
INTRODUCTION TO NLP
DLBAIINLP01





INTRODUCTION TO NLP



MASTHEAD

Publisher:
IU Internationale Hochschule GmbH
IU International University of Applied Sciences
Juri-Gagarin-Ring 152
D-99084 Erfurt

Mailing address:
Albert-Proeller-Straße 15-19
D-86675 Buchdorf
media@iu.org
www.iu.de

DLBAIINLP01
Version No.: 001-2024-0411

Prof. Dr. Kristina Schaaff

© 2024 IU Internationale Hochschule GmbH
This course book is protected by copyright. All rights reserved.
This course book may not be reproduced and/or electronically edited, duplicated, or dis-
tributed in any kind of form without written permission by the IU Internationale Hoch-
schule GmbH (hereinafter referred to as IU).
The authors/publishers have identified the authors and sources of all graphics to the best
of their abilities. However, if any erroneous information has been provided, please notify
us accordingly.

2



TABLE OF CONTENTS
INTRODUCTION TO NLP

Introduction
Signposts Throughout the Course Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Suggested Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Learning Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Unit 1
Basic Terms and Concepts                                                                                                                                  9

1.1 What is NLP? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Prosodics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5 Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Unit 2
Language and Speech                                                                                                                                        25

2.1 Human Vocal Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 Speech Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3 Phonetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Unit 3
Challenges in NLP                                                                                                                                                 41

3.1 Data for NLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Evaluation of NLP Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3 Domain Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4 Multilingual Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Unit 4
Techniques                                                                                                                                                              59

4.1 Rules Versus Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Regular Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 N-Grams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4 Vectorizing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.5 NLP Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3



Unit 5
Application Scenarios                                                                                                                                         77

5.1 Speech Recognition and Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2 Machine Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3 Information Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4 Sentiment Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.5 Chatbots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.6 NLP With Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Appendix
List of References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
List of Tables and Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4



INTRODUCTION



WELCOME
SIGNPOSTS THROUGHOUT THE COURSE BOOK

This course book contains the core content for this course. Additional learning materials
can be found on the learning platform, but this course book should form the basis for your
learning.

The content of this course book is divided into units, which are divided further into sec-
tions. Each section contains only one new key concept to allow you to quickly and effi-
ciently add new learning material to your existing knowledge.

At the end of each section of the digital course book, you will find self-check questions.
These questions are designed to help you check whether you have understood the con-
cepts in each section.

For all modules with a final exam, you must complete the knowledge tests on the learning
platform. You will pass the knowledge test for each unit when you answer at least 80% of
the questions correctly.

When you have passed the knowledge tests for all the units, the course is considered fin-
ished and you will be able to register for the final assessment. Please ensure that you com-
plete the evaluation prior to registering for the assessment.

Good luck!
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LEARNING OBJECTIVES
Natural language processing (NLP) stands at the crossroads of linguistics, computer sci-
ence, and artificial intelligence (AI). In this course book, Introduction to NLP, you will
learn about traditional approaches to NLP as well as state-of-the-art techniques in this
field. The course starts with an introduction to the historical developments of NLP and
presents its basic terms and concepts. Moreover, you will learn how language and speech
are produced.

The course will give a comprehensive overview of the challenges that typically occur in
NLP projects. Additionally, the most important techniques that are used in NLP are pre-
sented, including some related topics. Finally, the course will introduce how NLP technol-
ogies can be successfully used in various applications, such as machine translation, senti-
ment analysis, and chatbots. The course also provides an introduction to how Python can
be used to build NLP applications.
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UNIT 1
BASIC TERMS AND CONCEPTS

STUDY GOALS

On completion of this unit, you will be able to ...

– classify NLP as a field of research.
– distinguish between syntax and semantics.
– explain the most important characteristics of prosodics.
– understand the concepts of grammar.



1. BASIC TERMS AND CONCEPTS

Introduction
Natural language processing (NLP) deals with the interaction between humans and com-
puters. In the past decades, it has become one of the main drivers for research in the area
of artificial intelligence (AI). 

In this unit, you will first learn what NLP is in general. This includes the historical develop-
ments of NLP as well as an introduction to the Turing test. As NLP has origins at the inter-
section between computer science and linguistics, the concepts of syntax and semantics
will be explained. While syntax deals with the rules how sentences are formed, semantics
are about the meaning of a text. Subsequently, you will learn more about the prosodics of
speech, i.e., those components of speech that are related to melody, such as pitch or into-
nation. The unit ends with the most important concepts regarding grammar.

1.1 What is NLP?
Nowadays, natural language processing is one of the most important areas of artificial
intelligence (AI). It is an interdisciplinary field with many overlaps between linguistics and
computer science. The figure below illustrates how the disciplines are related.

Figure 1: NLP in Relation to Computer Science and Linguistics

Source: Kristina Schaaff (2023).
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The more computers are integrated into our everyday lives, the more important it is to
make the interaction between humans and computers more natural. NLP plays a key role
in achieving this goal. If a computer is able to interpret and use language in a way that is
comparable to human communication, this can help simplify the communication between
humans and machines. However, human–computer interaction is not the only use case for
NLP. Other areas of application, such as automatic machine translation, automatic text
summarization, or even automatic generation of text, are also among current research
topics.

In general, there are three major subdomains in NLP: speech recognition, natural lan-
guage understanding, and natural language generation. What these subdomains contain
is summarized in the following figure.

Figure 2: Major Subdomains of NLP

Source: Kristina Schaaff (2023).

Speech recognition, natural language understanding, and natural language generation are
built on methods that have their origins in the discipline of AI. These three domains form
the basis for all other application areas of NLP.

Historical Developments

Early theoretical research in NLP dates back as far as the 17th century. Based on Descar-
tes’ concept of the “universal truth,” Leibnitz made some first considerations of the repre-
sentation of the fundamental concepts of knowledge production. Leibnitz believed that if
the underlying logical concepts of combining symbols such as letters, words, and senten-
ces are fully understood, it should be possible to generate new thoughts (Schwartz, 2019).

The development of NLP as a technical discipline originated in the 1950s. It was driven by
the geopolitical tension between the United States and the former Soviet Union. This ten-
sion led to a greater demand for translations from Russian into English and vice versa.
Outsourcing the translation to machines seemed to be a good way to tackle this problem
(Hutchins, 1997).
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AI winter
An AI winter marked a
period where funding,

research, and interest in
AI technologies were sig-
nificantly reduced. Those
periods were usually the

result of expectations
that were too high and

could not be met.

Markov model
In a Markov model, the

next state is only defined
based on the current

state and a set of transi-
tion probabilities.

The first results of automatic machine translation seemed to be quite promising. However,
in the end, it turned out that machine translation was much more complex than originally
expected, and the progress fell far short of expectations. In particular, the handling of
word ambiguity turned out to be a big challenge. One famous example was the translation
of the English sentence “out of sight, out of mind,” which ended up being translated into
the Russian equivalent of “invisible idiot” (Hutchins, 1995).

As a consequence, in 1964, NLP technology was classified as hopeless by the US Auto-
matic Language Processing Advisory Committee. The funding of research in this area was
temporarily stopped, as it was regarded as neither faster, cheaper, nor as accurate as
human translation (Automatic Language Processing Advisory Committee, 1966).

The decreased interest – and therefore also the decrease of funding – in NLP research can
be seen as one of the main causes of the first AI winter. It took almost 20 years after the
first AI winter for interest in NLP to start to redevelop. The major drivers for the renewed
increase in research activities were the increase of computing power, a shift of paradigms
in research approaches, and the development of part-of-speech (POS) tagging.

As predicted by Moore’s law, computing power has significantly increased over the years.
This increase allowed the use of algorithms that were more computationally intensive,
paving the way for new methods in NLP. Moreover, the higher computational power
allowed the processing of larger amounts of data to train the algorithms. In combination
with the growing amount of electronic literature, which could be used for training, this
opened up great possibilities for the improvement of the available algorithms.

Additionally, research approaches shifted from grammatical approaches toward statistical
and decision-theoretic models. While early grammatical approaches were trying to
address the complexity of everyday language based on the implementation of complex
rule-based systems, more recent research started using statistical models, such as deci-
sion trees.

Finally, the development of POS tagging was another crucial step toward more robust NLP
algorithms. In POS tagging, a given text is divided into smaller units, i.e., sentences, words,
or even sub-words. To these units, categories and word functions are added. A text can
then be described using Markov models. Using this approach, it is no longer necessary to
consider the whole history of a text, which drastically reduces the complexity of the devel-
oped algorithms.

These developments drastically increased the robustness of NLP algorithms, especially for
unseen scenarios and constellations.

NLP and the Turing Test

The mathematician and computer scientist Alan Mathison Turing was one of the very early
pioneers in AI. With his research, he created an important theoretical foundation in the
area of computer science. One of the major results of his research is the Turing test, which
can be used to verify the presence of AI (Turing, 1950). 
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Thesaurus
A thesaurus is a struc-
tured dictionary that con-
sists of a systematic col-
lection of terms that are
thematically related to
each other.

In the Turing test, a human interrogator uses a computer program to talk to two different
conversational partners. One of the conversational partners is a human; the other isa
machine. During the conversation, both aim to convince the interrogator that they are a
human. A conversational agent passes the Turing test if the interrogator is not able to
identify which of their conversational partners is human.

According to Turing, if a machine passes the Turing test, this might mean that the intellec-
tual capabilities of a machine are able to compete with those of the human brain. How-
ever, there has been much criticism of the Turing test, as it is focused too much on func-
tionality; the question of whether a machine is aware of its answers is not addressed.

The computer program ELIZA, which was developed by Josef Weizenbaum, was one of the
early attempts to pass the Turing test. It can be seen as one of the first approaches to
developing a type of system that is nowadays known as a chatbot or conversational AI.
ELIZA simulates the conversation with a psychotherapist using rule-based pattern match-
ing in combination with a thesaurus to process a sentence from an interrogator and gen-
erate an appropriate reply (Weizenbaum, 1966).

In a dialogue, ELIZA will parse the input for a keyword that is contained in the thesaurus to
look for synonyms or generic terms for this keyword. Based on the result, a phrase related
to the term will be selected, which will often be an invitation to continue talking. If the
program does not find an appropriate key phrase, it will reply with a general phrase pre-
tending to not be sure if it understood correctly. A typical conversation with ELIZA could
look as follows.

Table 1: Typical Conversation With ELIZA

ELIZA: How are you today? Tell me about your problems.
Human: I am feeling depressed.
ELIZA: Can you explain what made you depressed?
Human: I am not able to handle my workload.
ELIZA: Why is it important to you to handle your workload?
Human: Because I want to pass my NLP exam.
ELIZA: I am not sure if I have understood you correctly.

Source: Kristina Schaaff (2023).

When ELIZA was first published, it generated some remarkable enthusiasm in the AI com-
munity. However, the simplicity of Weizenbaum’s approach was quickly recognized, and
as expected, ELIZA was not able to pass the Turing test.

A more recent attempt to pass the Turing test was the chatbot “Eugene Goostman.” In
2014, this chatbot seemed to be the first system to be able to pass the Turing test. How-
ever, the chatbot used a trick of pretending to be a 13-year-old Ukrainian boy. Being quite
young and not being a native English speaker was used as an explanation that the bot
made mistakes with the language and did not know everything. Due to this trick, the valid-
ity of this experiment was strongly questioned (Masnick, 2014).
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1.2 Syntax
Syntax in NLP deals with the study of patterns of how to form sentences and phrases from
single words as well as rules for the formation of grammatical sentences. Therefore, syn-
tactical tasks are about features like word boundaries, categories, or grammatical func-
tions. The meaning of a sentence is not considered in syntactical tasks.

Typical tasks in NLP dealing with syntactical information are tokenization and part-of-
speech (POS) tagging.

Tokenization

In tokenization, a text is split into individual units, which are called tokens (Russell & Nor-
vig, 2021, p. 876). Those units can, for instance, be sentences, words, or sub-word units.
The tokens that have been generated can be seen as discrete elements of a text and can
be used to generate vectors that represent that document.

Let us consider the sentence “I like natural language processing.” This sentence could be
tokenized into [“I,” “like,” “natural,” “language,” “processing,” “.”].

There are different ways to perform tokenization. Some examples of tokenization are

• white space tokenization: This is probably the simplest way to tokenize a text. As the
name indicates, it uses the white spaces within a string as word delimiters.

• punctuation-based tokenization: This splits a sentence into word tokens based on punc-
tuation and white space.

• treebank word tokenization: Punctuation and symbols are separated from a text with-
out interference from the textual context. This means that, for example, “aren’t” will be
tokenized to [“are,” “n’t”].

Part-of-Speech Tagging

While tokenization is mainly about splitting a text into smaller sub-units, POS tagging adds
categories and grammatical word functions – often also referred to as lexical categories or
tags – to a given text. This can, for instance, be categories such as “noun,” “verb,” or
“adjective.” (Russell & Norvig, 2021, p. 880).

The following figure shows an example of POS tagging.

14



Figure 3: Example of Part-of-Speech Tagging

Source: Kristina Schaaff (2023).

POS tagging is an important step toward handling syntactic ambiguity, which is a big chal-
lenge in NLP. Syntactic ambiguity often makes it difficult to clearly assign a word to a cate-
gory. If we look, for instance, at the word “present,” this could either be a verb and refer to
a presentation or as a noun referring to a gift. Assigning the right category to a word can,
therefore, not only help in machine translation; it can also be beneficial in tasks like
speech synthesis, as the word “present” will be pronounced differently depending on the
POS category. Another commonly used example to illustrate syntactic ambiguity in a sen-
tence is

“Time flies like an arrow.”

There are many different ways to interpret this sentence. Two of those interpretations are:

1. There exists a particular arrow such that every time fly (a hypothetical insect) likes
that arrow.

2. Time passes as quickly as an arrow.

In the first interpretation, the word “like” is a verb while, in the second interpretation,
“like” is used as a comparative preposition.

1.3 Semantics
Semantics deals with the study of the meaning of language, while the syntax of a text is
about providing the rules for a text. To solve semantical ambiguities of a sentence, we
need external context, i.e., representations of the meaning of an expression. To create the
meaning representations, we can use techniques like semantic parsing. In the following,
you will learn more about the reasons why meaning representation is crucial in NLP, and
especially in semantic analysis.

Verifiability

Verifiability refers to the ability of a system to verify a statement based on a given model in
a knowledge base (Jurafsky & Martin, 2022, p. 311). This can, for instance, be used in tasks
like automatic question answering. To illustrate the concept, consider the question

15



“Is it possible to study artificial intelligence at IU?”

To be able to verify this question, we need a knowledge base that contains information
about the possibilities of what can be studied at various universities. The representation
could, for instance, look like this:

Study IU, Artificial Intelligence

A system can then match the input against the knowledge base and answer the question
with “yes.” If there is no appropriate answer in the knowledge base, it either has to
respond “no” or reply with a message that it cannot give an answer based on the knowl-
edge base used.

Ambiguity and Vagueness

Ambiguity is a critical issue in NLP, as different sentences can have different meanings
depending on the context. Having unambiguous representations of a text is important for
most NLP applications, otherwise, a system will not be able to reason over the representa-
tion of the text.

If we look at the sentence

“I want to study artificial intelligence at IU.”

most people will immediately know that “artificial intelligence” refers to the topic the
speaker wants to study and “IU” to the university. However, the sentence could also be
interpreted in the way that the speaker wants to study the topic “artificial intelligence at
IU.”

Vagueness is another concept that is closely related to ambiguity. Vagueness occurs if
parts of the meaning of a sentence are underspecified (Jurafsky & Martin, 2022, p. 307).
The sentence

“I want to study.”

gives enough information to find out that the speaker wants to study in general. However,
what and where the speaker plans to study exactly remains underspecified.

Canonical forms

The same meaning of a statement can be formulated with different sentences. Our exam-
ple sentence could, for instance, also be formulated as

“Artificial intelligence is what I want to learn at IU.”

If canonical forms are used, it means that all inputs that describe the same thing have the
same meaning representation in the knowledge base (Jurafsky & Martin, 2022, p. 307).
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First-order logic
This can be used as a
meaning representation
language using a set of
“atoms” that can be used
to compose larger units,
such as sentences.

