
DATA ENGINEERING
DLMDSEDE01

dana.hall
Sticky Note
Notes on style and grammar:-Ensure "data" are plural.-Change em-dashes to en-dashes.Numbers one to nine are written out (unless they are part of an equation or binary code), 10+ are numerals.-Define terms in the first instance of each unit. After this, its acronym can be used.-Check capitalization for terms (some of unecessarily capitalized).-Ensure correct capitalization/punctuation in lists. Incomplete sentences should not be capitalized. Full sentences should be capitalized with a full stop.-Ensure there are no single-sentence paragraphs.-Check for correct formatting under graphics.-E.g. and i.e.: Only use them in brackets (out of brackets they are "for example" and "in other words," respectively) and ensure consistency of their use in brackets (i.e., if an example is given in brackets, always use "e.g.").-Review the use of colons...they don't always work. As well, ensure the first letter after a colon is capitalized if it leads into a complete sentence.-Ensure there are full stops after citations (not before).-Ensure curly quotation marks are commas.-Ensure marginal anchors are the full terms, not the acronyms.-Review hyphenated words. Merriam-Webster tends to veer away from hyphen usage.

dana.hall
Sticky Note
Notes on style:-The study goal pages will need to be revised. The phrasings are wrong (see note next to the study goals in Unit 1).-The introductions need work. In Unit 1, the into is far too long. Units 4 and 6 have the opposite problem - they're far to short and simply summarize what we are going to talk about (given that we summarize everything at the end, this is a poor use of space). Ideally, an intro is .5-1 page long and introduces the topic so that students will engage with it.

LEARNING OBJECTIVES
To begin this course on Data Engineering, we will learn about data systems and data-
intensive applications—applications whose performance rely primarily on data. We will
learn about the design criteria of data-intensive applications: reliability, scalability, and
maintainability, discussing each of these criteria in detail.

Following this, we will explore two different approaches to data processing: batch pro-
cessing and stream processing. After a short review of batch processing and the MapRe-
duce algorithm as an approach to the batch processing, we will discuss stream processing
with Apache Kafka as an example of a typical stream processing platform.

We will then learn about microservice architecture, its advantages, and its disadvantages.
We will also learn how microservice architecture is implemented into applications.

The focus then shifts to two important aspects of every data system: data security, and
data governance. To do this, we will discuss the data protection act as a concept and, as
an example, take a brief look at the General Data Protection Regulation (GDPR). We will
also learn how to develop GDPR-compliant software. We will discuss the system security,
security requirement engineering, and data system security patterns. Finally, we will delve
into the topic of data governance: a set of principles and practices to support efficient per-
formance in evaluating, generating, storing, processing, and deleting corporate data.

The subject of the next unit is the three most common cloud platforms: Amazon Web Serv-
ices (AWS), Google Cloud Platform (GCP), and Microsoft Azure. After a brief introduction
into cloud computing, we will learn about each of these cloud platforms and some of their
most common services.

Finally, we will learn about DataOps, exploring how best to operationalize data analysis
and machine learning applications. We will first discuss the containerization approach and
then learn how to build data pipelines for machine learning applications.

10

Change em-dashes to en-dashes with a space on either side.

This sentence is phrased awkwardly. Please revise instances like this one.

UNIT 1
FOUNDATION OF DATA SYSTEMS

STUDY GOALS

On completion of this unit, you will have learned …

– what data systems and data-intensive applications are.
– what the main features of well-designed data systems are.
– how to quantitavely measure the reliability of an application.
– about the different approaches to application scalability.
– about some of the principles used in software design to increase software maintaina-

bility.

This phrasing is wrong. The lead-in phrase should be “On completion of this unit, you will be able to …” and the bullet points then start with active verbs based off of Bloom’s taxonomy (e.g., explain what data systems and data-intensive applications are, identify the main features of a well-designed data system, etc…). Please rework.

1. FOUNDATION OF DATA SYSTEMS

Introduction
“The world’s most valuable resource is no longer oil, but data” (Economist, 2017, title), and
the platforms to extract this “new oil” are data-intensive applications, which are devel-
oped and maintained by data system engineers and data scientists.

In this unit, after a general introduction to data systems and data-intensive applications,
we will discuss the key criteria for efficient data-intensive applications: reliability, scalabil-
ity, and maintainability.

To begin, it is worth briefly discussing the differences between data engineers and data
scientists, particularly regarding their responsibilities and the tasks they perform. Con-
sider the data workflow of a data-driven application, as shown in the following figure. The
main task of a data engineer is delivering data in the right form to the right people as
efficiently as possible. All tasks related to this could be summarized in the first step of a
typical data workflow: “data collection and storage.” The following three steps (data prep-
aration, exploration and visualization, experimentation and prediction) are, in most cases,
the responsibility of a data scientist (although there is not a sharp boundary) and beyond
the scope of this course.

Figure 1: Data Workflow

Source: Alavirad, 2020.

Some of the responsibilities of data engineers are as follows:

• ingest data from different sources
• optimize databases for analysis
• remove corrupted data
• develop, construct, test, and maintain data system architectures

Speaking generally, a data system is a framework that manages the storage and querying
of data with a defined lifetime and consists of data storage, a database management sys-
tem, queues, and caches.

In more technical terms, a data system could be considered part of a wider information
system, which is defined as a group of components that interact to produce information
and extract value from that information. The main components of a typical information

12

If there is a page number, add it. If this is from an online article, no further specification is required.

 Very awkward sentence. Introduce the quote and rework the rest. Possibly real into two sentences.

As a general note, watch for single-sentence paragraphs such as these two. The book should not contain these.

Watch for source formatting. In this case, it should be: Author first name, last name (year).

Vague language. Are these the main responsibilities? Or just chosen at random? Please ensure the list highlights the most relevant tasks.

Ensure correct capitalization in graphics.

This is a long introduction that is written awkwardly. I would recommend reading it through and rewriting so that it is more succinct. Ideally, an introduction is no longer than 1.5 pages.

system are hardware, software, data, procedures, and people. In this book, when we talk
about data systems, we will mostly be referring to the software component of the informa-
tion system.

Figure 2: Five Components of an Information System

Source: Alavirad, 2020.

Today, raw CPU power or the amount of RAM (the hardware) is rarely a limiting factor for
most applications. This is because, nowadays, many applications are data-intensive as
opposed to compute-intensive. An application is called data-intensive if data are the pri-
mary challenge to its services and performance. Users demand real-time interactions
powered by millions of endpoints and large amounts of data. Such applications are now a
regular part of or daily applications: social media (Facebook), online commerce (Amazon),
and transportation (Uber). In this book, we will focus primarily on data-intensive applica-
tions.

During the design phase of a data-intensive application, certain criteria, such the follow-
ing, should be considered:

• the volume of data that feeds into the applications
• the variety or complexity of the data that is being processed by the application
• the velocity with which the data is being produced or changing

These criteria may seem familiar to you if you already know the four V’s of big data: vol-
ume, variety, velocity, and veracity.

Like civil engineers, who use off-the-shelf products like girders and prefabricated-wall
panels to construct a building, data engineers use pre-programmed building blocks to
build an application. For example, when a team is developing an application to analyze
stored data, they will not develop a data storage engine from scratch, because database
management systems such as MySQL have already been designed perfectly for this job.
The same logic applies when an application needs to access the results of an expensive
operation in order to speed up the reading of data, search in the database using keywords
(search indexes), or analyze the data as they are being produced or received (stream pro-
cessing).

