
MACHINE LEARNING—
UNSUPERVISED LEARNING
AND FEATURE ENGINEERING

DLBDSMLUSL01

MACHINE LEARNING—
UNSUPERVISED LEARNING AND
FEATURE ENGINEERING

MASTHEAD

Publisher:
IU Internationale Hochschule GmbH
IU International University of Applied Sciences
Juri-Gagarin-Ring 152
D-99084 Erfurt

Mailing address:
Albert-Proeller-Straße 15-19
D-86675 Buchdorf
media@iu.org
www.iu.de

DLBDSMLUSL01
Version No.: 001-2023-0811
N.N.

© 2023 IU Internationale Hochschule GmbH
This course book is protected by copyright. All rights reserved.
This course book may not be reproduced and/or electronically edited, duplicated, or dis-
tributed in any kind of form without written permission by the IU Internationale Hoch-
schule GmbH (hereinafter referred to as IU).
The authors/publishers have identified the authors and sources of all graphics to the best
of their abilities. However, if any erroneous information has been provided, please notify
us accordingly.

2

TABLE OF CONTENTS
MACHINE LEARNING—UNSUPERVISED LEARNING AND FEATURE ENGINEERING

Introduction
Signposts Throughout the Course Book . 6
Suggested Readings . 7
Learning Objectives . 9

Unit 1
Introduction to Unsupervised Machine Learning and Feature Engineering 11

1.1 Unsupervised Machine Learning . 14
1.2 Feature Engineering . 24

Unit 2
Clustering 33

2.1 K-Means . 34
2.2 Gaussian Mixture Model Clustering . 50
2.3 Hierarchical Clustering . 64

Unit 3
Dimensionality Reduction 73

3.1 Principal Component Analysis (PCA) . 75
3.2 Multi-Dimensional Scaling . 87
3.3 Local Linear Embedding . 94

Unit 4
Feature Engineering 99

4.1 Numerical Features . 101
4.2 Categorical Features . 118
4.3 Text Features . 130

Unit 5
Feature Selection 139

5.1 Feature Importance . 142
5.2 Feature Variance . 153
5.3 Correlation Matrix . 157
5.4 Recursive Feature Selection . 163

3

Unit 6
Automated Feature Generation 179

6.1 Automated Feature Generation . 180
6.2 Feature Engineering versus Deep Learning . 188

Appendix
List of References . 194
List of Tables and Figures . 197

4

INTRODUCTION

WELCOME
SIGNPOSTS THROUGHOUT THE COURSE BOOK

This course book contains the core content for this course. Additional learning materials
can be found on the learning platform, but this course book should form the basis for your
learning.

The content of this course book is divided into units, which are divided further into sec-
tions. Each section contains only one new key concept to allow you to quickly and effi-
ciently add new learning material to your existing knowledge.

At the end of each section of the digital course book, you will find self-check questions.
These questions are designed to help you check whether you have understood the con-
cepts in each section.

For all modules with a final exam, you must complete the knowledge tests on the learning
platform. You will pass the knowledge test for each unit when you answer at least 80% of
the questions correctly.

When you have passed the knowledge tests for all the units, the course is considered fin-
ished and you will be able to register for the final assessment. Please ensure that you com-
plete the evaluation prior to registering for the assessment.

Good luck!

6

SUGGESTED READINGS
GENERAL SUGGESTIONS

Bonaccorso, G. (2019). Hands-on unsupervised learning with Python: Implement machine
learning and deep learning models using Scikit-Learn, TensorFlow, and more. Packt
Publishing Ltd.

Celebi, M. E., & Aydin, K. (Eds.). (2016). Unsupervised learning algorithms. Springer Interna-
tional Publishing.

Kane, F. (2017). Hands-on data science and Python machine learning. Packt Publishing Ltd.

Patel, A. A. (2019). Hands-on unsupervised learning using Python: How to build applied
machine learning solutions from unlabeled data. O’Reilly Media.

UNIT 1

Nisioti, A., Mylonas, A., Yoo, P. D., & Katos, V. (2018). From intrusion detection to attacker
attribution: A comprehensive survey of unsupervised methods. IEEE Communications
Surveys & Tutorials, 20(4), 3369—3388.

Yao, Q., Wang, M., Chen, Y., Dai, W., Yi-Qi, H., Yu-Feng, L., & Yang, Y. (2018). Taking human
out of learning applications: A survey on automated machine learning. arXiv.

UNIT 2

Kaufman, L., & Rousseeuw, P. J. (2009). Finding groups in data: An introduction to cluster
analysis (Vol. 344). Wiley. Chapters 2 and 3

UNIT 3

Van Der Maaten, L., Postma, E., & Van den Herik, J. (2009). Dimensionality reduction: A com-
parative. Technical Report TiCC TR 2009-005. Available online

UNIT 4

Dong, G., & Liu, H. (Eds.). (2018). Feature engineering for machine learning and data analyt-
ics. CRC Press. Chapters 1 and 2

7

UNIT 5

Solorio-Fernández, S., Carrasco-Ochoa, J. A., & Martínez-Trinidad, J. F. (2020). A review of
unsupervised feature selection methods. Artificial Intelligence Review, 53(2), 907—948.

UNIT 6

Das, S., & Cakmak, U. M. (2018). Hands-on automated machine learning: A beginner’s guide
to building automated machine learning systems using AutoML and Python. Packt Pub-
lishing Ltd. Chapters 1 and 4

8

LEARNING OBJECTIVES
Machine learning allows the building or learning of a model that predicts an output (e.g.,
class or target) based on a set of data points previously gathered in a training or learning
set. When the latter does not contain labels indicating the class or target of each data
point, the learning is called unsupervised learning. Machine Learning—Unsupervised
Learning and Feature Engineering will present the most popular methods and techni-
ques used to perform the unsupervised learning.

Using various academic and real examples, you will learn how to design and implement a
successful unsupervised learning model according to the problem constraints and chal-
lenges. To this end, you will discover how to define features with adequate specific charac-
teristics based on the properties of the input data samples. You will learn how to find, by
selecting or transforming, the most efficient features that maximize the performance or
success of the designed unsupervised machine learning model. Furthermore, you will
become familiar with various popular unsupervised machine learning methods and tech-
niques and gain insight into how to choose between them by discovering their advantages
and drawbacks with respect to the problem constraints and challenges.

The recommended reading will add a further dimension to the methods and techniques
that constitute this course by introducing you to the most important authors and articles
in the field of unsupervised learning. These articles present new case studies, as well as
methods and techniques covering the challenges and applications of unsupervised
machine learning.

9

UNIT 1
INTRODUCTION TO UNSUPERVISED
MACHINE LEARNING AND FEATURE
ENGINEERING

STUDY GOALS

On completion of this unit, you will be able to …

– explain the general principal of unsupervised machine learning and its applications to
real-life problems.

– define what features are, their types, their interest for unsupervised machine learning,
and their challenges.

– explain the steps of designing an unsupervised machine learning model.
– adapt or transform features for an unsupervised machine learning model.
– evaluate and improve the performance of an unsupervised machine learning model.

Training or learning set
A training or learning set
is a set of historical data
samples about the phe-

nomenon to be predicted
or understood.

1. INTRODUCTION TO UNSUPERVISED
MACHINE LEARNING AND FEATURE
ENGINEERING

Introduction
Machine learning is a set of techniques and methods used to build models that are
learned from data. These models allows us to predict an outcome, understand, and char-
acterize the data behavior. For example, the model can be used to predict if an email is a
spam, if a credit card transaction is genuine or fraudulent, or if the electricity prices will
increase or decrease. The model is learned using a training or learning set. When the
training set contains labels about the prediction or interpretation of each data point, then
the model is learned using supervised machine learning. For instance, in the spam exam-
ple, each email in the training set has a label indicating if it is spam. When the training set
does not include labels, then the model is learned using unsupervised machine learning.

Unsupervised machine learning might be considered more complicated than supervised
machine learning since the model does not have an output and is learned without a
teacher (labels) to instruct the learning algorithm. The task is to extract knowledge (the
model output) based only on the input data points. This knowledge is represented by the
intrinsic structure of the data points assigned to distinct groups of similar points. For
instance, groups gathering products frequently purchased together by the customers can
be used to put items of the same group in the same stocking shelves, in sales promotions,
in the design of promotional catalogs, and in consumer segmentation.

The quality of the built model (extracted knowledge) depends on the quality of the input
data points and the use of meaningful features based on these data points. Indeed, the
unsupervised machine learning algorithms require numerical inputs. Hence, the categori-
cal or non-numerical data inputs, such as customer satisfaction (high, medium, and low),
need to be transformed into numerical inputs. In addition, these data inputs must be
cleaned by dealing with missing values, collinear or redundant input variables, and irrele-
vant input variables. In addition, it is very useful to derive more meaningful features based
on the cleaned or preprocessed input data points, allowing the improvement of the qual-
ity of the built model. The techniques used to preprocess, transform, and clean. The input
raw data points and extract additional, more meaningful, features are called feature engi-
neering. Feature engineering is essential to build a quality model. However, it is difficult,
time-consuming, and requires domain or business problem expert knowledge. The figure
below gives an overview of the classification and comparison of the different methods and
techniques that will be discussed in this unit.

12

Figure 1: Overview of Unsupervised Machine Learning and Feature Engineering Models

Source: Sayed-Mouchaweh (2021).

13

Clustering algorithms
The clustering algorithms

aim at discovering inde-
pendent groups, or clus-

ters, in the data points.

In order to use unsupervised machine learning to extract quality knowledge from a data-
base or training set, the following questions need to be answered:

• How is unsupervised machine learning used to extract the knowledge or build the
model?

• What is the suitable unsupervised machine learning method to be used to extract the
knowledge or build the model?

• How is the quality of the extracted knowledge or the built model assessed?
• How can input data points be preprocessed, transformed, and cleaned to be suitable for

the built model?
• How can the input data points be processed in order to maximize the quality of the

extracted knowledge or built model by extracting or coming up with additional and
more meaningful features?

1.1 Unsupervised Machine Learning
Unsupervised learning is the process used to train or build a model when the training set
is not labeled. The output or target of a learned model is the intrinsic structures or pat-
terns within the data points. Let us pretend that we are trying to estimate the links
between eating habits and the risk of a heart attack. If we have a database of different
human subjects described by their diet (eating habits), we can see if these human subjects
form clusters according to their diet. The goal is to identify, understand or characterize
subjects with risk (unhealthy) and no risk (healthy) diet. Since this database does not
include a column indicating if the label, or interpretation, of the diet of each subject, the
clusters need to be labeled by an expert.

Another example concerns the study of the professional success of individuals according
to certain social criteria. The database represents a set of individuals described through
these social characteristics (e.g., education level obtained, socioeconomic background, or
location). We might obtain two homogeneous groups representing similar individuals.
These two groups represent individuals who have been successful in their lives (with
respect to the considered factors) and who have not. There are two types of unsupervised
machine learning (Müller & Guido, 2016): clustering algorithms and unsupervised transfor-
mations (dimensionality reduction).

Clustering Algorithms

Clustering algorithms gather data points into clusters. Data points in each cluster are
similar, while they are dissimilar to the data points in the other clusters, according to pre-
defined meaningful similarity/dissimilarity criteria. Clustering can be an efficient techni-
que used to compress the data points by replacing them within each cluster with its statis-
tical characteristics. For instance, if the cluster is compact, i.e., its data points are very
close to each other, then this cluster will be represented by its gravity center and its var-
iance. Clustering is unsupervised learning since it is a process of learning by observation,
rather than learning by examples (supervised learning). Let us take the example illustrated
in the figure below where objects can be divided into clusters according to a predefined

14

similarity measure. If the similarity measure is the color of objects, i.e., each cluster
includes objects of the same color, then three clusters can be found; if the similarity meas-
ure is the object size, then two clusters can be found.

Figure 2: Clustering by Partitioning

Source: Sayed-Mouchaweh (2021).

Clustering approaches can be divided generally into two main categories (Müller & Guido,
2016): partitioning and hierarchical. Partitioning approaches divide a set of n objects or
data points into k partitions or clusters, where k ≤ n. Therefore, partitioning methods
conduct one-level partitioning on datasets. K-means, Gaussian Mixture Model (GMM) clus-
tering, and Density Based Spatial Clustering of Applications with Noise (DBSCAN) are well-
known examples of partitioning methods.

Hierarchical methods generate a hierarchical decomposition, a tree or a dendrogram, of
the data samples to be clustered. They perform the clustering either as agglomerative
merging (starting from the bottom and ending in the top) or divisive splitting (starting
from the top and ending down) of data samples. Each merging or splitting process will
add a new hierarchical level of decomposition of data samples. The agglomerative meth-
ods consider each data sample a separate cluster. Then, the clusters are successively
merged by adding new data points or clusters that are close to each other. This merging
process will continue until it either reaches one cluster that includes all the data points in
the dataset or a stop criterion is satisfied.

The top-down or divisive methods, more popular than agglomerative methods, start with
all the objects in the same cluster. Then, in each successive iteration, a cluster is split into
smaller clusters until each object forms one cluster or a stop criterion is satisfied. The
number of clusters is determined either manually by the user, or by defining a threshold as
illustrated in the figure below.

15

Figure 3: Hierarchical (Agglomerative) Clustering

Source: Sayed-Mouchaweh (2021).

16

Matrix variance-
covariance
A matrix variance-cova-
riance indicates the var-
iance of data points along
each attribute and the
covariance or correlation
between each pair of
attributes.

Unsupervised transfor-
mations
The unsupervised trans-
formations aim at sum-
marizing the main charac-
teristics of high-
dimensional data in order
to represent it into much
smaller dimension space.

There are several differences between these clustering approaches, allowing the choice of
one according to the dataset conditions and available prior knowledge. For instance, k-
means can be applied to discover hard clusters of spherical shapes. Hard clusters mean
that all data points within a cluster belong to it with the same strength. However, nor-
mally, data points closer to the cluster center belong to the cluster with more of belief
strength than the data points located at the cluster periphery. In addition, k-means
requires the determination of the number of clusters to discover, k, in advance.

Gaussian Mixture Model (GMM) clustering is more flexible than k-means since it can dis-
cover clusters of an elliptical shape thanks to the use of the matrix variance-covariance.
Indeed, the correlation (covariance) between each pair of attributes (axes) in the matrix
variance-covariance allows us to take into account the elliptical shape of clusters. More-
over, it discovers soft clusters since it is a probabilistic algorithm. In other words, it assigns
higher probabilities to data points according to the belief one has that those data points
belong to a specific cluster.

DBSCAN has the following advantages: a) it does not require the number of clusters k to
be defined in advance, b) it can be applied to discover clusters with arbitrary or complex
shape, and c) it can deal with noisy data, i.e., identify data points that do not belong to any
cluster. These are very useful advantages since most of the real-world datasets include
outliers and missing, unknown, or erroneous data samples. Noisy data impacts the quality
of the resulting clusters that the clustering algorithm cannot deal with (are not robust
against noises). However, DBSCAN is slower than k-means. This limits its scalability or its
ability to be applied to large datasets.

Unsupervised Transformation (Dimensionality Reduction)

The main application of unsupervised transformations is the dimensionality reduction
where data points described in a high-dimension feature space are represented or trans-
formed in another feature or representation space with much fewer features. The new rep-
resentation or feature space allows us to conserve certain important properties and char-
acteristics of the transformed data points, such as the distances between them, or their
variance. Generally, the original features are reduced to two dimensions in order to
present the data points visually in two-dimensional representation space.

Let us take, as an example, one famous method of dimensionality reduction: Principal
Component Analysis (PCA). Let us apply this method to the example depicted in the figure
below. In this figure, the original data forming a cluster are represented in three-dimen-
sional feature space. The data can be transformed and projected using PCA into another,
smaller, feature space composed of two uncorrelated features (principal components PC1
and PC2) that capture the most of the variance of the original data as illustrated in the
figure below.

17

Figure 4: Unsupervised Transformation Using Principal Component Analysis (PCA)

Source: Sayed-Mouchaweh (2021).

Unsupervised transformations methods are divided into two categories. The first is fea-
ture selection (Dy & Brodley, 2004), where a subset of features are selected according to
their contribution to the quality of the knowledge extracted by the built model. This con-
tribution can be measured directly according to a specific built model, or indirectly, inde-
pendently of the built model. The former are called the wrapper methods, and the latter,
filter methods. In both cases, the selection process is achieved by removing irrelevant,

18

redundant, or noisy features. Consequently, the feature selection will improve the quality
of the built model through higher learning accuracy, lower learning and computation cost,
and better model interpretability. Car shopping, for example, could be helpful with feature
selection. It could be used with the clustering of cars according to their price. If we have,
as the feature, the color of the car, this feature does not contribute to the price of the car,
but the brand and model year are informative features used to determine their price.

Let us take the example of the figure below in which two clusters are represented into two-
dimensional feature space. It is clear that both features, F1 and F2, provide the same infor-
mation regarding the discrimination of the data points into two different clusters. There-
fore, one feature can be selected to discriminate the data points into two clusters. The
figure below shows an example of an irrelevant feature where feature F2 does not contrib-
ute to the discrimination of the two clusters naturally existing into the data points. It is
worth mentioning that noisy or irrelevant features not only fail to contribute to the dis-
crimination of clusters in the data points, but also misguide the clustering.

19

Figure 5: Redundant and Irrelevant Features

Source: Sayed-Mouchaweh (2021).

The second category is feature extraction (Ding et al., 2012). This reduces the number of
features by projecting or transforming the original data into a new smaller feature space.
In the latter, the representation of the original data is conserved as faithfully as possible.
Therefore, the difference between feature selection and feature extraction is that in the
former, the new reduced feature space is based on a selection of the original features,
while in the latter, the new reduced feature space is based on new features that are built
by transforming the original features.

20

Feature extraction can be divided into linear dimensionality and nonlinear dimensionality
reduction methods. In linear dimensionality reduction methods, such as PCA, Factor Anal-
ysis, and Linear Discriminant Analysis, the original data points in the feature space are lin-
early correlated and thus can be linearly transformed and projected into a reduced new
feature space. In nonlinear dimensionality reduction methods or manifold learning meth-
ods, such as Multi-Dimensional Scaling (MDS), Locally Linear Embedding (LLE), and Kernel
PCA, the original data points are correlated in the feature space in nonlinear way, as illus-
trated in the figure below. For instance, MDS projects original data points into a lower
dimensional space in a such a way that data points close to each other (e.g., in terms of
Euclidean distance) in the original high dimensional space also remain close in the trans-
formed, lower, dimensional space. In LLE, each local patch of the nonlinear structure of
the original data points can be written, transformed, as a linear, weighted sum of its neigh-
bors given that there are enough data points.

Figure 6: Data Points Linearly and Nonlinearly Correlated in the Original Feature Space

Source: Sayed-Mouchaweh (2021).

21

Real-Life Applications of Unsupervised Machine Learning

There are an important number of applications of unsupervised machine learning
approaches used to solve real-life problems. This number is continuously increasing, par-
ticularly within the context of digital transformation. The latter allows the generation of a
huge number of data records that can be transformed into knowledge and insights to facil-
itate the decision-making process and increase efficiency. The following paragraphs
present some of the major applications of unsupervised machine learning. Other applica-
tions can be found in Bernard et al. (2018), Westermann et al. (2020), Verkerken et al.
(2020) and the references therein.

Medical diagnosis (Alashwal et al., 2019)

Unsupervised machine learning, such as clustering approaches, can be used to under-
stand the parameters that cause, entail, or encourage the evolution from normal or mildly
impaired subjects toward a certain disease. To this end, a set of data (clinical tests and
biomarkers) about the medical situation of healthy and unhealthy human subjects are
used. These data are divided into clusters gathering healthy, mildly impaired, and sick
patients. These clusters are then used to understand the correlation between the subjects
or the identification of parameters leading the subjects to evolve from healthy or mildly
impaired to a disease situation. For instance, Alashwal et al. (2019) discuss the use of the
unsupervised machine learning (e.g., k-means) in order to discover patterns and struc-
tures in unlabeled datasets of the neurological Alzheimer’s disease (AD). As an example,
the mild-cognitive impaired (MCI) subjects were clustered into cognitive normal (CN)-like
and AD-like. The goal was to observe the MCI subjects that may stay as healthy individuals
(CN) and the MCI subjects that may evolve to Alzheimer’s disease (AD). This permitted an
early diagnosis of AD at the MCI stage.

Fault diagnosis of industrial systems (Toubakh et al., 2020)

An industrial system, such as a manufacturing system, works under normal operation con-
ditions. Clustering techniques can be applied to the historical data points describing the
system’s normal operation conditions in order to divide them into clusters in the feature
space. A fault can occur, impacting the normal operation functioning of the system or one
of its components, such as a pump or a valve. For instance, the pump may be failed-on or
failed-off. In the former, the pump cannot be stopped, leading to the problem of overflow,
while in the latter, the pump cannot be turned on and stays off. If the pump is used to cool
(reduce the temperature of a generator), then the failed-off fault of the pump can lead to a
catastrophic damage in the generator. The fault can be seen as an outlier that does not
have a similar characteristic with any of the normal clusters. Data points representing the
failed-off or failed-on pump faults can then be gathered in clusters to understand their
characteristics and the factors they entail.

Customer segmentation or client profiling (Băcilă et al., 2012)

Marketers and service providers need to target customers with suitable products or serv-
ices according to their profile or interest. Customer segmentation aims at gathering cus-
tomers into segments or clusters based on similar demands, needs, consumption, and

22

interests. The goal is to obtain clusters of customers or clients that have a similar profile or
response to marketing strategies (e.g., products and services). The obtained clusters ena-
ble marketers and service providers to design efficient marketing strategies and planning,
thanks to a better understanding of the customer needs and interests, enhancing cus-
tomer satisfaction. In Băcilă et al. (2012), telecom services subscribers were divided into
clusters according to how they spent money on credit recharging, making calls, sending
SMS, and navigating the internet. The resulting clusters allowed the characterization of
expenditure patterns for certain telecom services (SMS, internet navigation, phone calls,
etc.). The telecom company used these patterns to identify the most attractive consumer
segments, with a better positioning of services or a prioritization of resources.

Crime and fraud detection (Maddila et al., 2020)

Crime activities can be characterized according to type (e.g., robbery, assault, fraud, or
murder) as well as location (e.g., city or neighborhood). Clustering crime data records to
gather similar crimes according to their type and location can help give quality insights
into crime-prone areas within a city or an area by identifying the crime tendency and the
factors that create it. Similarly, fraudulent transactions of any kind (e.g., credit cards,
insurance claims, or online shopping) can be detected and characterized using unsuper-
vised machine learning, such as abnormality detection techniques. Genuine transactions
are gathered into clusters using a set of features, such as how much money was spent,
which types of products were purchased, or where and when (day or hour) these products
were purchased. A fraudulent transaction is detected if it does not have similar character-
istics to the genuine clusters. With clustering techniques, gathering these fraudulent trans-
actions into clusters allows the understanding of their characteristics and helps improve
the security of future transactions.

Throughout these examples of the use of unsupervised machine learning in real-life appli-
cations, the obtained knowledge and insights can improve the quality of life and safety of
human beings, as well as their health and well-being. However, privacy and virtual equity
issues arise due to the use of increasing volumes of data by unsupervised machine learn-
ing, related to personal and sensitive information. Indeed, personal and sensitive informa-
tion can be inferred using unsupervised machine learning. For instance, the health status,
consumption behavior or profile, or financial situation of a patient or a customer is per-
sonal and sensitive information that might be used against them.

As for predictive policing, there are use cases where unsupervised machine learning can
help investigators solve crimes by identifying patterns in criminal behavior. But, there are
also many cases where unsupervised machine learning has shown a reproduction of racist
narratives. Thus, efforts are made to address these issues when using machine learning
approaches. For instance, pre-trained models can be used to avoid having access to the
training dataset. Another example is to perform the learning in a decentralized manner.
This prevents models from accessing all of the dataset from one point, making it unfeasi-
ble to infer sensitive or private information. Moreover, a whole research field focuses on
fairness in data science in order to learn from mistakes made in the past. At the end of the
day, we decide for what purpose and how these techniques are used and whether they
will produce added value for all of us.

23

1.2 Feature Engineering
A feature, known also as an attribute or predictor, is an individual property or characteris-
tic extracted from a set of data points describing an input variables. Inputs are considered
to be independent measurable variable. There are two types of features according to the
types of input variables used to define them: numerical and categorical. Numerical varia-
bles are measurable variables whose values have a mathematical order, such as the num-
ber of children in a family, a personʼs weight and height, or house prices. Categorical fea-
tures are defined using categorical input values. The latter can take a fixed and limited
number of possible values, such as the gender or home country of a customer. Categorical
variables are not meant to be used by statistical methods since it is not possible to com-
pute summary statistics, such as mean value, variance, or median.

Categorical variables can be nominal or ordinal. In nominal variables, the values do not
have any kind of mathematical order, such as a customerʼs gender or the model of their
car. In contrast, the values of ordinal features have a meaningful order or scale, such as
customer satisfaction (high, medium, and low), and an exam grade (A, B, C, and F). Ordinal
variables can exhibit numerical and categorical characters when numbers are used to
scale the order of its values, such as customer satisfaction between 0 (not-satisfied at all)
and 5 (completely satisfied). However, this should be used with caution since there is dan-
ger in using statistical methods which are not meant for ordinal data.

The training set used to build the model using unsupervised machine learning includes
raw data organized into a table of n rows and d columns. N indicates the number of data
points while d indicates the number of measured features. For example, we have a table
indicating the energy consumption of 100 different consumers at each hour of the day for
12 months. We have n= 100⋅12⋅360 = 864000 lines. If we provide, in addition to the
energy consumption per hour, the consumer ID, the size of their home in m2, employment
status, age, and marital status, then we have d= 6 features.

We want to build a model to categorize these consumers according to their consumption.
The model will be trained using the training set. The used features impact the quality of
the extracted knowledge to a large extent, e.g., clusters grouping the energy consumption
of consumers. If these features are not meaningful, the extracted knowledge could be poor
and useless. Therefore, the more you have useful and meaningful features, the more the
built model is efficient and generic. Consequently, the first step in building an efficient
unsupervised machine learning model is to represent or extract useful and meaningful
features as much as possible. This is done by feature engineering (Müller & Guido, 2016;
Ozdemir & Susarla, 2018).

Feature engineering (or feature creation) aims at defining features from the available raw
data samples in order to improve the performance of the unsupervised or supervised
machine learning model. These features are defined by converting data samples based on
a blend of domain expertise, intuition, and mathematics. Useful and meaningful features
will not only largely improve the quality of the extracted knowledge (clusters), but will also
allow the use of less complex models that can be built or learned faster and interpreted
more easily.

24

Let us take the example of energy consumption clustering (Sayed-Mouchaweh, 2020).
Based on domain expertise, we propose adding a feature indicating if the day is a week-
end, day off, or a normal working day, since the energy consumption depends on whether
the consumer is at home or at work. Another additional feature is the maximum or mini-
mum energy used each day by the consumer. This feature allows us to observe the days
when the energy consumption is at the maximum or minimum. Thus, this information
identifies the consumers who have similar usage. A utility company can use this informa-
tion to ensure the balance between consumption and generation. When the consumption
is greater than the power generation, the utility company can ask the consumers in the
high consumption cluster to stop or reduce their consumption through a demand
response strategy (Sayed-Mouchaweh, 2020). Other additional features include the mean
value of the consumption of each consumer per day and per month, and the mean value
of consumption of all consumers per day and per month. These features allow us to iden-
tify consumers who use much more than the average. These consumers may have a prob-
lem or anomaly in their installation and need repairs.

Moreover, it may be helpful to add features that represent the interactions (products) of
features. For instance, we may add a new feature as the product between the energy con-
sumption and the home size demonstrates the interaction between these two features.
This new feature helps distinguish a cluster gathering high, but normal, energy consump-
tion. This can be explained by large home sizes from a cluster gathering high energy con-
sumption because of abnormal or excessive energy need.

Feature Engineering Types and Steps

There are two types of feature engineering used to define features: manual and automa-
ted feature engineering generation. In manual feature engineering, the features are
defined manually based on the intuition, domain knowledge, and user expertise. Let us
take the following simple example of student records composed of both tables below.

Table 1: Student_R

Student_ID Birth_date

S1 1996-07-14

S2 1997-08-22

S3 1998-05-11

Source: Sayed-Mouchaweh (2021).

The second table includes the student ID and grades for two courses.

Table 2: Courses

Student_ID Grades

S1 18

25

S2 11

S3 12

S1 15

S2 19

S3 10

Source: Sayed-Mouchaweh (2021).

We have two tables with a common link: the student identification number. The latter is
unique in each row of each table. Let us manually create new features using Python. You
need to import the following Python modules:

Code
import numpy as np
import pandas as pd
import datetime

We will create the two simple tables above, including three students.

Code
Student_R =

'Student_ID':['S1', 'S2', 'S3'],\
'Birth_date': [datetime.date(1996,7,14),

 datetime.date(1997,8,22),
 datetime.date(1998,5,11)]}

Student_R = pd.DataFrame (Student_R, \
 columns = ['Student_ID','Birth_date'])
Courses = { \
 'Student_ID':['S1', 'S2', 'S3', 'S1', 'S2', 'S3'],
 'Grades':[18, 11, 12, 15, 19, 10]}
Courses = pd.DataFrame (Courses, \
 columns = ['Student_ID','Grades'])

Now, let us create a simple feature based on a single table. For instance, we can create a
feature indicating the birth date of each student.

Code
Student_R['year'] =
pd.DatetimeIndex(Student_R['Birth_date']).year
print(Student_R.head())

console output:
Student_ID Birth_date year

26

0 S1 1996-07-14 1996
1 S2 1997-08-22 1997
2 S3 1998-05-11 1998

Now, the Student_R table has one additional column indicating the birth year of each stu-
dent. Let us now define features requiring more than one table. For example, let us create
features about the mean, max, and min of the grades obtained by each student. Finally, let
us include all the created features in one target table: Student_R. This table will be used to
build the machine learning model.

Code
creation of features by aggregation of grouped values
goper = Courses.groupby('Student_ID')['Grades'].\
 agg(['mean','max','min'])

rename columns
goper.columns = ['mean_grade','max_grade','min_grade']
print(goper.head())#Creation of features by grouping tables
goper = Courses.groupby('Student_ID')['Grades'].agg(['mean','max'
 ,'min'])goper = Courses.groupby('Student_ID')['Grades'].agg
 (['mean','max','min'])
goper.columns =['mean_grade','max_grade','min_grade']
print(goper.head())
Merge with the Student_R dataframe
R = Student_R.merge(goper, left_on = 'Student_ID',
 right_index=True, how =
 'left').head()
print('Student-R with the new manual features\n', R)

merge with the Student_R dataframe
R = Student_R.merge(goper, left_on = 'Student_ID', \
 right_index=True, how = 'left'). \
 head()

The new table with the additional features is below.

Table 3: Student_R with Generated New Features

Student_ID Birth_date year mean_grade max grade min_grade

S1 1996-07-14 1996 16.5 18 15

S2 1997-08-22 1997 15.0 19 11

S3 1998-05-11 1998 11.0 12 12

Source: Sayed-Mouchaweh (2021).

27

Deep features
The deep features are

new features created by
transforming features in
the same table or aggre-
gating features of differ-

ent tables using basic
operation, such as mean

or max.

Depth
The depth is the number
of aggregations that fea-

turetools needs to gener-
ate features.

Manually coming up with useful and meaningful features can often be painstaking, tedi-
ous, and time-consuming, and requires expert knowledge. In addition, the defined fea-
tures are problem-specific and cannot be used for other problems. To avoid these limits,
automated feature engineering (Müller & Guido, 2016; Ozdemir & Susarla, 2018) is an alter-
native; it automatically extracts useful and meaningful features from a set of related data
tables with a standard framework that can be used for different problems.

Automated feature engineering helps reduce the required time to define features and cre-
ate interpretable features. In addition, it prevents data leakage by filtering time-depend-
ent data. These features can be generated automatically using either deep feature synthe-
sis (DFS) or deep learning (DL). DFS helps create multiple deep features based on the use
of the process called DFS in the featuretools library in Python.

A deep feature is created using a set of primitives, the basic operations (e.g., mean, max,
and min) used to form new features. A deep feature can be created either as transforma-
tions or aggregations. The transformations are done to one or more columns on a single
table, such as the difference between two columns in one table or taking the absolute
value of a column. The aggregations are achieved among different primitives applied to
several tables, such as finding the maximum obtained grade of each student requiring the
use of both the Student_R and Courses tables to create this feature.

Featuretools generates as many features as we want. All we need to do is define the depth
to which you want to stack the generated features. For instance, creating a feature using
the aggregation operation “Mean” is of depth 1. However, creating a feature as the most
recent of the mean values (Last of Mean values) is of depth 2, since two aggregations are
required to generate it by finding the mean values and the most recent value of mean val-
ues.

