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INTRODUCTION



WELCOME
SIGNPOSTS THROUGHOUT THE COURSE BOOK

This course book contains the core content for this course. Additional learning materials
can be found on the learning platform, but this course book should form the basis for your
learning.

The content of this course book is divided into units, which are divided further into sec-
tions. Each section contains only one new key concept to allow you to quickly and effi-
ciently add new learning material to your existing knowledge.

At the end of each section of the digital course book, you will find self-check questions.
These questions are designed to help you check whether you have understood the con-
cepts in each section.

For all modules with a final exam, you must complete the knowledge tests on the learning
platform. You will pass the knowledge test for each unit when you answer at least 80% of
the questions correctly.

When you have passed the knowledge tests for all the units, the course is considered fin-
ished and you will be able to register for the final assessment. Please ensure that you com-
plete the evaluation prior to registering for the assessment.

Good luck!
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LEARNING OBJECTIVES
The course Machine Learning—Supervised Learning focuses on one of the most popular
topics in the world of computer science. In fact, machine learning can be credited with
having influenced some of the most impactful technological achievements made in recent
years, from recommendation algorithms used across internet platforms to the creation of
self-driving vehicles. Machine learning plays an increasingly important role in our every-
day lives. One of the most popular ways to teach a machine is to use supervised learning
techniques. Here, a machine is taught using data that include both the inputs and outputs
the machine should eventually learn to predict.

In this course, you will discover how machine learning relates to pattern recognition. You
will then learn about the various design and implementation stages of a machine learning
model and how to recognize and avoid any potential pitfalls. The many algorithms used in
supervised learning, including support vector machines and decision trees, will be presen-
ted to you in an easy, straightforward, and practical way, gradually increasing in complex-
ity to avoid confusion. You will be introduced to new concepts, such as regression and
classification, and familiarize yourself with their techniques. By the end of the course, you
will be able to understand and apply these algorithms and methods on your own.
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UNIT 1
INTRODUCTION TO MACHINE LEARNING

STUDY GOALS

On completion of this unit, you will be able to …

– define machine learning and fully understand the concept of supervised learning.
– utilize the machine learning design cycle as an iterative process model for building

machine learning systems.
– understand the technical notions of learning and adaption and how they relate to one

other.
– detect and avoid problems of over- and underfitting.



Label
A label is the attribute

that we want to predict.
Observation

A single record in the data
is called an observation.

1. INTRODUCTION TO MACHINE LEARNING

Introduction
With data being recorded in so many aspects of our lives, the amount collected in recent
years has grown considerably. There is a wealth of valuable information hidden within this
ever-increasing flood of data—data that come in many different formats, including numer-
ical, textual, and even audiovisual. The complexity of these data, as well as the sheer
amount amassed, makes identifying and understanding insightful patterns and relation-
ships hidden therein a laborious task. We need algorithms that allow us to analyze these
huge amounts of data, observe patterns, and propose rules so that hypotheses can be for-
mulated and tested.

In this unit, we will find answers to the following questions:

• What is machine learning?
• How is pattern recognition related to machine learning?
• How can we design and implement a machine learning model?
• What should we be aware of during the machine learning process?

1.1 Pattern Recognition Systems
Pattern recognition and machine learning are two concepts that are very closely linked
with each other. Bishop (2006) explains that pattern recognition has its roots in engineer-
ing and that machine learning has evolved from the field of computer science. Neverthe-
less, both of these activities can be viewed as facets of the same field. Although the focus
in machine learning is on more computationally intensive methods, there is still a strong
overlap between the two activities: both pattern recognition and machine learning aim to
detect patterns hidden in data (Webb, 2002).

In this course, we understand pattern recognition as a process in which machine learning
techniques are used to detect patterns hidden in data. More formally, pattern recognition
is the process of using machine learning techniques to assign a label to a given observa-
tion based on its features (i.e., the observation’s attributes). In this context, “to learn” is to
capture the dependency structures between features and labels in order to generalize
them and thereby predict labels for new, unseen observations. The following are two
forms of pattern recognition that can be distinguished based on the type of machine
learning used:
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1. With supervised learning, we provide both the features and the labels that we want to
predict during the learning phase. The model therefore learns to assign labels based
on provided data containing both of these elements.

2. With unsupervised learning, the training dataset contains only the features (and not
the labels to be predicted). The goal here is to detect patterns and similarities in the
data in order to assign the same label to similar observations.

In this course, we will focus on supervised machine learning, i.e., we will work with train-
ing data containing both features and labels. Supervised learning models can be further
grouped into classification and regression models: classification models predict class
membership (e.g., whether a client is a churner or a non-churner); regression models pre-
dict continuous numeric values (e.g., sales figures).

Pattern Recognition in the Real World

Let us now look at a real-world example of a pattern recognition system—more precisely, a
classification model based on the work of Singh and Kaur (2012), Funmilola et al. (2015),
and Hingane et al. (2015). The processing of image data plays a pivotal role in the medical
field. Through the use of x-ray machines, magnetic resonance imaging (MRI), and ultra-
sound machines, a large number of invaluable images and data can be generated to aid in
the diagnosis of inconspicuous diseases.

Suppose that a doctor is trying to detect abnormalities (including evidence of disease)
present in an MRI scan of a patient’s brain. Given the gravity of the decision this doctor
needs to make, they may opt to consult an automated system to help identify and/or con-
firm the diagnosis. Therefore, in this example, we would like to automate the brain diag-
nosis process and simplify the associated task of determining the brain’s current state of
health (e.g., by using MRI images to detect any potential tumors).

For this process, we will need two sets of images, which will act as the input for the learn-
ing process of the pattern classification system. The first set contains images of healthy
brains, and the second set contains images of brains with abnormalities. The following fig-
ure shows two example images: on the left, we see a healthy brain; on the right, we see
that the MRI has revealed an abnormality.
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Figure 1: Sample of Normal and Abnormal Brain Images

Source: Hashan (2021a; 2021b), CC BY-NC-SA 4.0.

Based on the training images, the system must learn to fully comprehend how the human
brain is structured and what the differences between healthy brains and brains with
abnormalities look like. We can then successfully make an automated diagnosis. Because
every human brain is unique (and therefore no two images will be perfectly alike), this is a
very challenging task. The complex composition of the brain, which is divided into white
matter, gray matter, and cerebrospinal fluid, is another obstacle that must be overcome.
Furthermore, the images are often affected by various confounding factors relating to the
scanning process itself (e.g., the patient accidentally moving during capture).

The pattern classification system must manage this complexity by using the information
that can be taken from the image (e.g., image density, shape structure, and color differen-
ces). These properties help to generate features used by the classifier, whose goal is to
label the image (i.e., classify it) as “normal” or “abnormal.” It does this by predicting the
probabilities of class membership for these two classes and then assigning the appropri-
ate class label (i.e., the one with the highest rate of probability predicted) to the image.
The pattern classification system is a process designed to break down the complexity of
the data provided. It comprises a set of successive steps used for each image. These indi-
vidual steps are shown in the following figure.
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Preprocessing
Preparing data to make
them usable for machine
learning is called prepro-
cessing.

Image segmentation
Grouping similar pixels to
identify objects in an
image is called image seg-
mentation.

Figure 2: Brain MRI Image Classification

Source: Hofer (2021).

Before any legitimate analysis and classification of these images can take place, we must
first go through the preprocessing stage, i.e., the images must be prepared for machine
learning. In this first step, each MRI brain scan is converted into an array of pixels and then
sent through a sequence of simple transformation steps. This may include, in this sce-
nario, resizing each image so they have the same dimensions, filtering them to remove
noise, using a thresholding algorithm to identify and highlight any areas of interest,
and/or converting them to grayscale to reduce both complexity and the model’s eventual
computational costs. In some cases, it is also advisable to use augmentation techniques to
artificially expand the training dataset, e.g., by intentionally skewing the image, shifting it,
or adding extra noise. As a final preprocessing step, image segmentation is performed to
separate the different parts of the brain. Feature extraction comes next in the overall proc-
ess, where the preprocessed image is reduced to certain essential properties. By selecting
and combining these properties, features can be derived that are suitable for distinguish-
ing the classes from each other.

For feature extraction, the next stage, the models designed by Singh and Kaur (2012) and
Hingane et al. (2015) use a statistical method that characterizes an image based on the
position of pixels with similar gray values. It uses this information to transform the image
into a set of features (e.g., texture or shape). After completing this step, each image is now
reduced to a feature vector x in an n-dimensional feature space, where n is the number of
features.
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Model loss
This term refers to the cal-
culation of the probability

of misclassification.

x = x1x2⋮xn
The last step in this process concerns the actual classification. This step is divided into two
phases: the training phase and the testing phase. In the training phase, a large portion of
the images are used to learn the decision boundary, which separates and isolates the two
classes in the feature space. The decision boundary is then tested using the remaining
images that were left unused during the training phase. This testing phase reveals the suit-
ability of the decision boundary.

In order for the classifier to perform effectively, the selection of features representing the
image must be taken into consideration. It is important to choose features that provide
the optimal decision boundary. The more features taken into account, the more complex
the classification model will be, which may not necessarily be beneficial to us. Some fea-
tures could be redundant or entirely useless, others may be expensive to measure or
extract, and some may result in less accurate classifications. But how do we know which
features to choose? One possible approach is to obtain and utilize more comprehensive
and diverse training data. Conversely, one could simplify the model and generalize its
parameters while keeping the overall model loss in mind. As a rule, we want to keep our
models as simple as possible.

1.2 The Machine Learning Design Cycle
Although the development of a machine learning system can be structurally divided into
specific, successive phases, the very nature of machine learning is typically characterized
by iterative, recurrent phases. By going through these phases, the model can continuously
improve. This is also referred to as the machine learning design cycle. The Cross-Industry
Standard Process for Data Mining (CRISP-DM) is regarded as the blueprint for the develop-
ment of machine learning models. The CRISP-DM cycle consists of six phases: business
understanding, data understanding, data preparation, modeling, evaluation, and deploy-
ment. The individual phases of the CRISP-DM cycle and their iterative nature are illustra-
ted in the following figure based on Wirth and Hipp (2000).
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Figure 3: The Six Phases of the CRISP-DM Process Model

Source: Jensen (2012), CC BY-SA 3.0.

The Six Phases of the CRISP-DM Process Cycle

We will now take a closer look at each stage in this cycle to better understand the roles
that they play in model construction.

Business understanding

This initial phase concerns the understanding of project objectives and requirements from
a business perspective and their translation into a machine learning problem. A project
plan is also designed at this stage in the process. The term “business” here should be
understood as a broad concept, referring to organizations in a more general manner.
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Data understanding

This phase begins with an initial collection of data and the appropriate actions taken to
understand them. The goal is to examine the data quality, detect any possible errors and
inconsistencies, identify interesting subsets, and form early insights. Because it is neces-
sary to understand the data on, at least, a basic level when project planning, it is not
uncommon for iterations between these first two phrases to occur.

Data preparation

After forming an initial picture of the existing data and their quality, the data are prepared
for machine learning. This includes the selection and integration of the data chosen as
machine learning input, feature extraction, data cleaning, and the transformation of the
data into a suitable format.

Modeling

The actual machine learning begins during this phase. This phase can be quite enlighten-
ing, as it commonly reveals problems in the data. Here, we start constructing and training
a wide variety of models based on data using a set of parameter constellations. These
parameters, naturally, vary from model to model. It is also during the construction of the
model that new features or ways of incorporating new data emerge. Modeling and data
preparation are closely related, as the preparation steps needed for one model may not be
suitable to another.

Evaluation

In the evaluation phase, the goal is to identify which model performs the best. To solve
this, the different models and their various parameters are compared to each other.

Deployment

In this final phase, the model that has performed the best during trials is integrated into a
business or organization, where it should achieve the desired effect. This is where the
value added by the machine learning project comes into play.

1.3 Technical Notions of Learning and
Adaption
In this section, we will briefly cover the various types of machine learning and look at the
steps of the machine learning cycle. All supervised learning models will follow a specific
process, involving the splitting of a dataset in order to evaluate its ability to make predic-
tions.

18



Association rule
learning
Discovering and learning
about relationships
between features is called
association rule learning.

Definition of Machine Learning

Now that we have seen a practical example of a machine learning system and how such a
system can be constructed, we should focus on some fundamental concepts before con-
tinuing. Machine learning is a field of computer science that focuses on teaching comput-
ers to learn what humans do naturally: learn from data and past experience. Specifically,
this is made possible by developing programs and algorithms. This process should result
in a computer being able to automatically make predictions and perform certain tasks
without relying on predetermined rules or formulae. American scientist Arthur L. Samuel
(1959) defined machine learning as the field that gives computers learning abilities with-
out them being explicitly programmed. Mitchell (1997) offers a more technical definition:
“A computer program is said to learn from experience E with respect to some class of tasks
T and performance measure P, if its performance at tasks in T, as measured by P, improves
with experience E” (p. 2).

Types of machine learning

As previously mentioned, machine learning algorithms are commonly divided into three
different categories: supervised learning, unsupervised learning, and reinforcement learn-
ing. With supervised learning, the training data that we feed the algorithm include the
desired solution (i.e., the label). The goal of supervised learning is to learn how to detect
the label based on the features provided when applied to new, unlabeled data.