There are many products (data systems) on the market well-suited to the aforementioned
tasks, which can be stitched together to develop a data-intensive application. In this
example, the application code is responsible for synchronizing caches and indices with
the main database (all systems here are off-the-shelf data systems). However, this, in real-
ity, is not such a simple and straightforward task. Indeed, it is very challenging to find the

13

All terms must be defined in their first instance of each unit. Once the term is defined (e.g., United Nations (UN)), the acronym can be used for the rest of the unit.

Data are plural according to the IU Style Guide. Ensure they are plural throughout.

right building blocks and tools to achieve the desired solution. There are hundreds of
database management systems and various methods for caching and building search indi-
ces. For example, some data stores can be used as message queues (Redis), and there are
also message queue applications that guarantee database-like durability (Apache Kafka).

The main task of a data system engineer is having the creativity and skills to find the right
tools and, more importantly, put them together in the most effective architecture regard-
ing the functionality and the performance of the application. In this scenario, you as a
data system engineer hide the implementation details from the client of the end product
(i.e., the data-intensive application) using the application programming interface (API) or
the service. The final product of this procedure is a new, tailored, and special-purpose
data system made from smaller and more general-purpose building block data systems.
The execution of this whole procedure defines you as a data engineer.

During the design process of a data system, the system engineer should also address some
key questions: How do I ensure that data remains complete and correct during an internal
error? How will my application perform when the data flow or volume increases drasti-
cally?

The international standard ISO/IEC 25010 (2011) defines the main metrics of software
quality with eight characteristics: maintainability, functional suitability, performance effi-
ciency, compatibility, usability, reliability, security, and portability.

In this unit, we will focus on three significant metrics of a typical data-intensive applica-
tion which should be considered during the design phase:

1. Reliability. The system should perform the defined and expected functional, even in
the case of hardware, software, or human error.

2. Scalability. As the system expands (the data volume increases, the rate of data genera-
tion becomes quicker, or the variety of data grows), it should be possible (with as little
effort as possible) to scale up the system to perform reliably under new circumstan-
ces.

3. Maintainability. The people who are tasked with the operation and future develop-
ment of the system should be able to do their job productively.

1.1 Reliability
Software reliability is defined as the probability of software operating failure-free for a
specific period of time in a specific environment” (Lyu, 1995). Although software reliability
is described as a probabilistic function and it is a time-dependent event, it should be
noted that it is different from traditional hardware reliability. For example, electronic and
mechanical parts may become “old” and wear out during their lifetime. Software products
do not wear out during their lifetime and, generally, do not change over time. However,
software reliability does depend on hardware reliability, as we will see in this section.

14

Where does the quote start? Please review the source or rewrite this so that we can be certain were defining the term in our own words.

Software reliability is one of the most significant characteristics of software quality. Soft-
ware Reliability Engineering (SRE) is the quantitative study of the operational behavior of
software-based systems concerning the reliability of the system (Lyu, 2007). How, then, is
it possible to make software reliability a measurable parameter? The answer is reliability
metrics.

Reliability Metrics

Quantifying software reliability has been a major goal for some time. However, estimating
software reliability remains a challenge because we still don't have a solid understanding
of the nature of software (Javatpoint, 2020). A proper way to measure software reliability
(as we do, for example, electric current), and most of the aspects related to software relia-
bility directly, has not yet been found.

If we cannot measure reliability directly, then, we can measure it indirectly via software
reliability metrics. The current methods of software reliability measurement can be divi-
ded into four categories (Reliability Analysis Center, 1997):

1. product metrics
2. project metrics
3. process metrics
4. fault and failure metrics

Figure 3: Software Reliability Methods

Source: Alavirad, 2020, based on Reliability Analysis Center, 1997.

Product metrics

The following features could be considered product metrics:

• Software size is a measure of complexity, development effort, and reliability. Lines of
Code (LOC), or LOC in thousands (KLOC), is one method of measuring software size.
However, there is no standard way of counting. Moreover, this method cannot compare

15

The first letter should always be capitalized in a numbered list.

(e.g., an electric current)

Always introduce lists. In this case, “[…] can be divided into the following four categories (Reliability […]”.

Graphic capitalization and source info formatting are an issue throughout. Graphics will need to be adjusted by our media department.

software that is written in different languages with certainty. The emergence of new
technologies for code reuse and code generation techniques also cast doubt on this
simple method.

• Using function point metrics are a technique for measuring the functionality of software
development based on the number of inputs, outputs, master files, inquires, and inter-
faces. This method can be applied to determine the size of a software system once these
functions are identified. It concerns the functionality delivered to the user and is inde-
pendent of the programming language.

• Complexity-oriented metrics are also used as a technique for determining the complex-
ity of a program's control structure by visualizing the code with a graphical representa-
tion.

• Test coverage metrics are a method of determining fault and reliability. This is done by
performing tests on software products based on the hypothesis that software reliability
is a function of successfully verified or tested software parts.

Project management metrics

When a development team manages a software project well, it is easier to deliver better
and more reliable products. There is a relationship between the development process and
the capability to accomplish projects on time and within the desired quality objectives.
More reliable software products can be delivered by using a reasonable development
process and a risk management process, for example. Keeping documentation of the
project is always an important part of software project management.

Process metrics

The quality of your software product also depends directly on the process. Process metrics
can be applied to evaluate, monitor, and enhance the reliability and quality of a software
product. The ISO-9000 certification, a type of “quality management standard,” is the rele-
vant family of standards for process metrics. Some of these metrics are time to develop
the software, the number of bugs found during the testing phase, and the maturity of the
process.

Fault and failure metrics

These metrics are used to evaluate the failure-free execution of your software. To accom-
plish this, the faults discovered during the testing phase, along with those reported by
users, will be summarized and analyzed by the development team. Some fault and failure
metrics which can be used to quantify the reliability of the software products are as fol-
lows (Javatpoint, 2020):

Mean Time to Repair (MTTR) is the time required to fix the failure and is defined asMTTR=totalmaintenancetimetotalnumberofrepairs
For example, assume a software module fails three times over the span of a working day (8
hours) and the time spent fixing all three bugs is one hour. In that case, MTTR would be 1
hour / 3 = 20 minutes.

16

Check the capitalization of terms. This term should not be capitalized.

Numbers one to nine are spelled out unless they are part of an equation or binary code.

Add spaces between words in equations.

Mean Time Between Failure (MTBF) is defined asMTBF= totaloperationaltimetotalnumberoffailures
Taking the same software example used with MTTR, the software ran for seven hours of
the expected eight and failed three times, with a total downtime of one hour. Here, the
MTBF = 7 hours / 3 = 2.33 hours.

Figure 4: Mean Time Between Failure (MTBF)

Source: Alavirad, 2020.

Rate of Occurrence of Failure (ROCOF) measures the number of failures that happen per
time interval for a predefined unit. For example, a ROCOF of 0.03 means that, statistically,
you should expect three failures every 100 minutes or seconds.

Probability of Failure on Demand (POFOD) is defined as the probability that the system
fails when a service is requested. For example, a PODOF of 0.08 means that for every 100
requests made, 8 requests will fail.

