
PREVIEW-PDF, erzeugt:

SOFTWARE ENGINEERING:
SOFTWARE PROCESSES

DLMCSSESP01



LEARNING OBJECTIVES
Software processes and life cycle models are applied in software engineering to facilitate
methodical development of software and software-intensive systems. This course will
introduce the foundations of software processes. Moreover, it will demonstrate software
process definition and modeling.

In Software Engineering: Software Processes, you will discover the role of software
processes and life cycle models in software engineering, from initialization to withdrawal
of a software system. You will learn about project management in software engineering,
and explore the origin, establishment, and evolution of software processes and models.
Upon completion, you will have an understanding of modeling notations and meta-mod-
els. Furthermore, you will be able to apply applicable notations to define and model soft-
ware processes, as well as interactions between processes.

Basic software life cycle models, Agile, and lean development processes are explained.
You will gain an understanding of the advantages and shortcomings of plan-driven and
Agile development, and the value of applying a hybrid approach. This course will intro-
duce Scrum development, common Agile practices, and scaling of Agile development.

Furthermore, customizable process models will be explored. Information technology (IT)
service management and operations will be introduced as a practice that ensures imple-
mentation and delivery of quality IT services for customers. You will learn about the cul-
ture of DevOps, and the management of safety, security, and privacy as it relates to soft-
ware, data, and information.

This course will teach you about the management and governance of IT processes and
services. You will learn about process design and deployment, as well as process tailoring.
Furthermore, it will introduce you to means whereby to assess, measure, and improve
processes, and also tools to use support process modeling, process management, and
process enactment.

11PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00

Anonymous
Highlight
repetitive

Anonymous
Highlight
is something missing after agile?

Anonymous
Highlight

Anonymous
Highlight
please define

Anonymous
Highlight
awkward language

Anonymous
Highlight
please review language



UNIT 1
FOUNDATIONS OF SOFTWARE PROCESSES

STUDY GOALS

On completion of this unit, you will have learned …

– the role of software processes and life cycle models in software engineering.
– about the historical origins of processes and models.
– how processes and models have evolved throughout history.
– the typical challenges of managing information technology (IT) projects in software

engineering.
– about project management in software engineering processes.

PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00

Anonymous
Highlight

Anonymous
Highlight



1. FOUNDATIONS OF SOFTWARE
PROCESSES

Introduction
Software engineering has been an established field for quite some time. Many businesses
and organizations are increasingly dependent on software and software-intensive systems
to perform their core functions efficiently. They must therefore have access to suitable
software that continues to function for their business requirements. Private individuals
are also increasingly reliant on information technology (IT) and its associated software to
ease, improve, and enrich their daily lives. Software malfunctions and failures can cause
enormous economic damage or even physical harm. Thus, it is important to develop and
implement quality software that is robust and fit for its purpose. Software must also be
developed and maintained in such a manner that it adheres to acceptable levels of relia-
bility, consistency, safety, security, usability, and privacy. Boehm (2006) defines software
engineering as “the application of science and mathematics by which the properties of
software are made useful to people” (p. 13).

Several different kinds of software engineering are available, and a number of viewpoints
can be applied to explore software engineering. As an example, Boehm (2006) states that
software engineering can be classified as “large or small; commodity or custom; embed-
ded or user-intensive; greenfield or legacy/COTS/reuse-driven; homebrew, outsourced, or
both; casual-use or mission-critical” (p. 12). The relevant viewpoint of the involved and
affected stakeholders, the type of software engineering applied, the purpose of the envis-
aged software, and the nature of the software project dictate how software and software
systems will be planned, designed, developed, implemented, and maintained. Regardless,
it will still be by way of one or more pre-defined software processes and life cycle models
that facilitate the methodical and structured design, development, implementation, and
maintenance throughout its life cycle.

Continuous advancements in computer hardware and software, wider ranges of applica-
tion and new insights gained by practitioners and researchers in terms of improved ways
of executing development projects see to it that the field of software engineering is con-
stantly evolving. IT projects have been (and still are) notoriously diverse and difficult to
implement successfully in practice. Various authors, such as Iivari et al. (2000) and Clegg
and Shaw (2008), argue that this is a result of development approaches that focus mostly
on technological aspects of software, neglecting other relevant (e.g., human, social, and
cultural) dimensions. Some projects fail due to arising challenges, but this leads to ongo-
ing research and subsequent paradigm shifts in the field. The aim here is to streamline and
evolve applied processes and models in order to manage projects more effectively.
Kneuper (2018) states that the issue is that “software development is more similar to
social science than natural science” (p. 3).

14 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00

Anonymous
Highlight

Anonymous
Highlight
Outdated sources in the context

Anonymous
Highlight
language

Anonymous
Highlight



Software life cycle
The software life cycle
describes the steps of a
software project, from ini-
tialization to withdrawal.

Accordingly, based on a variety of factors, such as the available technology at the time, the
range of application, prevalent worldviews, prevailing research on future trends, and pos-
sible underlying causes of project failures in the past, a range of software engineering
trends have emerged and evolved over the years. These trends include focusing on the
engineering of computer hardware and algorithmic (once-off) programming in the 1950s,
crafting (code-and-fix) as a programming approach of the 1960s, and attempts at formal
and structured development methods in the 1970s (Booch, 2018; Boehm, 2006). Booch
(2018) and Boehm (2006) note that increasing productivity and concurrent, risk-driven
processing were the focus areas in the 1980s and 1990s respectively, agility and rapid
development became essential in the 2000s, and the 2010s were characterized by global
connectivity and integration. Currently, a multitude of different software engineering
methodologies, software processes, and life cycle models exist (Kneuper, 2018). Increased
awareness of underlying issues and attempts to manage the challenges and risks associ-
ated with software development, as well as technological advancements, bring about con-
tinuing research by academia and practitioners in the field to improve and refine software
engineering processes and models. As a result, new trends continue to emerge, and proc-
esses and models continually evolve.

1.1 The Role of Software Processes
The term “process” originates from the Latin processus, which implies advancing or pro-
gressing, and the subsequent Old French proces, which implies continuation or develop-
ment. “Process” therefore means following a sequenced method to accomplish a result.
Accordingly, a software process is comprised of a series of activities to design and develop
software. The focus is on the construction process (to design and develop software arte-
facts and systems), rather than the output (the created software artefact or system). A soft-
ware process model is an abstraction of such a software process. Software is developed
using software processes, which are subsequently based on software process models. The
development of software and software systems is planned and executed according to a
software life cycle model, which is an abstraction of the software life cycle. The software
life cycle includes all the steps and activities of a software project. It spans from initializa-
tion of the software to its withdrawal, i.e., from inception to maturity and beyond, and
consists of all the phases through which a single software artefact or an integrated soft-
ware-intensive system develops. Software processes and life cycle models aim to facilitate
coordination and management of the various and complex activities that are involved in
the development of software (Kneuper, 2018).

Basic Software Processes and Life Cycle Models

The various software processes and life cycle models that manage software development
projects and are applied in software engineering include, e.g., waterfall models, the V-
model, component or matrix-based models, iterative, incremental, and evolutionary
development models, and agile and lean development. Regardless of the specific model
applied, a life cycle model typically includes a sequential, iterative, or evolutionary
arrangement of the following generic phases:

15PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00

Anonymous
Highlight
plural?

Anonymous
Highlight
please check

Anonymous
Highlight
terminology

Anonymous
Highlight
or "in turn"?

Anonymous
Highlight



• a feasibility study
• requirements elicitation
• an investigation of the existing software and associated infrastructure
• analysis and object design
• design, including the software and system design
• implementation of the software and system
• verification and maintenance

The feasibility study involves investigating the requirements that are not being met by the
current software in use (if applicable), and the requirements that need to be met by the
new software. Requirements elicitation entails collecting and analyzing business require-
ments and translating them into functional and technical requirements. The investigation
of the existing software and associated infrastructure entails detailed scrutiny of the flaws
of the current software and infrastructure (if applicable). It also aims to identify additional
functional and technical requirements, any possible constraints, data types, volumes, etc.,
of the software to be developed. During analysis and design, the aim is to understand the
improvement that the new software should bring about and the design that can best ach-
ieve it. Factors, such as relevant objects, input and output, processes converting input to
output, security, privacy, backup provisions to be made, the definition of testing, and
implementation plans, are also considered. Implementation refers to the actual imple-
mentation, testing, and use of the new software in the business environment; it includes
change over from the old to the new (if applicable), drafting documentation, and conduct-
ing end-user training according to defined privacy and security protocols. Finally, verifica-
tion and maintenance consist of evaluation and ensurance of continued optimal use of the
software by the users until withdrawal.

The Management of IT Projects in the Software Engineering Discipline

The software engineering discipline comprises the specification, design, development,
management, and evolution of software and software-intensive systems. IT, including soft-
ware systems, is applied to solve problems in various and diverse industries, e.g., manu-
facturing, education, logistics, production, government, finance, health care, and analyt-
ics. The intrinsic high complexity of software systems necessitates suitable application of
engineering principles; accordingly, software engineers apply relevant methods and tech-
niques from engineering fields to solve problems efficaciously with software (Sommer-
ville, 2011). Software engineering projects are regarded as a type of an IT project; they fol-
low a project management approach and apply IT project management principles to
develop artefacts and systems.

Project management is the identification and organization of milestones, tasks and activi-
ties, timelines for completion, allocation to responsible and accountable individuals, and
monitoring of work performed in comparison to plans and schedules. Similarly, IT project
management is progressing towards materializing an IT (e.g., software) artefact; it defines
the phases to follow in order to visualize, design, develop, implement, and maintain soft-
ware. It also entails the “procedures, techniques, tools, and documentation” used to
“plan, manage, control, and evaluate” IT projects and the associated software artefacts
and systems they produce (Avison & Fitzgerald, 2006, p. 24).

16 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



According to Münch et al. (2012), processes and models that are suitable and appropri-
ately applied aim to reduce the complexity of large software development projects, ensure
that all members of a development project work together in a coordinated manner, and
facilitate the development of software that is consistent with quality criteria, as well as
within time and budget constraints. Successfully executing such projects requires the rig-
orous application of a suitable approach and appropriately managing the associated risks
and challenges. However, despite the rigorous planning and execution of IT projects, they
often fail. Challenges and issues that are cited as causes of IT project failure include

• unclear and changing requirements (Hussain & Mkpojiogu, 2016).
• the requisite to meet the needs of various and diverse stakeholders (Alreemy et al.,

2016).
• a multitude of diverse (even disparate) internal and external requirements and stake-

holders that influence the design and behavior (de Oliveira & Rabechini Jr, 2019).
• the socio-technical nature caused by the interconnectedness of technological plat-

forms, such as hardware and software, as well as human users (Teubner, 2019).

It is unfortunate that IT project failures, especially in the software domain, are often
rationalized or ignored, resulting in the repetition of mistakes by others or even by the
organization involved and affected.

To improve the rate of (or, at the least, achieve) success, we must first define it. In project
management guides and standards, such as the PMBOK Guide (Project Management Insti-
tute, 2013) and PRINCE2 (Axinte et al., 2017), project success is generally measured by the
project triangle. This triangle refers to three constraints that must be balanced when plan-
ning and executing a project, i.e., the schedule (timeline of activities), the scope (the
boundaries of what is included versus what is to be excluded), and the cost (the allocated
budget for the project). Balancing these aspects means that the extension of one of these
elements will inevitably impact the others. For example, an extension in the schedule will
cost more, or a scope increase will inflate both the schedule and the cost. More recently, a
fourth element has been added: quality. Quality can be put in the middle of the triangle,
indicating that quality is dependent upon schedule, scope, and cost, and vice versa.

17PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00

Anonymous
Highlight
currency of source?

Anonymous
Highlight



Figure 1: The Project Triangle—Indicating Project Constraints

Source: Venter, 2021.

Taking the aforementioned challenges and issues into account, it is clear that IT project
success can potentially be very difficult to concisely determine and define. For example,
when a project serves a supporting role to the core organizational functions, added fac-
tors, such as business, political, cultural, and social undercurrents, must be considered in
addition to the technical complexity of the project. This is typical for software projects
and, as a result, the boundaries and scope definitions of software projects tend to be fluid,
sometimes to the detriment of the project. Also, constant changes and rapid technological
advancements, as well as the need to be up-to-date with the latest technological develop-
ments, often lead to rapidly changing expectations and requirements. Additionally, issues,
such as the need to accommodate both the old and the new simultaneously and having to
replace legacy systems without interrupting core business functions, pose more real
threats of project failure. Project risks refer to uncertainties in conditions that can influ-
ence a project outcome positively or negatively. Risks are managed using

• risk identification.
• risk analysis in terms of probability.
• size.
• potential risk mitigation, risk avoidance, or risk transference actions.
• implementation of defined mitigation, avoidance, and transference actions (as needed).
• monitoring to determine if these were sufficient, or whether they should be adjusted.

Specific and unique sources of risks for IT projects are technological, organizational, and
user-dependent (Taherdoost & Keshavarzsaleh, 2015). Technological risks include, e.g.,
the technology of the product or service failing to integrate or interface sufficiently with
existing systems or platforms as intended, underestimation of the number of users, and
lacking a system capable of scaling up with demand. Organizational risks include, e.g.,
lack of strategy for technology acquisition, resulting in insufficient resourcing for the

18 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



project or underestimation of staffing support requirements. Often, IT departments must
deliver projects reactively, with little room to influence user requirements, as these
projects are being generated by leadership or business units with little understanding of
the time and effort required to build an IT solution.

Project Management in Software Engineering Processes

In contrast to industrial production processes where activities can be planned upfront in
terms of, for example, duration and resource requirements, planning for software projects
tends to be unpredictable and remain fluid throughout the process. In particular, the exact
costs, a concrete functional scope, and technical design of a software system are often
only known in retrospect. Furthermore, major contributing factors of project risk in soft-
ware projects include the interconnectedness, complexity, and intangibility of software
systems.

Even though software development is mostly a knowledge-driven, user-centric, and social
process, software projects are most often planned and launched according to an overarch-
ing technical objective (e.g., the introduction of a self-care portal for customers of an
insurance company), meaning that it is nearly impossible to specify all the requisite func-
tional requirements and integration points accurately from the onset. The conceptual
nature of software makes it difficult to review the progress and quality of both the individ-
ual elements and the integrated components during development and prior to use. New
requirements therefore tend to surface during development, even after initial use; the
requirements relevant for users and customers typically only become known after stake-
holders have seen a first version of the system. Diverse stakeholder groups may also have
diverse or conflicting requirements that may only emerge during development and after
initial use. In addition to numerous stakeholders, factors, such as changing legal require-
ments, technological developments, and unpredictable markets, can significantly influ-
ence the requirements for software systems during a software project.

Software development’s success continues to be driven by the degree to which a devel-
oper understands the business requirements of end-users (Green et al., 2010; Leffingwell,
1997; Sawyer et al., 1997). Common causes of failure include the inappropriate specifica-
tion and management of a customer’s requirements, inconsistent or incomplete require-
ments, expensive late changes, and misunderstandings between the involved and
affected stakeholders. Sommerville (2001) suggests that business requirements should be
verified in terms of validity, consistency, completeness, realism, and verifiability. These
terms are defined as follows:

• Validity refers to the inclusion of appropriate and relevant functions, where user com-
munities may have to compromise if these are too diverse.

• Consistency refers to requirements that do not conflict or have contradictory con-
straints or descriptions.

• Completeness ensures that all functions and constraints that the user intended are
clearly defined.

• Realism means that requirements can be implemented within budget, time, and tech-
nological constraints.

19PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00

Anonymous
Highlight
sources are old 

Anonymous
Highlight
unclear



Paradigm
A paradigm refers to an
accepted model or pat-
tern and represents the

way people perceive,
view, and explore their

world.

• Verifiability refers to the ability to use assessment criteria to confirm whether the soft-
ware will meet specified requirements after implementation.

Development teams must have both a business and a technical understanding of the
requirements formulated by stakeholders in order to deliver a highly usable and purpose-
ful software system. As software systems are generally integrated into complex application
landscapes via a multitude of technical interfaces, development teams must be able to
identify both business and technical relationships across organizational and system boun-
daries. Thus, project teams with business understanding, as well as technical knowledge
of applications, can deal more effectively with the intricate combination of interrelated
and interdependent business, functional, and technical requirements.

When software projects focus largely on the technology without addressing the benefits
for the end-user, it is referred to as “technology-centeredness”. Similar problems occur
when challenges to technology are only superficially explored, thereby leading to a high
risk of project failure. It is more convenient (and exciting) for developers to discuss these
interesting topics and put new technologies into use than to confront the business and
technical problems of users. In some cases, this leads to systems being delivered that
reflect the latest technology trends but are not designed according to the actual needs of
the users.

Finally, the lack of communication and coordination between those involved in and
affected by a software system also causes project failures. Development projects for soft-
ware systems can involve various (diverse) departments (e.g., marketing, sales, IT applica-
tion development, external consultants, and the legal department), and each organiza-
tional unit might have unique ideas and objectives that allow them to accomplish their
tasks more effectively.

1.2 A Historical Overview
Boehm (2006) argues that software engineering differs considerably from other types of
engineering. Engineering in its basic form tends to be a relatively static field, e.g., basic
electrons or chemicals do not change their basic structures over time. However, the soft-
ware elements that we engineer continuously change and evolve over time. From a histor-
ical viewpoint, and as a result of these evolutions, software process models and life cycle
models are positioned in, and can be explained from, the different perspectives of the pre-
vailing paradigms, i.e., evolved worldviews that resulted in new models as well as existing
models that were adapted accordingly.

Thomas S. Kuhn (1962) introduced the concept of paradigms and paradigm shifts in his
book The Structure of Scientific Revolutions. Paradigms are still applied today as a lens
through which to explore and explain phenomena, such as the processes and models that
are applied to plan and structure development tasks and projects. Therefore, even though
the basic elements of software processes and life cycle models are fairly alike, the funda-
mental paradigm of the respective software process and life cycle model guides its choice
and determines how it is to be implemented and executed.

20 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00

Anonymous
Highlight
some people? A certain group of people?

Anonymous
Highlight



Paradigm shifts occurred over the last few decades in the way that software was (and is)
perceived and used. Shifts also occurred in the way that software is designed, developed,
implemented, and maintained, and software processes and life cycle models evolved
accordingly. The emergence of a new paradigm does not necessarily render the previous
one invalid; Kuhn (1962) argued that it merely reflects new and different ways of under-
standing and doing. Therefore, various paradigms can co-exist, and one will be chosen
over another based on, for example, organizational culture, specific requirements, or par-
ticular circumstances.

Similarly, the disciplines of software development and software engineering evolved from
purely algorithmic and one-off activities. Over time, they became more formal and struc-
tured, and matured into an acknowledged discipline, rooted in both the engineering and
the business world alike, over the past 60 years. The different processes and life cycle
models that are currently being applied in the field reflect the various viewpoints used to
understand software requirements, as well as to design, develop, and maintain software.
As an example, Iivari et al. (2000) suggest that development approaches are rooted in
either a functionalist or a non-functionalist paradigm. They positioned structured models,
e.g., waterfall models, and also typical iterative, incremental, and evolutionary models in
the functionalist paradigm, arguing that these focused mostly on technological aspects of
the software, to the detriment of the end-user. More recently, Boehm (2006) also argued
that software engineering has evolved to the extent that it acknowledges that software
can only be “useful to people” when it is engineered using relevant sciences, such as “the
behavioral sciences”, “management sciences”, and “economics”, as well as “computer sci-
ence” (p. 13).

Programmable Computers: The Origin of Software

General-purpose programmable computers and accompanying software originated, in
theory, in 1834. Charles Babbage and Ada Lovelace devised them conceptually when they
considered the use of mechanical machines for complex technical calculations and
designed the “Analytical Engine” (Babbage, 1864, p. 186). If they had been able to build it
at the time (lack of resources and technological advancements prevented them), it would
have been the first general-purpose programmable computer (Wilkes, 1992). An informal
program (algorithm) for the analytical engine was written by Lovelace in the form of com-
mentary added to a description of the analytical engine in 1842 (Menabrea, 1843).

About a century later, sufficient resources became readily available and technological
advancements were at such a level that the first programmable computers could actually
be built. These were for government and military use at first, but they were also adapted
for civil use after the Second World War (Zuse, 1980). During the Second World War, differ-
ent countries (i.e., Germany, Great Britain, and the United States) were concurrently busy
studying computer technology. Without knowing of each other’s work, their respective
designs were quite similar, as they were mostly inspired by the work of Babbage and Love-
lace (Aiken & Hopper, 1946; Eckert et al., 1951; Flowers, 1983; Zuse, 1980).

After the war, computer technology advanced astonishingly quickly, from the “51 feet long
and 8 feet high” (Aiken & Hopper, 1946, p. 386) Mark I computer intended solely for gov-
ernment use, to inexpensive and relatively small (for the time) single-chip microprocessor

21PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00

Anonymous
Highlight
language but also dating language

Anonymous
Highlight

Anonymous
Highlight

Anonymous
Highlight

Anonymous
Highlight

Anonymous
Highlight
capitalization, quotation marks



architecture. This ultimately resulted in portable and personal computers that are, nowa-
days, relatively cheap and therefore widely used in various institutions, including govern-
ment and military organizations, businesses, universities, schools, and private house-
holds. Standardized software processes and life cycle models evolved accordingly, albeit
somewhat slower by comparison.

The Evolution of Programming for Software

Since programmable hardware was being built beginning in the 1940s, supporting soft-
ware became necessary soon thereafter. For this, initial programming languages, e.g.,
Konrad Zuse’s Plankalkül language, were largely algorithmic and based on Boolean logic
(Zuse, 1980; Boole, 1847). Wallace John Eckert published a pattern language that was
essentially viewed as the first programming methodology in his book Punched Card Meth-
ods in Scientific Computing in 1940 (Eckert, 1940). Commercialization and the wider use of
computers soon led to acknowledgement that standardization was required in the pro-
gramming field. Thus, compiler programs were born, such as the one completed by Grace
Hopper in the early 1950s, which is considered to be the first compiler program (Hopper &
Mauchly, 1997).

John Pinkerton, an engineer at the Lyons Electronic Office (LEO), also realized that low-
level and repetitive programming tasks could be bundled into a library of common, re-
usable routines. Before long, programmers Grace Hopper, Robert Bemer, and Jean Sam-
met, influenced by the work of John Backus, created the powerful, business-oriented
programming language Cobol, and the predecessors to open-source software (the SHARE
organization) and the idea to establish and outsource software development as a business
emerged. This opportunity was seized by British programmer Dina St Johnson when she
founded the first software development house (Booch, 2018).

The Rise of Structured Software Engineering

It is evident from the preceding discussion that software engineering developed over
many years, starting with typical craft-based, trial-and-error approaches. These make-
and-fix approaches continued to produce expensive artefacts, quite often behind sched-
ule. Development approaches evolved over time into methodological (engineering-based)
approaches that are more time-based, resource efficient, and structured.

Benington (1983) was the first to present a formal and structured description of
sequenced activities whereby to develop software; it was presented at a 1956 symposium
dedicated to advanced programming methods for digital computers. However, it was only
in the late 1960s that the term “software engineering” was formally introduced. The term
is said to have been coined by Friedrich Bauer in 1968 at the first NATO software engineer-
ing conference, where the organizers of this conference recognized software as becoming
an integral part of communities and organizations alike, and structured software develop-
ment approaches became more prominent (Naur & Randell, 1969). Even so, the term “soft-
ware engineering” may have emerged earlier; a letter authored by Anthony Oettinger was
published in 1966 in the Communications of the ACM, which used the term “software engi-
neering” to distinguish between computer science and the practice of building of software
(Oettinger, 1966). Earlier still, an advertisement was published in June 1965 in an issue of

22 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00

Anonymous
Highlight
definition or explanation?

