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INTRODUCTION



WELCOME
SIGNPOSTS THROUGHOUT THE COURSE BOOK

This course book contains the core content for this course. Additional learning materials
can be found on the learning platform, but this course book should form the basis for your
learning.

The content of this course book is divided into units, which are divided further into sec-
tions. Each section contains only one new key concept to allow you to quickly and effi-
ciently add new learning material to your existing knowledge.

At the end of each section of the digital course book, you will find self-check questions.
These questions are designed to help you check whether you have understood the con-
cepts in each section.

For all modules with a final exam, you must complete the knowledge tests on the learning
platform. You will pass the knowledge test for each unit when you answer at least 80% of
the questions correctly.

When you have passed the knowledge tests for all the units, the course is considered fin-
ished and you will be able to register for the final assessment. Please ensure that you com-
plete the evaluation prior to registering for the assessment.

Good luck!
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LEARNING OBJECTIVES
We live in times of the Data Revolution, and big data systems have become a part of our
societies and way of life to the extent that it is hard to imagine how the world would look
without these technologies. In this course, you will start to understand the concepts that
enable the storage, processing, and analysis of vast and fast datasets, being the backbone
of modern data-intensive applications.

To begin this course, we start with an introduction to data types and data sources. Here,
you will learn about the 4V's that define big data, being data with large volume, high
velocity, variety, and veracity. Next, you will learn about different data sources to feed
modern data-intensive systems. As these data can be diverse, you will also learn about
different common data types and data formats. Here, we will distinguish between text-
based formats, like CSV, YAML, XML, and JSON, and binary data formats, such as HDF5,
Apache Parquet, and Arrow, explicitly developed for big data applications.

Following this, you will learn about modern data storage and compute solutions designed
for big data use cases. You will learn about NoSQL data stores, how they are different from
relational databases, and how we categorize them into four basic types: key-value-, docu-
ment-, column-, and graph-oriented databases.

Next, you will learn about distributed systems, such as the technologies subsumed under
the heading of the Hadoop ecosystem. As one of the fundamental cornerstones of big data
technologies, the Hadoop ecosystem provides technical solutions for big data storage and
computing. You will learn how the Hadoop distributed file system (HDFS) constitutes the
distributed storage layer, and the MapReduce engine can serve as the distributed compu-
tational layer of a big data system. Being a widespread, flexible, and easy-to-use big data
processing technology, you will also learn about Spark, how it works, and how to use it
with a scripting language like Python. In addition, not an entire big data environment like
Hadoop but a Python package that is straightforward to install and use, you will learn
about Dask to process big data in Python.

In the last unit of this course, you will get familiar with two prevalent frameworks for pro-
cessing data streams, i.e., Spark Streaming and Apache Kafka.

At the end of this course, you will feel comfortable working with the digital gold of our
time: big data.
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UNIT 1
DATA TYPES AND DATA SOURCES

STUDY GOALS

On completion of this unit, you will be able to ...

– describe the characteristics of Big Data
– identify data flows that may overload a non-distributed system
– decide how to efficiently store data of different origins
– apply the acquired skills in creating data collections



1. DATA TYPES AND DATA SOURCES

Case Study
Hot&Cold Corp. is a multinational company that collects and processes weather data all
over the world. They own and operate many small weather stations, sometimes in remote
areas where internet service can be limited. To circumvent this issue, the weather stations
use an IoT messaging protocol to deliver the data. Some of the larger weather stations
come with a doppler radar system that creates image data every few seconds. In addition,
the company has just launched their first satellite into space. This satellite gathers image
data from space and constantly sends the data to earth. When the satellite enters an area
without a radio communication connection, the data is queued and transmitted when the
satellite establishes a new connection. The data is then sold to weather services, which
use it to create local weather forecasts and reports.

Hot&Cold Corp. is now trying to grow their services and would like to connect 3rd party
weather stations and satellites to their platform. They have hired you to get their data sys-
tems ready for 3rd party data entry. The project lead has asked you to create an overview
over data volume, velocity, variety, and veracity. Which data is are structured, semi-struc-
tured or unstructured? Which are sensible data types to assign to temperature values,
wind speed, precipitation information and comments entered by local staff at large sta-
tions? How would you store image information from doppler radar systems? Can you iden-
tify any possible threats that may lead to data corruption?

The data needs to be stored in an appropriate database. In this unit, ask yourself whether
the data will conform to a predefined dataset, then pick a relational or a document-based
database.

1.1 The 4Vs of data: volume, velocity,
variety, veracity
The 4Vs of data can be described as the characteristics of Big Data. They describe how
much data is stored, how fast it can be accessed, what kind of data is stored and the qual-
ity and accuracy of big data (Kitchin & McArdle, 2016).

The following figure visualizes the characteristics which are discussed in detail in the fol-
lowing.
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Volume vs velocity in
units
When measuring data vol-
ume, GB or Gb is used as
a unit. Velocity is meas-
ured in GBps or Gbps. Be
careful not to mix up the
different units.

Figure 1: Characteristics of Big Data

Source: Robert Horrion, 2022 based on John & Misra, 2017

Volume

The volume represents the size of the data that is stored and available for access and pro-
cessing. Data-intensive applications have found their way into all of our everyday lives and
the data volume available on servers worldwide grows with breath-taking speed. Units
commonly used to measure the volume are gigabytes, terabytes, and petabytes. In some
cases, such large amounts of data can be stored that the required measurement surpasses
petabytes. We truly live in the ‘Data Age’ or ‘Data Revolution’ (Kitchin, 2021). Since a single
server can currently handle a data volume of up to around one Petabyte, any dataset
larger than that needs to be stored on a distributed system. There are other reasons why a
dataset would need to be stored on a distributed system before reaching a critical volume
size.

When dealing with a database, the following units are commonly used to describe the vol-
ume:

Table 1: Volume Units

Unit Abbreviation Storage space

Byte B 8 bits

Kilobyte KB 1024 bits

Megabyte MB 1024 KB
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Unit Abbreviation Storage space

Gigabyte GB 1024 MB

Terabyte TB 1024 GB

Petabyte PB 1024 TB

Exabyte EB 1024 PB

Zettabyte ZB 1024 EB

Yottabyte YB 1024 ZB

Source: Robert Horrion, 2022

Data volume can both be described in byte and bit. As shown in Table 1: volume units
(Robert Horrion, 2022), one byte contains 8 bits. Note the following expression for the
giga- variant of bits and bytes:

• GB = Gigabyte
• Gb = Gigabit

When comparing the giga-variant of bits and bytes, the differences in storage size for the
two units are easy to see: 1   Gigabit = 125   Megabytes
Velocity

Velocity describes how fast data can be stored and accessed in a database. Modern big
data systems are designed to handle high volumes of data quickly. There are a number of
different factors that need to be considered to describe velocity:

• Transfer speed
• Response time
• Batch Processing (concept)
• Messages (concept)
• Data stream (concept)
• Eventual consistency (concept)

Transfer speed

Transfer speed provides a measure of how much data is transferred for each time unit.
Seconds are most commonly used as time units. The resulting unit is bits per second,
details can be found in the table below.
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Transfer speed
Volume multiplied by
velocity results in the
time needed to store or
access data.

Table 2: Transfer Speed Units

Unit Abbreviation

Bits per second b/s or Bps

Kilobit per second Kb/s or Kbps

Megabit per second Mb or Mbps

Gigabit per second Gb/s or Gbps

Source: Robert Horrion, 2022

When enough data is transferred to or from a server, the slowest component of the server,
usually the disk that the data is stored on, will reach its transfer speed limit. When this
happens, the workload can be accelerated by implementing a distributed system. In this
case, data is written to many servers across a server pool. Therefore, the load is split,
which results in an elevated data throughput capacity. Hence, distributed systems are a
necessity in high throughput environments.

As with volume, transfer speeds can be measured in Gigabyte per second (GBps) or Giga-
bits per second (Gbps). The following equation is valid when transferring data:1 Gigabit per second=125 Megabyte per second
Response time

In addition to transfer rate, response time represents an important factor in velocity.
Response time describes the time it takes for a database to respond to an access or stor-
age request. This is typically measured in milliseconds (ms). System load, hardware used,
the number of nodes in a distributed system, etc. are all factors affecting response time.

Batch Processing

Batch processing represents the concept of collecting a certain amount of data, then pro-
cessing it in batches. Batches can be of a predefined or fixed size. Batch processing can
improve performance by processing many smaller data sets all at once, but it also bears
the potential of overloading even a large distributed system, if many simultaneous batch
processing requests lead to a peak in database access. This is usually data of low velocity
since systems arbitrarily wait to process data until a batch is present, e.g. over-night pro-
cessing, or once a week etc. (Kleppmann, 2017).

Messages

Messages are a useful means of transmitting data in Internet of Things (IoT) applications
before the data is ingested into database systems. Messaging systems come with a queue
to offer support for scenarios where an internet connection cannot be assumed to be sta-
ble. If an IoT device sending data to a backend through a messaging system goes offline,
newly accumulated data is added to the queue, where it is stored until the device comes
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back online. The queue is then sent to the backend based on first-in, first-out (FIFO) meth-
odology. This may result in a large number of messages reaching the backend at the same
time, in case of the resolution of widespread internet outages. This can be data of low
velocity if the message remains in the queue for a while due to connection issues. In other
scenarios where a stable connection is provided, this can be data of high velocity (Klepp-
mann, 2017).

Data streaming

Data streaming is used when a constant stream of data is delivered by an application or a
device. A data stream can be thought of as data that is delivered through a pipe or a con-
veyor belt and that needs to be processed and stored accordingly. This kind of data is
therefore usually processed in real time. Examples include monitoring systems, such as
industrial applications and health systems, where biodata is streamed and processed in
real time. Since this is a real time scenario, this data can be classified as high velocity
(Kleppmann, 2017).

Eventual consistency

For large, distributed database systems, eventual consistency provides an important con-
cept of improving database read and write performance. It also ensures better availability
of distributed systems. When eventual consistency is applied, the data is initially written
to just one node, then replicated across others. Due to this concept, data can’t be
assumed to be present or up to date in a distributed database system where eventual con-
sistency is applied. The opposite of eventual consistency is known as strong consistency.
Better read and write performance in systems with eventual consistency stems from the
fact that when strong consistency is applied, the data needs to be written or read from all
nodes at the same time to ensure the data is present on all nodes. Better availability in
systems with eventual consistency stems from the fact that when strong consistency is
applied, data can’t replicate to every node when a technical failure occurs (Kleppmann,
2017). The tradeoff between eventual and strong consistency needs to be made for each
application of distributed database systems and depends on individual factors.

Variety

Data variety describes the different types of data present in big data. Structured, semi-
structured and unstructured data all make up the field of Big Data. Structured data con-
forms to a schema (e.g., defined columns and datatype) and can be stored in a relational
database. Examples include just a snipped of text or a single numeric value. A large set of
characters or numeric values can also be structured data. Semi-structured data is data
that doesn’t conform to a schema but contains some structure. HTML is an example of
semi-structured data; it contains structure, but the structure doesn’t conform to a schema.
Each HTML page contains different tags. Unstructured data doesn’t contain any structure
and is therefore stored as a binary file. Examples include images, videos, and audio (John
& Misra, 2017).

Examples of different types of data that can all be categorized into structured, semi-struc-
tured and unstructured data include:
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• Single numeric values
• Large arrays of numeric values
• Data streams
• Messages (IoT)
• Text
• Metadata
• Photos
• Videos
• Audio
• 3D models
• Documents (HTML, JSON, XML, etc.)
• etc.

Some of these examples are stored as raw data inside of database systems, others are of a
semi-structured or unstructured nature and have a certain file type, thus can be saved in a
file system as an individual file. Each individual file contains a filename extension that
points out how to handle the file contexts by a computer system. Some examples
include .html files for webpages, .mp4 files for video and .wav files for audio.

Veracity

Veracity is a more recent addition to the 3Vs. The term describes the quality and accuracy
of data. It can also be described as the certainty of data. (Kitchin & McArdle, 2016) Data
may be inconsistent if a failing sensor is providing data with missing sections. Without any
checks, this might go unnoticed and can have severe consequences. In other scenarios,
such as when dealing with parsed data originating from a social network, data might be
biased or even misleading through the spread of false information, also referred to as fake
news.

Veracity provides a characteristic to classify data into being reliable or not. Not all cases of
unreliable or incomplete data can be fixed after the data has been collected.

A list of potential veracity issues includes data that is…

• Inconsistent
• Untrusted
• Raw/uncleansed
• Biased
• Incomplete
• etc.

Data of good veracity is required as a decision-making basis and is therefore very impor-
tant to the data science field.

In addition to this concept of Big Data being composed of the 4 Vs, there are numerous
other definitions, including the 7 Vs or 10 Vs, where also variability, exhaustivity, fine-
grained and relationality are considered aspects amongst others (Kitchin & McArdle, 2016)
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Data Mining
Data Mining is defined as

the process of finding,
extracting, and process-
ing data. The process is
vital when dealing with

Big Data sources since it
provides insights into the

patterns present in the
datae, and hence pro-

vides the motivation to
store large amounts of

data.

1.2 Data Sources
Data comes in many forms as described in the previous section. Each form of data can
have one or multiple sources. It is either generated by humans or by machines and can
therefore come in different formats. The extract, transform, load (ETL) process was intro-
duced in the 1970s and represents the process of loading data into a database system.
Therefore, the ETL process describes how data is stored in a database and is the first step
when dealing with data that is to be processed by a Big Data system (Zhang, Porwal, &
Eaton, 2020). During the extract step, data is retrieved from the source. The transform step
represents the act of cleansing data to establish consistency. During the load step, data is
written to the target database system.

This section will cover the different sources of data and will guide you through an example
of how data can be mined. A selection of primary Big Data sources includessocial media
data, machine data, transactional data, CT Imaging data, and geospatial data in Geo-
graphic Information Systems (GIS) (Luntovskyy & Globa, 2019). These primary Big Data
sources will be further discussed in this section.

Social Media Data

The internet was founded on the principle of communication. Early applications required
users to be skilled in certain technologies, such as writing HTML pages. The advent of
social media allowed users to share data with other users, often termed “friends” or “con-
nections” by the commercial platforms. Shareable data commonly includes multimedia
files, such as photos and videos, as well as text data and often polls. In addition to just
storing and displaying the data in question, these platforms also often enable users to
restrict access to posts to smaller groups of users, such as their friends. Data present on
these platforms is usually generated and submitted for storage by humans, although bots
have provided a growing source of data on these platforms in recent years. You will be
introduced in-depth to the concepts of structured, semi-structured and unstructured data
in section 1.3, but note that social media data can be structured or unstructured. Since
platforms follow a data schema when creating new posts, and the addition of image and
video data is possible, this data usually conforms to a schema.

In the context of social media, data velocity is not only important since many users may
try to access the same piece of information at once, but also the business model of these
platforms since online advertisement is time critical. For example, a news report with an
attached video of a breaking news situation may be accessed by many users as the situa-
tion unfolds. This is achieved through the application of distributed systems.

Currently, the following platforms are amongst the most popular ones:

• Twitter
• Facebook
• Instagram (part of the Facebook company)
• Snapchat
• TikTok ("Most popular social networks worldwide as of January 2022, ranked by num-

ber of monthly active users," 2022)

18



Twitter provides a popular and valuable data source, since their network is used by many,
almost all of the posts – so called tweets – are publicly available and can be searched
through the powerful hashtag system. In addition, they provide a developer API that can
be polled for information with an API access key.

A note about these social media platforms: The platforms have been used many times for
unethical purposes. When using data from these platforms, we should keep in mind to dis-
trust the data as well as to reflect upon the context in which the data was generated since
the primary purpose of these platforms is advertisement.

Tweepy is a Python library that enables easy Twitter API access. Psycopg is a Python
library that provides PostgreSQL API access. The two libraries will be used here to retrieve
ten tweets with a #BigData hashtag created since January 1st 2020 to then store them in a
PostgreSQL database. In a real word scenario, this process could be used to create an
archive of tweets, which could then be processed for further information extraction later
on.

First, a database connection to the PostgreSQL database must be established. You should
install PostgreSQL before or use an online deployment of the database. To connect to the
database the following code can be used (please fill in the parameters for your database).

connection = psycopg2.connect("dbname='database_name'  \
user='username' host='hostname', \
 password='password'")

Next, a cursor object needs to be created.

cursor = connection.cursor()

Now, we create a query to insert data into PostgreSQL.

insert_query = """ INSERT INTO bigdata
 (ID, TEXT) VALUES (%s,%s)"""

The tweets with a relevant hashtag are retrieved from the Twitter API. First, the library
needs to authenticate against Twitter’s OAuth service to gain access permission. This is
done using the following three lines of code. You can find your user credentials in the Twit-
ter developer's dashboard after creating an account there.

auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
api = tweepy.API(auth)

The resulting api object can now be used to authenticate any search requests against the
API. The message text for each retrieved tweet is queued for storage to the PostgreSQL
database upon retrieval.:
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# iterate over each Tweet with the specified hashtag
# and date
for tweet in tweepy.Cursor(api.search, q="#BigData", \
    count=10, lang="en", since "2020-01-01").items():

    # create a new record with two elements: the tweet
# ID and the Tweet text with UTF-8 encoding
    new_record = (tweet.id, tweet.text.encode("utf-8"))

# insert the new record into the PostgreSQL DB
cursor.execute(insert_query, new_record)

After all of the tweets have been loaded and written using the cursor, the new data is com-
mitted to the database by executing the following command.

connection.commit()

Machine Data

In connected industry applications, also referred to as Industry 4.0, lots of data is gener-
ated. This is often real time machine monitoring data reported by sensors represented as
numerical values conforming to a schema. The connected industry setting also includes
image data that is often captured on conveyor belts when checking products for quality.
Therefore, this application includes both structured and unstructured data.

Modern, internet-connected industry machines are categorized as Internet of Things (IoT)
devices. As IoT edge devices, they implement a messaging protocol such as MQTT to sub-
mit the captured data to a Message Broker, that is sometimes referred to as an IoT Hub.
Popular options for Message Brokers include RabbitMQ and HiveMQ. The broker then
makes the data available to clients, referred to as subscribers. The IoT edge devices are
also termed publishers. Therefore, this methodology is referred to as the pub/sub pattern.
The publisher and subscriber are never in contact with each other directly and therefore
do not need to know of each other. They also do not need to be online at the same time
since the Message Broker handles delivery of messages after periods of downtime on the
subscriber’s end (Team, 2015). In a Big Data scenario where machinery data is stored in a
database, the subscriber would be a database connector, feeding delivered data into the
database.

Refer to the following architecture diagram to understand how the Industry 4.0 with a
Messaging Broker works:
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SWIFT
The abbreviation SWIFT
stands for Society of
Worldwide Interbvank
Financial Telecommuni-
cations S.S.. It is a pay-
ment processing system
acting as a messaging
service between banks to
support inter-bank trans-
actions. Therefore, the
payee (sending party)
does not have to use the
same bank as the receiv-
ing end. SWIFT also pro-
vides SWIFT codes as
routing information in
transactions.

Figure 2: The Pub/Sub pattern

Source: Robert Horrion, 2022

Transactional Data

The global financial markets produce a very large amount of mostly numeric data every
day. This includes stock market prices at various exchanges around the globe, as well as
transaction systems such as SWIFT. With markets being closed for hours each day, there
are peaks and valleys in system load. A more recent appearance have been crypto curren-
cies that rely on blockchain technologies where each transaction is stored as part of the
blockchain (Luntovskyy & Globa, 2019). Due to the fact that generated numerical data usu-
ally conforms very well to schemas, transactional data can be classified as structured
data. There are many open sources for us to use transactional data in our analyses. For
example, in Python, we can use the yfinance package that allows for straightforward
access to stock prices as time series.

CT Imaging Data in Health Care

CT imaging led to a revolution in health care treatment in the early 1980s. It consists of the
capture of many X-Ray slices of a patient’s body in rapid succession to generate a 3D
model of the body part that is to be imaged (Pai-Dhungat, 2020). Each X-Ray slice contains
2D image data and is saved as a file, therefore this is unstructured data.