Availability is the probability that the system is usable at a given time. This also considers
the maintenance time of the system. A 0.995 availability means that, in every 1000 time
units, the system is usable for 995. We will discuss availability in more detail later in this
unit.

By applying reliability metrics, a software engineer can assess and enhance software relia-
bility. Before releasing the software, testing, verification, and validation are necessary
steps. Software testing is heavily used to discover and resolve software defects.

After releasing a software product, field data can be collected and analyzed to investigate
the presence of software defects. Fault tolerance or fault/failure prediction methods are
helpful techniques for decreasing fault events or the impact of faults on the system.

So far, you have learned that an application is referred to as reliable if it continues to per-
form its defined and expected functionality correctly even when something goes wrong.
When we talk about performing correctly, a user can expect, for example, that

• the application tolerates mistakes made by users such as entering the wrong input,
• the application blocks any unauthorized or unauthenticated access, and

17

Already defined. Since this is a title, we can use the long form, but the acronym is also an option. Whichever option you go with, make it the consistent rule throughout the course book.

Reformat this list and its lead-in. It is too long to be one continuous sentence.

• in the case of a hardware problem, the application continues to perform the defined
and expected functionality or halts/exits “gracefully,” i.e., without doing further damage
and preserving as much of the state before failure as possible.

The things that could go wrong with software are called faults. Faults can prevent an
entire system from providing its defined functionality (Kleppmann, 2017). Software fail-
ures may be caused by errors, ambiguities, oversights, misinterpretation of the specifica-
tion that a software is supposed to provide, negligence, inadequate coding, inadequate
testing, or inaccurate or unexpected usage of the software. A data system engineer should
design a system to be as fault tolerant as possible. Of course, it is not realistic to expect a
system to be 100 percent fault-tolerant, but it should be fault tolerant to an acceptable
degrees.

In principle, system engineers should examine the effect of all possible faults on a data
system during the test phase of the software development life cycle by deliberately pro-
ducing faults and observing their impacts on the systems (Kleppmann, 2017).

There is, however, not a lot of analogy between software reliability and hardware reliabil-
ity, as software and hardware are essentially different, which means different failure
mechanisms exist. Hardware faults are generally physical faults, while software errors are
design faults. These are harder to detect, classify, and correct (Lyu, 1995). Design errors
are closely associated with human factors and the design process. With hardware, design
faults do exist but physical faults are a much more common source of problems.

Data system faults can be classified into three main categories: hardware faults, software
errors, and human error, each of which we will discuss separately.

Hardware Faults

Hardware faults are one of the main sources of system failure: be it a power system black-
out, network connection disruption, hard-disk crash, or a case of overloaded RAM. When
the number of hardware components in a data system increases, like in data centers with
thousands of hard disks, there is a higher chance of having a faulty component. For exam-
ple, the mean time between failure (MTBF) of a hard disk is 10 to 50 years: on a cluster of
10,000 hard disks, we expect one faulty component per day.

Hardware failures over time can be displayed as a curve, known as the bathtub curve.
Phases A, B, and C on this curve stand for the stand-up phase (burn-in), normal operation
phase (useful life), and end-of-life phase (wear-out). The first phase shows a decreasing
failure rate, the second phase a constant and low failure rate, and the third an increasing
failure rate (ReliaSoft Corporation, 2002).

18

“I.e.” should only be used in brackets. Outside of brackets, use something like “In other words.” On that note, the same applies to “e.g.” It is only used in brackets. Out of brackets, it is “such as” or “for example.”

Example of awkward sentence

A comma makes more sense here. This is a bit of an issue throughout, so watch for further instances.

In this instance, the colon is fine but it leads into a full sentence. The “On” should therefore be capitalized. Always capitalize the first letter after a colon if what follows is a complete sentence.

RAID
This stands for redundant
array of independent
disks and is a way of stor-
ing the same data in dif-
ferent places on multiple
hard disks or solid-state
drives in order to protect
data in the case of a drive
failure (Rouse, 2020).

Figure 5: Bathtub Curve for Hardware Reliability

Source: Alavirad, 2020.

The traditional approach to minimize such hardware faults is redundancy: providing bat-
teries for data centers, RAID disks, hot-swappable CPUs, and so on. Therefore, in the case
of a component fault, the redundant twin will take over the operation until the faulty com-
ponent can be repaired and return to normal functionality. However, this approach is not
the most economic approach to prevent system failure, as purchasing and maintaining
the extra redundant components causes a linear increase in the system cost. When cost is
not the most important factor in designing an application, like with air traffic control sys-
tem software, extra redundancy costs are acceptable.

Today, however, most data-intensive applications analyze a big volume of data running on
several nodes and machines. Therefore, even for noncrucial applications, a hardware fault
could cause notable performance problems. In such cases, it is necessary to decrease the
impact of hardware fault by improving software reliability. One example of this approach
is distributed computing. In distributed computing, the compute task in question is split
into subtasks and distributed across separate remote nodes. An example of such a distrib-
uted computation approach can be seen with the MapReduce approach. MapReduce was
developed as a technique for writing algorithms to process large amounts of data (Dean &
Ghemawat, 2008). The volume of data in an application can be so big that it cannot be
stored on a single machine (e.g., massive amounts of human genome data) and must be
distributed over many machines to be processed in a reasonable time. With this approach,
one single faulty hardware component does not result in a total system failure.

Software Errors

Software errors are probably the most visible and tangible faults experienced by users.
When discussing software faults, we can consider the following scenarios:

19

The full term should be the anchor to the marginal note. Put the full term in the text and bold it. The acronym can follow in brackets that are not bolded. Make the full term the title of the marginal as well.

• A process in an application suffers from memory leakage, i.e., uses up memory without
freeing it.

• A service of the system stops working.
• A cascading failure, where a small fault in the system spreads to other parts of the sys-

tem and causes the whole system failure (e.g. a server overload).

Software is a pure cognitive product (Détienne, 2002) and, as mentioned before, software
errors are different from hardware failures. Software products do not suffer physical prob-
lems like corrosion or aging.

Still, an application that is running faultlessly now cannot be guaranteed to run seam-
lessly in even the next few seconds. How a software system performed in the last second
tells you nothing about whether the system will fail in the next; the consequences of a
software failure cannot be anticipated until it happens.

However, the bathtub curve for software reliability, shown below, can help us to predict
software errors to some degree. There are two primary differences between hardware and
software bathtub curves. First, software does not have an increasing fault rate in the final
phase as hardware does. In this phase, software approaches obsolescence, so there are no
motives for any upgrades or modifications to be made. Consequently, the fault rate will
not vary; the software simply won’t be used as much as before. The second difference is
that, in the useful-life phase, software will undergo a drastic increase in fault rate each
time an upgrade is made. The fault rate levels off gradually, partly due to bugs being found
and fixed after each upgrade (Naylor & Joyner, 2014).

Figure 6: Revised Bathtub Curve for Software Errors

Source: Alavirad, 2020, based on Naylor & Joyner, 2014.

20

The best approach to minimizing the number of such faults is planning a concrete soft-
ware testing phase, which involves deliberately producing possible errors and checking
whether they cause system failure. For example, in an integer input field, entering a string
and seeing whether the system response to faulty input.

Human Errors

Human error is defined as an action which fails to produce an expected result, leading to
an unwanted consequence (Hollnagel, 1993). Human error is one of the main sources of
the errors that cause a system failure.