Deep learning approaches, such as the convolutional neural network (CNN) (Sewak et al.,
2018), also automate feature generation from raw data through matrix multiplication. Let
us take the example of digits recognition, 0 to 9. Each digit is represented as a grayscale
input matrix of pixels. The figure below exemplifies the digit “1.” CNN uses a kernel or filter
to define a feature that can be used to recognize a digit. For instance, in the figure below,
the filter is used to generate a feature allowing the detection of vertical lines. Similarly,
other features can be generated, such as horizontal or left/right diagonal. The multiplica-
tion between the input raw data matrix and the vertical filter allows us to generate the
feature map indicating if the corresponding feature (vertical lines) exists in the input
image. For our example, the value “3” indicates the existence of a vertical line. CNN auto-
matically generates the suitable filters to search for useful features in the raw input matrix.
All we need to do is define the number of filters.

28

Figure 7: Automated Feature Generation by Convolutional Neural Networks (CNN)

Source: Sayed-Mouchaweh (2021).

However, deep learning approaches require a huge number of training data samples in
order to learn and train the complex architectures they need to work. Moreover, the
extracted features are not interpretable; however, the generated features by featuretools
are interpretable since they are based on the combinations of simple primitives (e.g.,
mean, max, and min) that can be easily described in natural language. In addition, featur-
etools can generate features from small datasets. It is worth mentioning that raw data
points may need to be pre-processed to allow an efficient use of feature engineering.
Indeed, raw data may need to be cleaned by removing outliers or by dropping or imputing
missing values for some data points in the dataset.

Building a Successful Unsupervised Learning Model from Raw Data

Automated feature engineering, through featuretools in Python, creates many features.
However, having too many features can lead to the curse of dimensionality. Indeed, as the
number of features increases, the number of data samples required to achieve efficient
learning also proportionally increases, i.e., data samples are required to have all combina-
tions of features. The model becomes more complex with a higher number of features.
The chances of the model becoming too dependent on the training set, i.e., overfitting,
increases when the number of features increases. The danger of introducing features
which only pretend to add information also increases.

29

Consequently, it is important to apply feature selection and extraction as well as dimen-
sionality reduction techniques to avoid overfitting and the curse of dimensionality. This
allows us to obtain better quality of extracted knowledge thanks to the use of fewer mis-
leading data, less training time, less storage space, and less complex models.

Finally, most of the unsupervised machine learning approaches are designed to work with
numeric data. However, most of the real datasets have other types of data, such as binary,
nominal, and ordinal data, or mixtures of these data types. Thus, these other types of data
need to be converted into a suitable type (numeric) in order to be adapted for the unsu-
pervised machine learning methods. The figure below shows the different steps required
to build an efficient unsupervised machine learning model from raw data to implementa-
tion and deployment.

Figure 8

Source: Sayed-Mouchaweh (2021).

30

SUMMARY
This unit presented an overview of machine learning methods by divid-
ing them into supervised and unsupervised learning. It focused on the
unsupervised learning, when training data points do not have labels, by
briefly discussing their functioning principals and comparing their per-
formances with respect to the problem conditions and constraints and
the characteristics of available datasets. In addition, this unit presented
the definition and motivation of feature engineering, as well as its types,
handcrafted and automated feature engineering, in order to build a suc-
cessful unsupervised machine learning model.

The unit compared the advantages and drawbacks of the different types
of feature engineering generation with respect to the required time and
mental effort to generate features and the dataset size. The unit ended
by presenting the required steps to build a successful unsupervised
machine learning model from raw data through to its implementation
and deployment. The discussion and comparison were illustrated by
several simple examples and real-world applications.

31

UNIT 2
CLUSTERING

STUDY GOALS

On completion of this unit, you will be able to …

– explain the functioning principal of clustering approaches and how they work.
– implement a clustering approach.
– test and evaluate the quality of the obtained clusters.
– choose the clustering approach with respect to the challenges and constraints of the

dataset.

2. CLUSTERING

Introduction
Let us suppose that X = {x1, x2, …, xn} is a set of historical data points or observations
about a phenomenon or a dynamic system. Each data point, xi, i = 1, …, n, is a vector ofp dimensions. Each dimension represents a measurement of a certain property of the phe-
nomenon or system under consideration. Clustering aims at discovering the natural
groups (clusters) that represent the structure of a set of data points. In general, two crite-
ria are used to assign data points in each group or cluster: the inter-cluster distance (or
separability) and the intra-cluster distance (or cohesion). Therefore, data points within a
cluster must be similar to each other, and they must be different from the data points in
other clusters.

Several challenges face the clustering process, such as the determination of the number of
natural clusters in the data samples, missing or noisy (e.g., outliers) data samples, over-
lapping clusters, complex or non-convex shape of clusters, and convergence to local opti-
mal minima. These challenges impact the quality of the obtained clusters by a clustering
algorithm.

There are several algorithms used to perform the clustering. They can be divided into par-
titioning, such as k-means and Gaussian Mixture Model (GMM) clustering, and hierarchical
clustering approaches. Both categories of approaches are based on the same principal:
building a model that allows us to discover the clusters based on the use of a similarity
measure (e.g., inter-cluster and intra-cluster distance).

To address the aforementioned challenges facing the use and implementation of cluster-
ing approaches, the following questions need to be answered:

• What are the drawbacks and advantages of clustering approaches?
• How do we implement the clustering method to allow the discovery of the natural clus-

ters in the data samples?
• What are the criteria used to choose the clustering approach with respect to the con-

straints of the data samples?
• How do we verify the quality of the discovered clusters?
• How do we determine the suitable number of clusters?

2.1 K-Means
How It Works

K-means uses a similarity measure to find the clusters gathering the data points (objects).
The similarity measure is defined as the distance between the data points and the cluster
centers, or centroids. Several distance metrics can be used for the similarity measure, such

34

as Euclidian distance, Manhattan distance, or weighted Euclidian distance. A cluster gath-
ers data points that have the smallest distance to its centroid. K-means works using the
following six steps:

1. Choose the number of clusters, k, to be found since k is specified by the user.
2. Choose random k data points to be the initial centroids (seeds) of the clusters.
3. For each data point x belonging to the training set X, compute the distance in the n-

dimensional space from x to each centroid of the k clusters.
4. Assign x to the closest cluster, i.e., the data points that possess the smallest distance

with respect to a certain cluster will be assigned to this cluster.
5. Re-compute the centroids of the k clusters using the data points that have been

assigned to each cluster, i.e., compute the mean of all the data points belonging to a
cluster. Alternatively, a data point that is closest to the cluster’s mean can be chosen
as a representative of this cluster. This is similar to the cluster’s median point and is
less prone to outliers.

6. Repeat steps four and five until there is no change in the cluster assignments (conver-
gence criterion), i.e., no or weak re-assignments. This can be achieved by calculating
the difference (distance) between each cluster’s old and new centroids.

When this difference is less than a predefined threshold, the cluster is considered to be
stable. The stop criterion can also be defined by the maximum number of iterations, which
is normally defined as 50. It is possible to use the square sum error (SSE) as a stop crite-
rion when the decrease in SSE after an iteration is less than a predefined threshold.

SSE is calculated as follows: 1) compute the sum of the distances from all the data points
belonging to a cluster to their corresponding centroid, 2) square this sum, 3) repeat the
process for each of the k clusters, and 4) sum all of the computed squaring for the k clus-
ters. This is one way to determine the quality of the clustering. There are also other met-
rics, such as the Elbow Criterion and the Silhouette Score, which will be discussed later in
this unit.

In order to explain k-means, let us use the following simple toy example illustrated in the
figure below.

35

Figure 9: Toy Example of Data Points to Be Clustered Using K-Means

Source: Sayed-Mouchaweh (2021).

Let us set k to 2 and choose randomly from the training data points the initial centroid to
each of the cluster (illustrated in the figure above) points [1, 1] and [—1, 1]. In the first iter-
ation, we will look to compute the distances from each of the training data points to each
cluster centroid. The Euclidian distance between two points, a = (ax, ay) and b = (bx,by), can be calculated by d a, b = sqrt ax − bx 2 + ay − by 2
The table below (on the left) shows these distances. The data points with the minimum
distance to a cluster’s centroid will be assigned to this cluster as it is shown in the table
below (on the right).

Table 4: Assigned Points to Each of the Two Clusters in the First Iteration of K-Means

Distances to centroids Assigned points to the clusters

[1, 1] [—1, 1] [1, 1] [—1, 1]

[1, 1] 0 2 [1, 1] x

[1, 3] 2 2.83 [1, 3] x

36

[—1, 3] 2.83 2 [—1, 3] x

[3, 3] 2.83 4.47 [3, 3] x

[—1, 1] 2 0 [—1, 1] x

[—2, —2] 4.24 3.16 [—2, —2] x

[—3, —3] 5.66 4.47 [—3, —3] x

[—3, 3] 4.47 2.83 [—3, 3] x

Source: Sayed-Mouchaweh (2021).

Next, the new centroid for each cluster created in the first iteration will be computed as
the mean value of the points assigned to each cluster. For instance, the new centroid of
cluster with the centroid [1, 1] will be: [(1 + 1 +3)/3, (1 + 3 + 3)/3] = [1.67, 2.34]. The
distances of the data points according to each of the two new centroids are computed,
and those whose distance to a centroid is the minimum are assigned to the corresponding
cluster, as illustrated in the table below.

Table 5: Assigned Points to Each of the Two Clusters in the Second Iteration of K-Means

Distances to the two centroids Assigned points to the clusters

[—2, 0.4] [1.67, 2.34] [—2, 0.4] [1.67, 2.34]

[1, 1] 3.06 1.49 [1, 1] x

[1, 3] 3.97 0.94 [1, 3] x

[—1, 3] 2.79 2.75 [—1, 3] x

[3, 3] 5.64 1.49 [3, 3] x

[—1, 1] 1.17 2.98 [—1, 1] x

[—2, —2] 2.40 5.68 [—2, —2] x

[—3, —3] 3.54 7.09 [—3, —3] x

[—3, 3] 2.79 4.71 [—3, 3] x

Source: Sayed-Mouchaweh (2021).

The figure below shows the obtained clusters in the second iteration.

37

Figure 10: Obtained Clusters with Their Centroids by K-Means in the Second Iteration

Source: Sayed-Mouchaweh (2021).

The same process will be carried out in the third iteration, the new centroids will be com-
puted using the new data points assigned to the two clusters. The new centroids are [—
2.25, —0.25] and [1, 2.5]. The points will then be assigned to the cluster for which they
have the minimum distance, as illustrated in the table below.

Table 6: Assigned Points to Each of the Two Clusters in the Third Iteration of K-means

Distances to the two centroids Assigned points to the clusters

[—2.25, —0.25] [1, 2.5] [—2.25, —
0.25]

[1, 2.5]

[1, 1] 3.48 1.5 [1, 1] x

[1, 3] 4.6 0.5 [1, 3] x

[—1, 3] 3.48 2.06 [—1, 3] x

[3, 3] 6.17 2.06 [3, 3] x

[—1, 1] 1.77 2.50 [—1, 1] x

[—2, —2] 1.77 5.41 [—2, —2] x

[—3, —3] 2.85 6.80 [—3, —3] x

38

Gaussian clusters
The Gaussian clusters
include data points that
are generated by normal
probability functions with
two parameters: the
mean value (or gravity
center) and a variance-
covariance matrix.

[—3, 3] 3.34 4.03 [—3, 3] x

Source: Sayed-Mouchaweh (2021).

In the fourth iteration, we notice that the cluster centroids and, hence, the assigned points
do not change any more. Therefore, k-means stops at this iteration and provides the
results clusters depicted in the figure below.

Figure 11: Obtained Clusters and Their Centroids by K-Means in the Third and Last
Iteration

Source: Sayed-Mouchaweh (2021).

Let us now use k-means in sklearn.cluster in Python and let us apply the following code in
order to generate two Gaussian clusters well separated in two-dimensional space. Apply-
ing this code will provide the following clustering illustrated in the figure below.

39

Figure 12: Two Gaussian Clusters with Their Centroids (Red Points) Obtained by K-
Means

Source: Sayed-Mouchaweh (2021).

We can also display the clusters zones where data points are considered to be in these
clusters. We can see that these zones are hard in the sense that data points belong or do
not belong to a cluster whatever their position with respect to the cluster centroid. The
steps are demonstrated below:

1. We import the required Python libraries.

Code
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans

2. We generate data points of two Gaussian clusters, X and Y, well separated. X has a
mean value = 0 and standard deviation of value = 1, while Y has a mean value of = 2
and standard deviation of value = 1.

Code
generate random variables
X= np.random.rand(50,2)
Y= 2 + np.random.rand(50,2)

40

gather random variable in a dataframe
Z= np.concatenate((X,Y))
df1 = pd.DataFrame(Z, columns=['xpt', 'ypt'])

Let us have a glimpse at what the data look like at this point. We generated a data-
frame with two columns which are the features, and also the x and y coordinates in
the plots we are going to create. The first 50 rows were drawn from one distribution,
and the last 50 rows were drawn from a second distribution.

Code
df.head()
console output:
xpt ypt
0 0.843469 0.719464
1 0.283066 0.002213
2 0.327358 0.211112
3 0.087454 0.286058
4 0.606084 0.568120

3. Now, we are ready to apply k-means to the generated data points with k (number of
clusters) equal to 2. This application allows us to compute the centroids of the two
clusters and their assigned points. The labels assigned to the two clusters are 0 and 1,
respectively.

Code
clustering
kmeans = KMeans(n_clusters=2, random_state=0).fit(Z)

extract centroids of clusters into a dataframe
centers = kmeans.cluster_centers_
centroids = pd.DataFrame(centers,columns=['xpt','ypt'])

extract cluster labels
lab = kmeans.labels_

add cluster information to the dataframe
df['lab']=lab

Again, let us have a look at what the data look like at this point.

Code
df.head()
console output:
xpt ypt lab
0 0.684751 0.846389 1

41

1 0.572355 0.144059 1
2 0.752941 0.768759 1
3 0.722927 0.790472 1
4 0.105875 0.761570 1

We added a new column, which contains the prediction for one of the two clusters
(“0” and “1”) for each row as it was predicted by the k-means algorithm.

4. Next, we gather the resulting information in order to visualize the found clusters in a
plot. We calculate the radius around each cluster centroid, which includes the data
points that were predicted to belong to this cluster. We do this by calculating the dis-
tance between each data point and the corresponding cluster centroid and choosing
the maximum of these distances.

Code
radii = [cdist(df[lab == i].iloc[:,[0,1]], [center]).\
 max() \

for i, center in enumerate(centers)]

When we take a look at the results of this calculation, we see that we found the maxi-
mum radius around each cluster centroid which includes all corresponding data
points.

Code
print(radii)
console output:
[0.7096052458280815, 0.6578703939400616]

5. Finally, we can display the zones of the obtained clusters, where data points are con-
sidered to be in these clusters.

Code
create a figure and axes
fig, ax = plt.subplots(figsize=(6,4))

add data points
ax.scatter(x=df['xpt'], y=df['ypt'], c=df['lab'])

add cluster centroids
ax.scatter(centroids['xpt'], centroids['ypt'])

set the axis scale on both axes equally
ax.axis('equal')

draw a circle around each cluster centroid
for c, r in zip(centers, radii):
 ax.add_patch(plt.Circle(c, r, fc='#CCCCCC', \

42

Total within-cluster sum
of square (WSS)
This term refers to the
sum of the squared dis-
tances from all data
points of a cluster to its
centroid, so this measure
indicates the cohesion of
data points to their clus-
ter (cluster compactness).

 lw=3, alpha=0.5))
show the plot
plt.show()

Choosing the Number of Clusters k
The number of clusters to discover in the dataset is defined by the user. If the number of
clusters is too high, this will lead to the problem of overfitting (eventually, one cluster for
each data point). Too small a number of clusters leads to a poor representation of the data
structure (high heterogeneity within a cluster). Therefore, it is important to determine the
number of clusters correctly, i.e., how the user defines k properly. In general, there are
three ways to help define the number of clusters, k. They are as follows:

1. Visualization, where the data points are plotted in order to better set the number of
clusters

2. Domain knowledge, where knowledge or expertise in the area of the application can
be used to define the number of clusters, e.g., if the dataset is related to spam detec-
tion, two clusters, spam or genuine, are the optimal number to discover

3. Data-driven approaches that use a metric to determine the quality of the obtained
clusters for different values of k such as the Elbow method and Silhouette score

Elbow method

The elbow method uses an objective function to explain the variation of data points into
clusters. When the number of clusters increases, the model will fit or better explain the
data variation since it uses more parameters. However, when the number of clusters
increases too much, the problem of overfitting will occur, increasing the complexity and
computation time while not decreasing the added information to the same extent. This is
because the newly created clusters will divide the actual or natural clusters and fit more
closely to the noises within the data.

Thus, the Elbow method looks for the number of clusters k for which adding more clusters
will not add considerable information to increase the quality of the clustering and give
better modeling results with respect to the data variation. To this end, the value of the
objective function to explain the variation is computed for different values of k and then
the value of k that gives the cutoff or “elbow” of the curve, when plotting the cost againstk, is chosen.

There are different measures to explain the variance, such as the total within-cluster sum
of squares (WSS). It is computed by

WSS = ∑j = 1k ∑xi ∈ cj xi − cj 2
where xi is a data point assigned to cluster Cj, and cj is its center of gravity (centroid). The
lower the WSS value, the better the clustering. Let us take the example of two Gaussian
classes (illustrated in the figure above) and let us use Elbow method to choose the num-

43

ber of clusters k. We can use the tool in the “yellowbrick.clusters” library (visual analysis
and diagnostic tools) in Python to generate an Elbow graph and score for different values
of k. If it is not already installed, you need to install it using, for instance, pip install
yellowbrick.clusters. Then import the Python function “KElbowVisualizer” that is
used to which is an implementation of the “Elbow” method. “KElbowVisualizer” also dis-
plays the amount of time required in order to train the clustering model per k as a dashed
green line, but is can be hidden by setting “timings” to “False”. The following code allows
us to generate an Elbow graph and score for the example of two Gaussian classes.

Code
import libraries
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from yellowbrick.cluster import KElbowVisualizer

create sample data
X= np.random.rand(50,2)
Y= 2 + np.random.rand(50,2)
Z= np.concatenate((X,Y))

create a k-Means model an Elbow-Visualizer
model = KMeans()
visualizer = KElbowVisualizer(model, k=(1,8), \
 timings=False)

fit the visualizer and show the plot
visualizer.fit(Z)
visualizer.show()

The figure below shows the Elbow graph and score using the aforementioned code. The
elbow score is detected using the “knee point detection algorithm” developed in Satopaa
et al. (2011). We can see that k = 2 is the Elbow value that corresponds to the data point
structure for the example of two Gaussian clusters. It is worth noting that the Elbow score
only considers the clusters cohesion or compactness and not their separability. In addi-
tion, sometimes it is not possible to find the Elbow score. Therefore, it is recommended to
use a metric that considers cohesion and separability, such as the Silhouette score.

44

Silhouette score
The Silhouette score is a
measure of how similar
data points are within the
same clusters (cohesion)
and how dissimilar data
points of different clus-
ters are (separation).

Figure 13: Elbow Method Applied to Two Gaussian Clusters to Find the Suitable K

Source: Sayed-Mouchaweh (2021).

Silhouette score

Silhouette is a technique used to assess the quality of obtained clusters. The silhouette
score for data point xi in cluster Ciis computed using the following four steps:

1. Compute the mean distance a(i) between data point xiand all other data points in the
same cluster Ci. This can be computed bya i = 1Ci − 1 ∑j ∈ Ci, j ≠ idist xi,xj
where |Ci| is the number of data points assigned to cluster Ci, and dist(xi,xj) is the
distance between data point xi and data point xj. a(i) indicates how well xi is assigned
to its cluster Ci. The smaller the value of a(i), the better the assignment of xi to its
cluster Ci.

2. Compute the mean dissimilarity of data point xi of cluster Cito other clusters Cj. It is
defined as the mean of the distance from xi to all data points in cluster Cj, Cj ≠ Ci

and is computed as follows:1Cj ∑xj ∈ Cjdist xi,xj

45

3. Compute the smallest mean distance b(i) between data point xiand any other data
point in any other cluster as follows:b i = minj ≠ i 1Cj ∑xj ∈ Cjdist xj, xj

4. Finally, the silhouette score s(i) for the data point xi in cluster Ci is computed as the
combination of a(i) and b(i) by

s i = 1 − a ib i , ifa i < b i0, ifa i = b ib ia i − 1, ifa i > b i
Therefore, s(i) is a metric that has its values range from —1 to 1 as follows:

• s(i) close to 1 means xi is appropriately clustered since the similarity measure a(i) is
small and dissimilarity measure b(i) is large.

• s(i) close to zero means that xi is on the border of two natural clusters.
• s(i) close to —1 (negative values) means that xiis badly clustered since its dissimilarity

with other clusters is bigger than its similarity with the data points of its proper cluster.

The silhouette will be computed for each data point of each cluster and will be displayed
in a figure. The distribution of the silhouette values of the data points in a cluster tells us
whether those points are well clustered by observing the silhouette they manifest. It is
worth mentioning that the mean of the silhouette can be computed over all the data
points in each cluster as follows:s− Ci = 1Ci ∑Xi ∈ Cis Xi
The maximum value of all the mean values of the silhouette over all the clusters can then
be defined as the silhouette score or coefficient (Kaufman & Rousseeuw, 2009) as follows:

s k = maxj = 1, . . , k s− Cj
It is used to determine the quality of the selected number of clusters k as follows:

• s(k) close to 1 means data points are well clustered.
• s(k) close to 0 means clusters are indifferent, i.e. too close to each other.
• s(k) negative and close to —1 means the data points are badly clustered.

Let us take the example of the two Gaussian clusters and compute the silhouette scores(k) and display the mean silhouette, s(Ci), i = 1, …, k, for each cluster with two values
of k : 2 and 3 using Python. The following code allows us to compute s(k = 2):

46

Code
import libraries
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from yellowbrick.cluster import SilhouetteVisualizer
from sklearn.metrics import silhouette_score

generate sample data
X= np.random.rand(50,2)
Y= 2 + np.random.rand(50,2)
Z= np.concatenate((X,Y))

conduct a k-Means clustering
model = KMeans(n_clusters=2, random_state=0).fit(Z)

extract labels, i.e. cluster associations
lab=model.labels_

calculate the overall Silhouette score
S = silhouette_score(Z, lab)
print(S)
console output: 0.8123455046726186

generate, fit and show a Silhouette visualizer
visualizer = SilhouetteVisualizer(model, colors='yellowbrick')
visualizer.fit(Z)
visualizer.show()

The figure below shows the mean silhouette s(C1) and s(C2) and the silhouette score fork= 2 for the example of the two Gaussian clusters. We can see that data points in each
cluster match their corresponding cluster very well with a high s(k = 2) = 0.82.

47

Figure 14: Silhouette Measure for the Example of the Two Gaussian Clusters

Source: Sayed-Mouchaweh (2021).

The figures below shows the mean silhouette s(C1), s(C2), and s(C3),and the silhouette
score for k = 3 for the example of the two Gaussian clusters. Indeed, a natural cluster has
been divided into two close clusters as we can see in the figure below. We can see that the
silhouette measure for the silhouette of the two divided clusters (0 and 2 in the figure
below) decreased largely, indicating that the clusters are not well separated. Moreover, the
silhouette score s(k) = 3 has been reduced to 0.58, compared to s(k = 2) which was 0.82,
indicating that k = 2 is much better than k= 3.

48

Figure 15: Two Gaussian Clusters and Corresponding Silhouette Measure

Source: Sayed-Mouchaweh (2021).

49

Advantages and drawbacks

K-means is a very popular clustering method. Thanks to its simplicity and efficiency, it is
easy to understand and implement. It is considered to be a linear learning algorithm with
respect to the size of the dataset (number of data points). Indeed it is time complexityO(t.k.n) where t is the number of iterations, k is the number of clusters, and n is the num-
ber of data points. Since t (<50) and k are small, then the time complexity O(n) is linear
with n. It is worth mentioning that there are extensions of k-means allowing us to deal
with large datasets, such as Clustering Large Applications (CLARA) (Popat & Emmanuel,
2014). CLARA applies a sampling method to perform clustering using a small batch of data
points and repeats this sampling for a fixed number of times in order to minimize the sam-
pling bias.

However, k-means also suffers from several weaknesses. First, it is sensitive to outliers
(i.e., data points that are far away from all other data points) that are generated due to
some errors in the recorded data or noises, or simply valid data points that do not fit into a
cluster. Therefore, it is useful to clean the dataset by removing data points that are far
away from the other data points. It is worth mentioning that there is a robust version of k-
means that avoids this weakness: Partition Around Medoids (PAM) (Bishop, 2006). In PAM,
the centroids are selected from representative data points. Then, the data points are
assigned to clusters by minimizing their sum of pairwise dissimilarities. Thanks to the lat-
ter, PAM is robust against outliers and noises, in contrast to k-means, which searches for
minimizing the sum of squared distances of data points to centroids. Additionally, it is sen-
sitive to the initial seeds (centroids); if we change the initial seeds, the obtained clusters
will be different. Therefore, if the seeds are selected in the wrong way, this can impact the
quality of the obtained clusters. Finally, it is not suitable for discovering clusters that are
not of hyper-spherical shape.

2.2 Gaussian Mixture Model Clustering
How It Works

K-means is a hard clustering method since it considers that all data points of a cluster
belong to this cluster with the same certainty or confidence. For instance, a data point
close to a cluster center is considered to belong to this cluster with the same confidence or
certainty as a data point located in the cluster’s periphery. Therefore, k-means assigns a
value of 1 if a data point belong to a cluster, whatever its position in this cluster (close to
the cluster centroid or at the cluster periphery) and 0 to other data points that do not
belong to this cluster. However, in real world problems, and in order to take into account
the uncertainty attached to data points, such as noises, it is important to quantify the
probability or the membership value of a data point to a cluster.

50

Prototype
A prototype is a (prelimi-
nary) representative data
point of a cluster, such as
its gravity center in the k-
means algorithm or its
most representative data
point in the PAM (Parti-
tion Around Medoids)
algorithm.

This method is particularly useful when clusters are overlapped and a data point may
belong to different clusters. To take the cluster overlapping into account, the clustering
method must provide a probability membership value of each point to different clusters
according to its position with respect to these clusters. This can be done by a soft or prob-
abilistic clustering method, such as Gaussian mixture clustering model (GMM).

The functioning of GMM is very similar to k-means in the sense that it is a prototype based
method where each cluster is represented by a prototype. In k-means the prototype is the
clusters’ centroids, while in GMM, it is a Gaussian or normal probability density p(x|Cj), j= 1, …, k, represented by its two parameters: the mean value µj and the variance-cova-
riance matrix ∑j. In GMM, a cluster is not only represented by its mean as in k-means, but
also by its variance-covariance matrix. Thus, GMM is considered to be an extension of k-
means.

Let us explain how GMM works. Let X be a dataset of n data points, x1, x2, …, xn, descri-
bed in dimensional d space. Let us suppose that we have k clusters to discover in X using
GMM. GMM do that in the following three steps:

1. Represent each cluster Cj, j = 1, …, k, with a Gaussian or normal probability densityp(x|Cj), j = 1, …, k, and its prior probability πj.πj defines the importance of cluster Cj with respect to the other clusters in the data-
set. A cluster importance depends on the number of data points belonging to this
cluster. The more data points a cluster has, the greater the importance of this cluster.p(x|Cj) is the conditional Gaussian probability that a data point x belongs to a clusterCj. The figure below shows an example of two clusters, C1 and C2, represented as two
Normal or Gaussian probability densities, p(x|C1) and p(x|C2), in a one-dimensional
feature space. In this example, p(x|Cj) can be calculated for any data point x if the
cluster’s mean value µj and variance-covariance matrix ∑j are known.

51

Figure 16: Two Clusters Represented by Two Gaussian Probability Densities and
Their Mixture Probability Density

Source: Sayed-Mouchaweh (2021).

2. Define the mixture probability p(x) that a data point x belongs to k clusters. It can be
represented as weighted sum of the probability densities, p(x|Cj), j = 1, …, k,of thek clusters as follows:

52

p x = ∑j = 1k p xCj . πj
The figure above shows the mixture probability p(x) of the two clusters with the prob-
ability densities p(x|C1) and p(x|C2). For this example, this cluster mixture probability
is the sum of the individual cluster probabilities:p x = p xC1 .π1 + p xC2 .π2 = p1 x + p2 x
The mixture probability is used because we do not know the cluster of a data point x
in advance; thus, the estimation of the clusters’ parameters is refined (updated) itera-
tively.

3. Estimate the normal or Gaussian probability density parameters (µj, ∑j, πj) for each
cluster Cj.
To this end, GMM uses the expectation-maximization (EM) algorithm to perform this
estimation iteratively in two steps: expectation and maximization. This is very similar
to the k-means algorithm. First, we define cluster centroids at random. Next, we calcu-
late the mean and, this time, also the variance-covariance matrix over all data points.
We then update our first estimates (or guesses) and repeat the process. The difference
from k-means is that we calculate both the mean and the “spread” of clusters. We also
do this with probabilities belonging to that cluster rather than all-in-or-out clusters as
we did with k-means.
In the expectation step, the parameters (µj, ∑j, πj) of each cluster Cj are initialized.
Then, for each data point x from X, the probability to belong to each cluster, p(x|Cj),j = 1, …, k, is calculated using the initialization parameters for each cluster Cj. The
posterior probability of x is then calculated as follows:

p Cjx = p x Cj . πj∑i = 1k p x Ci . πi
It is used to assign a data point x to a cluster Cjif the posterior probability p(x|Cj) of x
in Cj is the biggest one with respect to the other posterior probabilities:p x Ci , i = 1, …, k, i ≠ j
In the maximization step, the parameters (µj, ∑j, πj) of each cluster Cj, will be upda-
ted using the weighted data points by the posterior probabilities as follows:

53

μj = ∑i = 1n p Cj xi .xi∑i = 1n p Cj xi
Σj = 1∑i = 1n p Cj xi ∑i = 1n p Cj xi . xi − μj T . xi − μj
πj = ∑i = 1n p Cj xin

The process will restart with the expectation step until the EM converges to where no
change occurs in the parameters, as in the case for k-means.

Let us take the example of the figure below showing two clusters in one-dimenstional
space. In the Expectation-step, the posterior probabilities, p(x|C1) and p(x|C2) of each
data point, x1, x2, x3, x4, x5, and x6, in C1 and C2, are calculated. For instance, as illustra-
ted in the figure below, x3 has p(x3|C1) higher than p(x3|C2). Therefore, its posterior prob-
ability p(C1|x3) in C1 will be higher than its posterior probability p(C2|x3) in C2. Therefore,x3 will be assigned to C1 since p(C1|x3) > p(C2|x3). The same reasoning can be applied for
the other data points of the figure below. Hence, x1 and x2 will be assigned to C1 while x4,x5and x6 will be assigned to C2.

In the maximization step, the parameters (µ1, ∑1, π1) of C1 and (µ2, ∑2, π2) of C2 will be
updated according to the data points assigned to each of them. Then, the expectation step
will be repeated using the new calculated parameters, and the data points will be
assigned to their corresponding clusters, as illustrated in the figure below. In the second
iteration of the maximization step, the cluster parameters will be updated again using the
new data points assigned to each of these two clusters. The expectation and maximization
steps will be repeated until the stabilization of the both clusters’ parameters. In the figure
below, we can see that at each iteration of the EM algorithm, the Gaussian model (parame-
ters) for each cluster fits its data points better.

54

Figure 17: Convergence of the Expectation-Maximization (EM) Algorithm

Source: Sayed-Mouchaweh (2021).

Let us now use a GMM in Python to identify fuzzy clusters. In this example, we use a two-
dimensional feature space. The steps are demonstrated below:

Code
Import the necessary libraries.
from sklearn import mixture
import numpy as np
import matplotlib.pyplot as plt

1. Generate three Gaussian clusters and display the obtained clusters.

55

Code
generate sample data
X1 = 4 + np.random.rand(50,2)
X2 = 5 + np.random.rand(50,2)
X3 = 6 + np.random.rand(50,2)
Z = np.concatenate((X1,X2,X3))

plot the sample data
plt.scatter(Z[:, 0], Z[:, 1], marker='+')
plt.xlabel("Feature 1")
plt.ylabel("Feature 2")
plt.show()

2. Specify a Gaussian Mixture model, choose “full” for the parameter covariance_type.
“full” allows the components to independently adopt any position and shape. Apply
GMM in Python in order to obtain the clusters in the figure below. GMM provides the
probability to belong to each of the obtained clusters. The code below shows the
probability that the first five data points belong to each of the three obtained clusters:
[[0. 0. 1.], [0. 0. 1.], [0.001 0. 0.999], [0. 0. 1.], [0. 0. 1.]]. For instance, the third data point
has the probability vector [0.001 0. 0.999] of belonging to clusters C1, C2, and C3. We
can see that since the probability to belong to cluster C3 is very high, it will be
assigned to this cluster.