Using canonical forms can help simplify NLP applications that are related to reasoning, as
only one representation of a fact has to be stored in the knowledge database. However,
canonical forms will also complicate semantic parsing tasks, as the system has to be able
to identify words or sentences that belong to the same thing. 

Inference and Variables

Inference in general refers to the ability of a system to draw a conclusion from various
inputs based on a knowledge base even though these conclusions are not explicitly repre-
sented in the knowledge base. This is done by logically deriving the desired conclusions
from the known propositions (Jurafsky & Martin, 2022, pp. 307–308).

If, for example, a person asks the question

“Where can I study artificial intelligence?”

this does not explicitly refer to any particular university. In this case, simple matching
does not work, as there is no specific university named. To answer the request, the system
could use a representation such as

Study x, Artificial Intelligence

where x is a variable from the knowledge base, which can be replaced in a way that the
answer of the system will match the question. Being able to handle variables and use
them for logical inference is important for systems that are able to handle open questions
like the one in the example.

Expressiveness

The last important property in meaning representation is expressiveness. This means that
a system has to be able to handle a large range of topics, ideally for every utterance. One
approach used to handle this challenge is first-order logic.

1.4 Prosodics
Prosodics refers to properties of speech that cannot be derived from segmental pho-
nemes. While phonemes are units of sound that distinguish one word from another, pro-
sodics refers to larger units of speech and includes elements such as loudness, pitch, or
duration, which are also called suprasegmental properties of speech (Nooteboom, 1997,
p. 640). The term “prosody” comes from the Greek word “prosodia,” which can either
mean song or syllabic accent (Gibbon, 2017, p. 4).
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Fundamental frequency
the frequency of vibration

of the vocal folds

Prosody is an essential part of speech, as it can transport information that is not encoded
in the pure sequence of words, such as irony, sarcasm, or the emotion of a speaker in gen-
eral. It can, therefore, help disambiguate aspects of a text that are not reflected in the
transcripts. Taking prosodics into account can have a huge impact on the performance in
speech recognition tasks (Waibel, 1988).

There are many prosodic features of speech that have a huge influence on how a word or
sentence can be interpreted. However, there are huge differences in prosodics dependent
on the underlying language. Therefore, we will limit the following illustrations to English.

Prosodic Prominence

There are several ways of emphasizing words in languages like English. A word could, for
instance, be said slower or louder, or the fundamental frequency F0 could be varied,
making a word’s pitch higher or more variable. 

Pitch accents

Prominence can be represented by using pitch accents, which are often also referred to as
tone. Pitch accents refer to a specific melody that is applied to a word to add morphologi-
cal functions or make phonemic distinctions (Gibbon, 2017, p. 3). Syllables or words that
are more important can be emphasized by accenting them with pitch. 

Stress

Stress refers to emphasis that is put on a sound, syllable, or word while speaking. Stress
positions in English are usually indicated by pitch accents. If stress is put on single sylla-
bles of a word, this is referred to as lexical stress. As the following example shows, the
position at which a word is stressed can change the meaning of a word.

Figure 4: Stress in Prosody

Source: Kristina Schaaff (2023).

In the same way, the stress on single words of a sentence can also change the meaning of
the whole sentence.

Prosodic Phrasing

In spoken sentences, some of the words will be grouped together naturally, while there
will be noticeable breaks between other words. Breaking up utterances into meaningful
chunks is important to being able to understand a sentence, especially as prosodic and
syntactic structures are often correlated (Bennett & Elfner, 2019).

18



Typical signals for prosodic boundaries are, for instance, a final fall or rise, phrase- or
utterance-end lengthening, or a continuation rise. In text-to-speech tasks, automatic pre-
diction of prosodic boundaries is an important field of research, as it will help to make the
results easier to understand.

Intonation

The intonation of a voice refers to variations in the fundamental frequency F0, as well as
variations of the speed of an utterance. It includes rhythms and melodies that occur in
spoken language and normally refers to constructs that go beyond single words, such as
phrases or sentences. Intonation includes higher and lower melodic patterns, as well as
acceleration and deceleration of rhythmic patterns (Gibbon, 2017, p. 4). A rise in pitch at
the end of a sentence can, for instance, be seen as an indicator for a question, whereas a
final drop can indicate declarative information.

The following example shows how different intonations and accenting can affect the
meaning of a sentence.

Figure 5: Example of How Prosody Can Affect the Meaning of a Sentence

Source: Kristina Schaaff (2023).

1.5 Grammar
Natural languages are built in a multi-level way: they are based on an alphabet, i.e., a
finite number of characters, which are then formed into single words; words can be
formed into sentences using a grammar. Therefore, a grammar is used to formally
describe a language. 

Formally, a language can be described as follows:

An alphabet Σ is a finite number of symbols σ. A sequence w ∈ Σ* of symbols from the
alphabet is called a word. A set L ⊆ Σ* of words is called a language. The grammar of a
language L is a set of rules that can be used to generate the sentences of the language L.

Formal languages can be categorized based on the way a language is composed using a
grammar. However, natural languages normally come with a lot of exceptions and are
therefore too complex to be completely described by a formal grammar. There is normally
no hard boundary between sentences that are allowed or not allowed, and there is no
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definitive tree structure for the sentences. Nevertheless, hierarchical structures are very
important in natural language to reduce ambiguity and to increase understanding of
words and sentences.

Noam Chomsky was the first to propose a formal definition of grammars. A formal gram-
mar consists of the following elements (Chomsky, 1956):

• a finite number of variables V , which are called nonterminals
• a start symbol S ∈ V
• an alphabet Σ, i.e., a finite number of symbols, which are also called terminals. A char-

acter cannot be a terminal and a nonterminal at the same time
• a finite number of production rules, which have the form l r, wherel ∈ V ∪ Σ *V V ∪ Σ * and r ∈ V ∪ Σ *
Nonterminals are symbols that are used to produce words and which have to be replaced
by terminals in the end. Typical nonterminals would be elements like <sentence>, <sub-
ject>, <verb>, <object>, <article>, and <noun>. They are often indicated by < >. The words
of a language consist only of terminals. As an example, we could define the following
alphabet: {“the,” “cat,” “eats,” “mouse”}

Rules describe, from left to right, how sentences can be formed using the rules. The * is
the Kleene star operator and means that the symbols in the brackets can be repeated zero
or more times.

For our example, the set of rules could look like those in the following table.

Table 2: Example Grammar

<sentence>                 <subject><verb><object>
<subject>                     <article><noun>
<object>                        <article><noun>
<article>                        the
<noun>                           cat, mouse
<verb>                             eats

Source: Kristina Schaaff (2023).

We are now able to build a sentence using the above grammar:

<sentence>

<subject><verb><object>

<subject><verb><article><noun>

<subject><verb><article>mouse

<subject><verb> the mouse

<subject>eats the mouse
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<article><noun>eats the mouse

<article> cat eats the mouse the cat eats the mouse

The example above could also be illustrated using a parse tree.

Figure 6: Parse Tree

Source: Kristina Schaaff (2023).

The simple grammar we used in our example allows us to build simple sentences such as
the one in the example. However, we can also build sentences that are wrong, such as “the
mouse eats the cat.”

For this reason, in formal grammars, there are various limitations on how rules can be con-
structed. Chomsky developed a hierarchy – the Chomsky hierarchy – to describe different
grammars of formal languages, which increase in complexity.

The Chomsky hierarchy ranges from the Type 0 grammar – also referred to as a phase
structure grammar – that is recursively enumerable over context-sensitive (Type 1) and
context-free (Type 2) grammars to regular grammars (Type 3). Each class is contained in
the next class, as illustrated in the figure below.
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Figure 7: Chomsky’s Types of Grammars

Source: Kristina Schaaff (2023), based on Chomsky (1956).

Type 0 grammars can be used to generate the most general language class. It includes all
formal grammars without any additional restrictions. Type 3 grammars, however, are the
most restrictive grammars and are included in all other types of grammars.

SUMMARY
Natural language processing is an interdisciplinary field of research at
the intersection of computer science and linguistics. It can be divided
into the three subdomains: speech recognition, natural language under-
standing, and natural language generation. Early research dates back as
far as the 17th century.
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In NLP, syntax deals with the study of patterns – how to form sentences
and phrases from words – while semantics deals with the meaning of
language. Elements such as loudness, pitch, and duration of speech are
referred to as prosodics. Grammar can be used to formally describe the
structure of a language.
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UNIT 2
LANGUAGE AND SPEECH

STUDY GOALS

On completion of this unit, you will be able to ...

– illustrate how sound is produced in the human vocal apparatus.
– understand the process of speech production.
– explain the concepts of phonetics.



2. LANGUAGE AND SPEECH

Introduction
This unit deals with the production and perception of language and speech. The process
of speaking involves several parts of the body, beginning with the lungs, which are respon-
sible for respiration, ranging from the voice production in the voice box to the articulation
of sounds in the mouth. Therefore, you will first get an introduction to how the human
vocal apparatus is structured and how the articulation of sounds works. After that, we
look at how language is created. The focus of this part will be on the cognitive processes
that are involved in the process of speaking. The last part of the unit is about phonetics,
which involves the articulation of phones in the mouth; the process of how sounds can be
digitalized; and finally, how the process of hearing functions.

2.1 Human Vocal Apparatus
When we speak, we use our lungs to produce an airstream, which passes through the
mouth and nose. Viewed as a whole, the vocal tract can be divided into three elements:
respiratory, vocal, and articulating elements. The respiratory elements are responsible for
producing the airstream that passes over the vocal elements. The vocal elements will then
produce the voice, which in the last step is shaped by the articulating elements. The figure
below shows the human vocal tract.
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Figure 8: The Vocal Tract

Source: OpenStax University Physics (2016). CC BY 4.0.

We will now go more into detail about how the components work.

Respiratory Mechanisms

The abdominal muscles, diaphragm, rib cage, and chest muscles cause the movement of
the lungs. When we breathe, this happens in two phases:

1. Inhalation: The diaphragm and the intercostal muscles contract. This pulls down the
lungs and the rib cage and fills the lungs with air as the volume of the lungs increases.

2. Exhalation: The intercostal muscles and the diaphragm relax. This causes the ribs to
collapse and decreases the ribcage capacity. Therefore, the air is pushed out of the
lungs again.
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As the two steps of breathing illustrate, the lungs are not able to inflate by themselves.
Instead, they are moved by the diaphragm and the intercostal muscles, the accessory
muscles, and the abdominal muscles (Ratnovsky et al., 2008, pp. 82–83).

Voice Production

Once the airstream has been produced by the lungs, it will then flow through the windpipe
(trachea), past the voice box (larynx) and the back of the throat (pharynx).

The voice box (larynx) contains two small muscles – the vocal folds, or vocal cords.
Between the vocal cords, there is a small space called the glottis. Depending on how close
the cords are together, they will vibrate when air passes through. This vibration produces
sound waves.

The figure below shows a top view of the larynx. When we eat, the epiglottis closes the
larynx to avoid liquids or food getting into the trachea and the lungs. The larynx is protec-
ted by the laryngeal cartilages.

Figure 9: Larynx (Top View)

Source: The National Cancer Institute (2003). Public Domain.
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The closer the vocal folds are together, the more they will vibrate when air passes through.
The vocal folds are important for voiced sounds, such as [b] or [g], and for English vowels.
When voiced sounds are produced, the vocal folds will be close together, while for
unvoiced sounds, such as [p], [t], or [k], they will be far apart and, therefore, will not
vibrate.

Articulation

Once the sound waves have been generated, they will be modulated in the vocal tract. The
vocal tract acts as a resonator and filter for the sound created by the vocal folds in the
larynx. The pharynx, nasal cavities, and mouth act as resonators to amplify or attenuate
the frequencies. The sound will then be modulated in the nasal and oral cavities.

The oral cavity consists of several structures that help shape the air to form different types
of sounds. The roof of the mouth consists of the hard palate and the soft palate. Moreover,
the positions of tongue, teeth, and lips play a significant role when it comes to articulating
different sounds.

The nose is only required for nasal sounds, such as [m] and [n], while most sounds are
formed in the oral tract. Nasal sounds are produced when the airstream is directed out-
ward through the nasal cavity instead of the mouth.

2.2 Speech Production
Before words are articulated in the mouth, a number of cognitive processes are involved.
The research area of speech production deals with the cognitive processes that are
involved when thoughts are transformed into speech (Schriefers & Vigliocco, 2015, p. 255).

According to Levelt (1999), the process of speech production can be broken down into
three levels, which are illustrated in the figure below.
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Morphology
how words are formed

Phonology
how sounds are organ-

ized

Figure 10: Levels of Speech Production

Source: Kristina Schaaff (2023).

In the conceptual preparation phase, the speaker decides which information should be
transmitted and transforms the thoughts into a message that can be verbalized. As a
result, we will have a preverbal message (Levelt, 1999, pp. 226–227).

Once we have the intention to speak, the brain will select the relevant information from
memory that is required to create the preverbal message. In this process, we decide what
we want to say.

In the formulation phase, we give a verbal shape to the elementary messages from the
conceptualization phase. Words are selected from the vocabulary and put into a correct
syntactic order. The process of formulation is done in two steps:

1. Grammatical encoding: This is the selection of the content and forming the structure.
A lemma that matches the preverbal message will be selected. The lemma represents
the meaning of what we want to say but does not include any specific sounds.

2. Morpho-phonological encoding: This involves transforming the words into syllables
based on morphological and phonological structures (Levelt, 1999, pp. 229–230).

The third step deals with the articulation of the message. In this phase, the syllables that
are required for the words are produced and assembled. When speaking, we receive the
syllable programs from the syllable memory, which is also referred to as mental syllabary
(Levelt & Wheeldon, 1994, p. 239). After this, the speech sounds can be produced by the
vocal tract.

Let us look at a practical example to understand the process. If someone asks how the
weather will be tomorrow, in the conceptualization phase we will make a concept of what
we will reply. The concept for our reply could look like the following figure.
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Figure 11: Example of Conceptual Preparation

Source: Kristina Schaaff (2023).

In the formulation phase, the appropriate vocabulary for our concept will be selected and
transferred into a syntactically correct sentence, which could, for instance, be

“The sun will be shining.”

Additionally, the syllables that are required to articulate the answer will be selected.
Finally, in the articulation phase, the answer is transferred to speech.

2.3 Phonetics
Phonetics deals with the production and perception of sound. It can be divided into three
subdisciplines: articulatory, acoustic, and auditory phonetics. The figure below illustrates
how these three subdisciplines link together.
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Figure 12: Subdisciplines of Phonetics

Source: Kristina Schaaff (2023).

Articulatory phonetics deals with the process of how humans produce speech by the inter-
action of the physiological structures. Acoustic phonetics refers to physical aspects of the
speech sound, such as amplitude or frequency. Auditory phonetics addresses the percep-
tion and understanding of linguistic signals.

Before we dive deeper into the three subdisciplines of phonetics, we want to start with
some basic terms and definitions.

Phones and Phonemes

Phonetics is based on phones. A phone can be seen as the smallest segmental unit of
speech, no matter whether or not it is important for the meaning of a word. Phonemes,
however, belong to the area of phonology and are the smallest sound unit that distin-
guishes two words from each other in a given language.

To differentiate between phones and phonemes, the transcription of speech sounds into
phones is written in square brackets  (e.g., [p] or [b]), while phonemes are indicated with
slashes (e.g., /p/ or /b/).

The most commonly used system for phonetic notation (phones) is the International Pho-
netic Alphabet (IPA), which provides a standardized written representation of speech
sounds. For American English, the ARPAbet provides a simpler phonetic alphabet based
on ASCII symbols to represent the subset of the IPA that is required to transcribe speech in
American English (Jurafsky & Martin, 2022, p. 527).

The table below illustrates some examples of the differences between IPA and ARPAbet.
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Table 3: Examples of Differences Between IPA and ARPAbet

Word ARPAbet symbol IPA symbol

thin [th] [θ]

sing [ng] [ŋ]

dish [sh] [ʃ]

Source: Kristina Schaaff (2023).