As the complexity of data systems grow to assist people in their daily routines, the opera-
tion of such complex systems has become more complicated, resulting in more space for
operator (human) mishandling and errors.

As software and hardware systems and procedures are becoming more and more reliable,
human errors are now likely one of the most dominant error types that cause system fail-
ures, especially, for example, in security systems. System failures are regularly caused by
human errors, such as British Airways’ IT chaos (BBC, 2017). BakerHostetler's report shows
that 32 percent of all security incidents are caused by employees (BakerHostetler, 2017).

During the designing phase of a data system, an engineer should consider humans (opera-
tors) unreliable, as they can, for example, incorrectly configure a system. There are some
approaches to minimize the effect of human errors on a system’s failure, such as

• providing tools to make recovery from human errors quick and easy, like the ability to
easily revert back from a faulty configuration

• designing systems with minimum opportunity for human error, for example, by limiting
user input through a user interface instead of the command line

• trying to find all possible sources of human errors and their impact on the whole system
during the testing phase of the application

1.2 Scalability
When you design an application, sooner or later it will accrue more and more users who
also expect a reliable functionality. A well-designed application should be able to cope
with growing demand over time—this is known as scalability, which is the ability to remain
reliable in the future, even as the load increases.

In other words, application scalability is an application’s ability to grow with time, being
able to efficiently handle more and more load. The load is an architecture-dependent
parameter. For example, the load could be the read-to-write ratio in a database, or the
number of online users in a chatroom.

21

Example of awkward phrasing

such as the following:

Throughput
This is the amount of

work done in a unit of
time.

Median
In a set with an odd num-

ber of elements, the
median is the (n+1)/2-th

element. In a set with
even number of elements
the median is the average

of n/2-th and (n+1)/2-th
elements.

A system engineer may face different obstacles to scalability, such as limited physical
resources (such as physical memory), memory management, an inefficient database
engine, a complicated database schema, bad indexing, application server limitations, gen-
eral spaghetti code, inefficient caching, lack of monitoring tools, too many external
dependencies, or bad background job design (Kleppmann, 2017).

A system’s performance regarding a growing load may be examined and quantified by
answering the following questions:

• When critical resources like CPU and memory stay the same, how will the system per-
form when you increase the load?

• When the load is increased, how much must critical resources such as CPU and memory
be improved to keep the performance of the system constant?

In defining the scalability of the system, we have mentioned two concepts: system load
and performance. Let’s start by defining these two concepts in more detail.

System load: We use measurable quantities to describe system load. These measurable
quantities are called load parameters. The most suitable selection of load parameters
depends on the system’s design: it may be requests per second to a web server, the ratio
of reads to writes in a database, or the cache hit rate. In some cases, the average value is
important, while for other cases, other parameters like a hardware bottleneck could be
relevant.

System performance: To be able to quantitatively measure the system performance, we
must define measurable parameters as we did for software reliability. First, we should note
that the system performance is defined for a given functionality. For example, the per-
formance of the Hadoop system could be defined using the runtime of the read/write
operations, throughput, or the I/O rate. On the other hand, in an online service system,
such as Amazon, the response time—the time between a client request and receiving the
response from the system—is a performance criterion.

Let’s explain one of these performance parameters in more detail. In the case of response
time, we can define the percentile response time as a measurable value to evaluate the
performance of the system.

To understand percentiles, we start with a more familiar concept from statistics: the
median. In a set of values (e.g., a set of measured response times), the median is the
response time in the middle of the sorted values. For example, this would be the number
13 in the following set:

7 9 10 12 13 14 17 18 19

In most cases, the median is not the same as average (mean) which is the sum of all
response time divided by the number of the recorded response times.

22

The numbers here are okay

Service level agreement
A service-level agreement
(SLA) specifies the level of
service you anticipate
from a vendor, defining
the metrics by which

Figure 7: Median vs. Average

Source: Alavirad, 2020.

One interpretation of the median response time is as follows: in fifty percent of cases, the
response time is less than the median response time and in the other fifty percent of cases
it is higher. We call median the fiftieth percentile, or p50. By following this definition, we
could also define for example the twentieth percentile value, or p20, where twenty per-
cent of the measured values are less than p20 and eighty percent are higher than p20. In
the figure below, the ninetieth percentile of the HTTP response time is depicted. In this
case, ninety percent of the responses take less than 100 milliseconds and ten percent of
the responses take more than 100 milliseconds.

Therefore, the percentile is a practical measure to calculate system performance.

Higher percentiles (or tail latencies) such as the 95th, 99th or 99.9th affect the user-experi-
ence directly. Here, the 99.9th percentile only affects 0.1 percent of requests. The users
who are affected by such high percentiles (and, thus, run the slowest requests) are com-
monly the most valuable customers as they are the ones who have the most data on your
system. Therefore, it is important to keep those valuable customers satisfied. For example,
Amazon uses the 99.9th percentile as the benchmark response time of its internal services
in the service level agreement (SLA).

23

Versus

service is measured, as
well as remedies or penal-

ties. (Inghirami, 2017)

Figure 8: 90th Percentile

Source: Alavirad, 2020.

Having defined the load and some key measures to evaluate performance, we should
answer the question of how we can design a system to perform the defined functionality
when the load increases beyond the primary defined load parameters.

There are, in principle, two approaches to designing a scalable system: scaling up and
scaling out.

In scaling up, or using a vertical scaling approach, we increase the supply of resources
such as CPUs, memory, network bandwidth, or storage to the existing system in order to
reach the state of performance defined in the service level agreement. For cloud-based
applications and systems where the system is going to be scaled up, we may move the job
onto a more powerful instance or may even move to another host. In the case of on prem-
ise applications, scaling up can also be accomplished through adding more resources
such as CPUs, connections, or cache sizes.

With the scaling out (or horizontal) approach, the increasing load will be distributed
between similar machines or nodes (distributed architectures). The scaling out approach
makes it easier for providers to offer “pay-as-you-grow” services to its customers. Service
providers normally use both scaling up and scaling out approaches to respond to cus-
tomer demands and ensure maximum performance.

24

Ninetieth (it is the first word of the title)

Full stop comes after the source.

Figure 9: Scale Up vs. Scale Out

Source: Alavirad, 2020.

For example, the dynamic scaling capabilities of Amazon’s EC2 Auto Scaling automatically
increases or decreases capacity based on load and other metrics. AWS applies the Auto
Scaling approach to monitor applications continually to make sure that they are operating
at the desired performance levels. When demand spikes, AWS Auto Scaling automatically
increases the capacity of constrained resources, so users maintain a high quality of serv-
ice.

It should be emphasized that there is no such thing as a generic scaling architecture that
can scale for all purposes. Scalability should always be defined for specific performances,
such as increasing the volume of reads, the volume of writes, the volume of data to store,
and the complexity of the data. When designing a scalable architecture for a particular
application, it should be considered, for example, which operations will be more common
and which will be less common. Some load parameters to consider might be the number
of reads, the size of writes, the volume of data to store, the complexity of the data, the
response time specifications, the access models, or any combination of these. For exam-
ple, a system that has been developed to manage 10,000,000 requests per hour, each 1 kB
in size, seems very different from a system that is designed for five requests per hour, each
2 GB in size—despite both systems having the same data throughput.

1.3 Maintainability
The ease or difficulty with which a software system can be modified is known as maintain-
ability. This is mostly determined by the software’s source code and architecture.

