JSON, a frequently used media type, is utilized to represent these resources.
However, the construction of a genuinely RESTful Web service entails more than simply employing HTTP methods and URIs. It demands adherence to the tenets of REST—developing a stateless, cacheable, client-server system with a consistent interface.
Even though RESTful Web services offer several advantages like simplicity, scalability, and adaptability, they do come with their own set of limitations, as previously discussed. Hence, the decision to utilize RESTful Web services should be made after thoroughly evaluating the requirements and restrictions of the specific system in question.
Implement REST APIs
Constructing RESTful APIs involves more than just compliance with the principles of REST. Successful execution also requires close attention to elements such as routing, resource representation, error management, versioning, and security.
Routing and Resource Representation
The heart of any RESTful API lies in its routing system and its approach to resource representation. Each resource should possess a unique URL, and it should be feasible to interact with these resources using standard HTTP methods.
For instance, consider an API for a blogging platform. This API might have paths for articles and comments, as demonstrated below:
· GET “/articles” - Fetch a list of all articles
· POST “/articles” - Generate a new article
· GET “/articles/1” - Fetch the article with ID 1
· PUT “/articles/1” - Modify the article with ID 1
· DELETE “/articles/1” - Remove the article with ID 1
Each of these routes corresponds to a distinct action on the resource. Observe how the URL remains consistent, and the HTTP method shifts to mirror the type of operation.
Error Management
A carefully designed REST API provides meaningful error responses with HTTP status codes and unique messages to assist in troubleshooting the issue. For instance, a 404 status code for a resource not found, or a 400 status code for a faulty request.
Versioning
APIs progress over time. To ensure backward compatibility, it’s crucial to version the APIs. This can be achieved through the URL (e.g., “/v1/articles”), request headers, or other methods.
Security
Securing REST APIs requires implementing measures such as authentication, authorization, data validation, and encryption. Techniques such as OAuth for token-based authentication, SSL/TLS for secure communication, and input validation to guard against attacks (e.g., SQL injection) are common practices.
Consider a simple Python example using Flask for implementing a REST API:
from flask import Flask, request, jsonify, abort

app = Flask(__name__)

articles = [{"id": 1, "title": ‘Article 1’}, {"id": 2, "title": ‘Article 2’}]

@app.route(‘/articles’, methods=[‘GET’])
def get_articles():
 return jsonify(articles)

@app.route(‘/articles/<int:id>‘, methods=[‘GET’])
def get_article_by_id(id):
 article = next((article for article in articles if article[‘id’] == id), None)
 if article is None:
 abort(404, description="Article not found.")
 return jsonify(article)

@app.route(‘/articles’, methods=[‘POST’])
def create_article():
 if not request.json or not ‘title’ in request.json:
 abort(400, description="Title is required.")

 article = {"id": len(articles) + 1, "title": request.json[‘title’]}
 articles.append(article)
 return jsonify(article), 201

if __name__ == ‘__main__’:
 app.run(port=3000)

In this instance, we delineated routes for fetching all articles and a single article, as well as for generating a new article. Proper HTTP status codes are utilized for different responses.
In conclusion, executing a RESTful API is a multifaceted task that demands careful preparation and understanding of various factors. However, the benefits of a well-organized, scalable, and stateless API often surpass the intricacy of its implementation.
Self-Check Questions
21. Fill in the gaps: The REST architectural style is built upon six central principles that steer the conception and development of RESTful services. These are: Client-Server Architecture, Stateless, Cacheable, Uniform Interface, Layered System, and Code on Demand (optional)?
22. Multiple Choice: Which HTTP methods are typically used in a RESTful Web service and what operations do they correspond to?
· GET – Update a resource
· POST – Retrieve a resource
· PUT – Modify a resource
· DELETE – Remove a resource

3.3 Schema Languages
In web services, particularly in the context of machine-to-machine communication, schema languages hold critical importance. A schema language provides a means to define the structure and data types of a piece of information, which could be an XML or JSON document. It sets the rules that the data must comply with, and hence ensures consistency and correctness in the data exchanged between systems.
In the era of web services, where systems exchange information without human intervention, the ability to validate and enforce the structure of data becomes crucial. This is where schema languages come in, defining a blueprint for how data should be structured, which both sender and receiver adhere to.
This section will explore schema languages in depth, focusing on two of the most common schema languages: XML Schema and JSON Schema. We will also discuss the use of schema languages in Web services and their role in ensuring web interoperability.
Introduction to Schema Languages
Schema languages are crucial tools that help define the structure, data types, and validation rules for various data formats (Smith, 2015). They serve as blueprints for data documents, such as those formatted in XML or JSON, and enforce consistency, integrity, and correctness in the data exchanged between systems.
In the context of machine-to-machine communication, schema languages gain even more importance. Without human intervention to correct errors or misinterpretations, strict data validation becomes imperative. Schema languages fill this gap, enabling seamless communication between different systems, even those developed by different teams or organizations. They provide a mutual understanding of the data structure and format, thereby facilitating data exchange, reducing errors, and ensuring interoperability (van der Vlist, 2002).
Consider, for example, a Web service that returns a list of products in an e-commerce application. This service might return data in JSON format, like this:
[
 {
 "id": 1,
 "name": "Laptop",
 "price": 1500,
 "available": true
 },
 {
 "id": 2,
 "name": "Mouse",
 "price": 30,
 "available": false
 }
]

To ensure the validity and consistency of this data, a JSON Schema could be used. This schema would define the expected structure of the data, specifying that each product should be an object with properties “id” (an integer), “name” (a string), “price” (a number), and “available” (a boolean).
Schema languages extend beyond JSON and are also widely used in XML, another popular data exchange format (van der Vlist, 2002). The next two subsections will delve into these two schema languages: XML Schema and JSON Schema. These subsections will provide a detailed look at how these schemas are defined and used.
In summary, schema languages are central to Web services and machine-to-machine communication. They provide a systematic way to ensure the integrity and validity of the data being exchanged, thereby enhancing web interoperability (Tennison, 2012).
XML Schema
XML Schema Definition (XSD), or more commonly known as XML Schema, is a comprehensive tool for defining the structure, elements, and attributes of an XML document. It offers a more flexible and richer description of XML data content and structure compared to its predecessor, Document Type Definitions (DTDs). XML Schema encompasses support for namespaces and incorporates a more explicit, strong typing system for data validation (van der Vlist, 2002).
Written in XML, XML Schemas define permissible elements and attributes, their structure, relationships, and where they can appear in a document (Harold & Means, 2004). This format makes them more accessible and easier to understand compared to DTDs.
Consider a simplified XML document representing a book:
<book>
 <title>A Brief History of Time</title>
 <author>Stephen Hawking</author>
 <year>1988</year>
</book>

An XML schema for the above XML document could be:
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="book">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="title" type="xs:string"/>
 <xs:element name="author" type="xs:string"/>
 <xs:element name="year" type="xs:integer"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
</xs:schema>

In this schema, the <book> element must contain a sequence of three elements: <title>, <author>, and <year>, in this particular order. Moreover, the data type of each element is defined. Any XML document adhering to this schema would have to follow these rules, thereby ensuring data integrity and consistency (Harold & Means, 2004).
While the example is a simplified scenario, XML documents and their corresponding schemas can be more complex in real-world applications. For example, with XML Schema it is possible to specify that only integers from a given interval are allowed for a given element, or to restrict allowed strings using regular expressions (e.g. to check whether a string corresponds to an e-mail address or a certain date format). However, the core principles remain the same. XML Schema provides a precise definition of an XML document’s structure, crucial for Web services and machine-to-machine communication. It guarantees that the data exchanged between different systems is structured and valid, enhancing interoperability, and reducing the risk of data-related errors (van der Vlist, 2002).
In summary, XML Schema is an essential tool for XML-based web services. It offers robust, flexible, and comprehensive mechanisms to define XML document structure and data types, proving itself essential for web interoperability.
JSON Schema
In recent years, JSON (JavaScript Object Notation) has grown immensely in popularity, primarily due to its lightweight nature and ease of use within JavaScript-based environments, which includes most modern web applications (Crockford, 2006a). Much like XML, JSON can also be validated and defined using a schema language, aptly named JSON Schema.
[bookmark: _Int_WXsPTBrE]You can annotate and validate JSON documents using the JSON Schema vocabulary (Wright et al., 2022). Similar to what XML Schema does for XML, it provides a contract for what JSON data is necessary for a specific application and how it can be modified. JSON Schema includes features for type validation, constraints, and complex things like conditional validation or matching with regular expressions.
Let’s take a simple JSON object as an example, representing a book:
{
 "title": "A Brief History of Time",
 "author": "Stephen Hawking",
 "year": 1988
}

The corresponding JSON schema might look like this:
{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "type": "object",
 "properties": {
 "title": {
 "type": "string"
 },
 "author": {
 "type": "string"
 },
 "year": {
 "type": "integer"
 }
 },
 "required": ["title", "author", "year"]
}

This schema defines that the JSON object must be of type “object” and includes three properties: “title”, “author”, and “year”, each with its specific data type. All these properties are required for the JSON object to be valid. Unlike XML Schema, JSON Schema allows you to specify which properties must be present, but you cannot enforce their order, so the required properties can appear in any order. In addition, JSON Schema allows a valid JSON document to contain other properties in addition to the required properties that were not specified in the JSON Schema.
In the context of more complex real-world scenarios, it is possible with JSON Schema, analogous to XML Schema, to specify that only integers from a given interval are allowed for a given property, or to restrict allowed properties of type string via regular expressions.
Just as with XML Schema, JSON Schema plays a significant role in data interchange scenarios, like in RESTful web services. The schemas act as contracts between different systems, ensuring the data is structured and typed correctly. This validation minimizes the risk of errors, enhances data integrity, and ultimately, increases web interoperability.
To sum up, JSON Schema is a powerful tool for defining the structure of JSON data. It provides mechanisms to validate and annotate JSON documents, and hence, it plays a central role in web interoperability, especially in JSON-based web services.
Use of Schema Languages in Web Services
Schema languages, such as XML Schema and JSON Schema, serve as vital tools in the development and maintenance of web services. These languages provide a robust mechanism for defining the structure and constraints of data shared between different systems over the web (Fallside & Walmsley, 2004).
In the context of web services, schema languages offer several benefits:
1. Enforcing Data Consistency: Schema languages enable services to validate incoming data against a predefined structure, thereby ensuring the data’s consistency and integrity (Walmsley, 2001Ple). As a result, the likelihood of runtime errors due to unexpected or malformed data is significantly reduced.
2. Simplifying Communication: By establishing a shared understanding of the data structure, schema languages simplify communication between different services or systems. This mutual understanding enables different components to operate together seamlessly, promoting web interoperability (St. Laurent et al., 2001).
3. Providing Documentation: Schemas can serve as documentation, providing developers with a clear understanding of the data a service expects to receive or send. They act as a contract that communicates expectations regarding the format, type, and structure of data exchanged between services (Graham et al., 2004).
For example, consider a Web service providing weather information. The service might expect to receive a request containing a location, represented as a JSON object:
{
 "city": "San Francisco",
 "state": "CA"
}

The corresponding JSON Schema might look like this:
{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "type": "object",
 "properties": {
 "city": {
 "type": "string"
 },
 "state": {
 "type": "string",
 "maxLength": 2,
 "minLength": 2
 }
 },
 "required": ["city", "state"]
}

This schema outlines the expected structure of the request and could be shared with other services intending to interact with the weather service. As a result, those services would know precisely what data to include in their requests, promoting interoperability.
In summary, schema languages play an instrumental role in facilitating machine-to-machine communication on the web. They help enforce data consistency, facilitate communication between different systems, and provide useful documentation to developers and systems alike. The widespread use of schema languages underpins the fundamental web interoperability that we witness today.
Self-Check Questions
23. Fill in the gaps: Schema languages such as XML Schema and JSON Schema play a critical role in data consistency, communication simplification, and documentation provision in the context of machine-to-machine communication?
24. Multiple Choice: Why are schema languages important in web services?
· They provide a way to define the structure and data types of information.
· They ensure consistency and correctness in the data exchanged between systems.
· They act as contracts between different systems, ensuring the data is structured and typed correctly
3.4 Documenting Web Services: OpenAPI and WSDL
Web services serve as crucial elements in contemporary software systems, enabling seamless interactions among various applications. However, as these Web services grow more complex and the quantity of services within a system expands, the demand for clear, efficient documentation becomes increasingly essential.
Documentation forms an integral part of a web service’s life cycle, playing a crucial role in ensuring the service’s features are comprehensible, available, and usable by various stakeholders, such as developers, testers, and users. It acts as a contract that outlines what the Web service accomplishes, the inputs it requires, and the output it generates.
Among the available tools for documenting web services, the Web services Description Language (WSDL) and the OpenAPI Specification (OAS) are particularly notable. Both WSDL and OpenAPI offer standardized methods to describe web services, though they each accommodate different types of services and are employed in distinct contexts.
WSDL is an XML-oriented protocol for documenting services within the SOAP (Simple Object Access Protocol) Web service framework. It offers a method to portray the service’s interface, protocols, and deployment specifics. In contrast, OpenAPI, formerly recognized as Swagger, is a specification for machine-interpretable interface files for RESTful web services. It describes the endpoints, requests, responses, and additional information of a REST API. (ADD SIDEBOX: An endpoint is the URL where a Web service can be accessed by a client. The same Web service can have multiple endpoints, for example in order to make it available using different protocols.)
This section will delve into both WSDL and OpenAPI, examining their attributes, disparities, and use cases. It will illuminate how they contribute to the landscape of Web service documentation, fostering enhanced communication and seamless integration between systems.
Introduction to Web service Documentation
Documentation for Web services is a critical facet in the creation and usage of such services (Erl, 2005). Given the intricacy of these services and their role as a link between diverse systems, the need for clear, precise, and comprehensive documentation is of great importance.
The purpose of Web service documentation is multifaceted. Fundamentally, it provides a detailed account of the service’s functionality, granting a transparent understanding of the service’s operation and its potential usage (Richardson & Ruby, 2007). This comprises descriptions of the service’s methods or endpoints, the input parameters they necessitate, the data format for these inputs, and the returned output. Furthermore, the documentation may also present information concerning the communication protocols used by the service, its URL or URI, error codes, among others.
From the perspective of development, documentation acts as a crucial roadmap, delineating the service’s prerequisites and paving the way for efficient software development. For testers, it supplies a framework for crafting test cases and ensures comprehensive exploration of the service’s functionality. For consumers of the service - be they developers integrating the service into their individual applications, or end-users striving to understand its capabilities - documentation operates as a reliable reference and an educational tool.
To underscore the role of Web service documentation, envision a theoretical Web service for weather forecasting. The service offers an endpoint, “/forecast”, which takes a city name as an input parameter and returns a forecast for the subsequent week. A streamlined representation of the documentation for this endpoint could appear as follows:
Web Service Version: 1.0.0
Documentation Version: 1.0.1
Endpoint: /forecast
Method: GET
Input: city (string)
Output: A JSON object containing the forecast for the next seven days, with fields for date, temperature, humidity, and weather condition.
Example Request: GET /forecast?city=Seattle
Example Response:
{
 "forecast": [
 {
 "date": "2023-08-01",
 "temperature": 75,
 "humidity": 56,
 "condition": "Sunny"
 },
 ...
]
}

This documentation briefly describes the “/forecast” endpoint, detailing the HTTP method used (GET), the required input (city), and the format of the output. It also provides an example of a request to this endpoint and the corresponding response, offering a practical illustration of the endpoint’s use.
In the following subsections, we will explore two widely used specifications for documenting web services, namely WSDL and OpenAPI. These tools offer standardized and machine-readable ways to describe web services, greatly enhancing the utility and accessibility of Web service documentation.
In conclusion, Web service documentation is a cornerstone of effective Web service development and usage. By providing a clear and thorough description of a service’s capabilities and usage, it enables developers, testers, and users alike to leverage the service effectively, thereby enabling smooth and successful integration between different systems.
WSDL: Web service Description Language
Web service Description Language (WSDL) is an established language rooted in XML, used to describe Web services (Chappell, 2002). The purpose of WSDL is to offer a machine-comprehensible description of how a Web service can be invoked, the parameters it requires, and the data structures it returns. Although often employed alongside SOAP-based web services, WSDL can be utilized with any XML-based messaging system.
A WSDL document comprises several central sections:
· Types: This segment describes the data types used by the web service, typically defined using XML Schema Definition (XSD).
· Message: This part outlines the data in transit. It encapsulates the data within an XML format.
· Operation: This segment details the methods or operations that the Web service can carry out.
· Port Type: This section assembles the defined operations into a collection of ports or communication endpoints.
· Binding: This part stipulates the protocol and data format for each port type.
· Service: This segment illustrates the network address or endpoint for accessing the described web service.

Imagine a simplified WSDL document for the previously referenced weather forecasting service:
<definitions>
 <types>
 <xsd:schema>
 <!-- Definition of data types -->
 </xsd:schema>
 </types>

 <message name="GetForecastRequest">
 <!-- Definition of request message -->
 </message>

 <message name="GetForecastResponse">
 <!-- Definition of response message -->
 </message>

 <portType name="WeatherPortType">
 <operation name="GetForecast">
 <input message="GetForecastRequest"/>
 <output message="GetForecastResponse"/>
 </operation>
 </portType>

 <binding name="WeatherBinding" type="WeatherPortType">
 <!-- Protocol and data format specification -->
 </binding>

 <service name="WeatherService">
 <port name="WeatherPort" binding="WeatherBinding">
 <soap:address location="http://weather.example.com/forecast"/>
 </port>
 </service>
</definitions>

This incomplete example might feel somewhat theoretical, as fully defined WSDL can become very complicated. However, it gives a glimpse into how WSDL outlines a web service.
A notable advantage of WSDL is its interoperability. Equipped with a WSDL document, any developer, irrespective of their programming language, can construct code to interact with the Web service (Erl, 2005). Numerous programming languages and tools offer automated processes to generate such code from a supplied WSDL document, significantly streamlining the integration of a Web service into an application.
However, the verbosity and complexity of WSDL can also present challenges. It can be difficult to construct and understand, especially for those new to the language. Furthermore, it is primarily linked to SOAP-based web services, which have been somewhat overtaken by RESTful services for many applications.
In summary, WSDL is a potent instrument for documenting web services, offering a structured, standardized, and machine-readable methodology for describing a web service’s capabilities and usage. It supplies a robust framework for guaranteeing interoperability among different systems, albeit accompanied by a level of complexity that can pose challenges in usage.
OpenAPI Specification
The OpenAPI Specification, previously referred to as Swagger, is a modern and widely-adopted standard for detailing RESTful APIs (Stoplight, n.d.). Contrary to WSDL, which is generally linked with SOAP-based Web services and authored in XML, OpenAPI is intrinsically designed to be independent of any specific programming language, and its specification documents can be crafted in either JSON or YAML. These formats are considered more approachable and simpler to interpret compared to XML.
An OpenAPI document offers a comprehensive explanation of an API’s abilities, encompassing the accessible endpoints (URIs), the HTTP methods (GET, POST, PUT, DELETE, etc.) applicable with each endpoint, the format of the input and output, and any potential response messages and status codes. The objective of OpenAPI is to provide a standardized, machine-readable format that can be leveraged by tools for generating documentation, client Software Development Kits (SDKs, or even server stubs (OpenAPI Initiative, n.d.).
Now, let’s examine a simplified OpenAPI document that defines a RESTful API for handling a catalog of books. For this we use the YAML file:
openapi: "3.0.0"
info:
 version: "1.0.0"
 title: "Bookstore API"

paths:
 /books:
 get:
 summary: "List all books"
 responses:
 ‘200’:
 description: "A list of books."
 content:
 application/json:
 schema:
 type: "array"
 items:
 $ref: "#/components/schemas/Book"

components:
 schemas:
 Book:
 type: "object"
 properties:
 id:
 type: "integer"
 title:
 type: "string"
 author:
 type: "string"

In the example, the “paths” section denotes the available API endpoints, here, a “GET /books” endpoint that yields a collection of books. The “responses” subsection within each path item illustrates the potential responses for that specific operation, while the “components” section is employed to define reusable entities, such as the schema for a book object.
A notable advantage of OpenAPI is its emphasis on clarity and user-friendliness. The specification documents can be comfortably written by developers and comprehended by stakeholders without needing extensive expertise in XML or web services. This straightforwardness, along with OpenAPI’s concentration on RESTful APIs—which have gained immense popularity owing to their scalability, statelessness, and easy integration with HTTP—has resulted in widespread industrial adoption of OpenAPI.
Furthermore, the OpenAPI ecosystem encompasses a broad selection of tools that exploit the machine-readable characteristic of the specification, like Swagger UI for interactive API documentation, Swagger Codegen for the creation of server stubs and client libraries in a wide range of programming languages, and Swagger Inspector for API testing. You can find an example of Swagger UI here https://petstore.swagger.io/.
In conclusion, the OpenAPI Specification is an effective tool for detailing RESTful APIs. It offers a format that is both human and machine-readable for describing an API’s abilities, thus easing both the development and utilization of APIs. Its emphasis on simplicity, readability, and RESTful APIs has secured its place as a favored choice in the contemporary web development arena.
Comparison and Use Cases: OpenAPI and WSDL
Within the domain of Web service documentation, WSDL and OpenAPI emerge as two universally embraced standards, each presenting unique features and conforming to different communication models. A comparative analysis of these two specifications reveals significant differences, along with the understanding that each has its distinct use cases (Rozlog, 2010).
Beginning with WSDL, it is an XML-based interface description language commonly employed for SOAP web services. The complex nature and robustness of WSDL make it an optimal choice for large-scale, enterprise-level applications where precise contracts and strict communication protocols are a necessity. It’s particularly appropriate for services demanding high security, reliability, and transactional operations—areas where SOAP protocols thrive. However, the complexity and verbosity can be a drawback in terms of readability and user-friendliness (Erl, 2005).
In contrast, OpenAPI was explicitly developed for RESTful APIs, an architectural style that has gained momentum for its simplicity, scalability, and compatibility with the HTTP protocol. OpenAPI documents can be composed in either JSON or YAML, formats typically perceived as more human-centric and easier to handle compared to XML. The simplicity of OpenAPI has rendered it a favored choice among web developers, particularly for smaller projects, mobile applications, and public APIs where rapid prototyping and seamless integration are essential. Additionally, its robust ecosystem of tools for documentation, code generation, and testing bring added benefits for developers.
The selection between OpenAPI and WSDL depends primarily on the nature of the Web service being developed or consumed and the requirements associated with that service. While OpenAPI and REST have ascended in popularity due to their user-friendliness and alignment with web technologies, WSDL and SOAP continue to be employed in situations demanding communication contracts to be rigorously defined and where advanced features like WS-Security are needed.
Take, for instance, an enterprise-grade financial service necessitating secure, reliable, and transactional operations. In this situation, a SOAP-based Web service defined using WSDL could be the most suitable solution. In contrast, if you are developing a public API for a mobile app fetching data about local happenings, a RESTful API defined with OpenAPI would likely be the most efficient and scalable choice.
It’s also noteworthy that these technologies are not mutually exclusive. A Web service could offer both a SOAP interface (accompanied by a WSDL document) and a REST interface (coupled with an OpenAPI document), allowing clients to pick the interface best aligning with their requirements.
In sum, both OpenAPI and WSDL act as potent tools for Web service documentation. The decision between the two should be driven by the requirements of the service and the needs of the developers and consumers of that service.
Self-Check Questions
25. What are the two major tools for documenting Web services? Web services Description Language (WSDL) and the OpenAPI Specification (OAS)
26. Multiple Choice: Which of the following are components of an OpenAPI document?
· The service’s interface
· The data types used by the Web service
· The accessible endpoints (URIs)
· The methods or operations the Web service can carry out
Summary
This unit provides an exploration of Machine-to-Machine (M2M) communication, an important wheel in the complex machinery of Web interoperability. It discusses four main topics: Web-services, REST architecture, Schema languages, and Web service documentation.
Web services are essential interfaces that allow different software systems to communicate and share data over the Internet or private networks. Two key types, SOAP and REST, each come with their unique strengths and use cases. These services streamline M2M communication across various domains, from e-commerce to healthcare, focusing not just on communication, but also security, scalability, and performance.
The REST (Representational State Transfer) architecture, devised by Roy Fielding, promotes scalable, stateless services by utilizing web protocols and conventions. Its stateless nature allows for scalability and its implementation using standard HTTP methods ensures a wide range of actions on web resources.
Schema languages are important in web services, ensuring consistency and correctness of data exchanged in M2M communication. XML Schema and JSON Schema, discussed in this text, provide the blueprint for structuring data.
Web service documentation is integral for the comprehension, availability, and usability of a web service’s features by various stakeholders. Tools like the Web services Description Language (WSDL) and the OpenAPI Specification (OAS) provide standardized methods to describe web services. WSDL, an XML-oriented protocol, is primarily used for SOAP services while OpenAPI is suitable for to RESTful web services. Both contribute significantly to fostering enhanced communication and seamless integration between various software systems.

Unit 4 – Trust on the Web

Study Goals

On completion of this unit, you will be able to …

… comprehend the foundational systems and strategies ensuring trust on the World Wide Web.
… explain the roles of Public Key Infrastructures (PKIs) and Transport Layer Security (TLS) in establishing and maintaining online security.
… understand the significance of script consistency and the tools to protect it in cybersecurity.
… differentiate between basic and advanced user authentication methods, appreciating the evolution from password-based systems to modern multifactor approaches.