Code
specify Gaussian Mixture Model
gmm = mixture.GaussianMixture(n_components=3,
 covariance_type='full')

fit the model
gmm.fit(Z)

extract the clusters predictions according to
the highest probability
labels = gmm.predict(Z)

show the predicted labels
print(labels)
console output:
[1 1 1 1 1 1 1 1 1 1 1 1...
...2 2 2 2 2 2 2 2 2 2 ...
...0 0 0 0 0 0 0 0 0 0]

extract the probabilities to belong to a cluster
probs = gmm.predict_proba(Z)
print(probs)
console output:
[[1.85387989e-24 9.99998029e-01 1.97120198e-06]
[6.54360391e-28 9.99999964e-01 3.56085199e-08]

56

...
[1.00000000e+00 2.36479665e-39 2.81008490e-10]
[9.99470972e-01 1.24217497e-24 5.29027653e-04]]

3. Display the results from the previous step visually.

Code
plt.scatter(x=Z[:,0], y=Z[:,1], c=labels, cmap='viridis')
plt.show()

Figure 18: Clustered Obtained by Applying GMM on Data Points Including Three
Gaussian Clusters

Source: Sayed-Mouchaweh (2021).

The figure below shows the membership zones created by the GMM for each cluster. We
can see that several probability membership zones are created for each cluster by the
GMM, allowing us to assign a higher probability membership to data points close to the
cluster centroid.

57

Figure 19: Probability Membership Zones Generated by GMM

Source: Sayed-Mouchaweh (2021).

Choosing the Number of Clusters, Advantages, and Drawbacks

The GMM requires the definition of the number of clusters k in advance. As in the case of k-
means, the quality of the obtained clusters can be tested using some meaningful criteria
for different values of k. The value of k that maximizes those criteria are selected.

There are two criteria that can be used to test the quality of the obtained clusters: the Sil-
houette score, which was used for k-means in the previous section, and the Bayesian Infor-
mation Criterion (BIC). BIC is a balance between the number of observations and the num-
ber of a model’s parameters against its maximum likelihood value. The model here is
GMM, and its parameters are (µj, ∑j, πj), j = 1, …, k, for each of the k clusters. The maxi-
mum likelihood function L represents the probability that the model fits or best describes
the data points. BIC can be computed byBIC = ln n . p − 2ln L
where n is the number of data samples, p is the number of the model parameters, and L is
the maximized value of the likelihood function of the model. The lower the BIC, the better
the model to predict the data samples (clusters). The BIC penalizes the model with a large
number of clusters in order to avoid overfitting issues.

58

Let us apply the code in Python to test of the quality of clusters obtained by the GMM for
the example of the three Gaussian clusters. The steps are demonstrated below:

1. Import the required Python libraries.

Code
import numpy as np
import matplotlib.pyplot as plt
from sklearn import mixture
from sklearn.metrics import silhouette_score

2. Generate the three Gaussian clusters.

Code
generate sample data
X1 = 4 + np.random.rand(50,2)
X2 = 5 + np.random.rand(50,2)
X3 = 6 + np.random.rand(50,2)
Z = np.concatenate((X1,X2,X3))

3. Compute both the Silhouette score and the BIC for k = from 2 to 6 and display the
corresponding results. The figure below shows the Silhouette score and the BIC gener-
ated by this code. We can see that both criteria indicate that k = 3 is the best number
of clusters to be selected.

Code
calculate the Silhouette score and BIC
for the number of clusters, k = 2 to 6
S = []
bic = []
n_cluster_range = [2, 3, 4, 5, 6]
for n_cluster in n_cluster_range:
 gmm = mixture.GaussianMixture(n_components=n_cluster)
 gmm.fit(Z)
 lab = gmm.predict(Z)
 S.append(silhouette_score(Z, lab))
 bic.append(gmm.bic(Z))
show the resuls visually
figure with two plots
fig, (ax1, ax2) = plt.subplots(1, 2)

first plot: Silhouette score
ax1.plot(n_cluster_range, S)
ax1.set_title('Silhouette Score')
ax1.set(xlabel='Number of clusters', \
 ylabel='Silhouette Score')

59

second plot: BIC
ax2.plot(n_cluster_range, bic)
ax2.set_title('BIC')
ax2.set(xlabel='Number of clusters', \
 ylabel='BIC')

plt.show()

60

Figure 20: Silhouette Score and BIC as an Example of Three Gaussian Clusters

Source: Sayed-Mouchaweh (2021).

61

Generative method
A generative method pro-
vides a probability model

enabling the estimation
of the cluster’s condi-

tional probability density
and its prior probability

for data points in this
cluster.

The GMM is a generative method. This is very useful for generating new samples or
imputing missing data points. For the example of the three Gaussian clusters, we have
already built the GMM model with k = 3. The following code allows us to generate and
display 150 new data points using the built GMM model. The steps are demonstrated
below:

1. Import the required Python libraries.

Code
import numpy as np
import matplotlib.pyplot as plt
from sklearn import mixture

2. Generate the three Gaussian clusters.

Code
generate sample data
X1= 4+np.random.rand(50,2)
X2= 5+ np.random.rand(50,2)
X3 = 6 + np.random.rand(50,2)
Z= np.concatenate((X1,X2,X3))

3. Build and it a GMM model for k = 3 clusters.

Code
gmm = mixture.GaussianMixture(n_components=3)
gmm.fit(Z)

4. Generate 150 new data points using the already built GMM model and display them
with their cluster assignment. The figure below shows the data points generated by
the GMM.

Code
generate new samples
newdata = gmm.sample(150)

extract the feature values, i.e. coordinates
vals = newdata[0]

extract the labels
labs = newdata[1]

plot the generated samples
plt.scatter(x=vals[:,0], y=vals[:,1], c=labs)
plt.show()

62

Figure 21: Clustered Obtained by Applying GMM on Data Points Including Three
Gaussian Clusters

Source: Sayed-Mouchaweh (2021).

In addition, it is more efficient to represent overlapped clusters than k-means since it pro-
vides a probability membership value of each data point to different clusters. Moreover,
since the GMM represents clusters, in addition to the mean value, by the variance-cova-
riance matrix, it can discover clusters of non-spherical shape, e.g., elliptical shape, while k-
means cannot do that since it uses Euclidian distance. However, it requires the number of
clusters k to be known in advance. In addition, it depends, as with k-means, on the initiali-
zation of the parameters of each cluster converging toward local optimums. Finally, it can-
not discover clusters of complex shape, such as the one in the figure below. We can see
that the membership zones for the two moon clusters do not respect their non-convex
shape.

63

Figure 22: Membership Zones Obtained by GMM for Clusters of Non-Convex Shape

Source: Sayed-Mouchaweh (2021).

2.3 Hierarchical Clustering
How It Works

Hierarchical clustering is based on two strategies: agglomerative (bottom-up) and divisive
(top-down). In agglomerative strategy, each data point is considered to be a cluster at the
lowest level of the hierarchy. The data points with smallest dissimilarity distance are
merged into one cluster. Therefore, in the upper level of the hierarchy, fewer clusters are
formed. At each level, the clusters that have the smallest inter-cluster distance are merged
until they reach the highest level where all data points are gathered into one cluster. Divi-
sive strategy follows the same reasoning but starts from the top by considering all the data
points in one cluster. It then splits the cluster into two clusters that have the largest inter-
cluster distance or dissimilarity. It repeats the splitting at each level until it reaches the
lowest level where each cluster includes one data point.

Let us take the simple toy example in the figure below, illustrating a set of data points to
be clustered, and apply the agglomerative strategy to perform the clustering. As we can
see at each step of the agglomeration, the data points, or clusters, with the smallest inter-
cluster dissimilarity are merged into one cluster until they reach one cluster grouping all
the data points. Since the dissimilarity in agglomerative strategy increases in a monotone

64

Dendrogram
A dendrogram is a graphi-
cal display of the merging
levels with the corre-
sponding obtained clus-
ters. It can be used as a
highly interpretable
graphical description of
the hierarchical cluster-
ing. Dendro means tree;
gram means drawing.

way, the dissimilarity is proportional to the merging or hierarchy level. The figure below
shows an example of a dendrogram. It is used to decide the horizontal cutting, allowing
us to determine the clusters to be provided by the hierarchical (agglomerative) clustering.
This horizontal cutting is a dissimilarity threshold that allows us to decide the acceptable
dissimilarity among the obtained clusters. The figure below shows the obtained clusters
(two clusters) with respect to the predefined threshold (horizontal cutting of the dendro-
gram).

65

Figure 23: Hierarchical (Agglomerative) Clustering

Source: Sayed-Mouchaweh (2021).

66

The advantage of hierarchical clustering is that it does not require the specification in
advance of the number of clusters to be searched, as is the case for k-means. Instead, it
requires the user to define the dissimilarity measure to be used in order to merge or split
the disjoint clusters. It is up to the user to decide which level of the hierarchical clustering
is the one which resembles the natural structure the most.

Hierarchical clustering does not scale linearly with large size datasets because its com-
plexity is at least O(n2), where n is the number of data points. However, there are strat-
egies for tackling this issue, such as the pre-calculation of distance matrices in a parallel
and distributed way. In addition, it cannot be applied to clusters of complex shape such as
non-convex banana-shaped data points. It is worth mentioning that there are other clus-
tering algorithms, such as Density Based Spatial Clustering of Applications with Noise
(DBSCAN) (Ester et al., 1996), which are able to discover clusters with arbitrary or irregular
shapes.

Merging in Agglomerative Clustering

Merging two clusters A and B requires a dissimilarity measure. The dissimilarity diss(A,B) between A and B is based on the dissimilarity between the pairwise data points
belonging to these two clusters. Let diss(xA, xB) be the dissimilarity between xA (the data
point in A) and xB(the data point in B). diss(A, B) can be computed by one of the follow-
ing three strategies.

The single linkage (SL), or nearest neighbor technique, considers the dissimilarity between
two clusters as the smallest dissimilarity between their pairwise data points (i.e., compar-
ing the two data points from different clusters which are closest to each other):diss A, B = minxA ∈ A, xB ∈ B diss xA, xB
The limit of this strategy is related to its strong tendency to merge clusters at relatively
small thresholds. The consequence, called chaining, of this limit can be seen particularly
for clusters with a large diameter (high variance or dispersion of their data points) since
only one point at the border of each cluster is sufficient to merge both clusters. This
entails violating the compactness property of clusters stating that all the data points in the
same cluster must be similar.

Complete linkage (CL), or furthest neighbor technique, is the extreme opposite of SL strat-
egy. It considers the inter-cluster dissimilarity between A and B to be the furthest (most
dissimilar) of their pairwise data points:iss A,B = maxxA ∈ A, xB ∈ B diss xA, xB
Therefore, A and B are merged only if all their corresponding data points are relatively
similar. This will entail compact clusters with a small diameter. For instance, several com-
pact clusters will be formed while they belong to one natural cluster. This will entail violat-

67

Ward
This term refers to an

algorithm used by hier-
archical clustering to
determine the pair of

clusters to merge at each
step. It computes the

“error sum of squares”
(ESS) after merging two

clusters into a single clus-
ter. It chooses the clusters

to merge by minimizing
the increase in ESS at

each step.

ing the cluster compactness property since some data points of a small compact cluster
can be much closer to some data points in a neighboring cluster than its proper members
in its own cluster.

Finally, group average (GA) clustering considers the dissimilarity between A and B as the
average dissimilarity between the set of pairwise members of these two clusters:diss A, B = 1A . B ∑xA ∈ A ∑xB ∈ Bdiss xA, xB
GA can be considered a compromise between SL and CL allowing us to produce relatively
compact clusters that are separated relatively enough.

Let us use the SL strategy that is implemented in the Python library
scipy.cluster.hierarchy as the function Ward. In the same library, the dendrogram
function allows us to trace the hierarchical clustering as a dendrogram. The code is struc-
tured as follows:

1. Import the required Python libraries, in particular the dendrogram function and the
ward clustering function from SciPy.

Code
import matplotlib.pyplot as plt
import numpy as np
from scipy.cluster.hierarchy import dendrogram, ward

2. Generate three clusters, including normally distributed data points, as illustrated in
the figure below; two of the three clusters are close to each other.

Code
X1= np.random.rand(5,2)
X2= 2 + np.random.rand(5,2)
X3 = 3 + np.random.rand(5,2)
Z= np.concatenate((X1,X2,X3))

68

Figure 24: Simple Toy Example

Source: Sayed-Mouchaweh (2021).

3. Apply the Ward function to the generated data array. It returns an array that specifies
the distances between data points.

Code
linkage_array = ward(Z)

4. Generate and plot the dendrogram depicted in the figure below. The dendrogram
shows the linkage array or the distances between clusters. We can set the threshold in
order to obtain either two or three clusters, as illustrated in the figure below. In the
case of setting the threshold in order to obtain two clusters, we notice that the two
close clusters (orange clusters in the figure below) are merged.

Code
create a dendrogram
dendrogram(linkage_array)
ax = plt.gca()
bounds = ax.get_xbound()

add the boundary for two/three clusters
ax.plot(bounds, [4, 4], '--', c='k')
ax.plot(bounds, [2, 2], '--', c='k')

69

add an annotation to the marked boundary
ax.text(bounds[1], 4, ' two clusters', va='center',
fontdict={'size': 15})
ax.text(bounds[1], 2, ' three clusters', va='center',
fontdict={'size': 15})

label the axes
plt.xlabel("Sample index")
plt.ylabel("Cluster distance")

show the plot
plt.show()

Figure 25: Dendrogram Example

Source: Sayed-Mouchaweh (2021).

We can also specify the number of clusters directly, without the need for a dendrogram,
using the function AgglomerativeClustering in Python as follows. The index (0, 1, 2) indi-
cating the cluster of each data point is recorded in the array Assignment. This function
provides the cluster index, the variable “Assignment” in the code below, for the data
points, variable “Z” in the code below. For our example, “Assignment” will be a matrix of
15 rows and one column. Each row will have the cluster index “0,” “1,” or “2” as follows:
Assignment = [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 2, 2, 2, 0, 2].

70

Code
import libraries
from sklearn.cluster import AgglomerativeClustering
import numpy as np

execute agglomerative clusering with 3 clusters
agg = AgglomerativeClustering(n_clusters=3)

predict clusters
labs = agg.fit_predict(Z)

print(labs)
console output: [0 0 0 0 0 2 2 2 2 2 1 1 1 1 1]

SUMMARY
This unit presented and discussed the functioning principal and the
advantages and drawbacks of the major clustering approaches: k-
means, Gaussian mixture model (GMM) clustering, and hierarchical clus-
tering. This unit started by presenting the general principal of clustering
approaches. It showed the different steps in implementing the cluster-
ing approach, and drawbacks and advantages. The unit focused on how
to test the quality of the obtained clusters by presenting meaningful cri-
teria, such as the Elbow method, the Silhouette score, and the Bayesian
Information Criterion (BIC).

The unit highlighted the comparison between these clustering
approaches with respect to the clustering challenges, such as the num-
ber of clusters in advance requirement, the overfitting problem, the
complex and non-convex shape of clusters, the size of dataset, and the
overlapping clusters. The goal is to guide the choice of the suitable clus-
tering approach with respect to the application (data points) constraints
and conditions.

71

UNIT 3
DIMENSIONALITY REDUCTION

STUDY GOALS

On completion of this unit, you will be able to …

– explain how dimensionality reduction approaches work.
– apply dimensionality reduction approaches.
– choose an appropriate dimensionality reduction approach with respect to the chal-

lenges and constraints of the dataset.

3. DIMENSIONALITY REDUCTION

Introduction
Dimensionality reduction aims at projecting the data points described in high dimensional
space into a new feature space with much fewer features. Its principal motivation is to
avoid the model overfitting. Indeed, a model trained using a dataset in a high dimensional
features space becomes increasingly dependent on these data samples. Therefore, its per-
formances, i.e., the quality of the extracted knowledge or clusters, become poor for
unseen data samples. In addition, dimensionality reduction helps to compress data, lead-
ing to reduced storage space and computation time. Moreover, dimensionality reduction
is frequently used to explain a dataset. For instance, if we have to deal with a dataset with
many features, exploratory data analysis becomes hard as it is difficult to visualize in a fea-
ture space with more than two or three dimensions. Therefore, dimensionality reduction
may add to the interpretability of these datasets.

This projection is obtained through linear or nonlinear transformation of the original vari-
ables or features. The new, transformed features better explain the variance of the data
samples than the original features. This is because the dimensionality reduction allows
the elimination of noisy, redundant, or irrelevant features by consolidating features that
are highly correlated (hence, better explaining the variance).

The transformation of original features is performed by assigning continuous weights.
These weights are determined by searching to optimize an objective function using the
available dataset. The objective function aims at optimizing the separation between the
clusters gathering the data points.

The application of dimensionality reduction to real-world problems faces several chal-
lenges. For instance, enough data samples must be available in order to observe their ten-
dency or variance axes. Moreover, the interpretation of, for example, obtained clusters,
requires an inverse transformation from the reduced to the original feature space. More-
over, the transformation must conserve the nonlinearity of correlations and other impor-
tant properties between data samples in the reduced feature space. Finally, the minimal
number of reduced features required to conserve these properties needs to be deter-
mined. These challenges affect the quality of the reduced feature space as well as the
obtained clusters by a clustering algorithm.

There are several ways to perform dimensionality reduction techniques. They can be divi-
ded into linear, such as Principal Component Analysis (PCA), and nonlinear, such as Multi-
Dimensionality Scaling (MDS) and Locally Linear Embedding (LLE), feature extractions.
The choice of one of these techniques depends on the challenges to address with respect
to the available dataset. This unit examines the following questions:

74

• What are the drawbacks and advantages of dimensionality reduction approaches?
• How do we implement the dimensionality reduction technique by ensuring the best

separation between the data samples’ natural clusters in the reduced feature space?
• What are the criteria to use when choosing a dimensionality reduction technique with

respect to the constraints and challenges of the data samples?

3.1 Principal Component Analysis (PCA)
How It Works

Principal Component Analysis (PCA) is an unsupervised dimensionality reduction
approach that allows the transformation of data samples into reduced feature space while
conserving the maximum amount of information (variance). It rotates the feature space
around orthogonal axes, thereby transforming the data to a feature space. This allows for
more separability between variance explanations of features. Therefore, finding orthogo-
nal axes in the feature space and rotating the data around them is central to PCA.

To explain the interest of Principal Component Analysis (PCA), let us take the example of
the figure below. Most of the variance of the data samples in the original feature space is,
along a single feature, different from the original features. PCA aims at extracting new fea-
tures that better emphasize the variance in the data samples than the original features. It
is worth mentioning that the example of the figure below is just a simple illustration exam-
ple. PCA is useful when the number of original features is much greater than three.

75

Figure 26: Unsupervised Transformation Using Principal Component Analysis (PCA)

Source: Sayed-Mouchaweh (2021).

Let us explain the functioning principal of PCA using the Iris dataset as an example. This
set includes 150 data samples representing the three species of Iris (Irissetosa, Irisvirgin-
ica, and Irisversicolor) described by four features (length and width of sepals and petals).
This dataset can be downloaded from datasets in sklearn in Python as follows. We also
need to import PCA from sklearn.decomposition:

76

Code
load libraries
import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn import datasets
from sklearn.preprocessing import StandardScaler
load sample data
iris = datasets.load_iris()
X = iris.data
y = iris.target

The steps required in order to implement PCA are illustrated in the figure below.

Figure 27: Implementing PCA

Source: Sayed-Mouchaweh (2021).

The steps are demonstrated below:

1. Standardize the data points X, allowing them to have a mean equal to zero and
standard deviation equal to 1. The standardization is crucial for PCA since it is sensi-
tive to variance. Sometimes, features may have different scales and units. Therefore,
standardizing data samples allows them to have the same range with respect to each
feature. The standardization can be obtained by∀x ∈ X, xstd = x − μσ
where µ is the mean value and Ϭ is the standard deviation. This can be done using
Python by importing StandardScaler from sklearn.preprocessing as follows:

77

Eigenvectors
The eigenvectors deter-

mine the axes that maxi-
mize the variance of data

samples.
Eigenvalues

The eigenvalues are sca-
lars that allow us to

stretch the eigenvectors.

Code
X_std = StandardScaler().fit_transform(X)

2. Compute the matrix of variance-covariance ∑, which represents the correlation
between two variables (features). It is used to detect which two variables are heavily
dependent on or correlated to each other in order to capture the redundant features
in the dataset. It can be calculated using the following code:

Code
cov_X_std = np.cov(X_std.T)

print(cov_X_std)
console output:
[[1.00671141 -0.11835884 0.87760447 0.82343066]
[-0.11835884 1.00671141 -0.43131554 -0.36858315]
[0.87760447 -0.43131554 1.00671141 0.96932762]
[0.82343066 -0.36858315 0.96932762 1.00671141]]

3. Compute eigenvectors and eigenvalues on the variance-covariance matrix.
Indeed, the variance-covariance matrix will be transformed or decomposed by finding
its eigenvectorsV and eigenvaluesλ byΣ . V = λ .V
This decomposition of the matrix to be represented in terms of its eigenvectors and
eigenvalues is called matrix eigen decomposition. The sum of all the eigenvalues rep-
resents the overall variance in the entire dataset. Each eigenvector has its associated
eigenvalue. The eigenvectors represent the axes, directions, or principal components
that form the transformed or reduced feature space. The highest eigenvalue explains
where the maximum variance lies in the dataset. The following code computes them:λ = λ1, λ2, λ3, λ4 = 2 .93 , 0 .93 , 0 .14 , 0 .02
Code
eig_vals, eig_vecs = np.linalg.eig(Cov_X_std)
print(eig_vals)
console output: [2.93808505 0.9201649 0.14774182
0.02085386]
print(eig_vecs)
console output:
[[0.52106591 -0.37741762 -0.71956635 0.26128628]
[-0.26934744 -0.92329566 0.24438178 -0.12350962]
[0.5804131 -0.02449161 0.14212637 -0.80144925]
[0.56485654 -0.06694199 0.63427274 0.52359713]]

78

4. Select the principal components to form the reduced feature space. Since eigen-
values represent the proportion of explained variances in the data samples according
to each eigenvector, they are sorted in decreasing order. Therefore, the first eigen-
value is the most significant and thus forms the first principal component candidate.
Remember that eigenvectors form the axes in the transformed feature space. Most of
the variance in the data happens along these transformed axes. To determine the
number of principal components that we will keep to form the reduced or trans-
formed feature space, we will use the explained variance criterion that represents the
variance (information) conserved by the selected principal components. We will keep
the k top eigenvectors, having the k top eigenvalues, that their cumulative sum con-
serves as the maximum of variance greater than a threshold, normally defined to be
90 percent of the overall data variance. The other eigenvectors will be dropped since
they explain the least about the distribution of the data. The following code allows us
to compute the explained variance using Python for the Iris dataset. Running this
code provides the following results:expvar1 = 72.9%, expvar2 = 22.8%, expvar3 = 3.7%, expvar4= 0.5%
The cumulative sum of the first two principal components is cum_exp_var = 95.8%,
which is enough to ensure that more than 90 percent of the total variance is represen-
ted in the reduced dimensional space. Therefore, for the Iris dataset, we will reduce
the feature space from four features, in the original space, to a feature space formed
by the two first principal components.

Code
calculating the total sum of Eigenvalues
tot = sum(eig_vals)
print(tot)
console output: 4.026845637583896

sorting Eigenvalues in decreasing order
exp_var = sorted(eig_vals, reverse=True)

present values as percentages
exp_var = exp_var/tot * 100

print the explained variance
print("Explained variance per PC:", exp_var)
console output:
Explained variance per PC: [72.96244541 22.85076179
3.66892189 0.51787091]

Computing and print the explained cumulative variance
cum_exp_var = np.cumsum(exp_var)
print("Cumulative Explained Variance:",cum_exp_var)
console output:

79

Cumulative Explained Variance: [72.96244541 95.8132072
99.48212909 100.]

display the proportion of variance
which is explained by the first two PC
print("Explained variance by PC1 and PC2:", \
 sum(exp_var[0:2]))
console output:
Explained variance by PC1 and PC2: 95.81320720000163

5. Construct the projection matrix from the selected k eigenvectors.The projection
matrix PR(dxk) will allow the projection of the Iris data samples from the original
feature space (d= 4) into the reduced or transformed feature space formed by the topk= 2 principal components (eigenvectors) with the highest eigenvalues. To do this,
we will associate the top eigenvalues with their associated eigenvectors by building
the array Eig_pairs. Then, we will choose the top k= 2 pairs of this array in order to
build the projection matrix PR. The following code allows us to perform this construc-
tion. The np.hstack is used to concatenate the two principal components (two selec-
ted eigenvectors), and the obtained matrix is reshaped to be in d= 4 lines and k= 2
columns.

Code
eig_pairs = [(np.abs(eig_vals[i]), eig_vecs[:,i])
 for i in range(len(eig_vals))]
PR = np.hstack((eig_pairs[0][1].reshape(4,1),
 eig_pairs[1][1].reshape(4,1)))

6. Project and visualize the data samples into the new reduced feature space.The
original standardized data samples X_std(150x4) are projected onto the reduced fea-
ture space in order to obtain the transformed data samples Y(150x2) using the pro-
jection matrix PR(4x2). This projection is achieved by applyingY = X_std . PR
The figure below shows the Iris data samples projected onto the new, reduced feature
space. The following code allows us to achieve this projection and visualization.

Code
project the original data to the feature
which is reduced in dimensions
Y = X_std.dot(PR)
YL = np.append(Y, y.reshape(150,1), axis=1)

plot the projected data
plt.scatter(x=YL[:,0], y=YL[:,1], c=YL[:,2])
plt.show()

80

Figure 28: Projection of the Iris Data in a Reduced Feature Space Formed by the Top Two
Principal Components

Source: Sayed-Mouchaweh (2021).

The figure above shows the use of PCA-facilitated description of the Iris dataset in a two-
dimensional feature space, while capturing almost all of the characteristics of the original
higher four-dimensional feature space. Therefore, it is now easier to work with these data
and to explore them visually. Python has the advantage of including a developed package
(libraries and functions) in order to use PCA with far fewer lines of code. All previous steps
to conduct a PCA can be reduced to the following, much simpler, code:

Code
doing it the easy way
pca = PCA().fit(X_std)

extract the explaind variance ratios
var_exp = pca.explained_variance_ratio_
print(var_exp)
console output:
[0.72962445 0.22850762 0.03668922 0.00517871]

calculate the explained cumulative variance
cum_var_exp = np.cumsum(var_exp)
print(cum_var_exp)

81

console output:
[0.72962445 0.95813207 0.99482129 1.]

extract the Eigenvectors
eig_vecs = pca.components_

use PCA to project the data to a two-dimensional
feature space
Y = PCA(n_components=2).fit(X_std).transform(X_std)pca = PCA().fit(X_std)

Advantages and Drawbacks

PCA is a powerful unsupervised dimensionality reduction approach that allows the trans-
formation of the data samples into a reduced feature space while conserving the maxi-
mum amount of information (variance). It can be used for different applications, such as
compressing the dataset into a space formed by fewer transformed features than the origi-
nal feature space. In addition, PCA is useful to speed up the learning algorithm or to visu-
alize the data points. It can also be used to compute and graphically show the correlations
between the transformed features (principal components) and the original features. This
can be achieved using the correlation circle. The correlation circle graphically demon-
strates the correlations between the original features (sepal length, sepal width, petal
length, and petal width for the Iris dataset) and the principal components (e.g., the top k= 2 eigenvectors for the Iris dataset). These correlations are plotted as vectors (one vector
for each original feature) on a unit circle. Therefore, for the Iris dataset, four vectors (sepal
length, sepal width, petal length, and petal width) are plotted (see the figure below). The
axes of the circle are the selected principal components. The projection of each vector on
these axes provides the explained variance percentage of this feature with respect to the
corresponding principal component.

As shown in the figure below, the explained variance of the feature “sepal_width” is 0.46
according to the first principal component and —0.88, according to the second principal
component. In addition, the correlation circle allows the observation of the correlated and
uncorrelated features. Per the figure below, the “petal_length” and “petal_width” features
are clearly correlated since the angle between them is close to zero. Both are correlated
with the third feature “sepal_length.” Meanwhile, these three features are uncorrelated
with the fourth feature “sepal_width” since they are almost orthogonal in relation. There-
fore, “sepal width” should be kept with one of the three other features. “Petal_length”
might be the best choice to keep with “sepal_width” since it is the most uncorrelated fea-
ture among the three correlated features with “sepal_width.”

The correlation circle can be computed using the function
plot_pca_correlation_graph()in Python. The library mlxtend must be installed
when using, for example, the following instruction: pip install mlxtend. The code
below displays the correlation circle for the top k= 2 principal components and the four
features of the Iris dataset. Remember that the explained variances for the first principal
component, PC1, and the second principal component, PC2, are 72.9 percent and 22.8
percent, respectively. This code also displays the values of the correlation matrix “correla-

82

tion_matrix” for the four original features, as in the table below. This correlation matrix is
also called the loading matrix since it represents the correlations between the original var-
iables and the principal components.

Table 7: Correlation or Loading Matrix for the Iris Dataset

PC1 PC2

sepal length —0.89 —0.36

sepal width 0.46 —0.88

petal length —0.99 —0.02

petal width —0.96 —0.06

Source: Sayed-Mouchaweh (2021).

Code

 from mlxtend.plotting import plot_pca_correlation_graph

specify feature names
feature_names = ['sepal length','sepal width',
 'petal length','petal width']

 #
 calculate the correlation matrix and
create a correlation graph
fig, cor_mat = plot_pca_correlation_graph(X_std, \
 feature_names, dimensions=(1, 2), \
 figure_axis_size=10)

 #
 show the numbers of the correlation
matrix for the 4 features
print(cor_mat)
 #
 console output:
Dim 1 Dim 2
sepal length -0.890169 -0.360830
sepal width 0.460143 -0.882716
petal length -0.991555 -0.023415
petal width -0.964979 -0.064000

83

Figure 29: Correlation Circle for the Iris Dataset

Source: Sayed-Mouchaweh (2021).

However, PCA suffers from several drawbacks. They are as follows:

• PCA performs poorly for nonlinearly correlated data samples as it will not clearly sepa-
rate traits of the dataset into principal components. For instance, in the figure below,
PCA cannot properly capture the nonlinear structure of the data samples by a rotation
of the initial axes of the original feature space. Most real-world datasets are character-
ized by variables or features that are nonlinearly correlated. This limits the use of PCA
for real-world applications.

84

Figure 30: Nonlinearly Correlated Data Points and Their Projection into the
Transformed Feature Space Using PCA

Source: Sayed-Mouchaweh (2021).

• The selection of principal components depends on the application at hand. As in the
figure below, the axis PC1 that holds the maximum data variance is not suitable to keep
in order to distinguish between the two clusters in a reduced feature space. Indeed, the
axis or the principal component, PC2 in the figure below, that holds less data variance is
the right one to use in order to properly discriminate the two clusters in a reduced fea-
ture space.

• PCA can only be applied to numerical features since it is based on the use of their var-
iance. PCA may behave poorly if the dataset contains categorical features, such as
nationality, country, gender, or customer satisfaction (high, medium, and low), since
their variance may not have a meaning in the case of numerical features. Indeed,
although categorical features can be converted into numerical features, the converted
features (quantified) need to properly reflect the distance between the different levels
of ordinal variables or the different categories of nominal variables.

• The feature space which has been transformed by PCA is not easily interpretable. For
example, in the Iris dataset, the “petal length” or “petal width” have a direct meaning
and can be easily interpreted. For the top two principal components, the interpretation
or meaning is not that apparent. In order to make sense of these principal components,
we have to investigate further, for instance, the vector loadings, the eigenvalues, and
their relative proportions.

85

Vector loadings
The vector loadings are
the eigenvectors multi-

plied by the square root
of eigenvalues. They rep-

resent the correlations
between the original vari-

ables and the eigenvec-
tors.

Figure 31: Selection of PC2 to Separate Clusters Although PC2 Holds Less of Variance
than PC1

Source: Sayed-Mouchaweh (2021).

86

Dissimilarity matrix
This matrix is computed
by calculating the dis-
tance between each two
data points of the data-
set. Several distance met-
rics can be used, such as
Euclidian, Manhattan, or
weighted Euclidian dis-
tance.
s.t.
This abbreviation stands
for “such that.”

SMACOF
This term refers to an
optimization strategy that
aims at minimizing a cost
or loss function. The lat-
ter measures the squared
differences between ideal
(original) distances and
projected distances in
two- or three-dimen-
sional space.