Software maintenance accounts for the majority of cost and effort during the software’s
lifetime. We can categorize the following four types of software maintenance (Kleppmann,
2017):

25

These types of acronyms also need to be defined in their first instance.

1. Corrective maintenance: some bugs have been discovered and have to be fixed.
2. Adaptive maintenance: some changes to the system are required to adapt it to the

environment in which it operates. For example, some modifications must be made to
the software due to a major update to the operating system.

3. Perfective maintenance: changes are required when the system has a new group of
users or the existing users have new requirements.

4. Preventive maintenance: changes are made to the system to improve its quality or to
prevent future bugs from happening.

After a while, the maintenance of a system can be seen as keeping a legacy system alive, a
job which may not seem very interesting to software engineers and developers. System
engineers should therefore try to design a system in a way that minimizes discomfort dur-
ing the maintenance phase. For this purpose, we should consider the following three prin-
ciples of software design: operability, simplicity, and evolvability. It is possible to post-
pone the legacy phase of a software system when these three principles are taken into
account during the design phase. Just like with reliability and scalability, there are no
generic and predefined solutions to achieving these goals.

Operability

“Good operations can often work around the limitations of bad (or incomplete) software,
but good software cannot run reliably with bad operations” (Krebs, 2012, para. 12). This
statement emphasizes the role of operators in the maintenance and operation of a soft-
ware (even though software is an automated product). Therefore, a good operation team
is a crucial part of the reliable performance of a software system.

The tasks of a software operation team are as follows (Hamilton, 2007):

• monitoring system health and quickly restoring service in cases of a bad state
• finding out the causes of the system problems, such as degraded system performance

and system failures
• keeping the system up-to-date, especially regarding security patches
• monitoring the interconnectivity of different systems modules to recognize problematic

changes before they cause system failures
• predicting potential problems and resolving them in advance (e.g., memory planning)
• defining roadmaps to make operations more predictable
• ensuring the production environment remains stable
• preserving the organization’s knowledge of the system

Maintainable data systems can make the operation team’s tasks easier by (Hamilton, 2007)

• bringing transparent visibility to the runtime behavior and internals of the system
through reliable monitoring

• supporting the automation and integration with standard tools
• ensuring individual machine independence. For example, in the event of a single

machine requiring maintenance, the system as a whole continues running reliably
• offering logical documentation of the software and an easy-to-understand operational

manual

26

These are full sentences. Please capitalize.

• providing a reasonable default setup, while also giving the system’s administrators
enough freedom to override defaults when it is required

• self-healing when appropriate, while also giving administrators manual control over the
system state when needed

Simplicity

Small software projects can be written in simple and expressive code but as projects grow,
they often are converted into more complex and difficult codes that are hard to under-
stand. This complexity slows down further development of the system, therefore increas-
ing the maintenance costs.

There are many potential symptoms of complexity: an explosion of the state space, strong
coupling between modules, confused dependencies, and inconsistent naming and termi-
nology, to name a few. Complexity makes maintenance difficult, which in turn leads to
budgets and schedules being overrun. When a software has a more complex code and
structure, there is a greater chance that more bugs appear during the further development
phase. Simplicity does not mean less functionality or services; it means avoiding acciden-
tal complexity. Complexity is defined as accidental if it is not an inherent part of the prob-
lem that the application solves, but exists due to poor implementation (Moseley & Marks,
2006).

One of the best methods to avoid accidental complexity is abstraction. A reasonable
abstraction can hide a great deal of implementation detail behind an expressive, simple-
to-understand software. Multiple implementations of the same source code are not the
only benefit of the abstraction—they also result in a higher-quality software, as the quality
of each module can be more easily improved. There are many examples of the abstraction
approach in the IT world: high-level programming languages are indeed abstractions that
hide machine code, CPU registers, and so on.

Evolvability

Evolvability means making change easier. Changes are an inevitable part of the software
life cycle: new things are learned, unanticipated use cases emerge, business preferences
change, new features are requested, and regulations change.

The agile method provides a framework for adapting changes and the agile community
provides technical tools and patterns for frequently changing adaption in software devel-
opment, such as test-driven development (TDD) and refactoring.

There is a close link between the ease of implementing changes into a data system, its
simplicity, and its abstractions: it is always easier to modify simple and easy to understand
systems. As this is an essential idea, it is more appropriate to use a different term to refer
to agility on a data system level: evolvability.

Why is Maintainability Important?

We may answer this question from two different perspectives:

27

• Business impact. The maintenance phase of a software system can span ten years or
more. During this phase, many issues should be resolved (corrective and adaptive main-
tenance) and improvement or enhancement requests should be implemented (perfec-
tive maintenance). When issue resolution and improvement can be performed more
efficiently, both the maintenance efforts and the maintenance costs decrease. Thanks
to this, staff have enough time to invest in other tasks like building new functionalities.
A shorter enhancement time also means shorter time-to-market for new products and
services. However, slow issue resolution and enhancements processes impact the busi-
ness negatively and can lead to problems, such as missed deadlines or unusable sys-
tems.

• Quality enabler. Maintenance enables other quality characteristics such as reliability
and scalability. When a system has a reasonable maintainability, making improvements
in other quality areas, such as fixing a security bug, becomes easier. In such highly
maintainable systems, the modifications and resolutions are much easier to apply,
allowing the system engineer to implement quality optimizations faster and more effec-
tively.

SUMMARY
In this unit, we have learned about data systems. We defined a data-
intensive application as an application where data are the primary chal-
lenge. Three main criteria of a high-quality data-intensive application
are reliability, scalability, and maintainability:

• Reliability: the system should perform the defined functionality, even
in the case of hardware, software, or human error.

• Scalability: the system should continue to work under increased load.
• Maintainability: the people who are dealing with the operation and

future development of the system should be able to do their job pro-
ductively.

We discussed different metrics to quantitatively measure the reliability
of a data system: product metrics, process metrics, project metrics, and
fault and failure metrics. We then discussed three faults and errors that
could lead to system failure: hardware faults, human errors, and soft-
ware errors.

There are two approaches to make a system reliable with regard to
increasing load: scaling up and scaling out. We also defined the load and
the performance of the system in this section.

28

Finally, we introduced the methods by which a system designer can
make the maintenance of a data system easier for the system operators
and developers.

29

UNIT 2
DATA PROCESSING AT SCALE

STUDY GOALS

On completion of this unit, you will have learned …

– about different types of data processing systems: real-time, batch, and stream.
– about the applications and fundamentals of a batch processing system.
– how to use the MapReduce method as a batch processing system.
– what the applications and fundamentals of stream processing systems are.
– about Apache Kafka and Spark Streaming as streaming platforms.

Hadoop
“The Apache Hadoop
software library is a

framework that allows for
the distributed process-

ing of large data sets
across clusters of comput-
ers using simple program-

ming models” (Hadoop,
2020, para. 1).

2. DATA PROCESSING AT SCALE

Introduction
For every data system, we define performance in terms of the expected functionality of
the system. For example, the performance of a Hadoop system could be defined using the
runtime of the read/write operations, throughput, or the I/O rate. For an online service
system, such as Amazon, the response time—the time between the client request and
receiving the response from the system—is a performance criterion. In such online sys-
tems, a request is commonly triggered by the user, who then waits for a response to their
request. Considering user satisfaction, the response time should occur within a reasona-
ble time interval. The response time is therefore an important factor in designing data sys-
tems.