4. Trust on the Web
Introduction
As the World Wide Web continues to penetrate every aspect of our lives, the concept of "trust on the Web" is becoming increasingly important. Establishing trust online involves authenticating the identities of users, Web sites, and resources; ensuring the confidentiality and integrity of data; and ensuring the accessibility of services. This large, interconnected landscape of trust on the Web involves a complex interplay of technical systems, organizational strategies, and legal frameworks.
In this chapter, we will explore the core components that form the backbone of online trust. We will look at the technical underpinnings of these components, examine their importance in the broader context of computer science, and discuss how they work together to ensure the interoperability of the Web.
4.1 Public Key Infrastructures
The cornerstone of digital identity validation online rests on Public Key Infrastructures (PKIs), complex systems that are essential in establishing digital trustworthiness. PKIs consist of a series of interlinked components and processes tasked with generating, overseeing, disseminating, employing, safeguarding, and invalidating digital certificates (Bundesamt für Sicherheit in der Informationstechnik, n.d.). Think of digital certificates as online credentials, allowing entities on the Web to validate their identities to other users.
In this section, we’ll dive deeper into the world of PKIs. Starting with an exploration of digital certificates, we then shed light on the integral function of Certificate Authorities (CAs) in regulating these certificates. Subsequently, we’ll concentrate on the management of certificate lifecycles, spotlighting the role of Certificate Revocation Lists (CRLs) and the Online Certificate Status Protocol (OCSP). To conclude, it’s important to note that while PKIs offer a robust foundation for trust, they aren’t exempt from challenges, so we’ll discuss potential weaknesses and risks associated with them.
Digital Certificates
The underpinning of Public Key Infrastructure (PKI) is anchored in digital certificates, sometimes termed public key certificates. These certificates are fundamental in fostering trust in online environments. A digital certificate acts as an electronic credential that leverages a digital signature to tie a public key to a specific identity, such as an individual or an entity (DocuSign, n.d.). This certificate offers a means to validate the ownership of the public key, ensuring that the entity you’re interacting with is genuine.
Following the X.509 standard, a digital certificate includes data such as the holder’s public key, the authority issuing the certificate, its duration of validity, and the digital signature of the issuing agency (Housley et al., 1999). Of significant importance within the certificate is the digital signature, which confirms the certificate’s authenticity and that it remains unaltered.
For a clearer picture, the elemental configuration of an X.509 digital certificate can be illustrated in the following figure:
Digital Certificate Configuration
[image:]
Source: Abdullah Karatas (2023).
Let’s dive deeper into the individual elements of a digital certificate.
· Subject: This refers to the entity the certificate stands for. It could be an individual, a machine, a network component, or a whole organization.
· Issuer: This is the Certificate Authority (CA) - the body that dispenses the digital certificate. Trustworthy institutions, named CAs, are tasked with confirming the identity of the subject before issuing a certificate.
· Public Key: This key belongs to the subject. Other parties use this key to encrypt messages sent to the subject.
· Signature Algorithm: Using the signature algorithm, the CA authenticates the certificate.
· Signature: This unique set of data validates the entity issuing the certificate and confirms the authenticity of its details.
Grasping the nuances of digital certificates is central to understanding the trust mechanism of the Internet. Their central role in establishing the credibility of parties in communication is essential for the secure transmission of conveying confidential information, forming the basis for important Internet protocols like HTTPS.
Though digital certificates enhance online safety, it’s essential to understand they have their set of challenges. The following sections dive into the functions of Certificate Authorities in distributing and monitoring these certificates, the processes to invalidate certificates when needed, and finally, a discussion on the system’s inherent challenges and weak spots.
The Role and Responsibilities of Certificate Authorities
Certificate Authorities (CAs) are trusted third-party organizations responsible for issuing, managing, and revoking digital certificates as part of the Public Key Infrastructure (PKI). As the name implies, their primary role is to "certify" the identity of entities, validating that the entity holding a public key is who it claims to be (Cooper et al., 2008).
The trust that CAs provide is rooted in their rigorous identity verification process. Before issuing a digital certificate, a CA will verify the identity of the applicant to varying degrees, depending on the type of certificate being requested. For example, the issuance of an Extended Validation (EV) certificate requires a thorough examination of the requester’s legal identity, physical existence, and operational existence, while a Domain Validated (DV) certificate only verifies the requester’s control over a domain name (DigiCert, n.d.).
To give you a clearer understanding, let’s look at a schematic of a typical interaction involving a Certificate Authority:
Certificate Authority
[image:]
Source: Abdullah Karatas (2023).
This Figure maps out the procedure, starting with an entity - be it a person or an institution - seeking a digital certificate from a CA (Step 1). The CA then conduct a verification process to confirm the entity’s identity (Step 2). Upon successful verification, the CA issues a digital certificate and signs it by calculating a hash value that is encrypted with its private key (Step 3). When a different entity aims to collaborate with the certificate holder, it retrieves the digital certificate (Step 4) and validates the signature using the CA’s public key (Step 5). If the signature is verified as genuine, the assessing entity can be confident that the certificate holder is genuine, paving the way for secure exchanges.
CAs are essential for building trust in digital interactions. However, they also shoulder a significant responsibility. If a CA’s trust is compromised, either through oversight or a security breach, any entity depending on that CA’s issued certificates is at risk.
While the CA framework amplifies digital safety, it’s not without its challenges. The complexity of invalidating untrusted certificates will be explored further in the subsequent section.
Navigating Certificate Revocation Lists and Online Certificate Status Protocol
Previous sections underscored the essential role of digital certificates and the Certificate Authorities (CAs) that distribute them in enabling online trust. However, a digital certificate’s legitimacy can be fluid—several factors might necessitate its revocation before its predetermined expiry. This could be due to a compromised certificate’s private key, a breach within the issuing CA, or changes in the data of the certificate holder (Cooper et al., 2008).
To address these challenges, two primary tools are in place: Certificate Revocation Lists (CRLs) and the Online Certificate Status Protocol (OCSP).
Certificate Revocation Lists (CRLs)
A CRL is a list of digital certificate serial numbers that have been revoked by the issuing CA before their scheduled expiration date. The CA periodically issues and updates this list, providing a means for entities to check the status of a certificate. If a certificate’s serial number appears on the CRL, it should not be trusted (Yee, 2013).
Online Certificate Status Protocol (OCSP)
OCSP is a protocol used to obtain the revocation status of a digital certificate from the issuing Certificate Authority (CA). It operates more efficiently than Certificate Revocation Lists (CRLs) by allowing entities to query the CA for the status of a single certificate, rather than downloading a potentially large list of all revoked certificates. This way, it can provide real-time information about the status of a certificate, helping to establish its current validity and trustworthiness (Santesson, 2013).
Consider the illustration in the upcoming Figure:
Check a Certificate’s Status
[image:]
Source: Abdullah Karatas (2023).
As depicted in this Figure, both CRLs and OCSP provide mechanisms to check the status of a certificate, but they do so in different ways. With CRLs, the verifier downloads the entire list and checks if the certificate’s serial number is present. On the other hand, OCSP uses a real-time query-response model, reducing the amount of data that needs to be transmitted and processed.
Understanding how CRLs and OCSP function is esential for handling situations where digital certificates need to be revoked, thus ensuring continued trust in online communication.
Recognizing the Limitations and Vulnerabilities of PKIs
While Public Key Infrastructures (PKIs) are fundamental to securing digital communications, they have inherent flaws and potential risks. Here we will examine the pressing concerns associated with PKIs (Kastning, 2021).
PKIs operate through a layered trust framework that includes multiple layers of certification authorities. At the top of this structure is the Root Certification Authority (Root CA), which is typically isolated from any network to provide the highest level of security. This principal entity orchestrates the creation of Policy Certification Authorities (Policy CAs), which are located at the next level and then create Issuing Certification Authorities (Issuing CAs) at a lower level to issue the certificates typically found at the root level. By keeping the Root CA separate from networks, it remains shielded from network-based attacks, preserving the sanctity of the entire certificate lineage.
Even with its fortified architecture, the PKI system isn’t without vulnerabilities. A breach or malicious behavior at any CA level can cause cascading damage, compromising all certificates distributed within its trust web. A example of this vulnerability being exploited was the 2011 DigiNotar incident, in which a compromised CA facilitated the creation of fraudulent certificates (also known as: fake certificates, forget certificates) (Gregory, 2021).
In addition, the extensive list of CAs that are inherently trusted by browsers and operating systems poses a threat. Each of these accredited CAs has the privilege of issuing a certificate for any domain, creating a latent vulnerability that can be exploited by any of them acting fraudulently or being compromised.
For a fuller understanding of this layered construct, please see the comprehensive information for PKI basics in (Gradenegger, 2020).
Furthermore, revocation is another critical challenge in the PKI system. Both Certificate Revocation Lists (CRLs) and the Online Certificate Status Protocol (OCSP) have their limitations. CRLs can be very huge and hard to manage when dealing with a large number of revoked certificates. At the same time, OCSP introduces privacy concerns as the OCSP responder knows who is visiting which website, and also, it requires an extra round-trip time before the secure connection can be established, causing a delay (Wikipedia, 2023).
Lastly, another major limitation is the reliance on cryptographic algorithms. While current cryptographic methods used in PKI are considered secure, the advent of quantum computing threatens to break these methods. Research on post-quantum cryptography is ongoing with the goal of creating quantum computer-resistant cryptographic techniques (Bernstein et al., 2017).
In summary, PKIs are essential to Web security but are not without vulnerabilities and limitations. Constant vigilance, continuous improvements, and alternatives, such as DANE (DNS-Based Authentication of Named Entities) or blockchain-based PKIs, need to be considered for the future of secure online communications. More information about DANA or blockchain-based PKIs can be found in (Wikipedia, 2023h) or (Brunner et al., 2020),
Consider the diagram in the following Figure:
Challenges in Securing Online Communication
[image:]
Source: Abdullah Karatas (2023).
This diagram summarizes the vulnerabilities and limitations we have discussed in this section, illustrating the complexities and challenges faced in ensuring secure online communications.
Self-Check Questions
27. Multiple choice: What is the primary function of Public Key Infrastructures (PKIs)?
· Managing and monitoring Web traffic
· Validating digital identities online through digital certificates
· Encrypting all forms of online data
· Preventing cyberattacks directly
28. Fill in the gaps: The Certificate Revocation Lists (CRLs) and the Online Certificate Status Protocol (OCSP) are two primary tools for checking the validity status of a certificate
29. Multiple Choice: What are the responsibilities of Certificate Authorities (CAs)?
· Issue, manage, and revoke digital certificates.
· Encrypt online traffic using proprietary algorithms
· Host websites and Web applications
· Monitor and repot on user behaviors online
4.2 Transport Layer Security for the Web
The foundation of successful online interactions, especially those involving data sharing and dialogue, is built on security and trust. These interactions, often referred to as digital engagements, encompass various activities such as online transactions, communications, and collaborations that take place over digital platforms. Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL), play a crucial role in ensuring these engagements are secure. They provide a reliable framework that guarantees the confidentiality and integrity of data during transfer (Rescorla, 2018).
As we dive into the world of Transport Layer Security, we’ll analyze its primary components, clarify its operational dynamics, and explore its interaction with Web protocols. We initiate our exploration by grasping the essence of TLS, delineating its structure and core elements. Following that, we move on to the TLS handshake, an instrumental mechanism that facilitates encrypted connections between Web-based clients and servers.
Equipped with a foundational grasp of TLS, we’ll venture into its interaction with various Web protocols to ensure comprehensive security, emphasizing HTTPS (HTTP layered over TLS). However, as with any technological tool, TLS isn’t without its hurdles that require constant refinement. We’ll touch upon these obstacles and take a look at the evolution of transport layer security protocols.
Understanding the Core of Transport Layer Security
The centerpiece of any secure communication online, Transport Layer Security (TLS), underpins many protocols that form the backbone of the internet. To understand TLS in its entirety, we first need to understand its architectural core and key components (Rescorla, 2018).
At a fundamental level, TLS operates between the transport layer and the application layer of the OSI model. By being situated at this level, TLS can provide services such as data confidentiality, integrity, and authentication in a way that is transparent to the applications above (Dierks & Rescorla, 2008).
TLS is fundamentally composed of two primary protocols: the TLS Handshake Protocol and the TLS Record Protocol.
The need of establishing a secure session between a client and a server is shouldered by the TLS Handshake Protocol. This protocol performs a series of crucial tasks, including determining cryptographic algorithms, agreeing upon protocol versions, verifying parties involved, and generating shared secrets. Notably, although the handshake protocol comes into play only during the establishment of a secure session, the session’s security specifications affect the entire sequence of secure communication that follows (Rescorla, 2018).
The TLS Record Protocol, on the other hand, acts as a fundamental framework for securely managing application data. The data is received by this protocol from higher-level protocols like HTTP, divided into smaller units, compressed if necessary, given a MAC (Message Authentication Code), and then encrypted before being sent. The record protocol reverses the process when data is received; it decrypts the data, examines the MAC, decompresses it if necessary, and sends it to the upper-level protocol (Dierks & Rescorla, 2008). (SIDE BOX: A Message Authentication Code (MAC) is used to obtain certainty about the origin of data or messages and to verify their integrity. MAC algorithms require two input parameters, firstly the data to be protected and secondly a secret key, and calculate a checksum from both, the MAC.)
The TLS protocol suite, a critical part of online data security, employs an array of cryptographic algorithms. These algorithms collaboratively safeguard data in transit, ensuring its confidentiality, integrity, and authenticity. The employed mechanisms comprise symmetric encryption (like AES), asymmetric encryption (such as RSA), and cryptographic hash functions (for instance, SHA-256; Barker, 2020). More information for AES can be found in (Wikipedia, 2023i) and for RSA in (TechTarget, n.d.).
As we dive deeper into the functioning of TLS in the subsequent sections, remember that understanding its core is the first step toward appreciating its role in securing Web communications.
The TLS Handshake: Secure Connections Simplified
Creating a protected communication link between a client and a server can be complex. Still, the Transport Layer Security (TLS) handshake mechanism simplifies this by ensuring that every participating entity connects securely. This mechanism guides the choice of encryption techniques, agreement on protocol editions, validation of entities involved, and the generation of mutual secrets crucial for a protected session (Rescorla, 2018). This section aims to unpack the complexity of the TLS handshake method, emphasizing its criticality in securing digital communications.
TLS handshake
[image: the TLS Handshake]
Source: Cloudflare (2023)
When a TCP connection is established between a client and a server, the TLS handshake start with the client by sending a "ClientHello" note to the server. This note contains the client’s SSL/TLS version details, a client random (a random byte sequence), and a list of cipher sets (groupings of encryption methods) the client can work with (Hodges, Jackson, & Barth, 2012). In reply, the server reviews the client’s cipher set suggestions, chooses a fitting one, creates a corresponding server random (another random byte sequence), and sends back a "ServerHello" note containing the server random.
Subsequently Following this, the server can request a certificate from the client, even though it’s not a standard practice for all clients to possess certificates; they are primarily used in settings necessitating advanced security measures. In scenarios where they are utilized, client certificates assist the server in authenticating the client’s identity more precisely, thus facilitating a secure link.
The subsequent step involves the server sending its digital certificate to the client for validation. The phase of the server’s handshake comes to a close when it sends a "ServerHelloDone" message. The client, to confirm the legitimacy of the server’s certificate, uses the certificate authority’s (CA) public key that validated and signed the server’s certificate utilizing its unique private key.
It is critical at this point to validate the ongoing validity of the server’s certificate. Verification procedures like the Online Certificate Status Protocol (OCSP) or Certificate Revocation Lists (CRLs) are used to determine if the certificate remains active or has been revoked.
Provided that the server request the client’s certificate and the client complies, the certificate is then subject to validation. In succession, during each session, the client formulates a premaster secret consisting a randomized byte series, encrypts it using the server’s public key, and trasmits it to the server, setting the groundwork for secure data transmission (Dierks & Rescorla, 2008).
The server then decrypts the premaster secret with its own private key. At this point, both the client and the server are in possession of the client random, the server random, and the premaster secret, and on this basis can both calculate the same session key (a symmetric key), which is subsequently used to encrypt further communication between client and server (Cloudflare, 2023).
The client wraps up its handshake phase by dispatching a "Finished" note to the server, encrypted using the session key. On receipt, the server decrypts this note, authenticates its data, and replies with its own "Finished" note (Rescorla, 2018) using the session key for encryption.
The TLS handshake mechanism establishes a secure communication channel that allows the client and server to exchange messages confidentially using session keys. Each message sent is encrypted with the session key and decrypted on receipt with the same session key (symmetric encryption), so that communication is secured during transmission. (Rescorla, 2018).
The Integration of TLS in Web Protocols
One notable application of TLS is its integration with Hypertext Transfer Protocol Secure (HTTPS). Secured by TLS, this variation of the HTTP protocol ensures the safe transmission of data between a Web server and its visitor. In HTTPS, the communication scheme (HTTP) is embedded within the protective layer of TLS, which itself operates inside a transport system like TCP/IP. This concept of one protocol nesting inside another is typically referred to as “protocol layering” (Tutorials Point, n.d).
When a user’s Web browser (the client) connects to a secured website (the server), a protected session is established through the TLS Handshake Protocol. When this connection is up and running, the HTTP data exchanged between the server and the browser is shielded by TLS encryption, assuring a confidential and secure exchange (Dierks & Rescorla, 2008).
Another application of TLS is found in the Secure Shell (SSH) protocol, which is a cryptographic method tailored for safeguarded remote access and other secure services across an open network. As with HTTPS, SSH harnesses TLS to protect its connections, protecting information from being intercepted or tampered with (Barrett et al., 2005).
The email communication tool, Simple Mail Transfer Protocol (SMTP), also leans on TLS for its secure counterpart, SMTP Secure (SMTPS). Here, the content of emails is encrypted with TLS, assuring the content remains private and dependable as it’s sent (Klensin, 2008).
In all the above scenarios, integrating TLS into the protocol converts a potentially vulnerable communication route into a shielded one. By wrapping communication in the secure envelope of TLS encryption, these systems benefit from TLS’s robust security features, such as ensuring data remains confidential, undistorted, and verifiable.
To illustrate this, let’s break down how HTTPS operates in tandem with TLS:
Client: CONNECT www.securewebsite.com:443 HTTP/1.1
Server: HTTP/1.1 200 Connection Established
 Proxy-agent: Netscape-Proxy/1.1
Client & Server: *Perform TLS Handshake*
Client: GET /securepage.html HTTP/1.1
 Host: www.securewebsite.com
 Other Headers
Server: HTTP/1.1 200 OK
 Response Headers
 Encrypted HTML Content

In this example, the server (representing a website) and the client (typically a web browser) initiate their interaction through port 443, which is standard for HTTPS. During this, the client and server participate in a TLS handshake to set up a secure communication channel. Subsequently, the client dispatches an HTTP GET request to fetch a specific webpage, to which the server responds by delivering the desired page. At this point, the entire HTTP communication gets encrypted by the established TLS session, ensuring a protected connection.
In essence, the incorporation of TLS within diverse Web protocols has been instrumental in securing the Internet, ensuring that data exchanges occur safely. Its role remains essential, and its ongoing changes reflect the challenges of an ever-evolving digital world.
Looking Ahead: Future Challenges and Developments in Transport Layer Security
As the tech landscape continuously evolves, so do the challenges confronting Transport Layer Security (TLS). The unyielding aim remains: protect data in transit while keeping pace with the ever-shifting landscape of cyber threats. This evolution inevitably leads to increased protocol complexity and issues related to protecting a diverse and swiftly growing digital framework (Rescorla, 2018).
One of TLS’s significant hurdles is navigating transitions between its various versions. Take, for instance, the shift from TLS 1.2 to TLS 1.3, which introduced notable changes and improvements. Yet, transitioning to TLS 1.3 hasn’t been without obstacles. It is difficult to achieve a balance between ensuring backward compatibility and eliminating outdated, potentially unsafe features. Issues like middlebox disruptions, where devices tailored for preceding TLS iterations interfere with connections using newer versions, have further complicated this transition (Durumeric et al., 2017).
Another driving factor for change is the increasing demand for swift and efficient secured communication. As Internet speeds increase and patience for latency shrinks, faster handshakes and data transfers become increasingly important. TLS 1.3 has addressed this by reducing the required round trips for the handshake process. However, upcoming versions must ensure that enhanced security doesn’t come at the expense of speed (Rescorla, 2018).
The rise of quantum computing presents yet another distinct challenge. The potential of quantum computers to dismantle many of today’s cryptographic structures, TLS included, is significant. While current public key encryption, such as that utilized by TLS, might be vulnerable to quantum assaults, experts are working on quantum-proof algorithms. Seamlessly integrating these solutions into systems like TLS is an important and complex task awaiting future attention (Bernstein & Lange, 2017).
Privacy remains an ongoing concern. In our digital age, as privacy concerns increase and stricter privacy laws come into effect, the role of TLS in ensuring private, secure communications becomes even more important (Cloudflare, n.d.).
Given these challenges, it’s evident that TLS’s evolution is ongoing. The evolution to TLS 1.3 highlights the adaptability and growth of the protocol and foreshadows its further development.
As we look ahead, it’s mandatory for all tech stakeholders—from developers and network managers to security experts and everyday users—to stay informed about these changes and grasp their implications. In doing so, we all contribute to the continuous refinement of TLS, ensuring a secure and trustworthy online environment.
Self-Check Questions
30. Multiple choice: Which of the following is NOT a function of the Transport Layer Security (TLS) Handshake Protocol?
· Determining cryptographic algorithms
· Agreeing upon protocol versions
· Managing application data
· Generating shared secrets
31. Fill in the gaps: The integration of TLS with Hypertext Transfer Protocol Secure (HTTPS) ensures the safe trasmission of data between a Web server and its visitor. This concept of one protocol nesting inside another is known as protocol layering.
32. Multiple Choice: Which of the following are challenges associated with the evolution of Transport Layer Security (TLS)?
· Transitions between various versions of TLS.
· The rise of quantum computing
· Simplifying the handshake mechanism for easy understanding
· Increasing demand for swift and efficient secured communication
4.3 Resource Integrity and the Trust of Scripts
As we navigate the complex field of cybersecurity, it is critical to recognize the central role that script integrity plays in our online endeavors. Every time we access a website or use a digital service, countless scripts, especially JavaScript, are working in the background to enrich our digital journey. But this dependency can also be a double-edged sword. When these scripts fall victim to manipulation, it paves the way for serious security breaches such as data leaks, malware distribution, and unauthorized intrusions (OWASP, 2020).
In this section, our goal is to explore script integrity: understanding its definition, grasping its critical role in cybersecurity, and uncovering the methods used to protect it. Essentially, script integrity focuses on ensuring that a script works as designed, free from unauthorized modifications.
We begin with an exploring the significance of script integrity, highlighting the need to preserve scripts in their unaltered form in today’s digital landscape.
Next, we explore the notion of "subresource integrity" (SRI), a protective mechanism that enables browsers to ensure that content retrieved from a server remains untouched (Mozilla, 2023a). Understanding the operational dynamics of SRI is fundamental to recognizing its essential role in maintaining script integrity.
As we approach the end of this section, we will reflect on practical scenarios in which script integrity has been violated and highlight the consequences through detailed case studies. This analysis will serve to underscore the common dangers and the mandatory nature of implementing safeguards.
Exploring the Significance of Script Integrity
Web applications rely heavily on scripts, predominantly JavaScript, for a plethora of functionalities that render the Web an interactive, dynamic, and engaging space. While scripts breathe life into otherwise static content, their sheer power and omnipresence make script integrity an issue of high importance in cybersecurity (OWASP, 2019). This subsection explores why script integrity holds such significance in the landscape of modern Web applications.
Firstly, scripts interact intimately with the browser, Web content, and potentially, user data. By manipulating the Document Object Model (DOM), scripts dynamically alter the Web content presented to users. They manage user inputs, control multimedia elements, and handle Web requests (Sutton et al., 2007). Consequently, scripts inherently have considerable access and influence over the user’s experience and data, which underscores the need to maintain their integrity.
Moreover, the dynamic and interactive nature of scripts provides fruitful ground for multiple attack vectors. Cross-Site Scripting (XSS) attacks, for instance, exploit the trust a user places in a website to inject malicious scripts that run in the user’s browser, often leading to data theft or session hijacking (Kirda et al., 2006). Other threats include Person-in-the-Middle attacks where an attacker alters scripts in transit, potentially infusing malware or changing the script’s functionality to serve malicious ends (Rescorla, 2000). The risk of these attacks underscores the significance of ensuring that scripts maintain their integrity from the source to the user’s browser.
Another crucial factor is the widespread use of Content Delivery Networks (CDNs). CDNs host scripts for common libraries and frameworks, promoting efficient delivery and caching benefits. Yet, relying on third-party scripts introduces another risk factor; if an attacker compromises the CDN or the integrity of the script it hosts, all websites referencing the script are affected (OWASP, 2019). This cascading effect amplifies the significance of script integrity.
To illustrate the potential impact of compromised script integrity, consider the popular jQuery library hosted on a CDN. Numerous websites link to this library for performance benefits. If an attacker alters the script on the CDN, injecting malicious code, all referencing websites inadvertently serve the malicious script to their users.
<script src="https://code.jquery.com/jquery-3.5.1.min.js"></script>

The integrity of the script in the above line of code is important. If it were compromised, every site linking to this resource could become an unknowing accomplice in a widespread attack on end users.
Lastly, the trust that users place in Web applications highlights the importance of script integrity. Users trust Web applications to deliver safe and secure experiences, and scripts play a fundamental role in this. A breach in script integrity can shatter this trust, damaging the reputation of businesses and hindering the adoption of digital technologies (Sutton et al., 2007).
Therefore, ensuring script integrity is not just a technical challenge but also an ethical essential to foster trust and security in the digital ecosystem. In the following subsections, we will examine methods to assure script integrity and explore real-world breaches, further underscoring the importance of this issue.
Integrity Assurance with Subresource Integrity
In addressing the nuances of script consistency, Subresource Integrity (SRI) emerges as an important security measure, giving browsers the ability to verify resources obtained from external servers. With the rise in Web development approaches that embed third-party scripts to enhance capabilities, affirming script integrity is important for website protection. SRI plays a central role in achieving this objective (Mozilla, 2023).
The way SRI functions is by allowing a Web developer to integrate a cryptographic fingerprint of a script or a file within the HTML “script” or “link” elements. This fingerprint becomes a metric for the resource’s authenticity. When the browser retrieves this resource, it cross-references the derived resource’s fingerprint with the pre-set authenticity metric. A mismatch suggests potential interference during the resource’s delivery, prompting the browser to halt its loading and execution (W3C, 2016).
Let’s illustrate this process with an example:
<script src="https://example.com/example-script.js"
 integrity="sha384-oqVuAfXRKap7fdgcCY5uykM6+R9GqQ8K/uxy9rx7HNQlGYl1kPzQho1wx4JwY8wC"
 crossorigin="anonymous"></script>