If not otherwise noted, the following transcriptions will be based on the ARPAbet.

Articulatory Phonetics

In articulatory phonetics, sounds are divided into three different categories:

1. Vowels are phones that are normally voiced and longer and louder than consonants.
2. Consonants are produced by blocking the airflow. They can either be voiced or

unvoiced.
3. Semivowels, like [y] or [w], are in between vowels and consonants; they are usually

voiced but shorter and less syllabic than vowels. 

Vowels

The sound of a vowel is characterized by the position of the articulators, namely the glot-
tis, pharynx, velum, lips, and tongue. For vowels, the vocal tract is open, which means that
the airflow is not obstructed. The most relevant parameters to characterize vowels are as
follows (Jurafsky & Martin, 2022, p. 530):

• height of the highest part of the tongue
• “frontness” or “backness,” depending on whether the highest part of the tongue is loca-

ted more to the front or to the back
• shape of the lips (rounded or not)

For some vowels, the position of the tongue changes while they are produced. These vow-
els are called diphthongs, which comes from the Greek and means having two different
sounds.

The following figure illustrates how vowels and diphthongs can be characterized depend-
ing on the shape of the mouth (left) and gives some practical examples (right).
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Figure 13: IPA English Vowels and Diphthongs with Examples

Source: TheCPMills (2018). CC BY-SA 4.0.

Consonants

The sound of consonants strongly depends on the place where the airflow is blocked.

For labial consonants, the lips are involved. Consonants, like [p] or [b], where both lips
come together, are called bilabial, while labiodental consonants, such as [v] or [f], are pro-
duced by pressing the bottom lip against the upper teeth. Finally, for linguolabial conso-
nants, the tongue and the upper lip are involved (Ladefoged & Maddieson, 1996, p. 16).

Dental consonants are produced by pressing the tip or blade of the tongue against the
teeth. Dental consonants include, for example, the [th] in the word that.

Alveolar consonants are produced in the part of the mouth that is located behind the
upper teeth. Phones like [s] or [z] are made when the tip of the tongue is placed against
the alveolar ridge.

Palatal sounds are produced at the roof of the mouth, which is also called the palate. If the
front of the tongue is placed close to the palate, this will produce sounds like the [y] in
yak. Palato-alveolar phones, such as the [sh] in the word ship, can be produced by press-
ing the tongue against the back of the alveolar ridge.

Velar sounds include sounds like [k] or [g] and are produced by using the tongue to block
the air in the velum, which is located at the roof of the mouth at the back. Velars often
occur in coarticulation with vowels, as both are produced using the tongue body. Similar
to the vowel space, velar consonants can therefore be categorized into front, central, and
back velars (Ladefoged & Maddieson, 1996, pp. 33–34).

The figure below illustrates where the positions in the mouth are located.
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Figure 14: Regions of the Mouth

Source: Kristina Schaaff (2023).

In addition to the aforementioned places, glottal consonants like [q] are produced by clos-
ing the gap between the vocal folds. Glottal stops can also occur between vowels.

For consonants, it is not only important to know the place of articulation but also the way
in which the vocal tract is modified, narrowed, or closed (Ladefoged & Johnson, 2011,
p. 14). The most important ways in the English language will be explained in the following.

• Stops or plosives occur when the air flow is completely stopped for a brief time. This
means that not only is the oral vocal tract blocked but the nasal air flow is stopped. The
stop itself– also called a closure – is completely silent. The sound is produced when the
air is released. Plosives can be either voiced (e.g., [b], [d], or [g]) or unvoiced (e.g., [k],
[p], or [t]).

• When nasals are produced, the oral tract is completely closed, and air can only pass
through the nose. To produce nasal sounds, the velum is lowered to direct the air into
the nasal cavity (Jurafsky & Martin, 2022, p. 530). Nasals include the consonants [m] and
[n].

• Fricatives – also referred to as spirants – are produced by a turbulent airflow (frication).
To produce this sound, the vocal tract is partly blocked. The sound of a fricative
depends on the area in which it is produced. To produce labiodental fricatives, such as
[f] and [v], the lower lip is pressed against the upper teeth. Dental fricatives like [th] are
produced between the tongue and teeth (Ladefoged & Johnson, 2011, p. 14). The most
common fricatives in English are [s] and [z], which are high-pitched fricatives where the
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tongue guides the airflow toward the teeth. Those fricatives are also called sibilants
(Jurafsky & Martin, 2022, p. 530). If a stop is directly followed by a fricative, like the [ch]
in child, the combination is called affricate.

• Approximants are produced by bringing the articulators close together but still not so
close as to cause a turbulent airstream. An example of an approximant is the [w] in
wood, where the back of the tongue is moved close to the velum.

• If the tongue is moved quickly against the top of the mouth, this is called a tap or flap.

The combination of the manner and the place of articulation will yield a unique consonant
depending on how the sound is shaped.

Acoustic Phonetics

Acoustic phonetics deals with the description of human sounds as a combination of
waves. These waves are used to transfer the sound from a speaker to a listener. The waves
can be modeled as periodic functions. Periodic functions repeat after a certain distance or
time.

The time T  between two oscillations is called the wavelength or period. From the period,
the frequency f  of a wave can be computed as the number of oscillations within one sec-
ond: f = 1T
A sound with a frequency of 150 Hertz (Hz) means that the sound repeats itself 150 times
within one second. The frequency of a sound wave reflects the pitch of a sound. The
higher the frequency of a sound, the higher the pitch, and vice versa.

Another important characteristic of a sound is its amplitude A. The amplitude indicates
the intensity of a sound, i.e., how loud it is. If the amplitude is high, the produced sound
will be loud, while quiet sounds are characterized by a low amplitude.

Digitalization of speech

To process a sound using a computer, the speech signal has to be transformed into a sig-
nal that can be represented in a form the computer can understand. This is done by quan-
tization and sampling.

Quantization transfers a signal from an analog to a digital signal, while sampling converts
a continuous signal into a discrete signal. In the figure below, the process of transforming
an analog signal to a digital signal is illustrated.
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Figure 15: Analog-to-Digital Conversion of a Signal

Source: Kristina Schaaff (2023).

When a signal is sampled, the amplitude is measured at regular intervals. The number of
samples per second is referred to as the sampling rate or sampling frequency. It is impor-
tant to select a sampling rate at least twice as high as the maximum frequency that is to be
reconstructed (Nyquist–Shannon sampling theorem). The maximum frequency is also
referred to as the Nyquist frequency and can be computed as follows:fnyquist = 12 · fsample
When the sampling rate is too low, aliasing will occur, which produces a distortion from
which it is not possible to recover the original signal. For quantization, the y-axis is typi-
cally partitioned into a fixed number of equally sized intervals. The number of intervals n
is typically a power of 2, such as 216 = 64436. The amplitude of the quantized signal can
only have values that are integral numbers of intervals. Of course, the quantization adds
noise to the signal, i.e., induces errors. For a signal f  that is in the range from fmin to fmax,
the average quantization error can be computed using the following equation:e = fmax − fmin2n
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Fourier transform
The Fourier transform is a

mathematical method
that can be used to

decompose a function
from the time domain

into the frequency
domain.

Time and frequency domains

Signals can either be analyzed in the time or in the frequency domain. Analysis of features
like the amplitude or the pitch of a signal can be interpreted directly from the time
domain. However, many algorithms in speech recognition are based on features from the
frequency domain. Using methods like the Fourier transform, a signal can be transferred
from the time into the frequency domain. In the frequency domain, the waves from differ-
ent frequencies will be summed up. This representation is called a spectrum.

Figure 16: Representation of a Signal in Time and Frequency Domains

Source: Accountalive (2021). CC0 1.0.

The figure shows an example of a signal that is mapped from the time to the frequency
domain using the fast Fourier transform (FFT) method. The signal on the top is generated
by combining two sine functions: one sine function with an amplitude of two and a fre-
quency of 1 Hz and another with an amplitude of one and a frequency of 10 Hz. The bot-
tom signal shows the same signal in the frequency domain. As the amplitude of the 1 Hz
signal is two times higher than the amplitude of the 10 Hz signal, the peak at 1 Hz is also
two times as high as the peak at 10 Hz.

Auditory Phonetics

Auditory phonetics deals with the perception and processing of sounds.
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When we hear a sound, we will perceive it with our ears. The ear consists of three parts:
the outer ear, the middle ear, and the inner ear.

The anatomy of the human ear is shown in the figure below.

Figure 17: Anatomy of the Human Ear

Source: Surachit (2003). CC-BY

The outer ear is located outside of the skull (1) and includes the ear canal (2) and the
pinna (3). The most important function of the outer ear is to encode the spatial and tem-
poral information of the sound it collects.

The middle ear consists of the eardrum (tymphanum – 4), the fenestra ovalis, and three
tiny bones (6, 7, 8), which are also called auditory ossicles. When the eardrum is moved by
sound waves, it will move the hammer (malleus – 6). The hammer will then transmit the
sound via the anvil (incus – 7) to the stirrup (stapes – 8), which will transfer the sound to
the membrane of the fenestra ovalis, which is the opening to the vestibule of the inner ear.

The part of the inner ear that is involved in hearing is called the cochlea (10). It is located
in the bony labyrinth (9). The cochlea converts the sound into nerve impulses, which can
then be processed by the auditory nerve (11).

A healthy human is normally able to perceive frequencies between 20 Hz and 20 kHz. How-
ever, the frequencies we are able to hear are strongly influenced by factors like age and
gender. The older we get, the lower the highest frequencies we are able to hear, and the
highest frequency can get as low as 12 kHz.
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SUMMARY
Speech is produced using the vocal apparatus. The respiratory elements
produce an airflow that passes over the vocal elements. These elements
then produce the voice, which can afterward be shaped by the articulat-
ing elements of the vocal apparatus.

Before speech can be produced, cognitive processes transform thoughts
from the brain to speech.

Phonetics deals with the production and perception of sound. To tran-
scribe phonetics, systems like IPA and ARPAbet can be used. Articulatory
phonetics refers to the process of how humans produce speech by the
interaction of the physiological structures. Acoustic phonetics deals with
the physical aspects of speech sound, such as amplitude or frequency.
Auditory phonetics is about the perception and understanding of lin-
guistic signals.
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UNIT 3
CHALLENGES IN NLP

STUDY GOALS

On completion of this unit, you will be able to ...

– describe what is important about data for NLP systems.
– compare different NLP systems.
– explain the domain challenges for NLP systems.
– understand the difficulties of multilingual applications.



3. CHALLENGES IN NLP

Introduction
In the past decades, algorithms for natural language processing (NLP) – be it for speech
recognition, natural language understanding, or natural language generation – have
become tremendously powerful. However, human language is extremely complex and
subject to constant changes over time. This poses a lot of challenges to NLP, which will be
addressed in this unit.

We will start with an introduction to the most important challenges that arise when col-
lecting data for NLP applications. Having a high-quality data corpus from which to build a
model is key to developing new systems. We will also discuss how NLP systems can be
evaluated. The evaluation of NLP systems is an important step toward finding out which
model works best for a certain task and comparing different models. Moreover, good eval-
uation metrics can also help optimize a given model’s parameters.

Another important challenge in NLP is different application domains, as language may
vary depending on the domain, but there are also other factors that can influence lan-
guage, such as social groups or dialects. Finally, you will learn about the challenges in NLP
when building multilingual applications.

3.1 Data for NLP
NLP can be divided into three different subdomains:

1. Speech recognition deals with the recognition of words and sentences from spoken
language and is, therefore, also referred to as speech-to-text processing.

2. Natural language understanding is about the identification of the meaning of words
and sentences.

3. In natural language generation, text is transformed into meaningful speech – also
called text-to-speech processing.

All subdomains require data to train and develop a model that suits the respective NLP
task.

In the early years of NLP, algorithms were limited by data storage capacities, computa-
tional power, and the available number of publicly available data corpora. Nowadays, this
is no longer an issue, as computers have become faster, storage has become cheaper, and
there has been a massive increase of the data available for many different application sce-
narios. The importance of training data was underpinned by an experiment, where Banko
and Brill (2001) showed that the amount of training data has a higher influence on the per-
formance of a model than the choice of machine learning approach.
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The Risk of Biased Data

When a model is trained, it is important that the data fit the requirements of the desired
application domain. Especially with the huge amount of data that is available nowadays,
it is important to keep an eye on the quality of the data, as the quality of the data has a
significant impact on the quality of the model. If a model is trained with data that are not
appropriate for a certain purpose, the resulting model will most likely not perform well in
this domain. This fact is often summarized by the term “garbage in, garbage out.” For
instance, Buolamwini and Gebru (2018) found that many datasets in machine learning are
systematically biased on axes such as race or gender. Likewise in NLP, datasets have been
found to contain biases, for instance, toward the race of a speaker (Sap et al., 2019).

Most NLP systems are limited to a single language. So far, most research is still done on
the English language, and data from other languages are often ignored (Bender, 2009).
This creates some major problems: focusing on English will induce a bias to the results as
there are many sources in other languages that are underrepresented in the analysis,
especially when analyzing information from news, social media, or blogs (Loginova et al.,
2021). Looking at the number of native speakers, languages such as Spanish or Mandarin
have more native speakers than English.

Another challenge that comes with the over-representation of the English language com-
pared to other languages is the curse of dimensionality. If a dataset is too wide, i.e.,
includes a large number of features compared to the sample size, this increases the chan-
ces ofoverfitting. This means it is quite likely for a machine learning model to find “fake”
correlations that do not exist. Therefore, transferring high-dimensional NLP techniques
based on English to languages with smaller user bases can yield bad results (Johns, 2019).

Data Challenges for Under-Resourced Languages

While data collection in general can already be a challenging task, under-resourced lan-
guages introduce further challenges for the generation of data corpora. Under-resourced
languages are characterized by the following aspects (Besacier et al., 2014):

• no stable orthography or unique writing system
• limited or no presence on the internet
• no or only little linguistic expertise
• limited electronic resources for NLP tasks like annotated (monolingual) data corpora,

transcribed speech data, bilingual dictionaries, vocabulary lists, etc.

Under-resourced languages are often also referred to as less-resourced languages, low-
density languages, low-data languages, or resource-poor languages. It is important to dif-
ferentiate between under-resourced languages and minority languages. The latter refers
to languages that are only spoken by a minority of people but might still be well-
resourced. One example of a minority language would be the Catalan language.

When collecting data, one major challenge for under-resourced languages is that there is
usually a gap between language experts (i.e., the people who speak that language) and
technology experts (i.e., the people developing a system). In many cases, it can be very
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Crowdsourcing
In crowdsourcing, difficult

tasks for computers are
outsourced to a human

“crowd” in the web.

difficult to find native speakers who also have the technical skills to build an NLP system
in their language. Another problem is that most under-resourced languages are not descri-
bed well in linguistic literature.

Due to the lack of resources, innovative methods for data collection are necessary, such as
crowdsourcing (Gelas et al., 2011) or multilingual acoustic models (Le & Besacier, 2009;
Schultz & Waibel, 2001), which share information between languages. To address the poor
documentation of under-resourced languages in linguistic literature, one possible solution
is to use knowledge and resources from similar languages and try to map features, for
instance, the phonetics, from more resourced languages to the under-resourced language
(Besacier et al., 2014).

Data Transcription and Annotation

When NLP models are trained, it is important to differentiate between supervised and
unsupervised learning. In supervised learning, labeled data are used to train a model,
while in unsupervised learning, there are no labels.

For supervised learning algorithms in NLP, we need labeled data. This means that,
depending on the NLP task, we need to transcribe and/or annotate the dataset used to
train a model with additional metadata. This process is necessary to make the data under-
standable to the computer.

To build a model for speech recognition, it is necessary to have a vast amount of transcri-
bed data available. Speech transcription is about the conversion of spoken words into text
– be it orthographic or phonetic transcripts.

In orthographic transcription, the standard spelling system of the target language is used
to convert speech into text. In phonetic transcription, a text is transcribed into phones
(i.e., speech sounds) using symbols like the International Phonetic Alphabet (IPA). Nowa-
days, especially for languages like English, there are powerful speech-to-text models that
can be used to transform spoken language into text. However, for other languages, there is
still a lack of fully transcribed data corpora.