Anonymous
Highlight

Anonymous
Highlight

Anonymous
Highlight
helpful to add when?



Computers and Automation, seeking a “systems software engineer”. However, unpublished
oral history states that Margaret Hamilton actually coined the term “software engineering”
in the early 1960s to distinguish her work from that done in the hardware engineering field
(Booch, 2018). From the 1960s to the 1980s, the field of software development and engi-
neering advanced rapidly. The following advancements occurred in this time period
(Booch, 2018):

• The concept of modular programming was born.
• Structured programming was conceptualized.
• The programming language Pascal was invented to support structured (functional or

procedural) programming.
• An object-oriented language (Simula) was invented.
• Various ideas related to information hiding, abstract data types, entity-relationship

modeling, software engineering methodologies, and structured analysis and design
emerged.

• A variety of programming languages materialized, and computers and software became
more available and accessible.

• Businesses started to use computers, software, and programming languages to improve
and optimize various organizational aspects.

• Software-intensive and distributed systems appeared to replace stand-alone and inde-
pendent software and software artefacts.

• Wide-spread problems related to quality, privacy, and security emerged due to the
speed at which these industries were growing.

• Structure and formalization was needed to control and manage the growth, and various
models were progressively introduced.

The Evolution of Software Process and Life Cycles

The software development life cycle (SDLC) model, as introduced by Royce (1970), is still
viewed by many as the first and traditional software development approach as it greatly
influenced software development practices (Avison & Fitzgerald, 2006). The SDLC model
was, however, more generally termed, similar to the set of sequential development activi-
ties presented by Benington in 1956 (Benington, 1983). It comprises of activities, such as
the definition of system and software requirements, design and analysis, programming
and coding, testing, and continued operations. Royce (1970) argued that these successive
development phases should ideally be iterated before proceeding to the next phases,
rather than executing them strictly sequentially. The term “waterfall”, which is still widely
associated with the traditional SDLC model, was introduced by Bell and Thayer (1976)
when they referred to it as a top-down approach and suggested that sequences of activi-
ties develop software.

According to Edmund (2010), general iterative, incremental, and evolutionary software
developments were originally inspired by the work of Shewhart, who suggested in the
1930s that problems are best solved by following a plan-do-check-act (PDCA) cycle, which
later became known as the four basic quality improvement steps. Randell and Zurcher
(1968) say that they recommended and presented evolutionary software development in
the late 1960s at a congress, stating that such an approach may result in improved soft-
ware products. They argued that, since issues and problems can only truly be detected

23PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00

Anonymous
Highlight
list formatting



once a product has been built and is being used, issues can be discovered and resolved
prior to continuing to the more intricate and complex levels of design and development
when software is designed, developed, and evaluated iteratively and incrementally.

Boehm introduced risk-driven development, in the form of the spiral development
method, in the late 1980s. This method incorporates any development methodology, or a
combination thereof, and consists of an indeterminate number of iterative loops that set
objectives, assess and reduce risk, develop and validate, and plan for the next phase (i.e.,
loop), until completion of a successful artefact (Boehm, 1988). This method is risk-driven,
rather than document or code-driven.

While Agile development and the principles behind it were formally introduced in the
early 2000s (The Agile Manifesto was published in 2001), the Scrum method was presented
earlier. “Scrum” was introduced by Takeuchi and Nonaka in 1986. Soon after, Ken Beck
introduced Extreme Programming, and Johnson and Fowler developed refactoring
(Booch, 2018). Agile development consists of techniques that are referred to by the found-
ers of the Agile development principles as “light” and support rapid development (High-
smith, 2001). It successfully facilitates iterative and incremental development, as well as
continuous verification of requirements and subsequent evolvement of products (Hijazi et
al., 2012). Agile, in the broadest sense, refers to a type of cultural approach whereby to
rapidly design and develop user-centric software. A high-level historical overview is shown
below.

24 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00

Anonymous
Highlight

Anonymous
Highlight



Figure 2: High Level Historical Overview

Source: Venter, 2021.

SUMMARY
Software engineering is the engineering of software for organizations
and individuals. Different types of engineering are applied, but they all
follow a pre-defined software process and life cycle model. Software
engineering trends have been emerging over the years, and the field still
continues to evolve. Programming practices evolved from algorithmic,
code-and-fix approaches, to formalized and structured development
methods, and software engineering now comprises of a multitude of
processes and models. Software processes and life cycle models consist
of sequential, iterative, and evolutionary arrangements of a number of
generic phases. These involve a feasibility study, requirements elicita-

25PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



tion, investigation into existing software and infrastructure, analysis and
object design, software and system design, software and system imple-
mentation, and verification and maintenance.

Project management and engineering principles are applied to design,
develop, and maintain software, from initialization to withdrawal. They
reduce complexity and risk and facilitates communication among team
members. Still, failure of software (and IT) projects remains high. Causes
of failure continue to be identified, and management of these projects
continues to be researched and refined.

Software engineering, as a discipline, emerged in the 1960s; however,
computer hardware has been used since the early 1900s, and program-
ming practices advanced as hardware (and application of technology)
advanced. Software processes and life cycle models can be explored and
explained from the different perspectives of prevailing paradigms. Simi-
larly, evolutions that occurred in the field over the past decades give
insight into the way software was (and is) perceived and used.

26 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



UNIT 2
SOFTWARE PROCESS DEFINITION AND
MODELING

STUDY GOALS

On completion of this unit, you will have learned …

– about notations and the role of meta-models.
– how to apply the Unified Modeling Language (UML) to model software-intensive sys-

tems.
– how the Systems Modeling Language (SysML) differs from UML.
– about the relevant notations to model interactions between business processes.
– to use the detailed level notation Business Process Model and Notation (BPMN).

PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



2. SOFTWARE PROCESS DEFINITION AND
MODELING

Introduction
Software processes are dependent upon internal and external factors, people, and circum-
stances; they are complex, unpredictable, and challenging to rationally describe. Activi-
ties, resources, and constraints associated wirh software processes are difficult to manage
(Bendraou et al., 2010). Software process definition and modeling enables optimal design,
development, and implementation of robust software; it also facilitates optimal manage-
ment of risk as well as verification and maintenance of implemented software. Models
help to understand, visualize, and communicate desired structure, behavior, and architec-
ture of software-intensive systems, and they also guide construction and documentation
of decisions (Booch et al., 2005).

Software modeling can be approached from either an algorithmic or an object-oriented
perspective. In the algorithmic view, procedures and functions form the building blocks of
the software; in the object-oriented view, objects or classes form the main building blocks
of the software. Object-oriented development is applied widely to develop modern-day
software. In this, the following modeling components are used: classes, objects, attrib-
utes, and operations. Identified classes and objects, their associated attributes and opera-
tions, and how they relate to one another to conceptually describe a problem and solution
are noted in a standardized modeling language in order to document the results of the
object-oriented analysis (OOA) and object-oriented development (OOD). The Unified Mod-
eling Language (UML) and Systems Modeling Language (SysML) are standardized object-
oriented notations that are widely applied. Various other notations to model interfaces
between business processes, as well as the business processes themselves, are relevant in
software engineering. These are necessary to visualize the interconnectedness of the soft-
ware systems, and optimally manage the risks around it. In addition to formal notations,
the “napkin” notation is often used to draw diagrams that are easy to read and understand
from the perspective of non-technical audiences, e.g., to present a simplified, high-level,
or non-formal diagram to management. The most widely used notations are explained in
this unit.

2.1 Modeling Notations and Meta-Models
The Unified Modeling Language (UML) is a graphical modeling language that was devel-
oped in the early 1990s with the emergence of object-oriented development practices. It is
a software-centric modeling language that facilitates modeling from an object-oriented
viewpoint. According to Bendraou et al. (2010) UML provides “a rich set of notations, dia-
grams, and extension mechanisms” (p. 662). It has both advantages and drawbacks, but it
remains “undeniably one of the most adopted modeling of this decade” (p. 662). It is
widely applied to model software-intensive systems.

28 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



The SysML is also a universally accepted modeling standard. It is systems-centric rather
than software-centric, and is applied to model systems as well as system-of-systems. Frie-
denthal et al. (2012) refer to SysML as “a general-purpose graphical modeling language for
representing systems that may include combinations of hardware, software, data, people,
facilities, and natural objects” (p. 3). It was derived from and extends a portion of UML.

Software systems, as part of a bigger organizational landscape, are also required to be
modeled in a similarly cohesive manner; hence, interfaces and integration with, for exam-
ple, related and interconnected business and systems, must be analyzed and illustrated.
For this, high-level modeling notations that cover multiple processes, as well as individual
detailed level notations, are applied. Prominent notations in this regard are those that
include value chains and process landscapes, e.g., the Multi-View Process Modeling Lan-
guage (MVP-L) and the Business Process Model and Notation (BPMN). All notations are
defined by applicable meta-models.

The Role of Meta-Models

A meta-model (or surrogate model) is an abstraction of a model. A meta-model, as an
abstract representation, defines the notations to be used to model a process. Meta-model-
ing entails the analysis, construction, and development of elements, such as the frames,
rules, constraints, and theories; these should then be explicitly applied when modeling
specific problems and solutions. A meta-model describes and illuminates the properties
of the model; a model always conforms to a unique meta-model. Kneuper (2018) states
that meta-models are distinguishable through their unique properties. They differ in
terms of the following:

• levels of abstraction and detail
• degrees of structure
• degrees of formality
• the means to support process enactment, execution, and simulation
• use of either graphical or text-based notation

Kneuper (2018) differentiates between process interaction notation, notation for process-
internal structure, and combination notation. He classifies life cycle diagrams as process
interaction notations, and notations that are typically applied to model requirements and
business processes are classified under process-internal structures. The Object Manage-
ment Group (OMG) (n.d.) developed a meta-modeling architecture that supports the
description of widely used languages, such as UML and BPMN, referred to as the Meta-
Object Facility (MOF). MOF is essentially a meta-meta-model, as it describes the notation
used for meta-models (Kneuper, 2018). MOF supports the Software Process Engineering
Metamodel (SPEM) and provides a basis for tool support. SPEM was introduced by the
OMG and embodies a process engineering meta-model and a conceptual framework to
provide necessary concepts to model, document, present, manage, interchange, and
enact development methods and processes (Münch et al., 2012).

MOF is published as the international standard ISO/IEC 19508:2014 (International Organi-
zation for Standardization, 2014). It is a Domain Specific Language (DSL) that provides a
type system for use in the Common Object Request Broker Architecture (CORBA) architec-

29PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



Object
An object is something

concrete and representa-
tive of the problem or sol-

ution space.
Class

A class is an abstract rep-
resentation of an object

and describes a set of
common objects.

ture. CORBA facilitates communication of systems deployed on diverse platforms. MOF is
typically used as a four-layered architecture, i.e., M3 to M0. It provides language (on M3)
used to build meta-models (referred to as M2 models), which then describe elements of
the M1-layer (M1 models). M0 is the data layer, which is used to describe objects as they
are in the real world. MOF meta-models are typically modeled as UML class diagrams. The
M3 layer can be referred to as the meta-meta-model. The M2 layer is made of the meta-
model (e.g., UML, BPMN, and SPEM). The M1 level is then the instance of the meta-model,
i.e., the model itself, while M0 level is the instance of the model.

Unified Modeling Language

Unified Modeling Language (UML) is not a programming language; it is a graphical lan-
guage, or notation, used to model software-intensive systems. It helps to document blue-
prints for software systems as it can visualize, specify, construct, and document the sys-
tems, by focusing on the conceptual and physical representation thereof. It applies a set of
rules and semantics to specify and communicate the structure and logic of software-inten-
sive systems (Avison & Fitzgerald, 2006). UML was devised by Grady Booch, Ivar Jacobson,
and James Rumbaugh between 1994 and 1996, to facilitate modeling from an object-ori-
ented perspective; it is therefore used to model analysis and design concepts of software
systems in an object-oriented fashion. They formulated UML in an attempt to standardize
notations in order to remove confusion related to varied notations applied, and increase
adoption of object-oriented techniques (Booch et al., 2005). UML was initially developed
by integrating the pre-existing Booch method (of Grady Booch), the object modeling tech-
nique (of James Rumbaugh), and object-oriented software engineering (of Ivar Jacobsen),
with elements of other applicable methods and the assistance of large corporations such
as IBM, Unisys, Oracle, Microsoft, Hewlett-Packard, and Digital (Baumann et al., 2005). The
Object Management Group (OMG) adopted UML in 1997 and it is now a vendor-neutral and
evolving public standard. The latest versions of UML (the most current version is UML 2.5)
also support the modeling of business processes for the context of software engineering.
When considering UML in its entirety, it is almost incomprehensibly large. In reality, only a
portion of it is typically applied. The diagrams that are most often used in process model-
ing are typically class diagrams, state machine diagrams, and activity diagrams (Bendraou
et al., 2010).

Core components of UML

Firstly, in object-oriented modeling (and UML), it is important to understand the difference
and the relationship between an object and a class. An object is a concrete manifestation
of a class or an actual instance of a class. A class describes a set of common objects. Each
object has a unique identity that distinguishes it from other objects, a state referring to
data (i.e., a unique set of value entries of its attributes) associated with it, and behavior
referring to actions (i.e., operations) that it can perform, or that can be imposed upon it by
other objects. Secondly, in order to apply UML effectively, one must understand the fol-
lowing three elements of UML: its basic building blocks, the rules dictating how they may
be put together, and the common mechanisms that are applicable throughout. Booch et
al. (1999) state that the basic building blocks of UML are as follows:

30 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



• structural, behavioral, grouping, and annotational things, which are essentially abstrac-
tions of logical or physical entities that are representative of the problem or solution
being modeled

• relationships that tie all the elements together
• diagrams, which are groupings of meaningful collections

Then, the rules must be applied to ensure harmonious models; they are semantic rules to
describe and define names, scope, visibility, integrity, and execution. Furthermore, com-
mon mechanisms should be applied in terms of specifications, adornments, common divi-
sions, and extensibility mechanisms. All of these are applied to draw diagrams that repre-
sent views of the problem space and a proposed solution.

Structural things, or abstractions, represent conceptual (logical) or physical elements. The
basic structural elements to include in a UML model are made up of conceptual and physi-
cal elements. The conceptual elements are classes, collaborations, use cases, active
classes, and interfaces. The physical elements are components and nodes. These are also
broadly referred to in UML as classifiers. A classifier is a meta-class describing a set of
instances sharing common features, whereas features declare instances of classifiers’
structural or behavioral characteristics.

The structural, conceptual, and physical things in UML

A class describes a set of objects that share similar attributes, operations, relationships,
and semantics; it implements one or more interfaces. A class is drawn as a rectangle sepa-
rated into three distinct parts, typically i

ncluding its name, attributes, and operations. The figure below shows examples of three
different classes.

Figure 3: Examples of Classes

Source: Venter, 2021.

The first class (1), which has the name “Window”, indicates that a “Window” has the attrib-
utes “origin” and “size” and can perform the operations “open”, “close”, “move”, and “dis-
play”. The second class (2) has the name “Customer” to indicate that its objects will con-
tain information about customers; it specifies that a “Customer” has the attributes
“name” and “address”, and it indicates that a “Customer” can perform the operations of
“ordering”, “collecting”, and “paying”. In the example above, the third class (3) shows how
notations can also be used to indicate the status of the operations. For example, in the

31PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



Business process
A sequence of activities

aimed at reaching an
organizational goal.

class “Transaction”, the public (+), protected (#), and private (-) operations are specified.
The name of the class “Transaction” is written in italics to indicate that this is an abstract
class. These examples are simplified for the purpose of illustrating how to model them, as
classes typically contain more attributes. Objects are a special form of a class; they repre-
sent concrete manifestations of classes. When objects are modeled, the attributes are
associated with actual values. An example is shown below.

Figure 4: Example of a Class and Objects of the Class

Source: Venter, 2021.

A collaboration defines an interaction; it is a combination of roles and other elements,
working together cooperatively. Collaborations are bigger than the sum of the elements,
so they have structural dimensions and behavioral dimensions; this represents the imple-
mentation of patterns making up a system. It is drawn as an ellipse with dashed lines and
typically includes its name. It can also be indicated by both its name and relevant roles
and connectors. Details are suppressed. The collaboration “Chain of logistics” is shown
below. In this example, the “Chain of logistics” refers to a business process describing the
chain of logistics of a company. Also, the collaboration “Student registration” refers to the
process where a student and administrator collaborate to register a student.

32 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



Figure 5: Examples of Collaborations

Source: Venter, 2021.

A use case describes a set of sequenced actions performed by a system that yield a tangi-
ble, valuable result for a specific actor. It is applied to structure behavioral things and is
realized by a collaboration. It is drawn as an ellipse with solid lines. It typically includes its
name in the ellipse; however, the name can also be shown underneath the ellipse. A use
case “Complete transaction” is indicated below. In this example, the use case “Complete
transaction” refers to the collective actions that must be performed to complete a specific
transaction as it is encapsulated in and required for a specific business process and for an
actor. Both notations are shown—the first includes the name in the ellipse, the second
shows the name below the ellipse.

33PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



Figure 6: Examples of Use Cases

Source: Venter, 2021.

A use case can also be indicated using a standard rectangle with an ellipse icon drawn in
the upper right-hand corner of the rectangle. Furthermore, it may also include separate
compartments to show additional features. In the example below, a use case “User regis-
tration” includes additional features to register a user profile.

Figure 7: Example of a Use Case

Source: Venter, 2021.

An active class is a class with objects that owns one or more processes or threads; it can
initiate control activity and its behavior is concurrent with that of other elements. It is
drawn as a class, but with a heavy outline, and may include its name, attributes, and oper-
ations. The active class “EventManager” is shown below.

34 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



Figure 8: Example of an Active Class

Source: Venter, 2021.

An interface declares features and obligations. It constitutes operations specifying a serv-
ice that realizes a classifier, or that is required by a classifier; it is a declaration of the exter-
nally visible behavior. It may represent complete or partial behavior and defines operation
specifications (signatures), but not operation implementations, and can also indicate con-
straints or protocol specifications. It is drawn as rectangle with the keyword <<interface>>
and its name; it may also include associated features and obligations, as is illustrated
below.

Figure 9: Example of an Interface

Source: Venter, 2021.

An interface’s operations are either realized by a classifier, or required by a classifier that is
dependent upon it. Realization is drawn as a circle connected to a line, i.e., a “lollipop”.
Dependency is drawn as a solid line attached to a half-circle or socket. The example below
shows that the classifier “SearchService” is realized by the interface “WebSearch”;
“SearchService” manifests because of the interface “WebSearch”. It also shows that the
classifier “SearchController” requires the interface “WebSearch”. The examples below
show interface usage.

35PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



Figure 10: Example of Interface Usage

Source: Venter, 2021.

A component is a part of a system that conforms to a set of interfaces. It also provides real-
ization to interfaces; it is physical and replaceable, and typically represents the physical
packaging of logical elements. A component manifests using interfaces, and may be mani-
fested by one or more artifacts. It is drawn as a classifier rectangle containing the keyword
<<component>> and can also be shown as a rectangle with an icon made up of a small
rectangle with tabs in the top right corner; every representation includes its name. In the
example below, the component “NewsServices” manifests because of, for example, a
news bulletin (i.e., news that is being broadcasted through the interface “News bulletin”).
The following example shows both notations as well as interfaces.

Figure 11: Examples of Components and Interfaces

Source: Venter, 2021.

Components use two types of interfaces: provided and required. A provided interface
implements the component. In the example above, the interface “News bulletin” imple-
ments the component “NewsServices”, when a news bulletin is being broadcasted. A
required interface is one that the component requires to manifest. The example above
shows the component NewsServices that requires the interface NewsFilter (e.g., to pro-
vide current news, news must be filtered so that only current news is aired).

36 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



A node exists in run-time, representing a computational resource that typically has mem-
ory, processing capability, or both. The node is associated with deployments of artifacts;
for example, artifacts may be deployed upon nodes for execution. Nodes can be con-
nected via communication paths, which can also be defined between nodes. Links
between node instances will then define specific network topologies. A node is drawn as a
cube and includes its name. A hierarchical node showing an application server running
several web and Java servers is shown below.

Figure 12: Example of a Hierarchical Node

Source: Venter, 2021.

An execution environment is a node that offers an environment in which a component can
execute. This environment is for particular types of components, deployed as executable
artifacts. It is typically part of a general node or <<device>>, representing a physical hard-
ware environment; it can be nested, as in the example below.

37PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



Figure 13: Example of Execution Environments Nested into a Server Device

Source: Venter, 2021.

Behavioral things and abstractions, representing behavior over space and time, include
interactions and state machines. A state machine specifies the sequences of states that an
object or interaction undergoes during its lifetime, including its responses to the events. It
is drawn as a rounded rectangle and typically includes its name and sub-states (if any).
State machines can represent behavioral states or protocol states. Behavioral states spec-
ify discrete behavior, e.g., an electronic banking system waiting for a customer to transact.
It may also include labels, such as activity labels to indicate behavior to perform upon
entry during, or when exiting the state. The behavioral state machine “Waiting”, with activ-
ity labels “Entry” and “Exit”, is shown in the example below.

38 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



Figure 14: Example of a Simple State Behavioral State Machine

Source: Venter, 2021.

Protocol states in state machines present the external view. An interaction comprises a set
of messages that are exchanged among a set of objects—it is done within a specific con-
text and for a specific purpose. It is drawn as a direct line and includes the name of the
operation. A diagram containing protocol state machines (simple state) with protocol tran-
sitions is shown below.

Figure 15: Example of Protocol State Machines and Protocol Transactions

Source: Venter, 2021.

Boxes (referred to as packages), are used to group things and abstractions; models can be
grouped into packages. A package is a general-purpose, purely conceptual, mechanism
that is used to organize and group elements. Variations of packages are frameworks, mod-
els, and sub-systems. They are drawn as tabbed folders and typically include only their
names, but can also include their contents. A package “Transaction rules” is shown below.

Figure 16: Example of a Package

Source: Venter, 2021.

The following figure is a model diagram that includes a “container” model (“Layered
application”). It contains three other models, and their associated packages and depend-
encies are indicated.

39PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00

Anonymous
Highlight



Figure 17: Example of a Model Diagram

Source: Venter, 2021.

Annotational things and abstractions are comments that describe and illuminate ele-
ments in a model; in other words, they are notes. A note is a symbol used to render con-
straints and comments attached to an element or collection of elements. It is drawn as a
rectangle with a dog-eared corner and includes a textual or graphical comment as shown
below.

40 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00

Anonymous
Highlight



Link
A link is a connection
between objects.

Figure 18: Example of a Note

Source: Venter, 2021.

The basic forms of relationships are based on either dependency, association, generaliza-
tion, or realization. A dependency denotes a semantic relationship where the independent
thing affects the semantics of the dependent thing. It is drawn as a dashed line, and may
include a label. An association is a structural relationship that describes a set of links. It is
drawn as a solid line, and may include a label and other association adornments, e.g.,
aggregation, role names, and multiplicity. In the example below, its multiplicity indicates
that zero to infinity (denoted with the asterisk *) students can be associated with between
zero and one lecturers. A generalization shows a relationship where the specialized (child)
element’s objects are substitutable for those of the generalized (parent) element, i.e., the
child object shares the parent object’s structure and behavior. It is drawn as a solid line
with an arrowhead pointing in the direction of the parent. A realization is a semantic rela-
tionship between classifiers; one classifier specifies a contract that another guarantees to
carry out. They occur between interfaces and the classes or components that realize them,
and also between use cases and the collaborations that realize them. In addition to these
basic relational things, the following variations can occur:

• refinement
• trace
• include
• extend (for dependencies)

Figure 19: Examples of Basic Relationships

Source: Venter, 2021.

41PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00

Anonymous
Highlight
no added value

Anonymous
Highlight

Anonymous
Highlight
sudden switch to plural

Anonymous
Highlight



Rules in UML

Rules ensure that models are well-formed, i.e., that they are semantically self-consistent
and harmonious with related models. Models follow the semantic rules for

• names, which refer to UML things, relationships, and diagrams.
• scope, which refers to the context and gives specific meaning to a name.
• visibility, which refers to how names are understood and used.
• integrity, which refers to how things consistently relate to each other.
• execution, which refers to the manner in which a dynamic model is run or simulated.

Since models tend to evolve, and are typically viewed by many stakeholders in various
ways and at different times, models can also be built to be elided, i.e., with certain ele-
ments hidden for a simplified view, incomplete, missing certain elements, or inconsistent
(not guaranteeing the integrity of the model). Hence, to satisfy diverse stakeholder
groups, compromises are made between the level of abstraction versus the amount of
detail. These models may also naturally evolve and mature over time as more information
becomes available.

Common mechanisms in UML

Four common mechanisms are applied consistently. These are: specifications, adorn-
ments, common divisions, and extensibility mechanisms. Specifications provide textual
statements related to the building blocks’ syntax and semantics, providing all the attrib-
utes, operations, and behaviors the class embodies. Adornments indicate, e.g., whether it
is abstract and the visibility of attributes and operations. Common divisions distinguish
between classes and objects, as well as between an interface, declaring a contract and its
implementation, and representing a concrete realization of said contract. Extensibility
mechanisms include stereotypes, tagged values, and constraints. A stereotype extends the
UML vocabulary with terms derived from, e.g., the applicable programming language. A
tagged value facilitates addition of new and relevant information as applicable, and a con-
straint allows for addition of new and modification of existing rules.

UML diagrams

A UML diagram graphically presents a set of elements. These diagrams are used to visual-
ize a system from various perspectives and are typically drawn as connected graphs of ver-
tices (things) and arcs (relationships). In UML, one can differentiate between different
types of diagrams. The main categories of diagrams are static structural diagrams and
dynamic behavioral diagrams. They are illustrated below.

42 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00

Anonymous
Highlight

Anonymous
Highlight



Figure 20: UML Diagram Types

Source: Brückmann, 2013.

Structural diagrams illustrate a system’s static structure, elements, composition, and
interfaces; they are composite structure diagrams, deployment diagrams, profile dia-
grams, class diagrams, object diagrams, and component diagrams. Behavior diagrams
indicate a system’s flow of activities and interactions; these are as follows:

43PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00

Anonymous
Highlight



• activity diagrams
• use case diagrams
• state machine diagrams and interaction diagrams
• communication diagrams
• sequence diagrams
• interaction overview diagrams
• timing diagrams

In practice, diagrams are used selectively and on a case-by-case basis, as they are applica-
ble and useful for the context to be modeled, as well as for the stakeholders involved. The
table below indicates static structure and dynamic behavior diagrams that are often used
in UML.

Table 1: UML Static Structure and Dynamic Behavior Diagrams

Diagram What does this diagram address?

Class diagram • a system’s static design and structural view
• shows a set of classes, interfaces, operations,

collaborations, and relationships

Object diagram • static snapshots of instances of the things in
class diagrams

• shows a set of objects and their relationships

Component diagram • the static implementation view of a system
• shows the organization and dependencies

among a set of components

Deployment diagram • an architecture’s static deployment view
• shows configuration of run-time processing

nodes and the components living on them

Use case diagram • a system’s static use case view
• shows use cases, actors, and relationships indi-

cating functionality from a user (and external)
view

Communication diagram • a system’s dynamic interaction view
• shows objects and their relationships, focusing

on their topology

Sequence diagram • a system’s dynamic interaction view
• shows objects and their relationships, including

messages being dispatched

Activity diagram • a system’s dynamic view
• highlights the flow of control among objects and

actors
• shows interactions and flows between activities

within a system

Collaboration diagram • structural organization of objects sending or
receiving messages

44 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



Diagram What does this diagram address?

State machine diagram • a system’s dynamic behavioral view
• emphasizes an object’s event-ordered behavior
• shows a state machine that consists of states,

transitions, events, and activities models behav-
ior of an interface, class, or collaboration

Source: Venter, 2021.

The class diagram is one of the most frequently used diagrams; it models classes with
their associated attributes, methods, and relationships. The other types of UML diagrams
are essentially based on the modeling concepts of the class diagram. The structures in
which information is stored within the relevant IT systems are made visible by class dia-
grams. Below is an example that shows relevant associations between these classes. In
this diagram, its multiplicity indicates that an infinite number (denoted by the asterisk *)
of customers can visit one of 60 (denoted by 1…60) available branches of a store. The
superclass “Store” is indicated as having a single-inheritance hierarchy, meaning that the
two subclasses (the “Clothing department” and the “Cosmetics department”) inherit all
the features from only one superclass, “Store”, and have more features of their own.

Figure 21: Examples of a Class Diagram

Source: Venter, 2021.

A use case diagram describes a system’s functionality from the perspective of the users
(also referred to as actors in UML). They do not describe procedures, but are non-technical
diagrams that show, e.g., an overview of a business process. They show associations or

45PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00

Anonymous
Highlight

Anonymous
Highlight

Anonymous
Highlight

Anonymous
Highlight



interactions (using lines) between named actors (indicated by stick figures or any suitable
symbol indicating applicable characteristics) and relevant use cases (indicated by ellip-
ses). These interactions are from the perspective of the user and therefore also entail a
view of the user requirements. In terms of the software systems, use case diagrams give an
external view. An example of a use case diagram for a portion of a business system that
entails purchasing (i.e., “Purchasing of equipment”) is shown below.

Figure 22: Example of a Use Case Diagram

Source: Venter, 2021.

In this example, the involved actors are a “Purchaser”, a “Sales person”, and an “Operator”.
They are involved in purchasing equipment (as the depicted business process), so the
focus of this diagram is on the process of purchasing equipment, hence, the subject is
indicated in the diagram as “Purchasing of equipment”. It entails the following use cases
“Obtain quote”, “Check quote”, “Accept quote”, “Receive order”, “Ship order”, and “Sign-off
on purchase”. The “Include” relationship, indicated between the use cases “Receive order”
and “Ship order”, signifies that receiving an order also includes shipping an order. To sum-
marize, the purchaser will obtain a quote, check it, accept it, and finally sign-off on the
purchase made. The salesperson will also be involved in the functionalities to check
quotes, receive orders, and sign-off on purchases. The operator will be involved to receive
order information and ship orders. The sequence of these is not necessarily depicted in
chronological order, but merely show the required functionalities and actors’ involve-

46 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00

Anonymous
Highlight



ments. The actors in use case diagrams can be humans (as in the example above), but
they can also be non-human and subsequently be depicted by class diagrams. For exam-
ple, an actor can be a piece of hardware, software, or another system.

Following on from use case diagrams, sequence diagrams show the sequenced interac-
tions between the objects and messages. They are used to expand the detail of a use case,
and show the lifelines of objects, i.e., they help to visualize and specify the flow of control
and they indicate, in a visual and simplified way, when objects should start, iterate, and
cease to exist. Sequence diagrams describe a chain of chronological interactions; they
indicate data and information that are exchanged between actors. They are widely used
for their simplicity and ease of use as they require few graphical elements and are easy to
read. Similarly, communication diagrams show the relationships between objects, but the
focus is on their topology. Sequence diagrams and communication diagrams essentially
show what happens in a system when a user accesses and uses it. In practice, sequence
diagrams are used more often than communication diagrams (Baumann et al., 2005).

UML allows for variations of diagrams. In the top diagram of the figure below, a basic high-
level sequence diagram shows an object “Customer” that is involved to order, pay for, and
receive equipment from an object “Store”, which receives the payment and ships the
equipment. The diagram is annotated with comments, e.g., indicating that the “Customer
orders the equipment”. The messages are depicted in increasing chronological order, from
the top to the bottom, with the direction of the arrows indicating the direction in which
the message is being sent. In the second diagram of the figure below, a basic high-level
sequence diagram is illustrated. It shows what happens when the object “Customer”
obtains a quote and places an order. The diagrams below are simplified examples that do
not indicate what happens if any errors are encountered.

Figure 23: Example of a Sequence Diagram (a)

Source: Venter, 2021.

47PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



Figure 24: Example of a Sequence Diagram (b)

Source: Venter, 2021.

Activity diagrams describe the procedures that make up a process; they are related to
flowcharts and illustrate the chronological and parallel order of activities, and relevant
alternatives. They facilitate functional thinking, rather than object-oriented thinking, and
are therefore particularly useful when exploring and illustrating business processes (Bau-
mann et al., 2005). Below is an example of an elementary high-level activity diagram indi-
cating the procedures involved to receive, accept, and reject a quote.

48 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



Figure 25: Example of an Activity Diagram

Source: Venter, 2021.

State machine diagrams illustrate the different legitimate states in which an object may
be; they also indicate the states that objects may transfer to when events occur and when
they receive messages. The “state” of these diagrams refers to a specific set of values that
the attributes of the object have at a specific time. The object’s state changes when the
values of the attributes change. Activity diagrams initially originated as a variation of state
machine diagrams that focuses on internal flows and activities of an object, a set of
objects, or an entire use case. Activity diagrams were re-formalized in the latest version of
UML and are now based on semantics that are similar to that of Petri nets, thus increasing
the scope of situations with which it can be modeled. State machine diagrams give either
a behavioral view, meaning that they show everything that can happen with or to an
object or a protocol (external) view. The following figure shows an example of a simple
behavior state machine diagram for the object “Order” and a protocol state machine dia-
gram for indicating whether a “Product line” is operational or inactive (deactivated).

49PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



Figure 26: Example of a State Machine Diagram (a)

Source: Venter, 2021.

Figure 27: Example of a State Machine Diagram (b)

Source: Venter, 2021.

50 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



Systems Modeling Language

Systems Modeling Language (SysML) is a modeling language that originated in 2001; it is a
dialect of UML and defined by an UML profile. SysML supports model-based systems engi-
neering (MBSE), is used to model large and complex systems engineering applications,
and supports many different systems engineering methods (Friedenthal et al., 2012). It
supports the specification, analysis, design, verification, and validation of systems as well
as interconnected systems-of-systems. Revolutionary IT and its growing networked inter-
connectedness with a myriad of other products, devices, and services continues to bring
about software and software systems that do not exist in isolation. These must be
explored, visualized, and modeled as part of the bigger system-of-systems. Derived from
UML, SysML is systems-centric (rather than software-centric) and allows a broad range of
systems to be modeled. Its modeling range includes software-intensive systems, but is not
limited to it.

SysML is regarded as flexible and expressive, and is relatively easy to learn and to apply. It
is aligned with the standard IEEE-Std-1471-2000, i.e., the IEEE Recommended Practice for
Architectural Description of Software Intensive Systems (IEEE, 2000). Friedenthal et al.
(2012) explain that SysML concepts involve the following three parts:

1. an abstract syntax or schema that defines the language concepts and is described by
means of a meta model

2. a concrete syntax or notation that defines how language concepts are represented
and is described by means of notation tables

3. semantics or meaning that gives the meaning of the language concepts

In SysML, UML is extended to include the following system modeling capabilities:

• model elements,
• requirements,
• blocks,
• activities,
• constraint blocks,
• ports and flows, and
• allocations.

Accordingly, SysML diagrams include package diagrams, requirement diagrams, behavior
diagrams, parametric diagrams, and structure diagrams. Similar to UML, behavior dia-
grams include activity diagrams, sequence diagrams, state machine diagrams, and use
case diagrams. Structural diagrams for SysML include block definition diagrams and inter-
nal block diagrams.

Friedenthal et al. (2012) say that a block is “the principle structural construct of SysML” (p.
119) and define it as “the modular unit of structure…used to define a type of system, com-
ponent, or item that flows through the system, as well as external entities, conceptual
entities or other logical abstractions…describes a set of uniquely identifiable instances
that share the block’s definition…is defined by the features it owns, which may be subdi-
vided into structural features and behavioral features” (p. 119). A block is a representation

51PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00

Anonymous
Highlight



of a conceptual (logical) or physical entity or object. It can describe components that are
reusable across various systems. A block is similar to an object-oriented class in that it
describes a set of similar instances or objects that share common characteristics. The
table below defines structural (block) diagrams.

Table 2: SysML Structural Diagrams

Diagram What does this diagram address?

Block definition diagram definition of blocks in terms of features, as well as
structural relationships with other blocks

Internal block diagram illustration of connections between the parts of a
block

Source: Venter, 2021.

2.2 Notations for Modeling the
Interaction between Processes
Visualizations (e.g., diagrams) that show an organization’s value chains and process land-
scapes are relevant to illuminate the organization’s outward and internal view, respec-
tively (Kneuper, 2018). According to Porter and Millar (1985), a value chain comprises of an
organization’s activities, as well as its linked interactions and interdependencies. It entails
primary activities, i.e., inbound logistics, operations, outbound logistics, marketing and
sales, and service, as well as support activities, i.e., firm infrastructure, human resources
management, technology development, and procurement. The goal of these activities is
to create value in excess of the cost to conduct and obtain them, i.e., to generate maxi-
mum profit. IT, such as software systems, has strategic significance and implications for
modern-day companies, regardless of the company’s core business. The effects thereof
must be considered, analyzed, and understood as an intrinsic part of the value chain. A
process landscape, on the other hand, gives an internal view of an organization; it shows
the interconnected roles of certain internal and software processes. These must also be
understood by the software engineer in order to comprehend the complexity of integra-
tion where it is relevant. Ultimately, all of these elements will significantly impact the
enterprise architecture framework and determine business requirements for software sys-
tems, as well as for the governance and management of software processes. The examples
below illustrate a high-level value chain and a simplified process landscape.

52 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



Figure 28: A Value Chain

Source: Venter, 2021.

53PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



Figure 29: A Process Landscape

Source: Venter, 2021.

The Multi-View Process Modeling Language (MVP-L) is used to formally describe processes,
in terms of external behavior, without considering internal structure. MVP-L originated in
the 1980s at the University of Maryland, USA, and continued to be refined at the Universi-
tät Kaiserslautern, Germany. Rombach and Verlage (1993) explain that “MVP focuses on
process models, their representation, their modularization according to views” and that
“MVP-L was designed to help build descriptive process models, package them for reuse,
integrate them into prescriptive project plans, analyze project plans, and use these project
plans to guide future projects” (p. 154). MVP-L uses processes, products, resources, and
quality attributes, and applies instantiations of these project plans. Münch et al. (2012)
explain that processes refer to the activities performed during a project that produce, con-
sume, or modify products. Products are the resultant software products of the develop-
ment or maintenance processes, including the final software, documentation, etc. Models
entail the activities performed during a project that produces, consumes, or modifies
products. Attributes refer to defined measurable properties of products, resources, and
processes.

All of the diagrams presented in the first and third section of this unit can also be used to
model interactions between processes and connected segments of larger processes. As an
example, both activity diagrams and BPMN represent interactions between single steps,
activities, or tasks. Complex processes and processes addressing different and diverse

54 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



parts of a business and system can be modeled by dividing them into sub-processes (or
segments) and modeling these individually to visualize the detail, then combining them
again using one overview diagram.

The example below shows three diagrams. The first diagram illustrates the sub-process
(these are fragments or segments of a bigger business process) followed to obtain a quote
for an order to be placed. The second diagram illustrates the ensuing sub-process that
details the activities when an order is placed; this diagram also shows that an activity dia-
gram can include an object (i.e., “Invoice”). In the first activity, diagram partitions are
depicted, using swim lane notation and indicating interactions between the stakeholders
—a customer and supplier. The final diagram gives a high-level overview where these are
combined to show the overall purchasing process using BPMN notation.

55PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



Figure 30: Modeling of Linked Subprocesses and a High-Level Overview

Source: Venter, 2021.

Moreover, behaviors of use cases can be described using natural language text or different
UML diagrams. The example below shows that the use case “User registration” owns the
behavior represented by the activity of “User registration”. This illustrates the binding of a
use case to an activity. The activity diagram that follows shows the behavior of the activity
to register a user with an online retailer.

56 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



Figure 31: Binding of a Use Case to an Activity

Source: Venter, 2021.

2.3 Detailed Level Notations
Kneuper (2018) argues that different notations can be used to describe detailed levels of
individual processes. He notes that many of these are not specifically for software proc-
esses since they originate from business processes and other areas of application and sup-
port the modeling of multiple processes as well as hierarchical modeling with increasing
levels of detail. They include, e.g., process patterns, modeling notations from require-
ments analysis, high-level notations for general processes, notations for modeling busi-
ness processes, and process notations for formal analysis. Reasons for selecting a model-
ing notation typically include general properties, such as how easy it is to understand and
use, and how expressive it is.

Process patterns describe tasks, stages, and phases from the bottom-up, and with refer-
ence to relevant activities, actions, products, and behaviors to solve a problem. It can
include, e.g., the problem, context, solution, typical roles, and artifacts, as in the approach
presented by Neatby-Smith (1999). In this approach, task patterns define steps that must
be executed to complete tasks. Stage process patterns include several task process pat-
terns that are required to be completed in order to move to a next stage, and phase pat-
terns are comprised of two or more stage patterns. Furthermore, input and output arti-

57PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



facts, as well as roles, are assigned for each pattern. In contrast to task process patterns
and phase patterns, only stage process patterns follow an actual pattern. Stage process
patterns are initial context, solution, project tasks, resulting context, secrets of success,
and process checklist.

Another modeling notation that is particularly relevant, and widely used as part of soft-
ware engineering, is the Business Process Model and Notation (BPMN). It is based on busi-
ness process management and modeling principles (Mathias, 2019). It was originally
developed by the Business Process Management Initiative (BPMI) and is now also main-
tained by the Object Management Group (OMG) (these organizations merged in 2005).
BPMN remains, regardless of some drawbacks and issues, one of the most widely applied
notations, and is used by both software architects and business analysts (Kossak et al.,
2014). The ISO standard for BPMN is ISO/IEC 19510:2013, which provides an easily under-
standable and readable notation and is accordingly suitable for both technical and non-
technical users and audiences (International Organization for Standardization, 2013).
BPMN diagrams describe a similar type of activity as UML activity diagrams, but they use a
different notation. It is process-oriented, making it useful in the business process domain,
and hence used to illuminate a business process. BPMN is an expressive notation that
describes the flow of activities within a process. Diagrams are graphical and deliberately
kept simple to ease understanding and readability. They typically employ the following
elements:

• flow objects, i.e., events, activities, and gateways;
• connecting objects, i.e., sequence flows, message flows, and associations;
• swim lanes, i.e., pools and lanes; and
• artifacts, i.e., data objects, groups, and annotations.

A BPMN diagram can also contain other illustrations, e.g., documents, different types of
catching and throwing messages, compensations, timers, errors, signals, and links. A
selection of BPMN elements are illustrated in the following figure.

58 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00

Anonymous
Highlight
abreviations should always be defined in the first instance in the unit

Anonymous
Highlight

Anonymous
Highlight

Anonymous
Highlight

Anonymous
Highlight

Anonymous
Highlight



Figure 32: BPMN Elements

Source: Venter, 2021.

An example of a BPMN diagram is shown below. The diagram illustrates the flow of activi-
ties in the “Project governance” business process, which describes the process of assess-
ing a project’s front-end loading (FEL) status, involving stakeholders and representatives
from the Project Management Office (PMO), a review team, the project team and project
management, and document management.

59PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



Figure 33: Example of a BPMN Diagram

Source: Venter, 2021.

The use of BMPN does not eradicate the need for other system and software-centric nota-
tions to visualize integration and detail. For example, notations that continue to be
applied in practice are Event-Driven Process Chains (EPC) and Petri nets. However, EPC
lacks the standardization typical of notations such as BPMN and UML. Modeling using Petri
nets are less expressive and can become quite complex relatively quickly; they may there-
fore be regarded as less suited to collaborating and communicating with non-technical
users and business representatives (Kossak et al., 2014). BPMN diagrams and UML activity
diagrams are notably similar, and activity diagrams effectively model business processes.
UML activity diagrams have been redesigned in current versions of UML (2.0 and later) in
terms of syntax and semantics, to enhance the capability of these diagrams to represent
business processes (Geambasu, 2012). The symbols used in BPMN and activity diagrams
are similar, with the exception that UML activity diagrams sometimes use groups of sym-
bols to represent elements, whereas BPMN uses a single symbol. This is because BPMN
uses complex symbols to holistically describe information (Geambasu, 2012).

An activity diagram can also be used to view detailed actions taken by, e.g., a customer
that uses an online shop to purchase books. In the following figure, partitions are not
used, and it is assumed that checkout includes both registration of a new user and log-in.
The circled letters indicate where additional information is provided, or where additional

60 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



information can be added later when more detail is included or the work flow expands to
include more activities. For now, using letters as indicators keeps the diagram simple and
uncluttered.

Figure 34: Example of an Activity Diagram Indicating Detailed Actions

Source: Venter, 2021.

Furthermore, use case diagrams can also be used to model business. Use case diagrams
describe the functionality of a system from the user’s perspective. They show an overview
of a business process in terms of requirements for a system, not in terms of procedures.
The example of a use case diagram seen previously indicates, e.g., that a system is
required to facilitate the purchasing of equipment. However, use case diagrams can also
be used to focus on the business function, process, or activity. Rational Unified Process
(RUP) introduced business use cases. RUP is “an ‘architecture-centric’ process” (Avison &
Fitzgerald, 2006, p. 462) that applies three key concepts: use cases, architecture, and itera-
tion. The UML use case elements of actor and use case will then be extended to include
the business actors and business uses, and it will describe the business boundary rather
than the subject (the system boundary). Business use cases are indicated with an ellipse
containing a skewed line, as shown in the figure below.

61PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



Figure 35: A Business Use Case

Source: Venter, 2021.

SUMMARY
The interconnected nature of software processes means that various fac-
tors, people, and circumstances affect them, making them difficult to
describe and manage. Software process definition and modeling aim to
simplify and optimize the design, development, and implementation of
software-intensive systems. They also help to optimally manage risk,
software verification, and maintenance.

Standardized modeling notations, based on meta-models, facilitate
operational visualization of systems. UML is a standardized object-ori-
ented modeling language that is widely applied in software engineering.
SysML is also applied in software engineering; it facilitates the modeling
of systems-of-systems. Meta-models, such as MOF, describe the notation
applied in meta-models.

62 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



Software systems consist of one dimension of organizational land-
scapes. In order to have a more comprehensive view, interfaces between
business processes are modeled and detailed level notations are
applied. Notations such as MPV-L and BPMN are used for this.

63PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



UNIT 3
BASIC SOFTWARE PRODUCT LIFE CYCLE
MODELS

STUDY GOALS

On completion of this unit, you will have learned …

– the strengths and weakness of waterfall models.
– about the need for verification and validation in software development.
– how models, such as the Rational Unified Process (RUP), support the entire software

life cycle process.
– techniques that can be used to iteratively and incrementally evolve software.

PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



Waterfall model
A predictive, prescriptive,
and plan-driven software

engineering methodology
for the SDLC.