Within this HTML coding excerpt, the “integrity” attribute defines the cryptographic fingerprint for the example-script.js file. The “crossorigin” attribute designates if the resource’s request occurs in a Cross-Origin Resource Sharing (CORS) environment, a mandatory information for SRI to function accurately in cross-origin scenarios. Should the retrieved script’s fingerprint deviate from the integrity metric, the browser will decline to run the script (MDN Web Docs, 2023).
SRI offers numerous notable benefits. It acts as a strong deterrent against breaches stemming from compromised third-party servers, adding an extra protective barrier against the browser running altered scripts. Additionally, it prevents “Person-in-the-Middle” infiltrations by assessing resource authenticity beyond just the delivery protocol. Plus, it enforces trust in content delivery networks (CDNs) without jeopardizing the webpage’s security (W3C, 2016).
Yet, adopting SRI isn’t free of complexities. Developers must carefully update the integrity metric in tandem with any script modifications since modified fingerprints are calculated for modified scripts. Also, while mainstream browsers like Chrome, Firefox, and Safari endorse it, SRI hasn’t achieved universal acceptance across all browsers (Can I use, 2023).
In summary, SRI stands as a potent means to maintain script and resource integrity, playing a central role in strengthening Web safety. Nevertheless, as with any tech tool, it’s essential to recognize its constraints and strive for more comprehensive and effective protective measures.
Script Integrity and Cross-Origin Resource Sharing (CORS)
As interactive Web applications have become more common, there’s been a growing demand for scripts and resources to be accessible across varied origins. However, this cross-origin interaction brings with it essential security risks. To address these, Cross-Origin Resource Sharing (CORS) has been introduced in Web browsers, aiming to regulate cross-origin communications while ensuring script trustworthiness (Zalewski, 2011).
To understand the significance of CORS in maintaining script trustworthiness, one must first understand the same-origin policy (SOP). SOP stands as a fundamental Web security principle which allows scripts originating from the same website to freely interact with each other’s Document Object Model (DOM). However, it restricts access to the DOM of other websites (MDN Web Docs, 2023). While SOP acts as a barrier against harmful scripts, it can hinder valid communications between distinct origins.
This is where CORS steps in. It’s tailored to reasonably ease the SOP restrictions, simplify enhanced Web interactions without compromising security. To put it plainly, CORS operates using HTTP headers that instruct browsers to grant a Web app from one origin the clearance to access specific resources from a different origin’s server (van Kesteren, 2023). To ensure smooth operation of CORS with subresource integrity (SRI), it’s mandatory to include the “crossorigin” attribute within the HTML “script” or “link” tags. In the absence of this attribute, cross-origin resources will fail the SRI verification, even if the “integrity” value aligns with the resource’s fingerprint.
For a clearer picture, consider an HTML “script” tag that employs both SRI and CORS:
<script src="https://example.com/example-script.js"
 integrity="sha384-oqVuAfXRKap7fdgcCY5uykM6+R9GqQ8K/uxy9rx7HNQlGYl1kPzQho1wx4JwY8wC"
 crossorigin="anonymous"></script>

The “crossorigin” attribute plays an important role because, in its absence, the browser is unable to execute the CORS process, retrieving the resource without dispatching the Origin HTTP header. As a result, the server is hindered from sending back the correct Access-Control-Allow-Origin (ACAO) HTTP header. This leads the browser to block the response (because of a missing valid CORS header), causing the SRI integrity verification to be unsuccessful (MDN Web Docs, 2023).
To sum it up, the synergy between CORS and SRI is essential to ensure the reliability and security of scripts in modern Web design. These tools offer a robust shield against common Web risks, while simplifying the adaptable integration of external resources. For developers, mastering and adeptly applying these strategies is essential to craft secure, vibrant, and user-interactive Web platform.
Examining Real-world Breaches of Script Integrity
While understanding script integrity in theory is important, its real significance becomes clear when viewed against the backdrop of actual security violations. These real-life events act as powerful reminders, underscoring the necessity of adopting the protective protocols we’ve highlighted.
A significant failure in script integrity was witnessed in 2018 during the British Airways data compromise. Malevolent actors slipped harmful code into the airline’s online portal. This code was engineered to capture client information entered into the website’s forms, including names, email IDs, and financial card specifics (Cimpanu, 2018). The weak point was the website’s JavaScript, which lacked adequate safeguarding measures, like Subresource Integrity (SRI) validations. This oversight resulted in a breach affecting nearly 500,000 customers, compromising their personal and financial data (Data Privacy Manager, 2020).
In a similar vein, Ticketmaster’s 2018 experience with the Magecart assault underscores the criticality of script integrity. Here, the attackers manipulated a third-party script from Inbenta Technologies employed by Ticketmaster for its payment gateway. By altering this script, they could intercept credit card information from unaware customers, causing a significant data leak that impacted several thousands (Kirk, 2018). Correctly applying SRI would have prevented the malicious script’s operation, thus preventing the breach.
Furthermore, the wide-ranging tactic of cryptojacking stands as another testament. Attackers stealthily embed scripts into websites in order to control visitor systems to mine virtual currencies. A renowned instance is the deployment of the CoinHive script, which discreetly mined the Monero virtual currency on multiple online platforms, without the users knowing it (Symantec, 2018). Such stealth operations could have been largely neutralized if robust script integrity safeguards were enforced to counter unauthorized script alterations or infiltrations.
Self-Check Questions
33. Fill in the gaps: Subresource Integrity (SRI) is a security measure that allows browsers to verify that retrieved content remains unaltered.
34. Multiple Choice: Which of the following is NOT a benefit of Subresource Integrity (SRI)?
· Protecting against breaches from compromised third-party servers.
· Enhancing website speed and performance.
· Preventing Person-in-the-Middle infiltration.
· Promoting reliance on CDNs without jeopardizing webpage’s security
4.4 Simple and Enterprise Authentication Methods
As the digital domain grows and evolves, so do the methods we employ to secure our digital environments and validate user identities. User authentication, the practice of verifying that a user is indeed who the user claims to be, is an essential aspect of cybersecurity. In this section, we will explore the progression of authentication techniques, transitioning from straightforward password-based systems to more complex and secure methods.
In the early days of computing, passwords were the primary means of authentication. However, as the digital landscape became more complex and the threats to cybersecurity grew more potent and nuanced, it became evident that relying on passwords alone for protection was inadequate. Consequently, the cybersecurity sphere has welcomed innovations in user authentication, moving past traditional password-based systems.
In the following section, "Beyond Passwords: Innovations in User Authentication," we plan to explore the latest advances in user authentication. This will include an exploration of systems that enable passwordless logon experiences, as well as other emerging, popular methods.
In the "Diving into Two-Factor and Multi-Factor Authentication" section, we will take a closer look at systems that use more than one method to confirm the user’s identity. These systems add extra layers of security to help keep user information safe.

Following that, we will take a closer look at enterprise authentication. Here, we will learn about the different techniques large businesses use to protect their digital assets, including SAML, OAuth, and OpenID Connect.
Finally, with the "The Next Frontier in Authentication: Biometrics and Risk-Based Authentication" section, we will forecast the trends in authentication. This involves understanding the transformative role of biometric identifiers, like fingerprint and facial recognition technologies, make them more robust and user centric.
Beyond Passwords: Innovations in User Authentication
In exploring today’s user authentication landscape, it is critical to understand the significant changes that have taken place in recent years. The continued dominance of passwords as the primary means of verifying a user’s identity is increasingly being challenged. This is largely due to an increased recognition of the fact that passwords, while being fundamental to cybersecurity, have inherent limitations and vulnerabilities (Bonneau et al., 2015).
A primary critique of password-dependent authentication is its heavy reliance on the user’s capability to devise and remember complicated, distinct passwords across numerous digital platforms. This frequently leads to password reuse or the selection of weak passwords by users, rendering them an easy target for cyber attackers (Das et al., 2014). The more modern innovations in user authentication aim to mitigate these issues by lessening the user’s burden and offering enhanced security measures.
Single sign-on (SSO) is one such innovation. SSO enables a user to sign in once, granting access to a collection of related applications without the need for subsequent logins (Brostoff & Sasse, 2002). This can considerably enhance the user experience by decreasing the number of times a user needs to authenticate. Nonetheless, SSO also centralizes risk: if an attacker breaches the SSO system, they attain access to all linked applications. Therefore, this demands rigorous security safeguards to protect the SSO system.
Passwordless authentication emerges as another significant development in this sphere. Through this approach, users validate their identities via an alternative mechanism such as an email link, a text message containing a code, or a biometric characteristic like a fingerprint or facial recognition (World Economic Forum, 2020). This eliminates the need for password management, which reduces user hassle and potentially enhances security.
An illustration of passwordless authentication is a one-time code sent to a user’s email. The process would appear as follows:
User enters their email
email = input("Please enter your email: ")

System generates one-time code and sends to user’s email
one_time_code = generate_code()
send_code_to_email(one_time_code, email)

User enters the received code
user_code = input("Please enter the code you received: ")

System verifies the entered code
if verify_code(user_code, one_time_code):
 print("Authentication successful!")
else:
 print("Incorrect code. Please try again.")

The generate_code, send_code_to_email, and verify_code functions in this illustration are fictitious and would need to be implemented correctly in a real-world application. In addition, security could be further enhanced by allowing the same user only a limited number of authentication attempts in a defined period of time, enforcing a waiting period after each failed attempt until the next attempt, which increases with each failed attempt, and activating further security mechanisms once the maximum number of failed attempts has been exceeded. For example, a smartphone can be deactivated after too many failed attempts, so that it can only be set up again with the help of a backup or from scratch (Apple, 2023). An even higher security level can be achieved in this case by automatically deleting all data on a smartphone as soon as a predefined number of failed attempts has been exceeded (Apple, 2023a).
To overcome the drawbacks of password-based authentication, the user authentication landscape in general is becoming more diverse and inventive. These innovations create an authentication system that is both user-friendly and secure.
Diving into Two-Factor and Multi-Factor Authentication
As we dive deeper into modern authentication techniques, our focus shifts to multi-factor authentication, an enhanced substitute for conventional single-factor systems that rely mainly on passwords (Aloul et al., 2009). This is a protective measure that requires users to validate their identity by providing two or more pieces of evidence, or “factors,” before gaining access to their account or system.
These factors are broadly classified into four types:
1. Something the user knows (knowledge), for instance, a password or a PIN.
2. Something the user possesses (possession), like a smartphone or a smart card.
3. Something inherent to the user (inherence), including biometric traits such as fingerprints, vocal patterns, or retinal scans (Dasgupta et al., 2017).
4. The user’s location is determined using methods such as GPS or IP address tracking to provide an additional layer of security (Wikipedia, 2023j).
The strength of multi-factor authentication lies in its layered approach. Even if an intruder succeeds in violating one factor, they would need to surpass at least one more obstacle before they can access the user’s account. This makes multi-factor authentication a much more robust shield against unauthorized access.
Two-factor authentication (2FA), a subset of multi-factor authentication, employs two factors from these categories. A common instance of this is the use of a password (something you know) coupled with a code sent to your smartphone (something you have) (Amin et al., 2017). This combination proffers a much more secure method than sole reliance on passwords.
To better understand this process, let’s consider a rudimentary illustration of a two-factor authentication workflow:
User enters their username and password
username = input("Please enter your username: ")
password = input("Please enter your password: ")

System verifies the username and password
if verify_username_password(username, password):
 # If correct, system sends a one-time code to the user’s registered mobile device
 one_time_code = generate_code()
 send_code_to_mobile(one_time_code, username)

 # User enters the received code
 user_code = input("Please enter the code you received on your mobile device: ")

 # System verifies the entered code
 if verify_code(user_code, one_time_code):
 print("Authentication successful!")
 else:
 print("Incorrect code. Please try again.")
else:
 print("Incorrect username or password. Please try again.")

The functions verify_username_password, generate_code, send_code_to_mobile, and verify_code are all implemented in the backend in the code above.
In the future, it won’t just be about including more variables; it will also be a matter of achieving a high level of security without affecting user friendliness and repeatedly bothering the user with numerous and time-consuming authentication prompts that constantly query multiple factors. In this case, adaptive or risk-based authentication is used, which modifies the necessary authentication requirements in accordance with the perceived risk of a particular transaction or session.
In conclusion, multi-factor and two-factor authentication add layers of security above and beyond the conventional password to offer a valuable defense against unauthorized access. Although implementing such techniques can be difficult, they represent a significant advancement in the development of secure digital environments.
Unpacking Enterprise Authentication: SAML, OAuth, and OpenID Connect
As we transition from individual authentication methods, our focus shifts towards enterprise-level authentication, a domain marked by the necessity for potent, resilient, and scalable solutions that can cater to a large number of users across diverse applications. Several key protocols have emerged as the mainstay of enterprise authentication, namely Security Assertion Markup Language (SAML), OAuth, and OpenID Connect (OIDC) (Okta, 2023).
SAML, a creation of the OASIS consortium, is an XML-based norm for exchanging authentication and authorization data among parties, notably between an identity provider and a service provider (Cantor et al., 2006). Frequently employed in Single Sign-On (SSO) systems, SAML allows a single authentication ticket or token to be trusted across multiple IT systems or even entire organizations. An essential concept within SAML is identity federation, which enables the establishment of trusted networks where users can authenticate once and gain access to all resources held by members within the federation.
In contrast, OAuth 2.0, a protocol formulated by the Internet Engineering Task Force (IETF), authorizes third-party applications to access HTTP services, either on behalf of a resource owner or by allowing the third-party application to obtain access independently (Hardt, 2012). The protocol underscores simplicity for client developers while prescribing specific authorization flows for web applications, desktop applications, and mobile phones. This ability to delegate resource access without revealing credentials has made OAuth 2.0 a preferred choice for API authorization.
Using authentication performed by an authorization server, OpenID Connect, a foundational identity framework built on the OAuth 2.0 protocol, makes it easy for clients to authenticate the identity of the end user and obtain basic user profile details in an open, REST-based approach (Sakimura et al., 2014). By offering a standardized schema of user attributes or claims, OIDC simplifies the process for developers to design applications that are aware of their user identities.
Below is a representative example of a typical OAuth 2.0 authorization flow coded in Python:
from oauthlib.oauth2 import BackendApplicationClient
from requests_oauthlib import OAuth2Session

Credentials you get from registering a new application
client_id = ‘<client-id>‘
client_secret = ‘<client-secret>‘

BackendApplicationClient is a handy class for OAuth 2.0 applications that do not require user interaction
client = BackendApplicationClient(client_id=client_id)
oauth = OAuth2Session(client=client)

Fetch an access token
token = oauth.fetch_token(token_url=‘https://provider.com/oauth2/token’, client_id=client_id,
 client_secret=client_secret)

Use the token
response = oauth.get(‘https://provider.com/endpoint/data’)

In this example, BackendApplicationClient and OAuth2Session are objects provided by the oauthlib and requests_oauthlib libraries for handling the details of the OAuth 2.0 protocol.
As the needs of enterprises continue to evolve and the landscape of digital identity expands, these protocols will continue to be foundational in shaping the future of secure, scalable, and user-friendly authentication.
The Next Frontier in Authentication: Biometrics and Risk-Based Authentication
In the field of authentication, the search for new and advanced methods continues. Two of theses advanced methods, namely biometrics and risk-based authentication, are currently at the forefront and promise higher security and a better user experience in comparison to traditional methods (Yang et al., 2019)
Biometric authentication has a major player in this field, using a person’s unique physiological (e.g., fingerprints, facial recognition, iris scans) and behavioral (e.g., keystroke dynamics, gait analysis) characteristics (Jain et al., 2004). By linking access directly to the physical or behavioral characteristics of a user, biometrics amplifies the security level, thereby making unauthorized access more difficult. For instance, present-day smartphones have extensively adopted fingerprint scanners and facial recognition systems, offering a swift, user-friendly, and secure mode to unlock devices.
Nevertheless, biometric systems are not immune to threats. Spoofing attacks, where an intruder attempts to fool the biometric system with a fake biometric characteristic, can be a significant concern. Additionally, privacy considerations are critical because biometrics, once compromised, can’t be changed like a password. Despite these challenges, the attractive nature of user-friendly and secure authentication keeps biometrics at the cutting edge of authentication innovation.
In contrast, risk-based authentication (RBA) is a dynamic method that adjusts the level of user authentication required based on the risk level associated with the user’s current activities (Alaca & van Oorschot, 2016). For example, a user attempting to access a low-risk resource might only need to enter their password, while executing a high-risk transaction may prompt additional authentication forms. This adaptive approach is powered by machine learning algorithms that consider several factors such as the user’s IP address, geographical location, device type, and even the time of access to assess the risk level.
Consider an example of an RBA scenario: A user accessing their bank account from their home computer at a standard time may only be asked for a username and password. However, if the same user tries to access the same bank account from a foreign country, the system may request additional identity proof, such as a fingerprint or a one-time code sent to the user’s registered phone number.
This exemplifies the next frontier in authentication. By using physical characteristics alongside user behavior, it creates a dynamic, adaptable system that not only incorporates additional security layers but also enhances the user experience by demanding extra verification only when necessary.
Self-Check Questions
35. Fill in the gaps: Passwordless authentication can involve the use of an email link, a text message with a code, or a biometric characteristic like fingerprint or facial recognition.
36. Multiple Choice: In the early days of computing, what was the primary means of user authentication?
· Biometric verification.
· Multi-factor authentication.
· Password-based systems.
· Risk-based authentication
Summary
The modern digital era is deeply intertwined with the World Wide Web, making "trust on the Web" an important concern. This trust is anchored in several critical cornerstones. Firstly, the authentication of online identities is essential, and this is where Public Key Infrastructures (PKIs) play a key role. PKIs provide a comprehensive system for validating digital identities through online credentials known as digital certificates. However, trust doesn’t stop there. Every digital interaction requires secure communication, and this is where Transport Layer Security (TLS) steps in. TLS, along with its predecessor SSL, are the foundation for online data transfer, where both confidentiality and integrity are guaranteed.
Yet, the complexity of the Web goes beyond just data transfer. Scripts, especially JavaScript, invisibly enhance our online experiences. While they enhance usability, they come with risks. A tampered script can lead to significant security threats, highlighting the importance of script integrity. Tools like Subresource Integrity (SRI) are important in ensuring scripts remain uncompromised and trustworthy.
Lastly, as our online engagements have grown in sophistication, so too have the methods we use to verify who we are in the digital world. While passwords were once the gold standard, the landscape of user authentication has expanded. Today, we see innovations like single sign-on, passwordless systems, and layered authentication techniques. On a greater scale, enterprises use advanced methods such as SAML, OAuth, and OpenID Connect to secure their digital assets. The horizon looks even more promising, with biometrics and risk-based authentication poised to redefine digital security.
Together, these facets provide a comprehensive overview of the complex Web of trust that underscores our digital lives. Ensuring this trust is maintained is not just a technical endeavor but a collective responsibility as we move deeper into the digital age.

Unit 5 – Multi-Party Web Architectures

Study Goals

On completion of this unit, you will be able to …

… understand cross-domain interactions using “postMessage” and “CORS” for web interoperability.
… understand web mashups, using web APIs to create integrated and innovative digital services.
… appreciate the principles of large-scale mashups in web analytics and digital badges.
… conduct and analyze A/B tests to optimize user experience and drive engagement across various web platforms.

5. Multi-Party Web Architectures
Introduction
Web technology has made significant progress, enabling the development of highly dynamic and robust applications capable of sophisticated interactions between varied web domains and services. This introduces the notion of “Multi-party Web Architectures,” emphasizing the necessity for effective communication, data exchange, and smooth merging between distinct web applications, regardless of their domains.
Serving as the cornerstone of web interoperability, Multi-party Web Architectures allow for a wide variety of applications, services, and web platforms to connect and work together in real-time. This enables a holistic and integrated web experience for users. This concept gains particular prominence in the “Web 3.0” epoch, where the spotlight is on the Semantic Web, APIs, and extensive integration across the internet.
The following sections aim to deliver a comprehensive comprehension of the primary elements of multi-party web architectures. The first section, titled “Cross-domain interactions: postMessage, CORS,” will concentrate on the basics of cross-domain interactions and the essential function that “postMessage” and Cross-Origin Resource Sharing (CORS) have in enabling these interactions. The next section, “mashups,” expands on the notion of interoperability, investigating how varied Web services can be combined to create new, distinctive functionalities. The third section, “Large-scale mashups: Web-Analytics, Badges,” will probe into the scalability of mashups and their practicality in large-scale applications such as web analytics and badges. Finally, in the fourth section, “A/B Testing,” we will examine the role and importance of A/B testing within the scope of web interoperability, and how it serves as a key tool for knowing user preferences and improving web interactions.
5.1 Cross-Domain Interactions: postMessage, CORS
In our fast-paced digital world, cross-domain interactions, driven by “postMessage” and “CORS” (Cross-Origin Resource Sharing), have become essential to modern web interoperability. We begin this section by understanding cross-domain interactions, which facilitate communication and data exchange across different web domains, thus enabling rich, integrated web experiences. We’ll delve into “postMessage”, a transformative method enabling secure communication across varied windows or iframes. Then, we’ll discuss “CORS”, a mechanism informing browsers about safe cross-domain resource access using additional HTTP headers. Towards the end, we’ll evaluate real-world case studies, offering valuable insights into these interactions’ practical application. This section aims to equip you with a thorough understanding of cross-domain interactions, crucial to building robust, scalable, and secure web applications.
Understanding Cross-Domain Interactions
The importance of cross-domain interactions in web development cannot be overstated. To fully appreciate its significance, we must first consider the Same Origin Policy (SOP)— SOP restricts how a document or script from one source can interact with a resource from another source (Barth et al., 2008).
The SOP essentially determines that web browsers only allow scripts within a webpage to access data on a separate webpage if both pages originate from the same source. A source is identified by the scheme (such as HTTP), host (domain), and port of the URL (Mozilla, 2023). This means that a script can only access data and resources from its original domain.
The SOP was introduced against the following background: Scripting languages like JavaScript that are executed on the client side within the web browser have direct access to all communication between the web browser and the web server via the Document Object Model (DOM). This includes both reading and manipulating data and affects both receiving and sending data. At the same time, the trust relationship between the web browser (or user) and a website differs from website to website. This results in the requirement that no information from one context (for example, the browser’s connection to a bank’s site) should be accessible or manipulable by a script from another context (for example, a further and parallel connection of the web browser to an insecure website that delivers malicious code). To achieve this, when a script accesses an object on a web page, on the client side the origin of both is compared within the web browser.
While the SOP is key in maintaining security, it can also restrict the development of integrated, interactive web applications that are currently in demand. This is where cross-domain interactions come in – they allow communication and data exchange between various web domains while maintaining necessary security controls.
Web applications frequently need to interact with other web applications or resources located in different domains or sources. For instance, a webpage may want to include a third-party widget or make an API request to another domain. These are known as cross-domain interactions. The ability to perform these interactions can improve a web application’s functionality and user experience by incorporating services and resources from various sources. Examples include embedding maps from a different domain or fetching real-time data from external APIs, enriching the user’s experience with diverse content and functionalities.
There are several methods to safely conduct cross-domain interactions. Two prominent ones are postMessage and CORS (Cross-Origin Resource Sharing), which we’ll explore in greater detail later. Both these technologies facilitate cross-domain interactions, ensuring secure and controlled data flow across various domains.
To demonstrate cross-domain interactions, consider this example: a script embedded in a webpage (www.example.com) being executed on the client-side within a web browser wishes to obtain a user’s location data from another domain (www.locationapi.com). With the traditional SOP, this request would be blocked. However, through the use of either the postMessage method or CORS, the two domains can interact. This interaction allows “www.example.com” to access the user’s location data from “www.locationapi.com” without violating the security standards set by the SOP.
Cross-Domain Interaction: SOP Versus CORS/postMessage
[image:]
Source: Abdullah Karatas (2023).
The Role of “postMessage” in Cross-Domain Interactions
Diving deeper into the world of cross-domain interactions, we encounter the “postMessage” method as an essential instrument. First introduced in HTML5, the “postMessage” method offers a regulated means to sidestep the same-origin policy (SOP), enabling communication between windows (or iframes) of different origins (Hickson, 2011). The significance of “postMessage” is not just its ability to facilitate cross-domain interactions, but the way it maintains the security integrity of web applications in the process.
A window object corresponds to a HTML document that is displayed in a browser window. Thus, in a tabbed browser, each tab is represented by its own window object. Furthermore an iframe (inline frame) places another HTML document in a frame that is embedded into a parent HTML document, thus each iframe has its own window object that is embedded into a parent window. Against this background “postMessage” allows scripts in different windows (or iframes) to exchange messages, irrespective of the windows’ (or iframes’) origins, which is typically blocked by the SOP: “The window.postMessage() method safely enables cross-origin communication between Window objects; e.g., between a page and a pop-up that it spawned, or between a page and an iframe embedded within it” (Mozilla 2023). Although “postMessage” effectively bypasses the SOP, it does so with caution. It creates a secure platform for data transfer across origins, enabling the recipient to verify the message’s origin, thereby safeguarding against misuse.
Fundamentally, the “postMessage” method operates on a simple principle: one window dispatches a message, while another stands by to receive it. The transmitting script invokes the “postMessage” method on the window (or iframe) it wants to converse with, forwarding the message as an argument. In contrast, the receiving script sets up an event listener for “message” events, which activate upon the receipt of a message.
To illustrate, let’s examine a basic example of how “postMessage” can be used to transmit a message from one window to another:
// Code to be used in the sending window that corresponds
// to HTML document A:
let receivingWindow = window.open(‘https://www.example.com’, ‘_blank’);

receivingWindow.postMessage(‘Hello, other window!’, ‘https://www.example.com’);

// Code to be used in the receiving window that
// corresponds to HTML document B:
window.addEventListener(‘message’, (event) => {
 if (event.origin !== ‘http://www.example.com’)
 return;
 console.log(event.data); // Will log ‘Hello, other window!’
}, false);

In the given instance, the originating window dispatches a “Hello, other window!” message to the recipient window situated at “https://www.example.com”. The recipient window is configured to listen for incoming messages and validate their origins. If the message originates from a source other than “http://www.example.com,” it’s ignored. If the origins align, it records the content of the message. The picture below gives another example that shows sending a message “Hello World” from a web page A with origin “http://domain-a.org” to a web page B with origin http://domain-b.org that is embedded in an iframe into web page A using postMessage.
Picture: Sending a message to a web page with another origin that is embedded in an iframe using postMessage
[image:]
Source: own representation
While it may seem straightforward, the “postMessage” method remains a critical instrument for web developers. It provides a secure and efficient method for cross-domain interactions, enabling more extensive integration and engagement across web applications. By mastering and adeptly implementing “postMessage,” developers can craft more complex and user-centric web experiences, thereby enhancing web interoperability.
A Deep Dive Into CORS
Continuing with cross-domain interactions, we come across another essential technique for surpassing the limitations of the same-origin policy (SOP) – Cross-Origin Resource Sharing or CORS. Since its endorsement by the W3C in 2014, CORS has been instrumental in facilitating safe cross-domain data transfers (Kesteren, 2020). For example without CORS a web page with the origin http://domain-a.org wouldn’t be able to request a resources like an image or a web font from another origin http://domain-b.org within JavaScript using XMLHttpRequest.send().
Picture: Cross-origin requests that are prevented by the same-origin policy
[image:]
Source: Own representation based on Mozilla (2023)
In contrast using CORS this web page could be explicitly allowed to request additional resources from within JavaScript using XMLHttpRequest.send().