3.2 Multi-Dimensional Scaling
How it Works

Multi-Dimensional Scaling (MDS) allows the projection of data samples in a high-dimen-
sional space in a reduced dimensional space, normally two or three dimensions, by pre-
serving the pairwise sample similarity or dissimilarity. The latter can be represented by a
distance metric, often the Euclidian distance, in order to weigh the distances between the
different data samples. For instance, if we have three data samples A, B, and C, and if A is
close to B but too far from C in the original high dimensional space, then in the reduced
two- or three-dimensional space, A and B will also be close together, and will be far from
C.

MDS resembles PCA in the sense that both perform a matrix eigen decomposition in order
to project data samples into a reduced (transformed) feature space. Remember that the
decomposition of a matrix to be represented in terms of its eigenvectors and eigenvalues
is called matrix eigen decomposition. However, MDS differs from PCA in the kind of used
matrix for eigen decomposition and the objective function that they aim to optimize.
Indeed, MDS performs eigen decomposition on a distance or dissimilarity matrix, also
called the proximity matrix (Buja et al., 2008). The dissimilarity matrix is computed
based on the use of the dataset. The two categories of MDS are as follows:

1. Metric MDS, which is used when the dataset is described by numerical or quantitative
features. In this case, MDS seeks to preserve the dissimilarity metrics of data samples
in the original feature space. Metric MDS seeks to find a monotone distance function
or metric f defined in Rp, wherep = 2 or 3, s.t. the distance f between two data pointsxi and xj approaches dij = ||xi – xj||.

2. Non-metric MDS, which is used when the dataset is described by categorical (ordinal,
nominal) features. In this case, MDS seeks to keep the order of dissimilarity metrics of
the original data samples. For instance, if dij is the dissimilarity between data samplesxi and xj in the original feature space, and xi > xj, then non-metric MDS seeks creating
a mapping or a distance metric s.t. di > dj.

We will demonstrate how to use the Python packages to run the metric MDS using the Iris
dataset. The optimized configuration or distance function is obtained using the optimiza-
tion algorithm Scaling by Majorization of Complicated Function (SMACOF). To this end,
the steps are as follows:

1. We import MDS from the Python library sklearn.manifold. The default parameters for
MDS use metric MDS and the Euclidian distance. We also import the MinMaxScaler
function from sklearn.preprocessing in order to normalize the data samples between
0 and 1.

Code
import numpy as np
from sklearn import datasets
import matplotlib.pyplot as plt

87

from sklearn.manifold import MDS
from sklearn.preprocessing import MinMaxScaler

load the sample data set
iris = datasets.load_iris()
X = iris.data

normalize the data
X_scaled = MinMaxScaler().fit_transform(X)

2. We run MDS to reduce to two dimensions and visualize the projected Iris data of four
original features into the reduced two dimensional space as follows:

Code
conduct MDS on the data
mds = MDS(2,random_state=0)
X_2d = mds.fit_transform(X_scaled)

Plot the projected Iris data points into the reduced
feature space by MDS
plt.scatter(x=X_2d[:,0], y=X_2d[:,1], c=iris.target)
plt.show()

The figure below shows the Iris data points projected into each of the two-dimensional
feature spaces formed by the original features.

88

Figure 32: Iris Data Points Projected into a Two-Dimensional Feature Space

Source: Sayed-Mouchaweh (2021).

89

The figure below shows the projected Iris data samples into the reduced two-dimensional
feature space. By comparing the figure above with the figure below, we can see clearly
that the pairwise distances have been conserved in the reduced feature space (the data
samples in the blue or setosa cluster are far away from the data samples of the other two
clusters).

Figure 33: Iris Data Points Projected into a Two-Dimensional Feature Space Obtained by
Metric MDA

Source: Sayed-Mouchaweh (2021).

Advantages and Drawbacks

MDS can be used to simplify exploration analysis of multidimensional data samples
thanks to the dimensionality reduction. It allows the observation of the distances or dis-
similarities between these data samples. This observation is very useful for many applica-
tions, such as fault diagnosis or credit card fraud. Indeed, data samples that characterize
normal operation conditions or genuine behavior tend to be close to each other through
clusters, while data samples characterizing abnormal operation conditions or fraudulent
behavior will be far away from, or dissimilar to, normal or genuine data samples. MDS can
also be used to clean a dataset by detecting outliers before the clustering step, or to
observe if data samples are self-organized into clusters.

90

Swiss roll dataset
The Swiss roll dataset is a
set of data points gener-
ated in three-dimensional
feature space with a non-
linear structure. These
data points can be descri-
bed in two-dimensional
feature space.

In addition, MDS can be used to project data samples that manifest nonlinear correlations.
For example, let us use the Swiss roll dataset illustrated in the figure below. It is clear that
these data samples have a nonlinear structure in the three-dimensional feature space.

Figure 34: Swiss Roll Dataset with Nonlinear Structure

Source: Sayed-Mouchaweh (2021).

PCA fails to highlight this nonlinear structure by projecting the data samples into a
reduced feature space formed by the top two principal components, as illustrated in the
figure below. Indeed, since PCA is a linear dimensionality reduction approach, it fails to
conserve the neighborhood information between highly dissimilar orange and navy blue
points (center). Meanwhile, MDS perfectly conserves neighborhood information due to its
conservation of the pairwise distances between projected data samples as illustrated in
the figure below.

91

Figure 35: Projection of Swiss Roll Dataset into Two-Dimensional Feature Space

Source: Sayed-Mouchaweh (2021).

92

However, the computation complexity of MDS is proportional to the number of data points
in the dataset. Therefore, MDS cannot be used for too large datasets because it becomes
too slow. For instance, the required time for the Swiss roll dataset including 1,000 data
samples is 29.5 seconds, while for PCA it is 0.003 seconds. The time is computed using a
single Intel Core i7 microprocessor. The following Python code allows us to generate the
obtained results in the figure above. The steps are as follows:

1. Import the required Python libraries.

Code
from sklearn.manifold import MDS
from mpl_toolkits.mplot3d import Axes3D
from sklearn import manifold, datasets

2. Generate 1,000 data points of the Swiss roll and display them.

Code
ax = plt.axes(projection='3d')
n_pts = 1000
X, color = datasets.make_s_curve(n_pts, random_state=0)
ax.scatter3D(X[:, 0], X[:, 1], X[:, 2], c=color)
plt.show()

3. Project the 1000 data points of the Swiss roll into a two-dimensional feature space
using MDS and calculate the required time for this operation.

Code
n_components = 2
mds = MDS(2,random_state=0)
X_2d = mds.fit_transform(X)

4. Display the obtained projection in the two-dimensional feature space.

Code
plt.scatter(X_2d[:,0], X_2d[:,1], c=color)
plt.show()

93

Manifold
A manifold is an object
embedded in a higher

dimensional space (e.g., a
two-dimensional plan in a
three-dimensional space).

3.3 Local Linear Embedding
How It Works

Local linear embedding (LLE) (Saul & Roweis, 2000) is an unsupervised dimensional reduc-
tion method that allows the projection of datasets with nonlinear structures into reduced
feature space. It preserves the distances within local neighborhoods when projecting data
samples into the reduced feature space.

Let us take the example of the figure below. It shows a manifold comprising data samplesX with nonlinear structure. LLE starts by creating locally linear patches around each data
sample x from X in the manifold. Each local patch includes k-nearest neighbors for the
corresponding data sample. Each patch can be seen as a flat plan or circle where the data
sample x and its k-nearest neighbors lay on the same flat plane or circle. Then each data
sample x will be approximated by a weighted linear combination of its k-nearest neigh-
bors. These weights W are selected in such a way that allow us to reconstruct the corre-
sponding data sample x from its nearest neighbors by minimizing a cost function, e.g., the
sum of the squared errors between the data sample and the reconstructed data sample by
its nearest neighbors.

94

Figure 36: Manifold

Source: Sayed-Mouchaweh (2021).

Finally, LLE transforms or maps each data point x of X to a point y in a reduced feature
space by using the computed weights W. The transformed data samples Y are computed
by minimizing an embedded cost function, e.g., the sum of the squared errors between
the transformed data sample y and the reconstructed data sample by its nearest neigh-
bors in the reduced feature space. The embedded cost function is optimized by fixing the
weights while optimizing the coordinates of each y in Y (Saul & Roweis, 2000).

Let us run LLE using Python and apply it to the Swiss roll dataset. We need to import the
function LocallyLinearEmbedding from the library sklearn.manifold. Let us specify the
number of nearest neighbors k to be 12. We project the data points into a two-dimen-
sional transformed feature space, i.e., the number of components is equal to two. Let us
compute the required time to perform this projection and plot the projected data samples
into this two-dimensional feature space. The figure below shows the projected points by
LLE into the two-dimensional space. We can see clearly that the local distances, local
neighborhoods, are conserved in the reduced feature space. For instance, in the high

95

dimensional space, the navy blue data samples have the largest distance from the orange
data samples. The reduced feature space conserves this distance (dissimilarity) while, at
the same time, gathering the data samples of the same color.

Figure 37: Swiss Roll Dataset Projected into Two-Dimensional Feature Space Obtained
by LLE

Source: Sayed-Mouchaweh (2021).

The Python code required to provide these results is as follows:

Code
import the required libraries
import matplotlib.pyplot as plt
from sklearn.manifold import LocallyLinearEmbedding
from sklearn import manifold, datasets

generate 1000 data points of the Swiss roll dataset
n_pts = 1000
X, color = datasets.make_s_curve(n_pts, random_state=0)

apply LLE to the generated Swiss roll dataset
to project it into a 2-dimensional feature space
embedding = LocallyLinearEmbedding(n_neighbors=12, \
 n_components=2)
X_2d = embedding.fit_transform(X)

96

display the data points in the
reduced feature space
plt.scatter(X_2d[:,0], X_2d[:,1], c=color)
plt.show()

Advantages and Drawbacks

As we have seen in the figure above, LLE succeeded at unrolling the Swiss roll dataset so
the data points of one cluster are not overlapped with the other data points of the other
clusters. LLE can be considered an efficient unsupervised dimensional reduction approach
for datasets with nonlinear structures. LLE has multiple advantages. These are as follows:

• It is easy to implement and use.
• It requires only the number of nearest neighbors k and the number of dimensions to

reduce.
• Its computation time is much lower than the other dimensionality reduction

approaches, particularly MDS. Therefore, it is more suitable for large datasets.

However, LLE suffers from its sensitivity to noises and outliers since it is based on the
value of the k-nearest neighbors. In addition, some neighbors can be mixed in different
patches entailing the creation of short-circuit problems between patches.

SUMMARY
This unit presented and discussed the functioning principal and the
advantages and drawbacks of the major dimensionality reduction
approaches: Principal Component Analysis (PCA), Multi-Dimensionality
Scaling (MDS), and Locally Linear Embedding (LLE). The advantages and
drawbacks of these approaches were highlighted in order to identify the
suitable conditions of their use.

Two major criteria were proposed to guide the choice of PCA, MDS, and
LLE to apply with respect to the dataset’s conditions and characteristics.
These criteria include the correlation (linear and nonlinear) between the
data samples and the dataset’s size (small and large). For instance, LLE
is the most suitable dimensionality reduction approach to apply when
the data have a nonlinear structure and the number of data samples is
large.

97

UNIT 4
FEATURE ENGINEERING

STUDY GOALS

On completion of this unit, you will be able to ...

– explain the difference between numerical, categorical, and text features.
– clean, scale, encode, or transform these features.
– generate new features by transforming, splitting, or grouping existing features as inter-

action features.

Gender
Please note that in this

unit, gender refers to bio-
logical sex.

4. FEATURE ENGINEERING

Introduction
Machine learning approaches require input data in order to provide an output, e.g., clus-
ters gathering similar data points. The input data points are generally structured in a table
or array where the rows represent the data points and the columns represent their fea-
tures. The latter describe certain properties of the data points. For instance, the price of a
product, the age of a client, etc. The performances, e.g., quality of the obtained clusters or
predictive power, depend largely on the quality or reliability of the data features. The
more those features represent salient properties of the data, the better the provided
knowledge or insights from the machine learning approaches. Therefore, an important
effort must be exerted to build “good” features.

Feature engineering is the process that allows us to build features from raw data automat-
ically or manually using domain knowledge. It is worth mentioning that building meaning-
ful features will improve model performances, speed up the model’s learning and process-
ing, and facilitate the understanding of the provided output.

Datasets often contain different types of features, such as numerical, categorical, and text
features. They present quantitative (natural ordering and range of values) and qualitative
(no natural ordering and come from fixed list of values) properties of the data. The way
that these features are represented has an enormous effect on the performances of the
built machine learning model.

Let us take an example of a dataset representing the energy consumption by clients (see
the table below). This dataset is an array of n rows indicating the clients and d = 6 col-
umns representing the client identification number, the client gender (male or female),
their work type (self-employed, state employee, or private), the number of occupants, and
their consumption in kilowatts per hour.

Table 8: Energy Consumption Dataset

C-ID Gender Work-type Client-satis-
faction

Number-
occupants

Consumption

1 M 1 3 2 70

2 F 2 0 4 140

3 M 2 4 2 65

4 F 3 3 1 40

5 F 3 5 2 65

Source: Sayed-Mouchaweh (2021).

100

We can see that the dataset contains two types of features: categorical and numerical. The
client gender is a categorical feature since its possible values do not have a natural order-
ing. This is the same for the client’s work-type. Meanwhile, the number of occupants and
amount of energy consumption are numerical features since they have a natural ordering.

Machine learning approaches require a suitable, numerical representation of data features
to build a model. To this end, a dataset needs to be pre-processed in order to clean the
data samples and convert features into a suitable representation form. For instance, the
energy consumption dataset cannot be used in its current state as and input for a machine
learning approach. The raw data points need to be preprocessed, their features converted,
and new features constructed. This unit presents the different techniques used to prepro-
cess the raw data, convert their features, and construct new features. Therefore, this unit
examines the following questions:

• What are the different techniques used to preprocess the raw data?
• What are the different techniques used to construct new features?
• How do we implement the preprocessing and new feature construction techniques in

Python?

4.1 Numerical Features
There are two fundamental levels of measurement for numerical features: interval and
ratio scales. Interval scales represent ordered elements with a specific interval of the same
difference. Consider the temperature degree in a room. Twenty degrees Celsius is not dou-
ble 10 degrees Celsius since there is no true zero in an interval scale. Indeed, in order to
say that 20 degrees Celsius is double of 10 degrees Celsius, zero must be considered the
reference. This is not possible since there are negative temperatures. Therefore, the inter-
val between 20 and 10 degrees Celsius is the same as the interval between 20 and 30
degrees Celsius. The interval between 20 and 10 degrees Celsius is the double of the inter-
val between 20 and 25 degrees Celsius.

A ratio scale has all the characteristics of an interval scale and can integrate the value of
“zero” into any of its features. For instance, the age is a ratio scale feature. If you are 20
years old, you are twice the age of a ten-year-old. This is because it is possible to have the
“zero” as a reference since there is no negative age.

Feature Cleaning (Imputing Missing Values)

Datasets may have missing values for some features (columns) for different reasons, such
as discomfort, privacy, or recording errors. For example, some volunteers may not disclose
their age, weight, or salary because this is personal information. Missing values can mani-
fest as blanks, by “NA” (not available), or by “NaN” (not a number) in the corresponding
columns.

101

In general, machine learning approaches underperform or do not work at all when missing
values are present in the dataset table. Therefore, these missing values must be treated
either by removing the corresponding rows or by imputing them. When there is a relatively
high number of missing values in a small dataset, removing the rows of those missing data
may impact the performances of the machine learning approaches and bias the obtained
output. Therefore, it is better to impute them using one of many existing imputing techni-
ques, such as substitution (mean, median, etc.), regression imputation, stochastic regres-
sion imputation, interpolation, and extrapolation imputation. As an example, let us take
the following simple imputation strategies: imputing by mean value, median value, or the
most frequent value (mode value).

Let us use the example of energy consumption. Suppose that the energy consumption of
Client 5 is not available, as illustrated in the table below. We can replace this missing value
by using either the mean value, the median value, or the most frequent value of the availa-
ble energy consumptions, as illustrated in the table below.

Table 9: Min-Max Scaling on the Consumption Feature

C-ID Consumption Missing value
replaced by mean
value

Missing value
replaced by
median value

Missing value
replaced by
most frequent
value

1 70 70 70 70

2 140 140 140 140

3 65 65 65 65

4 NaN 85 67.5 65

5 65 65 65 65

Source: Sayed-Mouchaweh (2021).

Let us apply the imputation of missing values using Python:

1. Import pandas, numPy, and Python function SimpleImputer from Python library
sklearn.impute, and create the dataset of energy consumption as a DataFrame with
the missing value as it is illustrated in the table above.

Code
Table = {\
 'Customer-ID': [1, 2, 3, 4, 5], \
 'Gender': ['M','F','M','F','F'], \
 'Work-type': [1, 2, 2, 3, 3], \
 'Client-satisfaction':[3, 0, 4, 3, 5], \

102

 'Number-occupants': [2, 4, 2, 1, 2],
 'Consumption':[70, 140, 65, np.NaN, 65]}
TDF = pd.DataFrame(data=Table)

2. Apply the Python function SimpleImputer, and specify the type of missing value (e.g.,
NaN) and the strategy to impute it (mean, median, or most-frequent value). Here, we
chose the “mean” strategy.

Code
imput = SimpleImputer(missing_values = np.nan, \
 strategy = 'mean')
imput = imput.fit(TDF[['Consumption']])
imput = imput.transform(TDF[['Consumption']])
TDF['Consumption']= imputimput = SimpleImputer(missing_values = np.nan, strategy =

Impute missing values by using mean, median, or mode values, which are also called pla-
ceholder values. This is a suitable choice when there are few missing values in a column
(feature) and/or the variance of the data points in this column is not too large. If this is not
the case, it is better to choose a more sophisticated imputation technique in order to
avoid a biased estimation of parameters. The latter arises when the data points are purpo-
sefuly missing. Hence, the parameters’ estimation of a model may be biased if the missing
points are improperly imputed.

To mitigate this problem, one alternative is the use of the regression imputation techni-
que. In this technique, missing data are imputed as functions of the value of the other fea-
tures (e.g., variables and columns). Several regression models can be used to predict or
estimate the missing data points, such as Bayesian ridge regression or extra-trees regres-
sor.

Consider the following example:

D =
V ar1 V ar210 2NaN 12 0.41 0.25 NaN

We can see that values in “Var1” are five times the values in “Var2.” The regression model
will learn this linear relationship between “Var1” and “Var2” in order to impute the miss-
ing values in both “Var1” and “Var2.”

103

D =
V ar1 V ar210 25 12 0.41 0.25 1

Let us apply the regression imputation technique using Python:

1. Import the required Python libraries. We will import two different regression models
in order to compare the obtained imputation. “BayesianRidge” is the regression
method used by default by the function “IterativeImputer.”

Code
from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import IterativeImputer
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.linear_model import BayesianRidge

2. Create the data table or matrix D, transform it into a DataFrame, then apply the Iterati-
veImputer function using the two regression methods “Bayesian Ridge” and “Extra
Trees Regressor,” and display both results.

Code
generate sample data
table = {'Var-1': [10, np.NaN, 2, 1, 5],\
 'Var-2': [2, 1, 0.4, 0.2, np.NaN]}
TDF = pd.DataFrame(data=table)
TDF
console output:
Var-1 Var-2
0 10.0 2.0
1 NaN 1.0
2 2.0 0.4
3 1.0 0.2
4 5.0 NaN

apply regression imputation using ‘Bayesian Ridge’
imputbr = IterativeImputer(BayesianRidge())
TDF = pd.DataFrame(imputbr.fit_transform(TDF))
TDF
console output:
0 1
0 10.000000 2.000000
1 5.000531 1.000000
2 2.000000 0.400000
3 1.000000 0.200000

104

4 5.000000 0.999973

apply regression imputation using
‘Extra Trees Regressor’
TDF = pd.DataFrame(data=table)
imputetr = IterativeImputer(ExtraTreesRegressor())
TDF = pd.DataFrame(imputetr.fit_transform(TDF))
TDF
console output:
0 1
0 10.00 2.000
1 5.35 1.000
2 2.00 0.400
3 1.00 0.200
4 5.00 0.898

Feature Scaling

Models built by the majority of machine learning approaches, such as k-means, are sensi-
tive to features scales. Machine learning approaches that involve distance calculation,
such as clustering approaches, are affected by the magnitude of variation of the input fea-
tures. Indeed, features with large variation will have much more influence on the distance
between two data points than the features with small range of variation. For instance, if
we have two features describing employees in a company, their age and their height in
meters, it is obvious that the age will be overrepresented with respect to the height.
Indeed, the age range of employees is much greater than their height range.

To avoid the impact of different feature ranges on the performances of the built models,
we apply feature scaling. It is a technique used to normalize or standardize the range of
input features. Feature scaling is done to each independent feature during the preprocess-
ing step of raw data. The various feature scaling techniques are described in the following
sections.

Min-max scaling

The first technique is min-max scaling. It aims to compact all the feature values in a data-
set to be within the range [0, 1]. Let xF be the value of a data point in a dataset X according
to a certain feature F. Let minFand maxF be, respectively, the minimum and maximum val-
ues of all the data points according to the feature F. The min-max scaling of x is

xF = xF − minFmaxF − minF
Let us take the “consumption” feature of the energy consumption example. Min-max scal-
ing on the “consumption” feature is illustrated in the table below.

105

Table 10: Min-Max Scaling on the Consumption Feature

C-ID Consumption Min-max scaling of consumption

1 70 0.3

2 140 1

3 65 0.25

4 40 0

5 65 0.25

Source: Sayed-Mouchaweh (2021).

Let us use the Python package min-max scaling:

1. Import pandas and Python function MinMaxScaler from Python library sklearn.pre-
processing, and create the energy consumption dataset as a DataFrame.

Code
import libraries
import pandas as pd
from sklearn.preprocessing import MinMaxScaler

generate sample data
Table = {\
 'Customer-ID': [1, 2, 3, 4, 5], \
 'Gender': ['M', 'F', 'M',' F', 'F'], \
 'Work-type': [1, 2, 2, 3, 3], \
 'Client-satisfaction': [3, 0, 4, 3, 5], \
 'Number-occupants': [2, 4, 2, 1, 2], \
 'Consumption': [70, 140, 65, 40, 65]}
TDF = pd.DataFrame(data=Table)

2. Apply the min-max scaling on the feature “consumption” and display the obtained
results. In this example, we only apply the scaling to one column. This process can
also be conducted on many columns, or all columns of a dataframe if these columns
are numeric. Verify that the min-max scaling of “consumption” is between 0 and 1.

Code
apply Min-Max Scaling on the feature 'Consumption'
MMS = MinMaxScaler().fit_transform(TDF[['Consumption']])
TDF['Consumption'] = MMS

print(TDF['Consumption'])
console output:
0.30
1 1.00

106

2 0.25
3 0.00
4 0.25

print(TDF['Consumption'].describe())
console output:
count 5.000000
mean 0.360000
std 0.376497
min 0.000000
25% 0.250000
50% 0.250000
75% 0.300000
max 1.000000

The drawback of min-max scaling could appear if the data points are skewed or if there
are outliers. Indeed, compacting the range of data points between 0 and 1 entails the loss
of information since outliers create important useless part of the [0, 1] range. This impacts
the quality of obtained clusters or the predictive power of the built model.

Standardization (variance scaling)

This is also called Z-score scaling, or normalization, and can be obtained by the following:xF − meanFσF
It removes the mean value, meanF, from the data points, xF, and scales them to the unit
variance by dividing by the standard deviation, ϬF (square root of the variance). Therefore,
this is called variance scaling. The obtained scaled feature has a mean of 0 and variance of
1.

Let us take the “consumption” feature of the energy consumption example. The resulted
“consumption” feature after the standardization is illustrated in the table below.

Table 11: Standardization of Consumption Feature

C-ID Consumption Standardization of consumption

1 70 —0.18

2 140 1.9

3 65 —0.33

4 40 —1.07

5 65 —0.33

Source: Sayed-Mouchaweh (2021).

107

Let us apply the standardization using Python:

1. Import Python function StandardScaler from Python library sklearn.preprocessing.

Code
from sklearn.preprocessing import StandardScaler

2. Apply the standardization on the feature “consumption” and display the obtained
results. Verify that the standardization of “consumption” provides a mean value equal
to zero and unit variance.

Code
apply standardization on the feature 'Consumption'
TDF = pd.DataFrame(data=Table)
ST = StandardScaler().fit_transform(TDF[['Consumption']])
TDF['Consumption'] = ST

print(TDF['Consumption'])
console output:
0 -0.178174
1 1.900524
2 -0.326653
3 -1.069045
4 -0.326653

print(TDF['Consumption'].describe())
console output:
Name: Consumption, dtype: float64
count 5.000000e+00
mean -3.330669e-17
std 1.118034e+00
min -1.069045e+00
25% -3.266526e-01
50% -3.266526e-01
75% -1.781742e-01
max 1.900524e+00

The standardization has the same drawback as min-max scaling for sparse data points
(e.g., if the data points are skewed or if there are outliers). This impacts the quality of
obtained clusters or the predictive power of the built model.

Robust scaling

Robust scaling removes the feature median and scales the data points to the InterQuartile
Range (IQR). It is calculated as follows:

108

Median
The median is the value
separating the higher half
of data points from the
lower half when ordered
from lowest to highest.

xF − MedianFIQRF
Indeed, the data points, when ordered from lowest to highest, are divided into four equal
parts, each described by a quartile: Q1, Q2, Q3, and Q4. IQR describes the middle 50 per-
cent of data points between Q1 and Q3.

Let us take the “consumption” feature of the energy consumption example (see the table
below). The resulting “consumption” feature after applying the robust scaling is illustrated
in the table below.

Table 12: Robust Scaling of Consumption Feature

C-ID Consumption Robust scaling of consumption

1 70 1

2 140 15

3 65 0

4 40 —5

5 65 0

Source: Sayed-Mouchaweh (2021).

Again, we apply the robust scaling using Python:

1. Import Python function RobustScaler from Python library sklearn.preprocessing.

Code
from sklearn.preprocessing import RobustScaler

2. Apply robust scaling on the feature “consumption” and display the obtained results.

Code
RS = RobustScaler().fit_transform(TDF[['Consumption']])
TDF['Consumption'] = RS
print(TDF)

Thanks to the use of the median and IQR of data points, rather than minimum and mean,
robust scaling has the advantage of being more adapted to scale-sparse data points than
min-max scaling and standardization. Let us compare the three feature scaling techniques
with respect to a sparse dataset. Let us suppose that in the “consumption” feature, one
outlier exists, as illustrated in the table below. Let us apply the three feature scaling tech-
niques to this feature. The obtained results are shown in the table below. We can clearly
see that min-max scaling and standardization compress most of the data points to a nar-
row range, while robust scaling does much better at keeping the spread of the data points.

109

Skewed distribution
This type of distribution is

an asymmetric distribu-
tion with a long left or

right tail. Normal distribu-
tion is symmetric distri-

bution around the mean
value. Most real-life distri-

butions are skewed.

Table 13: Comparison between Feature Scaling Techniques in the Case of Sparse
Dataset

C-ID Consumption Min-max scaling
of consumption

Standardization
of consumption

Robust scaling of
consumption

1 70 0.004 —0.50 0

2 140 0.015 —0.47 0.93

3 65 0.003 —0.50 —0.06

4 40 0.000 —0.51 —0.4

5 6500 1 2 85.73

Source: Sayed-Mouchaweh (2021).

Feature Generation

New features can be generated as a transformation or combination of existing features.
These new features may add domain knowledge to the dataset, improving the perform-
ance of the built model by using machine learning approaches. New features can be gen-
erated as either transformed or interaction features.

Transformed features

Transforming features by applying mathematical operations allows the generation of new
features. The aim of transforming features is to simplify their treatment or their interpreta-
tion. For instance, making a skewed distribution as normal as possible allows us to meet
this assumption (normal distribution) as is required by most statistical models. In addi-
tion, transforming features can help to meet the assumption of constant variance in the
case of linear modeling by making a nonlinear relationship more linear. There are many
transformation approaches. These include:

• min (finding the minimum value for a feature or a column)
• max (finding the maximum value for a feature or a column)
• ϭ(finding the standard deviations for a feature or a column)
• variance
• mean (finding the average value for a feature or a column)
• median
• sum
• count (count the number of occurrences of an element in a feature or column)
• log transformation (replacing each value of a feature with its logarithm)
• quantile transformation
• exponential transformation
• square root transformation
• reciprocal transformation

110

The choice of one of them depends on the available dataset and domain application. In
some cases, the use of the reciprocal transformation (1/x, where x should not be zero)
may ease the interpretation. For example, if x represents the population density (i.e., peo-
ple per unit area), applying the reciprocal transformation generates a new feature indicat-
ing the area per person. The log transformation has an effect on the shape of data distri-
bution. It transforms skewed data distribution to a normal-like shape in order to simplify
its treatment by the statistical models. In addition, log transformation helps to make a
nonlinear relationship more linear (e.g., Log(x2) = 2Log(x)).

Log transformation is useful for data points generated by skewed distribution. Often, the
distribution of data points is not normal, and log transformation allows us to transform
skewed data points to approximately conform to normal distribution. The figure below
shows an example of a skewed distribution of data points.

Figure 38: Histogram of a Skewed Distribution of Data Points

Source: Sayed-Mouchaweh (2021).

The figure below shows the histogram of transformed data points (of the figure above)
using Log Transformer. We can see that the new transformed distribution follows a normal
distribution.

111

Figure 39: Histogram of Transformed Data Points by Log Transformer

Source: Sayed-Mouchaweh (2021).

The figure below shows the histogram after transforming the skewed distribution using
Quantile Transformer. We can see that the new transformed distribution follows a normal
distribution.

112

Figure 40: Histogram of Transformed Data Points by Quantile Transformer

Source: Sayed-Mouchaweh (2021).

Nevertheless, the data points must follow a log-normal distribution, and data points must
have only positive values. Another alternative transformation used to approximate a
skewed distribution to a normal distribution is the quantile transformation since it can
reduce the effect of marginal (skewed) data points. However since it is a nonlinear trans-
formation, it may distort the linear correlation between features.

Let us perform both transformations using Python functions LogTransformer and
QuantileTransformer in order to generate transformed features, as illustrated in the
figures above.

1. Install the library feature-engine on cmd.

Code
pip install feature-engine

2. Import libraries and then generate data points from a normal distribution, then add a
skew to them in order to generate skewed data points, and display the histogram of
the skewed data points. The latter’s distribution has a tail.

113

Code
generate sample data from a normal distribution
dat = randn(999)

add a skew to the generated data points
dat_skew = exp(dat)
plt.hist(dat_skew, bins = 25)
plt.show()

3. Import the LogTransformer function, and apply it to the skewed data points, then
display the histogram of transformed data. The latter shows that the transformed
skewed data points follow a normal distribution.

Code
convert the data into a dataframe
dat_skew = dat_skew.reshape((len(dat), 1))
dat_skew = pd.DataFrame(dat_skew, columns = ['Value'])

generate and fit log transformer
lgt = vt.LogTransformer(variables= ['Value'])
lgt.fit(dat_skew)

apply log transformation
dat_lg = lgt.transform(dat_skew)

plot the distribution of the transformed data
plt.hist(dat_lg['Value'], bins=25)
plt.show()

4. Import the functions QuantileTransformer and apply it to the skewed data points,
then display the histogram of transformed data points. The latter shows that the
transformed skewed data points follow a normal distribution.

Code
generate and fit quantile transformer
qt = QuantileTransformer(output_distribution='normal')
qt.fit(dat_skew[['Value']])

apply quantile transformation
dat_q = qt.transform(dat_skew[['Value']])

plot the distribution of the transformed data
plt.hist(dat_q, bins=25)
plt.show()

114

Interaction features

Interaction features, or cross product features, allow the combination of pairs of features
through the logical operator AND. Let us take the example of the figure below. We have
two different clusters described in two-dimensional feature space. We can see that clus-
ters 1 and 2 have positive and negative values according to each feature. Cluster 1 can be
described by the rule “(If a datapoint x has positive value according to the feature X1 AND
positive value according to X2), OR if x has a negative value according to X1 AND a nega-
tive value according to X2) Then x belongs to cluster 1.” Similarly, Cluster 2 can be descri-
bed by the rule “(If a datapoint x has positive value according to the feature X1 AND nega-
tive value according to X2), OR if x has a positive value according to X1 AND a negative
value according to X2) then x belongs to cluster 2.” Hence, we can see that, in order to
describe cluster 1 or cluster 2, we need to take into account the interaction between the
two features X1 and X2 using the operator ‘AND’ as we can see in the figure below.

Figure 41: Use of an Interaction Feature to Discriminate Two Different Clusters

Source: Sayed-Mouchaweh (2021).