3. BASIC SOFTWARE PRODUCT LIFE CYCLE
MODELS

Introduction
Software is planned, designed, developed, and maintained using phased methodologies
that encompass “procedures, techniques, tools, and documentation” in order to effec-
tively “plan, manage, control, and evaluate” these projects (Avison & Fitzgerald, 2006, p.
24). Different approaches are typically based on different philosophical views. Accordingly,
methodological approaches are applied according to a model and in the context of a
framework. Over time, various models and frameworks have emerged, which are suitable
for specific purposes and have specific areas of application. Since the software or system
development life cycle (SDLC) emerged in the early 1960s, current models and methodolo-
gies continue to incorporate its elements.

The waterfall model is often referred to as the first and most traditional development
approach. According to Avison and Fitzgerald (2006), the waterfall model emerged in the
“early-methodology area”, which was “characterized by an approach […] focused on the
identification of phases and stages […] thought to help control and enable better manage-
ment […] and bring a discipline to bear” (p. 577). This model is still widely used and has its
advantages, but it also poses significant challenges and risks. As a result, variations of this
model that attempt to counteract these challenges have emerged. The waterfall model
with feedback, the sashimi model, and the V-model are examples of variants of the tradi-
tional waterfall model. The waterfall model with feedback and the sashimi model enable
iterations back to previous phases, whereas the V-model focuses explicitly on verification
and validation during each phase in order to develop high quality products.

With the emergence of object-oriented analysis and design, component or matrix-based
models, such as the Rational Unified Process (RUP), were introduced. RUP supports the
entire software development life cycle; it iterates work within phases until goals have
been met. The RUP philosophy supports principles of Agile as it facilitates iterative devel-
opment, but is still plan-driven and architecture-centric.

Iterative, incremental, and evolutionary development approaches emerged to better man-
age risks and enable better responsiveness to user’s requirements during development.
Accordingly, prototyping is applied to derive and refine requirements, or to evolve solu-
tions as requirements arise and develop. Boehm’s spiral method also presents an incre-
mental and risk-driven approach; it involves basic phases to set objectives, assess and
reduce risks, develop and validate, and plan ahead. However, it is non-prescriptive, as it
enables the incorporation of any method or combination of methods.

66 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00

Anonymous
Highlight
If a side note is not a full sentence it should not be capitalized nor have end punctuation



3.1 Waterfall Models
The sequential waterfall model is the oldest and most widely known software engineering
and IT project management methodology for the software or system development life
cycle (SDLC) and is still used to develop software systems today (Shukla & Saxena, 2013).
Designers and developers aim to predict what will be required in advance and then plan
and work accordingly. The phase-by-phase and chronological progress of this SDLC flows
downward, similar to the flow of a waterfall.

According to this model, a software development project typically starts with the require-
ments gathering phase, continues to the analysis and design phases, moves to develop-
ment and verification, and concludes with the deployment and maintenance phase,
where the solution is released to and used by the customer. A new phase can only begin
upon completion of the previous phase. The waterfall model’s phases and sequential
nature are illustrated below.

Figure 36: The Waterfall Model

Source: Jamsa & Harkiolakis, 2019.

In terms of scheduling, roughly 20 to 40 percent of time is spent on the first three phases:
eliciting requirements, analyzing, and designing the system according to these require-
ments. 30 to 40 percent of time is spent coding and developing, and the remaining time is
used for testing and deployment activities. The benefits of predictive modeling can only
be realized when developers thoroughly understand all requirements from the outset.
They are then able to analyze and design the software system accordingly and prior to the
development phase. Hence, it is recommended that sufficient time is allocated for these
initial phases.

67PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00

Anonymous
Highlight
is there one waterfall model or multiple? Please ensure consistency 



The waterfall model has a number of strengths. Standardized activities are defined in
detail, and detailed and high-quality documentation is generated concurrently with other
activities (Matković & Tumbas, 2010). The sequential application of these stages facilitates
the phased development of a stable solution and is ideal for small and short-term projects
where requirements are not likely to change during the project life cycle and for projects
where quality is of critical importance. If all requirements have been properly considered
in advance, the waterfall model enables improved planning and structuring of phases. Use
of standardized, documented practices enables the drafting of complete specifications. It
also enhances communication practices within teams and with stakeholders. In addition,
project progress can be easily monitored and controlled, and is clearly visible to all stake-
holders (Avison & Fitzgerald, 2006).

This model also presents notable challenges. It is difficult to accommodate changes, a
consideration that may be relevant in cases where requirements can only be tested and
verified during development or close to the end of the project; it does not allow stages to
overlap (Hijazi et al., 2012). Iteration between stages is possible, but costly, so the strict
sequential nature with which this model is typically applied results in an inability to iter-
ate back to previous phases. This is challenging in cases where the requirements are not
perfectly clear at the beginning of the project. The waterfall model also lacks feedback
between phases; it presumes that all requirements are known and have been accurately
gathered at the beginning of a project (Kaur & Sengupta, 2011; Prakash et al., 2012). It is
often associated with high development costs. Faults that were not removed in earlier
phases will have a negative impact later on in the process (Matković & Tumbas, 2010).
Quality can only be ensured through proper planning and execution of each phase; all
aspects of a phase must be addressed before moving to the next, but this can be difficult
to execute in reality.

Variations of the waterfall model that attempt to overcome these challenges have
emerged. Variations of the traditional waterfall model have one feature in common: they
all add iterative elements. A waterfall model that allows feedback and iteration to previ-
ous phases is an example of such a variation. Another variation is the sashimi model,
which allows phases to overlap. However, with these variations, iterations to previous
phases and overlapping of phases must be carefully planned in order to limit the negative
effect that they will have on cost and schedule. The further back an iteration goes, and the
deeper the levels of overlap, the bigger the impact on both cost and schedule. The water-
fall model with feedback is illustrated below.

68 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



Figure 37: The Waterfall Model with Feedback

Source: Jamsa & Harkiolakis, 2019.

The sashimi model is a variant of the waterfall model that allows phases to overlap. It is
also referred to as the sashimi waterfall or the waterfall with overlapping phases. The
name of this model was derived from the resemblance that it has with the Japanese dish,
sashimi, which consists of overlapping thin slices of fish. For example, during the first
phase, a portion of the requirements will be defined, allowing team members to proceed
with analysis and design. Similarly, at a later phase, when a portion of the coding work has
been completed, it will be tested while other sections of the system are being developed
or designed. Greater overlaps can also be considered to allow different parts of the project
to move forward at different paces, as long as it does not cause conflict or is dependent
upon an unfinished portion. For example, the solution can only be deployed when all
parts have been tested. In the sashimi model, the documentation is one unified docu-
ment, unlike the traditional waterfall model, which prescribes the documenting of each
phase separately. The volume of documentation is thus significantly reduced (Matković &
Tumbas, 2010). The sashimi model is shown below.

69PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



Figure 38: The Sashimi Model

Source: Jamsa & Harkiolakis, 2019.

The sashimi model has the advantage of accelerating development, and the overlaps ena-
ble optimal use of resources and expertise across various phases. For example, a database
designer may start to develop the database tables and indices as soon as the primary
requirements have been identified and before the finalization of user interfaces. Similarly,
a network designer may begin setting up hardware, such as routers and switches, prior to
finalization of the network topology, which also enables the exploration of specific
aspects of a solution, and facilitates increased understanding before final decisions are
made. Valuable insights are gained and risks can be reduced. In this way, the sashimi
model facilitates receiving feedback through an internal loop process and shapes the
direction of the project from later phases back to earlier ones. This model enables, for
example, the identification of errors made during design while design is still ongoing;
however, it also presents some challenges. For example, key development milestones are
unclear, monitoring individual activities can be difficult, and communication can be hin-
dered (Matković & Tumbas, 2010).

3.2 The V-Model
The importance of early and timely verification and validation (V&V) was explored by
Boehm (1984). In contrast to the relatively sequential nature of waterfall models, Boehm
highlighted the need to continuously verify and validate software requirements and
design specifications in order to reduce costs, improve reliability and maintainability, and
increase a software’s user-responsiveness. Accordingly, the V-Model (also known as the
validation and verification model) is a popular alternative to the waterfall model. It is
applied to develop relatively small and technical software systems that require high levels

70 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00

Anonymous
Highlight
is the abbreviation necessary?

Anonymous
Highlight
language



of safety and security. The V-Model is a waterfall, but one that forms a V shape. The left-
hand side follows a deductive approach, decomposing tasks into more detailed ones,
while the right-hand side follows an inductive approach towards higher levels of abstrac-
tion where the various portions of the project are integrated. The model is illustrated
below.

Figure 39: The V-Model

Source: Jamsa & Harkiolakis, 2019.

In this model, a product is essentially developed in a step-by-step fashion in the left
branch, while results are integrated and verified in the right branch. Continual verification
is emphasized; each constructive step (level of construction) on the left-hand side is sup-
ported by a verification step (level of abstraction) on the right-hand side. At the lowest
level, testing aims to verify that code runs and executes correctly. Upon further progres-
sion, verification extends to confirming whether requirements have been met, and ulti-
mately, whether customers are satisfied with the final product.

3.3 Component or Matrix-Based Models
Component or matrix-based models, such as the Rational Unified Process (RUP), were
introduced in the 1990s to describe object-oriented development. RUP is best described
by Avison and Fitzgerald (2006) as a “processified software engineering process” and soft-
ware development practice that focuses on “software architecture and iterative develop-
ment” (p. 461). It was jointly developed by the companies Rational Software Factory and
Objectory, which were later purchased by IBM. The process incorporates Unified Modeling
Language (UML) principles and concepts as it should be used in conjunction with UML.
The objective of RUP was to have a process to support the complete software develop-
ment life cycle (Jacobson et al., 1999). RUP uses UML use case and includes object-ori-
ented analysis and design methods. The RUP philosophy encompasses some Agile princi-
ples, but it is a plan-driven approach that contains many guidelines.

71PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00

Anonymous
Highlight

Anonymous
Highlight
already defined in this unit



Prototype
“The entire process done

in miniature, to a time
scale that is relatively

small with respect to the
overall effort” (Royce,

1970, p. 334)

The design process is centralized around architecture views. At first, the architecture is
defined at a high level; it then evolves as the requirements for the software system evolve.
This model is similar to the risk-based spiral model (Boehm’s spiral method) in that it facil-
itates incremental and iterative evolution of requirements while simultaneously mitigat-
ing risks. RUP’s aims are to reduce the size and complexity of products that are to be
developed, to streamline the development process, to create teams that are more adept
and proficient, and to exploit automation through the use of integrated tools (Boehm &
Turner, 2004). There are two versions of RUP (RUP Classic and RUP for Small Projects);
however, RUP is typically applied to large projects, as it remains relatively difficult to tailor
to smaller projects.

RUP differentiates between content of work to be done (indicated by workflows) and time
to complete this work (indicated by four phases). A workflow includes the sequenced
activities that produce a valuable result, and RUP includes workflows for principle (engi-
neering) work as well as auxiliary (support) work. The principle workflows are business
modeling, requirements, analysis and design, implementation, testing, and deployment.
The auxiliary workflows are configuration management, change management, project
management, and the environment. Workflows are distributed (phased) over time. The
phases are as follows: inception, elaboration, construction, and transition. Each phase is
iterated until all pre-defined, phase-specific criteria have been met, and when a suitable
and detailed plan for the next phase has been developed. RUP also applies the concept of
a worker—it does not refer to an individual, but a role that is performed in the develop-
ment process and within the workflows. A worker performs a set of related activities that
aim to manipulate an artifact. Artifacts include, for example, use cases, models, docu-
ments, plans, and products.

3.4 Iterative, Incremental, and
Evolutionary Development
Requirements for software are often unclear and hence change during development. In
some cases, requirements may only surface fully after deployment. The uncertainty and
changeability of software requirements led to the emergence of iterative, incremental, and
evolutionary development approaches. These entail repetitions of actions in order to
quickly obtain feedback, and therefore reduce risk. Prototyping and Boehm’s risk-driven
spiral model are some examples.

Prototyping is not a new concept. Royce (1970) argued that, even when following a typical
waterfall approach, a prototype should be used in the first iteration in order to derive apt
specifications. A subsequent iteration is then used to apply learnings and provide a final
product. Prototyping can also be used evolutionarily to develop a solution, i.e., to accom-
modate changing and evolving requirements during development. An example of this is
when a prototype is developed, evaluated, and reworked until all stakeholders are satis-
fied (Gull et al., 2009).

72 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00

Anonymous
Highlight



A prototype is a learning tool; it assists in reducing uncertainty and facilitating learning
about, e.g., a system to be developed. A prototype can be used to verify the user interface
or confirm whether a technical construct works as intended. Prototyping facilitates rapid
development and stimulates creativity. It can also reduce cost, enhance quality, and
increase user involvement (Matković & Tumbas, 2010).

Floyd (2011) suggests the following steps to effectively use prototyping as a learning tool:

• functional selection. A prototype will have limited functionality, so it is vital to define
what to include (and exclude), based on the prototype’s purpose.

• construction. A prototype must be built according to its definition.
• evaluation. Learn from the prototype by applying it for its purpose.
• further use. Depending on its reason for being developed, the prototype can be evolved

further or discarded.

There are different kinds of prototypes. Floyd (2011) distinguishes between them as fol-
lows:

• Exploratory prototypes are useful to identify and refine requirements, as well as to
develop a shared understanding of expected features among developers and stakehold-
ers.

• Experimental prototypes are used to experiment with a solution in order to validate it,
e.g., to confirm a functionality or a solution’s technical feasibility. Both exploratory and
experimental prototypes can either be developed further or discarded.

• Evolutionary prototypes are revised and progressively extended until they evolve into a
final product. During this evolution, the requirements, specifications, and design evolve
until the customer is satisfied. The end result is working software.

• A throw-away prototype is rapidly developed with the aim to discard it once it has
served its purpose. It is typically used to derive and develop requirements and specifi-
cations in a relatively short space of time, validate requirements, and detect and resolve
issues early in the process.

While evolutionary development has various advantages and often results in increased
user satisfaction, there are also some risks to consider. It can be successfully applied to
larger and more complex systems if an initial and low-functionality version of the final
product can be evaluated early on in the process (MacCormack, 2001). However, one of
the shortcomings of evolutionary prototyping is that expectations must be astutely man-
aged to ensure that customers do not confuse an incomplete prototype with a final prod-
uct. Constant changes to the product may also result in poorly structured software that is
difficult to maintain, the process followed may not be sufficiently visible, and progress
may be difficult to manage (Sommerville, 2011). It can also be difficult to accurately assess
resource requirements up front and plan for integration, and documentation tends to
remain incomplete (Matković & Tumbas, 2010).

Boehm introduced the spiral method in 1988. It is a risk-driven (rather than document or
code-driven) approach that can incorporate any method or combination of methods
(Boehm, 1988). It endeavors to integrate evolutionary and specification-based develop-

73PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



ment approaches (Sommerville, 1996). The spiral model contributed to the promotion of
iteration in software development. It “was devised as an ode to iteration” (Matković &
Tumbas, 2010, p. 168).

Boehm (1988) illustrates this model in the form of a spiral with loops. Each loop represents
a non-prescribed phase of a software process. It is split into the following four sectors:
objective setting, risk assessment and reduction, development and validation, and plan-
ning. This model does not iterate implementations; it revisits each phase, until final imple-
mentation, to manage and reduce risks (Avison & Fitzgerald, 2006). As the team continues
to revisit phases, their understanding of the solution evolves, risks are identified and miti-
gated, and a solution can evolve or be refined by means of incremental development of
the solution or prototyping, for example. Activities are initially highly abstract, progressing
gradually to become more detailed.

The spiral model shares some of its philosophical footings with Agile development. For
example, it has the following advantages:

• Functional software can be produced relatively quickly.
• Various approaches can be combined.
• Continuous risk-assessment results in appropriate responsiveness.

However, it remains a systematic and plan-driven approach and, as such, retains the
advantages that come with following a well-planned method. One of this model’s main
drawbacks is that proper risk analysis requires specific expertise, which can be costly and
sometimes not readily available for smaller-scale projects (Matković & Tumbas, 2010).

SUMMARY
Predictive and plan-driven models are useful for small projects and
quality-driven projects. They facilitate effective (strict) management of
small software engineering projects and are easy to plan, document, fol-
low, and monitor. The strictly sequential nature of the traditional water-
fall model makes it rigid and unable to accommodate new or changing
requirements. To counteract this disadvantage, variations, such as the
waterfall model with feedback and the sashimi model, were introduced.
Another variation of the waterfall model, the V-Model, emphasizes con-
tinuous verification and validation. It is also suited for projects driven by
reliability, correctness, and quality. It is suitable for projects that
demand high levels of safety and security, or projects in a financial envi-
ronment.

Component or matrix-based models, such as RUP, emerged with object-
oriented development. RUP aims to support the complete software
development life cycle. It embraces Agile principles, but remains plan-
driven and prescriptive. However, unclear and changing requirements
have led to the emergence of iterative, incremental, and evolutionary

74 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



development approaches, such as prototyping and Boehm’s risk-driven
spiral model. They involve coupling repetitive actions with constant
feedback in order to increase responsiveness and reduce risk.

75PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



UNIT 4
AGILE AND LEAN DEVELOPMENT
PROCESSES

STUDY GOALS

On completion of this unit, you will have learned …

– about the characteristics of Agile development and common Agile practices.
– the specifics of the Scrum method.
– about Kanban and lean development.
– how to scale Agile methods using the Scrum of Scrums (SoS), Large-Scale Scrum

(LeSS), and Scaled Agile Framework (SAFe).
– about the practicality of applying hybrid processes.

PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



4. AGILE AND LEAN DEVELOPMENT
PROCESSES

Introduction
Agile development methods emerged to counteract the challenges of waterfall develop-
ment approaches. The Agile manifesto makes it clear that people, working software, col-
laboration, and responsiveness must be prioritized; technical tools only support the peo-
ple that will develop and use the software. Agile development is iterative and incremental;
it applies short increments in order to develop solutions that meet customer expectations.

Scrum, as an Agile development method, is widely used and applied successfully to
develop smaller-scale software systems. Scrum is not strictly a software development
method, but it guides teams to successfully develop useful artifacts. It incorporates a
number of guiding principles and values, team roles, specific events, and artifacts. Com-
mon practices are applied to make Agile development successful. These include the prod-
uct backlog, sprint backlog, increment, task board, and burn down chart.

The advantages and successes of Agile approaches, such as Scrum, made them attractive,
and attempts to scale them for larger and more complex projects soon followed. Scaled
Agile approaches, such as the Scrum of Scrums (SoS), Large-Scale Scrum (LeSS), and the
Scaled Agile Framework (SAFe), are progressively refined and applied. These are used as
overarching organizational frameworks, rather than project management or software
development approaches, to manage and guide the planning, development, and integra-
tion of software systems into organizational structures.

4.1 The Agile Manifesto
In the 1970s and 1980s, business software was primarily developed using waterfall
approaches, i.e., well-structured and sequenced processes that consist of distinct phases
that are methodically executed. Activities, to be completed prior to moving to the next
activity, include project initiation, requirements discovery and gathering, solution archi-
tecture and design, development, testing, and deployment. Despite their advantages,
sequential waterfall development processes also have significant shortcomings, for exam-
ple, the inability to incorporate requirements that are not fully known at the beginning of
a project. Since they do not allow for iterative feedback from users, software systems can
also be carried fully to completion and deployment, only for issues to then be discovered.
For example, the interface was not sufficiently intuitive, more data should have been cap-
tured, the processing logic was incorrect, or the output did not serve the required pur-
pose. These issues result in an expensive and time-consuming redesign process, which
involves software changes and retesting. In addition to delays to project delivery and addi-
tional costs, it can also result in dissatisfied business users. Therefore, Agile (light) devel-

78 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



opment was introduced in the late 1990s as an alternative to traditional (heavy) methods
(Highsmith, 2001). These methods promised to be more responsive, following a more iter-
ative and incremental approach.

Waterfall models established strict rules for working, as well as documentation within the
development process. Proper and complete documentation of activities, and the software
system, are only useful if they work well and meets the customer’s requirements. How-
ever, it is also true that the continuous application of rigid processes and the drafting of
documentation ties up many resources that are then unable to react to changes or con-
tinue with development work. In response to this challenge, seventeen leaders in the soft-
ware industry created and signed the Agile Manifesto in 2001 (Beck et al., 2001a). The Man-
ifesto supports customer-centric and streamlined ways of working; it does not disregard
processes and tools, but favors customer-centricity and responsiveness. The values of the
Agile Manifesto are as follows (Beck et al., 2001a):

• Individuals and interactions over processes and tools,
• Working software over comprehensive documentation,
• Customer collaboration over contract negotiation, and
• Responding to change over following a plan (para. 2).

Beck et al. (2001a) explicitly state that, with these principles, customer-centric aspects
such as individuals and interactions, working software, customer collaboration, and
response to change, are prioritized over technical aspects, such as processes and tools,
comprehensive documentation, contract negotiation, and following a plan.

The Agile Principles prescribe the following (Beck et al., 2001b):

• satisfying customers with valuable software that is delivered early and continuously,
• harnessing change throughout the process,
• using shorter time scales,
• continuous collaboration between business users and developers,
• building projects around individuals that are supported and hence motivated,
• favoring face-to-face conversations to convey information,
• measuring progress based on whether software works,
• following a constant and sustainable development pace,
• focusing on technical excellence and good design,
• maintaining simplicity,
• self-organizing teams,
• regularly reflecting within the team about how to work more effectively, and
• adjusting behaviors as required.

The Agile Process

In practice, business analysts, architects, designers, and developers continuously collabo-
rate with business users to ensure that business goals and user requirements are under-
stood and met. Accordingly, Agile teams follow an iterative and incremental approach to
development. The goal of each iteration is to produce a working and verifiable solution
with the customer involved in every step. Working versions are referred to as revisions.

79PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



Sprints
A series of time boxed

incremental iterations.
The duration of each

sprint typically does not
exceed one month.

Cadence
This is an Agile term for

the number of days or
weeks in a sprint or

release.

The solution is revised (improved) with each successive iteration. At the end of an itera-
tion, a final revision is tested and debugged, producing a build. Completed functions or
requirements are released as minor releases and the addition of significant new features
are major releases. Releases follow a strict versioning scheme in the format
“major.minor.build.revision”, e.g., version 4.2.5.9 indicates that it is the fourth major
release, the second minor release, the fifth build, and the ninth revision. Iterations are rel-
atively short, ranging from a week to a couple of months depending on the project. Each
iteration is, fundamentally, a waterfall structure in itself; it typically includes all of the
development phases, i.e., analysis, design, coding, testing, and verification (Coram & Boh-
ner, 2005). This is illustrated below.

Figure 40: The Agile Process

Source: Jamsa & Harkiolakis, 2019.

Agile projects are divided into short phases (sprints) to build working software (incre-
ments), enabling prompt feedback, which is used to adjust and improve as required. Daily
meetings (Scrums) are 15-minute check-in sessions where team members share what they
have worked on the previous day, what they will work on the present day, and whether
they are experiencing or expect any difficulties. Sprints are time-boxed to manage scope,
develop a cadence, and facilitate release planning. Teams should be able to deliver work-
ing software at the end of each sprint.

Challenges involved with a pure Agile approach include the following:

• distributed teams. Agile is designed for face-to-face collaboration, for example, for
Scrum meetings and requirements gatherings.

80 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



• resistance to change. If previous approaches have been followed, teams may not be
willing to adapt to a new Agile approach.