Text annotation refers to the process of adding labels to text files about their content.
There are several types of text annotation. The most important types are illustrated in the
figure below.
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Figure 18: Different Types of Text Annotations

Source: Kristina Schaaff (2023).

Sentiment analysis deals with the identification of the sentiments or emotions of a text.
Therefore, in sentiment annotation, a text is annotated according to the emotion(s) it
reflects. This information can, for instance, be used to analyze data from social media or
from customer reviews.

Intent annotation is about finding out the intention behind a text. This could, for instance,
be the classification of a customer request into categories such as request, confirmation,
or command. According to the classification result, the request could automatically be
routed to the responsible department.

In entity annotation, different key phrases, parts of speech, or named entities are identi-
fied. Key phrase extraction can quickly identify the content of a text or a document (Golla-
palli et al., 2017). Part-of-speech (POS) tagging deals with the identification of words
according to their grammatical categories, such as nouns, adjectives, verbs, or adverbs.
Named entity recognition (NER) is about the identification of named entities, such as loca-
tions, persons, dates, or organization names (Li et al., 2022).

In text classification, a text is labeled according to its category. This can be done on a sen-
tence level or for whole paragraphs and documents.

45



Validation set
The validation set is often

also referred to as the
development set.

Linguistic annotations can be divided into three subcategories: discourse annotation,
semantic annotation, and phonetic annotation. While discourse annotation deals with the
identification of contextual knowledge, semantic annotation concerns the annotation of
word definitions. Phonetic annotation labels parameters such as stress, intonation, and
pauses in speech.

Data Corpora and Toolkits

As NLP is an important field of research in the area of AI, there are a large number of data
corpora available that can be used to develop and train models and algorithms.

Platforms like Kaggle provide datasets from different areas. NLP frameworks such as
spaCy provide fast statistical NER, including a named entity visualizer. Using spaCy, it is
either possible to train your own model or to use a pre-trained model, which is included in
the framework. The Natural Language Toolkit (NLTK) is another framework that provides,
for instance, a pre-trained model for NER (Bird et al., 2009). Gensim is another NLP frame-
work, which focuses on topic modeling.

3.2 Evaluation of NLP Systems
The importance of NLP systems in our everyday life is constantly increasing. Therefore, it
is important to have systems that are as reliable as possible. To make NLP systems more
robust, it is important to continually improve the underlying models. The goal is to find a
model that is optimally able to fit future data. This means that the error rate of the predic-
tions should be minimized.

Training, Validation, and Test Sets

For proper model evaluation, the data that are used to develop and optimize a model is
randomly split into three distinct datasets: training, validation or development, and test
sets. In supervised learning, the sample data consist of a pair of an input and an output
vector, where the output vector contains the labels of the dataset.

The training dataset is used while a model is trained. It contains sample data that are used
during the training process to fit the model parameters. During the training, the model will
be run with the training data (James, 2013, p. 176). The results of the model are compared
to the labels of the output vector. Depending on the results, the model will be adjusted
accordingly. Besides the fitting of the model parameters, the training of a model can also
include the selection of the variables that are best suited for the estimation of the target
variable.

In the next step, the validation set is used to further optimize the performance of the
model developed based on the training data. It is important that the validation data have
not been used for the training, so as to obtain an unbiased evaluation of the model devel-
oped during the training.
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Finally, the test set is the dataset that is used to evaluate the performance of the final
model. It is important that the samples in the test set are not used during training or opti-
mization of the model, to obtain an unbiased final evaluation. The test set is used only
once. In the event that the results produced by the test set do not match expectations, a
completely new test set has to be used if the process of model training is repeated.

To obtain a robust model, it is crucial to have datasets that follow similar probability distri-
butions and are independent of each other.

Evaluation Metrics

When algorithms are developed and tuned, we will need some metrics to evaluate the
developed models and compare them to other systems. For binary classification tasks,
commonly used metrics for model evaluation are precision and recall, the F-score, and
accuracy.

To understand these metrics, we will consider credit scoring. Credit risk scoring is a typical
binary classification problem, where AI is commonly used to decide whether a customer is
creditworthy or not. Depending on how the decision for the creditworthiness of a cus-
tomer is made, the results can be categorized as follows:

• If a customer is classified as creditworthy and turns out to be creditworthy, this is called
a true positive (TP), i.e., the algorithm’s prediction of a positive outcome was correct.

• If a customer is classified as creditworthy but turns out not to be (e.g., because of failure
to pay), this is called a false positive (FP). In this case, the algorithm had predicted a
positive outcome, but the outcome turned out to be negative.

• If an algorithm predicts a customer to not be creditworthy and it turns out that the cus-
tomer actually goes bankrupt, this is called a true negative (TN), meaning that the algo-
rithm’s prediction of a negative outcome was correct.

• If a customer is classified as not being creditworthy but would have been in fact, we call
this a false negative (FN), i.e., the algorithm has predicted a negative outcome even
though it would have been positive.

The results of the classification can be represented in a contingency table, which is called
a confusion matrix or error matrix. The confusion matrix has two dimensions: one for the
predicted and one for the actual outcome. The table below shows what the confusion
matrix looks like and how the aforementioned classification results can be displayed in
the matrix.
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Figure 19: The Confusion Matrix

Source: Kristina Schaaff (2023).

Once we have the classification results, the aforementioned evaluation metrics can be
computed.

Accuracy

Accuracy is probably the performance measure that is the easiest to understand and inter-
pret. It is defined as the ratio of those samples that have been correctly classified in rela-
tion to the total number of samples:

Accuracy = TP + TNTP + TN + FP + FN
For the credit risk assessment, it would be computed by taking the number of decisions
that have been correctly made by dividing them by the total number of decisions about
the credit risk.

While the accuracy is a very straightforward performance measure, it has the disadvant-
age that it is not very robust toward unbalanced data, i.e., if there are large differences in
the number of samples for each class. For credit risk assessment, for example, it is quite
likely that the number of positive decisions exceeds the number of negative decisions.

Precision

Precision reflects how many positive samples have been classified correctly with regard to
the total number of samples in this class:

Precision = TPTP + FP
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In our example with the credit risk assessment, this would be the number of customers
who have been identified as creditworthy and paid back their credit in relation to the total
number of customers who have been identified as creditworthy, no matter whether they
were able to pay back their credit or not.

Recall

Recall denotes the number of positive samples that have been identified correctly in rela-
tion to the total number of samples that should have been predicted to be positive:

Recall = TPTP + FN
If we look at the creditworthiness prediction, this would be the number of customers who
have correctly been identified to be creditworthy in relation to the total number of cus-
tomers who would have been creditworthy.

F-Score

The F-score is a score that combines precision and recall in one single number using the
harmonic mean: F = 2 · precision · recallprecision + recall
The F-score can range from 0 to 1. A value of 1 or close to 1 is correlated with high values of
precision and recall, which means very accurate classification results. A value of 0 means
that either the value of precision or recall is zero.

The ROC Curve

If we look at classification tasks, most algorithms will return a percentage of how likely it is
that a sample belongs to a particular class. For instance, in a sentiment analysis task, this
could be the decision of whether a customer review is classified as positive or negative.
Therefore, we need to set a threshold or cutoff value, which indicates when a sample is
classified into a certain category. Setting this threshold to 75 percent could, for instance,
mean that all model outputs from our sentiment analysis task with an output value higher
than 75 percent would be classified as positive.

To find the optimal threshold, the receiver operator characteristic (ROC) curve can be
used. For every possible cutoff value, the ROC curve shows the trade-off between the true
positive (TP) and the false positive (FP) rates. Therefore, the shape of the ROC curve indi-
cates how strongly the classes are distinguished when the cutoff value is varied (Kulkarni
et al., 2021, p. 9). Ideally, the TP rate should be 100 percent and the FP rate 0 percent.
However, as this is normally not the case, the ROC curve can help find the cutoff value that
maximizes the TP rate while minimizing the FP rate. TP and FP rates can be computed as
follows:
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TP rate = TPTP + FNFP rate = FPFP + TN
The TP rate and the FP rate form the axes of the ROC curve. The computation of the ROC
curve can be done with the following steps:

1. Set the cutoff value to a value between 0 and 100 percent.
2. Compute the TP, TN, FP, and FN values for the testing set according to the classes

defined by the cutoff value.
3. Calculate the TP rate and FP rate.
4. Enter the resulting point on the ROC curve.
5. Set a new cutoff value and continue with step 2.

The following figure shows an example of a ROC curve.

Figure 20: The ROC Curve

Source: Kristina Schaaff (2023).

The closer the curve is to the left upper corner, the better is the predictive power of the
model. To measure this, the area under the curve (AUC) can be calculated. In the figure
below, different shapes of ROC curve are illustrated.
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Figure 21: Different Shapes of the ROC Curve

Source: Kristina Schaaff (2023).

For an ideal model, the AUC would be 1, while for a random model, the AUC would be 0.5.
In reality, the value is somewhere in between.

Evaluation of Machine Translation

Early evaluations of MT were normally done manually by evaluating metrics such as flu-
ency and adequacy. When fluency is evaluated, the person evaluating the system has to
be fluent in the target language to be able to judge if the output is fluent or not. The accu-
racy of the translation of the source words is not analyzed.

Adequacy, does not analyze how fluently a text is written but evaluates how well the infor-
mation from the source is contained in the system output. For this purpose, the annotator
must know both languages, but it is not necessary that they are fluent in both languages.

Both metrics are normally measured separately for each sentence and evaluated on a five
or seven point scale (Przybocki et al., 2009). These scores can also be averaged to give a
single score for the system evaluation (Snover et al., 2006).

Evaluating the results of MT is a time-consuming – and therefore also expensive – task for
humans. Moreover, manual metrics often lack repeatability and objectivity, as the output
strongly depends on human judgments. For this reason, automated metrics can help eval-
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uate the results of the translation. The most popular metric for MT is the bilingual evalua-
tion understudy (BLEU), which rates the quality of a translation based on how well a
machine translation corresponds to a human translation. The basic idea is that a machine
translation is better the closer it is to a professional human translation (Papineni et al.,
2001, p. 311). 

The BLEU score can be computed by comparing “n-grams of the candidate with the n-
grams of the reference translation and count[ing] the number of matches. These matches
are position independent. The more matches, the better the candidate translation” (Papi-
neni et al., 2001, p. 312). The calculations are based on n-grams at a word level, meaning a
sequence of n words. The resulting score will be a number between 0 and 1. The score can
be seen as a similarity measure between the hypothesis and the reference text. The closer
a value is to 1, the higher the similarity between both texts. As “systems have been known
to generate more words than are in a reference text” (Celikyilmaz et al., 2018, p. 71), a
modified form of precision is used for BLEU.

BLEU can also be used to evaluate other NLP tasks, such as text summarization or lan-
guage generation.

3.3 Domain Challenges
When NLP is used to solve a task, it is important to take the specific domain and/or setting
of the input data – be it text or speech – into account.

Variations of Application Domain

Different words and phrases can have various meanings depending on the application
domain. This phenomenon is also referred to as domain mismatch. The best performance
can be achieved if a system is adapted to the domain that best matches the respective use
case. If, for instance, a dictation software tool is trained for lawyers, it might not perform
well when being used by a reporter trying to dictate an article about sports. In the same
way, a sentiment analysis program that has been trained on tweets might not necessarily
have the same performance on customer reviews. A system for automatic short answer
grading that has been designed for questions from business administration might have
bad performance on math exams.

The quality of the outcome strongly depends on the quality and relevance of the text cor-
pora that are used for training. If a text corpus from the wrong domain is used for training,
the model will most likely have a poor performance in the domain for which it has been
designed. In general, the level of diversity of the data used as an input for a system has a
great influence on the generalization and abstraction abilities of a model. A model will
perform better in a specific domain if it is trained with a more domain-specific input. How-
ever, this will reduce its ability to generalize and to perform on out-of-domain topics.

The figure below illustrates an example of how a word can have different meanings
depending on the domain in which it is used.
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Figure 22: Different Meanings of One Word

Source: Kristina Schaaff (2023).

To illustrate this, Chu et al. (2017) used a Chinese–English machine translation system that
was originally developed and trained for texts in the patent domain. Without any adap-
tion, this system performed poorly when trying to translate TED talks. After a domain-spe-
cific adaption with texts from other TED talks, it was possible to improve the performance
of the system up to seven times.

In statistical machine translation (SMT), the domain adaption is usually done by adapting
the entries in the language model and the phrase table (Su et al., 2012).

Looking at neural machine translation (NMT), a popular method for domain adaption is to
first train a system for a general domain and then perform a training on domain-specific
data for some of the epochs (Freitag & Al-Onaizan, 2016; Koehn & Knowles, 2017a).

Language Variations

Language can vary depending on the environment and the circumstances. On the phone,
we will communicate differently than when writing an email; when talking to a customer,
we will talk differently than when we talk to friends.

There are four dimensions of language variation: diaphasic, diatopic, diachronic, and dia-
stratic variation (Zampieri et al., 2020).
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Figure 23: Dimensions of Language Variations

Source: Kristina Schaaff (2023).

Diaphasic variations are related to the situation where communication happens. This
means the variation is related to the communication medium or setting. This can, for
instance, be the difference between oral and written communication or different degrees
of formality of a language. In Japanese, for instance, there are four different levels of for-
mality. While the vocabulary of the lower levels is quite similar, the politest level uses dif-
ferent vocabulary for some of the words.

Diatopic variations refer to the linguistic area, which can, for instance, be variations in
race, different dialects, or also national varieties of the same languages – such as Ameri-
can versus British English.

One challenge about data dealing with dialects is that they are typically underrepresented
in written resources. Therefore, when analyzing dialects, new text corpora have to be pro-
duced by transcribing speech. Depending on the dialect, this can either be done automati-
cally (Ali et al., 2015) or manually (Scherrer et al., 2019).
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For variations of the same languages, like British and American English, diatopic varia-
tions are less challenging, as both have their own written standards and sometimes even
use different words, such as “rubbish” in British English and “garbage” in American Eng-
lish (Zampieri et al., 2020).

Diachronic variations are about the variations of language over time. This includes, for
instance, old-fashioned and obsolete words but also changes in terminology in recent
vocabulary. One example of how the meaning of a word can change over time is the Ger-
man word Querdenker, which, before 2020, was used as a term for someone who thinks in
an unconventional way and was mostly perceived in a positive way. After the start of
COVID-19, it started to become a synonym for someone who denies COVID and the associ-
ated measures; nowadays, it has a mostly negative connotation.

Diastratic variations of language relate to the variations in languages that can be traced
back to social groups, such as age or gender (Zampieri et al., 2020). For example, the sen-
tence “This is no good” could also be expressed as “This ain’t no good.”

3.4 Multilingual Application
Multilingual applications in NLP are a big challenge. Besides the bias introduced by most
research being done in English, under-resourced languages are another big challenge in
NLP, especially when it comes to multilingual applications. In the following, we will have a
closer look at the challenges of multilingual applications.

Code Switching

Code switching refers to the process when a speaker or writer changes the language (i.e.,
the code) while speaking/writing. This can happen within a dialogue, between sentences,
or even within a sentence. Code switching commonly happens in multilingual communi-
ties when people with different languages and/or cultural backgrounds communicate
(Auer, 2001). As most speech recognition systems are limited to one single language, code
switching is an important topic to be addressed in multicultural settings.

To handle code switches in spoken language, the position in an utterance where the
switch happens has to be detected. Most code switches occur at positions where the syn-
tactical rules of the languages involved are not violated (Bokamba, 1989). The most fre-
quent points for switches are between verb and object noun phrases and between deter-
miners and nouns (Adel et al., 2013).