Raw data of a CT scan results in about 22MB per uncompressed image file. Assuming 1000
slices are captured, this results in about 22GB of data. For high resolution scans, the vol-
ume may increase to up to 350GB for a single CT scan ("Department of Earth and Environ-
mental Sciences - Frequently Asked Questions,").

Considering that many CT scans may be performed in a single hospital or lab in a single
day, this quickly adds up to many terabytes or even petabytes of data. The calculation of
3D models based on these images requires fast access to the generated files, so Big Data
systems play an important role. The same aspects hold for air-borne or satellite imagery
that has basically the same traits as CT imagery, but in addition usually uses time slices
and geospatial references.
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Geographic Information Systems data

Geospatial data in Geographic Information Systems (GIS) presents unique challenges. For
example, to determine the closest point in space to a given geospatial object in a data-
base, GIS specific database extensions are usually needed. PostGIS is available as a Post-
greSQL extension to cover such scenarios for PostgreSQL databases ("PostGIS - Spatial
and Geographic objects for PostgreSQL,"). Data can either be structured, semi-structured
or unstructured. An example for structured geospatial data is a simple numerical value for
longitude or latitude. Semi-structured data could be present in the form of CSV files con-
taining multiple geo-points and associated attributes, usually stored in so-called attribute
tables. Unstructured data is typically generated in the form of satellite images.

There are many open sources for geospatial data for us to us in our analyses. In the Euro-
pean Union, for instance, the Infrastructure for Spatial Information in Europe (INSPIRE) is a
directive that ensures that official geospatial data has to be public and open for everybody
to use (INSPIRE, 2022). The data comes in geospatial data formats, such as Shapefiles,
GeoPackages, or GeoTIFFs, or directly as data services in the form of data APIs, such as
Web Feature Services (WFS) or Web Map Services (WMS). Also, as an overview of many
open data sources for us to use (not only geospatial data), the curated GitHub repository,
Our World in Data, is a good starting point (Our World in Data, n. d.).

1.3 Data Types
Big Data can be divided into three main data types: structured, semi-structured and
unstructured data. Structured data can be mapped to a schema and can be further given
datatypes to store it more efficiently and prepare it for machine processing. Unstructured
data can’t be mapped to a scheme, instead it is represented by a single document or file.
Semi-structured data doesn’t conform to a predefined schema but contains some struc-
ture.

When it comes to storing data, the concepts of flat and hierarchical data are very impor-
tant, too. The flat model is also called the table model and represents the most basic way
of storing data in a two-dimensional way, for example in a spreadsheet. When data is
stored in a hierarchical model, it can be presented in a tree-like structure, meaning there
are relationships between records.

As earlier discussed, data can be of high or low velocity. When data is streamed, a constant
flow of data is provided. Therefore, the data is of high velocity. This may be the case in
automotive applications when working with sensors, but the weather station scenario
provided in the case study at the beginning of this unit provides a good example for
streaming data, as well. In contrast, batch processed data is classified as being of low
velocity. The data is accumulated by a system, then a large amount of data is processed at
once. An example for batch processed data could be a grocery store supply chain system
that checks the current inventory every day after the store closes. It then batch processes
the current inventory in an ordering system to order more stock, if the store is running low
on certain products.
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Data Normalization
Data normalization is the
process of conforming
data to a predefined
standard. Normalized
data appears similar to
other records normalized
using the same standard
and is stored in a format
that can be processed by
machines.

Also earlier presented, data that originates from geospatial sources is called geospatial
data and needs to be stored in databases with GIS extensions. This data comes with its
own unique set of challenges, such as determining the closest point of coordinates stored
in a database in relation to a provided coordinate. When spatial data is present in a data-
base, spatial joins can be performed to determine the relationship between datasets. For
example, when trying to determine whether a tracked cell phone is within the reception
area of a given cell tower, the latitude and longitude of the cell phone’s location are joined
with the polygon that represents the cell tower’s coverage area. This will determine
whether the phone lies within the coverage area. Since joins are used, this can be per-
formed on relational databases.

In the following, we look at each of these types in more detail.

Structured Data

Structured Data is typically stored in a Relational Database Management System (RDBMS),
but can also be stored in NoSQL databases (John & Misra, 2017). Relational databases are
made up of tables containing a predefined schema, meaning the structure of the table
must be defined before any data is added to the table. This definition includes data types
and a variable name. Data needs to be normalized before being entered into the data-
base. This process is also called data cleansing to turn raw data into cleansed data. Both
commercial and free solutions exist, with some being open source, others proprietary.
Data in an RDBMS is typically accessed and manipulated using the query language SQL.
Different dialects of SQL exist, these are custom implementations for different RDBMS.
Popular solutions include PostgreSQL, MySQL and Microsoft SQL Server amongst many
others available on the market.

Examples for structured data include:

• Numeric sensor data
• Birthdates in a customer database
• Addresses
• Names
• E-Mail Addresses
• Spatial coordinates
• Phone numbers
• etc.

In order to understand how structured data can be efficiently stored in RDBMS, it is impor-
tant to understand how data is encoded to be stored in computer systems in general.
Strings are usually encoded in UTF-8 or ASCII, with the former offering full support for Uni-
code characters. These characters are encoded into sequences of 8-bit bytes (Kilbourne &
Williams, 2003).

To understand how this works, let us see how integer values are encoded in binary to store
them in a computer system, including databases. When encoding a decimal integer in
binary, each position in the bitstring holds a defined value:
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Table 3: Binary Encoding Values for an 8-bit Integer

Index Value

1 128

2 64

3 32

4 16

5 8

6 4

7 2

8 1

Source: Robert Horrion, 2022

For example, the decimal value 11 is encoded as an 8-bit integer as follows:

11=00001011

This encoding schema results in a maximum supported value of 255 for 8-bit integers.

Floating point values are by definition susceptible to floating point error when processed
by a machine. Since computer systems are only able to store and process a finite length of
bits that represent a fractional numeric value, some values may need to be rounded.
When rounding occurs, the numeric value is necessarily modified. Performing arithmetic
on such rounded numbers can then escalate the rounding error into a considerable and
noticeable error (Goldberg, 1991). This is a potential problem when dealing with mission
critical systems, for example in the financial industry or early alert systems for hazards.

Programming languages commonly assign data types to variables. For some languages
such as Python, this happens automatically. Starting with version 3.5, Python offers type
hints when defining variables to point out the data type to a programmer ("typing — Sup-
port for type hints," 2022). Data types can be added to Python variables as follows:

temperature: float = 26.8

Other programming languages, such as Java, require data types to be set when a new vari-
able is defined.

Each RDBMS comes with its own set of available data types. For this course, PostgreSQL is
picked as a popular RDBMS and looked at on a more detailed level. You will find other sys-
tems in the field; it is important to familiarize yourself with each system and its available
data types before you start working with the system in a development or production sce-
nario.
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PostgreSQL stores strings of different lengths with variable storage consumption, depend-
ing on the string in a text data type.

Integer values are stored in a 4-byte length format. Multiple formats to store floating
point numbers are available with double taking up 8 bytes to store a single value. The
decimal data type offers variable lengths allowing us, for example, to minimize the risk of
floating point error if we chose an appropriate length.

Bool values in theory take up one bit of storage, in the PostgreSQL implementation one
byte is consumed to store a single value. Bool values can only contain true or false infor-
mation. Under the hood, this is stored as zeros (false) and ones (true).

Date values are stored in YYYY-MM-DD format, ISO 8601 syntax compliant and consume 4
bytes for each date stored. To prevent the floating-point error from becoming a problem in
critical applications such as ones of financial nature, PostgreSQL offers a money data type
that ensures a correct storage of monetary values.

PostgreSQL offers special data types for some specific scenarios, as well.

The following table provides an overview over a selection of important and frequently
used data types available in PostgreSQL ("Chapter 8. Data Types,", n.d.).

Table 4: A Selection of Important Data Types Based on the PostgreSQL Documentation

Data Type Stored Data Example Storage Size

integer An integer 1500 4 bytes

double precision Floating-point numeric
value with up to 15
decimal points preci-
sion (small floating-
point values)

1.456 8 bytes

decimal Floating-point numeric
value with user speci-
fied precision (large
floating-point values)

5.74656637373736465675
88271629725465786

variable

char A single character b 1 byte

bool True or false true 1 byte

text Unlimited length string “Hello, how are you?” Up to 1GB

date Date in YYYY-MM-DD
format (ISO 8601 syn-
tax)

2006-06-09 4 bytes

Source: Robert Horrion, 2022 based on “Chapter 8. Data Types”
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Special data types
PostgreSQL offers some

very specific data types to
store information such as
geodata (coordinates), IP

Addresses, UUIDs, CIDR
notation for IPv4 and IPv6
network specification and

MAC addresses.

Data type classification and normalization is not only important to efficiently store and
find values in a database, but also for many automated processing tasks such as data sci-
ence applications, that train on or evaluate large numeric datasets.

Semi-structured Data

Semi-structured data represents data that doesn’t conform to a data schema but contains
some structure (John & Misra, 2017). Classic examples include JSON, where each JSON
document can have a different structure when compared with other JSON documents.
The same is true for HTML files and other examples listed below (note that each of these
examples can be structured or semi-structured depending on how the data are stored in
the respective files):

• HTML files
• CSV files
• E-Mails
• Zip files
• Extensible Markup Language (XML) files
• JavaScript Object Notation (JSON) files
• Files written in markdown language
• etc.

Storing scraped HTML data in databases comes with its own set of challenges. Such data
can be stored in a NoSQL database, as well as a SQL database. However, SQL databases
are prone to SQL injection attacks, where a hacker is able to manipulate, access or delete
data in a database that they shouldn’t have access to by attempting to store a SQL
request. Due to the fact that such requests can be embedded in HTML data, storing scra-
ped HTML data in a SQL database can expose the system to SQL injection attacks ("SQL
Injection", n.d.). Security measures need to be implemented to prevent such attacks.
Optionally, a NoSQL database can be used to store HTML data as semi-structured data.

Unstructured Data

Data that is neither structured nor semi-structured is called unstructured data. This type
of data does not conform to a schema and contains no structure that is recognizable
across files (John & Misra, 2017).

Examples of unstructured data include:

• Image data
• Video
• Audio
• Binaries
• etc.

In these cases, relational databases will not do the job. This is one of the reasons why so-
called NoSQL databases were developed. For example, the NoSQL databases
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MongoDB or Cassandra are popular database choices when it comes to storing semi-struc-
tured and unstructured data. MongoDB represents a document-oriented DB, in which
each entry in the database is stored as a document, such as a JSON file ("How is Unstruc-
tured Data Used in a Database?," 2021). Documents are grouped in collections. Collections
can be searched for individual attributes in the documents they hold. MongoDB, for
instance, specifically adopts BSON, a form of JSON, to structure the stored documents
("JSON and BSON," 2021). It is beyond the scope of this section to go into details about
NoSQL, but his should give you an idea of what these exiting technologies can be used for.

Concepts of storing semi-structured or unstructured data in a database

Unstructured data can be stored as a Binary Large Object (BLOB) or as a file in a file sys-
tem. If the file is stored in a file system, a reference to the file and its path needs to be
created and updated every time changes to the file or its location are made. BLOBs can be
stored in relational databases like PostgreSQL and in NoSQL databases such as MongoDB.
The concept is depicted in Figure 1: Storing binary data in a database. BLOBs are defined
by the SQL standard and represent a way to store binary files in a RDBMS. However, Post-
greSQL doesn’t implement BLOB. Instead, it is implemented as a similar file binary storage
solution. MongoDB offers GridFS as a specification to store files larger than 16MB
("GridFS," 2021).

Figure 3: Storing binary data in a database

Source: Robert Horrion, 2022

The figure shows how a reference to a file in a file system needs to be created and updated
when the storage location changes. The left hand side shows how data is stored as a BLOB
– without an external reference. The reference as shown in the file system storage imple-
mentation provides a breeding ground for problems since it can be difficult to keep up
with location changes in the file system. Therefore, a benefit to using BLOBs to store files
in a database is that only one datapoint – the actual database record – needs to be upda-
ted when the file is changed. This keeps the storage solution simpler and is less prone to
errors. GridFS offers support for an unlimited number of files. In addition, it is also able to
speed up access to a file by only reading part of it.
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Access and manipulate data in a MongoDB using Python

Some scenarios require a large number of emails to be stored in a database for quick
access. This might be a database for a Data Science experiment that uses emails as a train-
ing set (for instance to learn the distinction between spam mails and legitimate ones). In a
later step of the project, the Data Science team will also use the E-Mail attachments, so,
they are to be retained. As such, the E-Mail messages are to be classified as semi-struc-
tured data. Therefore, MongoDB represents a useful storage solution. The following
Python code connects to and adds a single E-Mail to a MongoDB in the form of a docu-
ment. This process can be turned into a script and repeated indefinitely to accumulate a
large dataset of E-Mails in the collection. The Python library pymongo is used to access
and manipulate data in a MongoDB (Walters, 2017).

First, the MongoClient instance is created, which tells the library where the MongoDB
installation can be reached.

from pymongo import MongoClient
client = MongoClient('<<MongoDB URL>>’)

Then a database object has to be created to reference the database.

database = client.emails

Next, we create the document. This is achieved by creating a JSON document in code.
Note that the attachments are inserted as subdocuments.
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Figure 4: JSON representation of an email message to be stored in MongoDB

Source: Robert Horrion, 2022

The created email_message document can then be saved to the database.

saved = database.emaildata.insert_one(email_message)

Locating all records where a document attribute matches a searched term is now straight-
forward. The following line of code will return all emails sent to the address
“example@iu.org”.

example_author = database.emaildata.find({'to_line': 'example@iu.org'})

Just as locating all documents where a given parameter matches is easy, it is trivial to
delete such records, as well. The following line of code will delete all E-Mails sent to
“example@iu.org” from the database.

deleted = database.emaildata.delete_many({'to_line': 'example@iu.org'})
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SUMMARY
Big Data is defined by the creation, storage, and computation of huge
amounts of data. This data frequently needs to be stored in distributed
systems that are capable of handling a very large number of parallel
read and write requests. Data is stored either in Relational Database
Management Systems (RDBMS) or NoSQL databases. Document-based
databases represent one of the available NoSQL databases and are more
closely described in this unit.

The 4Vs represent the characteristics of big data: volume, velocity, vari-
ety, and veracity. Volume describes how much data is present. The unit
most commonly used to measure volume is bytes, kilobytes, megabytes
and so on. Velocity describes the speed at which data is stored in or read
from a database system. This includes transfer speed, which is most
commonly measured in bits per second (b/s), kilobits per second (kb/s),
megabits per second (mb/s) and so on. Another important descriptor for
velocity is response time, which specifies the time until a response is
provided upon querying the database. Batch processing, messages, data
streaming, and eventual consistency all represent important concepts in
relation to velocity. Variety characterizes the different types of data
present in Big Data systems. Data may be structured, semi-structured or
unstructured. Structured data conforms to a schema and can be saved
without a file format. This kind of data typically includes numerical val-
ues and raw text. Semi-structured data contains some structure;
unstructured data does not contain any structure and can be saved in a
file format as an individual file. Examples for unstructured data include
photos, videos, and audio. Veracity describes the quality and accuracy of
data and may also be described as the certainty of data. It provides a
measure for how inconsistent, untrusted, raw/uncleansed, biased, and
incomplete data may be.

Data is either generated by humans or by machines and can be mined.
Important sources of Big Data are social networks, with Twitter being an
excellent data source due to its very open and public nature. Other
important sources include machine data, transactional data, CT imaging
data in Health Care, and Global Information Systems (GIS). Some data
sources, such as CT imaging are limited to unstructured data by nature,
others can include multiple data types, and yet others require database
extensions, such as GIS data.

PostgreSQL is a popular RDBMS for storing structured data. Some kinds
of data come with a special set of challenges and require their own data
types. PostgreSQL offers special data types for values of financial nature,
IP Addresses, MAC Adresses, UUIDs and CIDR notification. The docu-
ment-based database MongoDB can handle the storage of semi-struc-
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tured and unstructured data very well. Unstructured data may also be
saved as files in a file system. Data needs to be normalized when it is
stored in a database; this involves conforming it to a standard.
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UNIT 2
WORKING WITH COMMON DATA FORMATS

STUDY GOALS

On completion of this unit, you will be able to ...

– define different data formats.
– apply basic data operations with Python.
– distinguish between different binary data models.
– manage binary data formats using Python.



2. WORKING WITH COMMON DATA
FORMATS

Case Study
Data can be stored in a variety of ways. Since the emergence of the computer, the number
of different formats has been steadily increasing. Most of the time, these formats are writ-
ten and structured so that they are easy for machines to understand. CSV, JSON, and XML
are examples of machine readable formats. Over time, a few formats have been chosen for
specific use cases. Comma-separated values (CSV) files are often used to share small data-
sets, which can easily be handled in a single file and are then used in different tools for
further processing. Json and XML are most dominant in the context of the web and can be
used in a high variety of different scenarios. Those file formats, together with their under-
lying encoding, are presented in the first section of this unit. Along with explicit Python
examples, we will be able to handle those file formats.

With the ever-increasing amount of data, new technologies had to be developed to store
data more efficiently. Therefore, the second section of this unit focuses on technologies
that were developed in the context of the big data movement. Based on HDF5, Parquet,
and Arrow, three modern data formats are presented along with tangible Python exam-
ples.

2.1 Text-Based Formats (CSV, XML, JSON)
In many real-world use cases, the data provided will be in a text-based format. Since com-
puters store information in a binary manner, different representations have been devel-
oped. One of the oldest representation formats is the American Standard Code for Infor-
mation Interchange (ASCII) format.

ASCII

In order for computers to process a variety of types of information, a way of storing this
information is needed. Since computers can only store zeros and ones in the form of a bit,
it was necessary to find a binary representation of characters in a text. To translate the 26
letters, the 10 numerical values, and some special characters into a bit notation, a combi-
nation of bits is required. The table below shows how bits can be translated into decimal
values.

Table 5: Bits to Decimal Values

Bit 7 6 5 4 3 2 1 0
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Max
num-
ber

27= 128 26= 64 25= 32 24= 16 23= 8 22= 4 21= 2 20= 1
Exam-
ple

0 1 0 0 1 1 0 1 SUM

0 64 0 0 8 4 0 1 =77

A byte, which is a block of 8-bits, represents 28 = 256 values. To translate those bit values
into a human readable format, the ASCII standard is used. ASCII was developed to trans-
late binary digits into characters and back. Original ASCII is a seven-bit code that is able to
represent 128 different characters by translating decimals into binary values. Other stand-
ards used the additional eighth bit to represent even more characters and make a com-
plete byte. The figure below shows how the different ASCII characters translate into binary
and decimal notation. The binary values in the first column are a direct translation of the
decimal values. The first 32 characters are non-printing characters, ranging from a back-
space to an escape. The following 32 characters include collating characters, such as ., +,
space, and :, as well as the 10 numeric values. The 26 alphabetic values are listed in combi-
nation with some special characters, such as @ or [. The last 26 characters are the alpha-
betic values in lower case with a few other special characters like { or | (Interface Age Staff,
1980).
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Figure 5: The ASCII table

Source: Weiman (2010). CC BY 3.0
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Figure 6: The ASCII table

Source: Weiman (2010). CC BY 3.0
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Figure 7: The ASCII table

Source: Weiman (2010). CC BY 3.0

ASCII offers a high variety of characters to the user, but was limited to the eight-bit encod-
ing. Many efforts were made to define standards that can represent more characters. One
of the most popular ones is the UTF-8 encoding, which can additionally represent Greek
letters, Asian symbols, and mathematical signs. The Universal Coded Character Set Trans-
formation Format (UTF), follows the ASCII notation for the first 128 characters. In this sec-
tion, we will focus on text-based data, which can be seen as an encoded ASCII representa-
tion. When working with a text file, it is important to understanding what kind of encoding
was used.