We focus on supervised machine learning, i.e., machine learning based on labeled data.
Supervised learning can be further grouped into regression tasks (where we predict con-
tinuous numeric values) and classification tasks (where we predict pre-known classes). To
perform these tasks, we can choose from a wide variety of algorithms, e.g., linear regres-
sion, logistic regression, k-nearest neighbors (KNNs), support vector machines (SVMs), and
decision trees.

With unsupervised learning, the provided data are unlabeled, and the objective is to ana-
lyze and discover patterns therein. This type of machine learning is usually used for clus-
tering, anomaly detection, dimension reduction, and association rule learning tasks.
When the system observes the environment and selects and performs an action, this is
called reinforcement learning, which is our third and final form of machine learning. If the
chosen action results in the desired outcome, the system is rewarded. Otherwise, it experi-
ences a penalty, i.e., negative rewards. Over time, it is expected that the system will devise
a strategy in order to collect the most rewards; this is called a policy.

Machine Learning Process

Regardless of whether we are working with regression or classification, the process of
supervised machine learning will include the following steps:

• learning,
• evaluating the model (i.e., controlling the success of the learning stage), and
• optimizing the model (i.e., adapting the learning process further).
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These three steps and how they relate to one other are shown in the following figure.

Figure 4: The Steps of the Machine Learning Cycle

Source: Hofer (2021).

Before the actual learning process can commence, the labeled dataset is first divided into
a training set and a test set. One common division is 80 percent training data and 20 per-
cent testing data, although the ratio to be applied is not defined per se. Once divided, the
model is iteratively trained using the training data and tested using the test data. During
this process, the labels of the test set are withheld from the model. The model makes pre-
dictions for the test data labels, which are then compared with the actual values of labels
in the test set. The delta between the predicted and actual label values is evaluated, and
the model is optimized based on this evaluation. By repeating these steps numerous
times, the model is improved step-by-step, and prediction performance increases.

To achieve more robust results, it is common to divide the dataset into three parts: a train-
ing dataset, a test dataset, and an additional validation dataset. Just as before, the train-
ing dataset is still used to train the model, and the test dataset is used for the final evalua-
tion after the model training is completed. This new validation dataset is used to evaluate
the prediction performance during the actual learning process. It should be noted that the
terms “test” and “validation set” are sometimes used interchangeably in the literature rel-
evant to this topic.

Cross Validation for Evaluating Machine Learning Models

The predictive performance of a machine learning model can be evaluated using a variety
of metrics specific to the task of regression or classification. Cross validation is designed to
evaluate both regression and classification machine learning models. This resampling
technique can be used in a variety of situations, including during model selection and
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Model parameters
The parameters of a
model are configuration
variables that decide how
the model will behave.

when comparing the various models to see which will produce the best prediction results.
It can also be used during the comparison of model parameters, thus determining which
parameter design yields the best results.

In cross validation, the provided dataset is not split merely into a training and a test set.
Rather, these provided data are split k times. In each of these k splits, a different partition
is used for testing, and the remaining data are used for training the model. Subsequently,
the predictive quality is averaged over these k training and test runs, leading to a more
robust conclusion concerning the model’s quality.

Cross validation requires just a single parameter k, which indicates the number of splits to
make. For this reason, this is also called k-fold cross validation. For example, k=10, a com-
mon value, reflects a ten-fold cross validation. For a better understanding, the following
graphic shows visually how a ten-fold cross-validation works. Cross-validation is very
computationally intensive. Instead of training and validating a model once, this is done k
times. This disadvantage is kept within limits if the value of the parameter k is kept within
acceptable ranges, typical values here are, for example, k=5 or k=10, or by having suffi-
ciently large computing capacities, so that this disadvantage is not severe.

Figure 5: Ten-Fold Cross Validation

Source: Hofer (2021).
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Optimization

The loss function, also called the objective or target function, is the computation of our
model’s prediction accuracy rate and how much these predictions differ from the true val-
ues of the labels. The model’s accuracy improves based on the minimization of this loss
function. It can be also used to assess the quality of the model when we calculate the
accuracy of the model using the test data. The function that minimizes the loss function,
the optimizer, iterates over the model’s parameter values. During each training iteration, it
updates these values, thus incrementally minimizing the loss function and devising a solu-
tion.

Gradient descent

Gradient descent is one of the most common optimization algorithms used in machine
learning. With gradient descent, the model parameters are iteratively tweaked to minimize
the loss function (and find its global minimum). At the start of the training phase, the
model parameters are initialized by random values. From there, the goal is to work in the
direction of the steepest descent of the loss function gradually, i.e., to take the step offer-
ing the largest possible loss reduction. The gradient descent locates the steepest descent
by determining the local gradient of the loss function (i.e., the partial derivative of the loss
function) and goes in the negative direction of the gradient. This is repeated until the func-
tion’s minimum has been reached. This process is illustrated in the figure below.

Figure 6: Gradient Descent

Source: Hofer (2021).

An important aspect of gradient descent optimization is the size of the single optimization
steps, which is influenced by the chosen learning rate. Multiplying the chosen learning rate
with the calculated gradient will result in the size of the particular optimization step. If the
learning rate is too low, the convergence of the function (i.e., the finding of the optimum)
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may take a very long time. It could even end in a local minimum instead of the global mini-
mum, as shown in the following figure. Conversely, a large learning rate could lead us to
the global minimum much quicker. However, we would then run the risk of overshooting
the global minimum entirely. The optimal learning rate quickly leads us to the conver-
gence of the function at the global minimum.

Not all loss functions are convex, as can be seen in the following figure. In fact, they may
have local minima and plateaus that render finding the global minimum difficult. Stochas-
tic gradient descent can help us solve this problem by taking a subsample of the training
observations and using it for the optimization process, making the algorithm faster. The
stochastic nature of random sampling also adds a degree of randomness when descend-
ing the gradient of the loss function. Although this added randomness does not necessa-
rily guarantee that the algorithm will find the absolute global minimum, it can help the
algorithm get sufficiently close, i.e., by allowing it to jump away from any minima and pla-
teaus (Boehmke & Greenwell, 2019).

Figure 7: Learning Rates

Source: Hofer (2021).

The major advantage of gradient descent optimization compared to other optimization
methods is the varying step size. It varies depending on the distance from the minimum
we are trying to find. We take larger steps when we are far from the optimum and smaller
steps when we are closer. This flexibility is what makes gradient decent so powerful and
fast.

1.4 Under- and Overfitting
Overfitting is a phenomenon where a model performs well with the training data and
struggles with the test data left unseen during the learning phase. This means that the
model fails to generalize the learned knowledge and is unable to apply it to new, previ-
ously unseen data. In reality, the model will have simply memorized the training data. To
illustrate the problem of overfitting and underfitting, it makes sense to first look at the
problem visually.
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Figure 8: Overfitting and Underfitting in Regression

Source: Hofer (2021).

This figure shows three different regression models (the lines) and how they perform on
the training and the test data (the dots). It is apparent that the first model, the linear
model, does not manage to represent the pattern in the training data. Instead, the data
have a nonlinear relationship, which this linear model simply does not capture. This
results in a high degree of training error (i.e., a high bias). Bias is the inability of a machine
learning model to capture the true relationship between the label and the features. It is
caused by erroneous assumptions that are inherent to the learning algorithm. This model
is too simple to properly capture the underlying relationships in the data. It has already
performed poorly on the training data (as it is “underfitted”), which may lead it to make
poor predictions when presented with the test dataset. This results in a high error with the
test data, i.e., a high variance. By contrast, the third model performs outstandingly with
the training data and shows a very low bias. However, it fails to generalize its knowledge
to new, unseen data and results in high variance with the test dataset. The model is “over-
fitted” (i.e., fitted too closely) to the pattern in the training data.

Those who build the models are the ones responsible for avoiding overfitting and under-
fitting problems. The model must be constructed in such a way that it can recognize and
understand the underlying relationships of the data well without losing the ability to gen-
eralize what it has learned. This is also called the variance-bias-tradeoff. An optimal bal-
ance between bias and variance is required to never underfit or overfit the model. For the
sake of completeness, the following figure illustrates the problem of overfitting and under-
fitting in classification models. Generally, the principle is the same here as it is for regres-
sion models: classifiers that do not capture essential patterns in the data reflect underfit-
ting, and classifiers fitted too closely to the training data reflect overfitting.
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Regularization
When a penalty term that
targets higher model
complexity is built into a
model, this is called regu-
larization.

Figure 9: Overfitting and Underfitting in Classification

Source: Hofer (2021).

Now that we are aware of these problems, how can we avoid building a model that is over-
fitted or underfitted?

Avoiding Overfitting

The following is a list of measures one can take to prevent overfitting:

• choosing a less complex model
• collecting more training data
• reducing noise in the training data (e.g., fixing data errors and removing outliers)
• using regularization

Avoiding Underfitting

As previously stated, underfitting happens when a model is too simple to learn the under-
lying structure of the data. Predictions from an underfitting model are bound to be inaccu-
rate, as they cannot precisely represent reality. The following is a list of possible measures
that one can take to avoid underfitting:

• selecting a more powerful, mathematically complex model
• extracting better features that represent the real world and feeding it to the algorithms
• reducing constraints (e.g., reducing regularization) on the model
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SUMMARY
Data collection and processing have become an integral part of today’s
modern world. Pattern recognition is a process in which machine learn-
ing techniques are used to find and understand underlying insights hid-
den in data. In this process, labels are assigned an observation based on
its features. There are two types of pattern recognition: supervised
learning, wherein the training dataset features both labels and features;
and unsupervised learning, wherein the training dataset exclusively con-
tains features. For supervised learning, there are many algorithms one
can employ, including linear regression, logistic regression, and k-near-
est neighbors (KNNs). The Cross-Industry Standard Process for Data Min-
ing (CRISP-DM) is seen as the blueprint for the development of machine
learning models and comprises six phases: business understanding,
data understanding, data preparation, modeling, evaluation, and
deployment.

To ensure the model’s accuracy, it must be optimized. The loss function
is the computation of the model’s prediction accuracy and how far it dif-
fers from the true value of the labels. A model’s accuracy improves
based on the minimization of the loss function. One of the most com-
mon methods of model optimization is gradient descent, where the
parameters are iteratively altered to minimize the loss function. Overfit-
ting is when a model performs well with training data and poorly with
unseen data; underfitting, by comparison, is when the model fails to
reflect reality due to its lack of complexity, which causes a high rate of
error on both sets of data.
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UNIT 2
REGRESSION

STUDY GOALS

On completion of this unit, you will be able to …

– understand the concept of regression and when to use it.
– evaluate a regression model’s performance.
– utilize regularization techniques and understand where they are implemented.
– apply different well-known regression models with the use of Python.



2. REGRESSION

Introduction
Supervised machine learning models are trained using data that include both the inputs
and the outputs the machine should learn to predict. These outputs (i.e., the respective
labels) can be of categorical or numerical nature. The range of applications of regression
models in practice is quite versatile. These are used when the labels are continuous
numeric values. In the real world, we see examples of their implementation every day,
including in weather forecasts, sales projections, the recording of users visiting a particu-
lar website, and individual income balancing. This unit will focus on the concept of regres-
sion, presenting and explaining some of the most common algorithms and methods. We
will find answers to the following questions:

• How do regression models work, and what is the math behind them?
• How can we evaluate the performance of a regression model?
• How can we reduce bias and variance in regression models?
• How can we apply a regression model with Python?

2.1 Linear Regression
First, let us look at some fundamental regression-related terms widely used in relevant lit-
erature and their synonyms.

Table 1: Important Regression Terms and Their Synonyms

Term Synonyms

Target variable (Y) Label, y variable, dependent variable

Input (X) X variables, independent variables, predictors, fea-
tures

Coefficient (ωi) Weight, slope, regression coefficient

(y-axis) Intercept (ω0) Bias

Loss function Cost function, target function, objective function,
error function

Source: Hofer (2021).
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Algorithm

To understand the concept of regression, we will first focus on linear regression (the sim-
plest form) and then move to some more complex, efficient models. Linear regression
tries to predict the output Y, based on an input X or even a larger number of n inputs Xi(I=1, 2, ..., n), i.e., the features. This is done by fitting a straight line through the given
cloud of data points that explains the relationship between Y and X in the best possible
way. This is illustrated in the graph below, where the data points represent the observa-
tions in the training data and the line represents the regression line. These are used to pre-
dict the label Y.

Figure 10: Linear Regression Model

Source: Hofer (2021).