Picture: Cross-origin requests that are allowed due to the use of CORS
[image:]
Source: Own representation based on Mozilla (2023)
In essence, CORS empowers web applications from one origin to request resources from another origin. While this may appear as if it’s sidestepping the SOP, CORS functions within a strict protocol requiring a mutual agreement between the requesting and the serving websites. This consent, communicated through specific HTTP headers, determines if a browser allows a web application to access resources from a distinct origin.
At its most basic, a CORS exchange involves a two-step procedure: the preflight request and the actual request. During the preflight request, before sending the real data request, the browser dispatches an HTTP OPTIONS request to the server to identify whether the CORS protocol is acknowledged and if it’s safe to proceed with the real request. The server replies with specific HTTP headers to denote which origins, methods, and headers it is willing to accept. If this response is positive, the browser advances to dispatch the actual request. If not, the request is stopped, and an error is reported (MDN Web Docs, 2023b).
Let’s illustrate this with a simplified depiction of a preflight request:
OPTIONS /resource/foo
Access-Control-Request-Method: POST
Access-Control-Request-Headers: X-PINGOTHER, Content-Type
Origin: https://www.example.com

And a possible server response:

Access-Control-Allow-Origin: https://www.example.com
Access-Control-Allow-Methods: POST, GET
Access-Control-Allow-Headers: X-PINGOTHER, Content-Type
Access-Control-Max-Age: 86400

In the provided example, the server grants permission to the website at “https://www.example.com” to execute POST or GET requests, and it accepts the “X-PINGOTHER” and “Content-Type” headers. The Access-Control-Max-Age header instructs the browser to store this response for the subsequent 86400 seconds (1 day), in which no further preflight requests are required for this particular combination of server and client.
Understanding how CORS works is a crucial part of contemporary web development. By establishing a protocol that allows browsers and servers to interact securely across various origins, CORS has greatly expanded the possibilities for online integration and interaction. It carefully manages requests to maintain security, all while promoting a more interconnected and fluid web experience.
Case Studies and Examples of Cross-Domain Interactions
Exploring practical case studies aids in gaining a hands-on understanding of cross-domain interactions. These real-world examples set up an applied perspective to comprehend the theoretical underpinnings of postMessage and CORS, discussed earlier. Two case studies of differing complexity levels include the social networking titan, Facebook, and the open-source endeavor, Mastodon.
First, consider Facebook, which extensively utilizes cross-domain interactions for its fundamental features (Facebook Engineering, n.d.). An essential application is the Facebook “Like” button, found on numerous third-party websites. When a user engages with the “Like” button, Facebook must identify which user clicked it and the specific page, requiring cross-domain communication.
To accomplish this, Facebook encapsulates the “Like” button within an iframe. The source of this iframe lies within the Facebook domain, enabling Facebook to read its own cookies to recognize the user. The postMessage method facilitates communication between the third-party website and the iframe. This exchange allows the parent window to inform the iframe about the resource associated with the “Like” button, while maintaining the user data’s security within the iframe (Facebook Engineering, n.d.).
Below is a simplified representation of this interaction:
Secure Communication Between Third Party Website and Facebook iframe Using postMessage
[image:]
Source: Abdullah Karatas (2023).
Our second example comes from Mastodon, an open-source social networking platform. Mastodon operates on a decentralized network of instances, with each instance being a separate domain (Mastodon, n.d.). Users from varied instances have the capability to interact, necessitating considerable cross-domain interactions.
To facilitate these interactions, Mastodon employs CORS. When a user intends to engage with a post from another instance, their client dispatches a request to the other instance’s server. The server leverages CORS to authenticate the request’s origin and decide on its acceptance. This process ensures the safety of user data while providing a smooth social media experience across the network (Mastodon, n.d.).
These two case studies, Facebook and Mastodon, illuminate the real-world applications of cross-domain interactions in the contemporary web. Both platforms incorporate these interactions to offer critical functionalities to their users, underlining the importance and relevance of comprehending these principles for web developers and computer scientists.
Self-Check Questions
37. True or False: The main purpose of cross-domain interactions is to bypass the security protocols of the web
False. The main purpose of cross-domain interactions is to facilitate communication and data exchange between various web domains while maintaining necessary security controls
38. Fill in the gaps: In a ‘postMessage’ implementation, the sending script invokes the ‘postMessage’ method on the receiving window and forwards the message as an argument.

5.2 Mashups
As we further explore the wonders of web interoperability, it is impossible to overlook the innovative domain of web mashups. These creations, which took off with the advent of web APIs and open data, have reshaped our interaction with web applications and data.
In essence, a mashup integrates data, presentation, or functionality from two or more sources to create a new service. This combining and reusing of data and services sparks innovation, allowing developers to craft applications that exceed the capabilities of their individual components (Hinchcliffe, 2007).
In the forthcoming subsections, we will delve into the concept of mashups, shedding light on their types and the central role of web APIs in their creation. We will then explore the far-reaching impact of mashups on various sectors, enlightening their transformative potential through use cases.
Understanding mashups and their creation process is fundamental to modern web development. It is an arena where creativity meets technical expertise, and an arena that promises unprecedented advances in the digital world.
The Concept of Mashups
The concept of mashups, originally emerging from the music industry where multiple songs are combined into a unique track, has completely transformed the approach to developing web applications (Benslimane et al., 2008).
In the digital world, a mashup refers to a web application that integrates data, representation, or functionality from numerous sources to establish a new service. These sources, commonly accessible via APIs, provide an essential repository of data or services, enabling developers to create more complex and feature-filled applications (Yu et al., 2008).
The beauty of a mashup lies in its ability to collect, filter, and remodel data from various sources into a consolidated view, effectively providing the user with a more expansive and enriched interaction with the data. Mashups equip developers with the means to construct inventive applications that go beyond the capabilities of single services, tapping into the power of collective data (Benslimane et al., 2008). The term "collective data" in the context of mashups refers to the aggregation of data from multiple sources.
To illustrate this concept, let’s consider a hypothetical instance of a travel mashup. This application could extract data from diverse travel-related APIs: drawing flight details from an airline API, hotel information from a booking platform’s API, weather predictions from a weather service API, and tourist attractions from a tourist information API. The mashup application could collect and filter this data based on the user’s travel schedule, destination, and preferences, delivering a personalized and comprehensive travel route within a single platform.
Developers constructing mashups heavily depend on APIs made available by web services, as these APIs lay out the necessary data and functions (Wikipedia, 2022). In the context of mashups, APIs serve as the conduit to extract data or functions from another service (Jiang, Liu, Wang, & Chen, 2020).
Types of Mashups
Just as the data available on the web is rich and diverse, so too are the possibilities for creating mashups. The spectrum of mashup types primarily depends on the source of the data being used and the target audience for the application. Generally, based on their intended audience, mashups are categorized into three main types: consumer mashups, data mashups, and business mashups (Hoyer & Fischer, 2008).
Consumer mashups
Consumer mashups are the most common type of mashup and are frequently encountered by individuals, often unknowingly. These mashups aggregate data from public resources and are intended towards a wide audience. They characteristically fuse data, visual representation, and functionality from numerous sources to deliver an enriched and comprehensive user interaction.
An example of a consumer mashup is a real estate mashup. Such a mashup may combine property listings from a real estate API, geographical data from a mapping service like Google Maps, and demographic statistics from governmental or private data repositories. The integrated data delivers a singular interface for the user to engage with multiple services, enabling a fluid user experience.
Data mashups
Data mashups concentrate on combining and adjusting data from varied sources. These mashups frequently involve complex data transformation, consolidation, or filtering operations to formulate a new service with enhanced insights. Data mashups are common in scientific exploration, where multiple datasets are merged and processed to extract new knowledge or understandings (Hoyer & Fischer, 2008).
An instance of a data mashup might be a global warming mashup. This brings together climate information from diverse sources such as the climate API from NASA, the weather API from NOAA, and carbon emission data from ecological databases. This data could subsequently be analyzed and represented visually to monitor and forecast climate patterns.
Business mashups
Business mashups, implied by the term itself, target corporate users. These mashups often blend data and services from public as well as proprietary (internal) sources. They are frequently used to offer tailor-made solutions to business challenges, providing distinctive insights into business data and operations.
Take for example, a logistics mashup might incorporate internal inventory details, supplier APIs, and freight APIs to deliver a holistic overview of the logistics process. This could aid businesses in streamlining their supply chain, cutting expenses, and enhancing productivity.
Mashups and Web APIs
Mashups, at their core, rely on the principle of connecting different data and Web services to create an enhanced and integrated application. The Web API is the linchpin of this connectivity and integration (Pautasso et al., 2008).
Web Application Programming Interfaces (Web APIs) serve as channels, offering standardized processes for obtaining data or functionalities from a web service. They establish a mechanism for developers to engage with a web service, pull out data, and tailor it to fit their application’s requirements (Pautasso et al., 2008).
Without APIs, the task of consolidating data for mashups would be daunting, if not impossible. In the context of mashups, the most commonly used APIs are RESTful APIs (Representational State Transfer).
To illustrate how APIs operate within a mashup, consider our earlier example of a travel mashup application. The application would send requests to various APIs (e.g., an airline’s API, a hotel booking platform’s API, a weather service’s API, and a tourist information API). Each API would process the request and return the requested data (flight details, hotel specifics, weather forecasts, tourist attractions), which the mashup application would then aggregate and present to the user.
// Example of an API request to a hypothetical airline’s API
fetch(‘https://api.airline.com/flights?destination=Boston&dates=2023-12-25’)
 .then(response => response.json())
 .then(data => {
 // The ‘data’ variable now holds the flight information
 });

Apart from the central role of APIs in powering mashups, it’s important to spotlight the relevance of data formats. APIs usually offer data in varied formats such as XML and JSON. Developers working on mashups must comprehend these formats, as they guide how data is managed within the software.
APIs frequently come with certain constraints, such as rate limits, which impose a limit on the number of requests a client can make within a certain time interval. This policy exists to prevent API misuse and maintain fair usage. Developers must tactfully navigate these rate limits, and structure their application in a way that acknowledges these bounds, for instance, by applying caching techniques, refining the number of requests, or managing API responses that signal a rate limit violation (Twitter, 2020).
Finally, it’s important to consider the security and privacy implications of mashups and APIs. As mashups aggregate data from a multitude of sources, they need to process this data securely and in a way that respects privacy (Hoffman, 2020). APIs need to validate requests to confirm they are originating from an authentic source. This is typically accomplished using API keys, which are distinct identifiers allocated to each client. Also, any sensitive data needs to be communicated securely, often by using HTTPS, a secure variant of the HTTP protocol.
Impact and Use Cases of Mashups
Over the last ten years, mashups have profoundly transformed the way we access and interact with data on the web. The idea of combining autonomous data sources and services to produce a novel, enhanced, and more interactive service is compelling (Hinchcliffe, 2007a). Mashups have evolved beyond their initial application in web development and are now being used in various domains, including healthcare (Bentley et al., 2013).
In the world of business, mashups have brought about a transformative change, giving rise to the term “business mashups”. These are applications that aggregate different data sources into a single view to support business operations or decision making (Hoyer & Fischer, 2008). A classic example is a sales dashboard that integrates real-time sales data, inventory information, and customer feedback to provide a comprehensive view of the sales operation.
The impact of mashups extends to the healthcare sector as well. Health mashups integrate data from various sources, including Electronic Health Records (EHRs), health databases, and personal health devices, providing patients and healthcare providers with a comprehensive view of a patient’s health. They have the potential to improve healthcare delivery by providing timely and integrated health information. For example, researchers from the US Food and Drug Administration (FDA) define real-world evidence (RWE) as: “Healthcare information derived from multiple sources outside of typical clinical research settings, including electronic medical records (EMRs), claims and billing data, product and disease registries, and data gathered by personal devices and health applications” (McKinsey & Company, 2018).
Mashups also have found their place in education, where they are used to create dynamic learning environments. Teachers use mashups to integrate diverse educational resources, including video lectures, quizzes, and interactive modules, into a single learning platform. This helps create a rich, interactive, and engaging learning experience (Ehlers, 2009).
To grasp the influence of mashups, it’s necessary to recognize the advantages they provide. Mashups accelerate application development since developers can utilize pre-existing services and data rather than creating everything from the ground up. They accelerate data integration and provide an intuitive, engaging method to visualize and engage with data. Moreover, mashups stimulate innovation by enabling the creation of distinctive services that would be non-existent otherwise (Hoyer & Fischer, 2008).
Nonetheless, it’s important to realize that although mashups present numerous benefits, they also introduce challenges. These encompass issues linked to data privacy, data security, and the dependability of the integrated services (De Ryck et al., 2012).
Self-Check Questions
39. The three main types of mashups are consumer mashups, data mashups, and business mashups.
40. Multiple Choice: Which of the following best describes the role of mashups in web development?
· They combine data, presentation, or functionality from a single source to create a new service.
· They combine data, presentation, or functionality from two or more sources to create a new service
· They remove unnecessary data from a single web application to speed it up.
· They provide a platform for coding web applications from scratch.
5.3 Large-Scale Mashups: Web-Analytics, Badges
As we navigate the evolving landscape of the digital world, we frequently encounter a variety of integrated data and services tailored to provide a seamless and enriched user experience. These integrations, which we’ve come to understand as mashups, have matured from simply blending data or services from various sources to operating on a much grander scale (Basole, 2009).
Web analytics, an essential tool for modern digital enterprises, leverages the principle of mashups to integrate large amounts of data across different platforms and sources. This integration enables businesses to derive actionable insights from their online presence, track user interactions, and optimize their strategies accordingly (Kaushik, 2009).
On the other hand, badges, often seen as digital tokens of achievements or recognition, can also be interpreted through the lens of mashups. These small yet impactful digital icons integrate data about a user’s accomplishments, and when embedded on different platforms, provide a view of an individual’s or an entity’s digital achievements and reputation (Gibson et al., 2013).
Introduction to Large-Scale Mashups
Mashups have exceeded their initial definition as simply the aggregation of content from diverse sources. They have grown from simple combinations of maps and data feeds to large, complex integrations involving multiple web services, applications, and platforms (Hinchcliffe, 2007). As these mashups scale up, the term "large-scale" begins to make more sense. They are no longer just about merging two types of data; they now represent the convergence of various web ecosystems into cohesive, interconnected, and symbiotic digital organisms.
Large-scale mashups: a new paradigm
As technology advanced and the barriers to data sharing diminished, mashups began to play a central role in the larger digital ecosystem. Large-scale mashups today can involve multiple web services, SaaS applications, and even Internet of Things (IoT) devices. The complexity is not simply in the number of components, but in the nuanced ways these components interact and integrate (Benslimane et al., 2008).
Consider, for instance, a smart city application that pulls data from traffic signals, weather stations, public transportation systems, and local news outlets. This application can predict traffic flow, suggest optimal routes, provide weather updates, and even alert residents about upcoming events or emergencies.
Technical challenges and opportunities
It is essential to appreciate that with the potential of large-scale mashups also come challenges. As mashups integrate more services and data sources, they often grapple with issues related to data consistency, security, scalability, and latency (Maximilien et al., 2008). Addressing these challenges requires robust architectural decisions, efficient algorithms, and often, the use of advanced technologies like cloud computing and edge computing.
Yet, the opportunities they offer are large. Large-scale mashups can drive innovation, foster collaboration, and facilitate the creation of entirely new business models. They’re the backbone of many modern web applications and platforms that millions, if not billions, interact with daily.
Role of Mashups in Web Analytics
Web analytics has fundamentally reshaped how businesses and organizations view user behavior, offering insights into how visitors navigate websites, their preferences, and areas of friction. A central factor that has elevated the depth and breadth of such analysis is the emergence and integration of mashups.
At its core, web analytics refers to the collection, analysis, and interpretation of web data. As the digital landscape evolved, data began coming from various sources, not just websites (Chaffey & Smith, 2017). Social media engagements, third-party platform reviews, e-commerce transactions, and geolocation data added layers of complexity and richness to the insights businesses could gain. Analyzing these data sources in isolation, however, presented a fragmented and often misleading picture of user behavior and preferences (Farris et al., 2010).
Mashups came to the rescue by allowing the seamless integration of these different data streams. By using mashups, businesses could correlate, for instance, the impact of a social media campaign on website traffic and conversions, enabling a more holistic view of the effectiveness of the digital strategy (Kaushik, 2010).
Visualization has been a standout feature afforded by mashups in the domain of web analytics. Tools like Google Looker Studio and Tableau facilitate the creation of dynamic dashboards that draw data in real-time from variety sources, such as Google Analytics, CRM systems, and even social media metrics (Chen, 2012). These visual dashboards simplify complex datasets, making them easily interpretable at a glance and enabling businesses to make quick, data-driven decisions.
The potency of mashups is especially evident in real-time data analysis. In today’s rapidly shifting digital environment, businesses often don’t have the luxury of time. A trending product can go viral in minutes, and inventory can be gone just as quickly. Mashups allow businesses, especially in the e-commerce sector, to integrate real-time sales data with inventory levels, customer reviews, and even social media sentiment, providing a comprehensive overview and aiding in instantaneous decision-making (Chen, 2012).
However, with great power comes great responsibility. The integration of data across platforms and tools brings data privacy and integrity concerns to the forefront. As data streams converge, there’s an increased risk of inadvertently sharing or exposing private user information.
Understanding Badges as Mashups
The digital era is filled with various forms of content creation, sharing, and recognition. One form that has been widespread across numerous platforms, be it educational sites, forums, or even business applications, is the "badge". Badges may seem like simple digital stickers, recognition of participation or expertise. But a closer look reveals that badges often embody the spirit of mashups, pulling data and meaning from multiple sources to present a unified, yet multifaceted, representation of a user’s accomplishments or attributes.
Historically, badges originated as physical symbols or insignia used to recognize membership, rank, or accomplishment, common in military or scouting organizations (Antin & Churchill, 2011). Their digital counterparts, however, have evolved to serve multifunctional roles, from signaling achievement and competence to gamifying experiences and even authenticating user identity.
How does a digital badge qualify as a mashup? A digital badge isn’t just an image; it’s a container of metadata. When you earn a badge on platforms like Mozilla’s "Open Badges", the badge carries with it data about who issued it, what for, the criteria to earn it, and even sometimes evidence supporting the badge’s issuance (Gibson et al., 2013). This information, often pooled from various sources, is combined into a single badge – a classic mashup characteristic.
Consider an example at this point. Let’s take the hypothetical case of "Jane," a software developer who’s actively participating in an open-source community forum. Jane writes tutorials, answers questions, and contributes code. Over time, she earns badges for:
1. Writing 50+ tutorials – This badge gathers data from the platform’s article submission system.
2. Being thanked 1000 times – This data comes from the forum’s “thank you” feature.
3. Code being merged into 20 projects – Integration with the platform’s Git repositories tracks this.
Here, each badge Jane receives is essentially a mashup, pulling data from different sections of the community forum and even external repositories to create a cohesive representation of her contributions.
For a more tangible sense of how these badges manifest as mashups, consider the following representation:
Sample Digital Badge With Integrated Information
[image:]
Source: Abdullah Karatas (2023).
In this simple representation, various data points (like the issuer, reason, and date) are combined into a single badge.
From an educational perspective, badges provide learners with a way to demonstrate soft and hard skills not typically reflected in traditional grading systems. For instance, a badge earned for teamwork or leadership in a group project synthesizes the feedback of peers, instructors, and even self-assessments. Similarly, in professional settings, badges can encapsulate an employee’s multi-faceted contributions, from project achievements to interpersonal skills, pulling data from performance reviews, peer feedback, and project management tools (Devedžić & Jovanović, 2015).
Implications and Benefits of Large-Scale Mashups
Data’s role as the "new oil" can’t be overstated. Yet, it’s not the sheer volume of data but its effective integration that’s shaping transformative outcomes. This is where large-scale mashups come into play. Combining data from different sources into unified applications, large-scale mashups are redefining industries, from business intelligence and e-commerce to health and education. This metamorphic convergence of data and services presents both unprecedented opportunities and profound implications.
Let’s begin with the manifold benefits:
1. Richer User Experiences: By aggregating content from varied sources, mashups offer richer, more comprehensive user experiences. Consider the success of real estate platforms integrating property listings with Google Maps, crime statistics, and local school ratings. This provides homebuyers a holistic view, enabling informed decisions (Hinchcliffe, 2007a).
2. Efficiency and Cost-Effectiveness: Mashups simplify data retrieval and display processes. Businesses, instead of developing functionalities from scratch, can harness APIs from third-party services. Spotify’s integration of lyrics from Genius or airline websites pulling weather forecasts are suitable examples.
3. Innovation Catalyst: By offering tools and platforms that can easily integrate with others, we see a rise in creativity and innovation. Developers experiment, iterating new solutions that were previously planned. Large-scale mashups effectively democratize innovation, allowing even those without deep technical skills to craft solutions by combining existing services (Yu et al., 2008).
4. Real-time Data Access: Many mashups operate in real-time, pooling in live data from various sources. Whether it’s tracking stock market fluctuations, monitoring traffic congestion, or observing social media trends, real-time mashups empower users with instant insights.
But where there are benefits, there are drawbacks:
1. Data Reliability and Integrity: Since mashups depend on multiple sources, any error or misinformation in one can impact the entire application’s reliability. Additionally, if a primary data source is compromised, it cascades through the mashup ecosystem.
2. Privacy Concerns: Combining data from various points often raises privacy and security concerns. Users might be unaware that their data, which appears to be shared with one service only, becomes part of a broader data aggregation, potentially jeopardizing their privacy (Maximilien et al., 2008).
3. Dependency and Fragility: Mashups often operate on the premise that all integrated services remain functional. If one service faces downtime or changes its API without notice, it can disrupt the entire mashup’s operation.
4. Legal and Ethical Considerations: Using data from multiple sources can lead to intellectual property conflicts. Who owns the integrated output? If a mashup profits, how are revenues shared among the data providers? These are central questions still being dealt with in legal spheres.
5. Overload: While integrating multiple services offers comprehensive insights, it can sometimes lead to information overload.
Self-Check Questions
41. What role do large-scale mashups play in web analytics?
Large-scale mashups integrate large amounts of data from multiple platforms and sources, enabling businesses to derive (actionable) insights, track user interactions, and optimize their strategies.