Source: Wietreck (2021).
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CSV

One of the most common data formats is the CSV format. As the name indicates, the for-
mat contains values separated by a separator. The comma is used as a standard separator,
but the semicolon is also widely used. The type of separator is arbitrary and is not impor-
tant to the data format. Independent of the used separator, the file extension is the same
(.csv). A file that is separated by a tab can also be saved with the file extension “.tsv”. CSV
files are just simple ASCII text files where a separator character is used to separate a cer-
tain set of characters.

To read or write CSV files, Python has some built-in methods contained in the CSV pack-
age. Apart from this, as CSV files are simple text files, we can also use the open() function
to interact with these text files as shown in the example below. Any text file can be read
using a “with” statement to open the text file. The read() method can be used to extract
the content, which is then returned through a print statement.

with open('example.txt') as f:
    content = f.read()
    print(content)

While this is already useful and will allow users to manipulate CSV files, there is another
way to work with such files. The pandas package, which is widely utilized in the data ana-
lytics community, is used in the following examples to demonstrate how to work with tab-
ular data like CSV. Pandas is an abbreviation of panel data.

Before loading the data into Python, inspecting the CSV data is recommended. This can be
done, for example, with an editor, and will show the following data for the Islands.csv file.
The Islands.csv file can be created by opening the editor on the local computer, copying
the following text and then saving the file as .csv (Countrymeters, 2021).

Island;Year;Residents;Capital;Continent
Cape Verde;2005;471000;Praia;Africa
Cape Verde;2010;509000;Praia;Africa
Cape Verde;2015;546000;Praia;Africa
Fiji;2005;837000;Suva;Oceania
Fiji;2010;876000;Suva;Oceania
Fiji;2015;910000;Suva;Oceania
Isle of Skye;2005;10300;Portree;Europe
Isle of Skye;2010;10500;Portree;Europe
Isle of Skye;2015;10800;Portree;Europe

A header with the names of the columns can be identified at the top of the dataset, and
every single data row consists of values separated by a semicolon. The dataset has nine
rows showing the data for three different islands for three different years.
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In order to use this dataset in Python, we read the data with the pandas method
read_csv() to load the data into a pandas DataFrame. In order to load the data into a
DataFrame, we specify the location of the file and the separator of the csv file. The separa-
tor can be defined in a parameter called sep. As a result, we obtain a well-structured tabu-
lar representation of the CSV data, including column names and a row index.

import pandas as pd
data = pd.read_csv("Islands.csv", sep = ";")
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Figure 8: Island DataFrame

Source: Wietreck (2021).

The DataFrame takes the first row of the CSV file and defines it as the header. If the CSV file
is in the correct structure, this can be helpful in addressing certain columns. Unfortu-
nately, there are scenarios where this does not return the expected result. In the following
scenario, there is no header present in the CSV file, so this has to be added manually. The
example input CSV could be as follows:
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Cape Verde;2005;471000;Praia;Africa
Cape Verde;2010;509000;Praia;Africa
Cape Verde;2015;546000;Praia;Africa
Fiji;2005;837000;Suva;Oceania
Fiji;2010;876000;Suva;Oceania
Fiji;2015;910000;Suva;Oceania
Isle of Skye;2005;10300;Portree;Europe
Isle of Skye;2010;10500;Portree;Europe
Isle of Skye;2015;10800;Portree;Europe

To bring it into the desired structure, it is necessary to hand over the names argument,
together with the expected column names in the right order. This code returns the same
results as in the example above.

column_names = ["Island", "Year", "Residents", \
    "Capital","Continent"]
data = pd.read_csv("Islands_noHeader.csv", \
    names = column_names, sep = ";")

Next, we see another common example where the read_csv() method has to be modi-
fied. This can be the case when there are some specifications or metadata above the
actual data, for instance, an export header for this file. This is often the case when working
with data that are extracted directly from a system. The header might include the date of
the extraction, the specific source, etc. The following CSV file contains a header which indi-
cates the extraction date, the extraction format, and the requester. Since there is only one
value in those rows, the separator will separate empty values from each other to meet the
overall number of expected separators in each row.

Extraction Date: 24.05.2016 12:02:21;;;;
Data Format: csv;;;;
Requester: IU;;;;

Island;Year;Residents;Capital;Continent
Cape Verde;2005;471000;Praia;Africa
Cape Verde;2010;509000;Praia;Africa
Cape Verde;2015;546000;Praia;Africa
Fiji;2005;837000;Suva;Oceania
Fiji;2010;876000;Suva;Oceania
Fiji;2015;910000;Suva;Oceania
Isle of Skye;2005;10300;Portree;Europe
Isle of Skye;2010;10500;Portree;Europe
Isle of Skye;2015;10800;Portree;Europe

To skip the first four rows, the read_csv() method takes a skiprows argument, which
expects the integer of each row that should be skipped. In this case, the first four rows are
skipped using the range function. It can be useful to use a function to identify the header
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row, for example, by name. This provides additional flexibility since automatically gener-
ated headers do not always have the same number of rows. The following line of code
returns the same results as in the previous examples:

data = pd.read_csv("Islands_meta.csv", sep = ";", \
    skiprows = range(0,4))

Especially with outputs from old systems encoding errors can occur. These are sometimes
difficult to identify and to solve. The following example uses the encoding parameter to
make sure that the CSV is read as UTF-8.

data = pd.read_csv("Islands.csv", sep = ";", \
    skiprows = range(0,4), encoding = "utf-8")

Now, as the data are loaded into a pandas DataFrame, they can be filtered, sorted, grou-
ped, and transformed. As we have seen, when working with CSV data, it is important to
understand the structure of the file to be used. Header rows and export headers need to
be identified and handled. When reading or writing data back to a CSV file, encoding must
also considered. The following example writes the DataFrame into a CSV file called
Islands_output.csv with a separator ;.

data.to_csv("Islands_output.csv", sep = ";")

JSON

The JavaScript Object Notation (JSON) is a data format most commonly used for transfers
in the web (Müller & Guido, 2017). It became popular because of its clean, easy to read
structure, and for the possibility of flexible application, especially for nested semi- and
unstructured data. JSON data are similar to a Python dictionary, and consist of a combina-
tion of key value pairs. JSON files start with curly brackets, then the key and value are
defined, separated by a colon. Entries are separated by a comma, which indicates the start
of the next element. At the baseline, a JSON file is similar to a CSV file: an ASCII text file in a
human readable representation. In the following JSON file, we can see the weather for
London on 24.05.2021. The data are returned from the openweathermap API (Open
Weather, n.d.), which is a publicly available API for global weather data.

{"coord": {"lon": -0.1257, "lat": 51.5085},
"weather": [{"id": 500,
"main": "Rain",
"description": "light rain",
"icon": "10d"}],
"base": "stations",
"main": {"temp": 282.22,
"feels_like": 279.41,
"temp_min": 280.64,
"temp_max": 283.86,
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"pressure": 1005,
"humidity": 80},
"visibility": 10000,
"wind": {"speed": 5.43, 
"deg": 305, 
"gust": 11.39},
"rain": {"1h": 0.12},
"clouds": {"all": 90},
"dt": 1621884916,
"sys": {"type": 2,
"id": 268730,
"country": "GB",
"sunrise": 1621828607,
"sunset": 1621886294},
"timezone": 3600,
"id": 2643743,
"name": "London",
"cod": 200}

When reading this file in Python, the JSON package is used. After reading the file using
Python’s built-in open() and read() functions, the JSON package is used to load the
data. While the return of json_data is a string, the data object itself will be a Python dic-
tionary.

import json
json_data = open('LondonWeather.json').read()
data = json.loads(json_data)

As we can see in the code above, JSON files can be nested. In order to access elements of a
specific level in this nested structure, we can use the top level key of this dictionary for our
query.

data["main"]

# console output:
{'temp': 282.22,
'feels_like': 279.41,
'temp_min': 280.64,
'temp_max': 283.86,
'pressure': 1005,
'humidity': 80}

Such a structure can then be easily put into a DataFrame as this is no longer nested, but in
flat format. Even though pandas has its own method to read JSON files, it can be difficult
to put an unstructured format like JSON into a column-based format. When handing over
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the “main” section of our JSON example to a DataFrame, the keys will be used as columns.
In order to give more context to the weather data, the name of the city is passed as the
row index.

weather_data = pd.DataFrame(data["main"], \
    index = [data["name"]])

Alternatively, we can also normalize the json directly to a pandas DataFrame using the
json_normalize() function.

pd.io.json.json_normalize(data['main'])

In this example, the data from a JSON file were used. When accessing the API directly, the
data for each city can be retrieved and the value can be stored in a data structure like a
DataFrame. Together with additional information like the time of the measurement, a
script can be built that periodically extracts weather information from the API, brings it
into the desired order, and stores it in a DataFrame or database.

XML

Hierarchical data from the web are often represented using the extensible markup lan-
guage (XML). XML data are made readable for machines and humans. The following exam-
ple XML file, which can be downloaded as an XML file from the XML module documenta-
tion (Python Software Foundation, n.d.), shows information about different countries.
When opening the data in an editor, the following structure will be shown.
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Figure 9: XML Example Countries

Source: Wietreck (2021).

The XML ElementTree class will first be imported before the XML file is parsed. The
getroot() method is used to get the root of the hierarchical data structure. In this case,
this is the tag <data>. A for loop is used to display the tags and attributes of each child
object using the attribute notation. A specific value can be accessed using the array nota-
tion. The following script will return the name of every single country in the dataset and
the value of the of second element in the first child.

import xml.etree.ElementTree as ET
tree = ET.parse('data.xml')
root = tree.getroot()
for child in root:
    print(child.tag, child.attrib)
print(root[0][1].text) 

# console output:
# country {'name': 'Liechtenstein'}
# country {'name': 'Singapore'}
# country {'name': 'Panama'}
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2.2 Binary Formats (HDF5, Parquet,
Arrow)
In addition to the more traditional data formats, there are a variety of more modern stor-
age methods that can store data more efficiently in specific use cases. In this section,
HDF5, Parquet, and Arrow are introduced.

HDF5

The Hierarchical Data Format (HDF) contains a model that manages and stores large vol-
umes of data. It is often used for complex and heterogeneous data. The HDF5 format is a
file system that is contained and described in a single file. The contained file system works
like the folder structure on a computer, though it has a different name: groups. Groups are
like a folder and can contain a number of different files, which are called datasets. The fig-
ure below shows an example structure of HDF5.
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Figure 10: HDF5 Data Model

Source: Wietreck (2021), based on mjones (2020)

HDF5 is a self-describing format, which means that each element (group or dataset) has
an associated metadata file that contains information about the data. This includes
names, descriptions, and any other documentation the user wants to add. This additional
and separate metadata document allows users to automate processes. Other advantages
of HDF5 include the storage of large complex and heterogeneous data, since the format
was designed to compress high quantity of data. Additionally it supports data slicing,
which means that only the files used for analysis are read into the computer’s memory.
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In the following example, the h5py module is used to create a HDF5 dataset in Python.
After instantiating the HDF5 file, the create_dataset() method is used to build the
dataset. Parameters for names, shape, and integer type are also handed over in that step.
Attributes of the dataset can be accessed on the object. In the example, the shape, name,
and parent are returned. In the following example, the created empty dataset does not
belong to a group, i.e., parent, but we see that this data format allows us to group and
nest our datasets and introduce a structuring hierarchy.

# load packages
import h5py

# create an HDF5 file
file = h5py.File('iu.h5','w')

# create an empty dataset in the HDF5 file
dataset = file.create_dataset("iu", (4, 6)) 

# print information about the dataset
print("Dataset shape is", dataset.shape )
print("Dataset name is", dataset.name)
print("Dataset is a member of the group", \
    dataset.parent )

# close the file.close()

In the following example, the previously created file is opened and the created dataset is
accessed. Multidimensional example data are created using NumPy and then written into
the dataset. From there, the data can now be read again.

# load packages
import numpy as np

# read/write HDF5 file
file = h5py.File('iu.h5','r+')

# list existing datasets in the file
list(file.keys())

# create an empty dataset in the HDF5 file
# if this dataset does not already exist
if not "iu_numbers" in list(file.keys()):
    dataset = file.create_dataset("iu_numbers", (4, 6)) 
else:
    dataset = file['/iu_numbers']

# generate sample data
data = np.random.rand(4*6).round(2).reshape(4, 6)

49



# add the data to the HDF5 dataset
dataset[...] = data

# read the data back from the HDF5 file
data_read = dataset[...]
print(data_read)
# console output:
# [[0.65 0.96 0.77 0.33 0.19 0.93]
#  [0.11 0.31 0.99 0.01 0.61 0.48]
#  [0.09 0.79 0.4  0.15 0.3  0.35]
#  [0.97 0.36 0.27 0.45 0.21 0.59]]

# close the file
file.close()

Metadata can be stored in the file using the .attrs[] method. The following script can be
added to the example above and would add metadata information to the file.

dataset.attrs["User"] = "ME"

In order to access all metainformation, it is possible to iterate over the keys and return the
values for each key.

for k in dataset.attrs.keys():
    print(k, dataset.attrs[k])

Parquet

Table 6: Row-Based versus Columnar Storage

Row-based storage Columnar storage

1. Germany, Berlin, 83
2. France, Paris, 67
3. Italy, Rome, 60

Country: Germany, France, Italy
Capital: Berlin, Paris, Rome
Inhabitants: 83, 67, 60

Advantages of Parquet include the high compression capabilities, which can be chosen in
a flexible manner. Different types of compression methods, in cooperation with extenda-
ble encoding schemas, are used to make the file as small as possible. Encoding methods
include dictionary encoding, bit packing, and run length, encoding (RLE). Dictionary
encoding is normally used for datasets where unique values are only available in a small
number. Bit packing is used for the storage of integers with dedicated 32 or 64 bits per
integer. This efficiently stores small integers. When a value occurs multiple times, RLE
stores only one entry along with the number of occurrences.
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Another advantage of Parquet is that it only retrieves the relevant data in an efficient man-
ner since the amount of scanned data are small. This occurs because of the self-describing
format where each file contains metadata as well as the data themselves. When querying
the dataset, only the required columns and their respective values are loaded into mem-
ory.

Since Parquet is designed to keep the metadata separated from the actual data, it is possi-
ble to split columns into separate files which are then referenced using the metadata file.
This enables the efficient and flexible handling of the data.

In Parquet, there are two main configurations that enable the optimization of the files.
One configuration is related to the row group size, which allows the data to be chunked
into larger pieces. The data page size configuration enables a single row lookup. By opti-
mizing this, the space overhead is reduced.

To create, access, and write a Parquet file, there are a variety of possibilities in Python,
and, for this example, the capabilities of pandas will be explored. First, the required mod-
ules are important. Pyarrow will be used in this example for the communication with pan-
das. After creating a sample dataset, it is written to an Arrow table. The write_table()
method can be used to create a new Parquet file. Additional configuration parameters,
such as the data_page_size, can be added.

# load packages
import pyarrow.parquet as pq
import pyarrow as pa
import pandas as pd
import numpy as np

# create a pandas DataFrame
df = pd.DataFrame(np.random.randn(100).\
    reshape(25,4), columns = ["one", "two", \
        "three", "four"])

# convert the pandas DataFrame to a parquet table
tableToWrite = pa.Table.from_pandas(df)

# write the parquet table to file
pq.write_table(tableToWrite, "myPQFile.parquet")

To read from a Parquet file, the read_table() method is used. After applying the
to_pandas() method, the data are back in a DataFrame. By adding values in the columns
parameter, it is possible to read only a subset of the Parquet file.

tableToRead = pq.read_table("parquet.writeTable")
tableToRead.to_pandas()
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Attributes like .metadata or .schema will return information about the file, e.g., the num-
ber of columns, rows, groups, or version.

file = pq.ParquetFile("myPQFile.parquet") 
file.metadata

<pyarrow._parquet.FileMetaData object at 0x00000279639E7E28>
  created_by: parquet-cpp-arrow version 4.0.1
  num_columns: 4
  num_rows: 25
  num_row_groups: 1
  format_version: 1.0
  serialized_size: 2739

Source: Wietreck (2021).

Arrow

The development platform Arrow was built for in-memory analytics, which allows the pro-
cessing and moving of data in a big data environment. This is especially useful when data
need to be exchanged with a low overhead. This results in a high query performance, even
for complex analytical tasks. It is optimized for the analysis of columnar data formats,
either as flat files or as hierarchical data. The project is language agnostic, which allows a
practical application in a variety of use cases. This facilitates an efficient communication
between many components. In the following figure, Arrow helps to connect the following:

• Spark (framework for cluster computing)
• Drill (supports data intensive distributed applications)
• Impala (used for querying Hadoop)
• HBase (distributed relational database)
• Kudu (column-based data storage)
• Cassandra (database management system)
• Parquet (explained above)
• pandas (Python library for data analysis)
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Figure 11: Arrow Overview

Source: Wietreck (2021), based on The Apache Software Foundation (n.d.).
The following figure shows how the data can look in memory.

53



Figure 12: Apache Columnar Storage Model

Source: Wietreck (2021), based on The Apache Software Foundation (n.d.).
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To use Arrow in Python, Arrow tables can be created from other data structures, such as
pandas DataFrames or NumPy arrays. In the following example, a few basic Arrow opera-
tions will be executed. After installing and importing the package, the from_pandas()
method loads the example data into an Arrow table object.

# load packages
import pyarrow as pa
import pandas as pd
import numpy as np

# generate sample data
df = pd.DataFrame({ \
    'one': [20, np.nan, 2.5], \
    'two': ['january', 'february', 'march'], \
    'three': [True, False, True]}, \
        index=list('abc'))

# convert the DataFrame to an arrow table
table = pa.Table.from_pandas(df)

To make the process of reading data into an Arrow table as efficient as possible, there are
a variety of methods, including read_csv() or read_json(). Additionally, the communi-
cation with the Parquet data format was made possible, which provides a standardized
open-source columnar storage format. Arrow also makes it possible to write to and
retrieve data from HDF5 files and can therefore be used as a link between HDFs, Parquet,
and other data models. Methods like to_pandas() allow users to return data to a pandas
DataFrame.

df_new = table.to_pandas()

In addition, it is possible to read many files in a directory as one dataset. This enables the
analysis of even larger datasets. While this example only showed the main function of
Arrow (to create the Arrow object), there are a couple of advantages over DataFrames.
Besides containing extensible metadata information of the flat or nested data types, it is
also possible to create user-defined types. Pandas objects tend to perform poorly when it
comes to database or flatfile ingestions or export. Arrow, on the other hand, with its
streaming and chunk-based oriented design, enables the movement and access of large
datasets at maximum speeds. Overall, Arrow is designed for analytical processing per-
formance and can be used to process very large datasets in a more efficient way than pan-
das DataFrames.
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SUMMARY
There are many common formats that can store and handle data. Before
data can be stored on a disc, they must be machine-readable. A com-
mon standard for de- and encoding is the eight-bit ASCII standard, which
represents 128 characters, e.g., alphabetic, numeric, collating, or non-
printing. The UTF-8 standard is also capable of displaying Greek letters
and Asian symbols.

One of the most common data formats is the comma-separated values
(CSV) format. It stores the values in a given structure, using a separator
for the values. This results in a tabular layout that can easily be read, for
example, using the pandas read_csv() method in Python. Afterwards,
Python allows the data to be sorted and filtered while keeping the native
tabular structure.

JSON does not have a tabular structure, and is mainly used for the trans-
fer of data on the web. It follows a clean, easy to read structure, and can
be adjusted to any type of data. The structure can be used like a Python
dictionary.

The HDF5 format is newer than CSV. It consists of a data model and a
storage model, which enable the efficient manipulation, storing, and
transfer of data. The file format is based on groupings, which creates a
hierarchy of different datasets. HDF5 can be created and managed using
Python with the h5py library.

Parquet also emerged in the context of big data. Parquet uses a colum-
nar storage approach where data are nested along the column headers.
This enables the retrieval of data that are actually needed, resulting in
higher performance and efficient use of memory.