Formally, the linear regression model is defined as

Y = ω0 + ∑i = 1n ωiXi
where Xi (I=1, 2, ..., n) refers to the n inputs or features, ωi the unknown weights of the
inputs Xiresponsible for the slope of the regression line, and ω0 the y-axis intercept. These
latter two elements are determined during model training. After this formal introduction
to the regression equation, we now address the question of how to determine the weights.
As noted previously, the weights (or coefficients) are determined during the training phase
of the model, in which the goal is to minimize the presence of residuals.
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A residual is the difference between an actual value and its predicted value, i.e., the verti-
cal difference between the data point and the regression line. If the predicted value is
lower than the actual value, the residual is positive; if the predicted value is higher, the
residual is negative; and if the prediction and the actual value are equal, the residual is
zero. The definition of the residual RI of observation I results from the difference between
the actual value of the label yen and its predicted value qi can be formally expressed asRi = yi − y i
The goal of the training phase is to adjust the individual coefficients of the regression line
so that the loss function is minimized. The loss function most commonly used in linear
regression is called ordinary least squares (OLS), which minimizes the residual sum of
squares (RSS), calculated as

RSS = ∑i = 1n Ri2
Squaring the residuals ensures both that positive and negative residuals do not cancel
each other out and that larger deviations of the value predicted from the actual value are
more significant than smaller deviations. This is illustrated in the figure below.

Figure 11: Plot of Residuals

Source: Hofer (2021).

The charm of linear regression lies in the previously noted understandability of the model
and the ease with which the results can be interpreted. If we use the derived regression
line from the previous example, we can easily interpret the coefficients determined by OLS
and thus the influence of the input features X on the label Y. In our simplified example,
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Metric
A measure to evaluate the
performance of machine
learning model is called a
metric.

we had only one input feature x1. For the regression line, we obtained Y=3x+50. Thus, for
intercept w0, OLS yielded w0=50 and w1=3 for the coefficient. Here, the intercept w0is to
be interpreted as a minimum value that label Y (to be predicted) does not fall below.

One example of this concept in action would be deducing the legal minimum salary when
predicting monthly salaries that each observation (i.e., person) receives, regardless of the
features. To give a second example, the intercept could be a minimum measurement when
predicting an individual’s height that is exceeded by each observation. The coefficient w1
indicates how much the label Y changes when the feature x1 changes. In our example, the
regression line Y=3x+50 results in a predicted value Y=80 for x=10 and a prediction ofY=110 for x=20. Thus, increasing x1 from 10 to 20 results in an increased prediction of Y
by 40.

Metric for Measuring the Prediction Performance of a Regression Model

To measure how good the predictions of a regression model are, a wide variety of methods
can be used, i.e., metrics. We will now focus on the three most popular metrics put into
practice: the mean absolute error (MAE), the mean squared error (MSE), and the root mean
squared error (RMSE).

Mean absolute error (MAE)

The MAE is the absolute difference between all predictions and the actual values (i.e., the
absolute residuals), averaged over the number of predictions. This is illustrated in the fol-
lowing figure.

Figure 12: Illustration of Mean Absolute Error

Source: Hofer (2021).
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The residuals are taken to the absolute value here so that positive and negative deviations
do not cancel each other out. The MAE is helpful because it is reported in the variable unit
being forecasted. This allows us to make more precise statements, e.g., “The regression
model can predict the sales figures with a mean deviation of 50 EUR.” The compact, formal
notation of MAE is as follows:

MAE = 1n ∑i = 1n yi − y i
Following this expression, the MAE results from the summed absolute differences between
the actual value yi and the predicted value ŷi for each observation i, averaged over all pre-
dicted observations n. When dividing by n, we keep the error measure consistent as we
move from a small collection of observations to a larger collection. This move alone would
otherwise increase the error without taking the mean.

Mean squared error (MSE)

The MSE differs from the MAE in only one aspect: The deviations between the actual and
the predicted values are taken to the square and not the absolute value. In contrast to the
MAE, its results cannot be interpreted in a stand-alone manner. Here, the unit of the label
is also squared, and statements such as “The regression model is able to predict the sales
figures with a mean deviation of 502 EUR” are not particularly useful. Instead, the squaring
provides another desired effect. While the MAE penalizes both smaller and larger devia-
tions from the actual value in the same way, squaring the MSE makes deviations larger
from the actual value more influential than smaller ones. The MSE, therefore, penalizes
outliers more heavily than it does small deviations. This effect is shown in the figure
below.
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Figure 13: Illustration of Mean Squared Error

Source: Hofer (2021).

The compact, formal definition of MSE is

MSE = 1n ∑i = 1n yi − y i 2
Following this expression, the MSE results from the summed squared differences between
the actual value yen and the predicted value qi for each observation I, averaged over all
predicted observations n.

Root mean square error (RMSE)

The RMSE is the square root of the MSE, whereby the result is telegraphed in the unit of
the label being predicted. This also provides increased interpretability as compared to the
MSE alone, and the resulting scores yield smaller, more manageable numbers. The com-
pact, formal definition of RMSE is

RMSE = 1n ∑i = 1n yi − y i 2
Following this expression, the RMSE results from the root of the summed squared differen-
ces between the actual value yenand the predicted value qi for each observation I, aver-
aged over all predicted observations n. The RMSE is one of the most common measures
against errors when evaluating machine learning models. For presentation purposes, the
MAE is often also reported due to its easy comprehensibility.
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Implementation

When developing machine learning solutions, it is common to use libraries, which means
that not every algorithm and procedure used has to be programmed by scratch itself. One
of the most popular Python libraries for developing machine learning solutions is scikit-
learn. This library supports several operations natively, like classification, regression, clus-
tering, and includes a wide variety of machine learning algorithms. In the following, we
will show a sample implementation of linear regression using the scikit-learn library. In
addition, we will show how the results of the trained and applied model can be visualized
using the matplotlib library.

Let’s choose a dataset of person’s professional experience in years and the task of predict-
ing the salary based on this information.

We typically start by importing the libraries we want to use. We first import the matplotlib
library to visualize our results and then the pandas library, probably the most popular
Python library when it comes to loading, preparing, and storing data.

Code
import pandas as pd
import matplotlib.pyplot as plt

Next, we import the dataset and divide it to input features X and labels Y.

Code
Dataset = pd.read_csv('Salary_Data.csv')
X_train = dataset.drop(columns=[‘Salary’])
y_train = dataset.iloc[:,1].values

Now we import an instance of linear regression using the scikit-learn library and train the
model based features X_train and labels y_train of the training dataset using the fit()
method.

Code
from sklearn.linear_model import LinearRegression
regressor=LinearRegression()
regressor.fit(X_train,y_train)

Next, we plot the data and the trained model using the matplotlib library.

Code
plt.scatter(X_train,y_train,color='red')
plt.plot(X_train,regressor.predict(X_train),)
plt.title('Salary vs Experience(Train set)')
plt.xlabel('Experience in years')
plt.ylabel('Salary')

34



In the resulting plot, we can now look at the data points and the trained model and easily
see the positive correlation between the professional experience in years and the salary at
a glance.

Figure 14: Linear Regression Plot Generated by the Matplotlib Library

Source: Hofer (2021).

The intercept and the value of the coefficient of the trained model can also be shown.

Code
print(regressor.intercept_, regressor.coef_)

As explained before, this regression coefficient can be interpreted. If we assume that the
coefficient is 1000, then one more year of professional experience would increase the sal-
ary by 1000 units according to the model. The trained model can now be used to generate
predictions for new unseen data. We can do this with the predict() method.

Code
y_pred = regressor.predict(X_newdata)

2.2 Lasso and Ridge Regularization
Linear models reflect a simple, effective approach to building predictive models. Never-
theless, they have their limitations: on datasets with a high number of features, they tend
to lose their generalizability and run into overfitting. For such datasets, one should make

35



Norm
A norm is a mapping that

assigns a number to a
mathematical object

(e.g., a vector) intended
to describe its size.

Multicollinearity
When a feature is highly

correlated with one or
more of the other features
in a regression model, we

speak of multicollinearity.

use of regularization methods, which aim to prevent overfitting in predictive models. In
this section, we will take a closer look at the most popular regularization techniques for
reducing model complexity through the restriction or regulation of estimated coefficients:
ridge regression, lasso regression, and elastic net (a combination of the first two).

Ridge Regression

Ridge regression regularizes the linear regression, putting constraints on the coefficients
by adding a penalty term

α∑i = 1n ωi2
to the loss function. We introduce a penalty for larger numbers of regression coefficientsωi, i.e., the more input variables we incorporate into our model, the higher the penalty. By
doing this, we render uninformative variables superfluous, as they are unable to compen-
sate for the loss that they introduce. Therefore, it is only worth inputting informative varia-
bles. The loss function takes the form

RSS + α∑i = 1n ωi2
The penalty size, also known as the L2 norm, can take on a wide range of values and is
controlled by the tuning parameter α. When α=0, there is no effect. Our loss function
equals the normal OLS regression loss function; as α→∞, the penalty becomes large and
forces the coefficients towards zero. However, we should note that the coefficients here do
not actually take the value of zero, meaning that all features have a contributory role in
the prediction result. Ridge regression is particularly useful for multicollinear datasets
comprising a vast number of features, many of which we assume are relevant and, conse-
quently, should be accounted for by the model. Essentially, ridge regression pushes corre-
lated features toward each other, thereby preventing one from being strongly positive and
the other strongly negative. It also pushes many of the less important features toward
zero, which helps to highlight any important signals in the data (Boehmke & Greenwell,
2019).

Application

Using scikit-learn, an open source Python library, we can apply ridge regression very
easily, here with a value of α=1. We can then train the model with the help of the fit()
method.

Lasso Regression

Lasso (least absolute shrinkage and selection operator) regression is an alternative regula-
rization method. It differs from ridge regression only in that the L2 norm is exchanged for
the L1 norm. We do this by introducing a penalty term
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α∑i = 1n ωi
to the loss function so that it is defined as follows:

RSS + α∑i = 1n ωi
The lasso penalty has the ability to push coefficients to zero, thereby canceling out the
influence certain features would have on the model. This is in stark contrast to the ridge
penalty, which can only push the variables closer to zero. Consequently, lasso regression
can also be used for feature selection (Boehmke & Greenwell, 2019).

Application

Lasso regression can be imported, initialized, and trained just as easily as ridge regression
using the scikit-learn library.

Code
from sklearn.linear_model import Lasso
lasso_reg = Lasso(alpha=0.1)
lasso_reg.fit(X_train,y_train)

Elastic Net

Elastic net acts as a middle ground between the ridge and lasso regression concepts, unit-
ing the advantages of both into one method. It selects important coefficients, as does
lasso regression, and is effective in handling correlated features, as is ridge regression. The
penalty term used here

α∑i = 1n rωi2 + 1 − r ωi
is a combination of the ridge and lasso penalty terms. When r=0, it represents lasso
regression; when r=1, it represents ridge regression. For all values 0<r<1, elastic net
affects both the ridge and the lasso regression penalties. The larger the value of r, the
more weight is given to the ridge regression term.

Application

Much like ridge and lasso regression, elastic net can be applied using scikit-learn. During
initialization, the l1_ratio parameter must be defined with a value in the range 0 ≤
l1_ratio ≤ 1, analogous to the explanation of the parameter r above. If l1_ratio=0 is
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set, the penalty is a pure ridge penalty. If l1_ratio=1 is set, the penalty is a pure lasso
penalty. If values 0 < l1_ratio < 1 are chosen, the penalty is an appropriately weigh-
ted combination of both.

Code
From sklearn.linear_model import ElasticNet
elastic_net = ElasticNet(alpha=0.1, l1_ratio=0.5)
elastic_net.fit(X_train,y_train)

We will now examine the regression coefficients that result from adding an artificially gen-
erated YearsExp/100 feature to the dataset. Linear, ridge, and lasso regression, as well as
elastic net, will be considered. YearsExp/100 is highly correlated with YearsExp and
does not introduce any information when used for regression.

Code
dataset['YearsExp/100'] = dataset['YearsExperience']/100

When we initialize the models with the parameterizations seen earlier and train them on
the artificially expanded dataset, we obtain the following coefficients using the coef_
method.

Table 2: Coefficients of Features “YearsExperience” and “YearsExp/100”

Model Coefficients

0 Linear regression [9449.017419713111,
94.4901741971311]

1 Ridge regression [9444.97381418553,
94.4497381418512]

2 Lasso regression [9449.94947649658, 0.0]

3 Elastic net (l1_ratio=0.01) [9330.37945693112,
93.29375135668731]

4 Elastic net (1l_ratio=0.99) [9448.735918738957, 0.0]

Source: Hofer (2021).

We note that lasso regression has set the coefficient of the YearsExp/100 feature to zero
because of its correlation with the YearsExperience feature. From the console output
for the two elastic net models, we can see two very clear results: the model for an
l1_ratio approaching zero nears ridge regression; and, an l1_ratio approaching one
nears lasso regression.
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Link function
The link function specifies
the link between the lin-
ear predictor and the
probability distribution.

Additive effect
This is a joint effect of two
or more features on the
target variable.

2.3 Generalized Linear Models
Generalized linear models (GLMs) are a category of expanded linear regression models.
Linear regression, as previously described, attempts to predict a continuous variable using
the linear combination of descriptive features. Linear regression is built upon the follow-
ing basic assumptions (Hardin & Hilbe, 2007):

• There is a linear relationship between the target variable Y and the features X.
• The residuals of the model are normally distributed.
• The residuals have a constant variance, i.e., there is homoscedasticity.