• less predictability. The iterative and incremental approach to requirements discovery
leads to a continuous need to adapt to changes.

• increased demands on developers and subject-matter experts. This is due to the itera-
tive and incremental discovery and testing of requirements.

Examples of Agile approaches include Extreme Programming (XP), Dynamic Systems
Development Methodology, Feature-Driven Development, Crystal Methodologies, Adap-
tive Software Development, and Scrum. Of these approaches, the Scrum method was the
first to be formalized and published (Sutherland, 2001).

4.2 Scrum
Scrum is an Agile approach where a team works together to advance development in short
time spans. The “Scrum” idea was initially conceived as a metaphor that described the
need to apply six interrelated characteristics in a holistic manner in order to innovatively
develop new products. According to Takeuchi and Nonaka (1986), to “move the Scrum
downfield”, the following characteristics were identified to be utilized for effective product
development:

• built-in instability,
• self-organizing project teams,
• overlapping development phases,
• organizational transfer of learning,
• subtle control, and
• multilearning (p. 138).

These characteristics, when applied holistically, result in a new set of dynamics. This prac-
tice, named Scrum (short for Scrummage, the rugby term that describes how two teams
form a circle and use their feet to gain possession of the ball after it is thrown into the
middle of the circle), was later applied in the field of software engineering. It is character-
ized by the consistent organization of activities in short cycles and self-organizing teams.

Ken Schwaber and Jeff Sutherland co-presented Scrum in 1995. Scrum is documented
and defined in The Scrum Guide (Schwaber & Sutherland, 2020). It does not define any
specific software engineering-related roles or activities. Instead, it comprises a set of val-
ues, a team, events, and artifacts. Guidelines and rules prescribe how these fit together.
Scrum applies fixed time and cost to control requirements rather than fixed requirements
that control cost and schedule, as is often the case with traditional project management
approaches. Fixed time and cost are achieved by means of time boxes, collaborative cere-
monies, a prioritized product backlog, and frequent feedback cycles. Scrum is a frame-
work used to plan and structure work; it is not a prescriptive methodology. As an Agile
approach, it provides structure for delivery while simultaneously leaving specific practices
to be followed, which are for the team to determine.

81PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



Scrum follows an empirical process and is based on the epistemological assumption that
knowledge is created through experience. It builds a team’s experience on a particular
project using multiple iterations in order to optimize predictability and control risk. The
development process is empirically controlled and supported by three pillars: transpar-
ency, inspection, and adaptation (Schwaber & Sutherland, 2020). Transparency ensures
that the process and work are visible to those responsible for the outcome and the recipi-
ents thereof. This ensures a shared understanding of all visible aspects and a collective
understanding of what it means when something is still ongoing or has been completed.
Transparency also facilitates inspections of process artifacts to ensure compliance with
the goals of the iteration. Through this, negative side effects and undesirable artifacts are
made visible. Inspection facilitates adaptation. When inspections reveal deviations out-
side of the acceptable range, the team must adapt and adjust the process to (re)align out-
comes with goals. The frequency of inspections must be determined by skilled inspectors
in order to optimize, and not delay, the work. Scrum’s five events provide cadence to aid
inspection.

The Scrum Values

Scrum teams commit to embracing and following the values of commitment (to the goals
of the team); courage (to do the right thing and overcome problems); focus (on the work
and goals); openness (about the work and challenges); and respect (toward other team
members as capable and independent professionals). These values direct the team’s
work, actions, and behavior (Schwaber & Sutherland, 2020).

The Scrum Team

“The Scrum Team is responsible for all product-related activities from stakeholder collab-
oration, verification, maintenance, operation, experimentation, research and develop-
ment, and anything else that might be required” (Schwaber & Sutherland, 2020, p. 5). A
Scrum team consists of one Product Owner, one Scrum Master, and a number of develop-
ers. The team is cross-functional and self-managing (i.e., self-organizing), and focus on the
product goal. A team typically consists of a maximum of ten people working on one prod-
uct. Multiple cohesive teams can focus on one (large) product, provided that the teams
have a shared product goal, product backlog, and Product Owner. These roles are descri-
bed by Schwaber and Sutherland (2020) as follows:

The Product Owner

The Product Owner is a person that acts as the proxy for the customer, user, or other
stakeholders. The Product Owner has the authority to make decisions regarding the solu-
tion and holds the product backlog, i.e., a prioritized list of user requirements and features
to be included in the solution. Product Owners

• are the liaison between the developers and stakeholders.
• gather and analyze requirements.
• communicate the vision to the team.
• define and prioritize items in the product backlog for each iteration.
• verify that the product meets the requirements.

82 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



• plan and announce releases.
• demonstrate the solution to stakeholders.
• keep all stakeholders informed regarding the project status.

They also create release plans, prioritize requirements, and approve results in each cycle.
The Product Owner has contact with the team on a daily basis to answer questions and
provide clarifications. They generally do not interfere with iterations when they are in
progress, but can make changes to be incorporated in future iterations or even cancel
future iterations.

The Scrum Master

The role of the Scrum Master is similar to that of a project manager, but should not be
confused with that of a project manager in the traditional sense. A Scrum Master is a
leader, but does not have authority to instruct the team. They are a resource to the team
and do not impose on their self-organization. Instead, they create an ideal working envi-
ronment for the team and shield them from external influences and disturbances. The
Scrum Master removes obstacles, negotiates with those that are external to the team,
ensures that the team follows good Scrum practices, inspires and challenges the team to
improve, facilitates communication, and mediates discussions.

Developers

Developers are responsible for developing the solution. They create a plan, perform tech-
nical conceptualization, design, assure quality, and adapt as required. They manage them-
selves, deciding among themselves how the workload is distributed, developing relevant
metrics and estimates, and reporting to each other during daily Scrum sessions. The team
members hold each other accountable in order to work professionally. They form a part of
an equal and egalitarian group, sharing duties and responsibilities.

The Scrum Events

Scrum events include: sprint, sprint planning, daily Scrum, sprint review, and sprint retro-
spective. Each event provides a formal opportunity to inspect work and adapt as required
(Schwaber & Sutherland, 2020). A Scrum process begins with a customer who provides a
clear vision and a set of product features, listed in order of importance. These features
form the product backlog, which is maintained by the Product Owner as the customer’s
proxy. This initiates a series of time-boxed, incremental iterations, referred to as “sprints”.
Schwaber and Sutherland (2020) refer to sprints as “the heartbeat of Scrum, where ideas
are turned into value” (p. 7).

A time box is a common Agile concept that describes an approach where the amount of
time dedicated to an activity is fixed. If the planned work is not completed, the timeframe
will not be extended; rather, what is ready will be delivered. In this way, tasks are con-
cretely defined. A “sprint” is a container for a series of events where the durations are
fixed; durations cannot be modified after the sprint starts. Typically, the duration of a

83PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



sprint does not exceed one month, as it is presumed that longer durations may lead to
changes in requirements and definitions, resulting in increased complexity, risks, and
even costs.

Sprint planning initiates the sprint—it results in a plan that addresses the following topics:
“Why is this sprint valuable?” “What can be done during this sprint?” “How will the chosen
work get done?” (Schwaber & Sutherland, 2020, p. 8). The team selects a list of items from
the product backlog to be completed in the sprint and lists them in the sprint backlog.
When everyone agrees, the work commences. No interruptions are allowed once work
commences in order to ensure that the team can focus, meet the set goals, and complete
the selected items.

Daily Scrums are 15-minute events to inspect progress and adapt the sprint backlog if
needed. They lead to the sprint review and potentially to the sprint retrospective at the
end of the sprint cycle. In Scrums, the team coordinates work and discusses and reviews
progress. Additional tools, such as a task board and a burn down chart, are typically used
in these sessions to aid the process. This is because many common tasks that must be per-
formed are not defined as part of Scrum.

A sprint ends with a sprint review. This is an event, held over a maximum of four hours,
where the team demonstrates a solution (an increment) to stakeholders and takes note of
their feedback. The sprint retrospective follows this review, unless the developed incre-
ment has met all the specifications. It is time-boxed for a maximum of three hours. The
sprint retrospective allows the team to reflect on the status of the project and consider
improvements for the next sprint. They also consider ways to improve product quality,
streamline work processes, and clarify what it means for a project to be “done”. The Scrum
Master ensures that this meeting takes place and that it is conducted in a positive and pro-
ductive spirit.

The sprint process continues to iterate until there are no further items in the product back-
log. Then, a release iteration (release sprint) is planned in order to prepare for deploy-
ment. At this point, all relevant documentation produced during individual sprints are
finalized, and any remaining defects are resolved. Further, physical items such as installa-
tion media, manuals, and packaging are prepared to be shipped. If required, system inte-
gration and testing take place. An acceptance review and the shipping of items to the cus-
tomer signals the end of the project. An overview of a Scrum process is illustrated below.

84 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



Scrum artifacts
The three Scrum artifacts
are the product backlog,
the sprint backlog, and
the increment.

Figure 41: The Scrum Process

Source: Kneuper, 2018, p. 104.

The Scrum Artifacts

There are three Scrum artifacts. These are the product backlog, sprint backlog, and incre-
ment. The product backlog commits to a product goal, the sprint backlog commits to a
sprint goal, and an increment commits to the Definition of Done (DoD).

The product backlog details the requirements, features, and their priorities; it can range
from a draft of an initial idea to detailing fully-specified functionality. Initially, it may con-
tain several rough outlines of goals and requirements. As the project progresses, require-
ments are refined, supplemented, and prioritized by the Product Owner. The product
backlog contains the user stories that the team will be working on. A user story is a high-
level definition of a requirement and is also used to estimate the relative time required to
complete it.

The sprint backlog is a subset of the product backlog. It contains a list of the requirements
that will be implemented during the sprint. The requirements included determine the
batch size of the sprint, which depends upon the velocity of the team. The velocity of a
team indicates how many (and which) of the requirements a team can complete during a
cycle, and therefore how many (and which) of the requirements a team can load from the
product backlog to the sprint backlog. It is derived from the quantity and scope of the
functions, as was implemented in previous cycle(s). Velocity typically stabilizes after the
first five to seven cycles.

85PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



An increment is a concrete and usable stepping stone; the sum of all increments equals
the product goal. Work can only be considered an increment when it is completed and
meets the DoD. An overview of the Scrum framework is illustrated below.

Figure 42: Scrum Framework

Source: Ismailovic, 2021.

Scrum Success Factors

The frequent sprints and the involvement of the whole team in the decision-making proc-
ess are the core advantages of Scrum. Scrum success is a result of transparency and visi-
bility, as well as empowerment coupled with accountability. The egalitarian nature of the
team enables members to accommodate changes quickly and easily when required,
resolve issues, reduce cost, and improve performance. The main challenge with Scrum is
the individual and collective understanding that the team members have of the process. A
more experienced team that is also familiar with the process will establish a working
rhythm relatively quickly; less experienced team members, and specifically Scrum Mas-
ters, can ruin the development process. For this reason, a Scrum team will be assigned to
their next project as an established team, rather than as individuals and to new teams.
Scrum teams gain experience as they progress with a project; as they work through sprint
backlogs, they gain knowledge from the partially delivered results and apply it to subse-
quent sprints.

The idea of self-organizing teams poses a challenge to traditional management and lead-
ership practices, especially in relation to the management of teams, projects, and tasks.
Self-organizing teams act independently; they have the authority and flexibility to choose
and implement applicable methodologies as they see fit. They establish their own levels
of authority, and may even choose their own team members. The aim of self-organization
is empowerment. Team members are motivated to take initiative when choosing and
completing tasks, take responsibility for their work, monitor their own progress, and seek
support when issues arise. Self-organizing teams do not form instantly and spontane-
ously. This calls for inspiring leadership that guides and supports the team and encour-

86 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



ages team members to take initiative. It takes time for team members to gain momentum
and form collaborative and self-sustaining hierarchies of responsibility and accountability
within the team.

Communication is key for Agile development and Agile teams (Cockburn & Highsmith,
2001). Agile teams communicate frequently with each other and with customers (or their
proxies) to ensure that the project remains on track, and to address and manage expecta-
tions. A solution must be inspected frequently to get feedback in order to identify and
address any misalignment or issues and improve the solution. Frequent communication
also ensures that Agile teams remain focused on quality and, hence, develop high-quality
solutions.

4.3 Common Agile Practices
The most important management artifact in a Scrum process is the product backlog.
Other Scrum artifacts that are also central for a successful project include the sprint back-
log and the increment, as the result of the sprint. In addition, management tools that are
frequently used in Scrum are the Definition of Ready (DoR), Definition of Done (DoD), task
boards, and burn down charts.

The Product Backlog, Sprint Backlog, and Increment

During the sprint planning process, it is important that the Product Owner and team select
a suitable set of prioritized and appropriately detailed items from the product backlog for
the sprint backlog. As previously mentioned, the velocity of the team determines the num-
ber, as well as size, of elements in the sprint backlog. The sprint backlog should also only
include as many elements as the team agree that they can reasonably manage. During the
cycle, the number of elements in the sprint backlog is fixed—further elements cannot be
added. Several increments can be created during one sprint, and work can only be consid-
ered as part of an increment when it adheres to the Definition of Done.

The Definition of Done

Readiness to release relates to the DoD. Agile teams strive to develop high-quality solu-
tions. For this, they must write solid, high-quality code that will not require major modifi-
cations later on. Accordingly, teams emphasize proper coding principles, dedicate time to
develop a common style, and ensure formal coding practices. A solution is only formally
delivered once it adheres to the DoD, as indicated by a checklist. The sprint backlog ele-
ments that are worked on during a sprint are only marked as complete (done) when they
have been completed according to the checklist and requirements have been met. More-
over, the sprint backlog entails a quality check for all the items on the list. Consistent
application of these is also intended to ensure high process quality and must be enforced.
Quality assurance and documentation are tedious tasks that are easily left behind, espe-
cially when working under the pressures of delivery or in high-stress situations. The DoD is
continually updated and typically includes reference to specific items. The checklist speci-
fies that an element adheres to the DoD when

87PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



• the design has been verified,
• all programming tasks (development) have been completed,
• all programming conventions have been observed,
• all the program code is available in the configuration management system,
• review of the code has been completed (if required),
• user documentation has been updated,
• all unit and module tests have been carried out successfully,
• the specified acceptance criteria have been met,
• acceptance tests with users have been carried out successfully,
• there are no malfunctions, and
• the solution is in production mode.

The Definition of Ready

Requirements that are adequately defined for development and testing relates to the DoR.
During sprint planning, the team negotiates the items to be selected for the next sprint
and can only commit when requirements are sufficiently detailed, i.e., ready. The planning
results in a checklist that indicates when items meet the DoR. The checklist specifies a
clear definition in terms of development requirements, resulting business value post
implementation, and pre-development enablers to be added. The checklist also specifies
the following criteria:

• Rough estimating (sizing) indicates that it can fit within one sprint.
• No pending dependencies to external resources or elements will be needed during the

sprint.
• In case of unavoidable live, external dependencies, adequate coordination has been

arranged and will be closely tracked.

A Task Board

Task boards are often used during Scrum sessions. A task board, which is typically dis-
played in the common meeting area and populated with sticky notes, is used to track
progress. A task board can indicate, for example, the work that is still pending (“to do”),
the work that is still ongoing (“doing”), the work that has been completed (“done”), and
any additional items, such as the user requirements and required features. An example
task board is shown below.

88 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



Figure 43: A Task Board

Source: Jamsa & Harkiolakis, 2019.

Velocity

Velocity refers to the speed at which something moves in a certain direction. In Scrum, it
indicates the amount of work that a team can successfully complete during a sprint. It is
typically measured using the metric “story points” or “person days”. Story points are a rel-
ative and abstract measure used to put the size of different backlog elements into per-
spective. Higher points imply that it is more complex and that its implementation is esti-
mated to be more costly. People are generally better at estimating in relative rather than
absolute terms (Key, 2016), hence the frequent use of statements, such as “the element is
approximately the same size” or “the element is significantly larger.” A standard number of
achievable story points will typically emerge for a team once they have completed a num-
ber of sprints. Initial estimates will be imprecise, but they stabilize over time. Story points
can be used to estimate time for tasks within a team, but cannot be transferred between
teams. Story points do not indicate the actual scope of results that a team delivers. For
example, a velocity of 40 story points for Team A can be very similar to a velocity of 35
story points for Team B, as it only indicates their own relative definition (El Deen
Hamouda, 2014). Story points translate to stories, which are then implemented by the
team. However, the number of person days is an absolute estimate; it indicates the time
(in working days) that the team will need to complete a backlog event.

A Burn Down Chart

Burn down charts illustrate the progress of an Agile project. An Agile project’s critical path
can change daily, making traditional means to track progress of items, e.g., a Gantt chart,
inadequate. Instead, a burn down chart is used to show the current progress of the entire
project, a work package, or a sprint. It is based on the finished elements of a product back-
log or a sprint backlog, as the elements relate to time planned versus time still available. It
indicates the velocity of development.

89PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



A burn down chart shows an ideal course (usually indicated by a linear line, i.e., the ideal
line), the actual course (indicated by open tasks), and deviation from the ideal. If the
actual course deviates to be above the ideal line, it indicates slower progress, and vice
versa. At the end of the reporting period, the actual course should ideally reach the zero
line, indicating that all open tasks have been completed, i.e., “burned”. The horizontal x-
axis represents time; the first value is the starting point of a considered time period and
the last point represents the end of the period. The vertical y-axis represents the number
of the unit that is illustrated in the chart, e.g., the number of open tasks or the amount of
resources (money or time) used. A burn down chart is illustrated below. It shows six inter-
mediate measurement points between the start of the sprint, indicated by “1”, and the
end of the sprint, indicated by “8”, as well as the default value of 80 open tasks.

Figure 44: A Burn Down Chart

Source: Brückmann, 2015, p. 59.

4.4 Kanban and Lean Development
Processes
Lean manufacturing entails waste reduction, increased efficiency, and the elimination of
bottlenecks. When considering lean practices in the context of software development, lean
manufacturing also refers to increasing efficiency and elimination of bottlenecks. Reduc-
tion of waste is interpreted and applied in order to identify potential areas of improve-
ment. Kanban and lean software development are defined vaguely. Nonetheless, the lack
of prescribed practices is perceived as a strength. Lean manufacturing is non-prescriptive
in the sense that it only introduces constraints for workflow visualization and to limit

90 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



work-in-progress (WIP) (Tanner & Dauane, 2017). In general, Kanban involves the applica-
tion of general principles that, when applied by software development teams, assist them
greatly in optimizing work in an Agile, iterative manner. These principles include the

• visualization of progress using a Kanban Board.
• limiting of WIP to maximize items flowing through.
• managing the workflow by focusing on completing prioritized items.
• making policies explicit by ensuring a common understanding of critical concepts such

as the DoD and DoR.
• collaboratively improving and evolving by adjusting WIP limits as needed.

A task board is a way to visualize the tasks to be completed in a sprint. It indicates the
status and progress of tasks. A Kanban board is a variant of a task board that is used to
visualize a workflow. The use of Kanban cards originated at a Japanese Toyota assembly
plant; they were applied to exert control over the company’s production processes and
resulted in lead times being shortened by approximately one-third when compared to
other similar plants (Poppendieck & Cusumano, 2012). The type and quantities of inter-
mediate products to be produced, and those required for production processes, are
recorded on signal cards and visibly displayed on boards; Kanban literarily translates to
the word “signboard” in Japanese (Tanner & Dauane, 2017, p. 181). Upstream stations
then use the signal cards to determine what will be required in the near future. The wall or
board where these cards are displayed is the Kanban board. This principle is applied to
visualize and organize tasks for and within Agile Development Teams. All tasks of a cycle
(or a sprint) are indicated on the Kanban Board, i.e., tasks still to be done in the first col-
umn, WIP in the second column, and completed tasks in the third column. It is also refer-
red to as the pull system, as it “pulls” items from one column to the next as tasks are com-
pleted.

Tanner and Dauane (2017) explain that Kanban development applies the following con-
cepts that should be defined as policies and outline the rules to be followed:

• the backlog, a prioritized list of work items still to complete.
• inclusion criteria, which defines the items that will be added to the backlog.
• done items, which are completed items.
• reverse items, which are items moving to a previous state.
• bottlenecks, which are items that limit progress and must be broken down into smaller

items.
• performance measurement tools, e.g., burn down charts.
• validated learning, which involves measuring the value of a completed feature.
• waste, which are elements that do not add or produce value, defects, etc.
• stand-ups and meeting planning, which are used to discuss progress and next steps.
• feedback loops, which are used to obtain feedback in order to adapt when needed.
• an avatar, which visually represents a team member on the board.

Advantages of Kanban are similar to that of other Agile methodologies. It facilitates rapid
development and deployment, focuses on the customer’s requirements, and enhances
communication and coordination. Insufficient experience and understanding of the proc-
ess poses a challenge to successful implementation.

91PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



The lean development (LD) methodology was developed by Bob Charette (Anderson,
2012). LD is not exclusively used for software development; it is applied to achieve busi-
ness value by means of business strategies and projects. It combines principles and con-
cepts from risk management, as per Charette’s experience, and lean manufacturing, as per
the work of Womack, Jones, and Roos (Boehm & Turner, 2004). In an LD context, agility
encompasses the ability to tolerate change. Accordingly, LD entails a three-tiered
approach that is focused on change in order to achieve competitiveness. LD is a product-
focused process, comprising of three phases, i.e., start-up, steady state, and transition
renewal. Overall planning, including business cases and feasibility studies, are completed
during start-up. The steady state phase involves iterations of designing and building. The
transition renewal phase involves development and delivery of documentation, as well as
the maintenance of the delivered product.

4.5 Scaling Agile Development
Dingsøyr and Moe (2013) assert that although Agile methodologies were initially devel-
oped for small teams, they quickly became popular among larger teams. As the success
rates of Agile development increased, project teams that work on larger or more complex
projects (e.g., for projects that involve more than one team operating independently,
teams distributed across geographical locations, or virtual teams) also started to consider
tailored versions of them. This should theoretically result in increased customer satisfac-
tion, rapid delivery, reduction in costs and overheads, and development of products and
services that address rapidly changing needs. However, the application of Agile methodol-
ogies in large projects is significantly different and more complex than in small projects.

Dingsøyr and Moe (2013) further explain that scaling Agile principles and practices poses
challenges, e.g., longer planning horizons, levels of delegated authority, and synchroniza-
tion of deliverables. Larger projects typically span over more than a year, requiring prod-
uct-to-market roadmaps of 12—18 months, while the product backlogs for the teams are
refined in shorter periods, typically between two and three weeks. This results in a discon-
nect regarding the level of refinement of the solution. The Development Team may work
on details and finalize code, only to receive change requests from a higher level at a later
stage, resulting in time-consuming and costly re-work or even the discarding of finalized
code. The lack of management frameworks at higher levels, when compared to well
understood and practiced Agile frameworks within the smaller teams, also poses a risk.
Furthermore, levels of authority in larger and more complex projects interfere with practi-
ces, such as Scrum, where the Product Owner is responsible for the full life cycle of the
product, including return on investment (ROI) and market performance, versus larger
projects where responsibilities are segregated and project or portfolio managers may be
jointly or individually responsible for different aspects. Disconnects such as these nega-
tively affect the performance of small Agile teams, impose upon their autonomy, hinder
the self-organizing dimension of the team, and are an obstacle to effective synchroniza-
tion of delivery and integration of solutions. The context of application and decisions
regarding modification of an Agile approach must be considered carefully when tailoring it
to a large, complex project. This resulted in variants of Agile, e.g., the Scrum of Scrums
(SoS), Large-Scale Scrum (LeSS), and Scaled Agile Framework (SAFe) emerging.