Arrow can be used to facilitate the communication between different
types of formats. While it is optimized for the handling of columnar data,
it can also be applied to hierarchical data. Arrow is language agnostic
and can be used in many use cases.
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UNIT 3
NOSQL DATA STORES

STUDY GOALS

On completion of this unit, you will be able to ...

– describe the relational and non-relational data models
– explain how and why the NoSQL databases emerged
– classify the different storage solutions used in NoSQL databases
– practically use several NoSQL databases



3. NOSQL DATA STORES

Case Study
Imagine that you have been assigned with the task to design and implement a data-sys-
tem for a travel agency. Amongst other requirements, this system should include a data-
base for storing the information of purchased ticketsand printing them out. The tickets
contain passenger's information and the itinerary (flights) are stored in the simple format
shown below.

Figure 13: Sample ticket printout

Source: Wannous, 2022

The database handles the following entities ticket, airline, and flight, as shown in the fol-
lowing figure. We will name this database TicketDB. We will consider that a ticket is for one
passenger and it may involve several flights. On the other hand, a flight serves several pas-
sengers and is operated by one airline company.
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Database engine
The software that a data-
base management system
(DBMS) uses to manage
data (create, read,
update, and delete)

Figure 14: The relational data model for TicketDB

Source: Wannous, 2022

During the course of this unit, we will learn that this is a use case for which a NoSQL data-
base might be a good choice.

The term 'NoSQL' (Non-SQL or Not-only-SQL) is commonly used when referring to a collec-
tion of database-engines/data-stores that do not use the relational model for organizing
data.

Several factors have contributed to the spread of NoSQL, like its dynamic schema, cost-
effectiveness, speed, and better scalability in some cases. NoSQL database engines have
been increasingly used since their introduction during the transition period between the
20th and the 21st centuries; nevertheless, NoSQL has not succeeded in changing the dom-
inance of the relational database engines in the market.

NoSQL engines manage data in one of four primary models that we will see later. The
selection of a suitable data model and, consequently, the NoSQL database engine for a
specific project depends on the scenario and data dynamics.

3.1 Introduction and motivation
Three basic data models appeared during the last 30 years of the 20th century: 1) the hier-
archical model, 2) the network model, and 3) the relational model. The relational model
gained attraction and dominated the database market until this writing. In the following,
we will briefly discuss all three basic data models.

The hierarchical model

The hierarchical model organizes data in a tree of records nested within records; under
each record (parent) come its children records. The popular database engine in the 1970s
IBM's Information Management System (IMS), adopted this model (IBM, 2021).
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The hierarchy can be as in the following figure for TicketDB.

Figure 15: The hierarchical data model

Source: Wannous, 2022, based on IBM, 2021

In this example, the root record 'Ticket' has two children, 'Passenger' and 'Itinerary,' and
the record 'Itinerary' is the parent of 'Flight. One 'Ticket' may contain several 'Flights,' rep-
resenting a one-to-many relationship.

The hierarchical data model performed well with one-to-many relationships. Still, it wasn't
easy to adopt many-to-many relationships (for example, a flight can accommodate several
passengers, and a passenger may reserve a multi-flight ticket). Software developers had to
handle this type of relationship in the application code, making the development process
more difficult.

The network model

The network model appeared as a generalization of the hierarchical model (Hainaut,
2009). A node may have multiple parent nodes in the network model, which addresses the
many-to-many relationship issue of the hierarchical model.

The network data model can be as in the following figure for TicketDB.
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Figure 16: The network data model

Source: Wannous, 2022

The figure shows one configuration where a single ticket can incorporate flights from dif-
ferent companies, and a single airline company may serve tickets to multiple passengers.

The way to access a node in a network model was to follow a path (called the access path)
from a root node through a series of other nodes while checking the matching condition.
Imagine a case where a developer wants to find the tickets purchased from airline co.1. It
was necessary to scan all nodes while keeping the path information for a possible match-
ing until finding the specific airline company and then add the path to the results before
seeing the rest of the parents.

The network data model is simple to understand and design as it involves only nodes and
links between them (although this can become complex for a large number of nodes,
edges, and relationships between them). In the following section, we will come to know
about graphs which are the building block for a type of NoSQL database. Graphs are also
composed of nodes and links between them, but with additional attributes that can be
assigned to both. In the graph-oriented databases we will also see that it is no longer nec-
essary to store and reproduce complex access paths.

The relational model

The relational model places all data in tables which are simple structures comprising
rows, with each row having a set of attributes (columns) (IBM Cloud Education, 2019). It
negates the need for nested structures and simplifies the various data manipulation oper-
ations via the SQL interface.

The figure shown in the introductory case study for this unit shows what the relational
model could look like for our simple database, TicketDB. The figure shows an additional
table, 'Flight_Ticket,' added to realize the many-to-many
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Foreign key
A column (or a set of col-

umns) in a table that links
(refers) to a column in

another table in a rela-
tional database

Primary key
A column (or a set of col-

umns) in a table that
uniquely identies a row in

a table
Table schema

The definition of a table
that includes its name

and its attributes' names,
data types, and con-

straints.

Index
A lookup table for quickly

finding rows users fre-
quently search

relationship between the Ticket and the Flight tables. One-to-many relationships are
implemented by inserting foreign keys in the child tables to point to the primary keys in
their parent tables.

Relational Database Management Systems (RDMS) impose several rules on the values
stored in the database and strictly apply these rules to ensure data consistency. Every
table has a schema against which data values are validated and constraints checked
before writing.

Altering the schema after data has been inserted into the table could be tedious and time-
consuming and might fail in some cases. Still, altering the schema is necessary for many
situations as new rules/policies exist all the time. For example, authorities might require
adding an emergency contact to every passenger's record, which requires changing the
schema of the table 'Passenger' to accommodate a new attribute, 'emergency_contact.'.
While it is acceptable to have the attribute for the new records, existing rows in the table
don't have it, and this might be an issue if the feature can't be allowed to be empty
(NULL).

The Rise of NoSQL

Several driving forces led to the birth of NoSQL in the early 2000s. Many appeared in the
software development process, while others came from the database field (Stonebraker,
2010).

The tight and inflexible schema in the relational model, issues with the mapping between
an object in Object-Oriented Programming (OOP) and the column values in a table, limited
scalability options, and the expensive operations to join tables are some of these factors.

Consider the case where a developer needs to fetch the information of a specific ticket
and display it on the user's screen from the TicketDB. A query involving several joins is
required to collect all the information.

SELECT …
FROM `Flight_Ticket` LEFT JOIN `Ticket` ON … 
LEFT JOIN `Flight` ON …
LEFT JOIN `Airline` ON …
WHERE `ticket_no`=…;

As the database size increases, handling the information stored in it becomes heavier, and
scalability comes into focus. Consider a small airline company that operates tens of flights
a day. It is manageable to add new flights, and their related tickets go into the database.
But new unique records constantly appear in large volumes to the other tables for a large
airline company serving hundreds of flights a day is a severe issue. Individual records
should go into indexes, and they will appear as foreign keys in other tables. You might
argue that we can break the 'Flight' table to make part of it constant (flight_no, from, etc.),
but this means a new table appears in the query involving the join procedure.
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vertically
Adding resources to a sin-
gle machine or server to
cope with the increased
demand.
Horizontal scaling
Adding more machines to
the infrastructure to cope

NoSQL emerged with a promise to address the weaknesses of the relational model, espe-
cially its inflexibility and scalability (especially horizontal scalability, but keep in mind that
relational databases are also horizontally scalable). Also as large volumes of data are
required to be analyzed with high speed in data analysis applications, NoSQL also aimed
at addressessing this issue.

A document representing a ticket inside our ticketing example might look something as
below:

{
    "ticket_no": 1234,
    "passenger_name": "John SMITH",
    "passenger_age": 46,
    "passenger_gender": "Male",
    "Flights": [
      {
        "flight_no": "JL12345",
        "from": "Osaka",
        "to": "Dubai",
        "airline": "JAL",
        "date_time": "25.3.2022 16:00"
      },
      {
        "flight_no": "FD123",
        "from": "Dubai",
        "to": "Frankfurt",
        "airline": "FlyDubai",
        "date_time": "26.3.2022 16:00"
      }
    ]
  }

It is clear that the record contains all the information needed formatted in JSON. This
record can be fetched in one read operation and converted to an OOP object or even
transmitted as a string directly. The record structure is not static (flexible schema); it can
be determined upon reading it from the database. Records of different components are
allowed (a ticket with the departure and arrival date/time, for example), unlike the case of
relational databases.

NoSQL stores data similarly to the hierarchical data model, i.e., records are enclosed
inside records rather than in tables. One of its essential difference from the relational data
model is that a record is self-contained, which makes it possible to split the database
among a number of servers, if necessary, to balance the load and scale vertically and/or
horizontally.

NoSQL can handle data workloads that require rapid processing and analysis of huge
amounts of varied and unstructured data because of its schema flexibility.
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with the increased
demand.

Hashmap
A structure that stores

several entries in which a
value is mapped to a key.

3.2 Approaches and technical concepts
NoSQL databases hold the capability to handle a massive volume of quickly changing data
(Microsoft, 2022). They also support developers working in agile environments where
unplanned situations are frequent.

Based on their storage and data models, the research community as well as database
developers and provideers subsume the many different flavors of NoSQL databases under
four main categories (Gourav Bathla, 2018) (Microsoft, 2022):

• Key-value datastore
• Document datastore
• Columnar datastore
• Graph datastore

The categories are different in many aspects, and each one addresses different aspects
and requirements of certain use cases. But, as different as the many NoSQL databases
might be, they share the common characteristic that they are fundamentally different
from relational databases in one of more aspects.

Key-value datastore

Key-value datastores associate values (of primitive and complex types) to keys, similar to a
dictionary/hashmap implementation in several programming languages (Microsoft, 2022)
(Gourav Bathla, 2018). The keys in the datastore are unique and don't repeat, while the
data values do (if necessary). Key-value databases are compact and have efficient index
structures to quickly and reliably locate a value using its key. They are ideal for systems
that do simple lookups, like the modules that handle application preferences and user
profiles. They are not a good choice if a schema is necessary.

Figure 17: Key-value data model

Source: Wannous, based on Microsoft, 2022

Key-value datastores perform simple operations on their entries including
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• reading
• deleting
• updating

a value addressable by a given key.

A new entry in the datastore creates a new key-value pair, and the subsequent operations
on the entry involve passing the key to access it. A new entry with a key already in the
datastore results in the old value being replaced with the new one, and the key remains
unchanged.

Redis (Redis, Inc, 2022) is an example of a key-value data store that uses a distributed
architecture to process large amounts of data in parallel and in-memory. Redis is an open
source database, but there is also a company that provides an enterprise version of it.
Redis is available through the official downloads page for direct download, as a docker
image, and ready for usage in the cloud on provided and managed infrastructure by the
Redis company. At writing, Redis offers an online console to interact with a sample data-
store, and it offers a free trial on its cloud platform.

Connect to a Redis in Python

The following steps show how to connect to a Redis database and manipulate data in a
Python application.

1. Download and install Redis on your computer, or start a free trial in the cloud.
2. Create a database inside Redis.
3. Install the redis-py-cluster Python package by running the following command in

the terminal.

 pip install redis-py-cluster

4. Open any IDE that supports Python, and write the following code in a file and name it
(Redis-Example.py). Replace the text between < and > with the respective values of
your installation. The code has been tested with a Redis database installed in the
cloud.

# import the redis module
import redis

# if connecting to a cloud database,
# import the dns module, too

import dns
.
# connect to the database
# replace <…> with the respective values of your DB
r = redis.Redis(host='<Server's IP / cloud endpoint>', \

65



JSON
An open standard format

for storing data objects as
text.

port=<port>, password='<password>')

# add two new key-value entries
r.set('key-1', "value-1")
r.set('key-2', "value-2")
.
# change the value of the first entry
r.set("key-1", "new value")
.
# retrive the entries from the database and print them
value1 = r.get("key-1")
value2 = r.get("key-2")
.
print("The retrieved values are:")
print(value1)
print("=============")
print(value2)

The code will produce the below output.

The retrieved values are:
b'new value'
=============
b'value-2'

Note that the "key-1" entry was updated after the second writing operation
(r.set("key-1", "new value")) and the old value was replaced.

Document datastore

A set of fields and objects arranged in a specific format like JSON or XML is the building
block in document datastores (Gourav Bathla, 2018). Documents can be organized in col-
lections similar to tables in relational databases.
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Figure 18: Document data model

Source: Wannous, 2022

In the example below, we see a sample collection of documents, with each representing a
ticket in the NoSQL version of TicketDB, discussed earlier in this unit, stored as a JSON
string.

{
    "ticket_no": 1234,
    "passenger_name": "John SMITH",
    "passenger_age": 46,
    "passenger_gender": "Male",
    "Flights": [
      {
        "flight_no": "JL12345",
        "from": "Osaka",
        "to": "Dubai",
        "airline": "JAL",
        "date_time": "25.3.2022 16:00"
      },
      {
        "flight_no": "FD123",
        "from": "Dubai",
        "to": "Frankfurt",
        "airline": "FlyDubai",
        "date_time": "26.3.2022 16:00"
      }
    ]
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  }
{
    "ticket_no": 1235,
    "passenger_name": "Sara SMITH",
    "passenger_age": 41,
    "passenger_gender": "Female",
    "Flights": [
      {
        "flight_no": "FD123",
        "from": "Dubai",
        "to": "Frankfurt",
        "airline": "FlyDubai",
        "date_time": "26.3.2022 16:00"
      }
    ]
  }

The collection contains two documents, and each one has several simple fields like the
passenger_name and passenger_age and a more sophisticated field, Flights (an array
of objects).

A document can be self-contained, i.e., it has all the fields embedded in it. The application
code needs one read operation to acquire all the fields necessary to construct an object
representing the document. The previous documents are self-contained, but they have
repeated fields that take uneccesarily larger space. A better approach to save storage is to
use document references. The example below shows that the flight information is stored
in a separate collection, and the ticket document references these flights.

{
    "flight_no": "JL12345",
    "from": "Osaka",
    "to": "Dubai",
    "airline": "JAL"
}
{
    "flight_no": "FD123",
    "from": "Dubai",
    "to": "Frankfurt",
    "airline": "FlyDubai"
}
{
    "ticket_no": 1234,
    "passenger_name": "John SMITH",
    "passenger_age": 46,
    "passenger_gender": "Male",
    "Flights": [
      {
        "flight_no": "JL12345",
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        "date_time": "25.3.2022 16:00"
      },
      {
        "flight_no": "FD123",
        "date_time": "26.3.2022 16:00"
      }
    ]
  }
{
    "ticket_no": 1235,
    "passenger_name": "Sara SMITH",
    "passenger_age": 41,
    "passenger_gender": "Female",
    "Flights": [
      {
        "flight_no": "FD123",
        "date_time": "26.3.2022 16:00"
      }
    ]
  }

In the document data model, the schema is flexible and is determined when reading the
document in the application. For example, one document of our sample collection might
have the field passenger_gender and another might not have that information. On the
other hand, a drawback of this model is that even small changes in the document require
writing the whole document to the database. For that reason, it is recommended to keep
the size of the document small.

MongoDB (n.d.), the name stems from “humongous”, meaning “gigantic”, is an example of
a document data store written in C++. Until 2018, MongoDB was an open source database;
today there is also a proprietary version distributed by the MongoDB company. It is availa-
ble through the official downloads page for direct download and as a cloud service. In
addition, there are Docker images available for MongoDB as well. At writing, MongoDB
offers an online console to interact with a sample datastore, and it offers a free trial on its
cloud platform.

Connect to a MongoDB in Python

The following steps show how to connect to a MongoDB database and manipulate data in
a Python application.

1. Download and install MongoDB on your computer, or start a free trial in the cloud.
2. Create a database inside MongoDB.
3. Install the Python package pymongo by running the following command in the termi-

nal.
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pip install pymongo

4. Open any IDE that supports Python, write the following code in a file and name it
Mongo-Example.py. The code has been tested with a MongoDB database installed in
the cloud. Replace the text between < and > with the respective values of your instal-
lation. The centerpiece code in this example to connect to a Mongo database from
Python makes use of the pymongo.MongoClient() function.
In this example, we connect to a mongodb on a server (srv) using a <user name>,
<password>, and the <Server's IP endpoint>. We also specify that writes to the
database should be retried if they fail, e.g. due to network problems (retryWrites).
Writes will be applied to several data replications in the cluster. Accordingly, we spec-
ify a strategy for writing errors during the write process to these data replicas. By set-
ting this strategy to majority, writes will only be rolled back if the error occurred
before writes took place to less than half of the data replications, otherwise, they will
endure allowing eventual consisteny in the database.

# import the pymongo module
import pymongo

# if connecting to a cloud database,
# import the dns module
import dns

# connect to the database
client = pymongo.MongoClient( \
"mongodb+srv://<user name>:<password>@< Server's IP / cloud
endpoint >?retryWrites=true&w=majority")

# add a database
mydb = client["TicketDB"]

# add two collections for the flights and tickets
flightCollection = mydb["flights"]
ticketCollection = mydb["tickets"]

# add two flights documents to the collection
flight1 = { \
'flight_no': 'JL12345', \
'from': 'Osaka', \
'to': 'Dubai', \
'airline': 'JAL'}
flightCollection.insert_one(flight1)

flight2 = { \
'flight_no': 'FD123', \
'from': 'Dubai', \
'to': 'Frankfurt', \
'airline': 'FlyDubai'}
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flightCollection.insert_one(flight2)

# add two tickets documents to the collection
ticket1 = { \
'ticket_no': 1234, \
'passenger_name': 'John SMITH', \
'passenger_age': 46, \

'passenger_gender': 'Male', \
'Flights': [{ \
'flight_no': 'JL12345', \
'date_time': '25.3.2022 16:00'}, \
                                                           
{'flight_no': 'FD123', \
'date_time': '26.3.2022 16:00'} \
] \
}

ticketCollection.insert_one(ticket1)

ticket2 = { \
'ticket_no': 1234, \
'passenger_name': 'Sara SMITH', \
'passenger_age': 41, \

'passenger_gender': 'Female', \
'Flights': [{ \
'flight_no': 'FD123', \
'date_time': '26.3.2022 16:00'} \
] \
}

ticketCollection.insert_one(ticket2)

# create a query to find Sara's ticket 
query = { 'passenger_name': 'Sara SMITH' }

# execute the query
results = ticketCollection.find(query)

# print the results to the console
for result in results:
    print(result)

The code will produce the output below.
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Analytics Applications
applications used to

quantitively measure and
improve business pro-

cesses

{'_id': ObjectId('xxxxxxxxxxxxxxxxxx'), 'ticket_no': 1234,
'passenger_name': 'Sara SMITH', 'passenger
_age': 41, 'passenger_gender': 'Female', 'Flights':
[{'flight_no': 'FD123', 'date_time': '26.3.2022 16:00'}]}

Columnar datastore

A columnar datastore organizes data into columns and rows as in a relational database
(Microsoft, 2022) (Gourav Bathla, 2018). The difference is that relational databases are
optimized for row operations while columnar databases are optimized for column opera-
tions.

The figure below shows a simple example of a table in a relational database (left) and how
it appears in a columnar database (right).

Figure 19: Columnar data model

Source: Wannous, 2022, based on Gourav et al., 2018

Tables in a columnar database are named column-families, and each column-family may
contain one column or more. At the storage level, all columns in a column-family are
stored in one file making it easy to aggregate the values of a column and reducing the
amount of data that is necessary to fetch from the database in analytics applications.

Consider a case when a query in a relational database is executed to obtain only the 'Age'
attribute from the table shown in the figure above (left). The relational database engine
will run over all rows while scanning different fields of different data types and filtering the
results as per the query. A similar query in a columnar datastore will run on the table (or
table-family) containing the required attribute(s) of one data type. The data processed in
the two cases are very different in size and type variety. When the data is written to the
columns, replicas are allowed.