Features that can be used to predict code-switching points include, for instance, part-of-
speech tags, language identity, and word form (Solorio & Liu, 2008).
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Multilingual Sentiment Analysis

In the past decades, sentiment analysis, i.e., the detection of emotions based on language,
has become an important research area in NLP (Wankhade et al., 2022). In multilingual
sentiment analysis, sentiments are detected and classified based on information from
texts that are written in multiple languages. While there has been a great deal of research
on well-resourced languages like English or Chinese, low-resourced languages are still
underrepresented. Further developments of NLP technologies for these languages are,
therefore, limited, especially when it comes to research about NLP and socio-cultural and
multicultural factors. There have been limited insights from past research (Lo et al., 2017).

Machine Translation

Machine translation (MT) is another example of multilingual applications where under-
resourced languages can be a challenge. In MT, speech or text is translated from one lan-
guage to another in an automated way. The research field dealing with the automatic
translation of under-resourced languages is called low-resource MT. In low-resource MT,
there are no large bilingual text corpora of source and target language available.

To avoid the problem of data scarcity when training the MT system, a commonly used
approach is pivot MT (Kim et al., 2019; Wu & Wang, 2009). Pivot MT tackles the problem by
using a pivot language to close the gap between source and target language (Deng & Liu,
2018, pp. 147–183).

The figure below illustrates the translation process for the example of translating from
Khmer to Zulu.

Figure 24: Example of Pivot Machine Translation

Source: Kristina Schaaff (2023).

In the example, two cascading systems are used instead of only one single direct system. A
text is first translated from the source language (Khmer) into the pivot language (English).
After that, the second system continues the translation from the pivot language into the
target language: Zulu.

This approach has the advantage that there are significantly more data in the language
pairs Khmer – English and Zulu – English than we would have using a direct language
model for Khmer – Zulu.
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SUMMARY
One of the key elements ofdeveloping a good NLP model is the availabil-
ity of reliable data to train the system. One of the problems that must be
faced when collecting data is that biased data and factors like under-
resourced languages can make it difficult to find a data corpus that is
suitable for a certain task.

To develop an NLP system, data are split into training, validation, and
test data. Moreover, it is important to be able to compare the system to
other systems and have metrics for good parameter optimization. For
this purpose, metrics like accuracy, precision, recall, and the F-score can
be used.

Variations in the application domain and in language pose further chal-
lenges for NLP systems. When developing multilingual applications,
phenomena like code switching or under-resourced languages are prob-
lems that have to be dealt with.
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UNIT 4
TECHNIQUES

STUDY GOALS

On completion of this unit, you will be able to ...

– differentiate between rule-based and statistics-based systems.
– work with regular expressions.
– know the basics of n-grams.
– understand the vectorization of data.
– explain the concept of NLP models.



4. TECHNIQUES

Introduction
Early natural language processing (NLP) systems were mostly based on rule-based techni-
ques. Since then, systems have shifted toward statistical models. Therefore, this unit starts
with an introduction to the difference between the two systems. Afterwards, the concept
of regular expressions is introduced; they are a powerful tool to search, for instance, for a
specific term in a given text.

To determine the meaning of a whole text, it is important to not only look at single words
but also at the combination of words. Therefore, the concept of n-grams will be intro-
duced. After that, we will look at different techniques for vectorizing data. We will start
with the simple bag-of-words approach and, afterwards, consider neural models to build
word and sentence vectors.

The unit closes with an overview of how NLP models can be used for text processing. We
will start with the most important steps for text preprocessing, as this is an important part
of the pipeline when using pre-trained models. Afterwards, you will get an overview about
the underlying concepts of statistical models and neural models.

4.1 Rules Versus Statistics
In early NLP systems, rule-based systems were applied to linguistic structures. In most
cases, these rules were hand-written for a specific domain, which made it hard to transfer
a system from one domain to another. Recently, there has been a shift toward systems
that are based on statistical methods from machine learning, which has helped to make
these systems more powerful. In the following, we will look more closely at the details of
rule-based and statistical systems for NLP.

Rule-Based Systems

In rule-based systems for NLP, a given problem is addressed using a set of predefined
rules. The rules used in those kinds of systems are built in a way that tries to reproduce
the way humans construct sentences. 

To illustrate how rule-based systems work, we will consider a very simple example of a
system that extracts single words from a text. This can be done by using only one single
rule, which divides a given text at every blank space. At first sight, this might look like a
very simple and good solution to the problem. However, if we look at terms like “Los
Angeles,” this already illustrates that the problem is more complicated than one might
have originally thought. Therefore, more complex systems are required, which use formal
grammars and are based on linguistic structures.
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Development of rule-based systems usually involves human knowledge to build the sys-
tem. This brings us to one of the major advantages of rule-based systems: explainability.
Explainability is about the ability to make it unambiguously comprehensible how a system
came to a certain solution. This makes it easier for humans to locate errors and to under-
stand how a specific task has been processed.

Another advantage of rule-based systems is that they can be developed and improved in a
very flexible way. When rules are changed or added, this does not necessarily mean
changes to the core of the application. Moreover, the development of rule-based systems
requires a comparatively small amount of training data.

However, one of the major drawbacks of rule-based systems is their lack of flexibility when
it comes to the application domain. Being built for a specific domain makes it difficult to
use these systems in a domain that differs from the domain it has been designed for.
Moreover, setting up the rules for a rule-based system requires human experts to build the
rules.

Statistics-Based Systems

In the past decades, computational power has significantly increased. This paved the way
for the application of statistical methods. Statistical methods are often summarized under
the term “machine learning.” Nowadays, those systems have replaced most of the rule-
based systems.

Statistical methods follow a data-driven approach. To generate a model in statistics-based
methods, a huge amount of training data is used for a given task. Once a model is trained,
it can be used to make predictions for an unknown set of data.

One of the major differences to rule-based systems is that statistics-based systems do not
require a human expert with domain knowledge to set up the rules. This comes, of course,
at the expense of the explainability of the systems.

Statistics-based systems can be set up quite easily based on existing systems by adapting
them with appropriate data. Additionally, it is much easier to transfer a model from one
domain to another than for a rule-based system.

4.2 Regular Expressions
One common task in NLP is to search for a specific pattern in a given text or string. A pow-
erful tool to tackle this problem is to use regular expressions (also referred to as “RegEx”).
Most programming languages, like Python, JavaScript, or Perl, and even shell scripts or
the UNIX command line, are able to handle regular expressions. Also, some editors, like
Vim or Emacs, are able to work with regular expressions for operations like search and
replace.
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In rule-based NLP techniques, regular expressions are commonly used to perform tasks
like extracting data from text. Above all, this can help if well-defined patterns like times,
prices, or dates have to be identified and extracted.

Basic Concepts of Regular Expressions

In the following, we want to introduce the basic concepts of regular expressions.

There are some “metacharacters” that often occur in regular expressions: \, ^, $, .,
|, ?, *, +, (, ), [, ], {, and }. If some of these characters are used as a literal,
they have to be escaped with a backslash. Otherwise, they will be executed as a regular
expression.

Anchors

Anchors are used to mark a position in a string:

• ^ marks the start of a string.
• $ indicates the end of a string.

Some examples are as follows:

• ^Apple will match the string “Apples are not pears.”
• apple$ will match the string “I want to eat an apple” but not “Apples are not pears.”
• ^Apple$ will only match the string “Apple” but not the other two sample sentences.

Character classes and disjunctions

Disjunctions represent a logical OR. Disjunctions are either separated using the pipe sign |
or written in square brackets [].

Some examples are as follows:

• The expressions pe[aeu]r, pe(a|e|u)r, or pear|peer|peur would all match the
words “pear,” “peer,” and “peur.”

Character classes are used to represent a certain group of characters in a regular expres-
sion:

• \d or [0-9] will match any digit.
• \w or [0-9_A-Za-z] will match alphanumeric characters and the underscore.
• \s will match all white spaces.
• . will match any arbitrary character.

Character classes and disjunctions can be negated using ^. For example, \^d would mean
that a character is not a digit.
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Quantification

Quantifiers make it possible to define repetitions of preceding elements. In regular expres-
sions, the following quantifiers are used:

• ? indicates that the preceding element occurs zero or one time.
• * marks zero or more occurrences of a character.
• + marks one or more occurrences.
• {n} indicates that the preceding element occurs exactly n times.
• {n,} indicates that the preceding element occurs at least n times.
• {n,m} indicates that the preceding element occurs at least n and at maximum m times.
• {,m} indicates that the preceding element occurs at maximum m times.

Some examples are as follows:

• ap{1,3}le will match aple, apple, and appple.
• app?le will match aple, or apple.
• a[p]+le will match aple, apple, appple, and so forth.

Combinations of Regular Expressions

The regular expressions introduced above can be combined in various ways to search for
specific terms in a text.

If we want to find, for instance, all Euro prices in a given document, this could be done
using the following regular expression:

€[0-9]+

This expression would return all whole number prices. However, if a price has decimals,
only the whole number would be returned.

Therefore, we need to extend the expression in the following way:

€[0-9]+.[0-9][0-9]

This pattern can also detect prices with decimal digits. However, this expression will not
be able to detect whole number prices anymore. Therefore, we need to make the cent dig-
its optional:

€[0-9]+(.[0-9][0-9])?

Now all prices in the document can be detected correctly.
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Language model
A language model is used

to model a probability
distribution for a

sequence of words.

4.3 N-Grams
So far, we have learned a lot about the identification of single words. However, when we
only look at single words, we will not be able to determine the meaning of a whole text.
Therefore, it is important to not only look at the occurrence of single words but also at the
combination of different words. This can be done using language models. To understand
why we need language models, let us start with a simple example illustrated in the figure
below.

Figure 25: Example of the Use of Language Models

Source: Kristina Schaaff (2023).

A good language model will most likely be able to identify that it is more likely that a per-
son wants to go to the beach while being on holiday than wanting to go to the office and
therefore complete the sequence of words accordingly. Completing the sequence from the
example with the word peach will have the lowest probability, as the sentence does not
make sense.

N-grams are the simplest language model and can be used to assign probabilities to a
sequence of words, or sentences. In general, a sequence of n words is called an n-gram.
For example, a sequence of two words will be called a 2-gram (also known as bigram). This
could, for instance, be “hello world.” The sentence “how are you” would be called a 3-
gram (or trigram). N-grams can be used to estimate the probability of the last word of a
sequence of n words based on the previous words. The task is, therefore, to predict the
probability P  of a word w based on the history ℎ:P w occuring after h = P w ℎ
For the example above, it could look like this:P w ℎ = P beach I like to go to theP w ℎ = P peach I like to go to the

The easiest way to estimate this probability is to use the frequency counts based on a
large data corpus, such as the internet:
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P w ℎ = C ℎwC ℎ
Looking at our example, we will receive the following equations:P beach I like to go to the = C I like to go to the beachC I like to go to theP peach I like to go to the = C I like to go to the peachC I like to go to the

In summer 2022, the count for the sequence “I like to go to the beach” on Google was more
than 8.5 million, while the count for the sequence “I like to go to the peach” was zero. The
word sequence “I like to go to the” occurred more than 63 million times (Google, n.d.). In
probabilities, this meansP beach I like to go to the > P peach I like to go to the

The example illustrates how n-grams can help in speech recognition, as both sentences
might sound quite similar in spoken language. However, it is more likely that the last word
of the sentence is beach, not peach.

In our example, we looked at the whole history of a word. In a bigram language model, we
would only analyze sequences of two words (i.e., “the beach” versus “the peach”), in a tri-
gram language model a sequence of three words, and so forth. The higher n, the more
accurate the predictions can be. However, it also increases the computational power and
the risk of sparse data.

Working with the counts of a word sequence is a very straightforward approach. However,
it has some disadvantages. As the example has already illustrated, even for large data cor-
pora, it can happen that the count of a sentence is zero. This will lead to a probability of
zero even though the probability might be larger than zero. Moreover, when wanting to
predict the probability of a sequence of words, the number of counts can get very large if
we want to compare it to all possible sequences of that length, which will consume a lot of
resources.

4.4 Vectorizing Data
The input data for machine learning algorithms have to be in a numerical format. There-
fore, information from unstructured text has to be represented in a way that enables the
computer to process that text. To transfer a text in a numerical format, we need to find a
way to embed words in a semantic vector space.

In the following, you will learn more about how a text can be vectorized using simple
approaches like bag-of-words but also other concepts to vectorize words and sentences.
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Bag-of-Words

The bag-of-words (BoW) model is one of the easiest approaches when converting informa-
tion from text into numbers. BoW represents a text as a vector that contains information
about how often a word occurs in a given text. All words from a text are put into one
unique set of words – referred to as “bag.” During this process, information about the
word order or the structure of this text gets lost. Let us look at an example to illustrate the
BoW approach. For the example, we will use the following sentences:

1. I like to drink coffee.
2. I do not like tea.
3. Tea is not like coffee.

First, we have to extract all unique words from the sentences. This can be done using toke-
nization. We will receive the following words for the above sentences:

I, like, to, drink, coffee, do, not, tea, is

Using the words, we can build a word vector. For our example, we will receive a vector
with a length of nine. Using this vector, we can perform a scoring for the words in the
respective sentences. For the sentences from our example, the word vectors will look like
this:

1. [1, 1, 1, 1, 1, 0, 0, 0, 0]
2. [1, 1, 0, 0, 0, 1, 1, 1, 0]
3. [0, 1, 0, 0, 1, 0, 1, 1, 1]

To summarize the scores of the BoW model, different approaches can be used. In a Boo-
lean representation, the resulting vector is a simple indicator of whether a word occurs in
a sentence or not. In our example, the vector summarizing all three sentences would look
like this:

[1, 1, 1, 1, 1, 1, 1, 1, 1]

Using the count of words approach, the resulting vector will reflect the number of occur-
rences of a word in a given text, which would look as follows in our example:

[2, 3, 1, 1, 2, 1, 2, 2, 1]

Both representations have in common that the information about the word order in the
text gets completely lost. Being a very simple approach, the BoW model comes with some
major disadvantages:

• It is important to select the vocabulary carefully to find the right balance between the
number of words and sparsity. When the size of the model increases, this will also
increase sparsity of the BoW vectors. Higher sparsity of the model can also increase
computational costs.
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• The meaning of the words can get lost when BoW is used, as neither context, word
order, nor sense is analyzed. If we look at our example, we will notice that the way the
word “like” is interpreted in the respective sentences strongly depends on the context –
once it is used as a verb, the other time as a preposition. To distinguish between two
meanings of a word, BoW does not perform well.

Word Vectors

To be able to use words as an input for models in machine learning, like linear classifiers
or artificial neural networks, the words need to be transformed into word vectors. This will
allow the words to be embedded in a semantic vector space. Once the words have been
transformed, similarities and word analogies can easily be found by applying linear opera-
tions. In order to do so, methods like cosine similarity can be used. Cosine similarity meas-
ures the similarity between two vectors based on the cosine of the angle between those
two vectors. The cosine similarity can be computed as the dot product of the vectors divi-
ded by the product of the vector lengths:cosine similarity = A · BA   B
Cosine similarity can have values between -1 and 1. A value of 0 means that the two vec-
tors are orthogonal, i.e., independent of each other. A value of -1 means that the two vec-
tors are opposite, while +1 means that they are pointing in the same direction. When word
vectors are built based on word frequencies, the value of the cosine similarity will range
from 0 to 1, as the underlying word frequencies cannot be negative.  

We will now have a look at some methods for word vectorization: Word2Vec, the TD-IDF
algorithm, and GloVe.

Word2Vec

The Word2Vec model is a rather simple approach that is based on a neural network. When
Google Research first published Word2Vec, this denoted an important milestone in NLP
research. The neural network uses one single hidden layer to generate word embeddings
(Mikolov et al., 2013). The neural network in Word2Vec expects a one-hot vector as an
input. This one-hot vector is built using BoW. In order to build the vector, all values of that
vector are set to 0. Only the index of the word that is being analyzed is set to 1.

To obtain a proper model for Word2Vec, a large text corpus – for instance, a Wikipedia
dump – is required. To train the model, a sliding window with a fixed length of N  is moved
over the text. Typical sizes of the sliding window would be N = 5 or N = 10.

Two different models are used for predictions: continuous bag-of-words (CBOW) and skip-
gram.