92 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



The Scrum of Scrums

Scrum of Scrums (SoS) involves dividing a project team into groups of Agile teams, where
each team selects an “ambassador” to participate in frequent meetings with other
selected ambassadors (Raps, 2017). The ambassador roles are typically undertaken by the
Scrum Masters, but it can also be another team member. These meetings occur as fre-
quently as necessary, and last approximately 15 minutes. The SoS discusses the status of
each team, and also other issues or challenges that they may face. They typically discuss
identified obstacles and ways to overcome them, issues regarding interfaces between sep-
arately developed solutions and integration of the complete solution, and responsibilities
of and boundaries between individual teams. The SoS is presented below.

93PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



Figure 45: The Scrum of Scrums

Source: Jamsa & Harkiolakis, 2019.

Large-Scale Scrum

Large-Scale Scrum (LeSS) is the result of efforts to apply the purpose, elements, and ele-
gance of Scrum to large projects. LeSS aims to enable organizational simplicity and pur-
posefulness, but in a non-prescriptive manner (Larman & Vodde, 2017). Adapting to such a
large scale, as is required by LeSS, encompasses profound organizational change. LeSS is

94 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



to be viewed as an organizational design framework, rather than a project management
practice. LeSS includes many of the principles and ideas of Scrum. For example, it com-
prises a single product backlog, a DoD, a Product Owner, a sprint, an increment at the end
of each Scrum, and cross-functional teams. Additionally, it entails two-part sprint plan-
ning, where part one involves a typical Scrum team, and part two is similar to SoS. LeSS
differs from SoS in that it observes the large-scale view as a single Scrum, following the
principles, rules, elements, and purpose of Scrum, rather than as another management
level on top of individual Scrums. According to The Less Company B.V. (n.d.), LeSS has the
following nine core principles:

1. “Transparency”, which is evident from tangible items that are completed (done),
entailing “short cycles, working together cooperatively, common definitions, and driv-
ing out fear in the workplace” (para. 3)

2. “More with less”, which includes the concepts of “empirical process control: more
leaning with less defined processes”; “lean thinking: more value with less waste and
overhead”; and scaling through “more ownership, purpose, and joy with less roles,
artifacts, and special groups” (para. 4)

3. “Whole-product focus”, which means having one product backlog, Product Owner,
shippable product, and sprint, regardless of the number of teams involved. This is
based on the fact that customers want valuable functionality in a single cohesive
product, rather than technical components in separate parts.

4. “Customer-centric”, which involves learning about customers’ real problems and solv-
ing them by involving customers in meaningful feedback loops.

5. “Continuous improvement towards perfection”, which means striving to delight cus-
tomers with perfect products, as well as improving the environment and lives, by con-
tinuously doing “humble and radical improvement experiments” (para. 7).

6. “Lean thinking”, which involves “respect for people and continuous improvement”
(para. 9) by means of an organizational system aimed at eliminating waste, e.g., by
reducing partially done work and delivering results as quickly as possible; simultane-
ously, decisions are made as late as possible to reduce uncertainty and while taking
into account the continuously changing environment.

7. “Systems thinking” which entails exploring and optimizing the system as a whole
(rather than only individual parts of it), and applying systems modeling techniques to
explore system dynamics.

8. “Queuing theory”, which involves an understanding of how systems with queues will
behave in the research and development (R&D) domain, and the application of the
insights to manage aspects such as “queue sizes, work-in-progress limits, multitask-
ing, work-packages, and variability” (para. 10).

The Scaled Agile Framework

The latest version of the Scaled Agile Framework (SAFe), i.e., SAFe® 5.0, entails seven core
competencies that are applied in lean enterprises. The competencies relate to: lean-Agile
leadership, a continuous learning culture, team and technical agility, Agile product deliv-
ery, enterprise solution delivery, lean portfolio management, and organizational agility
(Scaled Agile, Inc., 2019). The competencies (with the exception of lean-Agile leadership)
target different levels in the hierarchy, i.e., the Essential SAFe configuration, the Large Sol-

95PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



ution SAFe configuration, and the Portfolio SAFe configuration. Mastering all of this is criti-
cal to achieving and sustaining business agility and a competitive advantage in a modern
marketplace. SAFe extends to guide both enterprises and governments.

Knaster and Leffingwell (2020) describe the competencies as follows: The lean-Agile lead-
ership competency describes driving and sustaining organizational change. These leaders
empower teams and lead by example to instill change. The continuous learning culture
competency entails values and practices to encourage all to continue to increase knowl-
edge, and also to constantly improve and innovate. Team and technical agility comprise
the critical skills, principles, and practices applied to create solutions of high-quality for
customers. Teams should remain productive and continue to deliver value. Agile product
delivery refers to the approach that enables organizations to continuously define, build,
and release products and services of value, in order to delight customers and remain com-
petitive. The enterprise solution delivery competency describes the application of princi-
ples and practices to specify, develop, deploy, operate, and maintain large applications
and systems. Lean portfolio management involves the alignment of strategy and execu-
tion through the application of lean and systems thinking approaches; it enables organiza-
tions to meet commitments while also continuing to innovate. Organizational agility refers
to the ability to optimize business processes, properly evolve strategy, and rapidly adapt
as and when required.

Knaster and Leffingwell (2020) state that all SAFe configurations are built upon the Essen-
tial SAFe configuration, which applies the principles and practices of the three core com-
petencies: Agile-lean leadership, team and technical agility, and Agile product delivery.
The Agile Release Train (ART) anchors SAFe. ART refers to an organizational structure that
involves dedicating Agile teams, key stakeholders, and other resources to an ongoing mis-
sion. The Large Solution SAFe configuration is built upon the Essential SAFe configuration
as it supports the development of large and complex solutions that require multiple ARTs
and suppliers, and adds additional artifacts, events, roles, and coordination. It is imple-
mented through a Solution Train, i.e., an organizational construct to facilitate develop-
ment of large, multi-disciplinary, and complex software and systems. Large Solution SAFe
adds the competency of enterprise solution delivery, over and above the core competen-
cies of the Essential SAFe. The Portfolio SAFe can also be built on the Essential SAFe con-
figuration; it signifies the minimum set of competencies and practices required for com-
plete business agility. It provides three competencies in addition to the core competencies
of the Essential SAFe: lean portfolio management, organizational agility, and continuous
learning culture.

When all three configurations are applied to form the Full SAFe, it forms the most compre-
hensive configuration, including all seven competencies. Multiple instances of various
SAFe configurations can also be used in an organization. The Spanning Palette is always
indicated as part of the SAFe. It entails the specific elements, roles, and artifacts that an
organization decides to includes in a SAFe. The Spanning Palette is a selection of vision,
roadmap, milestones, shared services, community of practice (CoP), system team, lean
user experience (UX), and metrics. Each SAFe also includes a description of its foundation.
It outlines the organization’s selection, as applicable to them, of supporting elements that

96 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



they require to deliver value. These include the lean-Agile leaders, core values, lean-Agile
mindset, SAFe principles, SAFe program consultants (SPCs), and an implementation road-
map (Knaster & Leffingwell, 2020).

4.6 Hybrid Processes
Agile and plan-driven approaches differ fundamentally in the way that decisions are
made. Agile development is knowledge-driven, i.e., in Agile development, important deci-
sions are based on knowledge gained as part of, and during, the project. On the other
hand, traditional software development is assumption-driven; plans are based on
assumptions and created in the run-up to the project or in very early phases. Decisions are
also made based mostly on the current level of knowledge and on previous experience of
those involved in the project. Both approaches have their advantages, disadvantages,
strengths, and weaknesses. Both also have specific areas of application in which they are
most suitable; however, it would be nearly impossible to align all software projects, and
also the individual components of large and complex projects, to only one approach. The-
ocharis et al. (2015) summarize it by saying that the typical traditional processes “aim to
address the whole software project lifecycle, e.g., by providing comprehensive guidelines,
standardized procedures, project planning templates, and interfaces to further organiza-
tion processes” (p. 150), whereas Agile methods aim to simplify software processes as
much as possible in order to minimize rules, formalities, and administration.

Hybrid approaches combine different types of models or methodologies. These include,
for example, approaches that combine plan-driven and Agile methodologies. Research
has shown that companies apply content-specific hybrid approaches to develop software
(Theocharis et al., 2015). Combinations of models that often emerge in practice are V-Mod-
ell XT and Scrum, where Scrum is then embodied using Kanban and Extreme Program-
ming practices as well as the combination of the traditional waterfall, Scrum, and the Agile
Unified Process (Theocharis et al., 2015).

The latter is also referred to as the Water-Scrum-Fall, which was introduced by Forrester
Research, Inc. as a reality that organizations are faced with, rather than a methodology.
However, it is now acknowledged as a useful hybrid approach, taking advantage of the
best of both Agile and plan-driven development (Kneuper, 2018). It can include the appli-
cation of the beginning and end phases of a waterfall model to analyze requirements, and
do acceptance testing and deployment, but implements typical Scrum sprints in the mid-
dle phases, e.g., during the design, implementation, and testing phases.

SUMMARY
Process and tools are important, but cannot be valued over customer-
centric principles, such as collaboration and communication. Well-
defined process models and the use of tools can only be effective when
applied collaboratively and when stakeholders cooperate to achieve a

97PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



mutual goal. Agile development approaches aim to overcome the chal-
lenges of traditional development approaches; however, in practice,
both still have value. Since it is crucial to find the optimum blend, indi-
vidual projects are often implemented using “hybrid” approaches.

Scrum is an evolutionary framework used to organize work in short
cycles, after which it is carried out by teams. A team consists of a Scrum
Master, a Product Owner, and developers. A product backlog is used to
prioritize items for the sprint backlog. Items on the sprint backlog are
completed within a single sprint, and progress is continuously discussed
during daily Scrum sessions. Increments of solutions are inspected dur-
ing the sprint review and adaptations are made, as needed, for the next
sprint. Management tools, such as task boards and burn down charts,
are used to visualize and manage the process.

Agile approaches achieve success and have therefore become popular.
They are most suited for smaller scale projects, so attempts are made to
scale them for larger and more complex projects. Examples of these
include the SoS, LeSS, and SAFe. Patterns in the application of hybrid
approaches emerged in the form of the Water-Scrum-Fall, combining the
waterfall, Scrum, and Agile Unified Process, as well as V-Modell XT and
Scrum, with Kanban and XP practices.

98 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



UNIT 5
THE SOFTWARE PRODUCT LIFE CYCLE

STUDY GOALS

On completion of this unit, you will have learned …

– about customizable detailed-level processes.
– the value of information technology (IT) service management.
– to apply DevOps to streamline and integrate development and operations.
– about information, data security, safety, and privacy.

PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



IT service management
These are management

processes to ensure suita-
ble and high-quality serv-

ices, and IT assets that
provide business value.

DevOps
This is a set of practices

that streamlines and
automates processes

between software devel-
opment and other IT

teams.

5. THE SOFTWARE PRODUCT LIFE CYCLE

Introduction
Software projects are implemented by means of software processes and life cycles. They
facilitate systematic structuring and execution of applicable design, development, imple-
mentation, and maintenance activities, throughout the life cycle of software and software
systems. The popularity of iterative and incremental development frameworks is increas-
ing; they are believed to be more responsive to risks and ever-changing customer needs
and market demands. However, many of these approaches are still relatively new and
anecdotal, whereas large, integrated, and complex projects still require the meticulous-
ness of traditional plan-driven and architecture-centric methods. Accordingly, hybrid
approaches are often applied, and, in view of that, many organizations choose to adopt
customizable iterative and incremental development frameworks, such as the Unified
Process (UP) (Scott, 2002) and German V-Modell XT (Deutschland, 2004). They are modular
and therefore adaptable; projects are tailored according to the characteristics and relative
complexity of the envisaged project without compromising quality.

Organizations continue to depend on software and information systems to function effec-
tively. As a result, information technology (IT) infrastructure, assets, and services are
essential for modern-day businesses. They are also implemented and maintained for the
benefit of customers and, accordingly, managed throughout their life cycles; they must be
appropriately managed in order to ensure standardized, yet tailored, value for customers.
The practice of IT service management (ITSM) ensures that IT services remain relevant
and adhere to defined quality standards (Esposito & Rogers, 2013). ITSM is aided by frame-
works, such as ITIL®, formerly known as the Information Technology Infrastructure Library.

Silo mentality (a culture where different organizational departments choose to work in
isolation, rather than collaboratively) costs organizations dearly. It reduces productivity,
performance, and even staff morale. Similarly, different IT departments do not function
optimally when they do not collaborate and communicate. In these cases, customer
requirements are not sufficiently met. So, a new and innovative way of working was
devised within the software engineering realm, i.e., DevOps (the unification of develop-
ment and operations). It aims to effectively automate collaborative processes between
teams. The outcome is improved communication and higher quality solutions and
enhanced deployment speed, frequency, and reliability (Mishra & Otaiwi, 2020; Perera et
al., 2017). DevOps aims to resolve human challenges by effectively utilizing technology
and enabling adoption of Agile and lean practices.

Software, regardless of its area of application, must be developed in a manner such that it
ensures the safety, security, and privacy of customers and users. In addition, data and
information are valuable organizational assets that must be properly protected in order to
remain secure. Hence, all applicable standards and regulations must be adhered to. Exten-
sive instructions regarding information security have been documented and published by

100 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00

Anonymous
Highlight

Anonymous
Highlight

Anonymous
Highlight
This is a model developed in Germany for the German context. Please check for relevancy.




the German Federal Office for Information Security (BSI). The IT-Grundschutz catalog pro-
vides a framework for the management of IT security; it describes aspects that can
threaten security and response measures (ENISA, n.d.).

5.1 Detailed-Level Process Models:
Unified Process and V-Modell XT
Unclear and changing requirements in the software domain resulted in the adoption of
iterative and incremental development frameworks that are customizable, as per the
needs of the project. The Unified Process (UP) and the German V-Modell XT are examples
of modular and customizable frameworks.

The Unified Process

When applying UP, a project is planned and executed according to four core phases: incep-
tion, elaboration, construction, and transition. Phases are typically divided into multiple
iterations (Scott, 2002). Additional phases, such as production and disposal, can be added
if required. Most iterations will include general activities, such as requirements gathering,
design, implementation, and testing; the relative effort and emphasis of these will, how-
ever, differ as the project progresses.

During the inception phase, a business idea is considered and elaborated upon to produce
a project. This phase is comparable to a feasibility study—goals are outlined, the scope is
defined, and an initial schedule and cost estimate are prepared. Furthermore, a business
case is formulated based on core requirements, key features, and constraints (Scott, 2002).
This phase ends with the life cycle objective milestone.

Throughout the elaboration phase, project requirements are elicited and potential risks
are identified so that the most critical risks are addressed as early as possible in the proc-
ess. Risks are identified for mitigation in order to prevent project failure. The core ele-
ments of the system to be developed are also identified; the level of detail must be suffi-
cient so that developers can conceptualize ideal solutions. In this phase, the system
architecture is established and validated. Tools, such as the Unified Modelling Language
(UML), are used to explore and model the architecture views of solution components.
Additionally, they implement package diagrams, object-oriented class hierarchies (which
are only implemented during development), and use cases (which identify the actors and
ways that they will be interacting with the system) (Arlow & Neustadt, 2002). The aim of
this phase is to demonstrate a stable architecture that supports key functionalities and
behaves suitably in terms of, e.g., performance, scalability, and cost. It is validated by
implementing an executable architecture baseline, i.e., a partial implementation of a sys-
tem that includes its most significant components (Scott, 2002). This phase provides a
detailed plan for the next phase.

101PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



In the construction phase, developers aim to establish a high-quality solution based on
the foundation established during the elaboration phase. UML activity diagrams,
sequence diagrams, collaboration diagrams, etc., are used during this phase. Developers
write, test, and debug code, with a focus on creating high-quality deliverables that are
thoroughly tested and ready for user acceptance upon release. This phase ends when the
software system is ready for deployment (Scott, 2002).

The solution is deployed in the transition phase (Scott, 2002). In this phase, requirements
for infrastructure (e.g., computers, servers, and networks) are fulfilled, documentation is
completed, and users are trained. The solution will be in production, and users can begin
to use it. The solution is handed over to a maintenance team for the management of fixes,
upgrades, and customer requests. Based on initial feedback from the customer, the
project may temporarily revert (i.e., iterate) back to previous phases to address serious
issues.

When required, additional phases are considered in order to address other project aspects
and the remainder of the full software life cycle, e.g., a production phase may be imple-
mented after the transition phase to determine how users respond to the solution. Feed-
back from this phase may be useful for upgrades or for future projects. A disposal phase
may also be considered, where users transition to a system replacing other systems to
ensure minimal disruption to the users and their organizations.

Unified process (UP) phases typically iterate several times to address phase-specific
issues, challenges, and obstacles. The exception here may be the inception phase, as it
will typically not iterate for smaller projects (it is relatively abstract by nature); however, in
large complex projects, the inception phase can also be divided into iterations. Risks are
often identified during elaboration and then refined for mitigation during the subsequent
iterations of the elaboration phase. Similarly, during the first construction phase, the
focus will be on developing critical and important features, and the remaining features
will be added during subsequent iterations. UP iterations are shown in the figure below.

102 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



Figure 46: Unified Process Iterations

Source: Jamsa & Harkiolakis, 2019.

Even though UP is highly adaptable, it can be relatively complex to customize it for a spe-
cific organizational context and project, as the defined UP process does not have a guide
for tailoring. Customization can also be difficult to repeat for a similar project (Ruiz et al.,
2018). There are a number of variants of UP: OpenUP, Enterprise Unified Process (EUP),
Agile Unified Process (AUP), and Rational Unified Process (RUP). The most popular variant
of UP is the Rational Unified Process (RUP), which applies the core life cycle phases of
inception, elaboration, construction, and transition. It also groups tasks according to six
core disciplines (also referred to as workflows), i.e., business modeling, requirements
gathering, analysis and design, implementation, testing, and deployment (Kruchten,
2004). RUP has advantages over other unified processes; namely, it is owned by and
included in an IBM product (the IBM Rational Method Composer (RMC)), and IBM provides
useful tools, such as artifact templates, that can be used for any intermediate or final
result produced by the project. The artifacts are useful for visualization, modeling, docu-
ment management, tracking of change requests, and performance profiling. The popular-
ity of RUP has increased for large projects as a result of these development tools. How-
ever, it also resulted in a significant disadvantage, since it is now difficult to apply RUP
when one does not have access to these tools.

A hypothetical case that incorporates RUP is given in the figure below, which shows how it
supports resource planning and workload balancing. It illustrates that business modeling
will require more effort (as indicated by the bright orange color) at the inception phase,
but this effort will gradually reduce in the remaining phases. The deployment phase
requires little effort in the beginning, and more towards the end of the project. This figure
also indicates the multiple iterations within each phase, with the exact number being
defined as part of the project planning.

103PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



V-Modell XT
A tailorable model (div-
ided into process mod-

ules), the V-Modell XT
describes roles and activi-

ties to be performed in
order to create work

products.

Figure 47: Workload Distribution in UP Phases

Source: Jamsa & Harkiolakis, 2019.

Furthermore, an RUP approach incorporates best practices from software engineering in
order to eliminate errors and increase productivity. These include the following:

• using iterative development to enable and accommodate changing user requirements;
• decomposing large and complex projects into smaller components to be independently

tested before assembly into a larger system (and also for re-use);
• using tools, such as UML diagrams, that enable visualization of components and their

interactions to clarify work to be done and make the roles of various actors visible; and
• continuously integrating various components developed by different teams (that are

either collated or distributed) in order to eliminate possible side effects resulting from
the different development tools and configurations used.

V-Modell XT

The V-Modell XT enables flexibility and tailoring (the XT stands for extreme tailoring). It is
designed to guide tailored planning and execution of system development projects by
defining project results, i.e., products. The model is divided into a number of process mod-
ules describing the roles, responsibilities, procedures, and activities that must be per-
formed to create these results (Microtool, n.d.). The user selects only the applicable mod-
ules, according to the characteristics of the project, and its tailoring guide facilitates the
creation of a set of adapted procedures whereby to execute the project based on the
applicable project characteristics (Kneuper, 2018). It is a state-of-the-art software process
and life cycle model initially developed for the German government for use with large

104 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00

Anonymous
Highlight
International relevance?



projects, but it is adaptable for any size project. It includes a meta-model, a model, and
tool and documentation (template) support. The V-Modell XT supersedes and replaces its
previous version, V-Modell 97.

On the meta level, the model is organized into different packages. The different packages
and their purposes are as follows (Kneuper, 2018):

• The base package describes the structure and manner in which the model is docu-
mented, e.g., its chapters and tool references, as well as its method.

• The statics package explains all of the process modules, including the basic compo-
nents of each module and the relationships and dependencies of the components.

• The dynamics package states the ordered sequence of all the activities, as defined in
the statics package.

• The adoption package provides standardized criteria that define the tailoring of the
model.

• The mapping to standards package enables references to compatible current standards
and regulations (e.g., ISO9001:2000, ISO/IEC 15288, and the Capability Maturity Model
Integration (CMMI®)).

The V-Modell XT is based on the V-Model for effectively guiding the planning and execution
of a project throughout its entire life cycle and aims to describe “in detail ‘who’ has to do
‘what’ and ‘when’ within a project” (Deutschland, 2004, p. 5). In addition, it offers tracea-
bility and delivers high-quality and reliable results. The model aims to minimize project
risks, improve and guarantee the quality of solutions, reduce the cost of a project, and
improve communication between stakeholders, customers, and contractors. It implicitly
demands and mandates structured management and control over requirements and
changes, but does not explicitly prescribe how to do so (Microtool, n.d.).

According to the V-Modell XT, projects are classified according to two characteristics: the
subject of the project and the project role. The subject is based on the purpose of the
project, namely, whether the project will be to develop a system or an organization-spe-
cific process model. The project role differentiates between the role of a customer and a
supplier. Furthermore, it also distinguishes between different types of projects, and pro-
vides suitable project execution strategies for the different types. The types of projects
include the following (Deutschland, 2004):

• a system development project from the perspective of a customer,
• a system development project from the perspective of an external supplier,
• a typical internal system development project where both the customer and supplier

belong to the same organization, and
• the introduction and maintenance of an organization-specific process model.

Project execution strategies include sequences of activities and tasks, work products to be
developed, and the relevant roles required to create the products—these are defined in
process modules. A project execution strategy also comprises a series of decision gates,
indicating the stages where project progress should be evaluated. At the evaluation
points, a project is given a go-ahead to progress further, corrective actions are initiated, or
it is canceled. Project execution strategies involve compulsory process modules and deci-

105PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



sion gates, as specified for each type of project, as well as optional process modules and
decision gates. The execution of a project can be tailored based on the actual conditions
of the project; a user is able to select one strategy, or a combination of project execution
strategies, applicable to and associated with the project type (Deutschland, 2004). The V-
Modell XT does not provide guidance for operational use, maintenance, or decommission-
ing of systems.

In addition to providing tailoring options, this model also supports both V-shaped and
iterative and incremental development. It is an Agile, yet plan-driven, approach that pro-
vides visibility with regard to project progress and status, and results in high-quality solu-
tions. It enables explicit reflection on and incorporation of all applicable processes of both
the customer and the supplier.