Let us take the energy consumption example and build a model that allows us to provide
clusters gathering clients of similar consumption. The number of occupants in a home
affects the energy consumption of this home. Therefore, there is an interaction between
these two features since the impact of the “consumption” on the obtained clusters (clients
with similar consumptions) is different at different values of the “number of occupants.”
Therefore, generating an interaction feature, “consumption” AND “number of occupants,”
lets the model express what happens when these two features are together in the same
row.

The figure below shows three different clusters. Cluster 1 represents the consumption for
households of a small number of occupants, while cluster 2 represents the consumption
for households of a large number of occupants. Both clusters represent normal consump-
tion. Cluster 3 represents an example of abnormal consumption since the households
belonging to this cluster consume a lot with a small number of occupants. Identifying the
clients belonging to this cluster can alert them that they need to repai their electrical
appliances, such as a washing machine or stove, or to mind their consumption. We can

115

observe from the figure on the left below that neither feature 1 (consumption) nor feature
2 (number of occupants) alone can discriminate cluster 3. Taking into account their inter-
action (figure in the right below) enables the discrimination of cluster 3.

Figure 42: Interest of the Use of Interaction Features to Discriminate The Abnormal
Consumption Cluster

Source: Sayed-Mouchaweh (2021).

The same is true for when we want to observe whether the energy consumption differs
with respect to the work type. If the obtained clusters gather clients of similar energy con-
sumption but with different work types, then there is no impact of the work type on the
energy consumption.

The table below shows the features “number of occupants” and “consumption” and their
cross product feature “number of occupants x consumption.” We can see that the cross
product feature allows a model to learn that the consumption depends on the number of
occupants. For instance, the second row in the table below has the highest consumption
because the number of occupants is the largest, while the fourth row has the smallest con-
sumption because the corresponding flat has the smallest number of occupants. This use-
ful information cannot be learned by the individual features “number of occupants” nor
“consumption.”

Table 14: Motivation to Use Cross Product Features for Energy Consumption Example

2 70 140

4 140 560

2 65 130

1 40 40

2 65 130

Source: Sayed-Mouchaweh (2021).

116

Generating interaction features can be achieved as all polynomial combinations of the
features with degree less than or equal to the polynomial predefined degree. For instance,
if we have two features xF1 and xF2, a polynomial of degree 2 allows us to generate an
interaction feature between them: xF1xF2.

Interaction features can be generated using the polynomial expansion function Polyno-
mialFeatures in the Python library sklearn. Let us generate the interaction feature
between the features “number occupants” and “consumption” of the energy consumption
example. The steps are as follows:

1. Import the function PolynomialFeatures of Python library sklearn.

Code
from sklearn.preprocessing import PolynomialFeatures

2. Create a polynomial combination of feature “number-occupants” and “consumption”
in order to have interaction features indicating consumption of a certain number of
occupants, and then display the set of old and new features together.

Code
create and fit a polynomial feature creator
pf = PolynomialFeatures(\
 degree = 2, \
 interaction_only=True, \
 include_bias = False).\
 fit(TDF[['Number-occupants', 'Consumption']])

apply the polynomial feature creator to the data
int_feat = pf.transform(TDF[['Number-occupants', \
 'Consumption']])

print(int_feat)
console output:
[[2. 70. 140.]
[4. 140. 560.]
[2. 65. 130.]
[1. 40. 40.]
[2. 65. 130.]]

convert the generated interaction feature array
to a dataframe
int_feat = pd.DataFrame(int_feat, \
 columns=['Number-occupants', 'Consumption', \
 'nOcc_x_Conspt'])

append generated interaction feature to dataframe
TDF = pd.concat([TDF, int_feat], axis=1)

117

4.2 Categorical Features
There are four kinds of feature scales. We have already seen the interval and ratio scales,
and now the missing two scale levels come up here. As a reminder, interval scales repre-
sent ordered elements with a specific interval which have the same difference, while ratio
scale has all the characteristics of interval scale and, in addition, it can integrate the value
of “zero” to any of its features.

There are two fundamental levels of measurement for categorical features: nominal and
ordinal. In the nominal scale, features are named or labeled, but do not have any kind of
mathematical order, such as the gender of a customer or the brand of their car. In ordinal
scale, the values of features have a meaningful or specific order, such as customer satis-
faction (high, medium, and low) and an exam grade (A, B, C, or F). Ordinal variable can
exhibit numerical and categorical characters when numbers are used to scale the order of
its values, such as the customer satisfaction between 0 (not satisfied at all) and 5 (com-
pletely satisfied). However, this should be used with caution as this inhibits the danger of
using statistical methods, which are not meant for ordinal data.

Let us take the example of energy consumption. The energy consumption table includes
two nominal features (gender and work type), one ordinal feature described by integers
(client satisfaction), one discrete numeric feature (number of occupants), and one contin-
uous numeric feature (consumption). The nominal feature “work type” is represented by
integers, where 1 refers to “self-employed,” 2 to “state employee,” and 3 to “private.” The
ordinal categorical feature “client satisfaction” is also represented by integers from 0,
“completely unsatisfied,” to 5, “completely satisfied.” This table cannot be presented as
input data to a machine learning approach; the categorical features need to be converted
into numerical features. This can be done by using feature encoding techniques. In addi-
tion, useful new features can be generated to improve the predictive power or the clusters
quality of the built models by machine learning approaches.

Feature Cleaning (Imputing Missing Values)

Categorical features may have missing values for some rows. In this case, missing values
can be replaced with the maximum occurred value in the corresponding column (feature).
Let us take the energy consumption dataset and suppose that there is one missing value
in the “gender” feature indicated by NA (not available), illustrated in the table below.

Table 15: Imputing a Missing Value in the Gender Feature of the Energy Consumption
Example

C-ID Gender before imputing Gender after imputing by replac-
ing by the maximum occurred
value

1 M M

2 NA M

3 M M

118

4 F F

5 F F

Source: Sayed-Mouchaweh (2021).

To impute using Python, we first need to check if missing values exist in the dataset, and, if
this is the case, determine the features that have missing values and the number of miss-
ing values. Then, we replace the missing values in each feature by the maximum occurred
value as follows.

1. Create the energy consumption dataset with a missing value in the “gender” feature.

Code
import libraries
import pandas as pd
from sklearn.preprocessing import PolynomialFeatures
from sklearn.preprocessing import LabelEncoder

generate sample data
Table = { \
 'Customer-ID': [1, 2, 3, 4, 5], \
 'Gender':['M', pd.NA, 'M', 'F', 'F'], \
 'Work-type': [1, 2, 2, 3, 3], \
 'Client-satisfaction':[3, 0, 4, 3, 5], \
 'Number-occupants': [2, 4, 2, 1, 2], \
 'Consumption': [70, 140, 65, 40, 65]}
TDF = pd.DataFrame(data=Table)

2. Check for missing values using the Python function isnull().sum(). This function
provides the number of missing values (null) for each feature (column) of the dataset.
For our example, all features have zero, excluding “gender,” which will have one miss-
ing value, NA.

Code
print(TDF.isnull().sum())
console output:
Customer-ID 0
Gender 1
Work-type 0
Client-satisfaction 0
Number-occupants 0
Consumption 0

3. Fill the missing values using the function fillna by the maximum occurred value.
The latter can be found using the function value_counts(). Then, check that there
are no more missing values using the Python function isnull().sum().

119

Code
TDF = TDF.fillna(TDF['Gender'].value_counts().index[0])
print(TDF.isnull().sum())

Feature Encoding

One technique used to convert categorical features into numerical features is label encod-
ing. This alphabetically converts each category in a column to a number between 0 and
the number of categories —1. For this example, the “gender” category will take one of two
variables M and F, which will be replaced by 1 and 0, respectively. It can be implemented
using the scikit-learn function LabelEncoder as follows.

Code
encode the categories in the column
'Gender' by numbers
TDF['Gender'] =
LabelEncoder().fit_transform(TDF['Gender'])

show the resulting column
TDF['Gender']
console output:
0 1
1 0
2 1
3 0
4 0

Although label encoding is straightforward to use and implement, the converted numeri-
cal values can be misinterpreted by a machine learning method since, for example, 1 for
“M” does not mean it has more weight than “F,” which has the value 0.

An alternative to the misinterpretation of the numerical values provided by label encoding
is one-hot encoding. This creates one new feature for each potential value of a categorical
feature by replacing it with 1 or zero. In our example, the “gender” feature will be replaced
by two one-hot encoding features: “M-gender” and “F-gender.” For “M-gender,” all the
male clients will have the value 1, while female clients have the value 0. For the “F-gen-
der,” all female clients will be assigned the value 1, while the male clients will be assigned
0. Similarly, the feature “work type” will be replaced by three one-hot encoding features:
work type 1, work type 2, and work type 3, as illustrated in the table below.

Table 16: One-Hot Encoding for Gender and Work-types Features of a Table

Gender-M Gender-F Work-type-1 Work-type-2 Work-type-3

1 0 1 0 0

0 1 0 1 0

120

1 0 0 1 0

0 1 0 0 1

0 1 0 0 1

Source: Sayed-Mouchaweh (2021).

In the following, we apply the one-hot encoding using Python. It is very useful to show the
type (integer (int), real (float), string (object), mixed numeric and non-numeric (object)) of
each variable in the table. The code below shows this type as follows: Customer-ID int64,
Gender object, Work-type int64, Client-satisfaction int64, Number-occupants int64, Con-
sumption int64.

Code
print('The type of each column is: \n', TDF.dtypes)

1. We can see that both “work-type” and “client-satisfaction” are considered integers. To
create one-hot encoding using Python for these two features, they must be converted
into string:

Code
TDF['Work-type']=TDF['Work-type'].astype(str)
TDF['Client-satisfaction']= TDF[
 'Client-satisfaction'].astype(str)
print('The type of each column is: \n', TDF.dtypes)

2. We now apply the Python function pd.get_dummies in order to create the one-hot
encoding for the three categorical features of “gender,” “work type,” and “number
occupants.”

3. Code
one-hot-encode categorical features
TDF_1hot = pd.get_dummies(TDF)

print the column names of the resulting
dataframe
print(list(TDF_1hot.columns))

console output:
['Customer-ID',
'Number-occupants',
'Consumption',
'Gender_F',
'Gender_M',
'Work-type_1',
'Work-type_2',
'Work-type_3',

121

Tidy dataset
A tidy dataset is represen-

ted by tables of the fol-
lowing characteristics: 1)
each feature forms a col-

umn and contains values,
2) each data point forms a

row, and 3) each type of
observational unit forms

a table.

'Client-satisfaction_0',
'Client-satisfaction_3',
'Client-satisfaction_4',
'Client-satisfaction_5']

One-hot encoding has the advantage of avoiding the unequal weights assigned to a fea-
ture’s categories. However, it quickly becomes useless when the features have many cate-
gories. Therefore, one-hot encoding may dramatically increase the number of features
entailed to generate overfitting issues. In addition, it is not guaranteed that these added
features improve the performances (quality of obtained clusters or predictive power) of
the built model by machine learning approaches.

Feature Generation

There are many techniques used for generating new features. We will present the follow-
ing frequently used techniques: feature splitting, feature grouping, extracting dates, and
cross product features (interaction features).

Feature splitting or spreading

Some features in datasets may include more than one piece of information per cell
defined by a certain row in a certain feature or column. This means that these cells cannot
be treated by machine learning approaches. Rows of these features may contain grouped
information, such as names and dates in the same row, leading to their misinterpretation.
In addition, some parts of the grouped information may not be useful for machine learn-
ing approaches. Hence, splitting, or spreading, features in order to extract useful features
from raw and irrelevant features may improve the performances of machine learning
approaches. For instance, if a feature contains the value “France-Paris,” this value contains
combined information about a country and a city. It cannot be treated (interpreted) by
machine learning approaches in this combined form. It is useful to split it into two useful
features: the country “France” and the city “Paris.” This splitting, or spreading, enables the
generation of a tidy dataset.

Let us take the example of a feature representing the names of clients illustrated in the
table below. We see that each name (row) contains a first name, one or two last names,
and a date. We can split this feature into three features: one representing the first name,
the second representing the last name, and the third representing the year, as illustrated
in the table below.

Table 17: Splitting a Categorical Feature into Three Different Features

Names FirstName LastName Year

Joe B. BARBY
12-05-2019

Joe BARBY 2019

Juliette KARB
18-08-2018

Juliette KARB 2018

122

Lucien VAN
05-07-2017

Lucien VAN 2017

Danielle G. REB
03-09-2020

Danielle REB 2020

Lydia HAM 09-07-2018 Lydie HAM 2018

Source: Sayed-Mouchaweh (2021).

We can apply the feature splitting using Python as follows:

1. Create the dataset with the combined feature to be split “Names” as a DataFrame.

Code
import libraries
import pandas as pd
import numpy as np

generate sample data
Table = { \
 'Customer-ID': [1, 2, 3, 4, 5], \
 'Names': [\
 'Joe B. BARBY 12-05-2019', \
 'Juliette KARB 18-08-2018', \
 'Lucien VAN 05-07-2017', \
 'Danielle G. REB 03-09-2020', \
 'Lydia HAM 09-07-2018'], \
 'Gender': ['M', 'F', 'M', 'F', 'F'], \
 'Work-type': [1, 2, 2, 3, 3], \
 'Client-satisfaction': [3, 0, 4, 3, 5], \
 'Number-occupants': [2, 4, 2, 1, 2], \
 'Consumption': [70, 140, 65, 40, 65]}
TDF = pd.DataFrame(data=Table)

2. Split the feature “names” into three features: “FNF” for the first name, “LNF” for the
last name, and “YF” for the year. To achieve this, we need to use the Python functions
split and map. split allows us to split a long string according to certain defined
separator. For our example, the separator is a space for the first name and last name,
and “-” for the date. map allows us to map a certain element (first, before last, etc.) of
the split string. For instance, applying split function with the separator “ ” on “Joe
B. BARBY 12-05-2019” generates four different elements: “Joe,” “B.,” “BARBY,” and
“12-05-2019.” Applying map to select the first element (x[0]) of the split string gener-
ates “Joe,” while the before last element (x[-2]) generates “BARBY.”

Code
split information in one column into three
TDF['First-Name'] = TDF.Names.str.split(" ").\
 map(lambda x: x[0])

123

TDF['Second-Name'] = TDF.Names.str.split(" ").\
 map(lambda x: x[-2])
TDF['Birth-Year'] = TDF.Names.\
 str.split("-", n=2, expand=True)[2]

Feature grouping

Machine learning approaches work with tidy datasets represented by tables. Each row of
the table represents an observation or data point and each column indicates a feature
value of this data point. However, datasets may not be tidy. Multiple rows may represent
the same data point. As demonstrated in the table below, the energy consumption of the
same customer is represented in different rows. Therefore, it is important to convert an
untidy dataset to a tidy dataset. This can be achieved using group-by operations through
deciding the aggregation function (sum, mean, max, and min, etc.).

Table 18: Untidy Dataset Where the Same Customer Has Different Consumption (Rows)

Customer-ID Sum-Consumption

1 70

2 50

3 65

2 57

3 69

1 73

Source: Sayed-Mouchaweh (2021).

For the example in the table below, the energy consumptions of customers are grouped by
summing them.

Table 19: Grouping the Consumption of the Same Customer Using the Aggregation
Operator Sum

Customer-ID Sum-Consumption

1 143

2 107

3 134

Source: Sayed-Mouchaweh (2021).

Grouping can be applied using Python as follows:

124

1. Create two tables: The first table is a tidy dataset (dat_tidy), and the second is non-
tidy dataset (data_non_tidy). Convert them into DataFrame variables.

Code
dat_tidy = pd.DataFrame({'Customer-ID': [1, 2, 3], \
 'Gender': ['M', 'F', 'M']})
dat_non_tidy = pd.DataFrame(\
 {'Customer-ID': [1, 2, 3, 2, 3, 1],
 'Consumption': [70, 50, 65, 57, 69, 73]})

2. Group the consumptions of the same customer based on their ID (customer-ID) using
the aggregation function sum, then merge the aggregated (dat_tidy) column (sum-
consumption) to the tidy table (TDF) and display the obtained table.

Code
aggregate consumption per customer
dat = dat_non_tidy.groupby('Customer-ID')['Consumption'].\
 agg(['sum'])

rename column
dat.columns = ['Sum-Consumption']

join tables
dat = dat_tidy.merge(dat, left_on='Customer-ID', \
 right_index=True, how='left')

show the resulting table
dat
console output:

print(dat)
Customer-ID Gender Sum-Consumption
0 1 M 143
1 2 F 107
2 3 M 134

Extracting dates

Date columns carry interesting information that machine learning approaches ignore
because they combine year, month, and day in the same cell. Therefore, it is useful to
extract dates to improve the performance of machine learning methods using one of the
following:

• extracting the year, month, or day of the date
• extracting the elapsed time between the current date and the date in the column
• extracting whether the day is a weekday, a weekend, or a holiday

125

Let us apply these three methods using Python:

1. Import date from the Python library datetime, and create an example of a dataset
containing a date column as a DataFrame.

Code
import libraries
import pandas as pd
from datetime import date

generate sample data
Table = {'Customer-ID': [1, 2, 3, 4, 5], \
 'Date': ['12-05-2019', '18-08-2018', \
 '05-07-2017', '03-09-2020', '09-07-2018'], \
 'Consumption': [70, 140, 65, 40, 65]}
TDF = pd.DataFrame(data=Table)

2. Extract information about the date from the date column.

Code
convert 'Date'-column to date format
TDF['Date'] = pd.to_datetime(TDF.Date, format="%d-%m-%Y")

extract the year
TDF['year'] = TDF['Date'].dt.year

extract the month
TDF['month'] = TDF['Date'].dt.month

extract quarter of the year
TDF['quarter'] = TDF['Date'].dt.quarter

3. Extract the past years and months from the date in the date column to today.

Code
extract passed years
years_diff = date.today().year - TDF['Date'].dt.year
TDF['passed_years'] = years_diff

extract passed months
months_diff = (date.today().year - \
 TDF['Date'].dt.year) * 12 + \
 date.today().month - \
 TDF['Date'].dt.month
TDF['passed_months'] = months_diff

4. Extract the name of the day of the date and then display the obtained extracted dates.

126

Code
TDF['day_name'] = TDF['Date'].dt.day_name()

5. We can also indicate whether the extracted day is a weekend by using the function
“dayofweek.” This function returns the values from 0 to 4 for the days Monday to Fri-
day, 5 for Saturday, and 6 for Sunday. Running the following code generates the fol-
lowing results in the table below:

Code

 # extract the day of the week
TDF['dow'] = pd.to_datetime(TDF['Date']).dt.dayofweek

extract weekends
TDF['weekend'] = TDF['dow'].\
 map(lambda x: 0 if x < 5 else 1)

Table 20: Extracting Whether the Day is a Weekend Day or a Business Day

day-name dow weekend

Sunday 6 1

Saturday 5 1

Wednesday 2 0

Thursday 3 0

Monday 0 0

Source: Sayed-Mouchaweh (2021).

Cross products features (interaction features)

We have already seen how to build interaction features between numeric features. Let us
now see how to build interaction features between categorical features. Sometimes cer-
tain features grouped together can generate useful information that those features cannot
provide when they are used individually by machine learning approaches. This is because
gathered features may denote an interesting property that allows the improvement of the
predictive power or the quality of obtained clusters of the machine learning approaches.
For instance, if a medical treatment (yes or no) or obtaining a science grant (yes or no)
depends on the gender of a candidate, then there is an interaction between these two fea-
tures, and it is useful to combine them. This combination allows us to obtain four catego-
ries: (male, yes), (male, no), (female, yes), and (female, no). In other words, the combina-
tion of two interacted features allows to take into account the effect that one of them has
on the level (response) of the other feature.

127

Let us generate interaction features between categorical features using Python. The table
below shows an example of the gender of scientists who received (or did not receive) a
science grant. We would like to know whether the gender affects the status of obtaining a
science grant.

Table 21: Example Showing Whether the Gender Affects the Status of Receiving a Grant

Gender Scientific-Grant

M Y

F N

M Y

F N

F Y

M N

F N

M N

Source: Sayed-Mouchaweh (2021).

The table below shows the one-hot encoding of the table above.

Table 22: One-Hot-Encoding for Gender and “Work-types” Features of Table

Gender-M Gender-F Work-type-1 Work-type-2 Work-type-3

1 0 1 0 0

0 1 0 1 0

1 0 0 1 0

0 1 0 0 1

0 1 0 0 1

Source: Sayed-Mouchaweh (2021).

We can observe that the mean value of not obtaining a grant largely increases when the
gender is “female.” Therefore, there is an interaction between the gender and the status of
obtaining a scientific grant. Therefore, we will run this example using Python as follows:

1. Generate the dataset of energy consumption as a DataFrame.

128

Code
import pandas as pd
from sklearn.preprocessing import PolynomialFeatures
Table = {'Gender': ['M','F','M','F','F','M',’F’,’M’],
 'Science-Grant': ['Y', 'N', 'Y', 'N',
 'Y','N',’N’,’N’]}
TDF = pd.DataFrame(data=Table)

2. Apply the Python function pd.get_dummies to create the OneHotEncoding for the
categorical features “gender” and “science-grant.”

Code
TDF = pd.get_dummies(TDF)

3. Generate the interaction feature between the two categorical features “Work-type-
Gender_F” and “Science-Grant_NClient-satisfaction” using Python function Polyno-
mialFeatures. Since we are interested only in the interaction between features, i.e.,
“Gender_F” x “Science-Grant_N,” the parameter “interaction only” is selected to be
“True.” This allows us to avoid generating the features “Gender_F” x “Gender_F” and
“Science-Grant_N” x “Science-Grant_N.” The parameter “include bias” is deactivated
by assigning the “False” value in order to avoid generating an intercept feature (the
feature in which all polynomial powers are zero, i.e., a column of ones). Calculate the
mean value of female scientists who did not obtain the grant.

Code
generate interaction features
pf = PolynomialFeatures(degree=2, \
 interaction_only=True, include_bias=False).\
 fit(TDF[['Gender_F','Science-Grant_N']])
int_feat = pf.transform(TDF[['Gender_F',\
'Science-Grant_N']])

print(int_feat)
console output:
[[0. 0. 0.]
[1. 1. 1.]
[0. 0. 0.]
[1. 1. 1.]
[1. 0. 0.]
[0. 1. 0.]
[1. 1. 1.]
[0. 1. 0.]]

convert the generated interaction feature array
to a dataframe
TDF = pd.DataFrame(int_feat, \
 columns=['Gender_F','Science-Grant_N', 'FxGrant'])

129

Calculate the mean value of female scientists
who did not obtain the grant
print(TDF['FxGrant'].mean(0))
console output:
0.375

4. Generate the interaction feature between the two categorical features “Gender_M”
and “Science-grant_N” using the Python function PolynomialFeatures. Calculate
the mean value of male scientists who did not receive the grant.

Code
generate interaction features (male x grant)
pf = PolynomialFeatures(degree=2, \
 interaction_only=True, include_bias=False).\
 fit(TDF[['Gender_M','Science-Grant_N']])
int_feat = pf.transform(TDF[['Gender_M', \
 'Science-Grant_N']])

convert the generated interaction feature array
to a dataframe
male_x_grant = pd.DataFrame(int_feat, \
 columns=['Gender_M','Science-Grant_N', 'MxGrant'])

Calculate the mean value of female scientists
who did not obtain the grant
print(male_x_grant['MxGrant'].mean(0))
console output:
0.25

4.3 Text Features
A text, composed by a set of sentences, such as “Martin broke the cup,” contains a lot of
information. To extract the information contained in a text, salient features need to be
defined, e.g., “Martin,” “broke,” “cup.” We can do this by parsing the text and removing cer-
tain useless words. This process is called tokenization. These words need to be encoded as
integers or floating-point values in order to be used as input by machine learning meth-
ods. This process is called feature extraction (or vectorization). In the next section, we will
see some of the frequently used text feature tokenization and vectorization to extract
information from texts.

Bag-of-Words (BoW)

Bag-of-Words (BoW), also called tokenizer or naïve scoring, represents the statistical count
of the words contained in a text. For instance, in the sentence “I will call you if I have time,”
the word “I” has a count of two, while all the other words have a count of one. BoW repre-

130

sents the occurrence number of a word in a sentence. It is the simplest text feature. It is
used in document retrieval since the presence, absence, or the number of times certain
words are mentioned are efficient indicators of a document’s topic content.

Each unique word in a text or document represents one dimension or feature; therefore a
document of n unique words has n dimensions and its BoW is a flat vector of n dimen-
sions. However, BoW does not conserve the order of the words or their hierarchy. There-
fore, BoW cannot conserve the text semantic (never mind the context and meaning of a
text). For instance, dog toy and toy dog have different semantics while sharing the same
BoW. Therefore, the word ordering is one—though not the only—important factor in con-
serving the sentence meaning. In addition, the link or hierarchy between words, such as
dog, cat, and animal, is not conserved by BoW. It is worth mentioning that stop words,
such as “a,” “an,” “the,” “they,” “where,” “etc.,” punctuation, white spaces, and so on, must
be removed from the text since they deliver information which is not relevant to the analy-
sis.

Let us carry out BoW using Python, with the following example text: “Martin is not bad per-
son. Kevin, Martin’s brother, is bad person.” Let us compute the BoW for this text. The text
feature is [‘bad’, ‘brother’, ‘is’, ‘Kevin’, ‘Martin’, ‘not’, ‘person’] and its BoW = [[1 0 1 0 1
1 1] [1 1 1 1 1 0 1]]. The steps are demonstrated below:

1. Import CountVectorizer from Python module sklearn.feature_extraction.text.

Code
from sklearn.feature_extraction.text
 import CountVectorizer

2. Create the following text, compute its BoW, and then display the text feature and its
BoW. The parameter “lowercase” when it is set to “True” converts all words to lower-
case before tokenizing. In order to separate uppercase and lowercase words, such as
“Martin” and “martin,” “lowercase” is set to “False.”’ CountVectorizer can enable the
text preprocessing before generating the vector representation. Scikit-learn has a
built-in list of English stop words in the feature_extraction.text module. This list can
be used by CountVectorizer to remove the stop words. The code below uses this list
allowing to obtain the text feature ['Kevin', 'Martin', 'bad', 'brother', 'person'] and its
BoW = [[0 1 1 0 1] [1 1 1 1 1]].

Code
generate sample data
corpus = ['Martin is not a bad person.',
 'Kevin, is the brother of Martin.',
 'Kevin is a bad person.']

create tokenizer
vectorizer = CountVectorizer(lowercase = False,
 stop_words='english')

131

fit tokenizer
BoW = vectorizer.fit_transform(corpus)

print feature names
print(vectorizer.get_feature_names())
console output:
['Kevin', 'Martin', 'bad', 'brother', 'person']

print the number of occurrences of each
feature in each text element
print(BoW.toarray())

console output:
[[0 1 1 0 1]
[1 1 0 1 0]
[1 0 1 0 1]]

Bag-of-N-Grams

In order to avoid destroying the sentence meaning by breaking it down into individual
words, Bag-of-n-Grams is used. It is a sequence of n successive tokens or words. For
instance, one word is 1-gram or unigram, two successive words is 2-grams or bigram, and
so on. Let us take the text: “Martin is not bad person. Kevin, Martin’s brother, is bad per-
son.” We can create its Bag-of-2-Grams feature text ['Kevin Martin', 'Martin brother', 'Martin
is', 'bad person', 'brother is', 'is bad', 'is not', 'not bad'] and its BoW vector [[0 0 1 1 0 0 1 1] [1
1 0 1 1 1 0 0]]. It is worth mentioning that punctuation is treated as a token (word) separa-
tor by the function CountVectorizer. In addition, the parameter (n, n) indicates the
lower and upper n-values for word n-grams to be extracted. For instance, (1, 2) will
extract the unigrams and bigrams of the text while (2, 2) will extract only bigrams of the
text.

Code
create bag Bag-of-n-Grams tokenizer
vectorizer2 = CountVectorizer(analyzer='word', \
 ngram_range=(2, 2), lowercase=False,
 stop_words='english')

fit the vectorizer
Bo2G = vectorizer2.fit_transform(corpus)

print feature names
print(vectorizer2.get_feature_names())
console output:
['Kevin bad', 'Kevin brother', 'Martin bad',
'bad person', 'brother Martin']

print the number of occurrences of each

132

feature in each text element
print(Bo2G.toarray())
console output (extract):
[[0 0 1 1 0]
[0 1 0 0 1]
[1 0 0 1 0]]

The n-grams contain more information and better conserve the text semantic. The higher
the number of successive words to consider n, the better the conserved information or
semantic. However, the computation cost and required memory space become much
greater. For a feature text of p individual words, there are p2 bigrams.

Term Frequency-Inverse Document Frequency (TF-IDF)

Counts of words cannot provide rich or refined information about the document or text
content. They cannot capture the meaning of a text, its context, nor, most importantly, its
magic. One technique to approaching the context of many documents (on a quantitative
level) is to have useful indicators about the content of a collection of documents, which is
the Term Frequency-Inverse Document Frequency (TF-IDF). It weights the words by their
occurrence frequency in the text. This allows us to detect some meaningful words such as
“excellent,” “magnificent,” or “bad.” In addition, TF-IDF considers the words within the
whole collection of documents. Therefore, it scales down the frequent words while scaling
up the rare words. Hence, a word that appears 100 times will not be 100 times more
important than a word appearing only once.

TF-IDF is a normalized count of words in a set of documents. Let BoW(w,d) be the num-
ber of times that the word w appeared in a document d; it indicates the frequency term
(TF) of word w in document d. Inverse Document Frequency (IDF) is the number of docu-
ments N in the dataset divided by the number nw that the word w occurred in the docu-
ments contained in the dataset. Then, TF-IDF can be obtained by multiplying TF and IDF:TF − IDF = BoW w, d . Nnw = TF . IDF
Let us take the following simple example of two documents:

1. The first document d1 is “Martin is good person”
2. The second document d2 is “Kevin is bad person”

The feature vector for this example is ['Kevin', 'Martin', 'bad', 'good', 'is', 'person']. The term
frequencies are as follows:TF (Kevin,d1) =0, TF (Martin,d1) =1, TF (bad,d1) =0, TF (good,d1) =1, TF (per‐son,d1) =1 TF (Kevin,d2) =1, TF (Martin,d2) =0, TF (bad,d2) =1, TF (good,d2) =0,TF (person,d2) =1
The Inverse Document Frequencies for d1 and d2 are

133

IDF(Kevin,d1) =(N=2/nw=1)=2, IDF(Martin,d1) = (2/1)=2, IDF(bad,d1)=(2/1)=2, IDF(good,d1) =(2/1)=2, IDF(person,d1) =(2/2)=1, IDF(Kevin,d2)=(2/1)=2, IDF(Martin,d2) = (2/1)=2, IDF(bad,d2) = (2/1)=2, IDF(good,d2) =(2/1)=2, IDF(person,d2) = (2/2)=1
TF depends on the word in a certain document, while IDF is the same for a certain word in
any document, e.g., IDF(person,d2) = IDF(person,d1) = 1.

Often, we take the log of IDF instead of the raw IDF. The logarithm returns 1 when the raw
IDF is 0, and makes large values of raw IDF smaller. In addition, in order to avoid dividing
by zero when a word does not occur in any document (nw = 0), 1 is added to the numera-
tor and denominator of the raw IDF as if an extra document were seen containing every
word in the feature vector exactly once. Finally, 1 is added to the obtained IDF allowing
words with zero IDF, i.e., words that occur in all documents, not to be entirely ignored.
Therefore, TF-IDF will be calculated byTF − IDF = TF . IDF = BoW w, d . log2 N + 1nw + 1 + 1
The table below shows FT-IDF using the log formula above, for instance

• TF(Kevin,d1) = 0, IDF(Kevin,d1) = log2((2+1)/(2+1))+1 = 1, therefore, TF-IDF= 1
• TF(good,d1) = 1, IDF(good,d1) = log2((2+1)/(1+1))+1 = 1.4, TF-IDF = 1.4
Table 23: TF-IDF for a Simple Dataset of Two Simple Documents

Word TF IDF TF-IDF

d1 (0) c d1 (0) d2 (1)

Kevin (0) 0 1 Log2(3/2)+1 0 1.4

Martin (1) 1 0 Log2(3/2)+1 1.4 0

bad (2) 0 1 Log2(3/2)+1 0 1.4

good (3) 1 0 Log2(3/2)+1 1.4 0

is (4) 1 1 Log2(3/3)+1 1 1

person (5) 1 1 Log2(3/3)+1 1 1

Source: Sayed-Mouchaweh (2021).

We can see from the table above that a word which appears in each single document, such
as “is,” has a small TF-IDF, while a word which appears in few documents, such as “good,”
has a bigger TF-IDF. Therefore, TF-IDF allows us to distinguish common words, such as
“is,” from rare words, such as “good.” Consequently, TF-IDF can be used to remove com-

134

mon words, which are not useful, and select rare or meaningful words. It is worth men-
tioning that TF-IDF becomes better to be able to detect the frequent words reliably as the
number of documents increases.