If, for example, the dependencies in the data do not follow a linear relationship, or the
other assumptions made concerning linear regressions are not true, applying linear
regression would simply yield poor predictions. GLMs address these shortcomings. Just
like the linear models they generalize, the purpose of GLMs is to specify the relationship
between the target variable Y and some number of features X. General models are devel-
oped by relaxing the assumptions of linear models. By restructuring the relationship
between the linear predictor and the fit, we can “linearize” relationships thought to be
strictly nonlinear (Hardin & Hilbe, 2007). GLMs all essentially comprise the following three
components:

1. A linear predictor ηi = ω0 + ω1 x1i + … + ωp xpi
2. A probability distribution that generates the target variable Y
3. A monotone differentiable link functiong(µi) = ηi describing how the mean depends

on the linear predictor ηi.
Because the link function is selected separately from the random component (i.e., the
probability distribution), we have greater flexibility in our modeling. By introducing the
link function and the additive effects it can represent, there is no need for a constant var-
iance. By specifying these three GLM components, a wide variety of models can be built in
a flexible way, i.e., to represent the underlying distribution and dependency structures of
the provided data. Let us illustrate the concept of GLM with an example from Kida (2019).

GLMs in action

Suppose we want to predict the number of defective products Y with a sensor value of the
producing machine as explanatory feature X. The scatter plot can be seen in the following
figure.
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Poisson distribution
The Poisson distribution

is used to model the
count of events that occur

in a given time interval.

Figure 15: Number of Defective Products

Source: Hofer (2021).

Applying linear regression to such data would be problematic for two reasons in particu-
lar. First, there is an obvious nonlinear relationship between the number of defective devi-
ces Y and the sensor values (i.e., there is non-constant variance). Second, Y only takes on
discrete values (as opposed to continuous ones). It would be much more appropriate here
to use the Poisson regression, another type of GLM. With Poisson regression, our GLM is
formulated as follows: lnηi = ω0 + ω1x1iyi Poisson ηi
The first expression describes our linear predictor and expresses the link function in the
form of the logarithm, which is typical in such scenarios. The second expression describes
our probability distribution, which expresses that our target variable Y follows a Poisson
distribution. According to Kida (2019), the Poisson distribution has only one parameter η,
which specifies both the mean and the standard deviation. Thus, the larger the mean, the
larger the standard deviation, as depicted in the following figure.
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Figure 16: The Poisson Distribution with Different Values for η

Source: Hofer (2021), based on Kida (2019).

To derive predictions, we resolve the expression shown previously to ηi by using the
inverse of the logarithm, i.e., the exponential function. This gives us the following equa-
tion: ηi = exp ω0 + ω1x1i
With an increase in inputs X, the predicted outputs Y increase exponentially. Conse-
quently, this means that the model is capable of representing a nonlinear relationship
between the target variable Y and the descriptive features X. When we apply Poisson
regression to our data, the result appears as depicted in the figure below. The red curve
represents the predictions generated by Poisson regression.
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Figure 17: Poisson Regression Applied to Our Data

Source: Hofer (2021).

The mathematics required for this process is somewhat elaborate and beyond the scope
of this unit. The interested reader is referred to McCulloch and Searle (2001, p. 135). At this
point, let us remember that, in GLMs, we do not estimate y directly with a linear combina-
tion of features x. Rather, we estimate the mean of the link function by this linear combi-
nation. The link function connects the linear combination of features x with any distribu-
tion of the exponential family (not only the normal distribution), from which we assume
the values of y to be predicted are drawn. In other words, we push a link function and
probability distribution between our y and x values. As we do that, our data need not ful-
fill the somewhat strict assumptions made by regular linear regression. It is notable that,
in regular linear regression, we have the choice between the ordinary least squares (OLS)
and maximum likelihood methods for estimating the regression coefficients. By compari-
son, in GLMs, we only use maximum likelihood for this estimation.

In Python, GLMs can be used with the help of the statsmodels library. The code for initializ-
ing and fitting the Poisson regression is as follows:

Code
import statsmodels.api as sm
exog, endog = sm.add_constant(x), y
mod = sm.GLM(endog, exog, 
       family=sm.families.Poisson(
            link=sm.families.links.log))
res = mod.fit()
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The terms endog (endogenous) and exog (exogenous) describe the target variable Y and
the features X, respectively,in the statsmodels library. We use the add_constant method
now to add our constant ω0 for the intercept. Otherwise, our linear predictor would be in
the form of ω1 x1i. We should note that the link function does not have to be specified
here, as it acts as the default logarithm for Poisson regression.

Link functions

Just as we used the logarithm as the link function for Poisson distribution, the link func-
tions of other probability functions can also be taken by default. Here are a few of the
common probability functions and the link function typically used with each (Ray, 2017).

Table 3: Some Probability Distributions and Their Link Functions

Distribution Use Notation Link function

Gaussian Linear repose N(μ,σ2) “Identity”: μ
Poisson Counts of events N(μ) Log(μ)
Bernoulli Outcome of single

yes/no occurrences
Bern(p) Logit(μ)

Binomial Count of yes occurren-
ces
out of n yes/no events

Bin(n, μ)/n Logit(μ)
Source: Hofer (2021).

For posterity, we should note that the logit is the natural logarithm of an eventuality, i.e.,
the probability p divided by the counter probability 1-p. This can be formally expressed as
follows: logit p = p1 − p
2.4 Logistic Regression
Logistic regression, a closely related method to linear regression, is a special form of GLM.
Instead of fitting a line, logistic regression uses an S-shaped logistic function. This curve
ranges between 0 and 1, as shown in the figure below.
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Figure 18: Logistic Regression

Source: Hofer (2021).

There is a particular property of note here that has become popular for binary classifica-
tion problems: the logistic function values are all in the range of values 0 and 1. This prop-
erty also has a tendency to push the values against the boundaries of this range (i.e.,
toward 0 or 1). Here, the output value Y expresses the probability of class membership.
The following figure illustrates this using a simplified example, where the number of learn-
ing hours is used to predict whether a student will pass an exam. The x-axis measures the
“learning hours” feature (i.e., the time the student has spent studying the material), and
the y-axis measures the probability that any given student will pass the exam.
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Figure 19: Logistic Regression as a Binary Classifier

Source: Hofer (2021).

For student A, who spent 40 hours studying, the logistic regression model predicts a 26
percent chance of passing the exam. By comparison, student B, who has spent 80 hours
studying, has a 96 percent chance of passing. Therefore, the classification output for stu-
dent A is “will fail the exam” and “will pass the exam” for student B. Formally, the logistic
function is defined as follows: p X = eω0 + ω1X1 + eω0 + ω1X
As in linear regression, the ω parameters stand for the regression coefficients and X for the
input feature. p(X) can be interpreted as the initial probability of class membership (i.e.,
the probability of passing the exam). We should note that this only defines simple logistic
regression when considering one input feature. That being said, this definition can be
expanded to include multiple features X for the prediction. This is called multiple logistic
regression and is defined as follows:

p X = eω0 + ω1X1 + … + ωpXp1 + eω0 + ω1X1 + … + ωpXp
As with other classification algorithms, logistic regression has a decision boundary, which
is decisive for the class to which an observation is assigned. In the case of logistic regres-
sion, we also speak of the threshold probability. The threshold probability marks the class
boundary. Although it is often 50 percent, it can vary depending on the purpose of the
model. Formally, it can be expressed as follows:
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y = 0   if   p ≤ 0.51   if   p > 0.5
In this case, the threshold probability is 50 percent. If the output of the logistic function is
less than or equal to 0.5, the observation is assigned to class 0 (e.g., the student fails the
exam). By comparison, if the output of the function is greater than 0.5, the observation is
assigned to class 1 (e.g., the student passes the exam).

Model Training via Maximum Likelihood

While linear regression uses ordinary least squares (OLS) to fit a line to the data, logistic
regression does not, as it has no concept of residuals. Therefore, we have to use a different
mechanism to fit the curve to the data, namely the maximum likelihood method. Using
this method, we seek estimates for our regression coefficients ω such that the predicted
probability p(X) for each observation matches the observed output value Y of the obser-
vation as closely as possible. In other words, we are trying to find ω such that plugging
these estimates into the model for p (X) yields one of the two following options: a num-
ber close to one for all observations actually belonging to the positive class and a number
close to zero for all observations not belonging to this class (Boehmke & Greenwell, 2019).
In mathematical terms, this can be formally expressed as a likelihood function:l ω0, ω1 = ∏i:yi = 1p Xi ∏i′:y′i = 0 1 − p x′i
The likelihood function expresses the probability p(Xi) that an observation i belongs to
the class based on its features Xi.It also expresses the counter probability 1-p(xi) that it
does not belong to the class. For the coefficients ω0 and ω1,the values are chosen that
maximize the stated likelihood function by approximating the output probabilities to the
actual output values.

Application

Let us look at an example from Géron (2019) using the popular Iris dataset, which comes
bundled in the scikit-learn library. The dataset consists of 50 samples of three Iris flower
species (Iris setosa, Iris versicolor, and Iris virginica) and contains four features (the respec-
tive lengths and widths for both the sepals and petals). Géron (2019) builds a binary classi-
fier that detects one of the species, the Iris virginica, by using the logistic regression.

First, we load the Iris dataset using scikit-learn.

Code
from sklearn import datasets
iris = datasets.load_iris()

Then, we split it into features X and labels Y.

46



Code
import numpy as np
X = iris["data"][:, 3:] # petal width
y = (iris["target"] == 2).astype(np.int)
# 1 if Iris virginica, else 0

Next, we initialize and train an instance of the logistic regression.

Code
from sklearn.linear_model import LogisticRegression
log_reg = LogisticRegression()
log_reg.fit(X, y)

Finally, with the help of the matplotlib library, we let the model predict the class probabili-
ties and plot the estimated probabilities for Iris flowers with petal widths ranging from 0 to
3 cm.

Code
from matplotlib import pyplot as plt
X_new = np.linspace(0, 3, 1000).reshape(-1, 1)
y_proba = log_reg.predict_proba(X_new)
plt.plot(X_new, y_proba[:, 1], "g-",
   label="Iris virginica")
plt.plot(X_new, y_proba[:, 0], "b--",
        label="Not Iris virginica")

Let us take a look at the resulting plot.

47



Figure 20: Plot of Estimated Probabilities with Decision Boundary

Source: Hofer (2021), based on Géron (2019).

We can see from the figure above that the classifier is very sure that a flower is of the Iris
virginica variety when its petals are at least 2 cm in width (i.e., the model outputs a high
probability for the class belonging). Comparatively, the classifier is also very sure that a
flower is not of this variety when petal width is under 1 cm. If the petal width moves
between these ranges (i.e., 1cm < petal width < 2cm), the classifier is less sure that the
flower in question is an Iris virginica. If we ask the model to output only the predicted class
membership via the predict() method (instead of the predicted probability via the
predict_proba() method used earlier), then only the class that the model considers to
be more probable is shown. The model uses the default threshold probability of 50 per-
cent, which is approximately 1.6 cm in this case. Thus, if the width of the flower’s petals is
greater than 1.6 cm, the classifier will assume that it is an Iris virginica.

SUMMARY
Regression models are a type of supervised machine learning where the
label to be predicted is a continuous numerical value. In practice, the
range of application for these models is very broad, and we see them
implemented every day (e.g., in weather forecasts, sales projections, the
recording of users visiting a particular website, and individual income
balancing). Probably the simplest form of a regression model is linear
regression, which tries to predict the label Y based on one or more fea-
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tures X. This is done by fitting a straight line through the given cloud of
data points that explains the relationship between Y and X in the best
possible way.

Linear models are a very simple, yet effective approach to building pre-
dictive models. Nevertheless, with datasets with a high number of fea-
tures, they tend to lose their generalizability and have overfitting prob-
lems. Regularization methods (e.g., ridge regression, lasso regression,
and elastic net) can be used to counteract this.

If the dependencies in the data do not follow a linear relationship,
applying a linear regression would result in poor predictions. General-
ized linear models (GLMs) help to address this shortcoming. GLMs are
developed by relaxing the assumptions of linear models so that we can
“linearize” relationships thought to be strictly nonlinear. Logistic regres-
sion is a special form of GLM in which an S-shaped logistic function is
fitted (instead of a line). The values of the logistic function are between 0
and 1, which also makes it popular for binary classification problems
where the boundary values of the function represent the two classes.
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UNIT 3
BASIC CLASSIFICATION TECHNIQUES

STUDY GOALS

On completion of this unit, you will be able to …

– understand the concept of classification and when to use it.
– evaluate the prediction performance of a classification model.
– apply two very popular classification models using Python.



Classifier
A model used for classifi-

cation is also called a
classifier.

3. BASIC CLASSIFICATION TECHNIQUES

Introduction
Classification is a supervised learning technique that uses a provided training dataset con-
taining both inputs and outputs in the form of a pre-determined number of categorical
class labels. The classification algorithm therefore learns the characteristics of the classes
provided in the training dataset and can then categorize a previously unseen observation
by assigning a class label to it based on its feature values. Classification algorithms are
used in a wide range of practical situations. Classifiers can be used, for example, to pre-
dict whether a customer will buy a product or cancel a service. They can also be used in
image recognition, e.g., to help identify objects appearing in a video stream. It is common
to divide classification algorithms into binary and multi-class classifiers based on the
number of output classes. With binary classifiers, the algorithm predicts the class mem-
bership for an observation and assigns it to one of two possible classes. An example of this
is the prediction of whether a web store patron is actually a fraud. Multi-class classifiers,
by contrast, predict a class based on a predefined set of classes, e.g., the classification of
objects in an image or the language of a certain text.