Apache Cassandra (Apache Cassandra, n.d.) is an example of a columnar data store. It is
managed and licensed under the Apache Foundation umbrella, but it originated at Face-
book. Like other Apache projects, Cassandra is an open-source project, it is written in the
Java programming language, and it is identified as a largely distributed NoSQL datastore.
It uses a query language (Cassandra Query Language -CQL) similar to SQL but has its fla-
vor. Cassandra is available for download as a stand-alone package and a docker image.
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Connect to Apache Cassandra in Python

The following steps show how to connect to a Cassandra database and manipulate data in
a Python application.

1. Download and install Cassandra on your local machine.
2. Create a database called 'people'. A database in Cassandra is named KEYSTORE, and

the query used to create it requires one argument replication to identify the replica-
tion strategy and options for the keyspace (Cassandra places several data replicas on
different nodes to ensure reliability. The number of replicas is known as the replica-
tion factor).

3. Install the Cassandra-driver package for Python by running the following com-
mand in the terminal.

pip install Cassandra-driver

Open any IDE that supports Python, write the following code in a file and name it
Cassandra-Example.py. The code has been tested with an Apache Cassandra database
installed on a local computer.

# import the cassandra cluster module
from cassandra.cluster import Cluster

# import a statement object to run queries
from cassandra.query import SimpleStatement
# import the consistency level module
from cassandra import ConsistencyLevel

# create a clster and connect to the database
cluster = Cluster()
session = cluster.connect()

# create a keyspace (a database in Cassandra)
# and set it as the default
session.execute("""CREATE KEYSPACE people
WITH replication={'class':'SimpleStrategy',
'replication_factor': '2'}""")
session.set_keyspace('people')

# create a table called 'person'
# set the primary key and specify
# the datatypes of the columns
session.execute("""CREATE TABLE person (person_key text,
name text, gender text, age text,

PRIMARY KEY (person_key))""")
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# make a query to insert one person into the table.
# The consistency level indicates how many data
# replicas should reply to the
# query before reporting success to the client
query = SimpleStatement("""INSERT INTO person
(person_key, name, gender, age)
VALUES ('001', 'John SMITH', 'Male', '46')""",
consistency_level=ConsistencyLevel.ONE)

# execute the query
session.execute(query)

# insert another person
query = SimpleStatement("""INSERT INTO person
 (person_key, name, gender, age)
VALUES ('002', 'Sara SMITH', 'Female', '41')""",
consistency_level=ConsistencyLevel.ONE)

# execute the query
session.execute(query)

# report progress to the console
print("Inserted two persons into the database\n")

# read the information from the database and display it
print("Trying to read the info of one of them\n")
future = session.execute_async("""SELECT * FROM person
WHERE person_key='002'""")
    rows = future.result()

for row in rows:
    print('\t'.join(row))

# clear the DB (because this is for testing only)
print("Clearing the database")
session.execute("DROP KEYSPACE people")

The code will produce the console output below.

Inserted two persons into the database
Trying to read the info of one of them

002     41      Female  Sara SMITH
Clearing the database
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Graph datastore

Imagine that you would like to store data that is heavily characterized by relations. For
example, for your use case, you would like to use a database to quickly find out which bus
stop is best connected with other bus stops within a city. Or imagine that you try to find
the most frequently used airports by certain airlines on long flight connections. These are
examples of data for which connections between entities are the foremost relevant pieces
of information. Two types of information exist in graph datastores: nodes and edges/links.
Nodes represent entities, and links specify the relationships between these entities
(Microsoft, 2022). The concept is similar to the network data model discussed earlier in this
unit and the class diagram in system analysis.

Nodes and edges can be attributed in a way that we can specify additional features to
them. For example, the "Boarding" edges in the figure below might have the attributes
"priority boarding" or "wheel chair appropriate".

The edges in the graph are typically directed so that they have a starting and an end point.
In the figure below, the "Boarding" edges origins are persons and they are directed
towards the flights.

Figure 20: Graph data model

Source: Wannous, 2022

The structure in the figure above represents one implementation of TicketDB with two
passengers boarding two flights. It makes it easy to execute queries like "Find all people
who will board flight JL1234". It is possible to perform complex analyses quickly on large
structures involving many entities and links.

75



Neo4j (neo4j, n.d.) is an example of a graph data store. It is licensed in a hybrid model and
two versions exist open-source (community edition) and enterprise. Node4j is written in
the Java programming language and it is a popular graph/OLTP DBs. Docker images of
neo4j are available in addition to cloud deployment (the model used in the example
below). Neo4j uses query languages such as Cypher or Apacha Tinkerpop.

Connect to neo4j in Python

The following steps show how to connect to a neo4j database and manipulate data in a
Python application. The code implements the TicketDB comprising two tickets boarding
two flights by instantiating two flights and two passengers and linking them with three
links.

1. Setup a neo4j database in the cloud or install it on your local machine.
2. Create a test database in it and obtain the parameters to access it from a python appli-

cation.
3. Install neo4j package by running the following command in the terminal

pip install neo4j

4. Open any IDE that supports Python, write the following code in a file and name it
(Neo4j-Example.py). The code has been tested with a neo4j database installed in
the cloud. Replace the text between < and > with the respective values of your instal-
lation.

#import the neo4j module
from neo4j import GraphDatabase

# import dns (necessary for the cloud instance)
import dns

# establish a connection to the database
driver = GraphDatabase.driver(\
    "neo4j+s://<Ip address/cloud end-point>", \ auth=("neo4j",
<password/token>"))

# connect to the database
session = driver.session()

#insert two new nodes for the tickets
session.run("CREATE (n:Ticket {ticket_no: 1234,
    passenger_name: 'John SMITH', passenger_age: 46,
passenger_gender: 'Male'})")
session.run("CREATE (n:Ticket {ticket_no: 1235,
    passenger_name: 'Sara SMITH', passenger_age: 41,
passenger_gender: 'Female'})")
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# insert two flights
session.run("CREATE (n:Flight {flight_no: 'JL12345',
    from: 'Osaka', to: 'Dubai', airline: 'JAL'})")
session.run("CREATE (n:Flight {flight_no: 'FD123',
    from: 'Dubai', to: 'Frankfurt',
    airline: 'FlyDubai'})")

# insert three relationships
session.run("""MATCH

    (a:Ticket),
    (b:Flight)
    WHERE a.ticket_no = 1234 AND b.flight_no = 'JL12345'
    CREATE (a)-[r:Boarding
        {date_time: '25.3.2022 16:00'}]->(b)
    RETURN type(r)""")

session.run("""MATCH
    (a:Ticket),
    (b:Flight)
    WHERE a.ticket_no = 1234 AND b.flight_no = 'FD123'
    CREATE (a)-[r:Boarding
        {date_time: '26.3.2022 16:00'}]->(b)
    RETURN type(r)""")

session.run("""MATCH
    (a:Ticket),
    (b:Flight)
    WHERE a.ticket_no = 1235 AND b.flight_no = 'FD123'
    CREATE (a)-[r:Boarding
        {date_time: '26.3.2022 16:00'}]->(b)
    RETURN type(r)""")

The following query is used to insert a new relationship between two nodes and it worth
explaning due to its importance.

MATCH(a:Ticket),(b:Flight)WHERE a.ticket_no = 1234 AND b.flight_no =
'JL12345' CREATE (a)-[r:Boarding{date_time: '25.3.2022 16:00'}]->(b)

The part MATCH(a:Ticket),(b:Flight) WHERE a.ticket_no = 1234 AND
b.flight_no = 'JL12345' simply says 'in the flowing part match a to a node of the
type Ticket and b to a node of the type Flight. The part CREATE (a)-
[r:Boarding{date_time: '25.3.2022 16:00'}]->(b) instructs to create a relation
names Boarding ([r:Boarding{date_time: '25.3.2022 16:00'}]) originating
from node a to node b. The relation has an additional attribute date_time.
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Showing the database as a graph is beyond the scope of the code; but this part will be
executed in the cloud console as follows (or alternatively in the Desktop GUI).

Run the following query to view the graph of the whole database.

MATCH p=(n:Ticket)-[]-() RETURN p

Figure 21: Graph database representation in the neo4j console – example 1

Source: Wannous, 2022

Run the following query to show only the tickets of the passengers boarding the flight with
flight_no='FD123'.

MATCH p=()-[r:Boarding]->(n:Flight{flight_no:'FD123'}) RETURN p
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Figure 22: Graph database representation in the neo4j console – example 2

Source: Wannous, 2022

Selecting NoSQL database

NoSQL engines take fundamentally different approaches to data storage than relational
databases, and they have distinct features that make each of them suitable for a range of
applications.

The table below summarises the characteristics of the four NoSQL data models we have
come to study and the type of application that each of them fits.

Table 7: Comparison of NoSQL Database Categories

Parameter Key-value Document Columnar Graph

Storage Unique key with
value

JSON, XML,
BSON Columns Nodes and edges

Example Applica-
tions

Indexing, IoT sen-
sor data

Programming
objects storage,
semi-structured

collections of
data, IoT sensor

data

Sparse Data,
structured data
with frequent

column access

Modelling rela-
tionships

Example Databa-
ses

Redis
DynamoDB

Ignite
Oracle NoSQL

MongoDB
CouchDB
OrientDB

Cassandra
BigTable

HBase
CosmosDB (multi

model)

Neo4j
InfoGrid

Source: Müller-Kett, 2022, based on Gourav et al., 2018
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SUMMARY
NoSQL database engines have emerged to address several issues with
the relational model, such as schema flexibility. They have been around
since the beginning of the 21st century and have proven NoSQL is a
tough competitor to relational databases for some modern use cases.
Nevertheless, NoSQL engines have not so far succeeded in shifting the
relational database engines from dominating the database market.

NoSQL databases follow several approaches to storing data, and each of
these approaches is suitable for a specific range of applications. The
only characteristic common to them is that they don't follow the rela-
tional model. According to the different approaches they persue in mod-
eling the data, NoSQL databases can be categorized into key-value,
document, columnar, or graph databases. They support developers
working in environments where requirements change frequently. This
comes from the fact that these databases do usually not follow a strict
schema, are distributed across multiple machines and come with strat-
egies for efficient storing and querying the data. This makes them appli-
cable for many modern applications that use data with high volume,
velocity, variety and veracity, aka Big Data applications.
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UNIT 4
DISTRIBUTED SYSTEMS

STUDY GOALS

On completion of this unit, you will be able to ...

– explain the difference between types of distributed systems
– describe the goals of a distributed system.
– describe the components of a distributed system.
– discuss the benefits and challenges of distributed systems.
– use distributed systems in big data applications.



4. DISTRIBUTED SYSTEMS

Case Study
Let's imagine a fictional social network that abides by general data protection ethics and
rules that we call CivilConnect. This network brings people and opinions together by pro-
viding reflective views and insightful dialectics on complex issues. CivilConnect constantly
aims at improving its sincere intrinsic motivation to engage people to cooperate and solve
problems in a civilized manner. Every day, uses of CivilConnect share billions of pieces of
content, including photos, videos, and thoughts. All this data needs to be processed so
users can see what their friends are up to. To do this processing, CivilConnect uses a dis-
tributed system called Hadoop. Hadoop is a framework that allows for distributed pro-
cessing of large data sets across many servers. It does this by splitting the data into
smaller chunks, which are then processed independently. The advantage of using a dis-
tributed system is that it can handle large amounts of data more efficiently than a single
server can. This makes the overall process faster and more efficient. CivilConnect, in addi-
tion to Hadoop, uses a distributed system called Spark for processing the data. Spark is
similar to Hadoop, but it can be faster for some use cases and is easier to handle. This
makes it a good choice for applications that require fast processing speeds or the ability to
experiment with large amounts of data, such as in near real-time analytics or machine
learning.

Big data technologies are used to process large amounts of data. In this unit, we will learn
how Hadoop and Spark can work together to process big data. Hadoop is a family of tech-
nologies that use distributed systems to handle large amounts of data. MapReduce is part
of the Hadoop ecosystem. It is a programming model that splits up big data sets into
smaller pieces that can be processed by multiple nodes in a distributed system. Spark is a
fast and efficient processing engine that can run on top of Hadoop or standalone.

4.1 Hadoop
Hadoop is a distributed system for managing big data collections that can grow up to
thousands of nodes. As one part of the so-called Hadoop ecosystem, the MapReduce algo-
rithm is used to process the data in a Hadoop cluster. MapReduce splits a data set into
smaller pieces, which are then processed by individual nodes. The results are then recom-
bined and returned. Hadoop is scalable and fault-tolerant, making it ideal for processing
huge data sets. It is also open source, making it free to use and further develop. The fun-
damental features of Hadoop can be summarized in the following (White, 2015; Azarm,
2016):

• As one part of Hadoop, the ecosystem has a very easily expandable Hadoop Distributed
File System (HDFS). HDFS manages the distribution and storage of data on its various
nodes. In order to increase the storage capacity, it suffices to add data nodes to the sys-
tem.
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Hadoop ecosystem
The Hadoop ecosystem is
a collection of technolo-
gies that allow for distrib-
uted processing of large
data sets.

• The processing codes are routed to the data, as opposed to the traditional approach
where the data is loaded into the environment in which the code is executed. This strat-
egy is most effective for large volumes of data stored on standard machines connected
by standard networks. The data nodes are therefore transformed into computing nodes
during the processing time. Consequently, increasing the number of data nodes increa-
ses both, the storage capacity and the processing capacity.

• The platform integrates fault tolerance mechanisms. Since Hadoop was designed to run
on standard hardware, frequent outages are assumed to be unavoidable. Data is repli-
cated across multiple nodes in order to ensure better availability and reliability of the
system. When a replica disappears (following a failure), its copies are replicated again to
maintain a good replication rate. Similarly, the processing tasks that are executed on
the data nodes are monitored and restarted on the node of another replica if a failure
occurs. This is implemented "under the hood", so that the user does not have to worry
too much about fault tolerance.

• Hadoop uses the MapReduce algorithm to process data. This paradigm is suitable for
retrieving and filtering data stored across data nodes, as well as performing other pro-
cessing task on the data. Its integration into the Hadoop ecosystem makes it very easy
to use with other Hadoop components.

The figure below shows the Hadoop software stack that is also known as the Hadoop eco-
system. In the following, we will present the main components of the Hadoop ecosystem.

Figure 23: Simplified software stack of the Hadoop ecosystem (Ayman Khalil, 2022)
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Commodity hardware
It is a hardware that is

mass-produced and is not
intended for a specific

purpose

The Hadoop Distributed File System (HDFS)

HDFS is the fundamental component. It is a distributed file system for storing and analyz-
ing large amounts of data in a distributed environment. HDFS is part of the Hadoop eco-
system and is used by many big data applications. HDFS is a Java-based file system that
runs on commodity hardware. It is made up of several slave nodes and one master node.
The master node is in charge of the file system management, while the slave nodes are in
charge of data storage and processing. HDFS stores data in blocks, and each block is repli-
cated on multiple slave nodes. This allows HDFS to react in case of any failure (fault toler-
ance). This set of components and functionalities forms a middleware layer that is almost
invisible to the user and which has evolved a lot between versions 1 and 2 of Hadoop.
HDFS also supports data streaming, so applications can process data as it is being written
to the file system. HDFS is used by many big data applications, including MapReduce,
Apache Spark, and Apache Hive.

MapReduce

In a higher layer, an API allows an easy implementation of applications in the Map-Reduce
paradigm. MapReduce is a programming methodology meant to process and analyze huge
data sets. It is based on the map and reduce functions used in functional programming.
The map function accepts a key/value pair as input and outputs a list of key/value pairs.
The reduce function takes all values associated to a key and aggregates these values to a
single value as output. MapReduce was developed at Google in 2004 (Dean & Ghemawat,
2004), and the open-source MapReduce implementation was released by Google in 2006
(Lammel R., 2008). MapReduce has been adopted by a number of other companies, includ-
ing Yahoo!, Facebook, and Amazon. To better understand the Map-Reduce process, an
example is given below. In this Python example, we execute a series of three functions
calls, getPrice(), map() and reduce(), on a data set containing the description of four
cars.

# importing functools for reduce()
import functools

# create the sample data
data = [ \

    {'id':1,'brand':'Mercedes','model':'CLA', 'price':15000},
    {'id':2,'brand':'Fiat','model':'500', 'price':8000},
    {'id':3,'brand':'Mercedes','model':'C300','price':10000},
    {'id':4,'brand':'Jeep','model':'Laredo','price':16000},
    {'id':1,'brand':'Mercedes','model':'CLA', 'price':12000},
    {'id':2,'brand':'Fiat','model':'500', 'price':8000},
    {'id':3,'brand':'Fiat','model':'C300','price':75000},
    {'id':4,'brand':'Jeep','model':'Laredo','price':13000},
    {'id':1,'brand':'Mercedes','model':'C350','price':18000},
    {'id':2,'brand':'Fiat','model':'500', 'price':12000},
    {'id':3,'brand’:'Jeep','model':'Limited','price':21000},
    {'id':4,'brand':'Jeep','model':'Laredo','price':18000}] 
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## define a function to return a car's price
def getPrice(car):
  return car['price']

## create key-value pairs, where the cars are the keys
# and the car's prices are the values
kv = map(getPrice, data)

## aggregate values (car prices) for each key (cars)
# use the maximum as the aggregation function
max_price = functools.reduce(max, kv)
print max_price
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Figure 24: Distributed Execution of a MapReduce Treatment

Source: Ayman Khalil, 2022
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The map and reduce functions constitute a MapReduce couple. The key point is the possi-
bility of parallelizing these functions in order to calculate much faster on a machine with
several cores or on a set of machines linked together. To make things clearer, let’s consider
that a functionM creates key-value pairs where the cars are the keys and the car prices are
the values; this is the mapping part. A functionR takes these key-value pairs and aggre-
gates the values (car prices) for each key (cars), for example, by taking the average of the
values per key, or summing the value, or finding the maximum value; this is the reducing
part.

The map function is parallelizable by nature, because the calculations are independent for
each data entry, cars in our case. For instance, to map four elements …

• value1 = functionM(element1)
• value2 = functionM(element2)
• value3 = functionM(element3)
• value4 = functionM(element4)

These calculations can be performed concurrently, across distinct machines, provided
that the data is copied there.

It is important to note that the mapped function must be a pure function of its function
arguments, with no side effects such as changing a global variable or memorizing its for-
mer values.The system will create the set of related values for every distinct key, then the
reduce function will be invoked so the key/value pairs having the same key will be treated
as one single group.

Note: As shown in the figure above, the application of the function reduce has generated
three results (Maximum price for each distinct car brand).

• interMercedes = functionR(value1, value2, value3, \
value4)

• interFiat = functionR(value1, value2, value3, value4)
• interJeep = functionR(value1, value2, value3, value4)

The Hadoop ecosystem is very rich, and there are in particular higher-level applications
allowing for example to process data in a formalism close to SQL (as in a relational data-
base), such as Hive and Pig, and tools making is very easy to import external data into
HDFS or export Hadoop data to external sinks (Akil, Zhou & Rohm, 2018). In the following
we will present a brief description of some important applications.

YARN

YARN is an abbreviation for "Yet Another Resource Manager". To manage resources for big
data applications, YARN allocates resources to different applications, manages the data
flow between applications, and monitors the overall health of the system. While HDFS is
the storage layer in an Hadoop system, YARN is the compute layer that is closely integra-
ted with HDFS. Architecturally, YARN is built on top of HDFS and it used by the MapReduce
programming model. If a MapReduce job is triggered to run on some nodes of the cluster,
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Directed Acyclic Graph
(DAG)

DAG in the Big Data pro-
cessing context is a work-

flow paradigm where
each task (represented as

a node of the workflow) in
connected to the follow-
ing task via an edge that

points in one direction
only. This paradigm dic-

tates that there cannot
not be closed loops in the

workflow but only pro-
cesses moving forward in

the overall workflow.