Let us apply the TF-IDF using Python using the following steps:

1. Import the Python function TfidfVectorizer from Python library
sklearn.feature_extraction and create the simple dataset of two simple docu-
ments.

Code
import libraries
from sklearn.feature_extraction.text \
 import TfidfVectorizer

generate sample data
corpus = ['Martin is not a bad person.',
 'Kevin, is the brother of Martin.',
 'Kevin is a bad person.']

2. Apply the Python function TfidfVectorizer to this dataset, and get the features (words)
of this dataset using the Python function get_feature_names() and display the
result. In the table above, we integrated the index of each word (from 0 to 5) and
document (from 0 to 1) since Python displays TF-IDF as a combination of the index of
the document and the index of the word. For instance, (0, 1) indicates the TF-IDF for
the word “Martin” in the first document d1. It should be mentioned that the parameter
“norm” is deactivated only to make the results comparable with the examples we
have seen so far. Thus, the TF-IDF is not scaled.

Code
create TF-IDF tokenizer without normalization
TFIDF= TfidfVectorizer(lowercase=False, \
 norm=False, stop_words='english')

fit tokenizer
TFIDFtext = TFIDF.fit_transform(corpus)

print feature names
print(TFIDF.get_feature_names())
console output:
['Kevin', 'Martin', 'bad', 'brother', 'person']

print the values of each Word
(second entry in parenthesis) in each
document (first entry in parenthesis)
print(TFIDFtext)
console output:

135

(0, 4) 1.2876820724517808
(0, 2) 1.2876820724517808
(0, 1) 1.2876820724517808
(1, 3) 1.6931471805599454
(1, 0) 1.2876820724517808
(1, 1) 1.2876820724517808
(2, 0) 1.2876820724517808
(2, 4) 1.2876820724517808
(2, 2) 1.2876820724517808

The computed TF-IDF is not scaled or normalized. This means that TF-IDF will depend on
the length of each document since a certain word may appear much more frequently in a
longer document. Since the length of a document does not contribute to its meaning, it is
very useful to scale the TF-IDF to obtain unbiased TF-IDF with respect to the document
length. There are several norms used to normalize TF-IDF. One of the most used norms isl2 norm. It is simply based on dividing the TF-IDF of each word in a document by the
square root of the sum of the squared TF-IDF of all the words in each document:TF − IDF wi, d l2 = TF − IDF wi, d/ ∑wk ∈ d TF − IDF wk, d 2
This can be done in Python by keeping the default value, which is “True,” of the parameter
“norm” in the Python function TfidfVectorizer by not specifying it:

Code
TFIDF= TfidfVectorizer(lowercase = False)

The table below shows the scaled TF-IDF using l2 norm. The sum of the normalized TF-IDF
of all the features in each document is equal to one. Therefore, if a word is repeated sev-
eral times in a document, then the normalization reduces the generated bias because of
the document length. In the table below, the words “Martin” and “good,” respectively
“Kevin and ‘bad,” are identified as important words in d1, respectively d2, while “is” and
“person” are identified as less important in both documents. This is logic since the words
“Martin,” “good,” “Kevin, and “bad” contribute more to the context and meaning of each
document.

Table 24: Normalized TF-IDF According to l2 Norm for a Simple Dataset of Two Simple
Documents

Kevin (0) Martin (1) bad (2) good (3) is (4) person (5)

d1 (0) 0 0.57 0 0.57 0.40 0.40

d2 (1) 0.57 0 0.57 0 0.40 0.40

Source: Sayed-Mouchaweh (2021).

136

SUMMARY
This unit explained the techniques used to clean, scale, encode, or trans-
form numerical, categorical, and text features in order to extract and
generate features that can be used as input by machine learning algo-
rithms. The goal is to maximize the prediction power and the quality of
obtained clusters of machine learning approaches.

The unit discussed the advantages and drawbacks of the different tech-
niques used to preprocess, transform, and generate new features with
respect to the facility and simplicity of their treatment or interpretation
by machine learning algorithms. The goal is to highlight the suitable
conditions for their use and the complementarity between them. For
instance, making a skewed distribution as normal as possible allows us
to meet this assumption (normal distribution) required by most statisti-
cal models, or making a nonlinear relationship between data samples
linear. This allows us to simplify the treatment of the dataset by using
machine learning approaches. Another example is the interaction fea-
tures that allow us to take into account the effect that one of them has
on the level (response) of the other feature.

137

UNIT 5
FEATURE SELECTION

STUDY GOALS

On completion of this unit, you will be able to …

– describe the different techniques used to select relevant features.
– explain how to rank features according to certain relevant evaluation criteria.
– select the best features in order to maximize the performances and avoid overfitting of

the learned model.

Generalization power
A generalization power of

a model represents its
capacity to predict

unseen data points that
were not used to build the

model.

5. FEATURE SELECTION

Introduction
Feature selection is the process of choosing relevant features from the original features in
order to optimize an objective function during the model construction. The objective func-
tion is defined in such a way that the separation of clusters (for unsupervised machine
learning), or the discrimination between classes (in supervised machine learning) is maxi-
mized. Therefore, the selected features must capture most of the useful information. To
this end, different evaluation criteria are used to determine the information carried out by
each of the original features as well as the combinations of them. It is worth mentioning
that dimensionality reduction techniques, such as Principal Component Analysis (PCA),
differ from feature selection techniques in the fact that the latter transform original fea-
tures, and not selecting a subset of them, and it requires all original features to perform
this feature transformation.

Feature selection becomes necessary for datasets described in high-dimensional feature
space. This is because the performances (prediction power for supervised machine learn-
ing, quality of obtained clusters for unsupervised machine learning, learning speed, gen-
eralization power, processing time, etc.) of the learned model and the interpretation
power of its output decrease when the number of used features becomes very large. When
a model does not generalize well to unseen data, this is known as an overfitting problem,
which happens when the number of features is very large, in particular for inherent sparse
datasets. Indeed, irrelevant input features may behave as noises, resulting in worse pre-
diction by the learned model. In addition, since clustering approaches consider all fea-
tures equally important, they may not behave well in the case of a high dimensional fea-
ture space. Finally, reducing the number of input features helps to reduce the size of
dataset, allowing better data storage, collection, and time processing.

Feature selection can be performed manually or with algorithms. When the number of fea-
tures is small (less than a dozen features), and if you have enough domain knowledge or it
is obvious to decide if features are relevant, then you can manually assess the usefulness
of each feature to drop the irrelevant or useless ones. For instance, if you want to build a
model to predict the weight of a person, features such as eye color or favorite movies are
useless since they do not impact weight. Features such as height or proclivity to exercise
might be useful. However, manual feature selection is time-consuming, and relevant fea-
tures are hard to discover, particularly when specialized domain knowledge is required.
Therefore, when the number of features is large (hundreds of features) and your domain
knowledge is limited, feature selection with algorithms for automation is more efficient
and better adapted.

Feature selection algorithms can broadly be divided into two categories: filter and wrap-
per models. In the filter methods, features are selected by studying their characteristics
using some statistical evaluation criteria, such as their variance or correlation. They have
the advantage that the features are independently selected before the training of the
model starts. Indeed, the features are selected without the need for a model (e.g., a

140

machine learning method), therefore the selected features can be used to train any model.
The wrapper methods evaluate the features’ relevance using a certain learning approach.
In other words, the features that give the best discriminative power, e.g., prediction accu-
racy or clusters’ quality, using a specific learning approach, will be selected. Consequently,
when applying wrapper methods for feature selection, the training of the model must be
conducted repeatedly. In both categories, the subset of selected features are identified
either by an index or by their weight. The index indicates the rank of a feature (e.g., a fea-
ture with rank 1 means that it is the best feature with respect to its relevance or impor-
tance). The weights indicate the relevance of features: The higher the feature weight, the
better its relevance or rank. In both categories, feature selection can be either univariate
or multivariate. In univariate feature selection, each feature is independently evaluated,
while in multivariate feature selection, each feature is evaluated with respect to other fea-
tures.

Feature selection can also be divided into Supervised Feature Selection (SFS), when labels
(output) of data points are available, and Unsupervised Feature Selection (UFS) when the
labels are not available. SFS selects discriminant features that allow separate data points
to belong to different classes. UFS is much harder to perform than SFS because defining a
feature’s relevancy in the absence of output (labels) becomes challenging. It is worth men-
tioning that SFS is much more developed in the literature than UFS. This is because it is
much easier to evaluate the relevance of input features when the response or output vari-
able (labels) is available. The table below summarizes the characteristics of the different
feature selection techniques that will be treated in this unit.

Table 25: Overview of the Characteristics of Feature Selection Techniques

Unsupervised/
Supervised

Univariate/Multi-
ariate Filter/Wrapper

ANOVA test/Chi-square test Supervised Univariate Filter

Mutual information Supervised Univariate Filter

Feature variance Unsupervised Univariate Filter

Correlation matrix Unsupervised/Super-
vised

Uni-variate/Multi-
variate

Filter

Permutation feature impor-
tance

Supervised Univariate Wrapper

Exclusive FS (EFS) Supervised Univariate Wrapper

Sequential Forward FS
(SFS)/ Sequential Backward
FS (SBS)

Supervised Multivariate Wrapper

Recursive Feature Elimina-
tion (RFE)

Supervised Multivariate Wrapper

Source: Sayed-Mouchaweh (2021).

This unit considers the following questions:

141

• What are the different techniques used to evaluate the feature relevancy when a dataset
is labeled and unlabeled?

• How are features ranked to select the most relevant in univariate and multivariate
modes?

5.1 Feature Importance
Features can be ranked according to their relevance to the response variable (output and
labels). This can be achieved by assigning a score to features according to their contribu-
tion to the prediction of the response. To this end, the correlation between each feature
and the response variable is evaluated using some meaningful statistical criteria, such as
the Chi-square test for feature selection, the analysis of variance (ANOVA) test, and mutual
information. The higher the correlation between an input feature and the response varia-
ble, the better the score or the importance of this feature in predicting the response. The
feature importance requires the output variable (i.e., response variable or labels) since it is
calculated as the correlation between an input feature and the output variable. Therefore,
feature importance is primarily a supervised feature selection technique. That being said,
the presented techniques can also be used for unsupervised machine learning as the
importance of features can be evaluated with respect to their ability, for instance, to sepa-
rate clusters.

ANOVA Test

ANOVA is a statistical method that compares the variance of one independent feature
(input feature) with one dependent feature (output feature) to assess whether they are rel-
evant (i.e., they are from the same population or distribution). It is a hypothesis-testing
technique used to determine whether a null hypothesis is accepted or rejected for an
alternative.

Let us suppose we have a dataset X containing k input features (columns) and n data
points (rows). Let us perform the ANOVA test for X. Let Xjm, j = 1, .., k, be the mean value
of each feature j. Let Xm be the overall mean of the dataset. We need to calculate the sum
of squares between input features (SSB) as follows:

SSB = ∑j = 1k n · Xjm − Xm 2
The sum of the squared differences between each data point, Xji, i = 1, .., n, according to
an input feature, Xj, j = 1, .., k, and its corresponding mean, Xjm, (SSE) is then calculated
as follows: ∑j = 1k ∑i = 1n Xji − Xjm 2

142

Alpha level
The Alpha level can be
obtained by subtracting
the confidence level from
100. For instance, a confi-
dence level of 95 percent
requires an Alpha level of
five percent.

SSE is also called the sum of squared errors or residuals. Then, the mean square between
input features (MSB) and the mean square of errors (MSE) are calculated as follows:MSB = SSBk − 1 , MSE = SSEn − kk – 1 and n – k are called, respectively, the degree of freedom 1, df1, and degree of free-
dom 2, df2. The F-value used to accept or reject the null hypothesis is then calculated as
follows: F = MSBMSE
ANOVA test is a univariate feature technique (Bejani et al., 2014) since it is applied to indi-
vidual features. It belongs to the filter feature selection category since it is conducted
before the actual machine learning takes place. It is used for classification problems (the
response variable is categorical) and when the input features are numeric (continuous).

The null hypothesis is that the feature has no relevance to the response (target) variable,
while the alternative hypothesis is that the feature has some relevance to the response
variable. In order to accept or reject the null hypothesis, p-value probabilities are used. p-
values represent the probability or chance that the data points occurred under the null
hypothesis. They are decimals from 0 to 1 since they are probabilities. The lower the p-
value of a certain feature, the better its chance to have some relevance (i.e., rejecting the
null hypothesis for the alternative hypothesis). In order to choose the value of p, we need
to choose the confidence level indicating our confidence in rejecting or accepting the null
hypothesis. For instance, if we want to be within the confidence interval bigger than or
equal to 95 percent and less than 100 percent, we need an Alpha level of five percent. The
null hypothesis will be rejected if p is smaller than or equal to 0.05. This means that we
have strong evidence that the null hypothesis is valid. It is worth mentioning that

• p > 5% means “not significant,” shown as “n.s.” in graphics.
• 0.01 < p <= 5% means “significant,” shown with an asterisk, *, in graphics.
• 0.001 < p <= 0.01 means “highly significant,” shown with two asterisks, **, in graph-

ics.
• p <= 0.001 means “very highly significant,” shown with three asterisks, ***, in graph-

ics.

In order to run ANOVA using Python, we need to import two functions from the scikit-learn
library: SelectKBest and f_classif. SelectKBest is a function that takes two arrays as
input: the data points X and target or response variable or column y, and returns a pair of
arrays (features scores and p-values) or just the features’ scores array. It return f_classif
is a function that performs ANOVA test by assigning it a p-value for a classification task.
Then, SelectKBest will rank the different features according to their assigned p-value (the
lower the better) and will retain the best k features. Hence, k must be predefined by the
user.

143

Let us take the Iris dataset as an example and apply ANOVA to rank the different features
in order to select the best k ones. The steps are demonstrated below:

1. Import the required libraries and load the Iris dataset as a DataFrame.

Code
import libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import f_classif

load sample data
iris = load_iris()
feature_names = load_iris().feature_names
X = pd.DataFrame(iris.data, columns=iris.feature_names)
y = iris.target

2. Choose f_classif (F-values in the ANOVA test) as the criterion used in order to
select the best k = 2 features.

Code
selector = SelectKBest(score_func=f_classif, k=2)

3. Train and transform the Iris dataset in order to keep only the selected features. In this
example, it should be the best two features according to their test statistics value (F-
value for ANOVA) and p-values, and then display the feature names and their assignedp-values. As can be seen from the console output, all features are very highly signifi-
cant with respect to their importance. Judging by the F-values, “petal length” and
“petal width” could be selected as the two most important features in this context.

Code
fit the selector
X_new = selector.fit_transform(X, y)

print F- and p-values per feature
pd.DataFrame({'features': feature_names, \
 'Scores': selector.scores_, \
 'p-values': selector.pvalues_})

console output:
features Scores p-values
0 sepal length (cm) 119.264502 1.669669e-31

144

1 sepal width (cm) 49.160040 4.492017e-17
2 petal length (cm) 1180.161182 2.856777e-91
3 petal width (cm) 960.007147 4.169446e-85

ANOVA ranks the features by estimating the linearity degree between a feature and the
response or target variable. Therefore, ANOVA cannot capture nonlinear relationships
between input features and the target or output variable.

Chi-Square Test

The Chi-square test allows the evaluation of the independence between two variables. It is
calculated based on the difference between the observed O and expected E values for
input feature with respect to each category of the response variable as follows:

Cℎi − square = ∑i Oi − Ei 2Ei
Let us take the table below, called a contingency table, showing the number of patients
with respect to their gender (Male/Female) who responded (Yes/No) to medical treatment.
The table represents the observed values of each patient gender who responded to the
medical treatment (e.g., O(Male/Yes) is the number of “Male” patients who responded
(“Yes”) to the treatment).

Table 26: Example Showing How a Chi-Square Can Be Calculated

Gen-
der Responded-Yes Responded-No Total

Male O(Male/Yes) O(Male/No) nMale = O(Male/Yes)+ O(Male/No)
Female O(Female/Yes) O(Female/No) nFemale = O(Female/Yes) + O(Female/No)
Total nYes = O(Male/Yes) +O(Female/Yes) nNo = O(Male/No) +O(Female/No) n = nMale + nFemale

Source: Sayed-Mouchaweh (2021).

If we consider the patient gender (input feature) independent from the treatment
response (response variable), then we expect that the probability that the treatment
response is “Yes” (“No”) when the patient gender is “Male” (“Female”) will be the multipli-
cation between the probability that the patient gender is “Male” (“Female”) and the prob-
ability that the treatment response is “Yes” (“No”). For instance, the expected value for the
number of “Male” patients that responded “Yes” to the medical treatment is calculated as
follows: E Male Y es = n · p Male · p Y es = n · nMalen · nY esn

145

Similarly, the other expected values can be calculated as follows:E Male No = n · p Male · p No = n · nMalen · nNonE Female Y es = n · p Female · p Y es = n · nFemalen · nY esnE Female No = n · p Female · p No = n · nFemalen · nNon
Then, the Chi-square score is calculated by

Chi − square = O Male Y es − E Male Y es 2E Male Y es+ O Male No − E Male No 2E Male No+ O Female Y es − E Female Y es 2E Female Y es+ O Female No − E Female No 2E Female No
The greater the difference between the observed and the expected values, more the Chi-
square value. This indicates that the input feature (patient gender) is dependent on the
response variable (treatment response). The confidence that we can assign to the calcula-
ted Chi-square value can be found using the table of Chi-square statistics. We need to find
the degree of freedom, which is calculated as as (r-1) · (c-1) where r and c are rows and
columns of the contingency table. For the table above, the degree of freedom is 1.

In feature selection, thus, the Chi-square test allows us to test the relationship between an
input categorical feature with a categorical output or response variable. It is also a hypoth-
esis-testing technique, like ANOVA, but it is used when the input features and the output
or response variable are categorical. Chi-square is a univariate feature selection technique
since it independently evaluates the importance of a single input feature. It is also a super-
vised feature selection technique since it requires the response or output (labels) variable.

The null hypothesis is that the input feature is independent of the response variable. The
alternative hypothesis is that the feature is dependent on the response variable. High p-
values of Chi-square tests indicate that the null hypothesis is not correct and therefore it is
rejected in favor of the alternative hypothesis. Therefore, higher values of Chi-square tests
indicate that the feature is more dependent on the response variable, i.e., it has more
importance. In other words, the importance of an input categorical feature increases with
the increase of its Chi-square test, indicating that it has a better relationship, similarity, or
relevance to the categorical response variable.

Let us take the following example representing the clients who either left a bank or deci-
ded to stay. This dataset is used to predict the bank churn rate. The dataset can be uploa-
ded from Dasgupta (2019). It contains 1000 rows and 14 columns. Each row represents a
client; the columns represent the description of the client characteristics, such as age,
country, ID, name, gender, and estimated salary. The last column is the response or output

146

Churn rate
A customer churn is the
rate of customers who
stopped using a service or
product in a given time
frame.

variable which represents whether the client left the bank (value 1) or decided to stay
(value 0). In this example, we will focus on three categorical features (Gender, HasCrCard,
IsActiveMember) since Chi-square tests are usually applied for the assessment of the
importance of categorical input features. The goal is to rank these features according to
their relevance to the response variable. The table below shows the first five rows of the
dataset with respect to these three features.

Table 27: Churn Rate According to Gender, HasCrCard, and IsActiveMember Features

Gender HasCrCard IsActiveMember
Response variable (Exited/Not-
Exited)

Female 1 1 1

Female 0 1 0

Female 1 0 1

Female 0 0 0

Female 1 1 0

Source: Sayed-Mouchaweh (2021).

Let us apply a Chi-square test using Python to this example in order to rank these three
categorical features. The steps are demonstrated below.

1. Import the required libraries and functions.

Code
import pandas as pd
from sklearn.feature_selection import SelectKBest, chi2
from kaggle.api.kaggle_api_extended import KaggleApi
import zipfile
from sklearn.preprocessing import LabelEncoder

2. The dataset is contained in a file called “client.csv” that can be downloaded from Das-
gupta (2019). After loading this file in Python, assign the dataset to a DataFrame varia-
ble as follows:

Code
log into kaggle
api = KaggleApi()
api.authenticate()

download the data
kaggle_user = 'sonalidasgupta95'
kaggle_project = 'churn-prediction-of-bank-customers'
api.dataset_download_files(kaggle_user + '/' + kaggle_project)

147

unzip the data
zip = zipfile.ZipFile(kaggle_project + '.zip').\
 extractall()

load the data
churn_df = pd.read_csv('Churn_Modelling.csv')

3. Divide the dataset into two DataFrames: One contains only the input features, and the
other contains the response variable. Then, create a new DataFrame containing only
the three categorical input features that we want to rank using the Chi-square test.

Code
y = churn_df['Exited']
X = churn_df[['Gender', 'HasCrCard', 'IsActiveMember']]

4. Transform the feature “Gender” into a numeric feature using the LabelEncoder techni-
que. LabelEncoder is a scikit-learn function that converts alphabetically each category
in a column to a number between 0 and 1. For instance, “Gender” will be replaced by
two labels 0 and 1 since “Gender” has two categories “M” and “F.” “F” will be concer-
ted to “0” and “M” to “1.”

Code
from sklearn.preprocessing import LabelEncoderX['Gender']
= LabelEncoder().fit_transform(X['Gender'])

5. Apply the module SelectKBest using the ranking criterion Chi-square test. We set k to
be 2 to select the best two features from the three original features.

Code
create and fit feature selector
selector = SelectKBest(chi2, k=2)
selector.fit(X,y)

apply feature selector to the data
X_new = selector.transform(X)

6. Display the name and the rank of the three features. The Chi-square test uses p-val-
ues, as ANOVA, in order to rank the three features (the lower the p-value, the better
the feature rank). We will have the following results: “Gender, 7.01e-13,” “HasCrCard,
0.69, “IsActiveMember,” 1.56e-27. We can see the most relevant feature is “IsActive-
Member,” then “Gender,” and finally “HasCrCard.”
A p-value less than or equal to 0.05 is statistically significant. It indicates strong evi-
dence that the input feature is relevant (dependent) to the response variable, as there
is less than or equal to a five percent probability that the independent hypothesis

148

(null hypothesis) is correct. Therefore, “HasCrCard” does not have a significant rele-
vance with the response variable (exited/not exited) since its p-value is very high
(above 0.05).

7. Code
print Chi²-statistics- and p-values per feature
pd.DataFrame({'features': X.columns.values, \
 'Scores': selector.scores_, \
 'p-values': selector.pvalues_})

console output:
features Scores p-values
0 Gender 51.539926 7.015575e-13
1 HasCrCard 0.150041 6.984962e-01
2 IsActiveMember 118.199414 1.568036e-27

Mutual Information

Mutual information (MI) measures the amount of information gained, or the reduction in
the uncertainty, about one variable or feature given a known value of another feature. For
instance, if variable X is the roll of a fair 6-sided die, and Y indicates if the roll is even, Y =1, or not, Y = 1. The value of Y provides information about the value of X and vice versa.
Indeed, knowing that Y = 1 provides information that X is one of the following values: 2,
4, and 6. Therefore, X and Y share mutual information. The mutual information between
two variables X and Y can be calculated as follows:MI X, Y = ∑y ∈ Y ∑x ∈ X p x, y · log2 p x, yp x · p y
where p(x) and p(y) are the marginal probabilities, and p(x, y) is the joint probability.

Table 28: How to Calculate the Mutual Information (Example)

X = x1 X = x1 X = x1 X = x1 X = x2 X = x2Y = 1 Y = 2 Y = 2 Y = 2 Y = 1 Y = 2
Source: Sayed-Mouchaweh (2021).

To understand how the mutual information can be calculated, let us take the following
example illustrated in the table above. We have p(x1) = 4/6, p(x2) = 2/6 = 0.5, p(Y=1) = 2/6, p(Y = 2) = 4/6, p(x1,Y = 1)=1/6, p(x1,Y = 2) = 3/6, p(x2,Y = 1) =1/6, and p(x2,Y = 2) = 1/6. Therefore, mutual information is calculated as follows:

149

MI X, Y = p x1, Y = 1 *log2 p x1, Y = 1p x1 *p Y = 1 + p x1, Y = 2 *log2 p x1, Y = 2p x1 *p Y = 2 + p x2,Y = 1 *log2 p x2, Y = 1p x2 *p Y = 1 + p x2, Y = 2 *log2 p x2, Y = 2p x2 *p Y = 2 = − 1. 87
Mutual information measures the dependence between two variables. In feature selec-
tion, these two variables are an input feature X and the response or output variable y.
Therefore, the mutual information MI(X, y) between X and y measures the average
amount of information, gain of information, that X transfers about y. The prediction
power increases when the value of mutual information MI(X, y) increases. Therefore, MI
can be used to rank the input features X with respect to the importance of their depend-
ence with the response variable y. The mutual information has the following properties:

• It is positive 0 ≤ MI.
• It is symmetric MI(X,y) = MI(y,X).
• It is equal to zero when the input feature and the response variable are independent. In

this case, the input feature is not relevant and should be dropped.

The advantage of mutual information over ANOVA and the Chi-square test is that it is bet-
ter suited to capturing nonlinear relationships between X and y because it is based on the
use of the logarithmic function, which can help to make a nonlinear relationship appear
linear in some cases. Mutual information is a univariate feature selection technique that is
used to measure the dependence or relevance between an input feature and the response
or output (label) variable. Therefore, it is a supervised feature selection technique since
we need to have the output variable. It belongs to the filter feature selection category of
techniques since it can be calculated without the need for any machine learning before
the selection is conducted.

Let us use Python in order to use the mutual information between the different input fea-
tures of the Iris dataset and its output or label variable as a selection criterion. We will
rank the different input features according to their relevance (mutual information or
dependence) to the output variable and then select the best k = 2 features. The steps are
demonstrated below:

1. Import the required libraries and functions and import the Iris dataset from
skleran.datasets as a DataFrame. The mutual_info_classif function allows us
to compute the mutual information for the classification task.

Code
from sklearn.feature_selection import mutual_info_classif
from sklearn.feature_selection import SelectKBest
import pandas as pd
from sklearn.datasets import load_iris
iris = load_iris()

150

feature_names = load_iris().feature_names
X = pd.DataFrame(iris.data, columns=iris.feature_names)
y = pd.DataFrame(iris.target)

2. Use the mutual_info_classif criterion as a score function in SelectKBest and rank
the features according to their mutual information. Then, display the name and the
mutual information for each of the four features of the Iris dataset.

Code
selector = SelectKBest(score_func=mutual_info_classif, \
 k=2)
X_new = selector.fit_transform(X, y)

Running the code above provides the following rank (from the highest to the lowest)
for the four input features of the Iris dataset: “petal length (cm),” 1.00, “petal width
(cm) ”0.88, “sepal length (cm),” 0.63, and “sepal width (cm),” 0.32.

3. Display the name and mutual information of the k = 2 best selected features accord-
ing to their mutual information. The two best selected features are “petal length” and
“petal width.”

Code
print mutual information per feature
pd.DataFrame({'features': X.columns.values, \
 'Scores': selector.scores_})

console output:
features Scores
0 sepal length (cm) 0.508725
1 sepal width (cm) 0.302152
2 petal length (cm) 0.982984
3 petal width (cm) 0.994338

Permutation Feature Importance

Feature permutation allows us to evaluate a featureʼs impact on the model prediction
power. The amplitude of this impact represents the importance of the permutated feature.
For instance, we build a machine learning model to predict the weight of a person using
the description of their characteristics, such as height and eye color. We start by splitting
the available data into training and test data. The training dataset is used learn, fit, the
model. We then calculate the accuracy rate of this model using the test dataset. After that,
we start by randomly permuting the values of the each column (i.e., feature). Then, we cal-
culate the accuracy rate of the already built model. If the permutated feature is not impor-
tant, then the reduction in accuracy rate of the model will be minor. If this reduction is
high, this indicates that the feature is important since it has a big impact on the model
prediction accuracy. For instance, permuting the values of the “eye color” will not have an
impact on the accuracy rate of the model, while permuting the values of the “height” fea-
ture will reduce the accuracy rate considerably.

151

Permutation feature importance is model agnostic in the sense that this technique can be
applied to any machine learning algorithm. It is a supervised feature selection technique
since the labels (target variable) are required to calculate the model accuracy.

Let us utilize Python to evaluate the feature importance of the Iris dataset by using the
permutation feature importance technique. The steps are demonstrated below:

1. Import the libraries and load the Iris dataset.

Code
load libraries
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.inspection import permutation_importance
from sklearn.neighbors import KNeighborsClassifier

load sample data
iris = load_iris()

2. Divide the Iris dataset into training and test sets.

Code
X_train, X_test, y_train,y_test = train_test_split(\
 iris.data, iris.target)

3. Build the model using a machine learning approach such as k-nearest neighbors, then
train the model using the training set.

Code
create and fit a KNN model
model = KNeighborsClassifier()
model.fit(X_train, y_train)

4. Perform permutation feature importance using the test dataset and repeat the per-
mutation 10 times.

Code
assess feature importance by permutation
feat_imp = permutation_importance(model, \
 X_test, y_test, n_repeats=10, \
 scoring='accuracy')

5. Display the mean importance of each feature of the Iris dataset.

152

Code
pd.DataFrame({'features': iris.feature_names, \
 'importances_mean': feat_imp['importances_mean'], \
 'importances_std': feat_imp['importances_std']})

console output:
features importances_mean importances_std
0 sepal length (cm) -0.034211 0.016850
1 sepal width (cm) -0.021053 0.015789
2 petal length (cm) 0.544737 0.110432
3 petal width (cm) 0.107895 0.049162

The scores in the table above show how much model performance and accuracy rate
decreased with a random permutation. Therefore, the most important features are first
“petal length,” then “petal width.” The other two features have very little importance since
their impact on the accuracy rate is very small. The presented techniques evaluate feature
importance for the whole dataset and trained machine learning model.

There are other techniques that consider individual samples for the feature importance
evaluation, such as minimum/maximum accuracy samples, Local Interpretable Model-
agnostic Explanations (LIME) (Thanh-Hai et al., 2020), and SHapley Additive exPlanations
values (SHAP) (Marcílio & Eler, 2020). These methods are all model agnostic in the sense
that they can be applied to any kind of machine learning algorithm. A detailed explanation
of these techniques is beyond the scope of this section, but the main concepts are briefly
presented.

In minimum/maximum accuracy feature importance, the feature importance is based on
its contribution to the prediction of the sample in the test dataset with the highest accu-
racy as well as the sample with the lowest. The model agnostic LIME technique selects one
sample x and generates samples around it. LIME weights the generated samples according
to their distances to x. A simple machine learning approach, such as linear regression, is
then applied to assess the importance of features on the prediction of x by using the
regression weights. The model agnostic SHAP explains the prediction of a data point x by
calculating the contribution of each feature to its prediction. Therefore, features with large
absolute Shapley values are important since they largely contribute to the prediction of
the different data points in the dataset.

5.2 Feature Variance
Features with the same value do not carry information and must be removed. Indeed, fea-
tures that do not vary within themselves do not possess predictive power. The variance of
a feature indicates how much it varies within itself. When a feature has one unique value
which is the same for all samples, then its variance is equal to zero. Therefore, features
with a variance that does not exceed a predefined threshold should be dropped. The other
features, possessing a variance greater than this threshold, will be selected. The threshold

153

is defined in order to remove features (columns) that have few unique values with respect
to the number of rows (data points) or when the ratio of the frequency of the most com-
mon value to the frequency of the second most common value is high.

Feature variance belongs to the filter feature selection category since it filters the features
before any machine learning model is trained. In addition, it is an unsupervised feature
selection technique since it does not need the response (output or labels) column in order
to compute the variance of a feature.

Let us take the example of the table below. We can see that one column, feature F1, has
only one unique value, therefore it can be dropped. The fourth column has a small var-
iance, so it will also be dropped as it does not introduce considerable information to the
model. Only features F2 and F3 will be selected since they have a large variance. We can
see that each feature was independently evaluated by computing its variance. Hence,
selecting features with respect to their variance is a univariate feature selection.

Table 29: Selecting High Variance Features (Example)

F1 F2 F3 F4

0 2 0 3

0 3 4 3

0 5 1 2

Variance 0 1.55 0.88 0.22

Source: Sayed-Mouchaweh (2021).

Let us run this example using Python. We can do this by using the function VarianceThres-
hold() from the library sklearn.feature_selection. This function drops all the fea-
tures that have zero variance. However, if we want to select only the features with a var-
iance greater than a predefined threshold, then we can set the parameter threshold of this
function as we will see in the following code. The steps are demonstrated below:

1. Import the required libraries and function and then create the example of the table
above.

Code
load libraries
import numpy as np
import pandas as pd
from sklearn.feature_selection\
 import VarianceThreshold
from sklearn.feature_selection import VarianceThreshold
from sklearn.datasets import load_iris
from matplotlib import pyplot as plt

154

generate sample data
X = np.array([[0, 2, 0, 3], [0, 3, 4, 3], \
 [0, 5, 1, 2]])

2. Apply the function VarianceThreshold with a predefined threshold equal to 0.4 in
order to drop out features with variance less than 0.4 and then display the variances
of the features and the selected features.