42. Multiple Choice: Which of the following are challenges that large-scale mashups often face?
· Data consistency.
· Increased efficiency.
· Legal and Ethical Considerations.
· Reduced latency.
5.4 A/B Testing
In an era where technology is increasingly integrated into our daily lives, ensuring the usability and efficiency of digital platforms is critical. Among the variety techniques available to developers and UX designers, A/B testing stands as a fundamental one—a scientific approach that helps to recognize user preferences, identify optimal interfaces, and drive user engagement. At its core, A/B testing embodies the principle of experimentation in the world of digital design (Kohavi et al., 2007).
Imagine two slightly different versions of a web page: one with a green "Buy Now" button and another with a red one. Which color prompts more users to make a purchase? That’s where A/B testing steps in. It allows developers to show each version to a different group of users and then statistically analyze which variant performed better in terms of a predefined metric (e.g., conversion rate). But this technique is not limited to button colors; it spans a wide array of applications, from content layout to algorithmic changes.
In the next sections, we’ll commence with an overview of A/B testing, shedding light on its foundational principles and its essential role in today’s digital ecosystem. We’ll then delve into A/B testing in the context of web interoperability, understanding its relevance in ensuring seamless user experiences across the variety devices and browsers in use today. Our exploration will further extend to the process of designing and conducting an A/B test, equipping you with the know-how to initiate your own experiments. Finally, because experimentation without evaluation is fruitless, we’ll conclude by addressing the art and science of analyzing A/B test results, ensuring the gained insights are both meaningful and actionable.
Remember that A/B testing, while appears to be straightforward, is a potent tool. By using its power responsibly and effectively, developers and designers alike can ensure they’re not simply following design conventions but are truly optimizing for their users’ needs and preferences (Kohavi, 2008).
An Overview of A/B Testing
 A/B testing, also known as split testing, is a technique that compares two iterations of a website or application to see which one works better.. The premise is simple: Show half of your users version A and the other half version B, then analyze which version produces more of a desired outcome, such as sign-ups, purchases, or clicks. The version that yields a higher conversion rate is typically considered the more effective one (Kohavi, Longbotham, Sommerfield, & Henne, 2009).
Imagine a digital environment as a laboratory. In this laboratory, A/B testing serves as a controlled experiment, offering insights that go beyond intuition or design conventions. It aids in making decisions rooted in actual user behavior rather than assumptions. At its core, it employs the robustness of the scientific method—hypothesis formulation, experimentation, and subsequent analysis—to the digital world.
The mechanics of A/B testing begin with a hypothesis. Suppose you believe that a blue call-to-action (CTA) button will generate more clicks than a red one. This belief forms your hypothesis. Next, you’d create two versions of the page: one with the blue button (Variant A) and another with the red button (Variant B). These variants are then served randomly to your audience, ensuring that external factors (like the time of day or device type) don’t skew the results.
Upon gathering sufficient data, the results are analyzed to determine which variant was more effective in achieving the desired outcome. If Variant A has a statistically significant higher conversion rate, then the blue button would become the default design on your website or application.
One might wonder why such tiny changes, like button colors, matter. In high-traffic websites, even a fractional improvement in conversion rates can lead to an essential increase in revenue or user engagement. Furthermore, these minor tweaks, when accumulated over time, can lead to a largely optimized digital experience (Croll & Yoskovitz, 2013).
For illustrative purposes, consider a basic code snippet that determines which version of a webpage to display:
import random

def display_webpage_version():
 # 50% probability for each version
 if random.random() < 0.5:
 return "Version A (Blue Button)"
 else:
 return "Version B (Red Button)"

print(display_webpage_version())

In this simplified example, half the time "Version A" will be displayed, and the other half "Version B". Such logic forms the foundation of many A/B testing frameworks, although real-world scenarios often require more complex approaches, especially when multiple variables or user segments are involved.
A crucial aspect of A/B testing is ensuring the statistical validity of results. One cannot simply run a test for an hour and make far-reaching changes based on those results. The sample size (number of users exposed to each version) needs to be significant, and the observed differences must be statistically significant to rule out random chance. Tools and platforms dedicated to A/B testing often incorporate these statistical tools, simplifying the process for designers and developers (Kohavi & Thomke, 2017).
A/B Testing in the Context of Web Interoperability
The digital universe is a complex web of devices, browsers, platforms, and user preferences. Given this diversity, ensuring that a website or application functions consistently across this large ecosystem is critical. This assurance, known as web interoperability, becomes even more vital when implementing A/B tests. After all, what’s the point of knowing which version of a website is superior if that version doesn’t operate uniformly for every user?
Web interoperability ensures that web content and applications are accessible across varying platforms and devices, granting users a consistent experience irrespective of their access points (Jacobs & Walsh, 2004). When discussing A/B testing in this context, it becomes clear that ensuring a harmonized experience across different platforms is a prerequisite. If one version of a site doesn’t render properly on, say, mobile devices, any A/B test results involving that version will be affected by the rendering issues, not the design or feature changes that were intended to be tested.
For instance, consider an e-commerce website that’s testing a new checkout button. If this button doesn’t render correctly on specific browsers due to interoperability issues, users of those browsers may not complete their purchases, not because of the design of the new button, but because of the rendering flaw. Consequently, the results of the A/B test would be inaccurate and misleading.
To illustrate the importance of web interoperability in A/B testing, consider a website which uses a JavaScript feature only supported by newer browsers. If an A/B test is set up where Variant A uses this feature, but Variant B does not, users with older browsers will experience discrepancies. Using a simple JavaScript check can mitigate this:
if (‘newFeature’ in window) {
 // Implement Variant A (with the new feature)
} else {
 // Default to Variant B
}

This code ensures that only browsers supporting the “newFeature” will get Variant A, while others will default to Variant B. While protective, this approach can affect results because the user experience varies based on browser capabilities, not design or feature choices. This underscores the importance of ensuring that all users receive a consistent and functional experience, regardless of their browser or device.
In addition, Web interoperability goes beyond simple rendering issues. The performance and speed of Web pages can vary based on browsers, devices, and network conditions. Such performance differences can have a significant impact on user behavior, which in turn can affect the results of A/B testing. For example, if a new design element on a web page increases load time for mobile users, they may be more likely to abandon the site, affecting A/B test results.
Designing and Conducting an A/B Test
The value of A/B testing in driving data-informed decisions cannot be understated. From minor UI tweaks to complete webpage redesigns, A/B tests can provide insights into user behavior and preferences, ensuring optimal outcomes. However, the power of A/B testing lies in its proper design and execution. Incorrectly designed tests can lead to inconclusive or misleading results, rendering the exercise pointless (Kohavi, Longbotham, Sommerfield, & Henne, 2009). In this discourse, we’ll explore the complex process of designing and conducting a successful A/B test.
At the heart of an A/B test lies the hypothesis—a statement predicting the outcome of the test. For instance, a hypothesis might posit, "Changing the color of the “add to cart” button from blue to green will increase click-through rates". This hypothesis not only describes the change being tested but also specifies the expected outcome.
Once a hypothesis is formulated, the next step is to identify the key metrics that will be tracked. In our example, the key metric is the click-through rate of the button. However, it’s crucial to consider secondary metrics as well. Perhaps the button’s color change affects other behaviors, like the overall time spent on the page or the number of items added to the cart.
Now comes the design of the variants. Typically, A/B tests involve a control group (the original version, in this case, the blue button) and a variant group (the new version, the green button). It’s essential to ensure that only the element being tested—here, the button color—varies between these groups. Introducing additional changes can muddy the waters and make it challenging to attribute observed effects to the intended change.
Here’s a rudimentary code snippet to serve different content based on the test group:
const userGroup = assignUserToGroup(); // Function assigning users randomly to ‘control’ or ‘variant’

if (userGroup === ‘control’) {
 renderBlueButton();
} else {
 renderGreenButton();
}

In A/B testing, the principle of random assignment is critical. Each user should have an equal chance of being placed in either the control or test group, ensuring that the groups are analogous. In this way, any observed differences in behavior can be attributed to the changes introduced, rather than to any intrinsic differences between the groups.
Once the setup is finalized, you can initiate the test. Yet, it’s typically recommended to first deploy the test to a smaller user segment—a strategy termed as a staged rollout. This approach helps mitigate the risk of potential adverse effects impacting the entire user population (Deng et al., 2013).
The length of the test varies based on aspects like the population size, magnitude of the effect, and the sought-after confidence threshold. As a rule of thumb, you should allow the test to continue until a recognizable statistical result is observed, or it’s clear that there is no meaningful difference. It’s important to avoid rushing to conclusions based on early patterns. A/B testing requires sufficient time to produce significant results.
Upon test completion, a comprehensive result evaluation is imperative. Conventional statistical instruments, such as t-tests or chi-squared tests, can assist in identifying if perceived variances hold statistical weight. Equally significant is assessing the real-world relevance of these findings. For example, if changing the color of a button results in a statistically significant 0.01% increase in click-through rates, you may want to consider whether the change is worth the effort.
Analysing A/B Test Results
The highlight of any A/B test is the analysis of the results. The process is like piecing together a puzzle, and each piece—be it a data point or a statistical measure—contributes to the larger picture, revealing insights about user behavior and preferences (Kohavi et al., 2013). In addition to determining whether the changes had a significant impact, smart analysis also uncovers underlying trends and potential areas for further exploration.
Significance and p-values
At the core of A/B test evaluation is the p-value—a measure that reflects the probability that the observed disparity between the control and test groups resulted from sheer randomness. Typically, a p-value under 0.05 is considered significant, suggesting that there’s a less than 5% chance that the observed difference was due to chance alone. Nonetheless, it’s essential to recognize that even if a lower p-value points to more essential evidence against the null hypothesis (indicating no variation), it doesn’t quantify the scale or real-world significance of the difference.
Effect size
Although p-values signal the statistical relevance of a finding, the effect size illuminates its real-world importance. A finding can be statistically notable yet practically minimal. Effect size quantifies the degree of difference between groups, independent of the sample size. Cohen’s d is a commonly used gauge for this, where values represent small (d=0.2), medium (d=0.5), and essential (d=0.8) impacts (Cohen, 1988).
Confidence intervals
A key element in A/B testing evaluation is the confidence interval. This provides a range within which the true difference between groups is expected to lie. For example, with a 95% confidence interval, if the experiment were run 100 times, the true variation would be within the specified range 95 of those times. This range provides insight into the accuracy and trustworthiness of the estimate, which is critical when drawing business conclusions from the results.
Multiple comparisons & Bonferroni correction
In more complex tests with multiple variants, the chances of encountering a statistically significant result by mere chance increase. The Bonferroni correction is a method to counteract this issue. By dividing the desired significance level by the number of comparisons, it adjusts the p-value threshold, ensuring more strict criteria for significance (Dunn, 1961).
Visualizing results
Visual representations, such as bar graphs or scatter plots, can be instrumental in communicating results to stakeholders. For instance, a bar graph could compare the average conversion rates of the control and variant groups, with error bars denoting the 95% confidence interval. Such visuals help in quickly grasping the impact and significance of the test results.
Considerations and pitfalls
When analyzing A/B test results, you need to be aware of common pitfalls. For example:
· Duration: Tests should run long enough to capture enough data, but not so long that external factors (like seasonal trends) influence the results.
· Sample Size: A larger sample size can detect smaller effect sizes. However, overly large samples might lead to statistically significant but practically irrelevant findings.
· External Factors: Ensure that external factors, like marketing campaigns or website downtimes, don’t skew the results.
To illustrate, consider a simplified code for calculating the p-value:
from scipy.stats import ttest_ind

Sample data for control and variant groups
control = [1, 0, 1, 1, 0, 0, 1, ...]
variant = [1, 1, 1, 0, 1, 0, 0, ...]

Independent t-test
t_stat, p_val = ttest_ind(control, variant)
print(f"P-value: {p_val}")

In summary, analyzing A/B test results is a careful process supported by robust statistical methods. The true value of A/B testing lies not only in conducting the tests, but in accurately interpreting the results to make data-driven decisions that can shape and improve the user experience.
Self-Check Questions
43. Fill in the gaps: A/B testing serves as a controlled experiment, offering insights that go beyond gut feelings or design conventions.

44. Multiple Choice: What is crucial for ensuring the statistical validity of A/B testing results?
· Running the test for a short duration.
· Ignoring sample size.
· Observed differences must be statistically significant.
· Not using any statistical tools.
Summary
In the chapter, this concept of “Multi-party Web Architectures” is explored as a building block in modern web interoperability. It allows different applications, platforms, and services to interact seamlessly with another around an open core architecture; hence becoming increasingly important for the future semantic capabilities, APIs and extensive integration that are distinguishing features of the Web 3.0 era. The chapter has been divided into four sections each focusing on a crucial element of this multi-party architecture.
The first section introduces “Cross-domain interactions” and focuses on the importance of both “postMessage” and CORS in securely communicating between different web domains while exchanging data.
The second section of this chapter focuses on "mashups," applications that aggregate data or functionality from multiple sources. They are typical of the move toward greater interoperability on the Web, and especially as a springboard for innovation, often literally exceeding the sum of their parts through clever engineering.
In the third section, this concept gets scaled up into discussing “Large-scale mashups” which are more focused on web analytics and badges. Web Analytics pools data from across platforms to allow businesses generate meaningful insights.
The last section covers "A/B testing," an essential technique that enhances the user experience by pitting two versions of a website feature against each other. By doing so, we gather real-world data to help developers fine-tune the way a website interacts with its users, better aligning with what they’re looking for.
Unit 6 – Semantic Web

Study Goals

On completion of this unit, you will be able to …

… understand the principles and technologies underpinning the Semantic Web, including Linked Open Data.
… recognize the significance of in-page markup standards like OpenGraph and Microdata for machine readability.
… identify the role of Web Ontology Language (OWL) in establishing shared understandings and relationships in web data.
… evaluate the challenges and tools associated with implementing reasoning on the web.

6. Semantic Web
Introduction
In the early days of the Internet, Web pages primarily displayed static information, similar to traditional printed materials. As the Internet matured, however, it became a more interactive platform. Despite this evolution, a significant hurdle remained: while human users could easily access a wealth of content, this data often remained hidden to machines. This is where the Semantic Web comes in, an initiative pioneered by Tim Berners-Lee that aims to create a Web saturated with data that machines can process both directly and indirectly. The essence of the Semantic Web isn’t just connecting data, but understanding its meaning.
The Semantic Web represents a monumental advance in promoting Web interoperability, which stands for the fluid exchange of information across disparate systems, applications, and user groups. Using the protocols and technologies discussed in this chapter, the Semantic Web aims to make Web content more machine-friendly, enabling it to be analyzed, extract insights, and drive advances in areas such as artificial intelligence and knowledge graphs.
The following sections examine the key components and methods that are critical to maintaining and using the Semantic Web. These sections emphasize its central role in computer science and the various strategies it employs to bridge human-readable content with data that machines can interpret.
6.1 Linked Open Data
In the large digital cosmos of the internet, data acts as the lifeblood. Every day, countless bytes of information flow. The challenge becomes: how can we make sense of this enormous ocean of data and interconnect its apparently different parts? The solution rests in the idea of "Linked Open Data" (LOD; Berners-Lee, 2009).
Linked Open Data represents a structured approach to connect, share, and enrich data across different datasets and domains on the World Wide Web (Bizer, Heath, & Berners-Lee, 2009). It seeks to produce a web of data, paralleling our existing web of documents, where information from diverse sources can be accessed, interpreted, and integrated seamlessly. Data, when interlinked and unlocked by both humans and machines, becomes more valuable, diverse, and catalyzes new ways of knowledge discovery.
Central to this initiative are the "Four Principles of Linked Data", which serve as foundational guidelines, ensuring data is structured and published optimally for interlinking and accessibility (Berners-Lee, 2009). However, like any transformative endeavor, LOD has its share of "pros and cons". While its potential to transform data interaction is great, practical barriers and challenges remain.
Essential to the development and adoption of LOD are the Data Sets and Public Repositories, which serve as central hubs of linked data that illustrate the possibilities of LOD (Bizer et al., 2009). Complementing this is the exploration of real-world implementations in the Applications and Use Cases subsection, demonstrating the far-reaching impact of LOD.
Taking this journey through Linked Open Data offers a glimpse into the next evolutionary phase of the Web – one in which data not only exists, but is linked, related, and conversational across the vast digital landscape.
The Four Principles of Linked Data
The digital world has grown exponentially, yielding large amounts of data. But the true essence of this data isn’t just its sheer size but its interconnectivity. Introduced by Tim Berners-Lee, the architect of the World Wide Web, the Four Principles of Linked Data set the stage for harnessing the true power of web-based data (Berners-Lee, 2009).
1. Employ URIs for Identification: Central to the web’s triumph is the Universal Resource Identifier (URI), which offers a distinct marker for resources. Within Linked Data, entities, objects, or even abstract ideas should be designated by URIs. Adherence to this principle ensures that distinct pieces of data can be precisely located, laying the groundwork for data connections. For example, a literary work, its author, or broader concepts such as literary categories could each have a specific URI that serves as a unique reference across multiple data collections.
2. Utilize HTTP URIs for Retrieval: URIs should be available through the HTTP protocol, ensuring that these names are not only unique, but also retrievable on the Web. By interacting with these HTTP URIs, either users or automated systems should obtain a detailed report associated with that URI. This concept makes it easier to navigate through the data web, moving effortlessly from one data segment to the next. Imagine discovering a URI associated with an author; by engaging with it, you’d uncover additional details about them, possibly other works they’ve written, or contemporaries in a similar literary space.
3. Offer Valuable Data via RDF: Once a URI is accessed, it should return meaningful content, ideally in Resource Description Framework (RDF) layout. RDF serves as a standardized blueprint for sharing data online, ensuring that the data provided is organized for machine processing (W3C, 2014). A basic RDF statement might resemble: "[Writer’s URI] wrote [Literary Work’s URI]," describing associations in a consistent, machine-readable format.
4. Include Links to Other URIs: The real magic of Linked Data comes to life when individual datasets begin to link to each other, creating a large interconnected web. This principle underscores the importance of including links in the data to other, related URIs. By doing so, you allow users and machines to discover more data by effectively navigating the web of data, just as one might jump from one web page to another through hyperlinks.
To put this in perspective, consider a digital library’s database. Using Linked Data principles, every book, author, or publisher would have a unique URI. Accessing the URI for a particular author would provide data (in RDF format) about that author, including links (URIs) to books they’ve written. Following the URI for one of those books would then lead to information about that book, including its publisher, genre, and perhaps even links to similar books or authors.
<http://example.org/author/123> rdf:type <http://schema.org/Author>.
<http://example.org/author/123> <http://schema.org/name> "John Doe".
<http://example.org/author/123> <http://schema.org/hasWritten> <http://example.org/book/456>.

The above is a simple RDF representation. The author, identified by the URI <http://example.org/author/123>, is named "John Doe" and has written a book identified by the URI <http://example.org/book/456>.
Understanding and implementing these principles is critical. They not only streamline data linkage and enhance data discovery but also fuel the growth of a truly interconnected, global data infrastructure. As the web transitions from a space of documents to a space of knowledge, these principles guide us in creating a coherent, meaningful, and immensely powerful data ecosystem.
Benefits and Challenges of Linked Data
The transformative potential of Linked Data is evident in numerous sectors, from academia and research to commercial enterprises and public services. Just as the World Wide Web revolutionized the dissemination of documents, Linked Data aims to fundamentally alter how we represent, share, and interact with data. However, like any innovative approach, Linked Data presents both groundbreaking opportunities and challenges.
Benefits
1. Enhanced Data Discoverability: One of the most important benefits of Linked Data is that it improves the discoverability of data. By providing globally unique identifiers for data elements and connecting them, users can effortlessly traverse the vast web of information, moving seamlessly from one dataset to another (Heath & Bizer, 2011). This web-like structure of data allows users and machines to discover related and relevant data, similar to how one might discover new web pages through hyperlinks.
2. Data Interoperability: Data silos are a persistent issue in many sectors. Data from one organization or platform often remains incompatible with data from another, creating disjointed data ecosystems. Linked Data, with its standardized representation in RDF, ensures data interoperability, allowing diverse datasets to interact uniquely (Bizer et al., 2009).
3. Data Enrichment: As datasets interlink, they mutually enrich each other. Information from one source can complement, validate, or add depth to information from another, creating a richer and more detailed data landscape. For example, a museum might have data about a painting, while a historian’s database might contain detailed context about the era in which it was created. Linking these datasets provides a more comprehensive picture.
4. Facilitation of AI and Advanced Analytics: Linked Data’s structured nature is particularly conducive to machine processing, making it an ideal resource for artificial intelligence, machine learning, and advanced analytics applications (Hitzler et al., 2010). By providing machines with interconnected, semantically rich datasets, we pave the way for more insights and data-driven decision-making.
Challenges
1. Complex Deployment: Building Linked Data, especially for large and diverse data collections, presents hurdles. Ensuring that each piece of data is assigned a unique URI, establishing connections between data, and maintaining those connections requires careful strategy and technical expertise (Hogan et al., 2010).
2. Doubts About Data Integrity: Owing to its structure, Linked Data pulls from various data reservoirs. While this interweaving adds to the richness of the data, it also raises doubts about its authenticity and accuracy. It’s critical to ensure that the linked datasets remain trustworthy, current, and accurate (Zaveri et al., 2015).
3. Scalability: As Linked Data content expands, potential problems associated with data storage, extraction, and computation may surface. Effectively exploring large, linked datasets without compromising operational speed is a key issue that needs to be addressed (Harris & Seaborne, 2013).
4. Risks to Privacy and Security: Merging data sources might unintentionally expose confidential or personal details. It’s essential that Linked Data observes and upholds privacy and safety guidelines, particularly in sensitive industries like medical care or banking (Zuiderwijk & Janssen, 2014).
[image:] The following diagram illustrates an RDF graph for a Semantic Web resource, ‘ex:SemanticWeb’. It shows ‘ex:Author’ predicates associated with the authors ‘ex:Hitzler’, ‘ex:Krötzsch’ and ‘ex:Rudolph’, and an ‘ex:Title’ predicate associated with the title ‘ex:Sure’. The arrows show the direction of the relationships within the namespace "http://ex.org/" and thus illustrate the interconnectedness of the data in the Semantic Web..
[image:]
Data Sets and Public Repositories
In the world of the Semantic Web, the lifeblood that powers its large network lies in data sets. These datasets, when connected, create the complex web of linked data that enables the creation of a globally interconnected data space. As the Semantic Web has grown, numerous public repositories have emerged to house, manage, and disseminate these datasets to the broader community. Let’s dive into the world of these datasets and the platforms that make them accessible.
The potential of Linked Data is truly realized when datasets from different sources, domains, and authorities are made available and linked. This availability depends on open data initiatives and the platforms where these datasets are stored and accessed. The more diverse and comprehensive the datasets available, the richer the Linked Data landscape becomes.
Several respected institutions and organizations around the world have recognized the transformative potential of Linked Data and have contributed large, diverse datasets to the public domain as a result. In particular, the Linked Open Data Cloud (LOD Cloud) project visually represents the diversity of datasets available in the Linked Open Data ecosystem. As of the most recent data, the LOD Cloud includes thousands of datasets spanning diverse domains such as geography, life sciences, media, and government data, among others (Schmachtenberg, Bizer, & Paulheim, 2014).
The Linked Open Data Cloud
[image:]
Source: LOD Cloud Project (2023)
These datasets, which are often large and diverse, require structured platforms to manage and distribute them. In this respect, public repositories are similar to libraries for linked data. These platforms not only store and provide access to these datasets, but also provide tools and interfaces for querying, analyzing, and visualizing the data. Some well-known public repositories in the Semantic Web community include the DataHub, Bio2RDF, and the European Union’s Open Data Portal.
Additionally, the largeness of available datasets also underscores the importance of metadata—data about the datasets. Metadata provides context, helping users understand the dataset’s nature, its structure, its source, and other essential attributes. Quality metadata is often the difference between data that’s simply available and data that’s genuinely useful (Hitzler & Janowicz, 2013).
Applications and Use Cases
The Semantic Web, with its foundation in Linked Data, is not just a high-level, theoretical concept; it has immediate, tangible applications that span a variety of domains. These applications, ranging from improved search engines to complex knowledge management systems, demonstrate the transformative potential of the Semantic Web.
With data interoperability and semantic richness, new horizons of possibility are opening up.
Let’s explore some compelling applications and use cases to better appreciate the real-world significance of Linked Data.
First, consider the domain of academic research. In a world overflowing with publications, linking related articles, citations, and datasets becomes a challenge. Platforms like Semantic Scholar use Semantic Web principles to create richer search and recommendation experiences. By semantically linking articles based on topics, references, authors, and other criteria, researchers can discover relevant works with unprecedented ease (Allen Institute for AI, n.d.).
In the world of healthcare, linked data holds tremendous potential. With large, heterogeneous data sets ranging from patient records to drug interactions, healthcare is in dire need of efficient interoperability. Projects like Bio2RDF aim to create a network of linked data for the life sciences. In doing so, they facilitate advanced analytics that help researchers identify patterns, potential drug interactions, or rare side effects, contributing significantly to personalized medicine (Belleau et al., 2008).
E-commerce can also benefit from the Semantic Web. Consider a customer searching for "summer dresses.” A traditional search might return products tagged with those keywords. But a semantically enhanced search could take into account factors such as user preferences, related fashion trends, or even the type of summer weather that dominates the user’s region. Such considerations make product recommendations more accurate and relevant, improving the overall user experience (Hepp, 2008).
Government agencies have also recognized the benefits of the Semantic Web. Governments around the world are increasingly adopting Linked Open Data initiatives. These projects aim to publish government datasets in semantic formats, ensuring transparency and enabling citizen developers to build insightful applications. For example, the UK government’s data.gov.uk initiative provides large datasets on topics ranging from transportation to health, facilitating the creation of tools that can monitor public service performance or optimize urban planning (Shadbolt et al., 2012).
@prefix ex: <http://example.org/>.
ex:Dataset1 a void:Dataset;
 dcterms:title "UK Transportation Data";
 dcterms:description "A dataset containing transportation-related metrics in the U.K.".

This notation example above is a rudimentary representation of how metadata for a dataset (like the U.K. transportation data) might be structured. Through such semantic descriptions, data can be queried, linked, and utilized more effectively.
Self-Check Questions
45. What does RDF stand for?
· Random Digital Format.
· Resource Description Framework.
· Relevant Data Flow.
· Refined Data Function.
46. According to the Four Principles of Linked Data introduced by Tim Berners-Lee, what does the Resource Description Framework (RDF) facilitate?
· It assigns a distinct marker for each resource through URIs.
· It outlines a standardized layout for sharing organized, machine-digestible data online.
· It includes links to other data segments through HTTP URIs.
· It describes a detailed account of individual URIs when accessed through HTTP.
6.2 OpenGraph, Microdata, and Other In-Page Markup
The modern Web is a complex network of interconnected content accessed by both humans and machines. To facilitate machine understanding, web pages must be semantically rich and well-structured, which introduces the need for "in-page markup". This markup serves as a bridge between human understanding and machine interpretation.
In the realm of in-page markup, standards such as OpenGraph, created by Meta (Facebook), have become essential in shaping how content appears on social platforms. It is often responsible for the clean previews you see when sharing links on platforms like Facebook or Twitter (Mika, 2007). Similarly, technologies such as Microdata and Schema.org vocabularies help search engines present detailed snippets directly in search results, enhancing the richness of those results without altering the human user experience (Guha et al., 2016).
As we continue to explore this topic, we will delve into the basic concepts of in-page markup and understand its quiet but essential role in shaping the online experience. We will examine the specifics of OpenGraph and its impact on the social web, followed by an exploration of Microdata and its collaboration with Schema.org in organizing web content. Finally, we will look at real-world applications to grasp the transformative role of in-page markup in today’s web ecosystem.
For aspiring computer scientists, web developers, and curious end users, understanding these technologies offers not only academic enrichment, but also a competitive advantage in various web-related fields.
An Introduction to In-page Markup
In the formative years of the World Wide Web, pages were primarily static, providing textual content with minimal interactivity. However, with the dynamic nature of today’s Internet, it’s become essential to create content that is both accessible to humans and understandable to machines. This is where in-page markup comes into play. At its core, in-page markup is about adding hidden annotations to web content that make it more understandable and accessible to machines without interfering with the human reading experience (Berners-Lee, 2009).