Regarding the processing mechanism of input data, we can distinguish between three dif-
ferent types of data systems:

1. Real-time processing system (or online-system). In these systems, the response time
is within a tight, real-world deadline like milliseconds. In a real-time processing sys-
tem, the server waits for a request from the client in order to handle it as quickly as
possible and sends a response within seconds. One example of a real-time system are
stock market applications, where a stock quote is expected from the network within
10 milliseconds.

2. Batch processing system. In a batch processing system, the application processes a
large volume of data all at once. The data is collected over a few days and then pro-
cessed in a non-stop, sequential order. An example of a batch processing system
application is the processing of weather data (Anusha & Rani, 2017).

3. Stream processing system (SPS). In a stream processing system (or near-real-time sys-
tem), the input data, which are the output of another system, are processed almost
instantly. This system, by processing the input data, produces output data like a batch
processing system. However, more similarly to the online system, a stream processing
system’s response time is almost real-time. Therefore, the latency of a stream process-
ing system is lower than a batch processing system.

In this unit, we will first discuss batch processing systems. After looking at some batch pro-
cessing applications and some legacy batch processing systems, we will explain the steps,
decisions, and statuses of a typical batch processing job. We will then discuss one of the
most important batch processing systems: MapReduce. We conclude this section with an
example of a simple MapReduce implementation using Python.

Following this, we look at stream processing systems. We will introduce four legacy infor-
mation flow processing systems: active databases, continuous queries, publish-subscribe
systems, and complex event processing. We will then discuss stream processing systems
in detail by looking at data (model), processing and the system architecture of a typical
SPS system. Finally, we will introduce Apache Kafka as a modern distributed streaming
platform.

32

Although it needs some language editing, this is a good example of an introduction.

2.1 Batch Processing
Consider the following information processing applications:

• Bank Investment Firm X processes the transactions of all international money transfers
at the end of each working day.

• Collected weather data are processed to analyze patterns and predict the weather for
the coming week.

• Steel Manufacture Inc. produces an operations report at the end of each day to deliver
to the operations managers on the next day.

• Tele-D, a telecommunication company, processes monthly call data records that
include the information of millions of calls in order to calculate costs and issue bills.

These applications have one thing in common: processing jobs are executed periodically
and often process large amounts of information such as log files and database records
without direct human interaction. This type of processing is called a batch processing job,
which is the topic of this section.

Batch systems have a long history in the computational world, starting with very early
operating systems such as the IBM 7094. In this operating system, after recording the infor-
mation from punch cards on tapes using a card reader and the IBM 1401, the output tapes
of the 1401 were used as the input for IBM 7094. This early computer read and processed
all data in a single batch without user intervention (of course, after the user puts the tapes
inside the machine). It then produced the output again on tapes (to be used as input for
another IBM 1401).

To complete a batch job, a user interference is not required. As an example, let’s consider a
telecom company that generates monthly phone bills. The IT department of this company
uses an application that receives the phone records as input and produces a monthly bill
for each customer as output. As this process can be executed with a large, singular input
file and without any user interaction, it can be run as a batch job. This process consists of
two phases: associating each call from the registry with a customer bill and calculating the
total amount for each bill. Each phase is a separate step in a batch processing job.

Steps of a Batch Job

We will consider a general set of steps for a typical batch processing job. First, we should
define a step in batch processing. A step is an independent and sequential phase, classi-
fied into two groups: chunk-oriented and task-oriented steps (Oracle, 2017).

In a chunk-oriented step, the data are imported from a data source like a database, the
defined process is applied to them, and, finally, they are stored (in memory or on a disk).
In this approach, one item is read and processed at a time and at the end the results are
grouped into a chunk of data. The limit of the chunk size is defined via configuration. A
chunk-oriented step has three parts (Oracle, 2017):

33

1. Input retrieval: the chunk step reads one item at a time from a data source.
2. Business processing: in this phase, the defined business process will be applied to

data. This process could be sorting, filtering, or a mathematical operation.
3. Output storing: in the final stage, the results of this business process are stored in a

chunk of data.

Figure 10: Parts of a Chunk Step

Source: Alavirad, 2020, based on Oracle, 2017.

To understand the chunk steps in a batch processing job, let’s consider the phone bill
batch process application again. The batch job in this example has two chunk steps:

1. In the first chunk step, the “input retrieval” reads the call data from the databank and
the “business processing” part matches each call with a bill and, if the bill does not
already exist, creates a new bill. Finally, the “output storing” part stores each bill in a
database.

2. In the second chunk step, the “input retrieval” part reads the bills (the output of the
first chunk step) from the databank, the “business processing” part calculates the
total amount for each bill, and the “output storing” part stores a printable version of
each bill in another database.

As chunk steps process large amounts of data, they are often long-running jobs. In some
batch frameworks, it is possible to “checkpoint” (or bookmark) the process to restart the
batch job from the bookmark point in case of interruption to save time and resources. As
you may have noticed, it is necessary for the chunk step batch framework to bookmark
the position of the input retrieval and output storing parts after the processing of each
chunk to recover it when the step is restarted.

In a task-oriented step, a single task will be executed, like removing a folder or file from
the system. The task-oriented steps are short-running jobs. In the bill batch processing
application, we also need a task-oriented step to clean last month's bill files from the data-
base.

34

After discussing the two most common steps in batch processing, let’s also briefly discuss
parallelism in batch processing. As batch processing applications process large amounts
of data, parallel processing could be very helpful to reduce the response time. There are
two approaches to boost batch applications via parallel processing:

• using independent steps that can run on separate threads
• using chunk-oriented steps where the processing of each item is independent of the

processing result of the previous items and can therefore run on separate threads

Statuses and Decisions in a Batch Job

In addition to these steps, batch frameworks also provide a status for each individual job.
The status of a job could be one of the following:

• running
• successful
• interrupted
• error

Batch jobs also contain decision elements. A decision element uses the exit status of the
previous step to decide an action for the next step (continue or exit). This element also
sets the status of the job in case of a termination.

We can define the following functionality for a batch processing framework:

• defining jobs, steps, statuses, decision elements, and the relationships between differ-
ent elements

• providing parallel processing
• maintaining states of each job
• handling errors
• launching jobs and resuming interrupted jobs

Now, let us discuss one of the most powerful parallel batch processing systems: MapRe-
duce.

MapReduce

Batch processing is an important building block for developing reliable, scalable, and
maintainable applications. In the rest of this section, we will consider one of the most suc-
cessful batch processing algorithms: MapReduce, which was developed by Google (Dean &
Ghemawat, 2008). This algorithm is a fairly low-level programming framework that ena-
bled the scaling out of computations on commodity hardware. MapReduce has been
implemented in many data processing solutions such as Hadoop and MongoDB. MapRe-
duce is the foundational building block of most big data batch processing systems. It
should, however, be emphasized that MapReduce is coming close to its “retirement” and,
in recent years, has been replaced with more modern technologies (e.g. Apache Spark). It
is nonetheless beneficial to study its fundamentals as a computing model, as it laid the
foundations for scalable and reliable data processing.

35

Shared-nothing
A shared-nothing archi-

tecture generally does not
require any specific hard-
ware. Computers are con-
nected by a conventional

data center network.
Daemon process

This is a process that runs
in the background. The

user does not have direct
control over the daemon.