5.2 IT Service Management and
Operations
Gartner, Inc. (n.d.) defines information technology (IT) services as “the application of busi-
ness and technical expertise to enable organizations in creation, management and optimi-
zation of or access to information and business processes” (para. 1). Gartner, Inc. (n.d.)
distinguishes between categories of IT services, i.e., “business process services, applica-
tion services and infrastructure services” (para. 1), and argues that different skills are
required at different stages of the service’s life cycle, i.e., dependent on whether it is still in
“design” mode; being developed (“build” mode); or operational (“run” mode). Therefore,
suitable strategies are required to manage different IT services throughout their life cycles.

Nowadays, IT services are an intrinsic and key component embedded in modern business;
they are no longer merely supplemental services to enable and support business proc-
esses (Esposito & Rogers, 2013). Therefore, IT services must be implemented and man-
aged aptly. ITSM ensures that applicable and high-quality IT services are provided and
managed appropriately and IT assets continue to provide business value. ITSM aims to
provide customers with a range of suitable and valuable IT services that are standardized,
yet scaled and tailored to their requirements (Thejendra, 2014). It involves understanding
the customer’s needs and managing expectations; standardization of IT services as and
where applicable; the establishment and regulation of IT processes, tools, and roles; the
measurement and evaluation of services; and the optimization of services. Traditionally,
ITSM efforts seem to call for structure and long-term planning; they involve continuous
and longstanding change management and improvement projects. However, ITSM can
also be effectively implemented in an Agile manner when improvements are prioritized in
the short-term and made iteratively by responsive and collaborative business and IT
teams (Ferris, 2017).

106 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



Understanding Customer Needs and Managing Expectations

Exploring customers’ needs can be compared to requirements gathering, analysis, and
engineering. IT service providers aim to understand customers’ actual requirements in
terms of the IT services to be provided (Esposito & Rogers, 2013). ITSM differentiates
between functional and quality requirements. Functional requirements describe required
technical functions and services. The quantifiable quality requirements that these func-
tions and services must adhere to, as well as the actions that must be performed to reach
required levels of quality, are described and defined in service level agreements (SLAs)
and operational level agreements (OLAs). SLAs and OLAs typically describe and underpin
contractual obligations of external service providers, or, when IT service providers are
internal to the company, the acceptable (minimum) levels of services that the business
can tolerate (Thejendra, 2014).

SLAs define the required quality criteria for functions and services (Esposito & Rogers,
2013). They are written in non-technical (business) terms and define, e.g., when IT services
must be available; the number of supported users; guaranteed simultaneous access to a
service; guaranteed reaction, response, and resolution times in case of minor and major
issues or failures; and backup strategies. The significance and critical nature of the IT serv-
ices, typically measured in terms of potential harm (economic or otherwise) caused by the
non-availability thereof, determines the levels of quality that are agreed upon in SLAs.
SLAs must be outcome-based and facilitate collaboration between the teams working
together to achieve collective goals (Macdermid, 2019). The criteria must be measurable,
and they can be differentiated. For example, an email service can be made available to
staff during specified working hours only, but it must also be available after hours and
over weekends for executive management. Higher service levels typically result in higher
overheads and costs, meaning that optimum service levels must be determined for the
business. Free-market IT services (e.g., online and cloud storage or free email) may be suf-
ficient for private users, but the lower and unguaranteed levels of these services make
them inadequate for corporate users.

OLAs are internal and technical service provider agreements that support SLAs and under-
pin contracts (Thejendra, 2014). OLAs describe the technical functionality and actions that
will be required and employed to deliver services at required levels of quality, and are
accordingly written in technical terms. They outline roles and responsibilities of stake-
holders and IT teams, as well as resources (tools and infrastructure) required to provide
and support the services. OLAs define, e.g., what a server team will do to patch servers,
required server memory, number of servers, bandwidth, CPU speed, and reliability and
redundancy of hardware and resources.

Standardization of IT Services

Technical and organizational complexity of providing IT services can be significantly sim-
plified by standardizing the provision of IT services and assets; “standardization is essen-
tial to achieve both efficiency and effectiveness” (Esposito & Rogers, 2013, p. 144). Stand-
ardization of IT services involves a standardized service catalog detailing the available
categories of services and corresponding levels of services to customers. Customers

107PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



choose from the service catalog according to their needs; if the services provided are
insufficient, suitable procedures should be in place to motivate expansion or modification
of the catalog services.

Standardizing specific assets and products (e.g., limiting customers by providing them
with a limited selection and range of printers, laptops, and desktop computers) makes it
possible to leverage economies of scale when purchasing assets. In addition, it becomes
possible to establish and foster favorable long-term relationships with suppliers when pur-
chasing larger quantities of certain products, or purchasing more frequently from them. It
may also be possible to negotiate better deals and favorable support agreements with
preferred suppliers. In addition, having a limited range of standard products to maintain
will reduce costs.

Establishment of IT Processes, Tools, and Roles

Process model frameworks for ITSM include globally-established best practices to manage
delivery and support of IT services and assets. The ITIL framework is an example of such a
practice that is widely accepted and applied. It guides the management of IT services and
is used by organizations “to run their business from strategy to daily reality” (Joret, 2019,
p. 2).

The IT Infrastructure Library

ITIL was developed in the 1980s by the British Government’s Central Computer and Tele-
communications Agency (CCTA) to manage their services (ITIL Central, n.d.). The initial
version consisted of a library of books, each describing a process. Later on, ITIL V3 descri-
bed 26 processes in support of four organizational functions and aligns with ISO/IEC
20000, which is the internationally recognized standard for service management. ITIL is
the intellectual property of AXELOS, which is a joint venture between an administrative
body of the UK government, i.e., the Cabinet Office, and Capita Plc. ITIL V3 is organized
around the service life cycle, i.e., service strategy, service design, service transition, service
operation, and continual service improvement (Joret, 2019). These are defined as follows:

• Service strategy includes policies and objectives to ensure business value; it is realized
through practical decisions and proper planning.

• Service design ensures that services are built, evolved, operated, or withdrawn, as per
the strategy, and taking all stakeholders into consideration.

• Service transition entails planning and management to implement services, ensuring
quality and the satisfaction of stakeholders.

• Service operation involves repeating activities for ongoing support.
• Continual service improvement applies methods from the practice of quality manage-

ment to continually improve.

The latest version, ITIL 4, is a holistic approach that is still evolving. It continues to con-
sider established practices in a much wider context and embraces new ways of working
(Joret, 2019). It now uses modern practices, such as Agile, lean, and DevOps. ITIL 4 supple-
ments and complements ITIL V3, which provided detailed process descriptions that are
still useful. However, ITIL 4 can also be used without applying the somewhat rigid and

108 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



complex process descriptions of ITIL V3. In line with agility, organizations can define their
processes in a manner as simplified (or complex) as they required. Hence, ITIL 4 describes
principles, concepts, and practices, rather than comprehensive and prescriptive process
specifications. Furthermore, ITIL 4 refers to key activities, as well as essential inputs and
outputs.

Joret (2019) explains that ITIL 4 integrates four key dimensions to effectively manage serv-
ices: organizations and people, information and technology, partners and suppliers, and
value streams and processes with components from the service value system (SVS). The
SVS consists of generally applicable components that aim to facilitate creation of value
using services that are enabled by IT. This includes guiding principles, continual improve-
ment, and governance and practices guiding the central service value chain that is also
linked to both value and opportunity or demand. ITIL 4 comprises a total of 34 practices
that encompass three categories: general management, service management, and techni-
cal management (Joret, 2019). ITIL has been adopted by various and diverse small compa-
nies, as well as large industries, such as IBM, Microsoft, Sony, Toyota, HP, and various
financial and banking institutions; it is adaptable and can be used on its own, or in con-
junction with other practices for governance, quality, and architecture management, e.g.,
Agile, lean, COBIT® (formerly known as the Control Objectives for Information and Related
Technologies), Six Sigma, and The Open Group Architecture Framework (TOGAF) (Arraj,
2013).

Measurement and Evaluation of Services

IT services must be measured and evaluated to ensure that the business knows how well
its services are functioning, and where problems may arise (Esposito & Rogers, 2013).
Service providers should be able to constantly assure their customers that they provide
services at agreed upon levels, maintain services and assets, and resolve incidents and
problems within agreed upon resolution times. Failure to keep to SLAs and OLAs will typi-
cally result in penalties for non-compliance. In addition to actual non-compliance, per-
ceived quality of service, according to business users, should also be measured. If the
measured service quality differs significantly from perceived service quality, it indicates a
perception gap that must be discussed and bridged.

Optimization of Services

IT service operations should be optimized and managed to ensure high-quality services,
management, and mitigation of contractual and SLA or OLA violations, and an optimal
balance of costs versus benefits (Esposito & Rogers, 2013). Continuous measurement,
evaluation, and reporting of findings aim to ensure continuous delivery of high-quality
services. In addition, non-conformance and service level violations should be monitored
and appropriately managed by determining underlying causes of failures, incidents, prob-
lems, and malfunctions, and implementing suitable corrective actions. It is also important
to regularly reflect on the efficiency of costs versus benefits of IT services. If practical,
standardized service provision can be streamlined and simplified, and it will enable suita-
ble adaptation to new requirements, market conditions, and beneficial technological
advancements.

109PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



5.3 DevOps
Various organizational IT operations and departments often prefer to work in silos, rather
than collaboratively; this results in diverse and even conflicting leadership approaches,
performance metrics, and, unfortunately, lack of awareness regarding important changes
that impact downstream and across various teams. Patrick Debois mentioned at the Agile
2008 Conference that development and operations teams should improve interactions,
and also referred to the need for Agile infrastructure (Debois, 2008). Following that, the
DevOps (combining the terms development and operations) model aims to improve qual-
ity while simultaneously increasing deployment speed, frequency, and reliability (Mishra &
Otaiwi, 2020; Perera et al., 2017). DevOps relies on strong collaboration between teams; it
aims to resolve human challenges, rather than technical challenges, and focuses on rapid
delivery by adopting Agile and lean practices and utilizing appropriate technology.
DevOps includes the entire continuous integration, delivery, and deployment pipeline,
i.e., from committing to a change that will be made to the code to post-deployment test-
ing.

The benefits of DevOps are

• improved responsiveness to the demands of markets and customers;
• improved collaboration and increased trust between IT functions, e.g., IT operations

and IT development teams;
• an environment that enables more frequent software releases, hence faster code deliv-

ery and time-to-market of solutions;
• faster software releases to production, with the software remaining of high quality and

containing fewer errors and bugs; and
• decreased time to resolve vulnerabilities, bugs, and errors.

DevOps focuses on the human challenges, i.e., what should be accomplished, while con-
tinuous integration, continuous delivery, and continuous deployment are used to imple-
ment automation, i.e., the technical “how” of DevOps. Automation solutions are applied
to technical challenges. The goal is to make deployment predictable, i.e., a routine proc-
ess that can be performed on demand. It aims to produce higher quality solutions and,
since errors can be identified and resolved early in the process, also reduce risks when
releasing software.

Continues Integration, Deployment, and Delivery

The continuous delivery concept originated as part of Agile software development and
commits to the first priority referenced in the Agile Manifesto, namely, to satisfy customers
with valuable software that is delivered early and continuously (Beck et al., 2001b). Con-
tinuous integration is also not a new concept; it was applied in the 1990s in Extreme Pro-
gramming. It refers to integration of development work continuously and frequently (at
least daily, but preferably more often) (Red Hat, Inc., n.d.). Each small change that is com-
pleted is integrated into a new build and tested. Developers must check in their changes at
least daily. Continuous delivery and continuous deployment include building, configuring,
packaging, and uploading completed software to a repository in a way that supports fre-
quent releases, as well as the automatic release of changes from the repository to produc-

110 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



tion (Red Hat, Inc., n.d.). Ultimately, all concepts, methods, and tools are needed to facili-
tate the continuous integration and the continuous delivery and deployment of software
to a customer. A continuous delivery pipeline (sequenced, and mostly automated, activi-
ties that commence with “commits”, i.e., changes made to the source code) ends with the
installation and configuration of the solution, and follows through with a series of largely
automated integration and test phases (illustrated below).

Figure 48: The Continuous Delivery Pipeline

Source: Brückmann, 2015.

A continuous delivery pipeline differs from a traditional software process because the
batch sizes of Agile projects are considerably smaller; developers only bring in a new func-
tion realized within a sprint, rather than a whole component or application (Mukherjee,
n.d.). Also, the order in which testing takes place may be confusing for a traditional devel-
oper or a developer without Agile experience. In a continuous delivery pipeline, auto-
mated acceptance does not occur, as per the International Software Testing Qualification
Board (ISTQB) standard, prior to the solution going live, as automated acceptance tests
are done immediately after integration.

DevOps Principles

DevOps is based on three principles: flow, feedback, and continual learning and experi-
mentation (Kim et al., 2016). Flow addresses fast delivery of work. It is achieved, for exam-
ple, by making current and future work visible on task or Kanban boards, limiting the
amount of work that is in progress at one time and reducing batch sizes. Feedback is
implemented by continuously informing Development Teams about problems experi-
enced by operations. Continual learning and experimentation can be enabled by fostering
an organization-wide learning culture.

Challenges of DevOps

DevOps provides a multitude of benefits, but also poses some challenges. For example, it
is not yet sufficiently standardized; the meaning and fundamentals of DevOps are not yet
widely understood and accepted. Lack of knowledge about required supporting proc-
esses, infrastructure, methods, and tools can result in choices that do not support the
organizational vision. It is also very challenging and expensive to set up, integrate, and

111PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



maintain tools. It remains difficult to automate testing and analysis sufficiently, so that no
manual intervention is required. Teams may remain isolated, regardless of efforts to unite
them, due to the very different nature of their work and goals in the organization. Deep-
rooted cultural changes, such as what is required to effectively implement DevOps, are
difficult to implement and maintain in large and established organizations. These chal-
lenges should not deter organizations from implementing DevOps; these are merely
aspects that should be considered in depth during the planning and implementation proc-
esses. Integration of a DevOps culture with governance and enterprise architecture frame-
works should be considered carefully.

5.4 Safety, Security, and Privacy
Software processes should address the safety, security, and privacy of software solutions
in order to protect the customers and users thereof. Safety refers to the fact that a soft-
ware system may not harm humans, material assets, or the environment. Security refers
to confidentiality, availability, and integrity of data and information; it includes secure
authentication and authorization, secure configuration and data transmission, secure
storage, and secure access. Privacy refers to the appropriate use of data and information,
and defines and governs the use of personal data. Safety, security, and privacy are
ensured by appropriate governance and regulatory processes. Software processes must
adhere to applicable ISO and IEC standards, and country-specific standards and regula-
tions that relate to safety, security, and privacy.

Organizations’ data, information, and systems must be appropriately managed and moni-
tored to ensure that all of their data and information assets remain secure. The German
Federal Office for Information Security (BSI) documented and published extensive instruc-
tions for information security—the IT-Grundschutz catalog, formerly known as the IT Base-
line Protection Manual, provides instruction on information security and is compatible
with the international standard ISO/IEC 27001 (German Federal Office for Information
Security, n.d.). IT-Grundschutz was first released in 1994 and last updated in 2005. It pro-
vides a framework for the management of IT security and details aspects that can threaten
security; it includes information about commonly used IT components and describes rele-
vant threats and measures to counteract them. It enables the establishment of an Infor-
mation Security Management System (ISMS) and is categorized by the European Union
Agency for Cybersecurity as a method that supports risk assessment (RA) and risk man-
agement (RM) (ENISA, n.d.). In terms of RA, it includes risk identification, risk analysis, and
risk evaluation. In terms of RM, it comprises risk assessment, risk treatment, risk accept-
ance, and risk communication.

ENISA (2020) explains that RA and RM are supported in IT-Grundschutz as follows:

• Risk identification supports RA as per the list and classifications of typical threats.
• Risk analysis supports RA as per the detailed description of each threat.
• Risk evaluation uses damage scenarios to assess exposure within an assessment of pro-

tection requirements.

112 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00

Anonymous
Highlight



• Risk treatment supports RM as per recommended safeguards that are cataloged and
detailed.

• Risk acceptance is based on the description of how to handle threats in IT-Grundschutz.
• “Risk communication is part of the module ‘IT security management’ and especially

handled within the safeguards S 2.191 ‘Drawing up of an Information Security Policy’
and S 2.200 ‘Preparation of management reports on IT security’” (ENISA, n.d., Identifica-
tion section).

According to ENISA (2020), the process of establishing an Information Security Manage-
ment System (ISMS), using IT-Grundschutz, includes two primary steps:

• Initialization of the process is the first step and involves
◦ definition of IT security goals and business environment,
◦ establishment of an organizational structure for IT security, and
◦ provision of necessary resources (ENISA, n.d., Brief description section).

• Creation of the IT security concept involves
◦ IT-structure analysis,
◦ assessment of protection requirements,
◦ modeling,
◦ IT security check,
◦ supplementary security analysis,
◦ implementation planning and fulfillment,
◦ maintenance, monitoring, and improvement of the process, and
◦ IT-Grundschutz certification (optional) (ENISA, n.d., Brief description section).

Software processes should be enriched to ensure safety, security, and privacy, and certain
steps can be taken in this regard (Kneuper, 2018). These include performing a risk analysis
to identify, classify, and mitigate potential risks; determining relevant requisites, based on
identified risks and any additional related requirements that the customer may have;
defining processes to implement the requirements; and verifying of the implementation
thereof. These should be included in the planning phases and progressively expanded
upon so they become an inherent part of the configuration of the final version of the soft-
ware—the properties related to safety, security, and privacy cannot be added later.

SUMMARY
Iterative and incremental software processes are increasingly used.
Organizations want to be more responsive to changing demands and
reduce risks while, at the same time, improving the reliability and qual-
ity of software solutions. Lighter and more Agile methods are often
applied in conjunction with plan-driven approaches in order to reap the
benefits of both. Accordingly, customizable iterative and incremental
approaches are applied to large and complex projects that require both
agility and high levels of quality. Examples of these are the Unified Proc-
ess and the V-Modell XT.

113PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00

Anonymous
Highlight
not relevant, Germany-specific



IT infrastructure, assets, and services are an intrinsic part of a modern-
day business. When these are not available, or do not meet the require-
ments of the business, the resultant effect can be devastating for the
business. Therefore, these services must be appropriately tailored and
managed to ensure value, and ITSM practices are an integral part of
organizational management.

Contemporary practices, such as DevOps, are widely adopted and
implemented to streamline ways of work and improve collaboration
among different teams. DevOps relates to a culture that advocates and
fosters collaboration, cooperation, communication, and reduction of
risks. It aims to increase frequency of releases and enhance quality and
reliability. It enables frequent, continuous, and automated integration,
deployment, and delivery of small releases.

Software solutions must ensure the safety, security, and privacy of cus-
tomers. Software processes must therefore ensure that software
adheres to applicable standards and regulations. Also, IT assets and
information services must be protected and remain secure. The IT-
Grundschutz catalog provides a detailed framework for the management
of IT security, describing aspects that can be a threat, as well as meas-
ures to counteract such threats.

114 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



UNIT 6
GOVERNANCE AND MANAGEMENT OF
SOFTWARE PROCESSES

STUDY GOALS

On completion of this unit, you will have learned …

– to apply governance principles within an enterprise architecture framework.
– how to design and deploy processes.
– which aspects to consider to effectively tailor processes.
– about applicable measures and tools used to assess and improve processes.

PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



6. GOVERNANCE AND MANAGEMENT OF
SOFTWARE PROCESSES

Introduction
Data and information are the currency of the twenty-first century. Accurate and appropri-
ate information, when reliably provided, is indispensable in the new economy and for
modern businesses (IT Governance Institute, 2005). Integrated and interrelated informa-
tion technology (IT) and software systems enable this. Technological platforms drive busi-
nesses, and vice versa; they must therefore be managed and governed appropriately, col-
lectively, and cooperatively through both business and IT leadership.

The management and governance of processes extends beyond software processes and
models. It involves ensuring that IT assets and services add value and that IT processes
are embedded and used as intended. It also entails highly interdependent IT and business
systems and processes. Therefore, suitable and unified corporate, enterprise, and IT
frameworks are applied. Frameworks, such as The Open Group Architecture Framework
(TOGAF), guide the development of suitably tailored enterprise frameworks (Josey, 2018).
IT processes, services, and assets must also be managed and measured in the context of
organizational strategic goals. For this, COBIT® (previously the Control Objectives for Infor-
mation and Related Technology) is widely used to facilitate IT governance and manage-
ment (Dziak, 2019). Agile governance is still a new concept, but it is on the rise; it relates to
the way management and governance frameworks are applied. In practice, business agil-
ity requires the effective employment of both Agile and governance capabilities (Luna et
al., 2014).

Organizational and IT processes should be aligned, designed according to the needs and
objectives of the organization, and properly deployed to ensure that they provide their
intended value. Aspects such as continuously growing market demands, evolving cus-
tomer requirements, and technological developments often necessitate process tailoring.
However, this can be challenging and risky, so specific factors must be considered to
ensure effective process tailoring (Xu & Ramesh, 2008).

Processes are designed and deployed according to process models. They should be con-
tinuously assessed in terms of quality, performance, and effectiveness. Improvement
actions must also be identified, implemented, and monitored. To this end, Software Proc-
ess Improvement (SPI) is applied; the SPI Manifesto defines values and principles to ach-
ieve SPI (EuroAsiaSPI2, n.d.). The Capability Maturity Model Integration (CMMI) Institute
provides guidance in terms of maturity models to evaluate the quality of processes and
suggest areas to improve. CMMI models provide a roadmap to achieve process capability
and maturity (ISACA, n.d.-c). Support tools are applied to simplify the complex tasks of
process modeling, management, and enactment.

116 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00

Anonymous
Highlight
?



Enterprise architecture
This describes the princi-
ples, practices, and
parameters that guide the
design and construction
of applications and sys-
tems.

6.1 Process Governance
Organizational processes that are practical, fit-for-purpose, and manageable deliver busi-
ness value. Accordingly, business processes must be managed and governed within suita-
ble frameworks to ensure that they add value. IT architectures are an essential part of
business strategy and an aspect of modern businesses that impact competitive edge (Gell-
weiler, 2020). Hence, organizations spend substantial resources to effectively manage and
govern IT processes. IT management and governance are proven practices, and there are
established frameworks in this regard. In addition, software development governance is a
relatively new concept, which also aims to facilitate alignment between IT and business
(Dubinsky & Kruchten, 2009; Juiz & Colomo-Palacios, 2020). For this to work, businesses
and IT leadership must work together to create one overarching corporate and business
architecture. IT leadership must understand business goals and objectives so that they
can provide tailored processes, resulting IT assets, infrastructure, and artifacts to the busi-
ness. Appropriate tailored software and IT processes must therefore be managed within a
suitable structure. The enterprise architecture describes principles, practices, and
parameters that can be used to design and construct business applications and systems.
This is driven by the business architecture, which functions as “a single unifying concept”
that “dictates the shape of the IT environment and supports effective IT governance” (IT
Governance Institute, 2005, p. 7). It defines and explains all relevant governance struc-
tures, required business information, and associated and interrelated business and IT
processes (The Object Management Group, 2020).

The Enterprise Architecture

The enterprise architecture concerns the strategic, tactical, and operational management
of assets, resources, activities, and results. It guides organizational sustainability and
growth, and strives to continually improve IT-business alignment (Gellweiler, 2020). In the
enterprise architecture, the design (architecture) descriptions are divided into different
layers (views); these frameworks are typically designed to fit the specific organization in
which they are being implemented. However, such frameworks still contain a format or
structure of generically applicable domains. For example, at the highest level, it starts with
the business or enterprise domain that drives the (logical) design of the IT services
required to enable the business. IT services are then enabled by applications, utilizing
data and information, which, in turn, directs the design of the technological platforms
(i.e., the physical IT assets and infrastructure). Each of these dictates the design and
implementation of the one that follows; each layer also gives feedback to the previous
layer in order to enable it. This high-level view is illustrated below.

117PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



Figure 49: A High-Level Enterprise Architecture Framework

Source: Venter, 2021.

Using a similar structure as that illustrated above, the TOGAF standard is an open-source
enterprise architecture methodology and framework commonly applied to improve busi-
ness efficiency (Josey, 2018). It guides organizations to effectively derive detailed proc-
esses and interactions of these layers based on business requirements.

TOGAF

TOGAF is developed and maintained by The Open Group, who work within the Architec-
ture Forum (The Open Group, n.d.). The initial version was developed in 1995 and was
based on the US Department of Defense Technical Architecture Framework for Informa-
tion Management (TAFIM) (Josey, 2018). It is constantly evolving and being adapted to
align with current market demands and new developments. The latest version, TOGAF 9.2,
was published in 2020.

TOGAF is based on an iterative process model. Furthermore, it is modular and aligned with
the Architecture Development Method (ADM). The ADM guides the methodical and cyclical
development of an organization-specific and business-oriented enterprise architecture. It
provides detailed descriptions of the approach, along with the relevant objectives and
deliverables that aim to derive requirements for the TOGAF architecture types. TOGAF
guides the architectural design in terms of architecture partitioning methods and provides
a repository for architecture, as well as a framework for required capabilities, as follows
(The Open Group, n.d.):

• Partitioning describes methods and techniques that facilitate effective partitioning of
the different architectures.

118 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



• The architecture repository provides a logical information model to integrate and store
all outputs that result from executing the ADM.

• The capability framework defines the organization, as well as relevant skills, roles, and
responsibilities required to establish and maintain an operational and effective enter-
prise architecture capability.

TOGAF consists of an extensive reference library that includes various best practice
“guidelines, templates, patterns, and other forms of reference material to accelerate the
creation of new architectures for the enterprise” (The Open Group, n.d., Section 1.2, para.
1). It supports business architecture; data architecture; application architecture; and tech-
nology architecture (Josey, 2018, p. 5). They are defined as follows:

• Business architecture refers to the overall business strategy and defines the detailed
structure and governance, as well as key business processes.

• Data architecture describes the organization of logical and physical data assets, as well
as resources required to manage data and information.

• Application architecture provides a detailed plan (blueprint) used to deploy individual
applications and describes how they interact with each other; it also explains how each
application relates to the core business processes.

• Technology architecture relates to logical software and hardware capabilities, as
required to deploy business, data, and application services.

IT Governance

IT (and business) governance are applied to effectively manage enterprise structures. IT
governance is directed and guided by global standards, for example, ISO 21505:2017 and
ISO/IEC 38500:2008. The Information Systems Audit and Control Association (ISACA®)
defines IT governance as “the processes that ensure the effective and efficient use of IT in
enabling an organization to achieve its goals” (Renard, 2016, p. 1). They divide IT gover-
nance processes into management of the demand side and management of the supply
side, i.e., IT demand governance (ITDG) and IT supply-side governance (ITSG). ITDG
includes the processes used to select, implement, and measure the business benefits of IT
investments; it involves businesses dictating to IT what they should be focusing on, based
on market demands and the needs of business, and is a business management responsi-
bility. ITSG is the responsibility of IT management and leadership; it involves ensuring
effective, efficient, and compliant IT operations (Gartner, 2020). Accordingly, IT gover-
nance is a combined concern of both business and IT. Effective governance requires that
the IT strategy aligns with business strategy. COBIT is widely used as a framework for IT
governance and management. It is applied to assess and improve IT processes and opera-
tions (including both the demand and supply side) and reduce the risks associated with
unqualified use of IT (Dziak, 2019). In brief, COBIT provides a baseline framework and
measurement criteria for IT.

COBIT

COBIT was created in 1996 by ISACA for IT management and governance (ISACA, n.d.-a).
The initial aim of COBIT was to normalize standards and uses of IT across different fields
and industries and facilitate proper assessment (and audits) of IT systems (Dziak, 2019). It

119PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00

Anonymous
Highlight



has continued to evolve, and the latest version, COBIT 2019, is broad and all-inclusive. It is
comprehensive and complicated in its entirety, but can be tailored to individual organiza-
tions, as per their requirements, to implement effective internal control measures (Rafeq,
2019). With the latest version, ISACA (n.d.-a) aims to facilitate the development of flexible
and collaborative governance structures.

COBIT calls for an alternative approach to traditional functional management. Functional
management focuses on managing individual functional areas, i.e., as silos, and process
management focuses on the flow of related activities to achieve an objective. It links busi-
ness and IT goals, measures responsibilities of both IT and business teams, and builds on
the premise that IT and business must work together to achieve goals. So, when consider-
ing implementing a framework, such as COBIT, organizational strategic drivers must be
considered first. These drive enterprise goals, which, in turn, shape IT-business alignment
goals that are used to derive relevant (IT) governance and management objectives. This is
illustrated below.

Figure 50: Organizational Strategic Focus Areas, Goals, and Objectives

Source: Jamsa & Harkiolakis, 2019.

Organizations have one primary, and possibly one additional (secondary), strategic driver,
outlining the strategic focus areas. These are typically as follows (Cooke, 2020):

• Growth/acquisition (p. 8), i.e., the organization focuses on growing its revenue.
• Innovation/differentiation (p. 8), i.e., the organization wants to offer different and innovative

products and services.
• Cost leadership (p. 8), i.e., they focus on minimizing cost in the short term.

120 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00

Anonymous
Highlight

Anonymous
Highlight
?



• Client service/stability (p. 8), i.e., the organization aims to provide a stable, client-oriented
service.

Following this strategy, relevant enterprise goals must be achieved. Enterprise goals
include the processes and activities that aim to operationalize strategic focus areas. For
example, they detail business processes to optimize products and services; processes
used to innovate and grow; management of business risks; compliance with laws and reg-
ulations (as well as internal policies); quality information; management of costs and finan-
ces; and development and motivation of staff to ensure optimal productivity (Cooke,
2020). Furthermore, alignment goals emphasize the alignment of Information and Tech-
nology (I&T) with business. These are as follows (Cooke, 2020):

• I&T compliance and support for business compliance with external laws and regulations
• Managed I&T-related risk
• Realized benefits from I&T-enabled investments and services portfolios
• Quality of technology-related financial information
• Delivery of I&T services in line with business requirements
• Agility to turn business requirements into operational solutions
• Security of information, processing infrastructure and applications, and privacy
• Enabling and supporting business processes by integrating applications and technology
• Delivery of programs on time, on budget, and meeting requirements and quality standards
• Quality of I&T management information
• I&T compliance with internal policies
• Competent and motivated staff with mutual understanding of technology and business
• Knowledge, expertise, and initiatives for business innovation (p. 7)

Lastly, governance and management objectives are defined and measured. Criteria are
explicitly defined in order to determine whether the performance of IT services and func-
tions are on track or whether adjustments are needed. The core of COBIT 2019 contains
governance objectives and management objectives. Each of these is described in terms of
its purpose, how it ties in with the larger organization, and how it aligns with goals. They
are to be applied as a baseline for tailored IT strategies and categorized according to rele-
vant domains. For example, the COBIT governance objectives are positioned in the Evalu-
ate, Direct, and Monitor (EDM) domain, which includes the following objectives (Edmead,
2020):

• EDM01: Ensured Governance Framework Setting and Maintenance
• EDM02: Ensured Benefits Delivery
• EDM03: Ensured Risk Realization
• EDM04: Ensured Resource Optimization
• EDM05: Ensured Stakeholder Engagement (p. 1)

The COBIT management objectives are categorized in the following domains (Edmead,
2020):

• APO Align, Plan and Organize
• BAI Build, Acquire and Implement
• DSS Deliver, Service and Support

121PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00

Anonymous
Highlight
formatting



• MEA Monitor, Evaluate and Assess (p. 2)

COBIT 2019 also effectively integrates with other frameworks. For example, it is compati-
ble with ISO/IEC, TOGAF, and ITIL. It also aligns well with the CMMI capability and maturity
framework, as it proposes a COBIT Performance Management (CPM) model to apply to
score processes on a quantitative scale of 0—5 (ISACA, n.d.-a). With COBIT 2019, ISACA
(n.d.-a) moved to an open-source model and welcomes feedback from practitioners to
continuously improve it.

Agile and Software Development Governance

Agile (or lean) governance is a relatively new term that is being used increasingly often. It
is currently being explored by both academics and practitioners. It involves investigating
Agile and lean practices to govern, for example, software engineering (Luna et al., 2014).
However, there are still some concerns and ongoing debate on this topic (Juiz & Colomo-
Palacios, 2020). For now, Software Development Governance (SDG) remains an emerging
subject area that aims to empower software teams in reaching project goals. Broadly
speaking, it entails establishing and defining relevant roles, responsibilities, and associ-
ated decision-making authorities, as well as engaging in regular reflection to assess proc-
esses and products. The following high-level steps have been proposed for iteration
(Dubinsky & Kruchten, 2009):

• Set goals and assign roles and decision rights, and the responsible individuals can then
reach set goals

• Determine measurements and policies, which facilitates understanding of and control
over behavior and organizational performance

• Implement the above mechanisms practically
• Assess implementation of the above and refine and evolve goals

6.2 Process Design and Deployment
Software processes, as well as governance processes and systems, must be suited to the
area of application. Hence, relevant design factors must be considered to ensure align-
ment with business goals and objectives, the organizational context, strategy, and tactical
implementation choices. Following process design, processes are deployed and imple-
mented.

Process Design Factors

Process design factors that relate to the organizational context refer to external influences,
e.g., the organization’s geopolitical situation, country-specific economic policies, or regu-
lations. Strategic factors include, for example, the business strategy. It includes the role
that IT plays within the organization (whether it is perceived as a business differentiator,
or is merely supportive of and enables the business), and its appetite for (or aversion to)
risk. Tactical implementation choices include the practical decisions regarding resourcing
models (e.g., outsourcing versus insourcing versus a blended approach, the use of cloud

122 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00

Anonymous
Highlight
outdated

Anonymous
Highlight

Anonymous
Highlight
outdated and list formatting



Process tailoring
This is the modification or
adaptation of a standard
process to fit the organi-
zation and circumstances
of a project.

computing, purchasing or leasing of IT assets, or approaches to standardization); IT and
software models and processes (e.g., Agile versus traditional versus blended development
approaches, and the adoption and use of lean and DevOps practices); and choices regard-
ing technology adoption (do they choose to be first adopters of leading and innovate tech-
nology, or be the late majority?) (Rafeq, 2019). As previously discussed, IT processes, tools,
and roles are most effectively established within a framework, such as ITIL.

Process Deployment

Process deployment entails implementation of a process model, i.e., bridging the theory-
practice gap. Process deployment is challenging, expensive, and may even be met with
apathy and resistance. In order to effectively deploy processes, it is essential to clearly
express expectations, enable and verify the implementation of processes, and reward suc-
cessful implementation (Kneuper, 2018). The deployment of processes results in an organ-
izational change, which must be managed appropriately. Governance models, such as
COBIT, and measurement models, such as CMMI models, are applied in this regard.

6.3 Process Tailoring
Software processes define and describe the relevant practices and approaches to follow
and are useful for standardization. However, ever-changing market demands, as well as
evolving customer requirements and technological developments, necessitate that proc-
esses be tailored to specific projects and goals. Process tailoring is the modification or
adaptation of a standard process to fit the organization and the specific circumstances of a
project. It can involve adding supplementary segments, modifying parts, or even remov-
ing portions of the process. Agile methods are inherently tailored and tailorable by nature.
Plan-driven methods are extremely comprehensive, but can also be “tailored down”
(Boehm & Turner, 2004, pp. 36—37); unfortunately, the “tailorable methods are used—and
verbally abused—by developers and acquirers alike” (pp. 36—37), much to the frustration
of the “expert methodologists” (pp. 36—37) that provide extensive guidelines and exam-
ples for the tailoring of the processes.

Process tailoring is challenging; ascertaining the best, most applicable version of a process
for the specific circumstances beforehand is difficult. Caution must be taken to ensure
that the tailoring of a process does not compromise the integrity of its core, and careful
consideration is required to ensure that the consistency of the original process model is
preserved (Kneuper, 2018). Consequently, tailoring guidelines are defined to guide proc-
ess adaptations. They can include the extent and levels of tailoring that are allowed,
guidelines regarding formal documentation of tailoring aspects, and steps to follow when
tailoring a process. Guidelines, such as the ones published by IEEE (1998), aid the tailoring
of processes for specific business domains, but are not sufficient for tailoring processes for
specific projects. Process tailoring can also be automated, as in the case of the V-Modell XT
Assistant, which allows tailoring according to a set of pre-defined criteria. Xu and Ramesh
(2008) suggest the following steps to tailor software processes (plans for tailoring can
often not be finalized prior to commencement of a project, so these steps are performed
iteratively):

123PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00

Anonymous
Highlight

Anonymous
Highlight
exact repeat of main text



• Evaluate project goals and environment. This involves evaluation of the product and
process goals and consideration of the specific characteristics of the project, team,
stakeholders, and organization in order to ensure consistency.

• Assess challenges. Challenges typically arise related to resources, communication,
requirements management, political issues, and technical challenges.

• Determine tailoring strategies for the various process elements. This refers to decisions
regarding inclusion or exclusion, altering of tasks and artifacts, roles, and sequencing,
as well as iterating work.

• Tailor software processes. This involves using process validation to ensure consistency
with goals, the environment, the execution, and its subsequent evaluation.

6.4 Process Assessment, Improvement,
and Measurement
Processes and process models must be assessed to evaluate their quality. In addition, per-
formance and effectiveness should be assessed, and processes must be amended and
improved when required. Assessments should aim to gauge the expectations of customers
and stakeholders and determine whether processes deliver reliable, cost effective prod-
ucts and services that adhere to set quality criteria. Performance management planning
entails the setting of relevant objectives, goals, and expectations, and performance meas-
urement processes should provide direction for tasks and activities, measure their per-
formance, and compare the results against set objectives (IT Governance Institute, 2005).

Software Process Assessment and Improvement

Software Process Improvement (SPI) aims to improve software processes and apply vari-
ous standards and methods to assess the quality and maturity of processes. The SPI Mani-
festo originated at the EuroSPI Conference in Spain in 2009. It defines values and princi-
ples to achieve SPI (EuroAsiaSPI2, n.d., Values section, Principles section):

• In terms of people, SPI “must involve people actively and affect their daily activities”
(Values section), namely

◦ know the culture and focus on needs,
◦ motivate all people involved,
◦ base improvement on experience and measurements, and
◦ create a learning organization (Principles section).

• In terms of the business, SPI “is what you do to make business successful” (Values sec-
tion), namely

◦ support the organization’s vision and objectives,
◦ use dynamic and adaptable models as needed, and
◦ apply risk management (Principles section).

124 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00

Anonymous
Highlight



Capability maturity
models
These are models used to
assess the relative capa-
bility and maturity of
organizational processes.

• In terms of change, SPI “is inherently linked with change” (Values section), and should

◦ manage the organizational change in your improvement effort,
◦ ensure all parties understand and agree on process, and
◦ do not lose focus (Principles section).

Quality management (QM) is key aspect of process improvement. QM is founded on the
plan-do-check-act (PDCA) cycle, based on Walter A. Shewhart’s work on controlling the
quality of products (Shewhart, 1931). PDCA involves planning (identifying what to improve
upon, and how to achieve improvement); taking action to implement the planned
improvement actions; checking the outcome (and success) of the implementation (i.e.,
confirming whether the problems were resolved); and acting accordingly to adjust and
implement more improvement actions if needed.

Process Capability and Maturity Measurement

The relative capability and maturity of the processes of an organization can be effectively
appraised using capability maturity models, such as those provided by the CMMI Insti-
tute. These maturity models were initially created so that the US Department of Defense
could evaluate the quality and capability of software contractors (ISACA, n.d.-c). At
present, they are applied in the software engineering domain and beyond. They serve sev-
eral purposes, including demonstrating organizational capability to external stakeholders
by illustrating how processes compare to best practices and identifying areas of improve-
ment, assisting organizations to meet their contractual obligations, and supporting corpo-
rate and IT governance.

The defined maturity levels refer to the maturity of processes within an organization. They
offer a phased means of appraising and improving processes, subsequently improving
performance. Process maturity is, according to the CMMI suite of models (n.d.-b), descri-
bed using a quantitative scale which ranges from a maturity level of zero to a maturity
level of five. Maturity levels are evolutionary, meaning that one level must be fulfilled
before moving to the next (ISACA, n.d.-b). These levels define whether a process is incom-
plete, initial, managed, defined, quantitatively managed, or optimizing. The maturity lev-
els are defined as follows (ISACA, n.d.-b):

• Incomplete. Work is done ad-hoc, in a way that is undefined and unclear, and the com-
pletion of work cannot be guaranteed.

• Initial. Work is completed in an unpredictable, reactive way, and budgets and schedules
are often exceeded.

• Managed. Project management principles are applied to pro-actively plan, organize,
and finish work in a controlled manner.

• Defined. Work is planned and executed using projects positioned within organization-
ally-driven programs and portfolios. These are guided by organization-wide standards.

• Quantitatively managed. Work is effectively measured and controlled by means of
quantitative objectives that are predictable and data-driven in order to meet all the
stakeholders’ needs.

• Optimizing. The organization is stable, but flexible: it is responsive, Agile, innovative,
and strives to improve continuously.

125PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00



Capability levels describe the performance and process improvement achievements of
organizational processes in specific practice areas. The scale applied to indicate capability
consists of levels zero to three. The levels are incomplete, initial, managed, or defined. It is
important to note that capability level subsumes the practices of level 1, while level 3
builds on the practices of level 2 (ISACA, n.d.-b). The capability levels are defined as fol-
lows (ISACA, n.d.-b, Capability Levels section):

• “Incomplete” aims to address inconsistent performance, indicates that an approach is
incomplete, and implies that the intent of a practice may not be met (para. 2).

• “Initial” aims to address performance issues and indicates that practices are still incom-
plete and will not meet the full intent of a practice area (para 3.).

• “Managed” aims to identify and monitor progress towards meeting project performance
objectives and indicates that practices are simple, but complete enough to address the
practice area’s full intent (para. 4).

• “Defined” aims to achieve performance objects in the project as well as the organiza-
tional sphere, and indicates the use of organizational standards and process tailoring
(para 5.).

6.5 Tool Support
Due to the complexity of software processes, suitable tools are employed to define,
develop, manage, and enact processes. In line with the distinction made by Kneuper
(2018), we will look at these in the two following groups: tools that support process mod-
eling and management, and tools that support process enactment.

Process Modeling and Management

Process editors are used to document processes using relevant modeling notations.
Standard text XML editors can be used to document processes. However, use of complex
meta-models, e.g., the Software Process Engineering Metamodel (SPEM) and the V-Modell
XT, can be simplified with particularly tailored editors. Custom-made editors are used to
ease process tailoring. For example, the Eclipse Process Framework (EPF) composer can
be used to define, adapt, and enact SPEM-based software processes, whereas two differ-
ent tools, e.g., the V-Modell XT Editor and V-Modell XT Assistant, can be used to edit and
tailor processes that apply the V-Modell XT.

Advanced editors facilitate the generation of syntactically correct process definitions and
map and indicate applicable interrelationships and consistency conditions accurately
(Kneuper, 2018). Process visualization tools are useful to visualize processes in their
entirety or filter out detail to only show parts of processes, as applicable to different team
members (Kneuper, 2018).

126 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00

Anonymous
Highlight

Anonymous
Highlight
This is a model developed in Germany for the German context. Please check for relevancy.



Process Enactment

Process enactment tools are applicable to all stages of a software product life cycle. Com-
puter-based tools that support software development increase the development effi-
ciency, quality, and maintainability of the software. This supports the documentation of
processes, simplifies management of projects, and improves collaboration within and
among teams (Kneuper, 2018). These tools can also be useful to facilitate coordination
and consistent version control in large and complex projects (Avison & Fitzgerald, 2006).

Though projects are executed by different teams with different individual aims, they still
work towards a shared goal. Integrated tools, e.g., in Integrated Development Environ-
ments (IDE), support tasks such as code editing, design, compiling and debugging, source
code control, and build management (Kneuper, 2018). However, IDE services must still be
used thoughtfully. For example, developers are often unaware of all the methods that can
be invoked on given variables and therefore appreciate the concept of intelligence code
completion. However, some variables can result in hundreds of method proposals, and
choosing the correct one is overwhelming (Bruch et al., 2010).

Commercial off-the-shelf (COTS) software often requires appropriate installation support
tools. Furthermore, Agile practices, such as DevOps, call for automated software integra-
tion, deployment, and delivery, and therefore necessitate the use of applicable tools.
These are very expensive to procure and complex to deploy. For example, Infrastructure as
Code (IaC) is an approach that supports code-centric tools, whereas model-driven tools
can also be used (Sandobalin et al., 2020). The advantages and disadvantages of these
tools, as well as the organizational context where they are applied, determine their useful-
ness.

SUMMARY
Process management and governance extends beyond software engi-
neering; all IT assets and services should be managed holistically to add
value. Various process models, development approaches, and manage-
ment frameworks have been introduced throughout this course. How-
ever, in the end, we should acknowledge that models, approaches, and
frameworks cannot be implemented in isolation. Processes should be
managed and governed within the framework of an enterprise architec-
ture. Overarching management and governance frameworks should be
complemented by responsive Agile processes and similar work
approaches, and vice versa. Accordingly, processes should be designed
and deployed to fit the specific organization, and business objectives
must always drive process design and implementation. Standardized
processes can be tailored to fit organizations, specific projects, and
teams. However, tailoring should be done in such a way that process
consistency and integrity remain intact.

127PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00

Anonymous
Highlight

Anonymous
Highlight
self-evident



Processes, within all practice areas, can be effectively appraised using
the levels shown in capability and maturity models. This can provide an
organization with a high-level roadmap for improvement, i.e., improve-
ment actions to be implemented in order to systematically improve
operations. Additionally, supporting tools go a long way to simplify com-
plex models and processes. However, the selection, implementation,
and application of supporting tools should still be performed appropri-
ately and in the context of the business and organizational culture.

128 PREVIEW-PDF, erzeugt: 2024-06-11T17:16:34.648+02:00


	Table of Contents
	Introduction
	Signposts Throughout the Course Book
	Basic Reading
	Required Reading
	Further Reading
	Learning Objectives

	Foundations of Software Processes
	The Role of Software Processes
	A Historical Overview

	Software Process Definition and Modeling
	Modeling Notations and Meta-Models
	Notations for Modeling the Interaction between Processes
	Detailed Level Notations

	Basic Software Product Life Cycle Models
	Waterfall Models
	The V-Model
	Component or Matrix-Based Models
	Iterative, Incremental, and Evolutionary Development

	Agile and Lean Development Processes
	The Agile Manifesto
	Scrum
	Common Agile Practices
	Kanban and Lean Development Processes
	Scaling Agile Development
	Hybrid Processes

	The Software Product Life Cycle
	Detailed-Level Process Models: Unified Process and V-Modell XT
	IT Service Management and Operations
	DevOps
	Safety, Security, and Privacy

	Governance and Management of Software Processes
	Process Governance
	Process Design and Deployment
	Process Tailoring
	Process Assessment, Improvement, and Measurement
	Tool Support

	Backmatter
	List of References
	List of Tables and Figures