Code
apply variance threshold
selector = VarianceThreshold(threshold=0.4)
Xs = selector.fit_transform(X)

show the variances per feature
(the ones above the threshold were chosen)
print(selector.variances_)
console output:
[0. , 1.55555556, 2.88888889, 0.22222222]

Let us now use the function VarianceThreshold in order to select the relevant features
of Iris dataset.

3. Load the Iris dataset as a DataFrame.

Code
iris = load_iris()
X = pd.DataFrame(iris.data, columns=iris.feature_names)
y = iris.target

4. Create and fit the VarianceThreshold object and use it to transform the data (select
features).

Code
selector = VarianceThreshold(threshold=0.6)
selector.fit_transform(X)

5. Display the name and variance of each of the four features of the Iris dataset.

Code
show the variances per feature
(the ones above the threshold were chosen)
pd.DataFrame({'features': iris.feature_names, \
 'variances': selector.variances_})

The table below shows the result of running the code above.

155

Table 30: Name and Variance of Each of the Four Iris Dataset Features

'sepal length (cm)' 0.68

'sepal width (cm)' 0.18

'petal length (cm)' 3.09

'petal width (cm)' 0.57

Source: Sayed-Mouchaweh (2021).

6. Create a bar chart to visually compare the features variances. The figure below shows
the obtained bar chart for the Iris dataset. Please note that the features in the Iris
dataset are ordered as follows: feature 0 is “sepal length,” feature 1 is “sepal width,”
feature 2 is “petal length,” and feature 3 is “petal width.”

Code
plt.bar(x=feature_names, height=selector.variances_)
plt.ylabel('Feature Variance')
plt.title('Iris features variance comparison')
plt.show()

156

Figure 43: Features Variances of the Iris Dataset (Bar Chart)

Source: Sayed-Mouchaweh (2021).

7. Select features with variance greater than 0.6 and display the names of selected fea-
tures. The method get_support() returns a Boolean array where the value “True” is
assigned to the selected features. For instance, the table above showing the features
variances, get_support() will provide the following array [True, False, True, False]
when 0.6 is used as a threshold (as it was set in the sample code above). This indicates
that the first and third features are selected since their variances are greater than 0.6.

Code
for selected_feature in \
selector.get_support(indices=True):
print('* ' + feature_names[selected_feature])
console output:
* sepal length (cm)
* petal length (cm)

5.3 Correlation Matrix
The correlation between two variables indicates that values in one variable systematically
move toward one direction if values in the other variable systematically move in one direc-
tion. Therefore, when two variables are correlated, as one variable changes, so does the
second variable. However, it is worth mentioning that the correlation between two varia-

157

bles does not necessarily imply a causation between them. This relationship or correlation
between the two variables can be positive when they change in the same direction or neg-
ative when they change in two different directions. When the correlation is equal to zero,
then the two variables do not show this systematic movement.

The correlation, in the feature selection process, can be between two input features or
between an input feature and the target or response variable. Therefore, the correlation
can be a univariate and multivariable feature selection technique. In the univariate mode,
the correlation between an input feature and the response feature is calculated in order to
select the relevant features to the output (label) prediction and to remove the irrelevant
features. In the multivariate mode, the correlation is calculated between two input fea-
tures to remove the redundant features, i.e., features highly correlated, thus, carrying the
same information. Both cases improve the performance of the trained models (prediction
accuracy, quality of obtained clusters, learning time, processing time, etc.) and reduce
overfitting issues. Finally, the correlation can be considered as both a supervised and
unsupervised feature selection technique since it can be used when the response variable
is available or unavailable.

There are several correlation techniques used to measure the correlation between two
variables. The first technique is called the covariance and is calculated as follows:

Cov X,Y = 1n − 1 ∑i = 1n xi − meanx · yi − meany
where n is the number of rows in X and Y.

The covariance measures a linear relationship between two variables. However, the inter-
pretation of its values is not easy. To overcome this problem, the Pearson’s correlation is
commonly used. Pearson’s correlation is the normalization of the covariance between the
two variables by dividing the covariance by the product of their standard deviations as fol-
lows: Pearson′scorrelationscore X,Y = Cov X, YσX · σY
The normalization of the correlation allows us to facilitate its interpretation since the Pear-
son’s correlation score is between —1 and +1. When it is close to —1 or +1, this indicates
strong negative or positive correlation between X and Y, respectively. When it is equal to
zero, this indicates that both variables X and Y are independent. When the Pearson’s cor-
relation scores are calculated between each pair of the features as well as between each
feature and the response variable, the result is a symmetric matrix called a correlation
matrix. Each cell of the diagonal of the correlation matrix has a value of 1.0 since each fea-
ture perfectly correlates with itself.

Let us use Python to compute the correlation matrix of the Iris dataset and select the best
two features according to the Pearson’s correlation score. The steps are demonstrated
below:

158

1. Import the required libraries and upload the Iris dataset as a DataFrame.

Code
load libraries
import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
from matplotlib import pyplot as plt
import seaborn as sns
from scipy import stats

load sample data
iris = load_iris()
X = pd.DataFrame(iris.data, \
 columns=iris.feature_names)
y = pd.DataFrame(iris.target, \
 columns=['Response_variable'])
XY = pd.concat([X, y], axis=1)

2. Concatenate the input features X with the response variable y to compute the corre-
lation matrix between each pair of columns (between each pair of input features and
between each input feature and the response variable). Then, compute the Pearson’s
correlation score and display the correlation matrix. The table below shows the Pear-
son’s correlation matrix. Based on this table, we can observe that “petal width” and
“petal length” are very relevant to the response variable. However, they are strongly
correlated to each other. Therefore, it is better to select one of them since their strong
correlation may indicate their redundancy. “sepal width” is the feature least correla-
ted with the other features. Hence, it may be selected as a second feature to retain.

Code
cor_mat = XY.corr(method='pearson')

Table 31: Pearson’s Correlation Matrix for the Iris Dataset

sepal
length

sepal
width

petal
length

petal
width

Response_variable

sepal length 1 —0.117 0.871 0.817 0.782

sepal width —0.117 1 0.428 —
0.366

—0.426

petal length 0.871 —0.428 1 0.962 0.949

petal width 0.817 —0.366 0.962 1 0.956

Response_variable 0.782 —0.42 0.949 0.956 1

159

Source: Sayed-Mouchaweh (2021).

3. Visualize the correlation matrix using the function heatmap of the Python library sea-
born. The parameter vmin indicates the minimum value of the correlation matrix;
vmax indicaates the maximum value of the correlation matrix; and annot is set to True
in order to integrate in each cell of the heatmap the corresponding Pearson’s correla-
tion score. Since the Pearson’s correlation score constitute floating number values, its
format is defined as “float” by assigning the value “f” to the parameter “fmt” (number
format) of the function heatmap of the Python library seaborn. The figure below
shows the Pearson’s correlation heatmap for Iris dataset.

Code
ax = sns.heatmap(cor_mat, vmin=-1, vmax=1, \
 annot=True, fmt="f")
plt.show()

Figure 44: Pearson's Correlation Heatmap for the Iris Dataset

Source: Sayed-Mouchaweh (2021).

The weak point of Pearson’s correlation is its assumption that the data points in each col-
umn follow a Gaussian or normal probability distribution and the relationships are linear
between the different columns or variables. One alternative to overcome this limit is the
use of Spearman’s correlation.

Spearman’s correlation is a statistical measure of the strength of a monotonic relationship
between variables or features. A monotonically increasing, respectively decreasing, rela-
tionship between two variables x and y means that when x increases, y will never
decrease, but will respectively increase. However, a non-monotonic relationship means
when x increases, y sometimes decreases and sometimes increases.

Spearman’s correlation is similar to Pearson’s correlation in the sense that its values is
between —1 and 1 where

160

• 0 to ± 0.19 indicates a very weak correlation.
• 0.20 to 0.39 (—0.39 to —0.2) indicates a weak correlation.
• 0.40 to 0.59 (—0.59 to —0.40) indicates a moderate correlation.
• 0.60 to 0.79 (—0.79 to —0.60) indicates a strong correlation.
• 0.80 to 1.0 (—1.0 to —0.8) indicates a very strong correlation.

However, Spearman’s correlation is calculated by taking the rank of the two variables’ val-
ues as follows. The rank of the values of a variable is obtained by sorting these values in
decreasing order:Spearman′scorrelationscore X, Y = Cov rank X , rank Yσrank X · σrank Y
Let us take the example of a nonlinear relationship between two variables x and y repre-
sented as an exponential function y = ex as illustrated in the figure below.

Figure 45: Nonlinear Correlation between Two Variables Represented as an Exponential
Relationship

Source: Sayed-Mouchaweh (2021).

The values of x and y are represented in the table below. The values of x are sorted
(ranked) in increasing order. The values of y are ranked in decreasing order since the expo-
nential function is a monotonic function (i.e., when x increases, y will decrease, but never

161

decrease). The table also shows the Pearson’s correlation and the Spearman’s correlation
between x and y. We can see that Spearman’s correlation better captures the nonlinear
correlation between x and y than Pearson’s correlation since it provides the perfect corre-
lation value, 1.

Table 32: Pearson’s and Spearman’s Correlation for a Nonlinear Correlation
Represented as an Exponential Relationship between Two Variables

x y rank(x) rank(y)

0 1 0 10

1 0.36 1 9

2 0.13 2 8

3 0.05 3 7

4 0.018 4 6

5 0.006 5 5

6 0.002 6 4

7 0.0009 7 3

8 0.0003 8 2

9 0.0001 9 1

10 0.0000 10 0

Pearson’s correlation coefficient Spearman’s correlation coefficient

—0.69 —1

Source: Sayed-Mouchaweh (2021).

The code below shows how to compute the Pearson’s and Spearman’s correlations for the
example above using Python. In this example, we also test for normal distribution of the
data and see that the data are not normally distributed (p < 0.05 in the normality test fory). Therefore, we are not allowed to use Pearson’s correlation as this method assumes a
normal distribution of the data. We use the Spearman’s rank correlation method as this
method has less explanatory power since it disregards parts of the information in the data.
However, the key with this method is that it does not assume a normal distribution of the
data.

Code
generate sample data
dat = pd.DataFrame({'x': np.arange(0,10), \
 'y': np.exp(-np.arange(0,10))})

compute Pearson’s correlation and

162

display the correlation matrix
XY.corr(method='pearson')

console output:
x y
x 1.00000 -0.71687
y -0.71687 1.00000

test for normal distribution of the data
stats.normaltest(XY['x'])
console output:
NormaltestResult(statistic=2.02697581498966,
pvalue=0.362950830342156)

stats.normaltest(XY['y'])
console output:
NormaltestResult(statistic=19.779358749097575,
pvalue=5.0695197559354735e-05)

compute Spearman’s rank correlation and
display the correlation matrix
XY.corr(method='spearman')

console output:
x y
x 1.0 -1.0
y -1.0 1.0

In order to work efficiently by showing strong evidence-based results, the Spearman’s cor-
relation requires a monotonic relationship between the two variables in the sense that
when x1 > x2 then y1 < y2. This is because Spearman’s correlation is based on the rank
of the values of both variables. However, the Spearman’s correlation is still an alternative
to be used when the data are not normally distributed and there is simply no other choice
to evaluate the correlation between abnormally distributed data samples.

5.4 Recursive Feature Selection
Recursive feature selection is a wrapper-type feature selection process that allows us to
select relevant features by adding the most relevant or eliminating the least relevant fea-
tures iteratively. It is a wrapper-type feature selection because it is based on the use of a
certain machine learning method to score the features according to the importance of
their contribution to the quality or accuracy of the output (e.g., the obtained clusters and
prediction). The most and least important features are first added or eliminated, the
model is trained again, refitted, using the most important features. This process is repea-
ted until it reaches the specified number of features to be selected or a desirable quality of
the model.

163

AUC
The Area Under the Curve
(AUC) is a measure of sep-
arability between classes.
It indicates how much the
model is able to discrimi-

nate classes. Therefore,
the higher the AUC, the

better the model at pre-
dicting the classes. It is

calculated as the area
under a ROC curve.

Recursive feature selection techniques can be divided into: Exclusive Feature Selection
(EFS), Sequential Forward feature selection (SFS), Sequential Backward feature selection
(SBS), and Recursive Feature Elimination (RFE). All of these recursive feature selection
techniques have two hyper-parameters to set: the number k of features to select and the
model or learning algorithm to use to select these features.

Exclusive Feature Selection (EFS)

The exclusive Feature Selection (EFS) technique selects the best combination of k features
through all the existing combinations of the original features. It is a supervised multivari-
ate wrapper technique. In the case of 3 features F1, F2, and F3 and, in order to find the k =2 best features, EFS ranks the following combinations: (F1), (F2), (F3), (F1, F2), (F1, F3), (F2,
F3). Then, it selects the k = 2 features allowing us to have the best rank. Let us suppose
we have the following rank in decreasing order: (F2, F3), (F1, F2), (F1, F3), (F2), (F3), (F1),
then EFS will select the combination of k = 2 features (F2, F3). In order to rank the fea-
tures, EFS requires a predictive model (regressorclassifier) built using a machine learning
method, such as logistic regression, k-nearest neighbors, or tree classification. For each
combination of the original features, the performance of the built model is evaluated
using an evaluation metric, such as accuracy rate, recall (True Positive Rate), Area Under
the Curve or AUC, and Receiver Operation Curve or ROC.

The EFS method is available via the mlxtend.feature_selection in scikit-learn. We
will show step by step how to use Python in order to select the best features of the Iris
dataset using EFS method:

1. Import libraries and load the Iris dataset.

Code
import libraries
import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
from mlxtend.feature_selection \
 import ExhaustiveFeatureSelector as EFS
from sklearn.linear_model import LogisticRegression
import matplotlib.pyplot as plt

load sample data
iris = load_iris()
x = pd.DataFrame(iris.data, \
 columns=iris.feature_names)

2. Import the logistic regression classification method from scikit-learn in order to use it
to build the model that will be used by the EFS technique to rank the features. Then
create the logistic regression classifier (model).

164

Code
Create a logistic regression object
lr = LogisticRegression()

3. Create an EFS object. In this object, you use the logistic regression model as an esti-
mator. The minimum number and maximum number of features to be selected are 1
and 3, respectively. The scoring metric used to rank the features is the accuracy rate of
the model, which is the Logistic Regression classifier, and the method used to com-
pute the accuracy is the cross-validation. The cross-validations is set to be performed
in five-folds.

Code
create an EFS object
efs = EFS(estimator=lr,
 min_features=1,
 max_features=3,
 scoring='accuracy',
 cv=5)

4. Train the EFS model with the Iris dataset

Code
efs = efs.fit(x, iris.target)

5. Display the names and the indexes of the best selected features. efs.best_idx and
efs.best_features_names show the index and the names of the features that pro-
vide the best accuracy score, respectively.

Code
efs.best_feature_names_
console output:
('sepal length (cm)', 'petal length (cm)',
'petal width (cm)')

6. Display the performances of each combination of Iris features. These performances
can be displayed in a pandas DataFrame format using the get_metric_dict method of
the SequentialFeatureSelector object. For each feature (row), there are the following
columns: avg_score (the average score through the five-fold cross validation),
ci_bound (the confidence interval around the computed cross validation scores),
feature_idx (feature index), feature_names, std_dev (the standard deviation of
the cross validation scores), and std_err (the standard errors of the cross validation
scores). The results are displayed in decreasing order with respect to the average
score of features.

165

Code
show a full report on the feature selection
efs_results = pd.DataFrame(efs.get_metric_dict()).\
 T. \
 sort_values(by='avg_score', ascending=False)

7. Display a horizontal bar chart showing the average accuracy score of each combina-
tion of the Iris dataset features. The figure below shows the obtained horizontal bar
chart where each bar represents the average accuracy score for each feature combina-
tion as well as its standard error.

Code
create figure and axes
fig, ax = plt.subplots()

plot bars
y_pos = np.arange(len(efs_results))
ax.barh(y_pos, efs_results['avg_score'], \
 xerr=efs_results['std_err'])

set axis ticks and labels
ax.set_yticks(y_pos)
ax.set_yticklabels(efs_results['feature_names'])
ax.set_xlabel('Accuracy')

show the plot
plt.show()

166

Figure 46: Horizontal Bar Chart Obtained by EFS for the Iris Features

Source: Sayed-Mouchaweh (2021).

However, as models have to be trained over and over again, EFS is computationally expen-
sive in particular for datasets described by a large number of features. The following tech-
niques are alternatives to overcome this limitation.

Sequential Forward Feature Selection (SFS)

The Sequential Forward feature Selection (SFS) technique first selects the most relevant
feature, then it iteratively adds new relevant features until reaching the predefined num-
ber k of features to be selected. In the case of features F1, F2, and F3, and in order to find
the k = 2 best features, SFS ranks the individual features using a specific machine learn-
ing method as in the case of EFS. Then, the relevance of the combinations between the
selected most relevant feature with the other features will be calculated in order to find
the best combination. This process will be repeated until reaching the predefined numberk of features to be selected. For instance, if in the first iteration, F3 was the most relevant
feature, then in the second iteration, all of the combinations, (F1, F3), (F2, F3) between the
other features and F3 will be ranked. If the combination (F2, F3) has a better accuracy
score than the one for (F1, F3), then it will be selected. Therefore, SFS will provide the
combination (F2, F3) as the best k = 2 features.

167

The SFS method is available via the mlxtend.feature_selection in scikit-learn. We will show
step by step how to use Python to select the best features of the Iris dataset using SFS
method:

1. Import the necessary libraries and load the Iris dataset.

Code
import libraries
import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
from mlxtend.feature_selection \
 import SequentialFeatureSelector as SFS
from sklearn.linear_model import LogisticRegression
import matplotlib.pyplot as plt

load sample data
iris = load_iris()
x = pd.DataFrame(iris.data, \
 columns=iris.feature_names)

2. Create a logistic regression classifier.

Code
from sklearn.linear_model import LogisticRegression
Create a logistic regression model
lr = LogisticRegression()

3. Create an SFS object. In this object, you use the logistic regression model as an esti-
mator, consider any feature combination between 1 and 3 and set the parameter
forward to “True” to perform SFS, the scoring metric used to rank the features is the
accuracy rate of the Logistic Regression classifier, and the method used to compute
the accuracy is the cross-validation. The cross-validation is set to be performed in
five-folds.

Code
sfs = SFS(estimator=lr,
 k_features=(1, 3),
 forward=True,
 scoring='accuracy',
 cv=5)

4. Train the SFS object with the Iris dataset.

Code
sfs = sfs.fit(x, iris.target)

168

5. Display the names and the indexes of the best selected features.
sfs.k_feature_idx_ and sfs.k_feature_names_ each show the index and the
names of the features that provide the best accuracy score, respectively. For the Iris
dataset, the indices of the best features are (0, 1, 2, 3), and their corresponding names
are “sepal length (cm),” “sepal width (cm),” “petal length (cm),” and “petal width
(cm).”

Code
show the selected features
sfs.k_feature_names_
console output:
('sepal length (cm)', 'petal length (cm)',
'petal width (cm)')

6. Display the performances of each combination of Iris features in a pandas DataFrame
format using the get_metric_dict method of the SequentialFeatureSelector
object. For each feature of these combinations, there are the same columns as with
using EFS: avg_score, ci_bound, feature_idx, feature_names, std_dev, and
std_err. The results are displayed in decreasing order with respect to the average
score of features.

Code
sfs_results = pd.DataFrame(sfs.get_metric_dict()).\
 T. \
 sort_values(by='avg_score', ascending=False)

7. Again, we display a horizontal bar chart showing the average accuracy score of each
combination of the Iris dataset features. The figure below shows the obtained hori-
zontal bar chart where each bar represents the average accuracy score for each fea-
ture combination as well as its standard error.

Code
create figure and axes
fig, ax = plt.subplots()

plot bars
y_pos = np.arange(len(sfs_results))
ax.barh(y_pos, sfs_results['avg_score'], \
 xerr=sfs_results['std_err'])

set axis ticks and labels
ax.set_yticks(y_pos)
ax.set_yticklabels(sfs_results['feature_names'])
ax.set_xlabel('Accuracy')

limit range to overimpose differences
plt.xlim([0.95, 0.98])

169

show the plot
plt.show()

Figure 47: Horizontal Bar Chart Obtained by SFS for the Iris Features

Source: Sayed-Mouchaweh (2021).

The figure above shows that the best single feature is feature #3 (“petal width”) since it
gives the best accuracy against the other three single features. The best combination of
two features (feature #3 and one of the other three features #0, #1, and #2) is the one
between feature #3 and feature #1 (“petal length”). Then, the SFS technique searches for
the best combination of three features starting from the combination of feature #1 and
feature #3. This combination is formed by feature #1, feature #3, and feature #2 (“sepal
length”). The last combination giving the best accuracy rate is the one combining all the
four features.

Sequential Backward Feature Selection (SBS)

The Sequential Backward feature Selection (SBS) technique is similar to SFS but works in
the inverse direction. It starts by considering all the features together and proceeds to
rank all the combinations by removing one feature. Next, the combination with the best
rank is conserved, and the process is repeated until reaching the predefined number k of

170

features to be selected. In the case of features F1, F2, and F3, and in order to find the k= 2
best features, SBS starts by considering all the features. Then, it ranks all the combina-
tions obtained by removing one feature. These combinations are (F2, F3), (F1, F3), and (F1,
F2). The ranking is performed, as in the case of EFS and SFS, using a specific machine
learning method. The best ranked combination is selected. Let us suppose that (F2, F3) is
the best ranked one. Therefore, (F2, F3) will be selected by SBS as the best k= 2 features.

SBS is performed in Python in a similar way as using the SFS method. The only difference
is that the parameter forward is set to “False.” We will show step by step how to use
Python to select the best features of the Iris dataset using SBS method:

1. Import libraries and load the Iris dataset as sample data.

Code
import libraries
import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
from mlxtend.feature_selection \
 import SequentialFeatureSelector as SBS
from sklearn.linear_model import LogisticRegression
import matplotlib.pyplot as plt

load sample data
iris = load_iris()
x = pd.DataFrame(iris.data, \
 columns=iris.feature_names)

2. Create the logistic regression classifier (model).

Code
lr = LogisticRegression()

3. Create an SBS object. It is similar to the creation of SFS object but we need to set the
parameter “forward” to “False” in order to perform SBS. All the other parameters are
the same as for the creation of an SFS object as we have seen in the code above.

Code
sbs = SBS(estimator=lr,
 k_features=(1, 3),
 forward=False,
 scoring='accuracy',
 cv=5)

4. Train the SFS object with the Iris dataset.

171

Code
sbs = sbs.fit(x, iris.target)

5. Display the names and the indexes of the best selected features.
sbs.k_feature_idx_ and sbs.k_feature_names_ show the index and the names
of the features that provide the best accuracy score, respectively.

Code
sbs.k_feature_names_
console output:
('sepal length (cm)', 'petal length (cm)',
'petal width (cm)')

6. Display the performances of each combination of Iris features in a pandas DataFrame
format using the get_metric_dict method of the SequentialFeatureSelector object.
The obtained combinations are: (0, 1, 2, 3), (0, 2, 3), (2, 3), and (3). For each feature of
these combinations, there are the following columns: avg_score, ci_bound,
feature_idx, feature_names, std_dev, and std_err. The results are displayed in
decreasing order with respect to the average score of features.

Code
sbs_results = pd.DataFrame(sbs.get_metric_dict()).\
 T. \
 sort_values(by='avg_score', ascending=False)

7. Display a horizontal bar chart showing the average accuracy score of each combina-
tion of the Iris dataset features. The figure below shows the obtained horizontal bar
chart where each bar represents the average accuracy score for each feature combina-
tion as well as its standard error.

Code
create figure and axes
fig, ax = plt.subplots()

plot bars
y_pos = np.arange(len(sbs_results))
ax.barh(y_pos, sbs_results['avg_score'], \
 xerr=sbs_results['std_err'])

set axis ticks and labels
ax.set_yticks(y_pos)
ax.set_yticklabels(sbs_results['feature_names'])
ax.set_xlabel('Accuracy')

limit range to overimpose differences
plt.xlim([0.95, 0.98])

172

show the plot
plt.show()

Figure 48: Horizontal Bar Chart Obtained by SBS for the Iris Features

Source: Sayed-Mouchaweh (2021).

The figure above shows the first combination containing the four features of the Iris data-
set. This combination provides the best accuracy rate. SBS starts by removing one feature
from this combination and computes the corresponding accuracy rate for each obtained
combination of three features. The best combination of three features, which provides the
best accuracy rate, is conserved. As we see in the figure above, this combination contains
the features “sepal length,” “petal length,” and “petal width.” Then, SBS removes one fea-
ture from this selected combination to compute the accuracy rate for all the combinations
of two features. SBS will conserve the combination of two features that has the best accu-
racy rate. This combination is the one containing the features “petal length” and “petal
width.” Finally, SBS removes one feature from the selected combination of two features in
order to compute the accuracy rate for the single feature “petal length” and the single fea-
ture “petal width.” The figure above shows that the feature “petal width” is the best-rela-
ted single feature among the other Iris dataset features.

173

Recursive Feature Elimination (RFE)

Recursive Feature Elimination (RFE) is a popular feature selection technique that allows us
to select the best or most important k features by eliminating iteratively the least impor-
tant features. The number k of features to be selected and the model to be used to rank
the features must be defined. REF starts by considering all the original features. REF ranks
the features according to their importance or weight derived from a machine learning
algorithm, such as logistic regression or tree-based approaches. The, REF removes the
least important feature and builds a model using a machine learning algorithm with the
remaining features. Then, REF calculates the model performance using a performance
metric such as accuracy. If the decrease in the model prediction accuracy trained with the
remaining features is higher than a predefined threshold, then that feature is important
and should be conserved; otherwise, it can be removed. This process is repeated until it
reaches the best k features. RFE ranks the features according to their importance coeffi-
cient or weight derived from a machine learning algorithm, such as logistic regression or
tree-based approaches. Then, it decides to remove or keep a feature using the prediction
performance (e.g., accuracy) of a specific machine learning approach such as k-nearest
neighbors or support vector machines.

The RFE method is available via the RFE class in scikit-learn. Let us see how to select the
best features of the Iris dataset using RFE method. The steps are demonstrated below:

1. Import the Iris dataset and load libraries.

Code
import libraries
import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression
from sklearn.feature_selection import RFECV

load sample data
iris = load_iris()
x = pd.DataFrame(iris.data, \
 columns=iris.feature_names)

2. Create an object for the logistic regression method to be used as the model to rank
the features.

Code
lr = LogisticRegression()

3. Configure RFE with the chosen model specified via the estimator argument and the
number of features to select via the n_features_to_select argument. The
estimator is the logistic regression and the n_features_to_select is set to 3.

174

Code
rfe = RFE(lr, 3).fit(x, iris.target)

4. Display the obtained results that can be seen in the support_, n_features_, and
ranking_ attributes of the resulting object. The support_ attribute is “True” when the
feature is selected and “False” when it is not selected. The n_features_ and
ranking_ attributes provide the number of selected features and the feature rank-
ings, respectively. For the Iris dataset, the number of selected features is 3, the selec-
ted features are [False True True True], and their ranking is [2 1 1 1]. This means that
the first Iris feature (sepal length) is not selected.

Code
pd.DataFrame({'features': iris.feature_names, \
 'Selected features': rfe.support_, \
 'Feature ranks': rfe.ranking_})

console output:
features Selected features Feature ranks
0 sepal length (cm) False 2
1 sepal width (cm) True 1
2 petal length (cm) True 1
3 petal width (cm) True 1

It is possible to find the number of features to be selected using cross validation. The code
above needs to be slightly modified as follows in order to tune k automatically using cross
validation. The steps for this are as follows:

1. Import the Iris dataset as a DataFrame as we have done in the code above.
2. Import the logistic regression method to be used as the feature ranking model as we

have done in the code above.
3. Set the minimum number of features to consider. We will set it to 3. Configure RFECV

with the chosen model specified via the estimator argument, the number of fea-
tures to be eliminated at each iteration specified through step argument, the number
of folds during cross validations specified through the argument cv, and the mini-
mum number of features to select via the min_features_to_select argument.

Code
rfecv = RFECV(estimator=lr, step=1, cv=5, \
 scoring='accuracy', \
 min_features_to_select= 3).\
 fit(x, iris.target)

4. Display the number of selected features n_features_ and their scores that can be
seen in the n_features_ and grid_scores_ attributes, respectively. The optimal
number of folds for the cross validation is 4, which means that the combination of all
Iris features provides the best cross validation accuracy score.

175

Code
show grid scores for selected featues
print(rfecv.grid_scores_)
console output: [0.96666667 0.97333333]

EFS has the advantage of studying all the potential combinations of the original features
in order to find the best combination that provides the best prediction performance
according to the selected metric, such as the accuracy rate. However, it has the worst com-
putation complexity, particularly when the number of features is large since the number of
combinations to evaluate increases exponentially with the number of original features.
SFS and SBS have the advantage of reducing the number of feature combinations to eval-
uate since they add or remove a feature of a previously selected combination in each itera-
tion. Therefore, they have better computation complexity than EFS, in particular for data-
sets with a high number of features.

However, SFS and SBS are unable to investigate the usefulness of a feature after being
added or removed from the feature set. For instance, SFS may add a feature, which is use-
ful in the beginning and becomes useless when other features are selected. RFE has the
advantage of being computationally less complex than SFS and SBS. This is because REF
uses feature weight coefficients (when, for instance, the model is a linear model) or fea-
ture importance (e.g., when the model uses tree-based approaches) in order to remove
the least important feature. Therefore, the latter is removed only once, while SBS removes
all the features first in order to determine which one is the least important. For instance, if
we have four initial features, SBS removes each one of these features in order to deter-
mine its importance on the model accuracy rate; RFE eliminates the least important fea-
ture by using the feature importance coefficient or weight derived from its model.

SUMMARY
This unit presented the major feature selection techniques used to rank
and select the most relevant features. These techniques improve the
performance of the trained model by removing irrelevant and noisy fea-
tures. Conserving the most relevant features allows us to improve the
learning speed, generalization power, processing time, data collecting
and storage, and interpretation power of the learned model, particularly
when the number of original features is very large.

These techniques were categorized into two major families: filters and
wrappers. Feature selection techniques belonging to the filter family
select the most relevant features based on some meaningful statistical
criteria, such as variance, mutual information, and correlation. There-
fore, the filter family has the advantage of being independent from the
machine learning approach used to build the model. In addition, filter
techniques are computationally efficient since they do not need to train
a model. Therefore, they are widely used for real applications with large
a number of features. Feature selection techniques belonging to the

176

wrapper family rank the features using a machine learning method.
They have the advantage of considering the interaction between fea-
tures, determining the optimal subset of features for a machine learning
model. Consequently, wrapper techniques have proved to be superior to
filter techniques in terms of accuracy. However they suffer from high
computational cost. This is because they need to repeatedly train
machine learning models.

To bridge the gap between filter and wrapper techniques, hybrid feature
selection techniques combining the advantages of both filter and wrap-
pers are proposed. The features are ranked according to their impor-
tance using filter techniques such as mutual information, Chi-square
test, and feature variance. Wrapper techniques, such as EFS, SFS, SBS,
are then used to select the best subset of features from the top k fea-
tures selected by filter techniques. Hybrid feature selection has the
advantage of determining the subset of features, allowing us to obtain
better prediction accuracy, more flexibility since different machine
learning approaches can be used to build the model, and better compu-
tational complexity than wrapper techniques since the number of fea-
tures is reduced during the filter step.

177

UNIT 6
AUTOMATED FEATURE GENERATION

STUDY GOALS

On completion of this unit, you will be able to ...

– automatically generate transformation features.
– automatically generate aggregation features.
– highlight the advantages and limitations of the techniques used to automatically gen-

erate features.

Transactional datasets
This term describes data-

sets which contain data
that describe events as a

result of transactions,
such as orders, invoices,

payments, and activity
records. The transition

data always have a time
variable since they

describe an online, real-
time system.

6. AUTOMATED FEATURE GENERATION

Introduction
The performance (prediction accuracy, learning and processing time, generalization
capacity, etc.) of a predictive model heavily depends on the information and predictive
power of the features in the dataset used to train that model. Therefore, defining mean-
ingful and useful features is essential to building efficient, predictive models.

The process of defining features manually has several limitations. Firstly, it is a problem-
specific task. The features defined for one problem cannot be applied to other problems.
Secondly, it is time-consuming since defining features manually requires time and hard
work, particularly when the dataset is composed of several related tables. Finally, as with
any manual process, the manual feature generation is an error-prone process.