A further categorization of classification algorithms can be made based on how they learn.
Classifiers are trained using either a lazy learner or an eager learner. Lazy learners perform
only minimal training, sometimes even none at all. According to Mitchell (1997), “we call
these methods lazy because they defer the decision of how to generalize beyond the train-
ing data until each new query instance is encountered” (p. 244). Lazy learners usually store
the training dataset until they receive the test dataset or the observation to be classified.
Any additional training data received by the classifier are added to those already existing.
Future predictions are then made using this expanded and larger training dataset. In com-
parison to eager algorithms, lazy classification algorithms need less time for training and
more time to make a prediction. This is because a comparison is made to the training data
each time a prediction is to be formed. Indeed, “we call this method eager because it gen-
eralizes beyond the training data before observing the new query” (p. 244). The training
phase of eager learners lasts longer than that of lazy learners. Nevertheless, they need less
computation time to make a prediction.

In this unit, we will familiarize ourselves with two well-known classification algorithms,
each using a different learner. We will introduce the k-nearest neighbor classifier as an
example of a lazy learner and naïve Bayes as an example of an eager learner. We will find
answers to the following questions:

• How do the k-nearest neighbor and the naïve Bayes algorithm work?
• How can we evaluate a classification model’s performance?
• How can we apply both algorithms using Python?

52



3.1 K-Nearest Neighbor
Let us assume we want to predict whether a person’s monthly income will be above or
below 4,000 EUR. In order to make an accurate prediction, we could ask this person’s cow-
orkers (i.e., neighbors) about their salary to determine if said person earns above or below
the threshold. If we then collect further information about this person and their coworkers
(e.g., age, level of education, time spent in the field, department, or job title), we should
be able to make an even more accurate prediction.

The idea behind nearest neighbor classification is to derive a prediction for one observa-
tion by using a number of similar observations (i.e., neighbors) from the training dataset.
The central task of the k-nearest neighbor algorithm is to choose the number of k-nearest
neighbors by which the prediction for the observation is deduced. The following figure
depicts the k-nearest neighbor algorithm by providing an example of a different number of
neighbors (k=3, k=6, k=9). Depending on the number of k-nearest neighbors chosen for
the classification of the new unknown observation (represented below by the circle), the
algorithm makes a different prediction about its class membership and thus determines
whether to assign this observation the class label “rectangle” or “triangle.”

If we decide to infer the class membership using the three most similar observations from
the training dataset (i.e., if we set k=3), the algorithm predicts the class membership “rec-
tangle.” If we take the six most similar neighbors into consideration and set k=6, the algo-
rithm makes the prediction “triangle.” If we decide to set k=9, we also receive the predic-
tion that the new observation is a rectangle.
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Figure 21: K-Nearest Neighbor Algorithm with Two Classes and k=3, k=6, and k=9

Source: Hofer (2021).

In this example, the k-nearest neighbor acts as a binary classifier. It can be extended easily
for multi-class classification, i.e., more than two classes. The k-nearest neighbor can also
be tweaked to perform regression. This is where we simply take the mean value and out-
put it as the predicted continuous value (as opposed to taking the vote of the neighbors).

Since the k-nearest neighbor algorithm is non-parametric in nature (which means there is
no need to build any model or tune its parameters), it is easy to process, understand, and
implement. However, the classification phase would prove to be more expensive in terms
of computation. The k-nearest neighbor algorithm does not learn mathematical functions
(i.e., decision boundaries) like other classification algorithms do. Other algorithms infer a
prediction based on these decision boundaries. By comparison, k-nearest neighbor merely
memorizes the training dataset. For this reason, the k-nearest neighbor algorithm is also
called a lazy algorithm.

Algorithm

The lazy learner used as a training algorithm by the k-nearest neighbor classifier does not
require much computation time. The classification algorithm that it uses, however, is com-
putationally intensive. It can be broken down into the following three phases:

1. Loading the data
2. Selecting a value for k that specifies the number of neighbors
3. Classifying the required observations

The third and final phase of this algorithm comprises the following sequence of actions:
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• calculating the distance to all observations of the training dataset
• obtaining the k-nearest neighbors from the training dataset
• obtaining the classes of these k-nearest neighbors
• assigning the dominant class label to the observation

The actual computational work in the k-nearest neighbor algorithm lies in calculating the
distance between the observation to be classified and each point in the training data.
Once this has been completed, the k-nearest neighbors can be identified. This is where
distance measures come into play.

Distance Measures

In principle, the distance measure used in the k-nearest neighbor algorithm can be chosen
freely. Nevertheless, the two most popular distance measures are the Euclidean distance
and the Manhattan distance (Boehmke & Greenwell, 2019). The easiest way to show how
these two distance measures are calculated and how they differ is to use an illustrative
example, as shown in the figure below.

55



Figure 22: Calculation of Euclidean Distance and Manhattan Distance

Source: Hofer (2021).

In this example, we calculate both the Euclidean distance and the Manhattan distance
between the first point with coordinates (x1 = 20, x2 = 30) and the second point with
coordinates (x1 = 70, x2 = 60). The Euclidean distance and its calculation are represen-
ted by the direct, diagonal line between the two points, shown above in orange. The Man-
hattan distance is composed of the distances added on the axes between the two points,
shown above in green. As one could surmise from the figure, the Manhattan distance (also
called the city block distance) gets its name from its composition. Much like the street lay-
out in Manhattan (New York), only horizontal and vertical (i.e., not diagonal) paths can be
followed. The figure above shows two different paths for the Manhattan distance, both
leading to the same result.

Euclidean distance

Following the concepts introduced above, the Euclidean distance de between two observa-
tions xi and xj can be defined as follows:
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de xi, xj = ∑i = 1n xi − yi 2
Manhattan distance

If we want to calculate the distance between two observations xi and xj, the Manhattan
distance dmcan be defined as follows:

dm xi,xj = ∑i = 1n xi − yi
Choosing a Value for k
There is no fixed rule for determining the optimum k value. Rather, we try to arrive at the
optimal value for k iteratively, i.e., by running the algorithm a few times with different val-
ues. We can then evaluate which k value yields the best prediction results on the test data-
set. It is generally understood that low k values often overfit and large ones will underfit.
According to Boehmke and Greenwell (2019), at the extremes, when k=1, we base our pre-
diction on a single observation that has the closest distance; when k=n, we are simply
using all training samples as our predicted value (p. 163).

Metrics for Measuring the Prediction Performance of a Classification Model

As with regression, there are many metrics for evaluating the prediction performance of
classification algorithms. We will now take a closer look at the most popular metrics
widely used in practice: the confusion matrix, accuracy, recall, and precision.

Confusion matrix

The confusion matrix is a standard tool for the presentation of classification results. The
following figure shows the structure of a confusion matrix consisting of four fields and
using two classes to be predicted: “cat” and “dog.” The rows of the matrix show the actual
number of observations in each class; the columns show how many observations the clas-
sifier has predicted in each class. It should also be noted that this assignment can be
inversed, i.e., the columns could list the actual observations per class and the rows could
list the predicted observations per class. A perfect classifier that only gives correct predic-
tions would only return true positives and true negatives, i.e., observations that are cor-
rectly classified as “cat” or “dog.” However, in practice, this result would likely be consid-
ered utopian. In reality, this is a matter of increasing the number of true positives and
negatives in comparison to the false positives and negatives, i.e., observations incorrectly
classified as “cat” or “dog.”
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Table 4

Predicted positive
(cat)

Predicted negative
(dog)

Actual positive (cat) True positive (TP) False negative (FN)

Actual negative (dog) False positive (FP) True negative (TN)

Source: Hofer (2021).

The matrix is a decent visual representation of the classification results. That being said, it
is less suitable for the comparison of different classifiers. To perform such comparisons, it
is much more practical to use metrics that express model performance in the form of sin-
gle digits. Then, these results could be easily compared with the scores achieved by other
classification models. This is where accuracy, recall, and precision come into play, which
can all be calculated from the matrix.

Accuracy

By dividing the sum of correctly classified observations by the total number of observa-
tions, we arrive at an accuracy percentage. The accuracy is calculated based on the confu-
sion matrix, as seen here: Accuracy= TP + TNTP + TN + FP + FN
Accuracy is a metric that should be used with caution when evaluating classification mod-
els. For example, we can look at a classifier designed to predict whether any prospective
airline passenger is a dangerous criminal. As the dataset is highly unbalanced, and the
proportion of non-criminals passing through the airport each day could be north of 99 per-
cent, the classifier will have high accuracy. For this reason, it is advisable to additionally
consider recall and precision when working with unbalanced datasets.

Recall

Recall is the true positive rate that shows how well the model prevents false negatives
(i.e., failing to identify the class as positive when appropriate). Let us take the task of clas-
sifying objects present in an image as an example scenario. Failure to classify certain
objects in said image would result in a lower recall. Recall is calculated using the following
notation: Recall= TPTP + FN
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Precision

Precision refers to the accuracy of the positive predictions and indicates the reliability of a
positive classification. It is typically used alongside the recall to ensure the model per-
forms its classification tasks well. Let us briefly return to our example concerning the iden-
tification of objects in an image. If we assign an object to a specific class, the certainty and
accuracy of this classification would reflect precision. Precision is expressed as follows:Precision= TPTP + FP
Receiver operating characteristic curve (ROC curve)

Another visual metric for evaluating classifiers is the receiver operating characteristic
(ROC) curve. The ROC curve is the result of comparing of the true positive rate on the y-
axis and the false positive rate on the x-axis. A diagonal line indicates a classifier that
decides by random chance. In the figure below, we see different ROC curves for different
classifiers. The closer a classifier appears to the upper left corner of the diagram, i.e., the
higher its true positive rate and the lower its false positive rate, the better its prediction
performance.

Figure 23: ROC Curve

Source: Hofer (2021).
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Area under the curve (AUC)

Another metric that can be used to evaluate classification models is the area under the
curve (AUC). As its name suggests, this metric covers the area beneath the ROC curve. The
AUC is expressed as a number in the range of 0 to 1: an AUC of 0.5 describes a classifier
acting randomly; an AUC of 1.0 (the maximum) represents a perfect classifier.

Figure 24: AUC Curve

Source: Hofer (2021).

Application

We will look at how the k-nearest neighbor algorithm can be used with the help of the sci-
kit-learn library. This example uses the rather ubiquitous breast cancer dataset. First, we
import the used libraries and modules.

Code
import pandas as pd
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score

The dataset contains two classes of tumors: 212 malignant tumors and 357 benign
tumors. There are 30 features in the dataset. The label must be categorically coded so that
it can be interpreted by the model (i.e., malignant=0 and benign=1). For simplicity, we
will only focus on three random features from those available.
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Code
dataset = load_breast_cancer()
X = pd.DataFrame(dataset.data,columns=dataset.feature_names)
X = X[['mean smoothness', 'mean concavity', 'radius error']]
y = pd.Categorical.from_codes(dataset.target, dataset.target_names)
y = pd.get_dummies(y, drop_first=True)

We split the dataset into a training and a test set with the help of scikit-learns’
train_test_split module. By default, the module takes 25 percent of the data for test-
ing.

Code
_train, X_test, y_train, y_test = train_test_split(X, y)

We can now initialize and train an instance of the k-nearest neighbor algorithm with a
value of k=4. We choose the Manhattan distance as the distance metric.

Code
knn = KNeighborsClassifier(n_neighbors=4, +
      metric='manhattan')
knn.fit(X_train, y_train.values.ravel())

In the next step, we apply the trained model to the test data and generate predictions.

Code
y_pred = knn.predict(X_test)

To evaluate the model, we generate the confusion matrix.

Code
print(confusion_matrix(y_test, y_pred))

The following output will then appear in the console. One should note that, as the splitting
of the data in training and testing data is random, this output may look different from exe-
cution to execution.

Code
[[48 4]
 [13 78]]

Based on the confusion matrix generated, our model shows an accuracy of 126/143 =88.1%. Of course, the model could be further optimized by adding more features and by
trying different values for k. Alternatively, we can use the accuracy_score() function
from scikit learn to calculate this number.
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Inference
This is the process of

using a trained machine
learning model on new,

incoming data.

Code
accuracy_score(y_test, y_pred)

3.2 Naïve Bayes
Bayesian classifiers provide a probabilistic approach to inference and bases itself on “the
assumption that the quantities of interest are governed by probability distributions and
that optimal decisions can be made by reasoning about these probabilities together with
observed data” (Mitchell, 1997, p. 154). The naïve Bayes classifier is based on Bayes’ theo-
rem, which is explained in the following section. It makes the “naïve” (yet, in practice, sur-
prisingly performant) assumption that the distributions of the features are independent of
each other.