CBOW is used if we have a sentence of length N  and want to predict a missing word based
on the context of the N − 1 other words of the sentence. The input vector can be construc-
ted using either the sum or the average of the one-hot vector.
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Skip-gram, however, uses one single word in a fixed window of length N  to predict the
other N − 1 context words. The figure below illustrates the difference between the two
models.

Figure 26: Comparison of CBOW and Skip-Gram

Source: Kristina Schaaff (2023).

In CBOW, the order of the context words does not influence the outcome of the prediction.
In skip-gram, however, the context words which are closer to the input word get more
weight than context words that are more distant. While the skip-gram architecture is bet-
ter suited to infrequent words, CBOW will perform faster to predict words.
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The goal when training Word2Vec for a sample from the data corpus is the maximization of
the probabilities of the words that appear in the fixed window. As a result, we will receive
a function that is called the objective function.

Term frequency: Inverse document frequency

If we use BoW to analyze a given document, all words have the same weight. The word
vectors only reflect which words are contained in the text. To get more information about
the importance of a word, approaches like term frequency – inverse document frequency
(TF-IDF) can be used. TF-IDF is a statistical measure that comes from information retrieval
(Beel et al., 2016). To get information about the relevance of a word, term frequency (TF)
and inverse document frequency (IDF) are combined.

The computation of TF-IDF is based on the following parameters:

• The term frequency (TF) reflects the number of occurrences of a term t in a document d
in relation to the total number of words in the document. It will increase the more often
a term occurs in a given document:TF t,d = number of occurences of t in d

number of words in d

• The document frequency (DF) gives information on how many documents include the
term t with respect to the total number of documents D. The document frequency indi-
cates how important a text is in relation to other documents:DF t,d,D = number of documents d containing t

total number of documents D

• The inverse document frequency (IDF) reflects how relevant a term is. It is the logarith-
mically scaled inverse of the document frequency:IDF t = log 1DF t,d,D

To compute the final TF-IDF score, the term frequency is multiplied by the inverse docu-
ment frequency. TF − IDF t,d = TF t,d × IDF t
If the value of TF-IDF is high, this is an indicator of a word that occurs frequently in a docu-
ment while the total number of documents that include that term is relatively small in
comparison to the total number of documents. Therefore, more specific requests will get a
higher weight. TF-IDF can, therefore, be used to identify those terms in a document that
are most important in a given text.
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Matrix factorization
a method to simplify

complex matrix opera-
tions by reducing a matrix

into its components

Global vectors for word representation

Another vectorization method that is commonly used in NLP is global vectors for word
representation (GloVe). In contrast to Word2Vec, GloVe works in an unsupervised way. It is
based on the word counts in a text. GloVe was developed to obtain a model that – in con-
trast to skip-gram – also considers statistical information about word co-occurrences. For
this reason, Pennington et al. (2014) combined skip-gram with matrix factorization. In
the GloVe approach, a co-occurrence matrix is used, which reflects information about the
context of a word. Especially for similarity tasks and named entity recognition, GloVe has
been proven to outperform other related models (Pennington et al., 2014).

Sentence Vectors

Converting words into vectors that a machine is able to process is an important step in
NLP applications. However, in tasks like sentiment analysis or question answering, it is not
enough to analyze a single word. Instead, it is necessary to look at whole sentences or
paragraphs. This requires methods to transform a sequence of words into a format that
can be understood by the learning algorithm.

There are various approaches to handle text snippets of various lengths in NLP algorithms.
In the following, we will present a selection of the most prominent approaches. In the
descriptions, the term “sentence” will not be used in a strict grammatical way but to rep-
resent a whole text paragraph.

Skip-thought

The skip-thought vectors approach (Kiros et al., 2015) transfers the skip-gram architecture
from Word2Vec form a word to a sentence level.

Similarly to Word2Vec, a large text corpus is necessary to train the model. While Word2Vec
uses a sliding word window, in skip-thought, the analysis window comprises a triple of
three consecutive sentences. As a result, we will get a model that follows a typical
encoder-decoder architecture. The encoder uses the middle sentence from the triple as an
input. Based on this input, it will produce an output and send it to the decoder. The model
can be further optimized by using the decoder to selectively predict the previous or the
next sentence.

For NLP tasks where no prediction model is required, once the model has been trained,
the decoder part can be discarded. The resulting output vector from the encoder can be
used as the vector representation of the sentence.

It is possible to use the model to predict only the previous or the following sentence. The
resulting vector is then called a uni-skip vector. If two uni-skip vectors are concatenated in
a way that one predicts the next and the other one predicts the previous sentence, the
result is called a bi-skip vector. When n-dimensional bi-skip vectors are combined with n-
dimensional uni-skip vectors, the resulting vector is referred to as a combine-skip vector.
In a comparison, the combine-skip model produced slightly better results than the other
skip-thought models (Kiros et al., 2015). 
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For English, there is a pre-trained model publicly available, which is based on the Book-
Corpus dataset (Zhu et al., 2015).

Universal sentence encoder

The universal sentence encoder (USE) was developed by Google Research (Cer et al.,
2018). USE provides a model family for sentence embedding, which is available in two dif-
ferent variations: either based on a deep averaging network (DAN) or based on a trans-
former model. While the DAN-based variant is faster than the transformer-based model, it
is less accurate.

As for skip-thought, there are pre-trained models available, one multilingual and one Eng-
lish model, which are both based on the DAN architecture (Chidambaram et al., 2018).

Bidirectional encoder representations from transformers

The bidirectional encoder representations from transformers (BERT) model is based on
the transformer architecture (Devlin et al., 2019). This model was also developed by Goo-
gle Research and made available open source. The model has been pre-trained using a big
text corpus using two different unsupervised and combined methods: next sentence pre-
diction and a masked language model.

When next sentence prediction is used for training, the model is trained with a pair of sen-
tences. The goal of the model is to predict if the second sentence follows the first sen-
tence. The focus of the resulting model is therefore on the relation between the sentence
pairs.

Using a masked language model, about 15 percent of the words from a training set are
masked. This could, for instance, look like this:

“The most [mask1] thing in the morning is to [mask2] a good cup of coffee.”

In the example, the words “important” and “drink” have been masked. When the model is
trained, the goal is to predict the words that are missing in the sentence. This helps the
model to understand the context of the words.

Both models were trained together using unlabeled data from the BookCorpus.

4.5 NLP Models
Many NLP applications need to analyze unstructured data. To obtain a vectorized repre-
sentation of the unstructured text, pre-trained NLP models can be used. The models pro-
vide labels for a text, which are either extracted from the text data or predetermined.
Using those models makes it possible to quickly build NLP applications without having to
train a model yourself.
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There are a large number of NLP models, which employ various methods for prediction
and classification tasks. The models can be categorized into two groups: statistical and
neural supervised learning models.

To be able to use pre-trained models, the input data have to be prepared in a way the
model can understand. Therefore, you will first get an overview of the most important text
preprocessing techniques before we dive deeper into NLP models.

Text Preprocessing

Before NLP models can be used, the data – which are usually provided as human-readable
text – have to be converted into a format that can be used as an input by the models.
Depending on the model that will be used, this requires different preprocessing steps.
Some typical preprocessing steps will be described next.

Tokenization is used to split a text into smaller sub-units, which are referred to as tokens.
The tokenization can, for instance, be done using white space and punctuation.

Stop-word removal removes words that have no impact for a specific NLP task. Typical
stop-words are articles and pronouns. There are hand-curated word lists for different lan-
guages that contain words that occur frequently across different text corpora.

Using lemmatization, the words of a text are converted to their base form, which is called
a lemma. For instance, the words “going” and “went” would all be converted to the word
“go;” the word “stories” would be lemmatized to “story.” Lemmatization often requires
look-up tables and can therefore be computationally intensive.

Stemming is another method to convert words to their base form. However, in contrast to
lemmatization, only the suffix (i.e., the last few characters) from a word is removed in
stemming, which can sometimes lead to incorrect results. If we look, for instance, at the
word “caring,” lemmatization will correctly return the word “care,” while stemming would
return “car.” However, especially for large datasets, using stemming can be beneficial due
to performance. In order to perform the preprocessing, toolkits like spaCy or NLTK provide
many methods that can used.

Statistical Models

Statistical language models are based on a statistical probability distribution over strings
on a given alphabet. Most commonly, those models work at the word level. Knowing the
statistical distribution of words can, for instance, be used for auto-completion tasks or the
detection of spelling errors, but also in tasks like named entity. One of the simplest exam-
ples of statistical NLP models are n-grams, which we covered in previously in this unit.

Statistical models like n-grams are based on the Markov assumption, meaning that given a
current word, the following words are independent of the past words. Therefore, the prob-
ability of a word is calculated only on the probability of a (limited) history of words.
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The advantage of statistical models is that they are comparatively easy to train given a
large data corpus. However, samples that have not been observed in the training data will
be assigned zero probabilities if they occur in a document. Moreover, statistical models
lack generalization abilities compared to neural models.

Neural Models

In recent years, neural models for NLP have become increasingly popular. Neural NLP
models are based on deep learning strategies, such as recurrent neural networks (RNN) or
convolutional neural networks (CNN).

The architecture of CNNs is based on several convolution kernels. For every layer, the con-
volution kernel is slid over the input matrix to generate a feature map, i.e., a filtered ver-
sion of the input matrix. In the subsampling layers, the dimensionality of the feature maps
is further reduced until, in the last layers, we receive a feature representation that is
reduced on a very high level. This feature representation can then be passed by the fully
connected layer to a layer of artificial neurons. These neurons learn how these high-level
features can be mapped to the output classes. CNNs are mainly applied in computer
vision tasks (Valueva et al., 2020). However, for NLP tasks, they have been shown to per-
form well when used for learning different n-gram patterns from a word-embedding
matrix in sentence classification (Kim, 2014).

In RNNs, connections between nodes allow the output of certain nodes to affect the sub-
sequent input into the same node. This makes it possible to model temporal correlations.
RNNs have an internal memory, which allows them to process input sequences of variable
length (Tealab, 2018). In contrast to CNNs, RNNs are therefore able to preserve the
sequential order of a text, which makes them more suitable for most NLP tasks. The major
drawback of RNNs compared to CNNs is that computations cannot be parallelized, which
can slow the training down (Shankar & Parsana, 2022).

Many deep learning models are based on an encoder-decoder architecture. In an encoder-
decoder architecture, the encoder converts the input text into a vector, which encapsu-
lates all important information from the input sequence. The decoder then takes the infor-
mation from the encoded vector and converts it back to the original representation. In
most cases, the decoder will use the same network structure as the encoder (e.g., RNNs) –
just in the opposite direction. The figure below shows a simplified version of a typical
encoder-decoder architecture.
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Self-attention
The concept of self-atten-
tion in NLP relates to the

relationship between dif-
ferent positions of a word

sequence when comput-
ing a representation of a

sentence.

Figure 27: Simplified Encoder-Decoder Architecture

Source: Kristina Schaaff (2023).

If we look, for instance, at an example from machine translation where a sentence has to
be translated from English to German, the encoder will first encode the English sentence
to a feature vector that holds all information about the original sentence. In the next step,
output from the encoder is passed to the decoder, which will then translate the informa-
tion to German.

In an encoder-decoder architecture, it is possible to train the encoder with the output of
the decoder. For this purpose, the output of the decoder is compared to the input of the
encoder. This automatic way to train the model is referred to as an autoencoder architec-
ture (Hubens, 2018).

In 2017, Google introduced transformer models, which are currently the most powerful
models for NLP tasks. Transformer models are based on an encoder-decoder architecture.
In contrast to traditional encoder-decoder models, however, they rely on self-attention
mechanisms instead of using CNNs or RNNs (Vaswani et al., 2017).

To understand the concept of self-attention, let us look at the following example senten-
ces:

“I moved from Munich to Berlin because I like it there.”

In this sentence, we know that “there” refers to Berlin, while in the following sentence,
“there” refers to Munich:

“I moved from Munich to Berlin because I did not like it there.”

The example illustrates how important it is to identify the correct relationships between
the parts of a sentence for correct comprehension.

Transformer models are not only significantly faster to train than RNN- and CNN-based
models; they also outperform those models if it comes to accuracy in tasks like machine
translation (Vaswani et al., 2017).  
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Nowadays, there are a large number of pre-trained models available based on the trans-
former architecture, such as Bidirectional Encoder Representation from Transformers
(BERT; Devlin et al., 2019), a Robustly optimized BERT pretraining Approach (RoBERTa; Liu
et al., 2019), DistilBERT (Sanh et al., 2019), and XLNet (Yang et al., 2019).

SUMMARY
Over the years, a large number of techniques have been developed for
NLP tasks. Early systems were built on sets of rules that tried to repro-
duce the way humans produce sentences. Later, statistics-based sys-
tems emerged, which follow a more data-driven approach.

Regular expressions are a powerful tool that can be used in a large num-
ber of NLP tasks, such as preprocessing or pattern matching in search
queries. Combining regular expressions can help answer complex search
queries.

An important approach in text understanding is the use of n-grams,
which can help determine the meaning of a whole text.

To be able to process data by computer, data vectorization is an impor-
tant step. The simplest approach is the BoW model. However, the BoW
model does not perform well for more complex tasks. Therefore,
approaches like Word2Vec or TF-IDF can be used to build word vectors.
To build sentence vectors, there are approaches like Skip-thought or
USE.

Nowadays, there are a large number of pre-trained NLP models availa-
ble. For text preprocessing, the most popular models are spaCy and
NLTK. Statistical models are built on probability distributions, while neu-
ral models use more sophisticated approaches, such as autoencoder
architectures.
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UNIT 5
APPLICATION SCENARIOS

STUDY GOALS

On completion of this unit, you will be able to ...

– describe typical tasks and challenges in automatic speech recognition and speech syn-
thesis.

– explain how machine translation works.
– discuss the most important techniques for information extraction.
– explain how NLP can be used for sentiment analysis and chatbots.
– know the most important libraries for NLP in Python.



5. APPLICATION SCENARIOS

Introduction
This unit introduces some areas of application of NLP. We will start with speech recogni-
tion and synthesis, which are the basis for many NLP tasks. After that, you will learn more
about machine translation.

In the following, you will learn about the most important concepts of information extrac-
tion – the process of automatically extracting structured information from a text. In this
context, you will learn more about named entity recognition, relationship extraction, and
coreference resolution.

In the following section, we will look at the basics of sentiment analysis and the chal-
lenges that must be faced when trying to extract emotional information from a text. The
last application area we are going to focus on is chatbots – a domain that has been grow-
ing massively in recent years, as chatbots can bring many potential savings across all
industries.

The unit closes with an introduction to how you can build your own NLP project in Python.
For this purpose, you will also get to know NLTK and spaCy, which are commonly used
frameworks for NLP projects. Finally, we will give some examples of how to implement
selected NLP concepts.

5.1 Speech Recognition and Synthesis
Speech recognition and synthesis are important parts of natural language processing
(NLP) applications. Therefore, we now want to dive deeper into automatic speech recogni-
tion (ASR) – also known as speech-to-text (STT) – and speech synthesis, which is often also
referred to as text-to-speech (TTS).

Speech Recognition

Using speech for communication – be it with other people or with machines – is much
more intuitive than using text. Not only can we use our hands for other activities while
speaking – speech on average actually transports information three times faster than typ-
ing (Ruan et al., 2018). ASR can be used to transcribe spoken language (i.e., speech) into
text. It is a subfield at the intersection of computer science and computational linguistics
(Soni, 2019, p. 257) and offers a wide range of application scenarios, such as text dictation
or using speech to control voice assistants.

In recent decades, there have been a lot of improvements in ASR. Therefore, nowadays it
is not only used in the professional but also in the private environment. Even though the
quality of transcription still does not compare to the quality of human transcribers, it is
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normally faster to first use ASR and then perform manual post-processing instead of tran-
scribing everything manually. This semi-automated process of speech transcription can
save a lot of time and money.

As in all other areas of artificial intelligence (AI), the quality of the training data has a mas-
sive influence on the quality of the transcribed speech. The best quality can still be ach-
ieved when using domain-specific monolingual text corpora.