Automated feature generation is an efficient alternative to surpass these limitations. It
allows us to automatically generate many features based on the use of a set of related
tables. In addition, it can be applied to any dataset describing any problem. There are two
techniques to automatically generate features from raw datasets: Deep Feature Synthesis
(DFS) and Deep Learning (DL). This unit considers the following questions:

• How are features automatically generated by means of the DFS and DL concepts?
• What are the advantages and limitations of DFS and DL in order to automatically gener-

ate features?

6.1 Automated Feature Generation
Automated feature generation allows the reduction of the required time to define features
since it automatically creates derived features for any dataset. In addition, as for the case
of DFS, it creates interpretable features since they are based on the use of basic mathe-
matical operators, such as min, max, and mean. These simple mathematical operators are
called primitives.

Featuretools is an open source Python library framework allowing the automatic genera-
tion of features. It transforms transactional and relationaldatasets into adapted feature
matrices for machine learning. Featuretools works on a concept known as Deep Feature
Synthesis (DFS) (Kanter & Veeramachaneni, 2015). DFS allows us to automatically create
multiple features either as transformations or aggregations. Transformations are done to
one or more columns on a single table, such as the difference between two columns in
one table or taking the absolute value of a column. The table below shows some transfor-
mation primitives.

180

Relational datasets
This term describes data-
sets that contain data
points related to one
another. These data
points are organized in
rows and columns where
each row represents one
data point that is descri-
bed by the different col-
umns (attributes). Rela-
tional datasets can be
spread over multiple
“relations,” i.e., tables.

Table 33: Transformation Primitives in the Featuretools Library

multiply_boolean Element-wise multiplication of two lists of Boolean values

year Determines the year value of a datetime

day Determines the day of the month based on a datetime

weekday() Returns the day of the week from a datetime value. Weeks start on Monday (day 0)
and run through Sunday (day 6).

divide_by_feature Divides a scalar by each value in the list

equal Determines if values in one list are equal to another list

Source: Sayed-Mouchaweh (2021).

Aggregations are achieved using different primitives applied to several tables. Primitives
are the basic operations, such as mean, max, and min, applied to the values of original
columns, in order to form new features. The table below shows some aggregation primi-
tives.

Table 34: Aggregation Primitives in the featuretools Library

all Calculates if all values are 'True' in a list

std Computes the standard deviation which is the dispersion relative to the mean
value, ignoring `NaN`,

num_unique Determines the number of distinct values, ignoring `NaN` values

n_most_common Determines the `n` most common elements

mean Computes the average for a list of values

num_true Counts the number of `True` values

median Determines the middlemost value in a list of values

max Calculates the highest value, ignoring `NaN` values

time_since_first Calculates the time elapsed since the first datetime (in seconds)

sum Calculates the total addition, ignoring `NaN`

Source: Sayed-Mouchaweh (2021).

The complete list of primitives and their description can be found at (“Primitives List,”
n.d.). Running the following code displays the whole list of transformation and aggrega-
tion primitives in the library featuretools.

181

Code
import libraries
import pandas as pd
import featuretools as ft

Remove any limit on the number of columns to display
pd.options.display.max_columns = None

Remove any limit on the number of rows to display
pd.options.display.max_rows = None

Display the list of primitives
print(ft.list_primitives())

We will explain through an example how to apply featuretools using Python to automati-
cally generate features. The featuretools library is based on three major components:

1. Entities
2. Feature primitives
3. Deep Feature Synthesis (DFS)

In the featuretools library, an Entity is a DataFrame table. Each Entity must have a unique
index identifying each row (element, sample, or data point) in its DataFrame table. We can
create several entities gathered into an Entityset. An Entityset is a large data structure
composed of individual entities and the relationships between these entities. Each rela-
tionship links an Entity parent to an Entity child. An Entity parent can have several Entity
children.

Feature primitives are basic operations that are used to form new features across one
entity or several entities. For instance, we have a table titled Students that includes the
following columns or features: Students ID number, Student name, and Date of birth. This
table defines an Entity that can be called “Students.” A new feature can be generated
across this Entity indicating the age of each student given their date of birth. This feature
is automatically generated by applying the transformation primitive “AGE” to the feature
or column Date of birth. This new feature is computed using one table: Students. Let us
say we have another table, “Courses,” made up of the following columns: Student ID num-
ber, Course name, and Grades. The column “Course name” indicates the name of the
course, and “Grades” indicates the grade obtained by this student for this course. A sec-
ond Entity can be defined based on this table and can be called “Courses.” A new feature
indicating the mean grade obtained by each student for the followed courses using the
aggregation primitive “MEAN.” This feature is computed based on two tables: Students
and Courses.

These features are called deep features. The depth of these features can be variable allow-
ing to generate complex features. For instance, creating a feature using the aggregation
operation “Mean” is of depth 1. However, creating a feature as the max of the mean values

182

Complex features
These are features based
on the use of more than
one basic operation. For
instance, a feature
defined using MEAN and
MAX is a complex feature.

is of depth 2 since two aggregations are required to generate it, first find the mean values,
then the max value of mean values. For instance for the example of “Students,” the max of
the mean grades obtained by the students generates a new feature of depth 2.

DFS is a concept allowing us to automatically generate new features from single and mul-
tiple entities (dataframes). DFS generates the deep features by grouping data points in the
different entities based on the defined relationships between these entities. The grouping
is achieved using the different aggregation primitives.

Let us take an example describing the purchases of customers. Each customer orders a
certain number of products and each product has a certain price. This description is ach-
ieved by the three tables below. The first table, “Customers,” contains the customer ID,
name, and account creation date. The second table “Orders” represents the customer
order ID. The last table “Payments” represents the amount paid by customers for each
order. For reasons of simplicity, we only have two customers.

Table 35: Customer Table

Customer_ID Customer_name Creation-date

C1 Martin 2018-08-15

C2 Julia 2020-05-05

Source: Sayed-Mouchaweh (2021).

Table 36: Customer Orders

Order ID Customer ID

1 C1

2 C2

3 C1

4 C1

5 C2

Source: Sayed-Mouchaweh (2021).

Table 37: Customer Payments

Order_ID Price

1 500

5 200

3 300

4 100

183

2 900

Source: Sayed-Mouchaweh (2021).

Let us write the Python code to automatically generate new features for this example
using the library featuretools. The steps are demonstrated below:

1. Import featuretools in order to automatically generate features using the DFS con-
cept, and import pandas in order to create the tables as DataFrames.

Code
import featuretools as ft
import pandas as pd

2. Create the three tables above for our customer purchases example.

Code
Customers = pd.DataFrame({ \
 'C_ID': ['C1', 'C2'], \
 'Name': ['Martin', 'Julia'], \
 'Creation_date': ['2018-08-15', '2020-05-05']}, \
 columns = ['C_ID','Name','Creation_date'])
Orders = pd.DataFrame({ \
 'Ord_ID': ['1', '2', '3', '4', '5'], \
 'C_ID': ['C1', 'C2', 'C1', 'C1','C2']}, \
 columns = ['Ord_ID','C_ID'])
Payments = pd.DataFrame({ \
 'Ord_ID':['1', '5', '3', '4', '2'], \
 'Price':[500, 200, 300, 100, 900]}, \
 columns = ['Ord_ID', 'Price'])

3. Create an Entityset in order to gather three entities, one Entity for each dataframe
table. Since “Customers” is the main Entity in the Entityset, we call the Entityset by
the same name.

Code
es = ft.EntitySet(id = 'Customers')

4. Create the Entity “Customers” to represent the table “Customers” within the frame-
work of featuretools. Indeed, an Entity is a table but is defined in DFS. We can see that
this table has a unique index “C_ID” identifying each row in it.

184

Cardinality
The cardinality between
two tables describes how
the rows in these tables
are linked to each other.
One row in one table
might be linked to one or
more rows in another
table.

Code
es = es.entity_from_dataframe(\
 entity_id = 'Customers', \
 dataframe = Customers, \
 index = 'C_ID', time_index = 'Creation_date')

5. Create the Entity “Orders” to represent the table of the same name within the frame-
work of featuretools. This table has a unique index “Ord_ID” that identifies each row
in it.

Code
es = es.entity_from_dataframe(\
 entity_id = 'Orders', \
 dataframe = Orders, \
 index = 'Ord_ID')

6. Create the Entity “Payments” to represent the eponymous table within the framework
of featuretools. This table does not have a unique index; therefore, we need to create
a unique index by using the make_index=True command and then specify a name
for the index, such as “P_ID.”

Code
es = es.entity_from_dataframe(entity_id = 'Payments',
 dataframe = Payments,
 make_index = True,
 index = 'P_ID')

7. Create relationships between the different entities. Each table connection must be
established between an Entity parent and an Entity child. We model the Entity “Cus-
tomers” as the parent of Entity ‘Orders’ since each customer from “Customers” can
order several orders in “Orders.” This makes it easier for us in terms of cardinality.
Similarly, we model the Entity “Orders” as the parent of the Entity “Payments’ since
each order can have several payments. This is usually not the case, but for the sake of
this simple example, let us assume that we offer deferred payment to our customers
so that each order can have several payments. The connection between two entities
needs a common column between the two entities in order to link them. This linking
column is called the “key field.” We call the linking column of a table in question the
“primary key” and the respective column in the linked table the “foreign key.” For the
relationship between “Customers” and “Orders,” the key field is “C_ID,” while for
“Orders” and “Payments,” the key field is “Ord_ID.” The format for defining a table
connection is as follows: Relationship.(<parent_entity>, <primary_key>,
<child_entity>, <foreign_key>).

185

Code
Define the relationship between the parent 'Customers'
and the child 'Orders' linked together by 'C_ID'
r_Cust_Ord = ft.Relationship(\
 es['Customers']['C_ID'], \
 es['Orders']['C_ID'])

Add the relationship to the entity set
es = es.add_relationship(r_Cust_Ord)

define relationship between 'Orders'
and 'Payments'
r_Orders_Payments = ft.Relationship(\
 es['Orders']['Ord_ID'], \
 es['Payments']['Ord_ID'])

Add the relationship to the entity set
es = es.add_relationship(r_Orders_Payments)

8. We can print out the defined entities and entity connections.

Code

 # show entityset
es
console output:
Entityset: Customers
Entities:
Customers [Rows: 2, Columns: 3]
Orders [Rows: 5, Columns: 2]
Payments [Rows: 5, Columns: 3]
Relationships:
Orders.C_ID -> Customers.C_ID
Payments.Ord_ID -> Orders.Ord_ID

9. You can create new features using specified primitives. You can take a look at the list
of transformation and aggregation primitives in the library featuretools by running
the following code (we display only 15 transformation primitives and 15 aggregation
primitives).

Code
show aggregation primitives
primitives = ft.list_primitives()
pd.options.display.max_colwidth = 160
primitives[primitives['type']=="aggregation"].\

186

 head(15)

show transformation primitives
primitives[primitives['type']=="transform"].\
 head(15)

10. Create new features using the ft.dfs function by passing the transformation primi-
tive “year” and the aggregation primitive “sum” applied to the Entity “Customers” as
the target entity. The “year” feature will display the account creation year for each
customer. It is a transformation feature since it results from using a transformation
primitive. The latter is acting on one table “Customers” by creating a new feature out
of one existing column, “Creation_Date.” The “sum” feature computes the sum of all
the prices of the products ordered by each customer. It is an aggregation feature since
it is computed by using an aggregation primitive that is acting on columns, Cus-
tomer_ID, Order_ID, and Price, from several tables (Customers, Orders, and Pay-
ments).

Code
features, feature_names = ft.dfs(\
 entityset=es, \
 target_entity='Customers', \
 agg_primitives=['sum'], \
 trans_primitives=['year'])

features
console output:
Name SUM(Payments.Price) YEAR(Creation_date)
C_ID
C1 Martin 900 2018
C2 Julia 1100 2020

11. Let featuretools also automatically generate new features using the ft.dfs function
without specifying any primitives. To determine the number of generated features, set
the max-depth of the generated features, the Entityset, and target-entity used to gen-
erate these features. Featuretools then automatically generates many combinations
of feature primitives (transformation and aggregation primitives) according to the
predefined depth.

Code
feats, feat_names = ft.dfs(\
 entityset=es, \
 target_entity='Customers', \
 max_depth = 2)

The library featuretools will generate 51 different features, such as
SUM(Payments.Price), MAX(Orders.SUM(Payments.Price)), or
STD(Payments.Price) for each customer from the “Customers” Entity. The feature

187

SUM(Payments.Price), for instance, provides the sum of the prices of products ordered
by each customer. Its depth is 1 since it is based on one basic operation, SUM.
MAX(Orders.SUM(Payments.Price)) allows us to find the maximum amount paid by
each customer for all the purchased products. It is a feature of depth 2 since it is based on
two basic operations, SUM and MAX.

6.2 Feature Engineering versus Deep
Learning
Deep learning approaches (Du et al., 2016), such as Convolutional Neural Network (CNN)
(Maitra et al., 2015), are commonly used for classification tasks for images, text, and audio.
As one part of the to be trained network, kernel filters and pools, i.e., aggregations, are
applied to the original input data, usually exposing underlying structures and patterns
hidden within the raw input data. These patterns are useful for the distinction between
classes; however, they can also be used as input feature to other machine learning mod-
els, thereby constituting a technique for automated feature generation. These features are
automatically extracted from raw data by matrix multiplication. Let us take the example of
digits recognition, 0 to 9. Each digit is represented as a grayscale input matrix of pixels as
shown in the figure below.

Figure 49: Input Data Matrix for Digit 1 and Digit 2

Source: Sayed-Mouchaweh (2021).

CNN uses a kernel or filter to define features that can be used to recognize a digit. For
instance, in the figure below, two filters are used to generate a feature allowing detecting
vertical lines and another feature to detect horizontal lines. Similarly, other features can
be generated, such as left or right diagonal lines.

The multiplication between the input raw data matrix and each filter allows us to generate
the feature map indicating if the corresponding feature (vertical or horizontal lines) exists
in the input image. In the example below, the value “2” indicates, depending on the

188

applied kernel filter, the existence of a vertical or horizontal line, respectively. The figure
below shows how the vertical and horizontal filters are used by CNN in order to build the
vertical and horizontal convolved features or features map for digit 1.

Figure 50: Automated Convoluted Features Generation for Digit 1 by CNN

Source: Sayed-Mouchaweh (2021).

Likewise, the figure below shows how the vertical and horizontal filters are used by CNN to
build the vertical and horizontal convolved features or features map for digit 2.

189

Figure 51: Automated Convoluted Features Generation for Digit 2 by CNN

Source: Sayed-Mouchaweh (2021).

CNN automatically generates the suitable filters to search for informative features in the
raw input matrix. All we need to do is define the number of filters we would like to apply.

Let us see how CNN uses these generated features in order to recognize the digit 1 and
digit 2. The vertical and horizontal convoluted features will be pooled with a window, gen-
erally of size of 2, and a stride, which is also 2. The goal of the pooling is to shrink the
image (input raw data matrix for digits 1 and 2). The figure below shows the pooling of
vertical and the horizontal convoluted features for digits 1 and 2. If we put the vertical and
horizontal convolved features after pooling into one single list, we have, for digit 1, the list
[2 2 1 2] and, for digit 2, the list [2 1 2 2]. Therefore, CNN can distinguish the digit 1 if the
second element in the list is equal to 2 and the third element is equal to 1. It can distin-
guish the digit 2, if the second element in the list is equal to 1, and the third element is
equal to 2.

190

Figure 52: Automated Convoluted Features Generation for Digit 2 by CNN

Source: Sayed-Mouchaweh (2021).

Although deep learning approaches have been successfully used for many applications,
they require a large number of training data samples to learn and train the complex archi-
tectures they need to work. Moreover, the extracted features are not interpretable, while
the generated features by featuretools are interpretable since they are based on the com-
binations of simple primitives (e.g., mean, max, and min) that can be easily described in
natural language.

SUMMARY
Feature engineering is the process of using domain knowledge to extract
features from raw data to improve the performances of machine learn-
ing models. Features can be generated manually and automatically.
Manual feature engineering is tedious and time-consuming and requires
domain knowledge. Automatically generating features is more efficient
and faster than manual feature engineering and can be repeated to dif-
ferent datasets belonging to different domain applications. However,
the usefulness of the generated features is not guaranteed and some
features may be useless and redundant. Therefore, automated feature
engineering does not compensate for domain knowledge, expertise, and
open and clear communication.

This unit presented two techniques for automated generation, Deep
Feature Synthesis (DFS) and Deep Learning (DL). The former was demon-
strated by the open Python library featuretools. This library can auto-

191

matically generate features from a set of related data tables (structured
transactional and relational datasets) and can be applied to any
machine learning problem. In addition, featuretools can generate fea-
tures from small datasets.

The Deep Learning technique for automated feature generation was
demonstrated by Convolutional Neural Networks (CNNs) which can
automatically generate features for image, text, and audio classification.
The features are extracted through the multiplication of the input raw
data matrix and a set of kernels filters. The generated features are not
interpretable and require large datasets.

192

BACKMATTER

LIST OF REFERENCES
Alashwal, H., El Halaby, M., Crouse, J. J., Abdalla, A., & Moustafa, A. A. (2019). The applica-

tion of unsupervised clustering methods to Alzheimer’s disease. Frontiers in Computa-
tional Neuroscience, 13, Article 31. https://doi.org/10.3389/fncom.2019.00031

Băcilă, M. F., Rădulescu, A., & Mărar, I. L. (2012). Prepaid telecom customers segmentation
using the k-mean algorithm. Annals of the University of Oradea, Economic Science Ser-
ies, 21(1), 1112—1118.

Bejani, M., Gharavian, D., & Charkari, N. M. (2014). Audiovisual emotion recognition using
ANOVA feature selection method and multi-classifier neural networks. Neural Comput-
ing and Applications, 24(2), 399—412.

Bernard, T., Verbunt, M., vom Bögel, G., & Wellmann, T. (2018, May). Non-intrusive load
monitoring (nilm): Unsupervised machine learning and feature fusion. 2018 interna-
tional conference on smart grid and clean energy technologies (ICSGCE) (pp. 174—180).
IEEE. https://doi.org/

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

Buja, A., Swayne, D. F., Littman, M. L., Dean, N., Hofmann, H., & Chen, L. (2008). Data visual-
ization with multidimensional scaling. Journal of Computational and Graphical Statis-
tics, 17(2), 444—472. https://doi.org/10.1198/106186008X318440

Dasgupta, S. (2019). Churn prediction of bank customers: Neural network for finding surpris-
ing correlations. [Version 1]. Kaggle. https://www.kaggle.com/sonalidasgupta95/churn
-prediction-of-bank-customers

Ding, S., Zhu, H., Jia, W., & Su, C. (2012). A survey on feature extraction for pattern recogni-
tion. Artificial Intelligence Review, 37(3), 169—180. https://doi.org/10.1007/s10462-011-
9225-y

Du, X., Cai, Y., Wang, S., & Zhang, L. (2016, November). Overview of deep learning. 2016
31st youth academic annual conference of Chinese association of automation (YAC) (pp.
159—164). IEEE. https://doi.org/

Dy, J. G., & Brodley, C. E. (2004). Feature selection for unsupervised learning. Journal of
Machine Learning Research, 5 (Aug), 845—889.

Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996, August). A density-based algorithm for
discovering clusters in large spatial databses with noise. In E. Simoudis, J. Han, & U.
Fayyad (Eds.), Proceedings of the second international conference on knowledge discov-
ery and data mining (pp. 226—231). AAAI Press.

194

https://doi.org/10.3389/fncom.2019.00031
https://doi.org/10.1007/s00521-012-1228-3
https://ieeexplore.ieee.org/document/8556735
https://doi.org/10.1198/106186008X318440
https://www.kaggle.com/sonalidasgupta95/churn-prediction-of-bank-customers
https://www.kaggle.com/sonalidasgupta95/churn-prediction-of-bank-customers
https://doi.org/10.1007/s10462-011-9225-y
https://doi.org/10.1007/s10462-011-9225-y
https://ieeexplore.ieee.org/document/7804882

Kanter, J. M., & Veeramachaneni, K. (2015). Deep feature synthesis: Towards automating
data science endeavors. 2015 IEEE international conference on data science and
advanced analytics (DSAA) (pp. 1—10). IEEE.

Kaufman, L., & Rousseeuw, P. J. (2009). Finding groups in data: An introduction to cluster
analysis (Vol. 344). John Wiley & Sons.

Maddila, S., Ramasubbareddy, S., & Govinda, K. (2020). Crime and fraud detection using
clustering techniques. In H. Saini, R. Sayal, R. Buyya, & G. Aliseri (Eds.), Innovations in
Computer Science and Engineering (pp. 135—143). Springer.

Maitra, D. S., Bhattacharya, U., & Parui, S. K. (2015). CNN based common approach to
handwritten character recognition of multiple scripts. 2015 13th international confer-
ence on document analysis and recognition (ICDAR) (pp. 1021—1025). IEEE. https://doi.
org/

Marcílio, W. E., & Eler, D. M. (2020, November). From explanations to feature selection:
Assessing SHAP values as feature selection mechanism. 2020 33rd SIBGRAPI conference
on graphics, patterns and images (SIBGRAPI) (pp. 340—347). IEEE. https://doi.org/

Müller, A. C., & Guido, S. (2016). Introduction to machine learning with Python: A guide for
data scientists. OʼReilly Media.

Ozdemir, S., & Susarla, D. (2018). Feature engineering made easy: Identify unique features
from your dataset in order to build powerful machine learning systems. Packt Publish-
ing Ltd.

Popat, S. K., & Emmanuel, M. (2014). Review and comparative study of clustering techni-
ques. International Journal of Computer Science And Information Technologies, 5(1),
805—812.

Primitives List. (2021). https://primitives.featurelabs.com/

Satopaa, V., Albrecht, J., Irwin, D., & Raghavan, B. (2011). Finding a “kneedle” in a hay-
stack: Detecting knee points in system behavior. 2011 31st international conference on
distributed computing systems workshops (pp. 166—171). IEEE. https://doi.org/10.1109
/ICDCSW.2011.20

Saul, L. K., & Roweis, S. T. (2000). An introduction to locally linear embedding. [Unpublished
article]. https://cs.nyu.edu/~roweis/lle/papers/lleintro.pdf

Sayed-Mouchaweh, M. (Ed.). (2020). Artificial intelligence techniques for a scalable energy
transition: Advanced methods, digital technologies, decision support tools, and applica-
tions. Springer.

Sewak, M., Karim, M. R., & Pujari, P. (2018). Practical convolutional neural networks: Imple-
ment advanced deep learning models using Python. Packt Publishing Ltd.

195

https://doi.org/10.1007/978-981-15-2043-3_17
https://doi.org/10.1109/ICDAR.2015.7333916
https://doi.org/10.1109/ICDAR.2015.7333916
https://doi.org/10.1109/SIBGRAPI51738.2020.00053
https://primitives.featurelabs.com/
https://doi.org/10.1109/ICDCSW.2011.20
https://doi.org/10.1109/ICDCSW.2011.20
https://cs.nyu.edu/~roweis/lle/papers/lleintro.pdf

Thanh-Hai, N., Tran, T. B., Tran, A. C., & Thai-Nghe, N. (2020). Feature selection using local
interpretable model-agnostic explanations on metagenomic data. In T. K. Dang, J.
Küng, M. Takizawa, & T. M. Chung (Eds.), International conference on future data and
security engineering, (Vol. 1306, pp. 340—357). Springer. https://doi.org/10.1007/978-9
81-33-4370-2_24

Toubakh, H., Sayed-Mouchaweh, M., Benmiloud, M., Defoort, M., & Djemai, M. (2020). Self
adaptive learning scheme for early diagnosis of simple and multiple switch faults in
multicellular power converters. ISA Transactions. https://doi.org/10.1016/j.isatra.2020.
03.025

Westermann, P., Deb, C., Schlueter, A., & Evins, R. (2020). Unsupervised learning of energy
signatures to identify the heating system and building type using smart meter data.
Applied Energy, 264, Article 114715. https://doi.org/10.1016/j.apenergy.2020.114715

Verkerken, M., D’hooge, L., Wauters, T., Volckaert, B., & De Turck, F. (2020). Unsupervised
machine learning techniques for network intrusion detection on modern data. 2020
4th cyber security in networking conference (CSNet) (pp. 1—8). IEEE. https://doi.org/

196

https://doi.org/10.1007/978-981-33-4370-2_24
https://doi.org/10.1007/978-981-33-4370-2_24
https://doi.org/10.1016/j.isatra.2020.03.025
https://doi.org/10.1016/j.isatra.2020.03.025
https://doi.org/10.1016/j.apenergy.2020.114715
https://doi.org/10.1109/CSNet50428.2020.9265461

LIST OF TABLES AND
FIGURES

Figure 1: Overview of Unsupervised Machine Learning and Feature Engineering Models 13

Figure 2: Clustering by Partitioning . 15

Figure 3: Hierarchical (Agglomerative) Clustering . 16

Figure 4: Unsupervised Transformation Using Principal Component Analysis (PCA) 18

Figure 5: Redundant and Irrelevant Features . 20

Figure 6: Data Points Linearly and Nonlinearly Correlated in the Original Feature Space 21

Table 1: Student_R . 25

Table 2: Courses . 25

Table 3: Student_R with Generated New Features . 27

Figure 7: Automated Feature Generation by Convolutional Neural Networks (CNN) 29

Figure 8 . 30

Figure 9: Toy Example of Data Points to Be Clustered Using K-Means 36

Table 4: Assigned Points to Each of the Two Clusters in the First Iteration of K-Means . . . 36

Table 5: Assigned Points to Each of the Two Clusters in the Second Iteration of K-Means 37

Figure 10: Obtained Clusters with Their Centroids by K-Means in the Second Iteration . . 38

Table 6: Assigned Points to Each of the Two Clusters in the Third Iteration of K-means . . 38

Figure 11: Obtained Clusters and Their Centroids by K-Means in the Third and Last Itera-
tion . 39

Figure 12: Two Gaussian Clusters with Their Centroids (Red Points) Obtained by K-Means
. 40

Figure 13: Elbow Method Applied to Two Gaussian Clusters to Find the Suitable K 45

197

Figure 14: Silhouette Measure for the Example of the Two Gaussian Clusters 48

Figure 15: Two Gaussian Clusters and Corresponding Silhouette Measure 49

Figure 16: Two Clusters Represented by Two Gaussian Probability Densities and Their Mix-
ture Probability Density . 52

Figure 17: Convergence of the Expectation-Maximization (EM) Algorithm 55

Figure 18: Clustered Obtained by Applying GMM on Data Points Including Three Gaussian
Clusters . 57

Figure 19: Probability Membership Zones Generated by GMM . 58

Figure 20: Silhouette Score and BIC as an Example of Three Gaussian Clusters 61

Figure 21: Clustered Obtained by Applying GMM on Data Points Including Three Gaussian
Clusters . 63

Figure 22: Membership Zones Obtained by GMM for Clusters of Non-Convex Shape 64

Figure 23: Hierarchical (Agglomerative) Clustering . 66

Figure 24: Simple Toy Example . 69

Figure 25: Dendrogram Example . 70

Figure 26: Unsupervised Transformation Using Principal Component Analysis (PCA) . . . 76

Figure 27: Implementing PCA . 77

Figure 28: Projection of the Iris Data in a Reduced Feature Space Formed by the Top Two
Principal Components . 81

Table 7: Correlation or Loading Matrix for the Iris Dataset . 83

Figure 29: Correlation Circle for the Iris Dataset . 84

Figure 30: Nonlinearly Correlated Data Points and Their Projection into the Transformed
Feature Space Using PCA . 85

Figure 31: Selection of PC2 to Separate Clusters Although PC2 Holds Less of Variance than
PC1 . 86

Figure 32: Iris Data Points Projected into a Two-Dimensional Feature Space 89

198

Figure 33: Iris Data Points Projected into a Two-Dimensional Feature Space Obtained by
Metric MDA . 90

Figure 34: Swiss Roll Dataset with Nonlinear Structure . 91

Figure 35: Projection of Swiss Roll Dataset into Two-Dimensional Feature Space 92

Figure 36: Manifold . 95

Figure 37: Swiss Roll Dataset Projected into Two-Dimensional Feature Space Obtained by
LLE . 96

Table 8: Energy Consumption Dataset . 100

Table 9: Min-Max Scaling on the Consumption Feature . 102

Table 10: Min-Max Scaling on the Consumption Feature . 106

Table 11: Standardization of Consumption Feature . 107

Table 12: Robust Scaling of Consumption Feature . 109

Table 13: Comparison between Feature Scaling Techniques in the Case of Sparse Dataset
. 110

Figure 38: Histogram of a Skewed Distribution of Data Points . 111

Figure 39: Histogram of Transformed Data Points by Log Transformer 112

Figure 40: Histogram of Transformed Data Points by Quantile Transformer 113

Figure 41: Use of an Interaction Feature to Discriminate Two Different Clusters 115

Figure 42: Interest of the Use of Interaction Features to Discriminate The Abnormal Con-
sumption Cluster . 116

Table 14: Motivation to Use Cross Product Features for Energy Consumption Example . 116

Table 15: Imputing a Missing Value in the Gender Feature of the Energy Consumption
Example . 118

Table 16: One-Hot Encoding for Gender and Work-types Features of a Table 120

Table 17: Splitting a Categorical Feature into Three Different Features 122

199

Table 18: Untidy Dataset Where the Same Customer Has Different Consumption (Rows) . . .
. 124

Table 19: Grouping the Consumption of the Same Customer Using the Aggregation Opera-
tor Sum . 124

Table 20: Extracting Whether the Day is a Weekend Day or a Business Day 127

Table 21: Example Showing Whether the Gender Affects the Status of Receiving a Grant . . .
. 128

Table 22: One-Hot-Encoding for Gender and “Work-types” Features of Table 128

Table 23: TF-IDF for a Simple Dataset of Two Simple Documents . 134

Table 24: Normalized TF-IDF According to l2 Norm for a Simple Dataset of Two Simple
Documents . 136

Table 25: Overview of the Characteristics of Feature Selection Techniques 141

Table 26: Example Showing How a Chi-Square Can Be Calculated 145

Table 27: Churn Rate According to Gender, HasCrCard, and IsActiveMember Features . 147

Table 28: How to Calculate the Mutual Information (Example) . 149

Table 29: Selecting High Variance Features (Example) . 154

Table 30: Name and Variance of Each of the Four Iris Dataset Features 156

Figure 43: Features Variances of the Iris Dataset (Bar Chart) . 157

Table 31: Pearson’s Correlation Matrix for the Iris Dataset . 159

Figure 44: Pearson's Correlation Heatmap for the Iris Dataset . 160

Figure 45: Nonlinear Correlation between Two Variables Represented as an Exponential
Relationship . 161

Table 32: Pearson’s and Spearman’s Correlation for a Nonlinear Correlation Represented
as an Exponential Relationship between Two Variables . 162

Figure 46: Horizontal Bar Chart Obtained by EFS for the Iris Features 167

Figure 47: Horizontal Bar Chart Obtained by SFS for the Iris Features 170

200

Figure 48: Horizontal Bar Chart Obtained by SBS for the Iris Features 173

Table 33: Transformation Primitives in the Featuretools Library . 181

Table 34: Aggregation Primitives in the featuretools Library . 181

Table 35: Customer Table . 183

Table 36: Customer Orders . 183

Table 37: Customer Payments . 183

Figure 49: Input Data Matrix for Digit 1 and Digit 2 . 188

Figure 50: Automated Convoluted Features Generation for Digit 1 by CNN 189

Figure 51: Automated Convoluted Features Generation for Digit 2 by CNN 190

Figure 52: Automated Convoluted Features Generation for Digit 2 by CNN 191

201

IU Internationale Hochschule GmbH
IU International University of Applied Sciences
Juri-Gagarin-Ring 152
D-99084 Erfurt

Mailing Address
Albert-Proeller-Straße 15-19
D-86675 Buchdorf

media@iu.org
www.iu.org

Help & Contacts (FAQ)
On myCampus you can always find answers
to questions concerning your studies.

	Introduction
	Signposts Throughout the Course Book
	Suggested Readings
	Learning Objectives

	Introduction to Unsupervised Machine Learning and Feature Engineering
	Unsupervised Machine Learning
	Feature Engineering

	Clustering
	K-Means
	Gaussian Mixture Model Clustering
	Hierarchical Clustering

	Dimensionality Reduction
	Principal Component Analysis (PCA)
	Multi-Dimensional Scaling
	Local Linear Embedding

	Feature Engineering
	Numerical Features
	Categorical Features
	Text Features

	Feature Selection
	Feature Importance
	Feature Variance
	Correlation Matrix
	Recursive Feature Selection

	Automated Feature Generation
	Automated Feature Generation
	Feature Engineering versus Deep Learning

	Backmatter
	List of References
	List of Tables and Figures