Bayes’ Theorem

We are often interested in determining the best hypothesis h from a space of different pos-
sible hypotheses H given the training data D. The best hypothesis h equates to the most
likely hypothesis given the training data D and any initial information concerning the prior
probabilities of the hypotheses H. P(h) refers to the initial probability that hypothesis h is
true without having already observed the data D. It is frequently called the prior probabil-
ity of h and can represent all previous knowledge we have indicating that h is true.

Analogously, P(D) expresses the prior probability that the data D will be observed. P(D|h) is the probability of observing the training data D given that hypothesis h is true. To
that same effect, in machine learning problems, we are interested in the posterior proba-
bility P(h|D) that hypotheses h is true given the observed training data D. The Bayes the-
orem presents a way to compute this posterior probability P(h|D) based on the prior
probability P(h) and the probabilities P(D) and P(D|h). It is defined as follows:P(h|D)=P D ℎ P ℎP D
Based on the Bayes theorem, the naïve Bayes classifier attempts to find the most probable
hypothesis h from the set of all possible hypotheses H given the training data D. The
result is the maximum aposteriori hypothesis, i.e., the hypothesis with maximum probabil-
ity (Mitchell, 1997).

Naïve Bayes Classifier

How the naïve Bayes classifier works can best be seen through an example. In this sce-
nario, we want to predict whether a student will pass or fail an exam based on two criteria:
invested learning effort and the student’s performance on the last exam. Our training
dataset consists of ten students.
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Table 5: Exam Data

Student
number

Studying effort inves-
ted

Passed prior exam
(1 = yes; 0 = no)

Passed latest exam
(1 = yes; 0 = no)

1 low 0 0

2 medium 1 1

3 high 1 1

4 low 0 0

5 high 1 1

6 high 1 1

7 medium 1 1

8 medium 1 0

9 high 1 1

10 medium 0 1

Source: Hofer (2021).

We derive the initial guesses for the two hypotheses from the distribution of the training
data:

• h means that the student passes the upcoming exam.
• h’ means that the student fails the upcoming exam.

Among the students, seven successfully passed the exam and three failed. Hence, we
obtain the prior probability of passing the exam P(h)=0.7 and the prior probability of fail-
ing is P(h')=0.3. We can now calculate the other initial probabilities as follows:

• Studying effort is low, medium, or high, given the student passed the exam:P(low|h) = #(low and pass)/#(low total) = 0/2 = 0.0P(medium|h) = #(medium and pass)/#(medium total) = 3/4 = 0.75P(high|h) = #(high and pass)/#(high total) = 4/4 = 1.0
• Studying effort is low, medium, or high, given the student failed the exam:P(low|h') = #(low and not pass)/#(low total) = 2/2 = 1.0P(medium|h') = #(medium and not pass)/#(medium total) = 1/4 = 0.25

P(high|h') = #(high and not pass)/#(high total) = 0/4
• Passed the prior exam 1/0, given the student passed the latest exam:P(1|h) = #(1 and pass)/#(1 total) = 6/7 = 0.86P(0|h) = #(0 and pass)/#(0 total) = 1/3 = 0.33
• Passed the prior exam 1/0, given the student failed the latest exam:P(1|h') = #(1 and not pass)/#(1 total)= 1/7 = 0.14P(0|h') = #(0 and not pass)/#(0 total) = 2/3

63



Now suppose we want to predict whether a student, who has invested little studying effort
and also failed the previous exam, will pass. Using Bayesʼ theorem, we calculate the fol-
lowing posterior probabilities:P h D = P low ℎ *P 0 ℎ *P ℎP D = 0.0*0.33*0.7 = 0.0P h′ D = P low ℎ′ *P 0 ℎ′ *P ℎ′P D = 1.0*0.66*0.3 = 0.2
Note that we can drop P(D), as it is constant and independent of the hypotheses. Since
the posterior probability of failing the exam is larger, with P(h’|D) = 20%, the naïve Bayes
classifier predicts that the student will indeed fail.

Application

With Gaussian naïve Bayes, we will see how perhaps the simplest naïve Bayes classifier
can be used with Python. For this purpose, we will continue with our previous student
example. This classifier assumes that the data from each label are drawn from a simple
Gaussian distribution. We start with importing the necessary libraries.

Code
import pandas as pd
from sklearn.naive_bayes import GaussianNB

We load the training data and print it.

Code
exam_data = pd.read_csv('bayes_data.csv', sep=';')
print(exam_data.head(10))

We get the following console output after executing the print command.

Code
Student No. Invested effort Passed last exam Passed
0           1            low                0      0
1           2         medium                1      1
2           3           high                1      1
3           4            low                0      0
4           5           high                1      1
5           6           high                1      1
6           7         medium                1      1
7           8         medium                1      0
8           9           high                1      1
9          10         medium                0      1

Next, we separate the labels from the features and dummy encode the feature “Invested
effort” so that it can be processed by the model.
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Code
X = exam_data.drop(columns=['Passed'])
y = exam_data['Passed']
X = pd.get_dummies(X)

Now, we initialize and train an instance of the Gaussian naïve Bayes.

Code
model = GaussianNB()
model.fit(X, y)

Now we generate predictions for the following three new observations to test the predic-
tion performance of the trained classifier.

Code
Student No. Invested effort Passed last exam Passed
0          11            low                0      0
1          12         medium                0      1
2          13           high                1      1

We load and prepare the test data.

Code
test_data = pd.read_csv('bayes_test_data.csv', sep=';')
X_test = test_data.drop(columns=['Passed'])
y_test = test_data['Passed']
X_test = pd.get_dummies(X_test)

To generate and print the predictions, we execute the following commands.

Code
y_pred = model.predict(X_test)
print('Prediction results:')
print(y_pred)

We receive the following output that contains the prediction results.

Code
Prediction results:
[0 1 1]

From the output shown above, we can see that the trained model correctly predicted the
passing or failing of the three students.
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Difficulties of Bayesian Learning Methods

The naïve Bayes classifier and Bayesian learning methods generally have two practical dif-
ficulties of note. First, Bayesian methods require initial knowledge about the various prob-
abilities. In practice, this can sometimes be hard to manage. If these probabilities are not
known beforehand, they are often approximated based on domain, background knowl-
edge, or assumptions made concerning the underlying distributions (i.e., just as with gen-
eralized linear models). The second practical difficulty is the considerable computational
cost required to determine the optimal hypothesis (Mitchell, 1997).

SUMMARY
Classification models represent a type of supervised machine learning
where the label to be predicted is a pre-determined number of categori-
cal classes. The classification algorithm learns the characteristics of the
classes provided in the training dataset and is then able to apply this
knowledge to previously unseen observations. Classifiers are trained
using either a lazy learner or an eager learner. Lazy learners perform
only minimal training, sometimes none at all. Lazy learners usually store
the training dataset until they receive the test dataset or the observation
to be classified. Eager learners, which require less computation time to
make a prediction, have a longer training phase than do lazy learners.
The k-nearest neighbor algorithm is an example of a lazy learner. The
idea behind nearest neighbor classification is to derive a prediction for
one observation by using a number of similar observations from the
training dataset. A Bayesian classifier, an eager learner, provides a prob-
abilistic approach to inference and bases itself on the “naïve” assump-
tion that the distributions of the features are independent of each other.
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UNIT 4
SUPPORT VECTOR MACHINES

STUDY GOALS

On completion of this unit, you will be able to …

– explain the concept of large margin classification.
– conceptualize a large margin classifier with support vector machines.
– explain and make use of the kernel trick.
– apply support vector machines with the use of Python.



4. SUPPORT VECTOR MACHINES

Introduction
Support vector machines (SVM), which can perform both classification and regression
tasks, are among the most popular and powerful supervised learning algorithms in exis-
tence. The idea behind SVMs is to divide the data into two classes separated by a classifi-
cation boundary in an n-dimensional space called a hyperplane. A hyperplane is a sub-
space within a vector with one less dimension (Vapnik, 2000). New observations are
assigned to one or the other class depending on which side of the hyperplane they are
located. This is illustrated in the following figure.

Figure 25: Different Hyperplanes to Divide the Dataset

Source: Hofer (2021).

As this figure makes visible, there is more than one way to divide the data into two classes
by means of a hyperplane. SVMs understand this and, rather than opting for any hyper-
plane arbitrarily, they choose one where the distance between the two classes is maxi-
mized. For this reason, SVMs are also called large margin classifiers. The following figure
illustrates this and provides an example of a hyperplane that separates the dataset and for
which the margin between classes is at its maximum. This type of hyperplane is known as
the optimal choice.
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Kernel
A kernel is a class of algo-
rithms that is used to
map data into a higher
dimensional space with-
out actually performing
the costly computation.

Figure 26: Different Hyperplanes to Divide the Dataset

Source: Hofer (2021).

Many linear models used for either classification or regression face some significant short-
comings, e.g., the data starting to have more overlapping features or the classes no longer
being linearly separable by a linear hyperplane or decision boundary. SVMs are capable of
overcoming these shortcomings and can be used for both linear and nonlinear classifica-
tion. For this purpose, SVMs make use of a specific trick: the kernel trick. With this, data
that cannot be easily separated in a lower dimensional space are mapped to higher
dimensional space (where they can then be separated more easily) (Boehmke & Green-
well, 2019).

In this unit, we will analyze these SVMs, searching for answers to the following questions:

• How can we choose the best hyperplane for classification?
• How does the kernel trick, which allows SVMs to classify nonlinear data, work?
• How can we utilize SVMs with the help of Python to solve real-world problems?

4.1 Large Margin Classification
SVMs determine class boundaries and leave an object-free area as large as possible
between them. With these boundaries, the data are then divided into two distinct classes.
Given their characteristics, SVMs are also called large margin classifiers. Although the
standard SVM algorithm is expressed as a binary classification model, it can also be used
for multi-class classification. In this case, the classification problem is simply expressed in
a series of binary classification models.

The separation of the dataset into two classes is done by a hyperplane, which is a sub-
space of a vector space (in this context, the feature space) with one less dimension. Thus,
for a given n-dimensional vector space, a hyperplane is a subspace of the same with n-1
dimensions. The dimension of the hyperplane serving as the decision boundary (separat-
ing the data into two classes) depends on the number of features by which an observation
within the data is described. This means that, if there are two features, the hyperplane is a
straight line; and if there are three features, the hyperplane is a plane. This is shown in the
following figure.
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Figure 27: Hyperplanes in Two-Dimensional and Three-Dimensional Space

Source: Hofer (2021).

The naming of support vector machines stems from the data points that lie on the margin
of a class and determine the location of the hyperplane. These are called support vectors
and are shown in the figure below.

Figure 28: The Support Vectors

Source: Hofer (2021).

Depending on whether we are dealing with the classification of linearly separable classes
or a nonlinear classification problem, we can distinguish between two types of support
vector machines: linear and nonlinear SVMs. Linear SVMs are used for data that are line-
arly separable. In other words, they are used for datasets that can be classified with the
decision boundary of a straight line. The SVM uses the large margin classification method
to obtain the optimal decision boundary.
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By comparison, nonlinear SVMs are used for data that are not linearly separable. In this
scenario, the data are mapped into a higher dimensional space, where they are more
easily separated. This is done by using the kernel trick and simply calculating the mathe-
matical relationship between the points as though they were in higher dimensions. In
doing this, computationally intensive transformations of the data are avoided.

Finding the Optimal Hyperplane by Maximizing the Margin

As previously described, a hyperplane in a two-dimensional space is a line and a plane in
three-dimensional space. In a p-dimensional space, a hyperplane can be generally
expressed as follows: β0 + β1X1 + … + βpXp
The prediction outcome yen of an observation I now depends on which side of the hyper-
plane it is located. The goal is to find the hyperplane that maximizes the margin bounda-
ries M, which can be formally expressed as follows:maximize M, given β0, β1, …, βpsubject toyi β0 + β1xi1 + … + βpxip ≥ M, i = 1,2, …, n
Here, yen(β0+β1xi1+⋯+βpxip) expresses the distance between the ith observation to the
decision boundary. This also reveals that it must be greater than the margin (Boehmke &
Greenwell, 2019).

Hard Margin and Soft Margin

By its very nature, real-world data can be quite messy, and we can almost always find a
few instances where a linear classifier is unable to perfectly separate the classes. If we
demand strictly that the points on the right side of the hyperplane are classified, the
model will be rather sensitive to outliers, which would limit its ability to make generaliza-
tions. This hard constraint on the model is called a hard margin classification, depicted in
the figure below.
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Hyperparameter
A hyperparameter is a

parameter with a value
that helps control or gov-
ern the learning process.

Figure 29: Sensitivity of Hard Margin Classifications to Outliers

Source: Hofer (2021).

In order to make SVMs less sensitive to outliers (thereby rendering them somewhat more
flexible), we need to allow misclassifications. This adaptation is called a soft margin classi-
fication. Allowing misclassifications is a method for addressing the bias-variance-tradeoff.
With the hard margin, we have a classifier that performs well on the training data and per-
forms poorly on new, previously unseen data. This means that there is high variance. By
comparison, with a soft margin, the threshold allows misclassification and thus leads to a
higher bias on the training data. Nevertheless, it would also perform better on new, previ-
ously unseen data, thus resulting in lower variance. The following figure illustrates this by
showing the location determination of the hyperplane by means of hard and soft margin.