In the past, ASR systems typically combined an acoustic model, a pronunciation diction-
ary, and a language model. In recent years, end-to-end systems for ASR that are based on
deep learning have become increasingly popular. End-to-end in the context of ASR means
that a system directly maps an input sequence of acoustic features that have been derived
from the speech signal to a sequence of words or graphemes (Wang & Li, 2019).

Typical tasks in ASR

Considered in itself, ASR is only about the automatic transcription of speech signals. How-
ever, there are many tasks that include ASR as a part of another – more complex – task.
This can, for instance, be speech-to-speech translation; voice assistants; speaker recogni-
tion; or other related tasks, such as speaker diarization.

In speaker recognition, speaker-specific information that is included in the speech waves
is used to recognize who is currently speaking (Zhang, 2000, p. 179). Speaker diarization
automatically determines who was speaking at what time in an audio or video recording
(Anguera Miro et al., 2012, p. 356).

Let us now look at the automatic transcription of speech. Nowadays, speech-to-text serv-
ices are commonly used, not only by organizations but also by individuals. The dictation
capability many systems provide nowadays is probably one of their most important
advantages, as this allows a user to easily insert text into documents or control devices.
Recent speech recognition technology can convert speech into text as fast as the words
are spoken (i.e., in “real-time”), which can massively increase the process of writing docu-
ments – even though, in most cases, it is still necessary to manually post-process the pro-
duced text.

Voice assistants are another steadily growing application area for ASR. Nowadays, they are
integrated into almost every smartphone, in smart speakers, and in modern cars. Espe-
cially when driving a car, using a voice assistant can be very helpful, as the driver does not
have to remove their hands from the steering wheel.

Challenges in ASR

As every person speaks differently and we are not always in a quiet environment, there are
numerous challenges in ASR. These challenges include noise and channel variability,
speaker anatomy and gender, accented and non-native speech, and homophones.
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Noise and channel variability refers to effects such as echo, or other background noises
such as music. Therefore, algorithms can be applied that focus on the frequency bands of
the speech signal.

Speaker anatomy and gender have a considerable influence on how speech sounds. For
instance, men have longer vocal tracts than women or children, which, therefore, leads to
a lower fundamental frequency in their speech signal. To address this issue, vocal tract
length normalization can be used (Garau et al., 2005). If vocal tract length normalization is
used, a parameter that transfers the spectrum toward the spectrum of an average vocal
tract is applied to the speech signal (Saheer et al., 2012, p. 2135).

Non-native and accented speech can cause a shift of parameters in the feature space.
Commonly used methods to tackle this challenge are maximum a posteriori (MAP) adap-
tion and maximum likelihood linear regression (MLLR). In MAP adaption, “adapted model
parameters are estimated separately for each of the ‘styles’ of speaking, and then interpo-
lated using a global interpolation weight” (Tomokiyo & Waibel, 2001, p. 3). “In MLLR adap-
tion, transformation classes are defined, and model parameters of the entire class are shif-
ted in the same direction” (Tomokiyo & Waibel, 2001, p. 4).

Homophones are words that are pronounced similarly but are spelled in a different way
and also have a different meaning. For example, the words “rows” and “rose” are pro-
nounced in a similar way. As it is not possible to distinguish homophones at an acoustic
level, language models that contain contextual information are required to be able to
identify which orthographic form of a word is correct.

Speech Synthesis

Speech synthesis or text-to-speech (TTS) is about producing human speech in an artificial
way based on a given text (Tan et al., 2021), i.e., a written text is transformed into spoken
language. In speech synthesis, several disciplines are combined: computer science, lin-
guistics, acoustics, and signal processing (Ning et al., 2019). Nowadays, TTS is integrated
into many applications of our everyday life – be it voice assistants, navigation apps,
speech-to-speech translation, or news readers. TTS can also be used to assist people with
reading disabilities or vision impairment by reading a written text (Isewon et al., 2014) and
enables people to communicate despite restrictions in speaking – Professor Stephen
Hawking was a prominent example of this application scenario (Medeiros, 2015).

Typical tasks in speech synthesis

The most common applications for TTS are voice assistants and speech-to-speech transla-
tion.

A speech-to-speech translation system needs both ASR and speech synthesis. The ASR
component first needs to convert the speech into text before a machine translation sys-
tem can translate the text. The output of the machine translation process will again be a
text, which has to be converted into a speech signal. Since computational power has been
increasing massively in recent years, speech-to-speech translation can now be done
almost in real-time.
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Also, digital voice assistants include ASR, as well as speech synthesis. The figure below
illustrates how a voice assistant can be constructed.

Figure 28: ASR and Speech Synthesis in a Voice Assistant

Source: Kristina Schaaff (2023).

Typically, a user will speak a voice command, which will be converted into text by an ASR
component. A natural language understanding component processes the text and passes
it to the dialogue management component. The dialogue management component will
produce an appropriate reaction: If, for instance, the user asks a question, the dialogue
management component can look for an appropriate answer. In the next step, the
response generation component will generate an answer in a textual representation,
which will then be transformed into speech by the TTS component.

Challenges in speech synthesis

When techniques like parametric speech synthesis or concatenative speech synthesis are
used, a grapheme-to-phoneme conversion is necessary. This will convert every word into
its corresponding pronunciation, i.e., the phonetic transcription.

Parametric speech synthesis simulates the process of how speech is produced in the
human vocal tract to approximate the parameters that generate speech (Ning et al., 2019).
Those parameters can, for instance, be the duration, the fundamental frequency F0, or the
magnitude spectrum. In concatenative speech synthesis, waveforms are directly con-
catenated from a speech waveform database to output a continuous speech stream (Ning
et al., 2019).

For grapheme-to-phoneme conversion, the pronunciation can be looked up in a diction-
ary. In the past, these dictionaries have often been generated manually, which has been a
time-consuming process. Data-driven grapheme-to-phoneme converters that are trained
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on existing word-pronunciation pairs can help tackle this issue by directly providing pro-
nunciations for words (Schlippe et al., 2014). There are open source tools, such as Sequiter
G2P (Bisani & Ney, 2008), which can be used for the conversion.

Evaluation of speech synthesis systems

There are different aspects that can be evaluated for TTS systems: intelligibility, natural-
ness, preference, and comprehension.

Intelligibility reflects how accurately each word is produced. Naturalness refers to the
quality of the generated speech signal in terms of pronunciation, timing, and emotions.
Preference is about the choice of a listener between speech synthesis tools. Finally, com-
prehension deals with how well a message is understood.

5.2 Machine Translation
Machine translation (MT) has always been an important subfield of NLP, starting with early
attempts of translation from Russian to English during the Second World War. The goal of
MT is to automatically translate text or speech from one language to another language.

Even though there have been significant advances in MT in recent decades, the quality of
MT does not compare to the quality of human translations, especially when it comes to
understanding context or cultural connotations. Nevertheless, it has nowadays become
faster to combine MT with manual post-processing by a human expert than to have the
whole text translated by a human. Moreover, the output quality of the translation depends
strongly on the quality of the data that are used for training. As in any other area of NLP,
the results will be better if the model is trained with domain-specific data.

Early MT approaches were based on rule-based translation. However, these models did
not perform well. Only as statistical machine translation (SMT) emerged did MT start to
regain interest. In recent years, neural machine translation (NMT) has made rapid pro-
gress and is now the most commonly used method (Koehn & Knowles, 2017b).

MT covers both text-to-text and speech-to-speech translations. Text-to-text translation can
help translate websites or text documents, or accelerate the translation process by profes-
sional translators. By extending text-to-text translation by a component for automatic
speech recognition and text-to-speech synthesis, a speech-to-speech translation system
can be created.

The following figure illustrates how text-to-text translation and speech-to-speech transla-
tion are connected.
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Figure 29: Connection Between Text-to-text Translation and Speech-to-Speech
Translation

Source: Kristina Schaaff (2023).

Both text-to-text and speech-to-speech translation have gained increasing significance in
recent years. The dramatically increasing number of video chats and virtual conferences
has further accelerated the whole process. By using applications such as the Skype trans-
lator, MT can help to bridge language barriers between speakers.

Two of the biggest challenges MT has to deal with today are domain mismatch and
under-resourced languages. Therefore, domain adaption is an important step when an MT
system is developed for a specific use case. To deal with under-resourced languages, tech-
niques such as pivot MT can be used.

5.3 Information Extraction
The goal of information extraction (IE) in NLP is to automatically extract structured infor-
mation from a given text (Adnan & Akbar, 2019). It is closely related to information
retrieval (IR), and both terms are often used synonymously. However, there is a key differ-
ence between them: While for IE, the relevant facts that are of interest are specified
beforehand, IR is about discovering information or documents that contain facts of inter-
est that are not known in advance (Bach & Badaskar, 2007, p. 1). 

Typical IE tasks include named entity recognition (NER), relationship extraction, and core-
ference resolution. Those tasks are often key for more complex NLP tasks, such as natural
language understanding, question answering, digital assistants, or text summarization
(Singh, 2018). NER deals with the classification of named entities from an unstructured
text into categories, such as date or location (Li et al., 2022, p. 50). Relationship extraction
– which is also often referred to as relation extraction – deals with the identification of
semantic relationships between the entities of a text (Bach & Badaskar, 2007, p. 1). Core-
ference resolution is used to identify words in a text that refer to the same entity (Clark &
Manning, 2016).
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In the following, we will look more deeply into these tasks.

Named Entity Recognition

As previously mentioned, the main goal of NER is to locate named entities in an unstruc-
tured text and assign them to categories such as time and date expressions, locations,
organizations, quantities, names, etc. It has been shown, that in some cases, NER can
improve the results of machine translation (Babych & Hartley, 2003). It is also commonly
used in tasks where it is important to understand the content of a text. Therefore, for tasks
like data organization and text analysis, NER is often the first step toward further analyses.

In the figure below, you can see an example sentence where NER is used to identify enti-
ties such as person and location from a given sentence.

Figure 30: Example of Named Entity Recognition

Source: Kristina Schaaff (2023).

In the example, the following types of entities are identified:

• Date: Monday
• Time: afternoon
• Person: Paul Green
• Location: library

There are different ways named entities can be labeled. A commonly used format is the
BIO prefix scheme as described by Ramshaw and Marcus (1995). The BIO labels (some-
times also referred to as IOB) indicate the following positions of a named entity:

• Beginning (B): beginning of an entity
• Inside (I): continuation of an entity
• Outside (O): token that does not belong to an entity

One commonly used NER corpus is the CoNLL-2003 Shared Task corpus (Tjong Kim Sang &
Meulder, 2003). This corpus is based on a set of news articles from Reuters that have been
annotated by hand. The following labels are used in the CoNLL dataset:

[“B-LOC,” “I-LOC,” “B-MISC,” “I-MISC,” “B-PER,” “I-PER,” “B-ORG,” “I-ORG,” “O”]

B, I, and O refer to the BIO prefix scheme, while the other tokens have the following mean-
ings:
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• LOC: location
• MISC: miscellaneous name
• PER: person
• ORG: organization

For our above example, the annotation would look like this:

Table 4: CoNLL Annotation Example

On O

Monday O

afternoon O

I B-PER

will O

meet O

Paul B-PER

Green I-PER

at O

the O

library B-LOC

Source: Kristina Schaaff (2023).

Using the BIO scheme prefixes, we can distinguish whether we have one person (Paul
Green) or two persons (Paul and Green) based on the annotations. The word tokens that
do not belong to any of the four named entity categories are labeled with ‘O’.

Examples for NER include all domains where it is useful to organize text in categories. This
can, for instance, be the categorization of tickets in customer support according to their
topics; depending on the categorization, tickets can then be automatically forwarded to
the responsible expert. Another example would be the anonymization of data according to
privacy regulations. If personal data are automatically identified and reduced, this can
help to save costs. If the quality of the data is high enough, it is no longer necessary to
manually cleanup the data. NER can also help to reduce the workload of HR in application
processes by automatically extracting information from the applicants’ resumés (Zimmer-
mann et al., 2016).

One of the biggest challenges in NER is that a large amount of annotated data is required
for training. Moreover, the model will later be limited to the specific task it has been
trained on.
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Relationship Extraction

In relationship extraction, the goal is to extract semantic relations between the entities of
a text (Bach & Badaskar, 2007, p. 1). The extracted relations are usually binary, such as
“FATHER-OF (Darth Vader, Luke Skywalker)” or “LOCATED-IN (International University, Ger-
many).”

One important application domain for relationship extraction is question answering. For
example, if a system receives the question “What is the capital of France?”, the system
might search for a relational tuple that matches the pattern “CAPITAL-OF (France, ???).”

Coreference Resolution

In coreference resolution, words that refer to the same entity are identified (Clark & Man-
ning, 2016). This is important to properly understand the context of a text. For instance, in
the sentence “Paul has a car and he likes driving it,” the word ‘he’ refers to the entity Paul
and the word ‘it’ refers to the car. The figure below illustrates the relationship between
those entities.

Figure 31: Coreference Resolution

Source: Kristina Schaaff (2023).

5.4 Sentiment Analysis
So far, we have mostly been dealing with the objective aspects of text and speech, such as
the recognition of single words or the translation of a text from one language to another.
In human interaction, besides the actual vocabulary and grammar, a text contains much
more information, which is often expressed “between the lines.” This is where sentiment
analysis comes into play. Sentiment analysis deals with the analysis of the subjective
aspects of a text (Nasukawa & Yi, 2003). This can, for instance, be the mood of an author or
a tweet on Twitter. As in topic identification, sentiment analysis is a typical text classifica-
tion problem. However, while topic identification is about the identification of objective
aspects of a text, sentiment analysis deals with subjective features, such as emotions or
moods. There is a wide range of possible applications for sentiment analysis. One field
that has recently become the focus of much attention is customer sentiment analysis.
Being able to track how customers feel about a certain product over time can reflect how
people react to a change in a product or service. Moreover, sentiment analysis makes it
possible to analyze how external factors like a global crisis or relevant news influence the
perceptions of customers.
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Using social networks, such as Twitter, Instagram, or Facebook, it is easy to collect a huge
amount of data about a certain product. If a company is able to gain a better understand-
ing of the needs of its customers, products and services can be modified accordingly.

Types of Emotions

Emotions can be categorized in different ways. The two basic approaches are categorical
models and dimensional models. While categorical models assume a clearly defined set of
basic emotions, such as anger, joy, or fear (Ekman, 1992), dimensional models represent
emotions as points in a multidimensional space. The advantage of the dimensional repre-
sentation is that, in contrast to categorical models, the emotions do not have to be classi-
fied within predefined boundaries but rather in a continuous space within the emotion
dimensions.

According to Bradley and Lang (1994), the dimensions of emotions can be defined as fol-
lows:

• arousal: quantitative degree of activation (calm versus excited)
• valence: quality of the emotion (negative versus positive)
• dominance: degree of control a person has over a situation (weak versus strong)

The most frequently used dimensions are arousal and valance, as dominance has a com-
paratively small influence for most of the variance on emotional scales (Russell, 1979).

Sentiment Analysis Tasks

A common task in sentiment analysis is polarity detection. Polarity detection refers to the
valence dimension of emotions and usually categorizes a text as positive or negative. The
number of categories ranges from two categories (being only positive or negative; Turney,
2002) up to 5-star rating scales (Snyder & Barzilay, 2007). There is also research toward the
identification of categorical emotions, such as anger, sadness, disgust, enjoyment, fear, or
surprise (Ho et al., 2019).

Another common task is the identification of the subjectivity/objectivity of a text (Pang &
Lee, 2008). This task can sometimes be even more challenging than polarity detection
(Mihalcea et al., 2007). One of the big challenges of this task is the question of how subjec-
tivity is defined. Nevertheless, removing subjective sentences from a text or document can
help to increase the accuracy of polarity detection (Pang & Lee, 2004).