On a UNIX system, jobs use standard input (stdin) and standard output (stdout) as input
and output methods. For example, when you run a program and do not specify stdin and
stdout, the program reads the input from the keyboard and writes the output on the
screen. In MapReduce, jobs read and write files from a distributed file system. In the case
of Hadoop implementation of MapReduce, for example, the distributed file system is
called HDFS (Hadoop Distributed File System).

HDFS is based on a shared-nothing architecture. In this architecture, each machine or vir-
tual machine running the database management system is called a node, and each node
has its resources like memory, CPUs, and so on. The orchestration between nodes is car-
ried out by a piece of software (the MapReduce engine).

HDFS has daemon processes which run on each machine. HDFS has five main daemons:
NameNode, the secondary NameNode, DataNode, JobTracker, and TaskTracker. We could
consider the HDFS as a big file system that uses the resources of each node to run the dae-
mons (here, we are concerning HADOOP2 specifically).

The NameNode daemon is the master node in HDFS. This node is responsible for storing
the metadata regarding all files and records. It holds information about the file locations
on HDFS. The secondary NameNode is not used as a backup of the NameNode as the
name might imply. It is rather a helper element which checkpoints NameNode’s file sys-
tem namespace. The DataNodes are the slave components of the architecture and only
responsible for data storage. On startup, a DataNode connects to the NameNode, waiting
until the NameNode comes up. A DataNode responds to requests from the NameNode for
file system operations. As a master component, the JobTracker manages all jobs and
resources in the Hadoop cluster. The TaskTrackers are the slave components that run on
each server in the cluster and they are responsible for the execution of MapReduce jobs,
including the periodic delivery of status messages to the JobTracker.

The main advantage of the implementation of MapReduce like Hadoop is automated par-
allelism: MapReduce distributes the computation between nodes to execute the jobs in
parallel without the user having to write code to manage the parallelism.

The MapReduce implementation consists of two main functions: Map and Reduce. These
two functions are distributed to nodes by the MapReduce framework. The Map function
produces key-value pairs from the input data (partitions). Then the Reduce function uses
the produced key-value pairs to sort the key-value data and further process them, i.e., by
aggregating values with the same key. In the following, we will discuss these two corner-
stones of the MapReduce framework in more detail.

Map

In Hadoop implementation, the input to a MapReduce job is a directory on HDFS. Each
directory is made up of smaller units called partitions. Each partition must be processed
separately by a map task (a map task is a process that runs the map function).

36

Virtual machine is shortened to “VM” in other units. Ensure consistency throughout.

Figure 11: Map Side of MapReduce

Source: Alavirad, 2020.

Typically, each input file has a size to the order of hundreds of megabytes. The MapReduce
scheduler runs each mapper (map task) on a machine that has a copy of the input file. This
procedure is known as putting computation near the data. The map task is called once for
every input partition to extract the key-value pair from the input partition. The number of
mappers is therefore determined by the number of partitions.

System engineers should only define the code inside the mapper (for a simple mapper, as
in the following Python example) that takes input partition data and produces key-value
pairs. In the following example, each key is a word with value equal to 1.

Code
def mapper(key, value):
 # Split the text into words and yield (word,1)
 # as a pair
for word in value.split():
normalized_word = word.lower()
yield normalized_word, 1

Reduce

When the mappers finish their job and write the output key-value pairs in sorted output
files, the MapReduce scheduler calls reducers to fetch the output files from mappers. The
process of reading output files from mappers, sorting, and copying them to the reducers
partitions is called shuffling. The reduce task reads the sorted data from the mappers and
keeps the sort order. The reducer is called with a key to scan all records with that key. Here
is an example of a simple reducer code in Python:

37

Code
Reduce function, applied to a group of values with the same key
def reducer(key, values):
 # Sum all the values with the same key
 result = sum(values)
 return result

In the above example, the mapper returns a (key, value) in the form of a (word,1) and the
reducer is called over all values with the same keys to create a distributed word counting
pipeline (see figure below).

Figure 12: Reduce Side of MapReduce

Source: Alavirad, 2020.

Here, the number of reducer partitions is fewer than the number of mapper partitions.

A single MapReduce job is limited in the problems it can solve, so it is always more practi-
cal to chain multiple MapReduce jobs together in a workflow. In this case, the output of
one MapReduce job will be the input of another MapReduce job. Using the above example,
if we want to find the top five most common words in a text, we need a second MapReduce
job to sort and select the top five words. There are some workflow schedulers (e.g., Air-
flow) that can handle the dependencies between jobs.

Hands-on

We conclude this section with a simple lightweight MapReduce implementation in Python
(Fairley, 2010).

First, run the following example file from the command line as:

38

Code
Python example.py

#example.py
#!/usr/bin/env Python
import mincemeat

#Here we define the data for the mapper input
data = ["Humpty Dumpty sat on a wall",
 "Humpty Dumpty had a great fall",
 "All the King's horses and all the King's men",
 "Couldn't put Humpty together again",
]
#Mapper
def mapfn(k, v):
 for w in v.split():
 yield w, 1

#Reducer

def reducefn(k, vs):
 result = 0
 for v in vs:
 result += v
 return result

s = mincemeat.Server()

The data source can be any dictionary-like object
s.datasource = dict(enumerate(data))
s.mapfn = mapfn
s.reducefn = reducefn

results = s.run_server(password="changeme")
print(results){'a': 2, 'on': 1, 'great': 1, 'Humpty': 3, 'again': 1, 'wall': 1,
'Dumpty': 2, 'men': 1, 'had': 1, 'all': 1, 'together': 1, "King's": 2,
'horses': 1, 'All': 1, "Couldn't": 1, 'fall': 1, 'and': 1, 'the': 2,
'put': 1, 'sat': 1}

This was a very simple example of MapReduce implementation using Python. However,
with some minor modifications to the source code, and by running the client on multiple
machines, it becomes possible to process even larger amounts of data (gigabytes).

39

2.2 Stream Processing System
In batch processing, the input and the output of a batch job are files. The output file
(derived data) can be used as the input of another batch job through a piping mechanism.
In batch processing, the size of the input file is also bounded or is known before running a
job. For example, for the merging and sorting of map outputs in MapReduce, the exact size
of the input file should be known. The reducer should wait until the mapper has produced
all key-value pairs.

What about cases where the size of the input file is not constant, but changes with time,
such as the number of interactions in social media, or the temperature measured by a
smart thermometer? One solution could be processing the aggregated data periodically
(e.g., daily or hourly). This, however, would not meet the business requirements of many
impatient users, because any change in the input data will only be reflected after an hour
or a day. For instance, consider ordering a laptop from an online shop. The online shop
would like to recommend more articles related to your current order and your purchasing
history, for example, accessories for the laptop, such as a docking station. If the processing
system of the online shop uses an hour-based batch processing approach, it will be far too
slow for any accessory to be suggested, as by the time an hour has passed, you will have
already completed your purchase.

Therefore, it is usually more beneficial to reduce the processing period to, for example, a
few seconds, or to even make this process continuous by ignoring fixed time slices and
instead processing data as they are received (events). This is the main idea behind stream
processing.