Figure 30: Hard Margin and Soft Margin

Source: Hofer (2021).

To incorporate a soft margin, SVMs can be extended by adding a hyperparameterC that
allows the algorithm to accept errors. The goal of this hyperparameter is to maximize the
margin by allowing misclassifications while still accounting for outliers. The value of C is
typically chosen by trial and error or cross-validation. To introduce this soft margin into
the optimization function, we need to introduce a slack variable εI ≥ 0 for each instance,
indicating how many instances I can violate the margin. The maximization problem can
then be formally expressed as follows:
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maximize M, given β0,β1, …, βpsubject toyi β0 + β1xi1 + … + βpxip ≥ M 1 − εi , i = 1,2, …, nεi ≥ 0,∑i = 1n εi ≤ C
Thus, the hyperparameter C indicates the total allowed margin violation. If C is close to
zero, the margin is large and many misclassifications are allowed (soft margin). If C takes a
high value, the margin is narrow and misclassifications are not allowed (hard margin)
(Boehmke & Greenwell, 2019).

4.2 The Kernel Trick
It is here that we must pose ourselves an important question: what happens if the data are
not separable linearly? In this case, it would be impossible to find a linear hyperplane that
can separate the data points. This is where the kernel trick is employed. The kernel trick
sees the transformation of the non-separable data into a higher dimensional space, where
they can be separated. For example, suppose we have a dataset with two given featuresX1and X2 that cannot be linearly separated in two-dimensional space. One solution to
classify these type of data is to map it into a three-dimensional space, where the new
coordinates can be specified as follows:X1 = x12, X2 = x22, X3 = 2x1x2
Doing so allows the data to be separated into two classes by a hyperplane, as illustrated in
the figure below.

Figure 31: The Kernel Trick

Source: Hofer (2021).
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After separating the data, we can then project them and the hyperplane back onto the
original two-dimensional space, as shown in the right diagram of the previous figure.
However, such a transformation of the data into a higher-dimensional space is a computa-
tionally intensive task. For this reason, the kernel trick does not perform an actual trans-
formation. Instead, it merely calculates the relation of the data points to each other as
though they were in a higher-dimensional space. This can be done purely mathematically
and without the need for actual transformation. In other words, the kernel trick uses alge-
bra to save us from some spinning “loading” wheels. This mapping of the data is done
with the help of a kernel function.

Kernel Functions

Kernel functions are used by SVMs to systematically find an optimal hyperplane in higher
dimensions. What makes these functions so special is that they do not actually perform
the transformation to higher dimensions. Instead, they directly compute the distance, i.e.,
the scalar products of the data points for the expanded feature representation, without
ever actually computing the expansion. There are two highly common methods of map-
ping the data into higher dimensional space in SVMs: the polynomial kernel, which com-
putes all possible polynomials up to a certain degree, and the radial basis function (RBF)
(also called the Gaussian kernel), which corresponds to an infinite-dimensional feature
space (Boehmke & Greenwell, 2019).dth polynomial kernel

The polynomial kernel computes the decision boundary K via the dot productȳ X1, X2 ȳ = ∑i = 1n x1ix2i
of the input features X1 and X2 by raising the power of the kernel to the degree d. Mathe-
matically, it is defined as follows:K X1, X2 = 1 + ȳ X1, X2 ȳ d
The example we looked at previously is a demonstration of the polynomial kernel.

Radial basis function kernel

The radial basis function calculates the decision boundary K for the inputs X1 and X2 by
taking the Euclidean distance X1 − X2 2
between X1 and X2and scaling it with the help of the hyperparameter determined by cross
validation. Mathematically, the RBF is defined as follows:K X1, X2 = exp −γ X1 − X2 2
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According to Boehmke and Greenwell (2019), “the radial basis kernel is extremely flexible,
and, as a rule of thumb, we generally start with this kernel when fitting SVMs in practice”
(p. 279).

Application

Using the scikit-learn library, as well as the included learn package containing breast can-
cer data, we can see exactly how SVMs can be applied. First, we import the required libra-
ries and modules.

Code
import pandas as pd
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score

The dataset contains two classes of tumors: 212 malignant tumors and 357 benign
tumors. There are 30 features in the dataset. We load the dataset and encode the label
categorically so that it can be interpreted by the model (i.e., malignant=0 and
benign=1).

Code
dataset = load_breast_cancer()
X = pd.DataFrame(dataset.data, +
columns=dataset.feature_names)
y = pd.Categorical.from_codes(dataset.target, +

dataset.target_names)
y = pd.get_dummies(y, drop_first=True)

We divide the dataset into the training set and the testing set, using 30 percent of the data
to test the trained model. Additionally, by setting the parameter “random_state” to an
arbitrary number (here, of course, 42), we ensure an identical split between training and
test data each time, i.e., the same observations end up in the respective training and test
datasets each time we run the code.

Code
_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.3, random_state=42)

Next, we initialize and train an instance of the SVM algorithm with a linear kernel. We do
that by specifying the 'kernel' argument as 'linear'. Other valid arguments would be 'poly'
for a polynomial kernel, 'rbf' for a radial basis function kernel, 'sigmoid', and 'precompu-
ted. Using y_train.values.ravel(), we flatten the array to the required form (n,),
where n is the number of observations in the training data.
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Code
clf = svm.SVC(kernel='linear')
clf.fit(X_train, y_train.values.ravel())

We can now generate predictions for the test set using the trained classifier.

Code
y_pred = clf.predict(X_test)

To evaluate how well our model performed on the test set, we should check the confusion
matrix.

Code
print(confusion_matrix(y_test, y_pred))

The following confusion matrix is then output in the console.

Code
[[ 59  4]
 [ 2 106]]

According to the confusion matrix, our classifier shows 59 true positives, 106 true nega-
tives, four false negatives, and two false positives when predicting on the test set. There-
fore, the results indicate a very good prediction performance. As a final step, we can print
the accuracy of our model.

Code
accuracy_score(y_test, y_pred)
# console output: 0.9649122807017544

SUMMARY
A support vector machine (SVM) is an algorithm that can perform both
classification and regression tasks. They are among the most popular
and powerful supervised learning algorithms in existence. The idea
behind SVMs is to divide the data into two classes separated by a classi-
fication boundary in a higher dimensional space (the hyperplane).

There are two types of support vector machines: linear and nonlinear
SVMs. Linear SVMs are used for datasets that can be classified with the
decision boundary of a straight line. Nonlinear SVMs are used for data-
sets that are not linearly separable. Nonlinear SVMs map the data into a
higher dimensional space, where they are more easily separated. This is
done by using the kernel trick and simply calculating the mathematical
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relationship between the points as though they were in higher dimen-
sions. Therefore, SVMs use kernel functions to find the optimal hyper-
plane for dividing the dataset into two classes. What makes these kernel
functions so special is that they do not actually perform the transforma-
tion to higher dimensions. Instead, they directly compute the distance
without ever actually computing the expansion.
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UNIT 5
DECISION & REGRESSION TREES

STUDY GOALS

On completion of this unit, you will be able to …

– explain the concept of decision and regression trees.
– explain the power of the ensemble methods widely used in practice.
– define bagging and boosting.
– apply two very popular ensemble models on your own with the use of Python.



5. DECISION & REGRESSION TREES

Introduction
Without a doubt, the decision tree is one of the most famous supervised learning models.
Depending on the problem we need to solve, decision tress can be used for both classifica-
tion (classification trees) and regression (regression trees). These trees achieve impressive
predictive performance when a large number of them are bundled together, thus creating
one strong estimator. Such ensemble methods, as they are commonly known, are fre-
quently used to solve a wide variety of problems. This unit will cover decision and regres-
sion trees, as well as these powerful and widely used ensemble methods. In this unit, we
will find answers to the following questions:

• How do tree-based algorithms generally work?
• How do decision trees solve classification problems?
• How do regression trees solve regression problems?
• How do ensemble methods work and how do they combine large numbers of trees to

make one strong estimator?
• How can we apply random forests and gradient boosting, two very well-known ensem-

ble methods, using Python?

5.1 Decision & Regression Trees
The core concept behind decision and regression trees is the splitting of the dataset in a
step-by-step manner based on descriptive variables. Starting from the complete dataset
(i.e., the root), the data gradually branch out through the splits (i.e., the nodes) until
reaching the last level of the tree (i.e., the leaves). At this point, the dataset cannot natu-
rally be split any further, or, conversely, a stop criterion is applied. As previously men-
tioned, one speaks of a decision tree in the case of a classification task and a regression
tree in the case of a regression task.

Decision trees make predictions about observations by sorting them along the tree, start-
ing from the root node and ending at one of the leaf nodes. This leaf node ultimately
yields the prediction. Each node on the tree is, essentially, a test case for a specific feature
of the respective observation, and each branch represents a possible value of said feature.
Thus, the observation receives its classification through a process comprising the follow-
ing steps: First, the observation is queried at each tree level with respect to the respective
feature. It then branches out to the next (lower) level, depending on the feature’s value.
This process is then repeated until the observation reaches one of the leaf nodes. It is at
that point that the prediction is finally provided.
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The following figure shows the structure of a decision tree based on a simplified example.
In this example, the tree helps to make predictions concerning the likelihood that some-
one will go for a walk (output class means “yes”) or not (output class means “no”) depend-
ing on the current weather conditions.

Figure 32: Decision Tree

Source: Hofer (2021).

The prediction results of this binary classification problem are taken from the final (and
lowest) level of the tree (i.e., the leaf nodes). The nodes of this tree can take the values
“yes” (i.e., the person will go for a walk) or “no” (i.e., the person will not go for a walk).
Based on a decision tree built in this way, each observation can be classified. For example,
on a day with sunny weather and a normal level of humidity, the tree predicts that this
hypothetical person will go for a walk. On a rainy, windy day, however, the tree predicts
that this person will not go for a walk. It is here that the advantage of using decision trees
quickly becomes apparent: their structure and functionality are easy to follow and their
prediction results easy to interpret.

Regression Trees

As mentioned previously, tree-based structures can also be used on numerical features
and building regression models. Numerical features become more manageable through a
discretization process, i.e., by assigning threshold values. This way, these numerical fea-
tures can be treated like categorical features. In this case, an observation is examined with
respect to a numerical feature being less than (or equal to) or greater than (or equal to)
the defined threshold value. It then moves toward the appropriate branch to reach the
next level of the tree.

If the label to be predicted is a numerical variable, i.e., a regression problem must be
solved, then the values that can be taken and predicted are expressed in the leaf nodes.
Both cases, i.e., the handling of numerical features and the prediction of numerical values,
are illustrated in the following figure.
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Enthalpy
This concept describes

the energy state of a sys-
tem.

Figure 33: Regression Tree

Source: Hofer (2021).

In comparison to the binary classification problem seen in our previous example, we now
see a regression tree predicting the duration of a walk based on both weather data and
the walker’s age. This model predicts, for example, that a 24-year-old person will walk for
24.3 minutes on a day when it is 18° C (64° F) with 60 percent humidity.

Split Criteria

It is at this point where we must answer one essential question concerning the prediction
results: How is it decided that one specific feature is placed at any given level in the deci-
sion tree? Or, more pointedly, which features are the best classifiers and, consequently,
should be at the highest possible level of the tree? This decision is made by the split crite-
rion. We will now take a look at two of the most popular and frequently used split criteria
for decision trees: information gain and Gini impurity. We will then examine a split crite-
rion designed for regression trees: the minimization of the sum of squared errors (SSE).

Information gain

Information gain is based on the concept of entropy (not to be confused with enthalpy),
which is a measure stemming from the field of physics describing the chaos, disorder, or
diversity of states within a system. In decision trees, entropy refers to a node’s impurity.
Information gain measures the expected reduction in entropy (i.e., its level of impurity or
disorder) and thus the effectiveness of a feature when classifying the training data (Mitch-
ell, 1997). Expressed more formally, the information gain G(S, A) of a feature A relative to
a set of observations S is given byG S,A = Entropy S − ∑v ∈ values A SvS Entropy Sv
where values(A) represent all possible values for feature A, and Sv is the subset of obser-
vations S, for which feature A has a value v (Mitchell, 1997). In this formal definition, the
first term describes the entropy of the original dataset, and the second term describes the
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entropy after the dataset has been partitioned using feature A. The latter represents the
sum of entropies for each subset Sv, weighted by the proportion of observations |Sv|/|S|
belonging to said subset (Mitchell, 1997). Using the information gain as a split criterion on
each level of the tree, the feature A that minimizes the second term and thus leads to the
greatest possible reduction of Entropy(S) is selected as the separator of the dataset on
the appropriate level of the tree. Thus, starting from the root node and moving toward the
leaf nodes on each level of the tree, the best classifier is selected through the information
gain. Consequently, we start building the decision tree with the strongest separators. The
deeper we descend through the structure of the tree, the weaker the features used on the
respective levels (i.e., regarding their suitability as classifiers).