YARN makes sure that the job is running as close to the data as possible by giving the right
jobs to the nodes holding the respective data blocks and also, it will allocate the appropri-
ate resources to these nodes like CPU and RAM. YARN is a key component of the Hadoop
ecosystem and is essential for running big data applications in the Hadoop ecosystem that
use resources across multiple machines in a cluster.

Tez

Apache Tez is another Hadoop component that runs "under the hood" without us even
noticing in most cases. It is an alternative to the MapReduce engine and, like the MapRe-
duce engine, is built on top of YARN. It is much faster than the MapReduce engine, because
it uses so-called Directed Acyclic Graphs (DAGs). These simplify the sequence of mapping
and reducing of the MapReduce engine to avoid unnecessary intermediate steps, unneces-
sary data access, and removing dependencies within the sequence. Using DAGs, Tez does
not go through the MapReduce sequence step-by-step, but first evaluates the overall proc-
ess. Ultimately, after an initial mapping phase, there are only reducers that follow to com-
plete the task of concatenated MapReduce jobs. This happens for us without any configu-
ration, as Tez is the compute engine by default from Hadoop version 2. It can be used to
run Hive, Pig, and even MapReduce jobs instead of using the MapReduce engine.

Sqoop

Scoop is a tool for efficiently transferring data between HDFS and external data sources
like text files or relational database management systems (RDBMS), such as MySQL, Ora-
cle, PostgreSQL, and Microsoft SQL Server. It can, for instance, be used to import data from
a RDBMS into HDFS, or to export data from HDFS into a RDBMS. Sqoop uses so-called con-
nectors to connect to RDBMS.

Oozie

Literally, "oozie" means "elephant keeper" in Burmese. It is a Java-based system that can
be used for scheduling and managing jobs. This technology is a Hadoop component that
allows us to orchestrate a sequence of actions in a cluster, such as a Sqoop import, fol-
lowed by a Hive job, followed by a couple of MapReduce jobs, followed by a Pig job. These
workflows constitute Directed Acyclic Graphs (DAGs) that, as we already know are quite
efficient, and we can specify them in XML format.

Pig

Pig is a data processing platform that runs on top of YARN using the MapReduce or Tez
engine (the latter being much faster). MapReduce jobs are very powerful, but writing a
sequence of MapReduce jobs to execute a complex task is in many cases simply too hard
to program. Consequently, we can use Pig to simplify the programming of complex big
data operations. To do that, we can use Pig Latin, the language used to write Pig scripts. It
is designed to be easy to learn and use. This is achieved by an additional layer of abstrac-
tion that hides the complexity of MapReduce from us, so that we can focus on the program
logic instead.
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Hive

As we know by now, Hadoop is very powerful when it comes to storing and processing big
data by distributing the storage and compute across multiple nodes in a cluster. The
downside to this is its complexity. Hive is a technology, just like Pig, to simplify this com-
plexity by adding a layer of abstraction. Hive sits next to Pig and on top of MapReduce and
YARN in the Hadoop ecosystem stack. It is designed so that we can write well-known SQL
statements to query our data. Using Hive presents the data in HDFS as if they were stored
in a relational database. Under the hood, these SQL statements are then translated into
MapReduce jobs that are executed using the MapReduce or Tez engine on HDFS managed
by YARN. The beauty of Hive is its simplicity coupled with the powerful data processing
capabilities of Hadoop.

Spark

Until this point you might get the idea that the Hadoop ecosystem is very powerful and
extensive. But would you program an anomaly detection algorithm, a Support Vector
Machine or a graph analysis using Pig, Hive, or even MapReduce? Spark can be seen as a
more modern alternative to this classic Hadoop stack. Using Spark we can use Java, Scala,
Python, R and more languages that might be more "natural" for data analysis than Pig,
Hive and MapReduce to program more complex tasks like machine learning, graph analy-
sis, and complex data processing tasks. In the Hadoop ecosystem, Spark runs on top of
YARN (or alternatives like Mesos) which in turn runs on HDFS. It is much faster than Map-
Reduce, Hive, Pig, or Tez by using in-memory data processing and also Directed Acyclic
Graphs (DAGs). It is designed for speed and efficiency, making it an ideal choice for big
data applications and also all kinds of data analysis. Spark can be used for a variety of
tasks, including data processing, machine learning, streaming and graph analysis. More
details about Spark will be explained later.

HBase

HBase is a column-oriented NoSQL database, which means that it does not use fixed sche-
mas, row-oriented design, or traditional SQL query language. Instead, it uses a language
called HQL. Another particularity of HBase are the so-called column-families that group
several columns in the database which is very effective for sparse data. HBase is a Java-
based system, so it can run on any platform that supports Java. It also supports a variety
of programming languages, including C++, Python, and Ruby. HBase is built on HDFS and
thereby is highly scalable and reliable. Historically, it was built as an open source project
on top of Google's BigTable. It allows for CRUD operations (Create, Read, Update, Delete)
and auto-sharding which means that data is partitioned on-the-fly in a way so that the
data is optimally distributed across nodes.

Kafka

Apache Kafka is a popular message broker that helps to manage large volumes of stream-
ing data. It is a Pub/Sub system that decouples the producers of messages, e.g., sensors,
from data consumers, e.g. applications using the data that is organized in topics. In
between the producers and consumers is the Kafka cluster with various brokers. Kafka
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uses a so-called immutable commit log to ensure that messages are not lost in transac-
tion. It can be used to manage data in a variety of ways, including streaming data, manag-
ing logs, and managing data pipelines in general.

Storm

Storm is designed for real-time data processing, meaning that it can handle large volumes
of data quickly and reliably. It is also fault-tolerant, meaning that it can continue to oper-
ate even if individual machines in the system fail. Storm is used by a number of large com-
panies, including Twitter, Netflix, and The Guardian. It is a powerful tool, but it can be diffi-
cult to learn and use. For this reason, it may not be suitable for all applications. Since it
was acquired by Twitter, it is under an open source license. Architecturally, it is similar to
MapReduce with the Tez engine. It also uses DAGs, but being designed for processing con-
tinuous streams of data instead of batch jobs, Storm DAGs run until they are actively
ended. The nodes in a Storm DAG are called spouts and bolts and the edges represent the
streams of data from one node to another.

ZooKeeper

As we learned, much of Hadoop's power and efficiency comes from its distributed nature
of storage and compute. This is built around a master/slave architecture. But what hap-
pens if a machine goes down? Hadoop is designed to run on commodity hardware that
will fail at a given time. This is where ZooKeeper comes into play. Let's say a worker node
goes down. ZooKeeper recognizes this and restarts the node. ZooKeeper keeps also track
of what tasks are being performed on which node. This helps in case of failure to continue
an interrupted task on a new or restarted node. More severely, imagine the master node
going down. In this case a worker takes over and becomes the new master. But what hap-
pens if two or three workers decide to be the new master. ZooKeeper prevents this, mak-
ing sure that there is only one master in a cluster avoiding civil war in the cluster and
thereby contributing to data consistency and reliability of the system.

Ambari

Ambari is management platform for Hadoop developed by Hortonworks. It provides a
graphical interface for managing Hadoop clusters including an easy way to install Hadoop
components. Ambari allows administrators to monitor the health of the system, such as
individual nodes, the storage capacities of HDFS, the compute resource usage by YARN,
and the ZooKeeper status. It also provides the ability to provision new nodes and config-
ure the cluster's settings in a graphical user interface.
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Metadata
It is data that describes
other data. It can include
information such as the
name of the author of a
document, the date it was
created, or the size of a
file.

4.2 Hadoop File System (HDFS)
Presentation

HDFS (Hadoop Distributed File System) allows users to access distributed data in Hadoop
clusters in a very performant way. HDFS has become an important tool for large data sets
management and analytical applications.

Once HDFS collects data, the system splits it into many bricks, replicates them n times,
and distributes them across several cluster nodes for parallel processing. Each piece of
data is copied many times and distributed to each one of the nodes, with at least one copy
stored on a separate server in the cluster. As a result, the data that has been stored on
failing nodes can be accessed from other nodes in the cluster. Processing can continue
despite the failure (White, 2015).

HDFS organization

HDFS is developed to support applications with large volumes of data, such as individual
files that can amount to terabytes. It is based on a master/slave architecture. Each HDFS
cluster is made up of machines playing different roles. We distinguish three types of
nodes: the active NameNode or HDFS Master, the Secondary NameNode and the Data-
Node (White, 2015).

A node called the active NameNode establishes and maintains a distribution map of all
files stored in HDFS. This map is updated frequently. Meanwhile, the insertions of new files
and deletions of old ones give rise to some changes in the mapping which are stored in the
form of logs both in the active NameNode and in the secondary NameNode. An up-to-date
map is therefore obtained by applying the evolutions described in the logs to the meta-
data of the NameNode.

The Secondary NameNode, despite its name, is not a backup of the active NameNode, but
rather its helper. It is responsible for recalculating from time to time an up-to-date map of
the distributed file system by applying all the logs, and then updating that of the active
NameNode without influencing the latter (having been slowed down by the calculations
made). It can be used to restore the active NameNode in case of failover to a certain
extent. But this would cause data loss in most cases because of state differences between
the two.

Each file is split into blocks, typically 64MB or 128MB, and each block is replicated n times,
usually three times by default. The replicas of the same block are stored on different
machines, in order to avoid data loss when nodes fail, or even two! In the case of the dis-
appearance of a node and its blocks, each disappeared block is reconstituted on a new
node from one of its still accessible replicas. HDFS thus quickly reconstitutes a set of n rep-
licates for each block.
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Rack
It is a metal frame that

supports computer
equipment.

In the figure below, the blue file is large enough to be stored as two blocks, each replicated
in three copies, while the orange and green are each composed of a single block replicated
three times.

Figure 25: HDFS Master/Slave Architecture

Source: Ayman Khalil, 2022

A single DataNode can very well store several different blocks, coming from the same file
or from different files, but it cannot store the same block several times. In a large Hadoop
cluster, the replicas of the same block must be stored on nodes located in different racks
(therefore electrically independent).

During the creation of a new file, the active NameNode will distribute the replicas of its
blocks on the different DataNodes available (blue arrows in the figure above), and each
DataNode will keep the active NameNode informed of its state, and the success or the fail-
ure of its block creations (orange dashed arrows in the figure above). The active Name-
Node will thus maintain an up-to-date knowledge of the HDFS file system.
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Single Point Of Failure
A system is said to have a
single point of failure if
the failure of a single
component of the system
results in the failure of the
entire system.

HDFS Fault Tolerance and High Availability

Data stored on HDFS is replicated but the active NameNode constitutes a Single Point Of
Failure (SPOF) of the system. Without it, the data is still stored and replicated on the
DataNodes, but inaccessible due to lack of mapping. A failure of the active NameNode
could therefore render the HDFS file system completely unusable.

To overcome this weakness, two complementary fault tolerance mechanisms then high
availability were introduced (Azarmi, 2016; Kleppmann, 2017):

Fault tolerance: The metadata of the active NameNode are regularly saved on a local file
system (fast access) but also on a remote system. In the case of an incident on the active
NameNode, it will thus be possible to reconstitute the Hadoop file system from a remote
copy of its metadata and continue to operate its data nodes. You might ask if the Secon-
dary NameNode cannot be used for this. This is not entirely the case. The Secondary
NameNode periodically copies and processes the logs and metadata from the active
NameNode. But as the state of the active NameNode changes continuously, data loss is
highly likely in the case of recovery from the Secondary NameNode.

High availability: It is possible to duplicate the active NameNode, and create a standby
NameNode which permanently receives and stores the same metadata and logs as the
active NameNode (see figure below). The standby NameNode is therefore also awake but
does not act on the data nodes.
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Figure 26: High availability solution for HDFS in the case of a failure on the NameNode

Source: Ayman Khalil, 2022

On the other hand, it is ready to replace and become the active NameNode at any time
and almost without delay, making the failure almost imperceptible. Obviously, this strat-
egy requires an additional machine.

HDFS Access Mechanisms

Hadoop offers a full Java API for accessing HDFS files. It is based on two main classes:

a) FileSystem represents the file tree (file system). This class allows copying local files to
HDFS (and vice versa), renaming, creating and deleting files and folders

b) FileStatus manages the information of a file or folder:
• Its size with getLen(),
• Its nature with isDirectory() and isFile(),

These two classes need to know about the configuration of the HDFS cluster, using the
class Configuration. On the other hand, full file names are represented by the Path class.

HDFS Reading Mechanism

Reading a file in HDFS is quite simple, and can be summed up in the figure below.
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Stub
It is an object or short
piece of substitute code
that holds predefined
data or functionality and
uses it to answer calls
during tests instead of
using the more complex
system it represents.

Figure 27: HDFS Reading mechanism

Source: Ayman Khalil, 2022

The client code starts by creating a local object of the DistributedFileSystem class, which
will

act as a stub or proxy with the HDFS file system. The client code therefore addresses this
local object and asks to open a file (step 1, open command).

The stub then talks to the NameNode of HDFS to find out the location of the replicas of all
the blocks in the file (step 2a). Then the stub creates another local object, of the FSDataIn-
putStream class (step 2b), which will act as a reader specialized in reading the target file,
knowing the nodes to contact.

The client will then perform read operations on this specialized reader (step 3), which will
interrogate one of the nodes storing the first block of the file (step 4). Once the first block
has been read, if the read operations continue on the part of the client, the specialized
reader will interrogate a node containing the second block (step 5) and so on.

Finally, the client will ask to close the file opened for reading with the specialized reader
(step 6, close operation). Note that the specialized reader verifies the integrity of the data
read (checksum calculations) and signals any anomaly to the stub, which retransmits
them to the NameNode.

HDFS writing Mechanism

Writing a file in HDFS is more complex than reading it. At first, the client creates a local
DistributedFileSystem object that acts as a stub or proxy to the HDFS filesystem, as was
already the case for a read operation.
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The client can ask the stub to create a new HDFS file (see figure below step 1, create opera-
tion). The stub then addresses the NameNode of HDFS to obtain the right to create such a
file (step 2a), and to be able to locally create an FSDataOutputStream object (step 2b)
which will play the role of a writer specialized in writing of the target file. Subsequently,
the client speaks locally to this specialized writer to ask it to write data to this file (step 3,
write operation).

The writer then dialogues with the NameNode of HDFS to know where to create a first
block and its replicas (step 4a), then begins to write the first replica of the first block to a
data node (step 4b). A pipeline mechanism is then set up: the node of the first replica
retransmits its data to the node chosen to host the second replica (step 4c, ack = acknowl-
edges), which itself retransmits it to the node chosen to host the third replica (step 4d),
and the process continues if more than three replicates per block are specified.

Figure 28: Writing new data in HDFS

Source: Ayman Khalil, 2022

When the writing on the last replica is finished, an acknowledgment message goes up to
the node of the previous replica (step 5a), and so on until reaching the node of the first
replica (steps 5b). This node then returns an acknowledge to the specialized writer (step
5c), and if everything went well, the writer will proceed by processing the next request to
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write data. When the first block is full, the writer again asks the HDFS NameNode for a set
of nodes to write a second block and its replicates to (step 6a), and the pipelined write
process repeats itself (steps 6b to 6d, then 7a to 7c, ack = acknowledges).

After all data writes are complete, the client asks the writer to close the new file then
informs the stub, which in turn informs the HDFS NameNode, which updates its metadata
with a new file in its mapping.

HDFS hands-on with Python

Luckily, in everyday practical work, we seldomly have to worry too much about this com-
plexity. In the following example, we see how easy it can be to work with the powerful
HDFS. In this example, we use Python to work with HDFS as the file store.

# import modules and connect to HDFS
# (twitter in this case)
from hdfs.hfile import Hfile
hostname = 'hadoop.twitter.com'
port = 8020
hdfs_path = '/user/travis/example'
local_path = '/etc/motd'

First, we open the local and the HDFS files.

hfile = Hfile(hostname, port, hdfs_path, mode='w')
fh = open(local_path)

We then copying the content of a local file into HDFS, line by line.

for line in fh:
  hfile.write(line)

Finally, we close the local file and the HDFS file.

fh.close()
hfile.close()

Our data resides in distributed HDFS and is ready to be processed in parallel.

Now, we can read the file from HDFS.

# specifying the file that we want to read

hfile = Hfile(hostname, port, hdfs_path)

# reading the file
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Scalability
It is the ability of a sys-

tem, network, or process
to handle a growing

amount of work, or its
potential to be enlarged

to accommodate that
growth.

data_read_from_hdfs = hfile.read()
print data_read_from_hdfs
# closing the file
hfile.close()

4.3 Spark
Conceptual Background

Distributed systems are a key part of big data technologies. In a distributed system, data is
spread across multiple nodes, allowing for faster processing and improved scalability.
Spark is a distributed system for processing big data. It is designed to be fast and efficient,
and to handle a large number of tasks simultaneously. Spark can be used for a variety of
purposes, including data analysis, machine learning, and streaming data (Chambers &
Zaharia, 2018).

In Spark we can write complex processes that consist of several MapReduce phases. This
can be done also with Yarn. However, there are a few key differences between Spark and
Yarn that are worth mentioning. First, Spark is a standalone program that does not require
Yarn, while Yarn is a cluster management tool that works with Spark. Second, Spark is
much faster than Yarn when starting up, because it does not need to initialize the entire
cluster. Moreover, Spark has a more user-friendly interface than Yarn. The processes can
be written in different languages namely Scala, Java and Python. We will take an example
based on Python for its pedagogical simplicity.

In this section, we will discuss the basics of Spark, including its architecture, features, and
benefits. We will also see how we get started with Spark and how to use it for data analysis
and machine learning.

How Spark works

Spark is designed to provide high performance for data processing tasks. It also includes a
number of built-in libraries that can be used for data analysis. Spark is considered a paral-
lel data programming API. It is based on the concept of Resilient Distributed Datasets
(RDDs). An RDD is a fault-tolerant collection of elements that can be operated on in paral-
lel. RDDs are created by splitting a dataset into partitions, which are then distributed
across the nodes in the cluster. RDDs can be transformed and manipulated in various
ways, and the results are also distributed across the nodes. This allows Spark to scale up
to large data sets while still providing a high level of performance (Chambers & Zaharia,
2018).

RDDs can be cached in memory to improve performance. When an RDD is cached, Spark
caches the data in memory, so that it can be accessed quickly without having to go
through the network, every time the data is accessed. RDDs can be transformed and
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manipulated in many ways, including filtering, mapping, and reducing. RDDs are immuta-
ble, which means that once they are created, they cannot be changed. This ensures that
the data is always consistent and eliminates the need for locks.

The Spark API provides two ways to operate on RDDs: Transformations that are opera-
tions that create a new RDD from an existing RDD; and Actions that are operations that
return a result to the caller.

The following Python example shows how to use the Spark API to calculate the sum of the
elements in an RDD (the values between <> are placeholders; more details about the
Spark API will be presented later).

from pyspark import SparkContext
SparkContext().parallelize(<data>).\
    map(<mapping_function>).\
    reduce(<reducing_function>).\
    collect()

Architecture of Spark

Spark is a distributed system that runs on a cluster of machines. The Spark cluster man-
ager distributes the workload across the machines in the cluster. The Spark driver pro-
gram is responsible for launching the Spark cluster, and for submitting jobs to the Spark
cluster (Karau, Konwinski, Wendell & Zaharia, 2015). The driver program also manages the
interaction between the Spark cluster and the user. The Spark executor program is respon-
sible for running the tasks that are submitted to the Spark cluster. The Spark worker pro-
gram is responsible for processing the data that are assigned to it by the Spark executor
program. Spark uses a master/slave architecture. The master node is responsible for man-
aging the Spark cluster, and for distributing the workload across the slave nodes. The
slave nodes are responsible for running the Spark executor programs, and for processing
the data that are assigned to them by the master node.
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Parquet format
It is a columnar storage

format that is used by
many big data systems. It
offers several advantages

over other formats,
including the efficiency
for reading and writing

data.