Imagine a simple recipe shared on a blog. For a human reader, understanding the ingredients, steps, and other facets is intuitive. However, a search engine, without the benefit of human cognition, sees it as just text without structured annotations to guide it. In-page markup provides that guiding structure, allowing search engines to recognize the list of ingredients, the cooking time, or even the calorie count, resulting in richer search results for users.
One of the earliest incarnations of this idea was the use of "meta" tags in HTML, which allowed webmasters to include data about the page that wasn’t directly displayed on the page itself. Over time, as the Internet evolved, so did the requirements for in-page markup. A simple set of meta tags wasn’t enough to convey the variety of information found on modern web pages (Sporny et al., 2014).
HTML5, a significant evolution of the web’s core language, brought forth more semantic elements-tags such as "article," "nav," "time," and "figure". While these tags made strides in making content more understandable, they still weren’t comprehensive enough for the complex needs of search engines, social media platforms, and other web applications. Thus, specialized in-page markup languages such as Microdata, RDFa, and JSON-LD were created to provide more detailed and structured annotations.
For instance, consider the following simple markup for a book:
<div>
 Name: The Great Gatsby
 Author: F. Scott Fitzgerald
 Published: 1925
</div>

While it’s clear to a human reader, a machine might not readily understand the semantics. However, with in-page markup, it could be annotated as:
<div itemscope itemtype="http://schema.org/Book">
 Name:
 The Great Gatsby
 Author:
 F. Scott Fitzgerald
 Published:
 <time itemprop="datePublished">1925</time>
</div>

The last code, while visually similar to the reader, is much more informative to a machine, indicating the type of content (a book) and its attributes.
As we move further into the domain of in-page markup, it’s important to appreciate the balance it strikes. For human readers, it remains discrete, ensuring that the aesthetics and readability of a web page are not compromised. For machines, however, it’s like a guiding light that illuminates the meaning and context of the content, making the web a more connected, structured, and coherent ecosystem (Hitzler et al., 2010).
OpenGraph: Bridging the Social Web
Within the constantly changing terrain of the World Wide Web, one notable change has been the rise and spread of social media platforms. Today, they’re not only places for personal interaction, but also centers for information sharing, commerce, and multimedia exchange. The integration of websites with social media requires a unified way for these platforms to understand, present, and distribute web content. OpenGraph, launched by Meta (Facebook) in 2010, has become an important remedy for this obstacle (Facebook Developers, n.d.b).
Essentially, OpenGraph is a mechanism that allows external websites to be transformed into a detailed "entity" within a social graph. Put simply, it allows any web page to act like any entity on Facebook or similar compatible platforms. Consider the moment you post a message on your Facebook timeline. The system automatically extracts the headline, the main image, a brief summary, and arranges it in a visually appealing way. This instinctive extraction and presentation, symbolic of the evolving capabilities of the Web, can be facilitated by meta-tags such as those of OpenGraph, reflecting the deeper integrations and richer user experiences outlined by O’Reilly and Battelle (2009).
Consider the widespread distribution of content across platforms such as Meta (Facebook), X (Twitter), LinkedIn, and Pinterest. Tailoring content differently for each platform to ensure consistency and appeal can be challenging. OpenGraph streamlines this by providing a conventional collection of attributes to characterize content, whether it is a blog post, a music track, a video clip, or even a product listing on a shopping portal.
To provide a concrete illustration, suppose you maintain a blog that focuses on timeless works of literature. You’ve recently written a post about the complex themes in Jane Austen’s Pride and Prejudice. You’d like to make sure that when your followers share this post on Facebook, they see a special portrait of Austen, an engaging headline, and a concise summary. The OpenGraph meta tags would look something like this:
<meta property="og:title" content="The Timeless Themes of Pride and Prejudice" />
<meta property="og:type" content="article" />
<meta property="og:url" content="http://www.classiclitblog.com/pride-prejudice-themes" />
<meta property="og:image" content="http://www.classiclitblog.com/images/jane-austen.jpg" />
<meta property="og:description" content="An exploration into Jane Austen’s profound understanding of human nature and societal intricacies." />

By integrating these tags into the header of your HTML document, you’re telling social networks how to display your content when it’s shared, ensuring that your preferred image, title, and summary are displayed in social media feeds (Safko, 2012).
It’s important to note that while Facebook pioneered OpenGraph, its utility is recognized across multiple platforms, positioning it as a universal solution for enhancing content for social distribution. At its core, OpenGraph acts as a channel, facilitating a smooth connection between individual web pages and the vast, interconnected world of social media.
But like any technology, OpenGraph comes with its own set of obstacles. Regularly updating meta tags as content changes, managing multimedia assets such as video clips, and the intricacies of maintaining appropriate image sizes are tasks that require precision.
Microdata and Schema.org
As the Web continues to expand and change, so does the daily flow of data. To enable machines to better understand and represent this content, the introduction of structure and context is critical. This need led to the creation of Microdata, a set of guidelines for integrating machine-friendly metadata into HTML documents. Related to Microdata is Schema.org, an initiative backed by giants like Google, Bing, Yahoo! and Yandex that aims to provide a universal set of schemas that website operators can apply to annotate their pages (Guha et al., 2015).
So what does microdata really represent? Fundamentally, it’s a format that allows authors to weave structured information into their HTML files. Unlike human consumers, who can effortlessly derive meaning from written content, machines often stumble. By adding microdata, authors enable search engines and similar platforms to better understand the nuances of content, whether it’s a culinary recipe, a product review, an upcoming event, or any number of other topics. It’s like presenting someone with not just a book, but an informative summary that facilitates quick comprehension (W3C, 2023).
In contrast, Schema.org functions in a supporting role. If you think of microdata as the data insertion mechanism, then Schema.org is the language toolkit that describes that data. Schema.org provides a rich set of schemas - primarily categories and attributes - that creators can use to clarify their material. The result? Search platforms can present more detailed search answers, often called "rich snippets," that can include reviews, cost estimates, or event timings right within the search listing (Hausenblas et al., 2009).
To illustrate the collaboration between Microdata and Schema.org, let’s visualize a scenario. Suppose you’ve posted a review of a piece of literature on your website. Using the Schema.org lexicon, you can categorize the material as a literary review. Here’s a rudimentary code demonstration:
<article itemscope itemtype="http://schema.org/Book">
 <h2 itemprop="name">Pride and Prejudice</h2>
 <p>By Jane Austen</p>
 <p itemprop="description">A tale of love and values set against the Regency-era society of England.</p>
 <p>Rating: 4.5 out of 5</p>
</article>

In the snippet, the "itemscope" and "itemtype" attributes set the context for the microdata, indicating that the content describes a book. The "itemprop" attributes then use the Schema.org vocabulary to specify details such as the book’s name, author, description, and rating.
Why is this integration important? First and foremost, it enriches the user experience. For example, if someone searches for "Pride and Prejudice reviews," a search engine that has parsed the Microdata and Schema.org annotations can display your review with additional details-such as the rating-right in the search results.
The Web runs on information, but it’s the context, clarity, and accessibility of that information that really matters. With Microdata and Schema.org, developers have a powerful toolkit to make their content not only accessible, but understandable to machines. As we stand on the edge of an even more connected digital age-with voice assistants, AI-driven search, and smart devices-ensuring that our content is machine-friendly is not just smart, it’s critical (Berners-Lee, Hendler, & Lassila, 2001).
As with all technologies, however, it’s important to stay current. Both Microdata and Schema.org continue to evolve, responding to the ever-changing nature of the Web and the diversity of published content. Using these technologies requires not only an initial implementation, but an ongoing commitment to their growth and nuances.
Beyond the Basics – Other Markup Techniques
While the spotlight in the world of in-page markup often shines on Microdata and its association with Schema.org, as well as the popularity of OpenGraph, the depth and breadth of markup techniques goes much further. As computer science continues to evolve, professionals and hobbyists alike have developed numerous techniques to make the Web smarter and more connected. In this section, we will go beyond the basics and delve into some of the alternative markup methods that have emerged, marking their presence in the great digital ecosystem (Berners-Lee et al., 2001).
JSON-LD (JavaScript Object Notation for Linked Data)
 One of the more prominent developments in the area of semantic annotation is JSON-LD. It is a method for expressing linked data using JSON. Unlike Microdata, which embeds structured data directly into HTML markup, JSON-LD stores the data within a script tag at the top of the page. This clear separation often simplifies the integration process for Web developers and provides more flexibility in how data is represented. It is a versatile format not only for in-page markup within a script tag in HTML but also for other uses.
<script type="application/ld+json">
 {
 "@context": "http://schema.org",
 "@type": "Person",
 "name": "Jane Doe",
 "jobTitle": "Professor",
 "telephone": "(555) 555-5555",
 "url": "http://www.janedoe.com"
 }
</script>

In the code sample above, JSON-LD describes a person’s basic information, using the Schema.org vocabulary (Sporny et al., 2014).
RDFa (Resource Description Framework in Attributes)
RDFa provides an alternative method for incorporating semantic markup directly into HTML or XML material. Based on RDF (Resource Description Framework), an early system for characterizing Web information and its relationships, RDFa, like Microdata, facilitates the merging of annotations with primary content. However, its structure and methodology are somewhat different.
<div vocab="http://schema.org/" typeof="Book">
 The Great Gatsby
 by F. Scott Fitzgerald
</div>

While RDFa and Microdata share similarities, developers often select one based on platform compatibility and personal preference (Herman et al., 2015).
Microformats
Before the advent of RDFa, Microdata, or JSON-LD, Microformats existed as a straightforward approach to using HTML classes to annotate content with unique meanings. While Microformats has taken a back seat to the previously mentioned methods, it is still a viable choice for smaller projects or specific scenarios.
<div class="h-card">
 John Doe
 Website
</div>

This Microformat annotates a person’s name and their website, following the h-card specification (Khare & Çelik, 2006).
Self-Check Questions
47. Fill in the gaps: OpenGraph was originally devised by Facebook and has become significant in shaping how content is portrayed across social media platforms.

48. Multiple Choice: Which of the following best describes the purpose of in-page markup?
· To improve the aesthetics of web pages.
· To increase the loading speed of web pages.
· To make web content more accessible and understandable to machines.
· To ensure web content is compatible with all browsers.
6.3 The Web Ontology Language
As the digital world continues to expand, it becomes increasingly important to understand and manage the complex relationships and meanings among large amounts of data. Enter the world of ontologies-a conceptual representation that helps capture knowledge about a domain of interest. At the crossroads of artificial intelligence and Web technologies lies the Web Ontology Language (OWL), a standard that facilitates the representation and exchange of ontologies on the World Wide Web (Smith et al., 2004).
Ontologies play an essential role in providing structure to knowledge, allowing for improved machine understanding and interactivity. They can act as a bridge, harmonizing different terminologies and concepts and ensuring that humans and computers "speak" the same language. As we delve deeper into this section, we will unravel the meaning of ontologies and their central role in today’s knowledge-driven world.
The journey then turns to the "Basics of OWL", providing a comprehensive foundation for those who wish to familiarize themselves with its syntax and semantics. Following this, a journey into "Constructing OWL Ontologies" will provide learners with the tools and techniques to build their ontologies, capturing complex relationships and hierarchies.
However, understanding a language or tool is incomplete without understanding its applicability. Thus, we will conclude with a focus on "Applications and Real-world Use Cases," presenting a patchwork of scenarios where OWL has been instrumental - be it in biomedical research, e-commerce, or a variety of other domains (Horrocks et al., 2003).
Ontologies and Their Importance
As the digital ecosystem expands, the ability to understand, structure, and categorize knowledge becomes increasingly important. In this landscape, ontologies are becoming a keystone for organizing information and ensuring consistent interpretation across different systems. Ontologies, in their most basic form, are structured frameworks that describe the concepts in a given domain and the relationships between those concepts (Gruber, 1995).
To understand the importance of ontologies, consider the analogy of a library. Imagine entering a large library where the books are scattered randomly-without sections, categories, or any form of organization. The task of finding a specific book, or even a topic of interest, would be enormous. Now think of ontologies as the library’s main organizational system-the sections, the categorizations, the labels-all of which ensure that information is accessible, understandable, and relatable.
Why ontologies matter
1. Interoperability: In our hyper-connected digital age, systems often need to communicate with each other. However, if two systems have a different understanding or representation of the same data, misinterpretations can occur. Ontologies can ensure that when one system says "apple," another doesn’t interpret it as "orange" (Berners-Lee et al., 2001).
2. Knowledge Discovery: With the massive inflow of data, especially in fields such as biomedical research or finance, making sense of raw data is a challenge. Ontologies can help in data mining, discovering hidden relationships or extracting new insights from large data sets (Noy & McGuinness, 2001).
3. Standardization: Ontologies provide a standard way of representing knowledge. This standardization is critical, especially in fields where terminology can vary widely and lead to confusion or error.
4. Enhanced Search: Advanced search engines use ontologies to understand the context behind a query and return more relevant results. For example, knowing that "tigers" are related to "big cats" can expand and refine search results.
The nuances and depth
While the core idea of ontologies is simple, the depth can be deep. For example, in the world of medicine, an ontology can represent not only diseases, but also their symptoms, causes, treatments, and even genetic factors (Smith et al., 2007). This complex representation allows for advanced applications, from clinical decision support to research prediction.
It’s also worth noting that while all ontologies represent knowledge, not all knowledge representations qualify as ontologies. The difference often lies in the level of formality, precision, and depth of the representation.
Basics of OWL
The Web Ontology Language, commonly known as OWL, is a family of knowledge representation languages specifically designed to support the creation and exchange of ontologies on the World Wide Web (McGuinness & Harmelen, 2004). As a product of the World Wide Web Consortium (W3C), OWL plays a critical role in the development of the Semantic Web-a vision in which Web content is not only meant for human consumption but can also be processed and understood by machines.

At its core, OWL extends the capabilities of earlier languages such as RDF and RDFS by introducing a more expressive way of describing relationships between concepts and adding semantic richness to representations (Horrocks et al., 2003). But to truly appreciate OWL’s capabilities, it’s crucial to understand its fundamental elements.
Foundational elements of OWL
1. Classes: In a manner reminiscent of object-oriented programming, OWL’s categories function as high-level groups that encapsulate subsets of entities. For example, the class "mammal" might include individuals such as "whale," "dog," and "human”.
2. Properties: These establish links between categories, or between categories and specific data points. An attribute such as "possessesLegs" might associate a "Mammal" with a numeric value representing the number of legs.
3. Individuals: These are distinct examples of categories. Following our earlier example, "Lassie" might be a specific instance under the category "Dog."
OWL’s expressiveness
OWL has a robust ability to detail complex associations and constraints, which is critical to mimicking real-world meanings. Think about these features:
· Synonymy: You can say that certain classes or properties mirror each other in meaning.
· Set boundaries: It’s possible to define the exact, minimum, or maximum number of times a property can associate an entity with other entities or data.
· Non-overlap: Some classes can be set to never overlap or match.
· Property transfer: Paralleling object-oriented paradigms, child classes can inherit properties and attributes from their parent classes.
Profiles of OWL
It’s important to understand that OWL is not just one language. Recognizing the different needs of applications, OWL is segmented into different profiles or subsets:
1. OWL Lite: Designed for those who need a classification hierarchy and simple constraints.
2. OWL DL (Description Logic): Provides maximum expressiveness without sacrificing computational completeness and decidability.
3. OWL Full: Offers maximum expressiveness and the freedom to use any syntactic construct, but may compromise on decidability (Hitzler et al., 2012).
The bigger picture
The beauty of OWL is that it doesn’t exist in isolation. It’s part of a larger ecosystem that integrates seamlessly with other Semantic Web standards. When combined with RDF for data representation and SPARQL for querying, OWL becomes a powerful tool that enables applications to make logical inferences, enhance search capabilities, and promote interoperability.
Constructing OWL Ontologies
At the heart of the Semantic Web vision is the creation of a Web in which data is interconnected and can be understood by machines. As we have noted in previous sections, the Web Ontology Language (OWL) is a central tool for realizing this vision. In this discussion, we will delve into the basic practices of constructing OWL ontologies, providing a guide that bridges theory with pragmatic application.
At its core, creating an ontology is about modeling a domain - capturing its concepts, properties, and the relationships that bind them together. But unlike simply creating a data model, an ontology attempts to encode knowledge about a domain in such a way that it becomes machine-interpretable and, ideally, enables automated reasoning.
Steps to construct an OWL ontology
1. Define the domain and its boundaries: Start by identifying the domain you want to represent. Whether it’s a health world focused on diseases and their indicators, or a biological world illustrating animal species and their environments, it’s critical to define your domain and its boundaries. Such initial groundwork helps to prevent deviation and provides a transparent path for progress (Gruber, 1995).
2. Evaluate existing ontologies for integration: One of the core values of the Semantic Web is its interconnected framework. Before initiating your own set of classes and properties, evaluate available ontologies. Incorporating and extending these not only saves effort, but also improves semantic compatibility across different data sets.
3. Identify key classes: Think of classes as the central themes or concepts within your domain. In the world of healthcare, classes might include "disease," "indicator," or "treatment.”
4. Characterize class properties: Properties, sometimes called predicates in RDF, denote the relationships either between classes or between classes and explicit values. For example, "manifestsAs" might be a property that associates "disease" with "indicator."
5. Detail class relationships: Explain the relationships between classes. For example, in a biological ontology, "tiger" might be categorized under "big cat", which then falls under "mammal."
6. Introduce specific instances for classes: These instances or individuals are concrete representations of your classes. For example, "bronchitis" could be an instance under the "disease" class.
7. Set explicit semantics: This step involves imposing guidelines and constraints. The versatility of OWL allows you to outline similarities in classes, define property boundaries, specify non-overlapping classes, and more (Smith, Welty, & McGuinness, 2004).
8. Conduct preliminary verification queries: Before finalizing the ontology, conduct some test queries to verify the ontology’s output. This process is central to identifying potential inconsistencies or flaws in reasoning.
Tools and techniques
The construction of ontologies can be made more efficient with the help of dedicated software tools. For example, Protégé stands out as a free, open-source platform for editing ontologies and capturing knowledge, and has been highly praised by numerous experts in the field (Musen, 2015). This software has a user-friendly interface that simplifies the process of creating and modifying ontologies.
It’s important to recognize that developing OWL ontologies is not just an individual effort. In most cases, it requires teamwork, especially when dealing with large and complex domains. Ongoing evaluation and insight from subject matter experts is central to ensuring the depth and accuracy of the ontology.
Applications and Real-world Use Cases
The practicality of a technological advance is best measured by its real-world applications. The development and evolution of the Web Ontology Language (OWL) over the years has led to many innovative applications in various domains. In this discussion, we will explore some of the applications and use cases of OWL ontologies, providing concrete illustrations of their transformative potential.
Medicine and healthcare
One of the most profound impacts of OWL ontologies has been in healthcare. For example, the Gene Ontology (GO) provides a controlled vocabulary of terms to describe the properties of genes and gene products across species (The Gene Ontology Consortium, 2019). This ontology helps scientists annotate genes, making it easier to find related information and supporting tasks such as identifying disease genes or developing new drugs.
Another prime example is the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT). One of the world’s most comprehensive healthcare terminologies, it uses OWL to capture clinical meaning in medical records. With OWL’s reasoning capabilities, healthcare professionals can derive relationships and gain insights into patient data, leading to better diagnoses and treatment plans (Rector et al., 2011).
Environmental sciences
In environmental sciences, ontologies such as the Environment Ontology (ENVO) use OWL to describe environmental entities. This ontology helps to bridge multiple datasets, facilitating a better understanding of environmental conditions and their potential impact on different species (Buttigieg et al., 2013).
E-Commerce and business
The field of e-commerce has benefited greatly from OWL ontologies. They support product categorization, recommendation systems, and customer personalization. For example, an ontology can define relationships between different product types, allowing an online store to make intelligent product suggestions to a user based on their browsing history.
Digital libraries and archives
Digital libraries, such as the Europeana project, have implemented OWL ontologies for data integration and linking. These ontologies enable semantic search, where users can find resources not only based on direct keyword matches, but also based on meanings, relationships, and context (Haslhofer & Isaac, 2011).
Research and development
Research, especially interdisciplinary research, often requires data from multiple sources. OWL ontologies enable the linking of disparate data sets, supporting tasks such as hypothesis testing, trend detection, and data visualization.
Self-Check Questions
49. Fill in the gaps: In the world of healthcare, OWL ontologies can assist in identifying disease genes and creating novel drugs.

50. Multiple Choice: Which of the following is NOT a reason why ontologies matter according to the text?
· Interoperability.
· Knowledge Discovery.
· Enhanced Gaming Experience.
· Standardization.
6.4 Reasoning on the Web
In the large landscape of the World Wide Web, the ability to reason and derive meaningful information from data is a critical step in the evolution of a truly "intelligent" Web. Reasoning, a process often associated with human cognitive abilities, is becoming increasingly important in the machine world. Through automated reasoning, we seek to leverage the power of machines to make sense of large amounts of data, draw conclusions, and even predict future outcomes based on existing data sets (Russell & Norvig, 2009).
This section, titled "Reasoning on the Web," aims to explore this exciting intersection of machine intelligence, data, and the Semantic Web.
We begin by understanding "The Concept of Reasoning," which focuses on unpacking the nature of machine reasoning and explaining its central role in the Semantic Web. As we continue to navigate, "Tools and Technologies for Web Reasoning" provides an overview of the prevailing platforms and methodologies that are enabling this digital reasoning revolution.
However, as with any technological advancement, there are challenges. "Challenges in Web Reasoning" highlights these hurdles and discusses the complexities and obstacles in realizing reasoning systems on the Web. To ground our theoretical understanding in concrete realities, the section concludes with "Case Studies," presenting snapshots of real-world scenarios where Web reasoning has not only demonstrated its potential, but has also had transformative effects.
The Concept of Reasoning
In the fabric of human knowledge, reasoning stands out as a brilliant thread that complexly weaves through our ability to think, understand, and ultimately make decisions. It’s a process that involves the generation of new knowledge based on existing information, allowing us to reason, conclude, and predict (Ford, 1985). As we stand at the intersection of the digital age and the World Wide Web, the question that arises is: How can machines emulate this quintessential human attribute?
At its core, reasoning is a mechanism for moving from known to unknown facts, deriving conclusions from assumptions, and making decisions based on evidence. For humans, it’s an inherent ability rooted in our evolution, culture, and personal experience. For machines, however, this ability to "reason" requires a complex mix of algorithms, data structures, and often large amounts of data.
When we talk about machine reasoning, especially in the context of the Web, we are referring to the automatic derivation of inferences from data available on the Web, whether or not those inferences were originally explicitly represented. In a sense, the Web acts as the machine’s environment, a huge repository of knowledge from which it can draw inferences (Berners-Lee et al., 2001).
For example, consider a simple statement on a web page: "John is a parent." Human cognition can easily infer that John probably has children. Machines, on the other hand, require explicit representations and rules. Given these rules, a machine can reason and draw the same conclusions as a human.
Imagine the power of scaling this reasoning across the huge width and depth of the Web. Machines could infer relationships, predict trends, and even offer insights, bridging the gap between raw data and meaningful information. This capability will become even more powerful with the rise of the Semantic Web, which aims to give data on the Web a well-defined meaning so that computers and humans can work better together (Berners-Lee et al., 2001).
The benefits of machine reasoning on the Web are many. From improving search engine results and powering recommendation systems to driving innovation in artificial intelligence and providing insights in fields as diverse as healthcare, finance, and logistics.
But giving machines the power of reason is no small feat. It requires a deep understanding of logic, mathematics, and computer science. Knowledge representation, a fundamental area of artificial intelligence, provides the tools and methods to encode human knowledge in a way that machines can understand. Through languages such as Resource Description Framework (RDF) and Web Ontology Language (OWL), knowledge can be represented semantically, laying the foundation for machines to reason about it (Antoniou & Harmelen, 2004).
To illustrate this, imagine a diagram representing a simple ontology:
Simple Ontology Diagram: Demonstrating Subclass Relationships
[image:]
Source: Abdullah Karatas (2023).
This diagram shows a simple hierarchy in which "Father" is a subclass of both "Human" and "Parent". Such a representation allows machines to reason that any instance of "Father" is also an instance of "Human" and "Parent."
Tools and Technologies for Web Reasoning
The science of Web reasoning, in which machines draw informed conclusions from large amounts of data on the Web, is not just an intellectual exercise. It’s a practical one, enabled and facilitated by a rich ecosystem of tools and technologies. The backbone of this ecosystem is a mix of formal languages, databases, software frameworks, and algorithms. Together, they breathe life into the philosophical construct of reasoning and allow it to take concrete form in the digital world (Allemang & Hendler, 2011).
Semantic web languages
At the forefront of these technologies are Semantic Web languages, specifically RDF (Resource Description Framework) and OWL (Web Ontology Language). RDF allows data to be represented as triples (subject-predicate-object), so that relationships between entities can be expressed and understood by both humans and machines. On the other hand, OWL, built on top of RDF, is a more expressive language that allows for richer representations of knowledge, including concepts such as classes, properties, individuals, and their relationships (W3C, 2012).
Triplestores and databases
To store and manage RDF data, specialized databases known as triplestores are used. Popular triplestores such as Virtuoso, Jena, and Sesame provide efficient storage, querying, and reasoning over large RDF datasets. With SPARQL, the query language for RDF, it’s possible to perform complex semantic queries that retrieve information implicit in the data (Bizer et al., 2009).
To illustrate, consider the following SPARQL query:
SELECT ?person WHERE {
 ?person rdf:type ex:Father.
 ?person ex:hasChild ex:Anna.
}