Intensity ranking is another sub-discipline of sentiment analysis and refers to the intensity
with which an emotion is expressed in a text. Depending on how intensely an emotion is
expressed in a text, the meaning of a sentence can vary significantly (Sharma et al., 2017).
Therefore, analyzing not only the polarity of an emotion but also the intensity can add
meaningful information to sentiment analysis.
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Challenges

As sentiment analysis and emotion detection work with user-generated content, there are
some big challenges to be faced when trying to identify the user state:

• negation
• irony/sarcasm
• multipolarity

When detecting the sentiment of a statement, negation is a big challenge, as it can invert
the meaning of a whole statement. One problem is that negation can not only be explicit,
using words like “not,” but also implicit, using prefixes like “non-,” or “dis-” or suffixes like
“-less.” Moreover, language constructs like double negation can be easily misinterpreted.
While, in mathematics, double negatives cancel out, depending on the context, double
negation might even make the negation more intense. Therefore, it is important to con-
sider negation in the model when performing a sentiment analysis to increase the accu-
racy of the system (Sharif et al., 2016).

Sarcasm and irony pose another challenge to sentiment analysis. Especially in the context
of social media, sarcasm is quite common. Even for humans, it is sometimes challenging
to properly recognize sarcasm. Therefore, for a machine, it can be even more difficult. As
an example, we will use the following sentence:

“Wow, you have an iPhone 5?”

If we look only a few years back to the year 2012 when the iPhone 5 was released, this
statement would have been perceived as genuinely enthusiastic and therefore non-sarcas-
tic. Nevertheless, if you hear this statement nowadays, it is easy for a human to tell that it
is intended to be sarcastic. This example illustrates why dealing with sarcasm still remains
a challenging task, even though there has recently been some success when applying
methods from deep learning for sarcasm detection (Ghosh & Veale, 2016).

Multipolarity of text is another big challenge. Multipolarity means that one text can consist
of parts with different polarities, i.e., the sentiment of some parts can be positive while
other parts are negative. To illustrate multipolarity, let us look at the customer review in
the figure below.

Figure 32: Multipolarity Example

Source: Kristina Schaaff (2023).
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The first sentence is neutral. In the next sentence, the first part about the display is very
positive, while the second part about the audio quality is negative. There are several
approaches to handle reviews like this. For instance, we could simply calculate the aver-
age of the sentiment. However, this will inevitably lead to a loss of information. Therefore,
a better approach would be to split the review into several parts and analyze the parts of
the sentence separately.

Evaluation of Sentiment Analysis Tasks

One major challenge when it comes to the evaluation of algorithms for sentiment analysis
is that the classification of the subjective elements of a text is – as the name already indi-
cates – a subjective task. While, for tasks like information extraction, there is an objective
ground truth for training and evaluation of the task, this is more difficult with subjective
aspects. The classification of emotions can even be a challenging task for humans. There-
fore, accuracies close to 100 percent are not realistic, as – even among humans – there
would be a disagreement of about 20 percent (Roebuck, 2012).

5.5 Chatbots
Chatbots – often also referred to as conversational AI – are dialogue systems that are
based on textual communication. Chatbots make it possible to interact with a computer
using text in natural language. Depending on the input, the user will receive a reply that is
also in natural language. Some chatbots mimic a certain personality or character in com-
bination with an avatar or image. A popular example of a chatbot was ELIZA (Weizenbaum,
1966), which simulated a psychotherapist.

Chatbots often appear in messenger apps, such as Facebook, or in website chats. More-
over, digital assistants, such as Siri, Alexa, or Google Assistant, are based on chatbots.

Levels of AI Assistants

Chatbots are an important part of AI assistants and can be categorized into five levels
(Nichol, 2018). The five levels are illustrated in the figure below.
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Figure 33: Five Levels of AI Assistants

Source: Kristina Schaaff (2023).

Notification assistants (Level 1) interact with the user only in a unidirectional way. Typi-
cally, they are used for tasks likes notifications about updates or events.

In contrast to notification assistants, frequently asked questions (FAQ) assistants (Level 2)
can interact bi-directionally with a user. If the user asks a question, they can interpret the
request and find an appropriate answer from a knowledge base.

Contextual assistants (Level 3) extend the communication by being context-aware of the
conversational history with the user. For instance, they might remember your past purcha-
ses in an online shop.

Personalized assistants (Level 4) get to know the user over time. They will, for instance,
know, based on the context, when it is a good time to interact. Moreover, personalized
assistants are able to learn the user’s preferences and will, therefore, be able to provide a
personalized interface.

Finally, autonomous organizations of assistants (Level 5) are a group of assistants that
have information about every customer personally. They can independently run broad
areas of an organization, such as sales, marketing, or lead generation.
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At present, most assistants are still on the level of notification assistants. However, there
are already a few applications, such as the Google Assistant, that can be categorized as
contextual assistants. It is quite likely that, in the future further, levels of chatbots will
evolve.

Components of Chatbots

In general, chatbots consist of three components, which are illustrated in the figure below.

Figure 34: Components of a Chatbot

Source: Kristina Schaaff (2023).

Techniques

The implementation of chatbots can either be rule-based or statistics-based. We will look
at both techniques next.

Rule-based chatbots

Rule-based chatbots parse the textual input using a set of regular expressions. Based on
the regular expressions, the intent of a user can be determined. A common way to specify
conversation rules in a rule-based way is Artificial Intelligence Markup Language (AIML).
AIML is based on Extensible Markup Language (XML) and is available open source. There
are AIML interpreters for a large variety of programming languages.

The figure below is an example how a conversation rule in AIML might look.
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Figure 35: Example of AIML

Source: Kristina Schaaff (2023).

The tags of this conversation rule are specified as follows:

• <category>: container for the conversation rule.
• <pattern>: text pattern of the user query. The * represents a sequence of characters.
• <template>: specifies the answer.
• <star/>: is replaced by the text from the user query.

In our example, the system might receive the request “WHAT IS ARTIFICIAL INTELLI-
GENCE?” The input will first be normalized by removing interpunctions and ignoring the
case. When the question matches the pattern, the answer can be displayed as specified in
the template. The template in our example will first print the text “Here you can find infor-
mation about artificial intelligence,” replacing the <star/> tag by the text which matched
the pattern. Additionally, it will show a hyperlink that will redirect to the related Wikipedia
article. 

Statistics-based chatbots

Chatbots can also be built using statistical machine learning techniques to train the chat-
bot using example conversations.

To illustrate statistics-based approaches, we will now have a look at the conversational AI
toolkit Rasa (Bocklisch et al., 2017), which is available open source.

The first phase is intent classification, which is about determining the user intent. For
instance, “Hi” or “Good evening” can be seen as an indicator for a greeting. We could call
this intent greeting. The intent behind questions like “How are you?” or “How are you
feeling today?” is to know how a person feels. This intent could therefore be classified as
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feeling. A reply like “not so well” or “sad” could then be mapped to the intent
negative_mood, while a reply like “I am great” or “fine” could be mapped to
positive_mood.

A representation of this conversation in Rasa can be modeled as follows:

## intent:greeting

• hi
• good morning
• good evening

## intent:feeling

• how are you
• how are you feeling today
• are you ok

## intent:negative_mood

• sad
• not so well
• unhappy

##intent:positive_mood

• fine
• i am great
• awesome

The intent classification is the base of the dialogue component of our system. Actions are
another important concept. Actions define how – once the intent of a user has been identi-
fied – the chatbot will react. They can range from simple replies to more complex answers
like getting data from a knowledge base or external service, such as Wikipedia or a news
website.

For our example, we will define different actions for the bot. The first action utter_greet
will make the chatbot reply to a greeting of a user with the sentence “Hi, how are you?”
The second action models a reaction to the user’s reply depending on if it’s positive or
negative: utter_sad will be Sorry to hear that, while utter_happy will be “Happy
to hear that.”

Now that we have defined the answers, we need to model the dialogue management,
which connects intents and actions. The training of the dialogue management model in
Rasa is done using sample conversations, which are referred to as stories. A story could,
for instance, look like the following conversation:

User: Hi
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Chatbot: Hi, how are you?

User: I am great

Chatbot: Happy to hear that

If we represent the story as a set of intents and actions, the story could look as follows:

## positive conversation

* greeting

- utter_greet

* positive_mood

- utter_happy

Based on a sequence of intents, the dialogue management module will be trained to pre-
dict the next action. In contextual assistants, not only the last intent will be analyzed but
also the history of, for instance, the last five intents. In the example above, as an input we
have the features greeting and positive_mood. The output we expect in this situation
is utter_happy.

Of course, the chatbot can also use named entity recognition to extract information like
dates, locations, or names from the input data. This technique is referred to as slot filling.

Use Cases

Use cases for chatbots are increasing continuously as their use offers many advantages.
Integrating chatbots into a communication can save a lot of time and money, as chatbots
are normally available seven days a week, 24 hours a day at comparatively low costs. If
necessary, they can easily be scaled.

If conversational agents are used in customer service, they can help by, for instance, reply-
ing to the requests of customers. They can improve the customer experience by giving per-
sonalized product recommendations according to the needs of a user. If an artificial agent
gets a request that is too complicated to handle, it can still be forwarded to a human sup-
port team.

If we look at company websites, many companies nowadays have integrated chatbots to
ask sales-related questions to visitors who would otherwise remain anonymous. If a cus-
tomer uses the chat, the chatbot can, for instance, present information about special
offers or new products or even provide guidance on the navigation of the website.

In general, using chatbots can help to reduce the workload of human support staff, which
can allow them to deal with more complex tasks.
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5.6 NLP With Python
Now that you have learned the most important aspects of NLP and the related techniques,
it is time to learn how to practically develop NLP applications. Therefore, in this section,
you will learn more about how to use Python as a programming language, Jupyter Note-
books (Randles et al., 2017), and the most important NLP frameworks, such as the Natural
Language Toolkit (NLTK; Bird et al., 2009) and spaCy (n.d.).

NLP & Python

Python is a general-purpose, high-level interpreted programming language. It is possible
to use Python for many purposes – be it software development, web development, or data
science. The syntax rules are quite simple, which makes it easy to obtain a code base that
is easy to read.

There are many well-written data science libraries available. This has made Python very
popular for everyone who wants to start out in the field of machine learning or data sci-
ence.

There are a large number of integrated development environments (IDEs) available for
Python, such as PyCharm, Sublime Text, or Spyder. Moreover, Jupyter Notebooks offer an
excellent interactive integrated development environment (IDE) for software development
in Python.

A Quick Start to Jupyter Notebooks

Jupyter Notebooks are often used for machine learning or data science projects. Jupyter
Notebooks provide a web-based interactive development environment for Python. The
web application is provided open source and can contain not only code but also narrative
text, equations, and visualizations. The interpreter is web-based and makes it easy to
structure the code into cells. Each of these cells can be run individually. Moreover, it is pos-
sible to add comments between the cells. This makes it easy to debug the code, generate
visualizations, or apply changes to the code.

In this section, you will get a brief introduction on how to install Jupyter Notebook, create
a notebook, and write code snippets and comments in that notebook. 

To install Jupyter Notebook, we can use the related PIP package. For this purpose, we
have to run the following command:

Pip install jupyter notebook

Once the installation is complete, the Jupyter Notebook can be launched with the follow-
ing command:

Jupyter notebook
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The Jupyter Notebook will then open in the default browser. You can create a new note-
book by selecting the “New” dropdown on the top right of the window.

Figure 36: Creating a New Notebook

Source: Kristina Schaaff (2023), based on Jupyter (n.d.). 3-Clause BSD License.

Initially, the new notebook will contain one single empty code cell.

Figure 37: The New Notebook

Source: Kristina Schaaff (2023), based on Jupyter (n.d.). 3-Clause BSD License.

In the code cell, you can then enter your code; you can execute the code by pressing Shift +
Return.

If we start with a simple “Hello World” example, the result will look as shown in the follow-
ing figure.
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Figure 38: Hello World Example

Source: Kristina Schaaff (2023), based on Jupyter (n.d.). 3-Clause BSD License.

If you want to add markdown to your code, you can do this by changing the cell type to
“markdown.” To change the cell type, you can either use the menu bar at the top or one of
the many shortcuts. A list of shortcuts can be found in the top menu under Help > Key-
board Shortcuts.

Using markdown, you can add useful information about your application to your note-
book to document and explain your work.

Figure 39: Markdown Example

Source: Kristina Schaaff (2023), based on Jupyter (n.d.). 3-Clause BSD License.

Additionally, when using Jupyter Notebooks, you can also export your code to any other
format, such as HTML or Python script (.py). If you want to export your code, you can do
this by selecting the option “Download as” from the “File” tab in the top menu bar.

Introduction to NLTK and spaCy

There are several frameworks for NLP. The most popular frameworks are NLTK and spaCy
because of their ease of use and their functionalities. They can be useful for the imple-
mentation of a huge number of tasks, be it chatbots, sentiment analysis, text summariza-
tion, or entity extraction.

To install the packages, the Python package manager PIP can be used with the following
commands:

pip install nltk
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and

pip install spaCy

Additionally, both frameworks use external resources. NLTK uses task-specific datasets,
while spaCy provides complete language models, which are available in different sizes for
multiple languages. These resources have to be downloaded separately.

There are a few differences between the two frameworks. First of all, in NLTK, for a particu-
lar problem, there are a vast number of algorithms from which you can choose, while in
spaCy, for a particular problem, you will only find the best state-of-the art algorithm
according to the developers of spaCy. Moreover, input and output in spaCy is based on an
object-oriented model centered around the corresponding document object. In NLTK,
strings are used as input and output for the respective functions. Another important differ-
ence is that NLTK does not support word embeddings, while in spaCy vector-based word
embeddings are used.

Implementing Selected NLP Concepts with spaCy

We now want to have a look at selected concepts from NLP and how they can be imple-
mented in Python using spaCy.

In our example, we want to work with the small English language model which can be
installed using the following command:

python -m spaCy download en_core_web_sm

Tokenization

Tokenization is often the first step that is performed in NLP tasks. Using spaCy, word and
sentence tokenization can be implemented in the following steps:

1. Create a spaCy document: In the first line, we import the spaCy library. The English
model is loaded in line 2, and in line 3 we create a document.

Figure 40: Creating a spaCy Document

Source: Kristina Schaaff (2023), based on spaCy (n.d.). MIT License.

2. Extract the word tokens: In the first line, the word tokens are accessed by iterating
over the document object. In line 2, the tokens are printed.
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Figure 41: Tokenization in spaCy

Source: Kristina Schaaff (2023), based on spaCy (n.d.). MIT License.

3. Extract the sentence tokens: Similarly to the extraction of the word tokens in line 1,
the tokens are accessed and then printed in line 2.

Figure 42: Sentence Tokenization with spaCy

Source: Kristina Schaaff (2023), based on spaCy (n.d.). MIT License.

Part-of-speech tagging

In the next step, we want to use our example to perform POS tagging. Again, we will initial-
ize our program with step one from the last example. To perform POS tagging, we will iter-
ate over the document object doc (line one) and print the POS attribute for every token
(line two).

Figure 43: Part-of-Speech Tagging with spaCy

Source: Kristina Schaaff (2023), based on spaCy (n.d.). MIT License.
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Named entity recognition

Extracting named entity labels from a text using spaCy is also remarkably simple. For this
purpose, we have to iterate over the entities from our document and in the next step for
every token print the label attribute.

Figure 44: Named Entity Recognition with spaCy

Source: Kristina Schaaff (2023), based on spaCy (n.d.). MIT License.

In addition to the label information, it is possible to print an explanation of why a certain
word has been assigned to a certain entity.

SUMMARY
Speech recognition and synthesis are important components for sys-
tems that interact with humans via spoken language – be it in machine
translation or when using voice assistants.

Using machine translation, a text or speech signal can automatically be
translated into another language.

In order to properly process a text, relevant information has to be extrac-
ted. This can be done using techniques such as named entity recogni-
tion, relationship extraction, or coreference resolution.

Sentiment analysis is an important field of research in NLP that deals
with the task of extracting the emotions of a user from a given text or
speech signal. Another increasingly important area of application is
chatbots.

NLP systems are often implemented using Python, which provides a
large set of libraries to solve common problems. NLTK and spaCy are two
Python toolkits that provide a huge set of algorithms and techniques
that can be useful for all sort of NLP tasks.
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