Figure 29: Spark Architecture

Source: Ayman Khalil, 2022

Components of Spark

The key Spark components are: Spark core, Spark SQL, Spark Streaming, MLLib, and
GraphX (Damji, et. al, 2020).

Spark Core

Spark Core provides the basic functionality of Spark, including data parallelism, schedul-
ing, and memory management. There are APIs for Scala, SQL, Python, Java and R. These
APIs provide a comprehensive interface to Spark. They control Spark from the respective
runtime, e.g., Python or R, including starting and stopping Spark, loading and manipulat-
ing data.

SQL

Spark SQL enables users to interact with data stored in Spark using standard SQL com-
mands. It includes support for reading and writing data in Parquet format and also as
DataFrames and Datasets.

Streaming

Spark Streaming enables users to process continuous data streams in near real-time. It
includes support for processing data in mini-batches and processing data as it arrives.
Spark streaming also includes support for processing data with multiple processors.
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MLlib:

MLlib is a library of machine learning algorithms for use with Spark. It includes support for
linear regression, logistic regression, clustering, and much more.

GraphX

GraphX is a library for manipulating graphs and performing graph analytics in Spark. It
supports traversing graphs, finding shortest paths, and more.

Figure 30: Spark Components

Source: Damji, et. al, 2020

Advantages over other big data processing systems

Spark is a distributed system that has a number of features and advantages over other sys-
tems.

• Spark can be run on a single machine or on a cluster of machines, and it can process
data in memory or on disk.

• Spark also has a number of built-in libraries for data processing, including libraries for
machine learning, graph processing, and streaming data.

• Spark was created by the team at UC Berkeley that also created Hadoop, and it is
designed to be compatible with Hadoop.

• Spark can read and write data in HDFS, and it can run on the same clusters as Hadoop.
• Spark is also designed for performance. It can process data faster than Hadoop MapRe-

duce, and it can use more memory than Hadoop.

How Spark can be used in Python

Spark can be used in Python for data analysis, machine learning, and streaming applica-
tions. It can run on clusters of computers or on a single computer. In Python, Spark can be
used with the PySpark module. PySpark provides a Python interface to Spark and allows
you to run Spark jobs on a cluster of computers. PySpark also includes the Spark SQL and
the MLlib modules.
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Spark shell
It is an interactive tool
that allows you to run

Spark jobs. It can be used
to submit jobs, inspect

the results, and explore
the data. The Spark shell
is started by running the

following command:
$ spark-shell

Steps to install Spark

1. Download Spark from the Spark website and install it on your local machine (the fol-
lowing steps only apply for this option). Alternatively, use a preconfigured image for a
virtual machine or a Docker container. Another straightforward way to install Spark
locally is to use the sparklyr package for R which has a convenience function,
spark_install().

2. Extract the files to a location on your computer.
3. Run the Spark executable file to start the Spark shell.
4. Use the Spark shell to create a new Spark application.
5. Add the required libraries to your application.
6. Run your application on a cluster.

Using Python to interact with Spark

A pySpark program should start with this:

from pyspark import SparkConf, SparkContext
name = "test1"
config = SparkConf().setAppName(name)
sc = SparkContext(conf=config)

sc represents the Spark context. It is an object that has several methods including those
that create RDDs.

An RDD is an abstract collection of data, resulting from the transformation of another RDD
or creation from existing data. An RDD is distributed, i.e. distributed over several machines
in order to parallelize the processing.

You can create an RDD in two ways:

1. Parallelize a collection
If your program contains iterable data (array, list. . . ), it can become an RDD.

data = ['one', 'two', 'three', 'four']
RDD = sc.parallelize(data)

It is called a “parallelized collection”.
2. Spark can use many data sources

For example, data can be read from HDFS, Hbase, etc. and in many file formats, e.g.,
text and Hadoop formats such as SequenceFile.
Here's how to read a simple text or CSV file into a RDD (in this case, the file is stored in
HDFS, but for testing purposes, you can also load a text file from your local disk).

RDD = sc.textFile("hdfs:/share/data.txt")
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As with MapReduce, each line of the file constitutes a record. The transformations applied
on the RDD will process each row separately. The lines of the file are distributed to differ-
ent machines for parallel processing.

Some Spark processing uses the concept of pairs (key, value). The keys allow for example
to classify values in a certain order. To efficiently store this kind of RDD, we can use a so-
called SequenceFile.

The following function reads the pairs from a SequenceFile stored in HDFS and creates an
RDD.

RDD = sc.sequenceFile("hdfs:/share/data1.seq")

The following method saves the (key, value) pairs of the RDD to a file system (HDFS in this
case).

RDD.saveAsSequenceFile("hdfs:/share/data2.seq")

Actions

Actions are methods that are applied to an RDD to return a value or a collection.

# return the number of elements in an RDD
count = RDD.count() 

# return the RDD as a Python list
list = RDD.collect() 

# return the first element of the RDD
first = RDD.first()

# return the first n elements of the RDD
first =RDD.take(n)

# apply an aggregation function of the type fn(a,b)-> c
result = RDD.reduce(<function>)

where <function> is the aggregation function. It can be passed as an argument or it can
be the lambda function that defines the aggregation.

Note that the functions that return a Python list instead of an RDD are to be used with
care. Imagine that you work with massive amounts of distributed data. The command
RDD.collect() will probably crash your session as all distributed data will be imported
into the memory of the current session as a Python list.
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Transformations

RDDs have several methods that resemble Python functions, e.g. map, filter, etc. In plain
Python, map is a function whose first parameter is a lambda or the name of a function, the
second parameter is the collection to process. For example, to multiply each element of a
list by 2, we can execute the following map function.

list = [1,2,3,4] 
double= map(lambda n: n*2, list)

In pySpark, map is a method of the RDD class, its only parameter is a lambda or the name
of a function:

list = sc.parallelize([1,2,3,4]) 
double = list.map(lambda n: n*2)

In the latter case, double is an RDD.

The following transformations handle RDDs whose elements are pairs (key, value).

# return an RDD whose elements are pairs
# (key, list of values having this key)

RDD.groupByKey()

# return an RDD whose keys are sorted (set True or False)
RDD.sortByKey(ascending=True) 

# group the values having the same key and
# apply the function (a,b) -> c (string concatenation
# in this case using hyphens as separators)
RDD = sc.parallelize ([ \
    (1, "Tom"), \
    (2, "Claude"), \
    (1, "Chris"), \
    (2, "mary"), \
    (1, "Victor") \
    ])
print RDD.reduceByKey(lambda a,b: a+"-"+b).collect()

# console output:
# [(1, "Tom-Chris-Victor"), (2, "Claude-mary")]

To launch the entire Python script in a Spark context, execute the following command on a
command line.
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Pandas and Scikit-learn
Pandas is a robust data
analysis tool that makes
working with enormous
datasets simple. Scikit-
learn is a machine learn-
ing library that includes a
variety of data mining and
predictive modeling algo-
rithms.

Back-end system
It is a computer system
that is used to store and
manage data. Back-end
systems are typically used
to support front-end sys-
tems, which are used to
interact with users.

GPU-based computation
GPUs are well-suited for
the types of computa-
tions required for big data
applications, such as
matrix operations, convo-
lutions, and sorting. In
addition, GPUs can
exploit the parallelism of
many-core processors to
accelerate big data appli-
cations.

NumPy
It is a library for scientific
computing that provides
efficient, high-perform-
ance operations on arrays
of data. NumPy arrays are
similar to Python lists.

spark-submit test1.py

4.4 DASK
Conceptual background

Pandas and Scikit-learn are popular data science libraries for Python. They are both
designed to work with data stored in memory. This can be a limitation when working with
large datasets that do not fit in memory. Dask is a Python library for working with large
datasets. It is a distributed system that can scale to hundreds of processors. Dask can
work with data stored in memory or on disk. It is a powerful tool for data science.

Dask is a distributed computing system that helps you analyze and process large data sets.
It is composed of a number of individual "workers" that can be spread across many
machines, allowing you to scale out your processing power.

How Does It Work? Dask connects to a number of different back-end systems, such as
Hadoop, Spark, or Pandas. This allows it to work with a wide variety of data formats and
storage solutions. Dask then uses a task-based programming model to allow you to easily
create parallelized processing pipelines.

Why Use Dask? Dask offers several advantages over traditional distributed systems. First, it
is very easy to use, even for non-experts. Second, it provides an intuitive "dataframe"-style
API that makes working with data much easier. Finally, it scales out very well, allowing you
to process large data sets on many machines simultaneously.

Parallel computing

Dask is a library for parallel computing in Python. It enables you to break up a problem
into smaller chunks that can be computed in parallel. Dask can be used to parallelize both
CPU- and GPU-based computations. One of the key benefits of using Dask is that it pro-
vides a uniform interface for parallelizing a variety of computations, regardless of the
underlying hardware. This makes it easy to switch between different types of hardware, or
to move a computation from one machine to another. Dask also provides several features
for managing distributed systems, including automatic load balancing, fault tolerance,
and job scheduling (Daniel, 2019).

Dask is built on top of two libraries:

• Dask.distributed: This library provides the basic infrastructure for distributed comput-
ing. It handles communication between nodes, scheduling of tasks, and fault tolerance.

• Dask.array: This library provides an API for parallel computing that is similar to NumPy.
It allows you to create arrays that can be divided into chunks and processed in parallel.
Dask can be used to parallelize any code that can be run in NumPy.

For example, the following code can be run in parallel using Dask.
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import Dask.array as da 
a = da.ones((10, 10)) 
print(a) 

This code will create an array of 10x10 zeros. You can run it on a single machine by using
the Dask command line tool.

Dask array --nthreads 4 ./zeros.py 

This will use four cores on your machine to create the array. You can also run it on a cluster
of machines by using the Dask-cluster command line tool.

Dask-cluster --nthreads 4 ./zeros.py

Dask cluster

A Dask cluster is a collection of machines, usually connected through a network, that can
be used to run Dask applications. Dask can be installed on any machine and can use any
number of cores. However, to get the best performance, it is recommended to install Dask
on a machine with many cores and large amounts of memory. When creating a Dask clus-
ter, the number of workers and the number of cores per worker should be specified (Dan-
iel, 2019). For example, a Dask cluster with 4 workers and 8 cores per worker would have
32 cores in total.

How to create a Dask cluster

Dask clusters can be created in several ways:

• Manually create a Dask cluster using the Dask-cluster command line tool.
• Use the Cloud Manager to create and manage Dask clusters on Google Cloud Platform,

Amazon Web Services, or Microsoft Azure.
• Use the Batch Scheduler to create and manage Dask clusters on Kubernetes.

How to execute tasks in a paralyzed manner

In a distributed system, tasks can be executed in a paralyzed manner. It enables you to
execute tasks in a paralyzed manner, meaning that you can continue to work on your local
machine while the task is executed on a remote machine.

Python example on how to paralyze data

import dask from dask.distributed
import Client clients = [Client("127.0.0.1:8786")
for i in range(3)] data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] 
parallel_map(lambda x: x + 1, data) # map function across all workers 
results = [x + 1 for x in data] # results will be a list on the workers
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Kaggle
Kaggle is a platform for
data scientists to share
their work, learn from
others, and compete in
predictive modeling com-
petitions

Example –parallel processing of a large dataset

The following example shows how to use Dask to process a large dataset in parallel. The
example uses the Titanic dataset, which is available on Kaggle. The titanic dataset is a
large collection of data points about passengers on the titanic. We will use a random forest
model to predict whether or not a passenger survived. The first step is to import the nec-
essary libraries.

import dask
import pandas as pd 
import numpy as np import sklearn 

Next, we will read in the data.

train = pd.read_csv("titanic/train.csv") 
test = pd.read_csv("titanic/test.csv") 

We will then split the data into training and testing sets.

X_train, y_train = train[:,:], train[:,1] 
X_test, y_test = test[:,:], test[:,1] 

Now we can create our model.

model = sklearn.random_forest(criterion='gini', n_estimators=100) 

We can then parallelize the computation of the model using Dask.

dask_model = dask.distributed.Client() 
dask_model.parallel(n_workers=4) 
dask_model.compute(X_train, y_train) 
dask_model.compute(X_test, y_test)

SUMMARY
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UNIT 5
STREAMING FRAMEWORKS

STUDY GOALS

On completion of this unit, you will be able to ...

– explain setups of streaming frameworks.
– distinguish relevant factors for use cases of each.
– identify which streaming framework suits which use case.
– apply code to for a stream processing system that is up and running.



5. STREAMING FRAMEWORKS

Case Study
Imagine that, GuiltyPleasure, a company producing ice cream, uses sensors to monitor the
temperature of its machines. This temperature must remain permanently within a certain
target range. The temperature is measured every second and short term fluctuations in
the temperature are common. But for the production cycle, these fluctuations are not that
relevant, but rather the average temperature in the last two minutes is calculated for
every second. If the temperature in this sliding window falls outside the defined range, the
complete production will be affected. So, before this happens, an employee or even an
automated process must intervene to regulate the temperature. These temperature
changes may occur within a very short time and require direct processing of sensor data
to capture this time-critical process. It must therefore be possible to analyze the data and
output a signal in near real-time if possible. Streaming frameworks are designed to be able
to intercept exactly such time-critical data, so GuiltyPleasure assigns you with the task to
find out if a streaming framework is appropriate for their use case.

Streaming frameworks refer to the processing of data streams. These are characterized by
the fact that there is a continuous flow of incoming data in a specific temporal sequence.
Data streams can also be described as a theoretically infinite process of incoming data ele-
ments.

Many companies produce vast amounts of data, be it sensor data from production
machines, transaction data, data from user activities within a system. There is an almost
infinite list of examples involving the processing of such a volume of data. But what do
they work and what makes them special in contrast to other data processing frameworks?

There are different possibilities in the processing of data: One is processing in batches,
which means that a certain time window or file size is given in which the data are collected
before they are processed. This bears the risk, as seen in the GuiltyPleasure example
above, that they may already be outdated at the time of processing.

Furthermore, reality has shown, that the time or file size boundaries that define which
data entry should be processed in which batch are artificial, in many cases. Often, the to
be processed data are not bound, as they are not limited to a certain time frame or
amount, but, in most processes, data is produced continuously. Therefore, it came to
mind that the batches need to be sliced into smaller time frames, eventually processing
the input right when it arrives, therefore a continuous stream of data is processed. (Klepp-
mann, 2017, S. 14)

This near real-time analysis requires certain processing abilities which are presented in
many different available stream processing frameworks, each with its own strengths and
weaknesses. Some of the more popular frameworks include Apache Spark Streaming, and
Apache Kafka which will be introduced further in the next sections.
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5.1 Spark Streaming
Before looking at Apache Streaming, it's worth looking at the Spark Environment in gen-
eral.

Apache Spark

Apache Spark describes itself as a "multi-language engine for executing data engineering,
data science, and machine learning on single-node machines or clusters" (Apache Soft-
ware Foundation, 2022a, S. 1). It contains functions that let you import data from various
sources, with important file formats and systems being supported and provides mecha-
nisms for processing the data such as in-memory computing and the generation of key-
value pairs. It can do this on a cluster with a single machine, such as a desktop environ-
ment for development purposes, as well as on clusters that can scale as large as it is
needed with hundreds of machines running in the cloud. These factors, namely the in-
memory processing and distributing the data on clusters is what makes it possible to proc-
ess big data and what makes Apache Spark incredibly fast.

Regardless of the cluster size, the same code can be used making it straightforward to
scale an application in Spark. For this reason, the Spark Framework is ideally suited for
horizontal scaling with ease. If more data needs to be processed, only more hardware is
required, no new code needs to be written.

Since Spark Streaming can be seamlessly integrated with Spark, these same benefits can
be leveraged for a continuous stream of data. This enables both, high throughput and
scalability. Unlike Spark, Spark Streaming is designed for near-real time analysis. Instead
of large batch jobs, micro-batches are processed mimicking the continuous stream of
data. In the following section, we will focus on the Spark Streaming module and its main
aspects.

Features of Spark Streaming

Spark Streaming is a library, which is used for processing data in near real-time. Spark
Streaming was the first stream-processing framework based on the distributed processing
capabilities of the Spark Core Engine. The idea behind Spark Streaming can be simplified
to this: Use the capabilities of Spark Core to process streaming data by transforming it into
discrete collections of data that Spark can process. You can use the same Spark tools for
both, stream processing with Spark Streaming and batch processing with Spark Core.
Spark Streaming allows for multiple data sources to be connected and continuously pro-
cesses the incoming data before storing the data, e.g., in a Hadoop Distributed File System
(HDFS). Spark Streaming basically uses the same functions as the Spark Core, but adds
another abstraction, the Discretized Stream, or DStream, which is a programming model
to operate on the data present in the stream (Garillot, van Maasakkers, & Maas, 2019, S.
14).
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In-memory
An in-memory database

stores data not on regular
hard disk storage, but

directly in RAM.

PySpark
This refers to an interface

in Python that enables
you to write Spark appli-

cations with Python APIs.
PySpark supports many

Spark functions like Spark
Core, DataFrame, Spark

SQL, Streaming, and
MLLib. (Apache Software

Foundation, 2022d)

Resilient Distributed Datasets (RDDs) and DStreams

In order to address the Spark Streaming Module, it is first necessary to review the underly-
ing programming abstraction in Spark itself: The Resilient Distributed Dataset or RDD. All
operations in Spark are performed on these in-memory objects. RDDs are collections,
where individual entities in the collection can be anything. These individual entities are
called Rows or Records of the collection. All of these, as said, are held in-memory which
makes processing much faster than first having to read the data from disk.

This is the fundamental characteristic of an RDD.

But what does this term RDD mean specifically?

• Resilient: fault tolerant missing or defective partitions can be recovered as they are
redundant in the cluster.

• Distributed: Data is distributed in partitions across different nodes in a cluster enabling
easy parallelization of jobs.

• Dataset: is a set of partitioned data.

Furthermore, the following characteristics should be noted in connection with RDDs:

• Partitioned: Split across data nodes in a cluster
• Immutable: RDDs, once created, cannot be changed

An RDD in Spark can be considered analogous to a collection object in Java. Such a collec-
tion object can be assigned to a variable so that methods can be called upon it. The meth-
ods that can be called for an RDD either retrieve a result or retrieve a subset of the entities
in an RDD and output them to a screen, or assign them to another RDD. Individual entities
in an RDD can also be transformed by mutating them and then obtaining a resulting RDD
with the mutated entities.

To make this more tangible, let us take a look at how this works practically using Python
as an example. The PySpark module can be used to work with Spark in Python at ease. In
the following PySpark example, Spark code is shown in Python to create an RDD from data
that exists in a text file.

sc = SparkContext('local', 'MyFirstSparklingExample')
trains = sc.textFile(trainData)

SC stands for Spark-Context, which is basically the connection from inside a program to
the external Spark world. The trains RDD will be a collection of train data and can be
visualized in an array form like in the graphic below. As we can see, the inner workings of
an RDD are abstracted and hidden from us to make it very easy to work with distributed
data in Spark: We simply load the data into an RDD, that’s it. Should one be interested in
only a subset of the train data, filters can be applied to the RDD.:

trainsFiltered = trains.filter(lambda x: ‘ICE’ not in x) 
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This filter takes a lambda expression that returns true or false. If the return value of the
method is true when applied to an entity of this collection, this entity is present in the
resulting RDD. In the opposite case this entity is omitted from the resulting RDD. In our
example, we filter for trains that are not Intercity Express (ICEs).

Figure 31: Filter Function for an RDD

Source: von Bargen, 2022

To print the data from an RDD the method collect can be used.

trains.collect()

This function should be used with care, though, because it will translate the data in the
RDD to a regular Python object. Accordingly, if we want to harvest the distributed compute
power of Spark, we should not continue working with collected data. Depending on the
size and number of elements within the RDD, it might be reasonable to use the take
method instead which will print the first 3 entities within the RDD.

 trains.take(3

The Spark module makes it possible to work with streaming data by providing a high -
level abstraction for these data, called discretized streams or DStreams. They are some-
what similar to the RDDs, but add another level of abstraction making it even easier for us
to work with streaming data. Let us explain the concept of DStreams with a concrete
example. Namely, the streaming of log messages from an important website that is to be
monitored. These messages can be available on a socket that a monitoring tool is retriev-
ing the data from or stored in a directory where new files are constantly added to this
directory. We fetch the log messages from this directory. Log files usually consist of a large
number of text logs containing , the time the log arrived and the information about what
happened in the application. These files can be reorganized and displayed as a stream
where each message represents an RDD entity.