This query retrieves all individuals who are classified as “Father” and have a child named “Anna”.
Reasoners and inference engines
While RDF and SPARQL lay the foundation, it’s the reasoners and inference engines like Pellet, HermiT, and Fact++ that make Web reasoning possible. These tools can reason from existing facts using predefined ontologies in OWL. For example, if an ontology states that "Many fathers are parents," and a dataset has an entity "John" labeled as "Father," a reasoner can reason that "John" is also a "Parent" (Sirin et al., 2007).
Frameworks and libraries
Beyond these primary tools, numerous frameworks and libraries, such as Apache Jena and RDFlib, facilitate the creation, management, and querying of RDF and OWL data. These tools often integrate seamlessly with other software ecosystems, enabling developers to build rich Semantic Web applications with relative ease.
Challenges in Web Reasoning
The ability to reason on the Web continues to demonstrate its revolutionary impact, unlocking the complexities of online data and creating pathways for advanced AI implementations. But it comes with its own set of hurdles. As with any technological advancement, the road to progress is lined with various challenges, both technical and conceptual. Although we’ve touched on the tools and technical innovations for web reasoning, it remains crucial to address the ongoing, changing, or emerging concerns (Hitzler et al., 2009).
Scalability
Perhaps the most pressing challenge is the scale of the Web. The size and growth rate of the Web mean that reasoning processes must constantly deal with larger data sets, more complex ontologies, and an increasing number of diverse sources. Unlike traditional databases, where data is structured and relatively stable, the dynamic nature of the Web requires systems that can adapt and reason in real time. Even with distributed computing and parallel processing, achieving real-time responses in complex reasoning tasks remains difficult (Shearer et al., 2008).
Inconsistencies and contradictions
While the decentralized nature of the Web is one of its strengths, it also introduces a variety of inconsistencies and contradictions. Different sources may have conflicting information and determining the "truth" in such cases becomes a non-trivial task. Reasoners must decide which source to trust or how to reconcile these discrepancies without compromising the integrity of the results (Shvaiko, 2014).
Uncertainty and ambiguity
Many aspects of knowledge in the real world are characterized by uncertainty or ambiguity. Consider the simple statement, "It may rain tomorrow". Incorporating such uncertain information and reasoning about it requires stochastic approaches, which present their own computational challenges. Traditional logic-based reasoning struggles to deal with such nuances, requiring a blend of statistical methods and logic (Lukasiewicz & Straccia, 2008).
Ontology engineering and evolution
While ontologies underpin the process of semantic Web reasoning, their creation, maintenance, and adaptation pose complex challenges. Because both knowledge and the Web are constantly changing, ontologies run the risk of becoming obsolete or incomplete. In addition, as more domains adopt the Semantic Web, harmonizing their ontologies to avoid overlap or inconsistency becomes a complex undertaking (Staab & Studer, 2009).
Performance and optimization
As with any computational task, performance is a concern. While certain reasoning tasks may be theoretically solvable, the time required to solve them may make them practically infeasible. Optimizing reasoners, especially in light of the challenges mentioned above, is an ongoing area of research and development (Horrocks, 2008).
Security and privacy
As reasoning systems pull data from different sources, questions of security and privacy arise. How can these systems ensure that the data they access is secure and that the inferences they make do not violate the privacy of users? These ethical and technical considerations are increasingly important in our interconnected digital age (Bizer et al., 2009).
Case Studies
Exploring real-world applications often brings theoretical concepts into sharp focus. As a field characterized by abstract logic and layered nuances, Web reasoning benefits immensely from examining practical applications that have made a significant impact. Here are a few illuminating case studies that illustrate the power, potential, and challenges of Web Reasoning.
Healthcare and medical diagnosis
Healthcare has traditionally been a data-rich domain. From individual patient histories to the latest studies, medical professionals rely on this data to make informed decisions. With the advent of the Semantic Web and its reasoning capabilities, a new path has opened up for improving medical diagnosis (Smith et al., 2007).
A significant breakthrough has been made in the area of rare diseases. Given the challenge of diagnosing these rare conditions, a Web-based reasoning system can provide immense assistance. By linking separate databases of symptom details, genetic information, and patient reports, medical experts can identify trends or anomalies that may indicate a particular rare disease. A case in point is the integration of semantic web tools into the Orphanet initiative, which has enabled medical experts to link symptoms to potential genetic origins for more accurate diagnosis of rare diseases (Köhler et al., 2017).
In addition, these platforms can be central to individualized medicine. Analyzing a patient’s genetic profile, past medical records, and current symptoms can pave the way for suggesting treatments or prevention strategies that are specifically tailored to them.
Smart cities and traffic management
Cities around the world are seeking to transform themselves into "smart cities" by using technology to improve the quality of life for their citizens. A key aspect of this transformation is controlling traffic and optimizing public transportation, where web reasoning is emerging as an important tool (Batty et al., 2012).
Imagine a metropolis where every vehicle, traffic light, and public bus is Internet-enabled. Analyzing the massive amount of data generated by these components can enable traffic jam prediction, adjustment of traffic light cycles, and real-time changes to bus routes. Barcelona stands out in this regard, having used semantic web tools to improve its public transportation network, resulting in minimized traffic bottlenecks and more streamlined bus routes (Calabrese et al., 2013).
In addition, these infrastructures can interact directly with the population, recommending the best transportation routes or means based on the prevailing situations.
Self-Check Questions
51. Fill in the gaps: One of the challenges in web reasoning is the issue of Inconsistencies and Contradictions, which involves conflicting information from different sources on the web.