Gini impurity

The Gini impurity (GI), also referred to as the Gini index, is a measure of impurity or diver-
gence within a dataset where a small value indicates that a node chiefly contains observa-
tions from one single class (Boehmke & Greenwell, 2019). The GI can be interpreted as the
probability of a randomly chosen observation to be misclassified and is formally defined
as follows (Breiman et al., 1984): GI = 1 − ∑i = 1 pi 2
The second term here expresses the share of observations pi belonging to class I for a
given node. The GI for a node containing only observations of one class is, consequently,
zero. Therefore, we want to minimize the GI, i.e., assign the feature that results in the low-
est GI as the separator of the dataset on each level of the tree.

Sum of squared errors (SSE)

With regards to regression trees, the most common split criterion is the minimization of
the sum of squared errors (SSE). If we want to split a dataset S into two subsets S1 and S2,
the minimization of the SSE can be formally defined as follows:SSE = ∑i ∈ S1 yi − y−1 2 + ∑i ∈ S2 yi − y−2 2
Here, yen expresses the actual value for observation I, and ȳ1 and ȳ2 are the mean values of
the left and right side of the possible split. Consequently, these vary with the choice of
split point. The SSE (as a function of the location of the split point) is now minimized by
selecting the split point that minimizes the deviations yi-ȳ and yi-ȳof these two mean val-
ues from the actual values.

Stop Criteria

As with other estimators, trees run the risk of reducing prediction performance should too
many traits of the data be included in the model (e.g., by choosing large trees with many
leaves). For this reason, caution should be taken, i.e., the goal is to build an ideal-sized
tree (Breiman et al., 1984). Stop criteria restrict the growth of the tree to avoid the risk of
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overfitting. According to Boehmke and Greenwell (2019), there are various methods for
restricting tree growth, and “two of the most common […] are to restrict the tree depth to
a certain level or to restrict the minimum number of observations allowed in any terminal
node” (p. 180).

Maximum depth

If we limit the maximum depth of the tree, say, to three levels, the tree will only incorpo-
rate the three features that are the most suitable separators of the data into its structure.
In the following figure, we see a tree with exactly this limitation. In this example, under
different circumstances, the tree would comprise six levels.

Figure 34: Limiting the Maximum Depth of a Tree to Three Levels

Source: Hofer (2021).

The more shallow the resulting tree, the less variance we have in the predictions;
Boehmke and Greenwell (2019) argue that“at some point we can start to inject too much
bias, as shallow trees are not able to capture complex patterns in our data” (p. 180).

Minimum number of observations in terminal nodes

An alternative (or complementary) method for preventing the tree from fully growing, and
thus running into the risk of overfitting, is to limit the nodes to a minimum number of
observations. This prevents a split at the point where terminal nodes would be created
and results in fewer yielded observations than specified. In the following figure, the mini-
mum number of observations in the terminal nodes is set to “2.”

84



Figure 35: Limiting the Minimum Number of Observations in Terminal Nodes

Source: Hofer (2021).

According to Boehmke and Greenwell (2019), “a terminal node’s size of one allows a single
observation to be captured in a leaf node” (p. 180). This leads to high variance and a poor
level of generalizability. Conversely, large values constrain further splits, thereby reducing
variance (Boehmke & Greenwell, 2019).

Tree Pruning

Another way of restricting the full growth of the tree via stop criteria is to use pruning. In
other words, we allow the tree to fully develop and later remove insignificant branches.
Starting at the leave nodes and moving toward the root of the tree, the branches are
pruned according to the lowest level of influence on the prediction error Error(T) of treeT. This is done until the desired stop criterion is fulfilled, e.g., a defined maximum tree
depth or a minimum number of observations per leaf node. The branching to be pruned in
each pruning step, i.e., the pruning candidate C of tree T, is thus determined as follows:C T = Error T + λL T
The equation operates with a pre-specified cost complexity parameter λ that penalizes
the number of terminal nodes L of tree T. Smaller values for the cost complexity parame-
ter λ tend to produce larger trees; larger values for λ result in smaller trees. We normally
evaluate several models across a spectrum of λ and use cross-validation to identify the
optimal value. By doing this, we arrive at the optimal subtree that is most suitable for gen-
eralizing new, unseen data (Boehmke & Greenwell, 2019).

Ensemble Methods

In practice, both decision trees and regression trees are rather commonplace. Neverthe-
less, they are not often used individually. Rather, it is more common for several trees
(here, regarded as being weaker estimators) to be bundled together to form one strong
estimator. This is where ensemble methods play a decisive role. Ensemble methods can
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be divided into two categories: bagging algorithms and boosting algorithms. With bag-
ging, the individual decision trees are independently trained in parallel. With boosting, the
decision trees are trained sequentially, and one tree takes the errors of the previously con-
structed tree into consideration. Without a doubt, the most well-known representatives of
bagging and boosting are random forest and gradient boosting, respectively. The follow-
ing figure shows the two types of ensemble methods and how they generally work.

Figure 36: Bagging and Boosting

Source: Hofer (2021).

5.2 Random Forest
As a representative ensemble method, the random forest (RF) is a high performing algo-
rithm that bundles single decision trees into one strong estimator through bagging. The
final prediction of a RF is then determined by aggregating the predictions of the individual
decision trees, for example, by combining them via a majority vote. This is shown in the
figure below.
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Bootstrapping
This procedure resamples
a dataset to create many
simulated samples of the
same size by drawing ran-
domly with laying back.

Figure 37: Random Forest

Source: Hofer (2021).

The individual decision trees are constructed independently of each other with the intro-
duction of a random component. This is done by building the trees on bootstrap copies of
the training data. Boehmke and Greenwell (2019) outline the steps of the random forest
algorithm and the steps necessary to build each of the decision trees. First, select the
number of trees to construct (hyperparameter “n_trees”). For all number of trees, com-
plete the following set of actions:

• Generate a bootstrap sample of the original data.
• Grow a regression/classification tree based on the bootstrapped data.
• For each node/split, perform the following set of actions:
◦ Select a number “m_try” of features at random from all p features.
◦ Pick the best feature/split-point among the “m_try” tested features.
◦ Split the node into two child nodes.

• Use common tree model stop criteria to determine when a tree is completed and
unpruned.

• Output the ensemble of trees.
• Let each of the trees make a prediction.
• Use the individual predictions in a voting process in which the final prediction is deter-

mined.

Application

To illustrate how the random forest algorithm can be used as a classifier, we will use the
scikit-learn library and our previous walking example. Let us assume that we have a data-
set containing information concerning whether the walker has taken their walk (Label=1)
or not (Label=0) for the 52 Sundays in one year. First, we import the required packages,
load the dataset, and output the first five lines. Then, we can look at the information pro-
vided in the dataset.
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Code
# Load packages
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
  
# Load dataset and print 1st five rows
dataset = pd.read_csv('takingawalk_dataset.csv', sep=';')
print(dataset.head())
  
 Week Outlook Humidity Wind Label
    1  Rainy    High Yes     0
    2  Sunny  Normal  No     1
    3  Sunny  Normal Yes     1
    4  Sunny    High Yes     0
    5  Rainy  Normal Yes     0

Next, we separate the features and labels from each other. We also remove the “Week” fea-
ture, as it contains 52 unique values that do not add any information to the classifier. We
have learned that tree-building algorithms do not need one-hot encoding—that being
said, it could be useful. We encode the features and output the list of features.

Code
X = dataset.drop(columns=['Label', 'Week'])
y = dataset['Label']
X = pd.get_dummies(X)
print(X.columns)
  
Index(['Outlook_Rainy', 'Outlook_Sunny', 'Humidity_High',      
      'Humidity_Normal', 'Wind_No', 'Wind_Yes'],     
      dtype='object')

We divide the dataset into the training set and the testing set, using 30 percent of the data
to test the model after training. Furthermore, we set the parameter shuffle=True. By
doing this, we want to make sure that we are not pulling our training and testing dataset
from just one season of the year. Rather, the two partitions are drawn from observations
across the entire year.

Code
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.3, shuffle=True, random_state=42)
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Next, we initialize and train a random forest classifier. The random forest will consist of
100 decision trees, each limited to a maximum depth of three levels. With the help of the
trained classifier, we can generate predictions on the test set and output the confusion
matrix for further evaluation.

Code
clf = RandomForestClassifier(n_estimators=100, max_depth=3, random_state=42)
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
print('Confusion Matrix:')
print(confusion_matrix(y_test, y_pred))
  
Confusion Matrix:
[[10 1]
 [0 5]]

The confusion matrix shows that our classifier performs very well, correctly outputting
only one false negative. Additionally, we can print the accuracy of our model.

Code
accuracy_score(y_test, y_pred)

The feature_importances_ method, a practical feature of scikit-learn’s random forest
implementation, shows how important each feature is for achieving the prediction quality.
This allows for the output of a feature ranking contingent on the measured feature impor-
tance. The output shown below shows that for the random forest classifier, the two fea-
tures Humidity_Normal and Outlook_Sunny are the most important indicators of
whether the walker will, in fact, go on a walk.

Code
feature_scores = pd.Series(clf.feature_importances_, index=X_train.columns).sort_values(ascending=False)
print('Feature Scores:')
print(feature_scores)
  
Feature Scores:
Humidity_Normal   0.193512
Outlook_Sunny     0.192283
Humidity_High     0.168927
Wind_No           0.151238
Outlook_Rainy     0.147944
Wind_Yes          0.146097
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5.3 Gradient Boosting
Similar to random forest, gradient boosting uses a large number of individual weak esti-
mators (usually decision trees) that are combined into one strong estimator. In gradient
boosting, however, the individual estimators are not trained in parallel and independently
of each other. Rather, they are trained sequentially, and one estimator helps optimize the
next. By doing so, the misclassified samples in one iteration are exaggerated in the follow-
ing iteration, thereby placing emphasis on the need to classify these samples correctly in
the next decision tree to be trained. Little by little, the number of misclassifications
decreases.

According to Brownlee (2016), gradient boosting essentially consists of three elements:

1. A loss function we want to optimize
2. A set of weak learners generating predictions
3. An additive model for combining the predictions of the weak learners into one strong

predictor (thereby minimizing the loss function)

In the figure below, we see exactly the way the gradient boosting algorithm works and
how these elements interact.

Figure 38: Gradient Boosting

Source: Hofer (2021).

Boehmke and Greenwell (2019) formulate the steps of the gradient boosting algorithm as
follows:

• Select the number of trees to construct (hyperparameter “n_trees”).
• Fit the first weak estimator to the given training data X and generate predictions ŷ, i.e.,F1(x)=ŷ
• Fit the next weak estimator to the residuals of the previous one, i.e, h1(x)=y-F1(x)
• Add this weak estimator to the model, i.e., F2(x)=F1(x)+h1(x)
• Fit the next weak estimator to the residuals of F2: h2(x)=y-F2(x)
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• Add this weak estimator to the model, i.e., F3(x)=F2(x)+h1(x)
• Continue this process until the number of prospective trees has been reached.

The resulting strong estimator can be mathematically expressed as the additive combina-
tion of the single i weak estimators of number n:f x = i = 1n fi x
Gradient boosting is considered a gradient descent algorithm, which is a very general opti-
mization algorithm able to find the optimal solutions to a broad variety of problems. The
general idea behind gradient descent is to iteratively change parameters in order to mini-
mize a loss function. To that effect, gradient boosting is very flexible regarding the loss
function used (Boehmke & Greenwell, 2019).

Application

We can use a gradient boosting classifier from the scikit-learn library almost exactly in the
way as we would use a random forest classifier. In fact, there is only one notable code
change from the random forest example. Specifically, the import and initialization com-
mands of the model are altered, and we write these as follows:

Code
from sklearn.ensemble import GradientBoostingClassifier
clf = GradientBoostingClassifier(n_estimators=100,
max_depth=3, random_state=42

We evaluate the resulting prediction performance using the confusion matrix.

Code
[[10 1]
 [ 0 5]]

Thus, according to the confusion matrix, the gradient boosting classifier achieves the
same performance on the test set as does the random forest classifier. However, there are
some notable differences regarding the model’s feature importance determinations.
These can be displayed analogously by using the feature_importances_ method. For
the gradient boosting classifier, the two featuresOutlook_Sunny and Wind_No are by far
the most important indicators of whether the walker will, in fact, go on a walk.

Code
Feature Scores:
Outlook_Sunny     0.247713
Wind_No           0.237722
Wind_Yes          0.144501
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Humidity_High     0.132627
Outlook_Rainy     0.127789
Humidity_Normal   0.109648

SUMMARY
Decision tress can be used for both classification and regression. The
core concept behind decision and regression trees is the splitting of a
dataset in a step-by-step manner based on descriptive features. Starting
from the complete dataset (i.e., the root), the data gradually branch out
through the splits (i.e., the nodes) until reaching the last level of the tree
(i.e., the leaves).

A prediction about an observation is derived by sorting it along the tree,
starting from the root node and ending at one of the leaf nodes. Finally,
the prediction is obtained from this leaf node. In practice, decision trees
and regression trees are not often used individually. It is more common
to bundle many decision or regression trees together to form one strong
estimator. This practice reflects the ensemble methods, which are divi-
ded into two fundamentally different types: bagging algorithms and
boosting algorithms. With bagging, the individual decision trees are
independently trained in parallel. With boosting, the decision trees are
trained sequentially, and one tree takes the errors of the previously con-
structed tree into consideration.
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