This stream of entities is called a discretized stream and is represented by a particular
class called DStreams. Therefore, a DStream equals a sequence of RDDs. The advantage
that comes with the abstraction of the stream of RDDs to a DStream is that we are able to
perform operations on an entire stream of data at once instead of executing the same
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command over and over again on each individual RDD entry. For example, imagine that in
the website logging the time was not set right so that there is a time shift between the
correct time and the logging time in the file of three hours. Using DStreams, we can simply
add three hours to the logging time and this operation will be executed for all incoming
RDDs for us under the hood. DStreams exists regardless of the used programming lan-
guage, be it Java, Scala, or Python. All of the data is organized into RDDs and sequences of
these form the DStream. So now when operations are performed on DStreams, they are
actually performed on all individual RDDs within the DStream. Every DStream has a batch
interval associated to it, because remember that actually, Spark Streaming performs
batch processing. But to handle streams of data, the batches are very small so that they
seem continuous. (Apache Software Foundation, 2022c). Now for example we can use the
filter function on a DStream as well.

sc = SparkContext('local', 'MyFirstSparklingExample')
ssc = StreamingContext(sc, '1')
myDStream = ssc.textFileStream('./data_directory/')
myTrains = myDStream.filter(lambda x: 'ICE’ not in x)

Data Sources and Sinks

Spark Streaming provides built-in support for a range of streaming data sources and sinks
(such as files and Kafka), as well as programmatic interfaces that let you specify any data
writer.

In Spark Streaming, a basic distinction can be made between two categories of sources:

• Basic Sources: This type of sources is available firsthand in the StreamingContext API.
These can be file systems or socket connections.

• Advanced Sources: This type of sources relates to systems like Apache Kafka or Kinesis,
which must be actively linked.

Because Spark Streaming is a widely used application, a variety of open sources and pro-
prietary sources can be connected. The most common data sources, besides the basic
sources, are the socket source and Kafka source.

A socket source behaves like a TCP client and is implemented as a receiver-based source.
It connects to a TCP server on a network location that can be identified by its host-ip:port
combination. The method available in SparkContext can be represented with the parame-
ters hostname, port, converter and storageLevel. This source is often used as a test source
because it is comparatively easy to create and is often used as an example in Spark
Streaming. For simple test cases, both client and host can run on the same machine, so
the host specification localhost is used. There is also a simplified version for text streams,
which only queries host and port and is often used as an example due to its simplicity
(Maas & Garillot, 2019, S. sec. 19).
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Apache Bahir
This repository provides
extensions such as
streaming connectors as
well as SQL data sources.

newStream = ssc.socketNewStream("localhost", 9092)

val newStream = ssc.socketNewStream("localhost", 9092)

In the context of streaming applications, Apache Kafka is often used as a data source
which will be explained in detail later in this unit. The Kafka source is available as a sepa-
rate library, which can be imported into the streaming project's dependencies. The
method to create a Kafka direct stream is createDirectStream in KafkaUtils. This
could like like the following:

Figure 32: Code for creating Kafka direct stream

Besides Kafka, there is also the possibility to include a variety of other data sources, many
of which can be found under Apache Bahir. Among them are Apache Spark and Flink
extensions such as the following (Maas & Garillot, 2019, S. sec. 19):

• Apache CouchDB/Cloudant
• Akka
• MQTT
• Twitter
• ZeroMQ
• PubNub
• Google Cloud Pub/Sub

After the data has been processed in SparkStreaming using DStreams, it is to be external-
ized using so-called output operations. The component for this is called sink.

The core library of Spark Streaming provides some built-in output operations (Apache
Software Foundation, 2022b):

• DStream.pprint (num = 10) will print the first 10 elements of the DStreaming at
every streaming interval.

• DStream.saveAsXYZ (prefix, suffix) allows output to a file-based sink. Using
pre- and suffix, the name can be located in the target file system. The syntax for this is
prefix-<timestamp_in_ms>[.suffix]. For example, the operators
saveAsObjectFiles, saveAsTextFiles or saveAsHadoopFiles can be used.
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YARN
The abbreviation stands
for Yet another resource
negotiator, which splits

up functionalities of
resource management

and job scheduling

Data Warehouse
The Data Warehouse is a

central database, which is
optimized for analytical

operations, in which data
from heterogenous sour-

ces can be stored.

• DStream.foreachRDD(func) provides access to the underlying RDD and is a general-
purpose output operation. All other output operations are fundamentally based on it; it
can be called the native output operator. This operator will perform the function provi-
ded as an argument on every RDD in the stream. Accordingly, it can also be used to
transform the data.

Spark within the Hadoop Ecosystem

Apache Spark, just like most Hadoop components works on multiple machines in a cluster
and can be a replacement for Hadoop in several situations, such as replacing the map-
reduce function of Hadoop with batch-processing of Spark, or even extending its functions
with micro-batching in Spark Streaming. Spark can also work with YARN.

Since Spark is feasible as a replacement for some Hadoop functions, it is possible to fully
integrate it in the Hadoop ecosystem. This allows you to take advantage of both worlds.

For example, a setup like the one shown in the following graphic can be used for this pur-
pose.

Figure 33: Big Data Architecture: Spark in the Hadoop Framework

Source: von Bargen, 2022

As shown in the graphic above, the setup initially consists of the data sources, a messag-
ing layer, the Hadoop framework, and various export functions such as a dashboard, a
data warehouse, or even the transfer of the data to ERP, CRM or SCM systems.

Here, depending on the needs of the company, an individual structure of components can
be selected.

116



On-premise
The term on-premise or
on-prem refers to a
licensing model for local
use of server-based com-
puter programs. The
alternative to this would
be cloud use.

Kafka
A writer’s name for a writ-
ing system: The name
actually derives from
Franz Kafka.

For example, to build a data lake, an organization needs to decide the following points
(Damji, Wenig, Das, & Lee, 2020, S. sec. 9):

• Storage system - Either HDFS can be used or a cloud object store for example those of
Microsoft Azure (Data Lake Storage), Amazon Web Services (S3) or Google Cloud.

• File Format - Depending on the downstream workload, the organization needs to know
what file format the data is in, either structured such as Parquet or ORC, semi-struc-
tured, such as JSON, or even unstructured as in image, audio or video files.

• Processing engine(s) - Depending on the analyses to be performed, a processing
engine is selected. This can be either a batch processing engine, such as Spark, Presto
or Hive, or a stream processing engine, such as Spark Streaming. Machine learning libra-
ries could also be integrated, such as Spark MLlib.

Spark is often a good choice here, as it includes various key features that are needed. On
the one hand, a variety of different workloads are supported, but also various file formats.
In addition, Spark allows data to be accessed from any storage system that supports the
Hadoop APIs. These are reasons why Spark has become a de facto standard in the Big Data
environment and most cloud or on-premise storage systems already offer implementa-
tions for this. However, it must be considered that, especially for some cloud environ-
ments, a special configuration may be necessary to access the data in a secure manner
(Damji, Wenig, Das, & Lee, 2020, S. sec. 9).

5.2 Kafka
Amongst the most popular streaming frameworks are Spark Streaming and Apache Kafka.
In this section, we discuss the streaming framework Kafka. First the origin and main con-
cepts are introduced, in order to regard afterwards the components and function in more
detail.

Kafka: Origin and Main Concepts

Origin

Kafka has been originally created by LinkedIn, who needed to solve their data pipeline
problem. LinkedIn had two systems in use: One for internal uses, such as application mon-
itoring, and one for tracking user activity. The requirements of both use cases could not be
met using the same backend service: The monitoring service had a data format which was
not suited for activity tracking, and the polling model was not compatible with the track-
ing service push-model, in which frontend servers would periodically connect and publish
a batch of messages to the HTTP service. The tracking service used batch-oriented pro-
cessing, so it was not a good fit for real-time monitoring. On the other hand, due to the
similarity of the collected data, it was reasonable to find a solution that would be able to
combine both systemic approaches. After confirming there was no scalable solution for
providing real-time access to the data available yet, LinkedIn developed a message queue
system themselves: Key goals were to use a push-pull-model to decouple producers and
consumers of information, as well as providing persistence for messaging data within the
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Latency
This describes a time

delay between request
and response from a sys-

tem.

system., Therefore, the system should allow for multiple consumers while keeping high
throughput by horizontal scaling. Their publish/subscribe messaging system, Kafka, was
released on GitHub as an open-source project in 2010 (Narkhede, Shapira, & Palino, 2017,
S. 14f). Today it is an open-source project mainly maintained by Confluent, a company
with its origin at LinkedIn, under the Apache stewardship.

Main Concepts

In today’s view, Kafka can be used in different ways:

1. It’s original use case of moving all occurring event data to a central data warehouse
2. Kafka also persist data making it able to be read hours or even months after it has

been written. This opens another use case opportunity. Kafka can also be used as a
central system for not simply exchanging data from one system to another but making
it the central hub for working with data in general.

3. Every event is saved in Kafka and every other service can act upon the stored data.
Thus, it can also be an interface for numerous software services to communicate with
one another. Thus, Kafka can also be seen as a data pipeline. (Zelenin & Kropp, 2022,
S. 3)

The main aspects of Apache Kafka are it’s distributed, resilient architecture, which makes
it fault tolerant, highly available and horizontally scalable. A Kafka Cluster can scale to a
thousand brokers that process trillions of messages per day or petabytes of data. It is built
for high throughput and has a latency of less than 10ms – which makes near real- time
processing possible. It offers built-in stream processing and various client libraries allow-
ing for processing the data in various programming languages. This shows in Kafka’s pop-
ularity: It is reportedly used by over 80% of the Fortune 100 companies as of early 2022
(Apache Kafka, 2022).

The following table provides a short comparison of Kafka and another popular stream pro-
cessing system, Spark Streaming.

Table 8: Comparison of Key Features of Streaming Frameworks

Spark Streaming Kafka

Based on Spark clusters, HDFS or a similar system
is needed

Offers a Java library called Kafka Streams, no addi-
tional data store needed

Micro-Batch Processing Event-at-a-time Processing

Higher latency Low latency thanks to continuous processing

Multiple programming languages supported
(Python, Scala, Java, R)

Kafka Streams library limited to Java and Scala as
programming language, but through a REST Proxy
connection to a large number of clients it is possi-
ble to use different programming languages
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Components

Now, how does Kafka work? We learned that it combines various components in a dis-
tributed system. But what are these components and how do they interact with each
other? Before looking at the components in more detail, the terminology within the Kafka
framework should first be known.

Terminology

In a Kafka Architecture we will usually be working with the following components:

• Producer
• Kafka Cluster holding multiple brokers and possibly the ZooKeeper
• Consumer

There are also two components that describe how the data is organized in Kafka:

• Topic
• Partition

Messages are sorted by so-called Topics in Kafka. To distribute the data across the cluster
for better parallelization and system reliability, it is also partitioned. Each Broker can hold
multiple topics, which then are split between multiple partitions.
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ZooKeeper
This is a centralized serv-
ice for atomic synchroni-

zation of requests in a dis-
tributed network.

Figure 34: Kafka Components

Source: von Bargen, 2022

Apart from this, the following terms are also relevant in the Kafka context and need to be
understood.

• Offset
• Lead
• Follower
• Controller

We will start with the point, where the data is collected, this is called a producer. A pro-
ducer is usually a data producing application or sensor.

The data are sent by the producers to the brokers in a Kafka Cluster. Data in the Kafka
Cluster are appended to their respective log within their topic. In previous versions of
Kafka, ZooKeeper was needed in order to have a possibility of communication between
the brokers. Since version 3.0 the broker can fulfill this task self-efficient, but there are
cases in which it would still be recommended to have ZooKeeper in place (Karantasis,
2021). There are different roles, a broker can take: Controller, Lead, and Follower. In one
cluster, there is always one controller broker. The task of the controller is to manage the
states of the partitions and their replications as well as administrative tasks. The process
of selecting a broker to be the controller is called Kafka Controller Election. After the data
are stored within the brokers in their respective topics and partitions, this data is getting
replicated. This is done in a way so that each part of the data is stored on a lead broker
and, in addition, at least one follower broker.
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From here the data can be retrieved by any number of consumers subscribed to a certain
topic. Consumers are instances that are reading the data for further action. This step is
asynchronous to the write process. (Kleppmann, 2017, S. 447).

But let’s take a closer look at how the data is stored in topics and partitions. The process
of partitioning is the division of a topic into smaller units. The number of partitions can be
chosen upon creation of a topic. Partitions are used for easy replication of the data and
parallelization capabilities. The so-called replication factor describes to how many brokers
a partition of a topic is replicated. In the graphic above, a factor 2 replication is shown,
where for each lead partition there is one replica. A partition with factor x exists x-times in
the cluster. For each of these existing identical partitions there exists one lead partition,
the replicas are called followers. Within the cluster each broker is the leader for some par-
titions and follower for other partitions.

One key characteristic of Kafka is its so-called structured immutable commit log. This
means that the order of messages is preserved (immutable). One of many advantages of
this is that old messages remain readable even after updates to the way data is structured
in the system. Also, this allows for central updates on topics to all parts of the systems.
Thise logfile has a default segment size of 1GB and a new segment will automatically be
created after either a certain time, log.retention.ms with a default time of 168hr or 7
days, or when the size of one individual file reaches the log.segment.bytes. Depending
on the set retention policy, these log files can be persisted or cleaned up. This is either
defined on a global scale or specifically per topic. Kafka can only delete full segments
though and not specific data entries which is desired for most use cases with respect to
data quality (Apache Software Foundation, 2022).

This brings us to another term that must be known in the context of Kafka: Offset. New
messages are appended to the end of each topic and assigned a number. This number is
incremented according to the log sequence and it is called the offset. This number is rele-
vant both for writing and for reading the messages, as this provides the only consumer
specific metadata. The asynchronous setup allows the current offset number of each con-
sumer to be stored, so that the consumer can always continue working with the last mes-
sage it read. No data is lost for any application and information is not skipped even if the
network connection is temporarily interrupted. This is illustrated in the following graphic.
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Figure 35: Offset Writing and Reading

Source: von Bargen based on Kleppmann, 2017, P. 448

Kafka Ecosystem

The Apache Kafka ecosystem includes Apache Kafka Connect and Apache Kafka Streams,
as well as the Confluent Schema Registry and the Confluent REST Proxy (Apache Software
Foundation, 2022). Let’s discuss each of these components and their respective role in the
Kafka ecosystem.

• Apache Kafka Connect is a framework for connecting, importing, and exporting third-
party data.

• Apache Kafka Streams, in contrast to Apache Kafka Connect, is not an entire frame-
work, but solely a Java library that is used to stream data in near real-time in a fully
automated manner. It is used to enable stream processing chains of aggregations and
transformations of the data. Kafka Streams fetches the messages as soon as they are
created by the producer and can already perform operations and analyses on these
messages on-the-fly. The consumers can then read the already processed data in near
real-time.

• The Confluent Schema Registry is a service for decoupling producers and consumers
at the data level. A consumer can use this to retrieve the schema before the data is pro-
cessed in order to validate the data. The schema itself is a JSON file (Confluent, 2022b).

• The Confluent REST Proxy provides a service for producers or consumers who cannot
connect natively to Apache Kafka, for example, due to a firewall that prevents such a
connection. Another use case would be that producers or consumers are written in a
programming language that Apache Kafka does not support. In this case, communica-
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shell script
A shell script is a program,
which gets interpreted
and executed by theUnix
shell. Ultimately it is an
executable text file, in
which instructions can be
used that a user can also
use in the command line
of shell.

tion can take place over the HTTP protocol by producers or consumers sending REST
commands to the proxy, which in turn converts them into Apache Kafka commands and
sends them to Kafka (Confluent, 2022a).

Example

Now that we know how Apache Kafka works in principle, how can we put this framework
to use? In the following section we will learn how to create a topic and how to send and
receive messages in Kafka.

Apache Kafka should be installed first. Detailed instructions on how to install Kafka can be
found in the documentation for the latest version of Kafka (Apache Software Foundation,
2022).

Once Kafka is installed on your local machine, we want to create our topic, which we will
call “bigdata”. The following code example shows the necessary parameters:. You can cre-
ate this command in a shell script. We will go through each command step-by-step.

Figure 36: Code for creating topics in Kafka

Source: von Bargen, 2022

First, with --create --topic we specify that we want to create a new topic and give it a
name. Optional are the parameters replication-factor and partitions. In this case,
both are one, as in this example we assume, that only one broker is started. However, it is
generally good practice to get used to including these parameters with every command.
Default values should never be relied upon. Later, when we run Kafka on a larger cluster
with hundreds of brokers, for example, in the cloud, we simply increase these numbers for
better reliability and availability of our data system. The last parameter this script needs is
the bootstrap-server. This refers to the information where this script can find Apache
Kafka. For local installations, Apache Kafka is started on the localhost and listens to port
9092 by default.

As an optional step, we can look at the created topic (which does not contain any data
yet). The command for describing a topic looks very similar to the create command. The
difference is that instead of --create, we use --describe. Executing this command
gives us the internal TopicId, as well as the number of partitions and the replication fac-
tor. Furthermore, additional configurations are shown. In this case, the default size of a
segment, which is specified as one gigabyte. Although topics can also be created via
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graphical user interfaces, the command line is still the best way, because this way the
command can additionally be documented. Also, for automations the command line is
not to be underestimated.

To send the first messages to Kafka, we need the command line tool kafka-console-
producer.sh. Using this tool, the producer can use the command line to write data into a
topic in Kafka.

Remember that in order to send data to Kafka, we must select an appropriate topic. In this
example we want to write the message "Hello student" to our “bigdata” topic.

Figure 37: Code for writing messages to topics

Source: von Bargen, 2022

Finally, we want to start a consumer and read the message we just sent.

Figure 38: Code for reading messages

Source: von Bargen, 2022

In this case, we have added the --from-beginning argument to output all messages for
this topic. In addition, we have created a timeout so that the consumer automatically
ends the search after 10 seconds.

It is also possible to display these messages in a continues way. To do this, the consumer
is started without the timeout command. As soon as new messages arrive, they are dis-
played in the command line. Also, using a specific offset, we can read data from a particu-
lar point in time instead of all the data in the topic.
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SUMMARY
Spark Streaming and Kafka are two concepts within the streaming con-
text that can only be compared to a limited extent. Spark Streaming is
initially a single tool for processing streaming data, while Kafka is a com-
plete system for message queues.

Spark Streaming is optimized for a wide range of applications, and can
be integrated within different frameworks and seamlessly connected to
Spark itself. This allows incredibly fast processing through distributed
systems. Spark Streaming works with DStreams, which consist of a
sequence of RDDs on which basically the same operations can be per-
formed. Spark Streaming's DStreams enable micro-batch processing
and can be used in parallel to batch processing with Apache Spark, for
example in a Hadoop environment.

Kafka offers individual microservices through the integration of different
clients, such as Kafka Streams, which is initially just a Java library and as
such is more difficult to compare. With Kafka Streams near real-time
processing is possible and can be used for time critical operations with
latencies of <10ms. Kafka's diverse use cases as either a messaging layer
or for both message queuing and stream processing offer a flexibility in
use: It can be integrated with other streaming platforms, including Spark
Streaming, making it a good way to combine the benefits of the distrib-
uted system with the needs of the individual use case. Here, it largely
depends on what the latency and scalability requirements are. A pure
Kafka architecture makes sense for real-time analyses, but if certain
latencies are not a critical point for the specific use case, a Kafka-Spark
Streaming combination can also appear useful, since micro-batching
can still be used for comparatively fast analysis.
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