52. Multiple Choice: Which of the following best describes the role of RDF and OWL in web reasoning?
· RDF and OWL are query languages used to fetch data.
· RDF represents data as triples and OWL provides richer representations of knowledge, enabling machines to reason over it.
· RDF and OWL are databases where the web data is stored for reasoning.
· RDF and OWL are tools used for optimizing reasoning tasks.
Summary
This chapter provides an overview of the evolution and components of the Semantic Web--an academic futuristic initiative that aims to make the Internet more machine-readable, i.e., more intelligent. The Semantic Web was initiated by Tim Berners-Lee with the goal of bridging an existing gap between human-readable content and machine-interpretable data. It extends the interoperability of the Web, promoting the smooth exchange of information between heterogeneous systems and applications based on AI and knowledge graphs.
A key feature of the Semantic Web is linked data approaches, specifically Linked Open Data (LOD). LOD refers to a structured approach to connecting and enriching data from disparate data sets. The idea is to create an inherently connected web of data that is as diverse as the consumable information that is readily available to both humans and machines. Basically, LOD formalizes guidelines called "The Four Principles of Linked Data," which specify the laws essential for optimal structuring and accessibility potential of specific data in question.
After LOD, the text enters a field of "in-page markup" technologies such as OpenGraph and Microdata. These tools regulate web content so that it’s not only aesthetically pleasing to human users, but also semantically meaningful to machines. For example, how OpenGraph shapes what content looks like on social media, while Microdata helps search engines provide more fine-grained results.
The Web Ontology Language (OWL) is also being introduced as a standard for sharing and representing ontologies. OWL helps capture complex relationships and hierarchies within data, enabling richer machine understanding. Finally, the text provides some insight into an idea of "Reasoning on the Web," which focuses on using machine intelligence to infer meaningful information from data. This includes an overview of the challenges and case studies that demonstrate real-world applications.
[bookmark: _Toc348014754]Appendix 1 – References	Comment by Hall, Dana: Please do not edit.
Alphabetical order
Alaca, F., & van Oorschot, P. C. (2016). Device fingerprinting for augmenting web authentication: Classification and analysis of methods. In Proceedings of the 32nd Annual Conference on Computer Security Applications (pp. 289-301).
Allen Institute for AI. (n.d.). Semantic Scholar [Computer software]. Retrieved from https://www.semanticscholar.org
Allemang, D., & Hendler, J. (2011). Semantic web for the working ontologist: Effective modeling in RDFS and OWL. Morgan Kaufmann.
Aloul, F. A., Zahidi, S., & El-Hajj, W. (2009). Two factor authentication using mobile phones. 2009 IEEE/ACS International Conference on Computer Systems and Applications, 641-644.
Antin, J., & Churchill, E. F. (2011). Badges in social media: A social psychological perspective. CHI 2011 Gamification Workshop Proceedings (Vancouver, BC, Canada).
Antoniou, G., & Harmelen, F. V. (2004). Semantic Web Primer. MIT Press.
Apache Software Foundation. (2023). Apache HTTP Server. Retrieved from https://httpd.apache.org/
Apache Traffic Server. (2023). Reverse Proxy and HTTP Redirects. Apache Traffic Server Documentation. https://docs.trafficserver.apache.org/en/8.1.x/admin-guide/configuration/redirecting-http-requests.en.html
Apple (2023): If you forgot your iPhone passcode. Available online at https://support.apple.com/en-am/HT204306, retrieved 2023-09-8.
Apple (2023a): Set a passcode on iPhone. Available online at https://support.apple.com/en-au/guide/iphone/iph14a867ae/ios, retrieved 2023-09-8.
Barker, E. (2020). Recommendation for Key Management, Part 1: General. NIST Special Publication 800-57, National Institute of Standards and Technology, U.S. Department of Commerce. https://doi.org/10.6028/NIST.SP.800-57pt1r5
Barrett, D. J., Silverman, R. E., & Byrnes, R. G. (2005). SSH, the secure shell: the definitive guide. "O’Reilly Media, Inc.".
Barth, A., Jackson, C., & Mitchell, J. C. (2008). Robust Defenses for Cross-Site Request Forgery. In Proceedings of the 15th ACM Conference on Computer and Communications Security (CCS ‘08). Association for Computing Machinery, New York, NY, USA, 75–88. DOI: https://doi.org/10.1145/1455770.1455782
Basole, R. C. (2009). Visualization of interfirm relations in a converging mobile ecosystem. Journal of Information Technology, 24(2), 144-159.
Batty, M., Axhausen, K.W., Giannotti, F. et al. (2012) Smart cities of the future. Eur. Phys. J. Spec. Top. 214, 481–518. https://doi.org/10.1140/epjst/e2012-01703-3
Belleau, F., Nolin, M. A., Tourigny, N., Rigault, P., & Morissette, J. (2008). Bio2RDF: Towards a mashup to build bioinformatics knowledge systems. Journal of biomedical informatics, 41(5), 706-716.
Belshe, M., Peon, R., & Thomson, M. (2015). Hypertext Transfer Protocol Version 2 (HTTP/2). RFC 7540. Retrieved from https://tools.ietf.org/html/rfc7540
Benslimane, D., Dustdar, S., & Sheth, A. (2008). Services Mashups: The New Generation of Web Applications. IEEE Internet Computing, 12(5), 13-15. https://doi.org/10.1109/MIC.2008.110
Bentley, F., Tollmar, K., Stephenson, P., Levy, L., Jones, B., Robertson, S., Price, E., Catrambone, R., & Wilson, J. (2013). Health Mashups: Presenting Statistical Patterns between Wellbeing Data and Context in Natural Language to Promote Behavior Change. ACM Transactions on Computer-Human Interaction, 20(5), 1-27. https://doi.org/10.1145/2503823
Berners-Lee, T. (2009). Linked Data - Design Issues. W3C.
Berners-Lee, T. (2013). The next web. TED Talk.
Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The Semantic Web. Scientific American, 284(5), 34-43.
Bernstein, D. J., & Lange, T. (2017). Post-quantum cryptography—dealing with the fallout of physics success. International Association for Cryptologic Research. Retrieved from https://eprint.iacr.org/2017/314.pdf
Bertino, E., Ferrari, E., & Atluri, V. (1999). The specification and enforcement of authorization constraints in workflow management systems. ACM Transactions on Information and System Security (TISSEC), 2(1), 65-104.
Bishop, M. (2021). Hypertext Transfer Protocol Version 3 (HTTP/3). RFC 9000. Retrieved from https://datatracker.ietf.org/doc/html/rfc9000
Bizer, Christian & Heath, Tom & Berners-Lee, Tim. (2009). Linked Data: The Story so Far. International Journal on Semantic Web and Information Systems. 5. 1-22. 10.4018/jswis.2009081901.
Bonneau, J., Herley, C., van Oorschot, P. C., & Stajano, F. (2015). Passwords and the evolution of imperfect authentication. Communications of the ACM, 58(7), 78-87.
Box, D., et al. (2000). Simple Object Access Protocol (SOAP) 1.1. W3C Note. https://www.w3.org/TR/2000/NOTE-SOAP-20000508/
Brostoff, S., & Sasse, M. A. (2002). Safe and sound: a safety-critical approach to security. Proceedings of the workshop on New security paradigms, 41-50.
Brunner, C., Knirsch, F., Unterweger, A., & Engel, D. (2020). A Comparison of Blockchain-based PKI Implementations. Retrieved from https://www.en-trust.at/papers/Brunner20a.pdf
Buttigieg, P. L., Morrison, N., Smith, B., Mungall, C. J., & Lewis, S. E. (2013). The environment ontology: contextualising biological and biomedical entities. Journal of Biomedical Semantics, 4(1), 43.
Buyya, R., Pathan, A.-M. K., & Vakali, A. (Eds.). (2008). Content Delivery Networks: Principles and Paradigms. Springer.
Cain, B., Deering, S., & Kouvelas, I. (2002). Internet Group Management Protocol, Version 3. RFC 3376. https://tools.ietf.org/html/rfc3376
Calabrese, Francesco & Diao, Mi & Lorenzo, Giusy & Ferreira, Joseph & Ratti, Carlo. (2013). Understanding individual mobility patterns from urban sensing data: A mobile phone trace example. Transportation Research Part C: Emerging Technologies. 26. 301-313. 10.1016/j.trc.2012.09.009.
Can I use (2023). Subresource Integrity. Retrieved from https://caniuse.com/#feat=subresource-integrity
Cantor, S., Kemp, J., Philpott, R., & Maler, E. (2006). Assertions and protocols for the OASIS security assertion markup language (SAML) V2.0. OASIS standard.
Carlisle, D., Ion, P., Miner, R., & Poppelier, N. (2003). Mathematical Markup Language (MathML) Version 2.0 (2nd Edition). World Wide Web Consortium. Retrieved from https://www.w3.org/TR/MathML2/
Chaffey, D., & Smith, P. R. (2017). Digital marketing excellence: Planning, optimizing and integrating online marketing. Routledge.
Chakrabarti, D., & Kumar, R. (2011). Web search and the Web graph. In R. Kumar & D. Sivakumar (Eds.), Algorithms and Models for the Web Graph (pp. 5-32). Springer.
Challenger, J., Iyengar, A., & Dantzig, P. (2000). A Scalable and Highly Available System for Serving Dynamic Data at Frequently Accessed Web Sites. ACM SIGMETRICS Performance Evaluation Review, 28(2), 10-21.
Chappell, D. (2002). Understanding .NET: a tutorial and analysis. Addison-Wesley Professional.
Chen, D., Sain, S. & Guo, K. (2012) Data mining for the online retail industry: A case study of RFM model-based customer segmentation using data mining. J Database Mark Cust Strategy Manag 19, 197–208. https://doi.org/10.1057/dbm.2012.17
Christensen, E., Curbera, F., Meredith, G., & Weerawarana, S. (2001). Web services Description Language (WSDL) 1.1. W3C Note. http://www.w3.org/TR/2001/NOTE-wsdl-20010315
Cimpanu, C. (2018). British Airways breach caused by the same group that hit Ticketmaster. ZDNet. Retrieved from https://www.zdnet.com/article/british-airways-breach-caused-by-the-same-group-that-hit-ticketmaster/
Clement, L., Hately, A., von Riegen, C., & Rogers, T. (2004). UDDI Version 3.0.2. UDDI Spec Technical Committee Draft. http://uddi.org/pubs/uddi-v3.0.2-20041019.htm
Cloudflare (2023): What happens in a TLS handshake? Available online at https://www.cloudflare.com/learning/ssl/what-happens-in-a-tls-handshake/, retrieved on 2023-09-07.
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates, Publishers.
Comer, D. E. (2014). Computer Networks and Internets (6th ed.). Pearson.
Comer, D. E. (2019). Internetworking with TCP/IP Volume One (6th ed.). Pearson.
Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., & Polk, W. (2008). Internet X.509 public key infrastructure certificate and certificate revocation list (CRL) profile. RFC 5280, IETF. https://doi.org/10.17487/RFC5280
Crockford, D. (2006). The application/json Media Type for JavaScript Object Notation (JSON). IETF Tools. https://tools.ietf.org/html/rfc4627
Crockford, D. (2006a). JSON: The Fat-Free Alternative to XML. Proceedings of XML 2006. Retrieved from https://www.json.org/fatfree.html
Croll, A., & Yoskovitz, B. (2013). Lean Analytics: Use Data to Build a Better Startup Faster. O’Reilly Media, Inc.
Curbera, F., et al. (2002). Unraveling the Web services web: an introduction to SOAP, WSDL, and UDDI. IEEE Internet computing, 6(2), 86-93.
Das, A., Bonneau, J., Caesar, M., Borisov, N., & Wang, X. (2014). The tangled web of password reuse. NDSS.
Dasgupta, D., Roy, A., Nag, A. (2017). Multi-Factor Authentication. In: Advances in User Authentication. Infosys Science Foundation Series(). Springer, Cham. https://doi.org/10.1007/978-3-319-58808-7_5
Data Privacy Manager. (2020). ICO reduces British Airways GDPR fine to £20 million for 2018 data breach. Retrieved from https://dataprivacymanager.net/ico-reduces-british-airways-gdpr-fine-to-20-million-for-2018-data-breach/
De Ryck, P., Decat, M., Desmet, L., Piessens, F., Joosen, W. (2012). Security of Web Mashups: A Survey. In: Aura, T., Järvinen, K., Nyberg, K. (eds) Information Security Technology for Applications. NordSec 2010. Lecture Notes in Computer Science, vol 7127. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27937-9_16
Deng, L., Xu, J., Kohavi, R., & Walker, T. (2013). Improving the sensitivity of online controlled experiments by utilizing pre-experiment data. Proceedings of the sixth ACM international conference on Web search and data mining, 123-132.
Devedžić, V., Jovanović, J. (2015). Developing Open Badges: a comprehensive approach. Education Tech Research Dev 63, 603–620. https://doi.org/10.1007/s11423-015-9388-3
Dierks, T., & Rescorla, E. (2008). The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246, IETF. https://doi.org/10.17487/RFC5246
Dunn, O. J. (1961). Multiple comparisons among means. Journal of the American Statistical Association, 56(293), 52-64.
Durumeric, Z., Adrian, D., Mirian, A., Kasten, J., Bursztein, E., Lidzborski, N., . . . Halderman, J. A. (2017). The Security Impact of HTTPS Interception. NDSS Symposium.
ECMA International. (2017). The JSON Data Interchange Syntax. In ECMAScript 2017 Language Specification (ECMA-262, 8th Edition). Retrieved from https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
Ehlers, U. D. (2009). Web 2.0–e-learning 2.0–quality 2.0? Quality for new learning cultures. Quality Assurance in Education.
Erl, T. (2005). Service-oriented architecture: concepts, technology, and design. Prentice Hall.
Erl, T. (2007). SOA: Principles of Service Design (The Prentice Hall Service-Oriented Computing Series from Thomas Erl). Prentice Hall.
Facebook Engineering. (n.d.). Facebook for Websites. Facebook for Developers. Retrieved August 7, 2023, from https://developers.facebook.com/docs/plugins/like-button/
Facebook Developers. (n.d.b). A Guide to Sharing for Webmasters. Facebook for Developers. Retrieved from https://developers.facebook.com/docs/sharing/webmasters
Fallside, D., Walmsley, P. (2004). XML Schema: Part 0: Primer Second Edition. W3C recommendation, W3C.
Farris, P. W., Bendle, N. T., Pfeifer, P. E., & Reibstein, D. J. (2010). Marketing metrics: The definitive guide to measuring marketing performance. Upper Saddle River, NJ: Pearson.
Ferraiolo, D. F., & Kuhn, D. R. (1992). Role-based access controls. 15th National Computer Security Conference.
Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Software Architectures (Doctoral dissertation, University of California, Irvine). https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
Fielding, R. T., & Taylor, R. N. (2002). Principled Design of the Modern Web Architecture. ACM Transactions on Internet Technology, 2(2), 115–150. https://doi.org/10.1145/514183.514185
Fielding, R., Gettys, J., Mogul, J., Frystyk, H., & Berners-Lee, T. (1996). Hypertext Transfer Protocol -- HTTP/1.0. RFC 1945. Retrieved from https://tools.ietf.org/html/rfc1945
Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., & Berners-Lee, T. (1999). Hypertext Transfer Protocol -- HTTP/1.1. IETF. https://datatracker.ietf.org/doc/html/rfc2616
Flanagan, D. (2011). JavaScript: The Definitive Guide (6th ed.). O’Reilly Media.
Flanagan, D. (2020). JavaScript: The Definitive Guide (7th ed.). O’Reilly Media.
Ford, M. (1985). Review of Mental Models: Towards a Cognitive Science of Language, Inference, and Consciousness, by P. N. Johnson-Laird. Language, 61(4), 897–903. https://doi.org/10.2307/414498
Forouzan, B. A. (2012). Data Communications and Networking (5th ed.). McGraw-Hill.
Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P., Luotonen, A., & Stewart, L. (1999). An Extension to HTTP: Digest Access Authentication. RFC 2617. Retrieved from https://tools.ietf.org/html/rfc2617
Gamage, T. A. (2017). Evolution of HTTP. Medium. https://medium.com/platform-engineer/evolution-of-http-69cfe6531ba0
Gast, M. (2005). 802.11 Wireless Networks: The Definitive Guide (2nd ed.). O’Reilly Media.
Gibson, D., Ostashewski, N., Flintoff, K., Grant, S., & Knight, E. (2013). Digital badges in education. Education and Information Technologies, 20(2), 403-410.
Gill, P., Arlitt, M., & Mahanti, A. (2007). YouTube traffic characterization: a view from the edge. Proceedings of the 7th ACM SIGCOMM conference on Internet measurement (IMC ‘07), 15-28.
Google Developers. (2023). Progressive web apps. https://web.dev/progressive-web-apps/
Google Security Blog. (2014). HTTPS as a ranking signal. https://security.googleblog.com/2014/08/https-as-ranking-signal_6.html
Gradenegger, U. (2020, March). Public Key Infrastructures (PKI) basics. Retrieved from https://www.gradenegger.eu/?p=595&lang=en
Graham, S., Daniels, G., Davis, D., Nakamura, Y., Simeonov, S., Brittenham, P., Fremantle, P., Koenig, D., & Zentner, C. (2004). Building Web services with Java: Making Sense of XML, SOAP, WSDL, and UDDI (2nd ed.). Pearson International.
Gruber, T. R. (1995). Toward principles for the design of ontologies used for knowledge sharing? International Journal of Human-computer Studies, 43(5-6), 907-928.
Guha, R. V., Brickley, D., & Macbeth, S. (2015). Schema.org: Evolution of Structured Data on the Web. ACM Queue, 13(9). Retrieved from https://queue.acm.org/detail.cfm?id=2857276
Hardt, D. (2012). The OAuth 2.0 authorization framework. RFC 6749.
Harold, E. R., & Means, W. S. (2004). XML in a Nutshell. O’Reilly Media.
Harris, S., & Seaborne, A. (2013). SPARQL 1.1 Query Language. W3C Recommendation.
Hartig, O., Bizer, C., Freytag, JC. (2009). Executing SPARQL Queries over the Web of Linked Data. In: Bernstein, A., et al. The Semantic Web - ISWC 2009. ISWC 2009. Lecture Notes in Computer Science, vol 5823. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04930-9_19
Haslhofer, Bernhard & Isaac, Antoine. (2011). The Europeana Linked Open Data Pilot.
Hausenblas, Michael & Troncy, Raphaël & Bürger, Tobias & Raimond, Yves. (2009). Interlinking multimedia: how to apply linked data principles to multimedia fragments. International Mathematics Research Notices - INT MATH RES NOTICES.
Heath, T., & Bizer, C. (2011). Linked Data: Evolving the Web into a Global Data Space. Synthesis Lectures on the Semantic Web: Theory and Technology, 1(1), 1-136.
Hepp, M. (2008). GoodRelations: An Ontology for Describing Products and Services Offers on the Web. In: Gangemi, A., Euzenat, J. (eds) Knowledge Engineering: Practice and Patterns. EKAW 2008. Lecture Notes in Computer Science(), vol 5268. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87696-0_29
Herman, I., Adida, B., Sporny, M., Birbeck, M. (2015). RDFa Primer. World Wide Web Consortium (W3C). Retrieved from https://www.w3.org/TR/rdfa-primer/
Hickson, I. (2011). HTML5: A vocabulary and associated APIs for HTML and XHTML. W3C Working Draft. https://www.w3.org/TR/2011/WD-html5-20110525/
Hinchcliffe, D. (2007). Enterprise mashups get ready for prime-time. ZDNet.
Hinchcliffe, D. (2007a). Mashups: The next major new software development model?. ZDNet. Retrieved August 7, 2023, from https://www.zdnet.com/article/mashups-the-next-major-new-software-development-model/
Hindman, B. (2016). Building responsive data visualization for the web. Wiley.
Hitzler, P., & Janowicz, K. (2013). Linked Data, Big Data, and the 4th Paradigm. Semantic Web Journal, 4(3), 233-235.
Hitzler, P., Krötzsch, M., & Rudolph, S. (2010). Foundations of Semantic Web Technologies. CRC Press.
Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P. F., & Rudolph, S. (2009). OWL 2 Web Ontology Language Primer. W3C Recommendation.
Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P. F., & Rudolph, S. (2012). OWL 2 Web Ontology Language Primer (Second Edition). W3C Recommendation.
Hodges, J., Jackson, C., & Barth, A. (2012). HTTP Strict Transport Security (HSTS). RFC 6797. https://doi.org/10.17487/RFC6797
Hoffman, A. (2020). Web Application Security. O’Reilly Media, Inc
Hogan, A., Harth, A., Passant, A., Decker, S., & Polleres, A. (2010). Weaving the Pedantic Web. LDOW.
Horrocks, I. (2008). Ontologies and the semantic web. Communications of the ACM, 51(12), 58-67.
Horrocks, I., Patel-Schneider, P. F., & van Harmelen, F. (2003). From SHIQ and RDF to OWL: The making of a Web Ontology Language. Journal of Web Semantics, 1(1), 7-26.
Housley, R., Ford, W., Polk, W., & Solo, D. (1999). Internet X.509 public key infrastructure certificate and CRL profile. RFC 2459, IETF. https://doi.org/10.17487/RFC2459
Hoyer, V., Fischer, M. (2008). Market Overview of Enterprise Mashup Tools. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds) Service-Oriented Computing – ICSOC 2008. ICSOC 2008. Lecture Notes in Computer Science, vol 5364. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89652-4_62
Huang, L. S., Adhikarla, S., Boneh, D., & Jackson, C. (2014). An Experimental Study of TLS Forward Secrecy Deployments. IEEE Internet Computing, 18(6), 43-51. https://ieeexplore.ieee.org/document/6870379
IBM. (2021). XML introduction. Retrieved from https://www.ibm.com/docs/en/i/7.1?topic=introduction-uses-xml
Isaac, Antoine & Clayphan, Robina & Haslhofer, Bernhard. (2013). Europeana: Moving to Linked Open Data. Information Standards Quarterly. 24. 34. 10.3789/isqv24n2-3.2012.06.
Jacobs, I., & Walsh, N. (Eds.). (2004). Architecture of the World Wide Web, Volume One. World Wide Web Consortium (W3C).
Jain, A., Ross, A., & Prabhakar, S. (2004). An introduction to biometric recognition. IEEE Transactions on Circuits and Systems for Video Technology, 14(1), 4-20.
Janssen, M., Charalabidis, Y., & Zuiderwijk, A. (2012). Benefits, adoption barriers and myths of open data and open government. Information systems management, 29(4), 258-268.
Jensen, C. (2010). Beyond the Basics: Advanced Web Markup Techniques. Web Standards Creativity, 2, 47-65.
Jiang, B., Liu, P., Wang, Y., & Chen, Y. (2020). HyOASAM: A Hybrid Open API Selection Approach for Mashup Development. Mathematical Problems in Engineering, 2020. https://doi.org/10.1155/2020/4984375
Kaushik, A. (2009). Web analytics 2.0: The art of online accountability and science of customer centricity. Sybex.
Kesteren, A. V. (2020). Cross-Origin Resource Sharing. W3C Recommendation. https://www.w3.org/TR/2020/SPSD-cors-20200602/
Khare, R., & Çelik, T. (2006). Microformats: A Pragmatic Path to the Semantic Web. MIT Press, 11(1), 2-5.
Kirda, E., Kruegel, C., Vigna, G., Jovanovic, N. (2006). Noxes: a client-side solution for mitigating cross-site scripting attacks. ACM Transactions on Information and System Security (TISSEC), 12(3), 1-28.
Kirk, J. (2018). Ticketmaster Breach Traces to Embedded Chatbot Software. BankInfoSecurity. Retrieved from https://www.bankinfosecurity.com/ticketmaster-breach-traces-to-embedded-chatbot-software-a-11144
Klensin, J. (2008). Simple Mail Transfer Protocol. RFC 5321, RFC Editor. https://www.rfc-editor.org/rfc/rfc5321.html
Kohavi, R., & Thomke, S. H. (2017). The Surprising Power of Online Experiments. Harvard Business Review.
Kohavi, R., Deng, A., Frasca, B., Longbotham, R., Walker, T., & Xu, Y. (2012). Trustworthy online controlled experiments: Five puzzling outcomes explained. Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, 786-794.ge
Kohavi, R., Deng, A., Frasca, B., Walker, T., Xu, Y., & Pohlmann, N. (2013). Online controlled experiments at large scale. Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, 1168-1176.
Kohavi, R., Henne, R. M., & Sommerfield, D. (2007). Practical guide to controlled experiments on the web: listen to your customers not to the HiPPO. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
Kohavi, R., Longbotham, R., Sommerfield, D., & Henne, R. M. (2009). Controlled experiments on the web: survey and practical guide. Data Mining and Knowledge Discovery, 18(1), 140-181
Krishnamurthy, B., & Wills, C. E. (2000). Analyzing factors that influence end-to-end Web performance. Proceedings of the Ninth International World Wide Web Conference (WWW9), 17-32.
Kurose, J. F., & Ross, K. W. (2017). Computer Networking: A Top-Down Approach (7th ed.). Pearson.
Köhler, S., Vasilevsky, N. A., Engelstad, M., Foster, E., McMurry, J., Aymé, S., Baynam, G., Bello, S. M., Boerkoel, C. F., Boycott, K. M., Brudno, M., Buske, O. J., Chinnery, P. F., Cipriani, V., Connell, L. E., Dawkins, H. J., DeMare, L. E., Devereau, A. D., de Vries, B. B., Firth, H. V., … Robinson, P. N. (2017). The Human Phenotype Ontology in 2017. Nucleic acids research, 45(D1), D865–D876. https://doi.org/10.1093/nar/gkw1039
Lanthaler, M., & Gütl, C. (2012). On using JSON-LD to create evolvable RESTful services. In Proceedings of the Third International Workshop on RESTful Design (pp. 25-32).
Lie, H. W., & Bos, B. (2005). Cascading Style Sheets: Designing for the Web. Addison-Wesley.
Lukasiewicz, T., & Straccia, U. (2008). Managing uncertainty and vagueness in description logics for the Semantic Web. Journal of Web Semantics, 6(4), 291-308.
Mastodon. (n.d.). Mastodon server covenant. Retrieved August 7, 2023, from https://joinmastodon.org/covenant
McKinsey & Company. (2018, October). Real-world evidence: From activity to impact in healthcare decision making. Retrieved from https://www.mckinsey.com/industries/life-sciences/our-insights/real-world-evidence-from-activity-to-impact-in-healthcare-decision-making
MDN Web Docs (2023). Same-origin policy. Retrieved from https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
MDN Web Docs (2023a). Subresource Integrity. Retrieved from https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
MDN Web Docs (2023b). Using CORS. Retrieved from https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
MDN Web Docs. (2023c). Cross-Origin Resource Sharing (CORS). Mozilla Developer Network. Retrieved August 7, 2023, from https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
Mailman.nginx.org. (2023). mailman.nginx.org Mailing Lists. Retrieved from https://mailman.nginx.org/mailman3/lists/.
Marcotte, E. (2011). Responsive Web Design. A Book Apart.
Maximilien, E. M., Ranabahu, A., & Gomadam, K. (2008). An online platform for web APIs and service mashups. IEEE Internet Computing, 12(5).
McGuinness, D. L., & van Harmelen, F. (2004). OWL web ontology language overview. W3C Recommendation, 10(10), 2004.
Metcalfe, R. M., & Boggs, D. R. (1976). Ethernet: Distributed Packet Switching for Local Computer Networks. Communications of the ACM, 19(7), 395-404. https://doi.org/10.1145/360248.360253
Meyer, E. A., & Weyl, E. (2017). CSS: The Definitive Guide. O’Reilly Media.
Microsoft. (2023). Caching data for performance optimization. Microsoft Azure Well-Architected Framework. https://learn.microsoft.com/en-us/azure/well-architected/scalability/optimize-cache
Microsoft. (2023a). Internet Information Services (IIS) for Windows Server. Retrieved from https://www.iis.net/
Mika, P. (2007). Ontologies are us: A unified model of social networks and semantics. Web Semantics: Science, Services and Agents on the World Wide Web, 5(1), 5-15.
Mozilla Contributors. (2023). JSON. MDN Web Docs. Retrieved from https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON
Mozilla Developer Network. (2023a). Introduction to the DOM - Web APIs. MDN Web Docs. Retrieved July 2, 2023, from https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
Mozilla Developer Network. (2023b). Manipulating documents - Learn web development. MDN Web Docs. Retrieved July 2, 2023, from https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Client-side_web_APIs/Manipulating_documents
Mozilla Developer Network. (2023c). What is a web server? Retrieved July 3, 2023, from https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_is_a_web_server.
Mozilla. (2023). Same-Origin Policy. Mozilla Developer Network. Retrieved August 7, 2023, from https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
Mozilla. (2023a). Subresource Integrity. MDN Web Docs. Retrieved August 6, 2023, from https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
Mozilla. (2023b). Using Web Workers. Retrieved from https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
Mozilla. (2023c). XMLHttpRequest. Retrieved from https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
Mozilla (2023d). Window: postMessage() method. https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
Musen, M. A. (2015). The Protégé project: A look back and a look forward. AI matters, 1(4), 4-12.
Mwangi, J. (2021). Understanding browser caching. Section. https://www.section.io/engineering-education/understanding-browser-caching/
Myers, M., Ankney, R., Malpani, A., Galperin, S., & Adams, C. (1999). X.509 Internet public key infrastructure online certificate status protocol - OCSP. RFC 2560, IETF. https://doi.org/10.17487/RFC2560
Netcraft. (2023). March 2023 Web Server Survey. Retrieved from https://news.netcraft.com/archives/category/web-server-survey/
Nginx. (2023). Nginx Plus Documentation. Retrieved from https://docs.nginx.com/nginx/
Nginx. (2023a). Nginx documentation. Retrieved from https://nginx.org/en/docs/
Nginx. (2023b). Getting Involved | NGINX. Retrieved from https://www.nginx.com/resources/wiki/community/get_involved/.
Nottingham, M., & Fielding, R. (2014). Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content. RFC 7231. Retrieved from https://tools.ietf.org/html/rfc7231
Noy, N. F., & McGuinness, D. L. (2001). Ontology development 101: A guide to creating your first ontology. Stanford Knowledge Systems Laboratory Technical Report KSL-01-05.
O’Reilly, T., & Totty, B. (2002). Web caching. O’Reilly Media, Inc.
OASIS Standard. (2004). Web services Security: SOAP Message Security 1.0. https://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
OASIS Standard. (2007). Web services Reliable Messaging Protocol (WS-ReliableMessaging). https://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01.pdf
Okta. (2023). What’s the Difference Between OAuth, OpenID Connect, and SAML? Okta. Retrieved from https://www.okta.com/identity-101/whats-the-difference-between-oauth-openid-connect-and-saml/
OWASP. (2019). OWASP Top Ten Web Application Security Risks. Retrieved from https://owasp.org/www-project-top-ten/
OWASP. (2020). Cross-Site Scripting (XSS). Retrieved from https://owasp.org/www-community/attacks/xss/
Papazoglou, M. P. (2003). Service-oriented computing: concepts, characteristics and directions. In Proceedings of the Fourth International Conference on Web Information Systems Engineering, 3-12.
Parecki, A., et al. (2019). OAuth 2.0 for Browser-Based Apps. IETF Draft. https://datatracker.ietf.org/doc/html/draft-ietf-oauth-browser-based-apps-00
Pathan, M., Buyya, R., & Vakali, A. (2008). Content Delivery Networks: State of the Art, Insights, and Imperatives. Springer.
Pathan, M., Buyya, R., & Vakali, A. (Eds.). (2014). Content delivery networks: Principles and paradigms. John Wiley & Sons.
Pautasso, C., Zimmermann, O., & Leymann, F. (2008). Restful Web services vs. “big” web services: making the right architectural decision. Proceedings of the 17th international conference on World Wide Web. https://doi.org/10.1145/1367497.1367606
Podlipnig, S., & Böszörmenyi, L. (2003). A survey of Web cache replacement strategies. ACM Computing Surveys, 35(4), 374-398.
Postel, J. (1981). Internet Protocol. RFC 791. https://tools.ietf.org/html/rfc791
Rector, A., Brandt, S., & Schneider, T. (2011). Getting the foot out of the pelvis: modeling problems affecting use of SNOMED CT hierarchies in practical applications. Journal of the American Medical Informatics Association, 18(4), 432-440.
Reese, M. (2008). Nginx: The High-Performance Web Server and Reverse Proxy. Linux Journal, 173. Retrieved from https://www.linuxjournal.com/magazine/nginx-high-performance-web-server-and-reverse-proxy
Rescorla, E. (2000). HTTP over TLS. RFC 2818, RFC Editor.
Rescorla, E. (2018). The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446, IETF. https://doi.org/10.17487/RFC8446
Richardson, L., & Ruby, S. (2007). RESTful Web Services. O’Reilly Media.
Richer, J., Sanso, A., & Hardt, D. (2017). OAuth 2 in Action. Manning Publications Co.
Rozlog, M. (2010). REST and SOAP: When Should I Use Each (or Both)?. InfoQ. Retrieved from https://www.infoq.com/articles/rest-soap-when-to-use-each/
Russell, S. J., & Norvig, P. (2009). Artificial intelligence: A modern approach (3rd ed.). Prentice Hall.
Safko, L. (2012). The Social Media Bible (3rd ed.). Wiley. Retrieved from https://www.perlego.com/book/1013396/the-social-media-bible-tactics-tools-and-strategies-for-business-success-pdf
Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., & Mortimore, C. (2014). OpenID Connect Core 1.0 incorporating errata set 1. The OpenID Foundation.
Santesson, S., Myers, M., Ankney, R., Malpani, A., Galperin, S., & Adams, C. (2013). X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP. RFC 6960. https://doi.org/10.17487/RFC6960
Schmachtenberg, M., Bizer, C., Paulheim, H. (2014). Adoption of the Linked Data Best Practices in Different Topical Domains. In: Mika, P., et al. The Semantic Web – ISWC 2014. ISWC 2014. Lecture Notes in Computer Science, vol 8796. Springer, Cham. https://doi.org/10.1007/978-3-319-11964-9_16
Schneier, B. (1995). Applied Cryptography: Protocols, Algorithms, and Source Code in Wiley.
Shadbolt, N., O’Hara, K., & Berners-Lee, T. (2012). Linked open government data: Lessons from data.gov.uk. IEEE Intelligent Systems, 27(3), 16-24.
Shearer, Rob & Motik, Boris & Horrocks, Ian. (2008). HermiT: A highly-efficient OWL reasoner. OWLED. 432.
Shvaiko, P. (2014). Ontology Matching. In: Alhajj, R., Rokne, J. (eds) Encyclopedia of Social Network Analysis and Mining. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6170-8_123
Simpson, W. (1994). The Point-to-Point Protocol (PPP). RFC 1661. https://tools.ietf.org/html/rfc1661
Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., & Katz, Y. (2007). Pellet: A practical OWL-DL reasoner. Web Semantics: Science, Services and Agents on the World Wide Web, 5(2), 51-53.
Smith, B. (2015). Beginning JSON. Apress.
Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters W, Goldberg LJ, Eilbeck K, Ireland A, Mungall CJ; OBI Consortium; Leontis N, Rocca-Serra P, Ruttenberg A, Sansone SA, Scheuermann RH, Shah N, Whetzel PL, Lewis S. The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol. 2007 Nov;25(11):1251-5. doi: 10.1038/nbt1346. PMID: 17989687; PMCID: PMC2814061.
Smith, M. K., Welty, C., & McGuinness, D. L. (2004). OWL Web Ontology Language Guide. World Wide Web Consortium (W3C).
Soundararajan, G., & Amza, C. (2006). Database Caching for E-Commerce Applications. ACM SIGPLAN Notices, 41(11), 347-359.
Sporny, M., Kellogg, G., & Lanthaler, M. (2014). JSON-LD 1.0: A JSON-based serialization for linked data. World Wide Web Consortium (W3C)
Staab, S., & Studer, R. (2009). Handbook on ontologies. Springer Science & Business Media.
Stackify (2017). SOAP vs. REST Comparison: Differences in Performance, APIs … Retrieved September 13, 2023, from https://stackify.com/soap-vs-rest/
Stevens, W. R., & Wright, G. R. (2011). TCP/IP illustrated: The protocols (Vol. 1). Addison-Wesley Professional.
Sutton, M., Greene, A., & Amini, P. (2007). Fuzzing: Brute force vulnerability discovery. Addison-Wesley.
Symantec. (2018). Internet Security Threat Report.
T. O’Reilly & J. Battelle. (2009). Web Squared: Web 2.0 Five Years On. O’Reilly Media.
Tanenbaum, A. S., & Wetherall, D. J. (2011). Computer Networks (5th ed.). Prentice Hall.
TechTarget. (n.d.). RSA (Rivest-Shamir-Adleman). Retrieved from https://www.techtarget.com/searchsecurity/definition/RSA
The Gene Ontology Consortium. (2019). The Gene Ontology Resource: 20 years and still GOing strong. Nucleic acids research, 47(D1), D330-D338.
Twitter. (2020). Rate limits. Twitter Developer Platform. https://developer.twitter.com/en/docs/twitter-api/rate-limits
Van der Vlist, E. (2002). XML Schema: The W3C’s Object-Oriented Descriptions for XML. O’Reilly Media, Inc.
Van Kesteren, A. (2023). Fetch Standard. WHATWG. Retrieved from https://fetch.spec.whatwg.org/
Varnish Software. (2023). Varnish Cache. Retrieved from https://www.varnish-software.com/community/varnish-cache/
W3C. (2008). Extensible Markup Language (XML) 1.0 (Fifth Edition). Retrieved from https://www.w3.org/TR/xml/
W3C. (2012). OWL 2 Web Ontology Language Document Overview. World Wide Web Consortium.
W3C. (2014). RDF 1.1 Primer. World Wide Web Consortium.
W3C. (2016). Subresource Integrity. Retrieved from https://www.w3.org/TR/SRI/
Walmsley, P. (2001). Definitive XML schema. Prentice Hall PTR.
WhatWG. (2023). HTML: The living standard. https://html.spec.whatwg.org/multipage/
Wikipedia. (2023). HTML. In Wikipedia. https://en.wikipedia.org/wiki/HTML
Wikipedia. (2023a). Online Certificate Status Protocol. Retrieved 07/12/2023, from https://en.wikipedia.org/wiki/Online_Certificate_Status_Protocol
Wikipedia. (2023b). Transport layer. Retrieved July 1, 2023, from https://en.wikipedia.org/wiki/Transport_layer
Wikipedia. (2023c). XML. Retrieved July 2, 2023, from https://en.wikipedia.org/wiki/XML
Wikipedia (2023d). List of Web service specifications. Retrieved September 13, 2023, from https://en.wikipedia.org/wiki/List_of_web_service_specifications
Wikipedia (2023e). Webservice - Architektur. Retrieved September 13, 2023, from https://de.wikipedia.org/wiki/Webservice#Architektur
Wikipedia (2023f). Web service - Explanation. Retrieved September 13, 2023, from https://en.wikipedia.org/wiki/Web_service#Explanation
Wikipedia (2023g). REST. Retrieved September 13, 2023, from https://en.wikipedia.org/wiki/REST
Wikipedia (2023h). DNS-based Authentication of Named Entities. Retrieved September 13, 2023, from https://en.wikipedia.org/wiki/DNS-based_Authentication_of_Named_Entities
Wikipedia (2023i). Advances Encryption Standard. Retrieved September 13, 2023, from https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
Wikipedia (2023j). Multi-factor authentication. Retrieved September 14, 2023, from https://en.wikipedia.org/wiki/Multi-factor_authentication#Location
Wikipedia. (2022). Mashup (web application hybrid). In *Wikipedia*. Retrieved from https://en.wikipedia.org/wiki/Mashup_(web_application_hybrid)
World Economic Forum. (2020). Passwordless Authentication: The next breakthrough in secure digital transformation. Retrieved from https://www.weforum.org/whitepapers/passwordless-authentication-the-next-breakthrough-in-secure-digital-transformation
World Wide Web Consortium (W3C). (2023). Microdata. Retrieved from https://html.spec.whatwg.org/multipage/
World Wide Web Consortium (W3C). (2018). Scalable vector graphics (SVG) 2. https://www.w3.org/TR/SVG2/
Wright, A., Andrews, H, Hutton, B., Dennis G. (2022). JSON Schema: A Media Type for Describing JSON Documents. https://json-schema.org/draft/2020-12/json-schema-core.html
Yang, W., Wang, S., Hu, J., Zheng, G., & Valli, C. (2019). Security and Accuracy of Fingerprint-Based Biometrics: A Review. Symmetry, 11(2), 141. MDPI AG. https://doi.org/10.3390/sym11020141
Yee, P. (2013). Internet X.509 public key infrastructure certificate and certificate revocation list (CRL) profile. RFC 6818, IETF. https://doi.org/10.17487/RFC6818
Yu, J., Benatallah, B., Casati, F., & Daniel, F. (2008). Understanding Mashup Development. IEEE Internet Computing, 12(5), 44-52. https://doi.org/10.1109/MIC.2008.114
Zalewski, M. (2011). The Tangled Web: A Guide to Securing Modern Web Applications. No Starch Press.
Zaveri, Amrapali & Rula, Anisa & Maurino, Andrea & Pietrobon, Ricardo & Lehmann, Jens & Auer, Sören. (2015). Quality assessment for Linked Data: A Survey. Semantic Web. 7. 63-93.
Zuiderwijk, A., & Janssen, M. (2014). Open data policies, their implementation and impact: A framework for comparison. Government Information Quarterly, 31(1), 17-29.

For appendix:
Online Resources for Learning HTML, SVG, and MathML
To learn more about HTML, SVG and MathML, you can use these online resources:
· HTML
· Mozilla Developer Network (MDN) - HTML Basics:
· W3Schools - HTML Tutorial:
· SVG
· Mozilla Developer Network (MDN) - SVG Tutorial:
· W3Schools- SVG Tutorial:
· MathML
· Mozilla Developer Network (MDN) - MathML Guide:
· W3Schools - MathML Tutorial:

	
	
	

image1.emf

7

6

5

4

3

2

1

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Application Layer

Transport Layer

Internet Layer
(Network Layer)

Link Layer
(Network Access Layer,
Host-to-network Layer)

4

3

2

1

ISO/OSI reference model
(7 layers model)

Internet reference model
(TCP/IP reference model)

7

6

5

4

3

2

1

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Application Layer

Transport Layer

Internet Layer

(Network Layer)

Link Layer

(Network Access Layer,

Host-to-network Layer)

4

3

2

1

ISO/OSI reference model

(7 layers model)

Internet reference model

(TCP/IP reference model)

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.emf

image_b.png

sourceOrigin = "http://domain-b.org";
if (event.origin == sourceOrigin) {

message = event.data;
…

}

message = “Hello World”;
targetOrigin = “http://domain-b.org”;
iframeWindow =

document.getElementById(
"my-iframe").contentWindow;

iframeWindow.postMessage(
message, targetOrigin);

page_a.html page_b.html

event(origin, data)

HTTP server B

http://domain-b.org

GET http://domain-a.org/page_a.html

HTTP server A

http://domain-a.org

Main request
(defines origin)

image_b.png

GET http://domain-b.org/page_b.html

Cross-origin request

Communication between
windows with different
origins via postMessage

iframe

JavaScript JavaScript

image_b.png

sourceOrigin = "http://domain-b.org";

if (event.origin == sourceOrigin) {

message = event.data;

…

}

message = “Hello World”;

targetOrigin=“http://domain-b.org”;

iframeWindow =

document.getElementById(

"my-iframe").contentWindow;

iframeWindow.postMessage(

message, targetOrigin);

page_a.html

page_b.html

event(origin, data)

HTTP server B

http://domain-b.org

GEThttp://domain-a.org/page_a.html

HTTP server A

http://domain-a.org

Main request

(defines origin)

image_b.png

GEThttp://domain-b.org/page_b.html

Cross-origin request

Communication between

windows with different

origins via postMessage

iframe

JavaScript JavaScript

image18.emf

image_a.png

image_b.png

GET webfont.woff

GET image_b.png

HTTP server B

http://domain-b.org

Web browser
(displaying a web document

(HTML) served by HTTP server A)

Cross-origin requests
(e.g. issued by the JavaScript function

XMLHttpRequest.send()
that were not allowed by CORS)

GET image_a.png

GET layout.css

GET / (main page)

HTTP server A

http://domain-a.org

Main request: defines origin

Same-origin requests
(always allowed)

image_a.png

image_b.png

GET webfont.woff

GET image_b.png

HTTP server B

http://domain-b.org

Web browser

(displaying a web document

(HTML) served by HTTP server A)

Cross-origin requests

(e.g.issued by the JavaScript function

XMLHttpRequest.send()

that were notallowed by CORS)

GET image_a.png

GET layout.css

GET / (main page)

HTTP server A

http://domain-a.org

Main request: defines origin

Same-origin requests

(always allowed)

image19.emf

image_a.png

image_b.png

GET webfont.woff

GET image_b.png

GET image_a.png

GET layout.css

GET / (main page)

HTTP server A

http://domain-a.org

HTTP server B

http://domain-b.org

Web browser
(displaying a web document

(HTML) served by HTTP server A)

Main request: defines origin

Same-origin requests
(always allowed)

Cross-origin requests
(e.g. issued by the JavaScript function

XMLHttpRequest.send()
that were allowed by CORS)

image_a.png

image_b.png

GET webfont.woff

GET image_b.png

GET image_a.png

GET layout.css

GET / (main page)

HTTP server A

http://domain-a.org

HTTP server B

http://domain-b.org

Web browser

(displaying a web document

(HTML) served by HTTP server A)

Main request: defines origin

Same-origin requests

(always allowed)

Cross-origin requests

(e.g.issued by the JavaScript function

XMLHttpRequest.send()

that were allowed by CORS)

image20.png

image21.png

image22.png

image23.png

image24.jpg

image25.png