Before starting to discuss stream processing in more detail, it would be beneficial to men-
tion some other use cases of stream processing:

• monitoring a production line
• geospatial data processing for applications geared toward topics like climate change

and natural hazard prediction and mitigation (Li et al., 2020)
• algorithmic trading and stock market surveillance
• smart device applications
• smart grid
• predictive maintenance
• fraud detection

Information Flow Processing Technologies

In batch processing systems, since the input and the output of the processing jobs are
files, the first step in the processing is to parse the chosen file in a set of records. In a
stream processing system, a record is known as an event: a small, self-contained object
containing detailed information of what is happening at a given time.

An event could be a user clicking, the temperature of a sensor, or a CPU utilization metric.
The events are encoded as text strings, JSON files, or binary forms, and the encoded infor-
mation can be appended to a file or inserted into a database.

40

Historically, there were several systems to process information flow, which can be catego-
rized into four classes: active databases, continuous query (CQ) systems, publish-sub-
scribe (“pub-sub”) systems, and complex event processing (CEP) systems. These systems
are the ancestors of modern continuous data stream processing systems (SPSs).

Active databases

In an active database, an extension to the database reacts to continuous changes in the
stored data. A common characteristic of all active databases is their reliance on “event-
condition-action” rules: capturing the events, testing the condition of these events, and
performing the action which should be taken on receipt of the events.

An event represents a time-dependent change in the database, such as the insertion of a
new row into the database. A condition describes the state in which the database should
be in in order to execute an action. The action is the response to an event and is executed
when the database is in the relevant condition.

Some examples of active databases are Ode (Lieuwen et al., 1996), HiPac (Dayal et al.,
1998), Samos (Gatziu & Dittrich, 1994), and Snoop (Chakravarthy & Mishra, 1994). It is also
possible to implement ECA rules into traditional database management systems (DBMS)
using SQL triggers.

In some active databases, the ECA rules only react to the data stored on that database
(closed active databases), while in others, the ECA rules also react to internal and external
events (open active databases). Open active databases are more appropriate for stream
processing of continuous data as the source of a data stream—in most cases—is an exter-
nal one (e.g., streaming data from a sensor).

Continuous queries

A continuous query (CQ) system uses standing queries (unlike the normal snapshot quer-
ies) to continuously monitor information change and, in the case of a user-defined event,
return the results. A CQ consists of three blocks: a query, a trigger, and a stop condition.
Whenever the trigger condition meets, the query will be executed and returns the result.
The query will be terminated as soon as the stop condition is met. An example of a CQ
system is NiagaraCQ (Chen et al., 2000). In modern SPSs, the data are continuously run
through the queries, unlike in CQs, where the queries are being continuously run through
the data.

Publish-subscribe systems

A publish-subscribe system (pub-sub system) is an event-driven system. An event is gener-
ated by producers (also called publishers or senders), processed by a broker, and received
and processed by consumers (subscribers or recipients). The events in the streaming sys-
tem are grouped into topics or streams.

41

Normally, citations should go at the end of the sentence and be put in alphabetical order. Since we are crediting g the creators of each individual database, the current format is appropriate.

The pub-sub system decouples publisher and subscriber, i.e., publisher and subscriber do
not know each other, and the delivery of the events is performed through a broker net-
work—a set of broker nodes connected on a WAN.

There are two types of pub-sub systems: topic-based and content-based. In topic-based
systems, each publication can have one or more topics, and a subscription can subscribe
to these topics. In a content-based pub-sub system, a publication contains a set of proper-
ties, and a subscription is defined based on the conditions of these properties. For exam-
ple, a subscription may look for all publications containing the “price” property with a
value of less than 500 Euro with the “product type” property as “mobile phone”.

Most content-based pub-sub systems provide atomic subscriptions. That is, subscriptions
that are defined in individual publications. An example of such a system is IBM Research’s
Gryphon (Strom et al., 1997). Some pub-sub systems also support composite subscrip-
tions, meaning subscriptions are defined on a series of publications using methods like
sequences and repetitions. Such pub-sub systems are more complicated to implement as
the broker’s router algorithm must filter publications as fast as possible to ensure a rea-
sonable response time. In the rest of this section, when we discuss CEP (Complex Event
Processing) systems, we will see some similarities to composite subscription pub-sub sys-
tems.

Complex event processing systems

The main reason to develop complex event processing systems is to collect, filter, aggre-
gate, and combine the data from different sources on a central computing platform and
deliver them to analytic applications.

CEP systems provide detection of complex events, which are a composite of simpler
events created as a result of additional analysis and processing like temporal sequences
(e.g., event A follows event B), or negation (e.g., event A does not appear in the sequence).
Most CEP systems, like IBM WebSphere Business Events (IBM, 2020c), use rule-based
detection tasks. These tasks are expressed in terms of complex patterns as a function of
logic conditions, uncertainty models, and so on.

After a historical review of information flow processing systems, we will continue by dis-
cussing the structure of typical modern stream processing systems.

Modern Stream Processing Systems

The information flow processing systems discussed in the previous subsection can pro-
vide, to some extent, continuous data processing. Most of them are limited to simple and
small-scale streaming data applications. For most streaming processing applications
(SPAs), however, we need flexible, scalable, and fault-tolerant applications that can proc-
ess large amounts of data in motion in real-time. These requirements led to the emer-
gence of stream processing systems (SPSs). In the following, we will briefly discuss the
stream processing paradigm, starting with data.

42

Unstructured data
Any data that have no
structure by pre-defined
models and schemas,
such as audio and video
files, are called unstruc-
tured data.

Data

We will begin with the type of data that are processed by SPAs. A streaming data source is
the producer of the data stream and can be broken into distinct data items known as
tuples. There are many sources of tuples around us such as sensors, medical devices, and
smart devices. The source of stream data can be also a data repository such as a relational
database, a data warehouse, or even a plain text file. The sink of the data stream also has
tuples as the end products of processing applications like visualization and monitoring
tools. We will now take a look at the three main characteristics of a stream processing data
model.

The data tuple is the fundamental data item embedded in a data stream and can be pro-
cessed by an application. A tuple is similar to a row in a relational database with a set of
attributes. A data schema defines the structure of data tuple. The data stream is a poten-
tially infinite sequence of tuples sharing the same schema.

In an stream processing system, data tuples are processed by analytic components of
applications. In the following section, we will explain some of the basic concepts of stream
processing.

Operator

An operator receives the input tuples from the incoming data stream, processes them, and
outputs them as an outgoing stream. We could consider the following tasks as suitable for
an operator:

• Edge adaption. Converting the incoming tuple into an appropriate format that can be
consumed by downstream operators

• Aggregation. Collecting a subset of tuples based on the defined conditions
• Splitting. partitioning a stream into multiple streams based on defined conditions for

more efficient processing by downstream operators
• Logical and mathematical operations. Performing logical or mathematical operations

on multiple tuples from one or more data streams
• Sequence manipulation. Reordering, delaying, or altering the temporal properties of a

stream

Data mining, machine learning, or unstructured data processing techniques can also be
applied.

Stream connection

Stream data are transported through a stream connection between the output port of an
upstream operator and the input port of a downstream operator.

Stream processing application

A set of operators and stream connections that work in harmony to process the streaming
of data is called a stream processing application (SPA).

43

One-pass algorithm
A one-pass algorithm is a

streaming algorithm
which reads its input

exactly once.

There are fundamental differences between a SPA and a regular procedural application:

• SPAs should be designed to cope with the concept of data-in-motion—when and how
fast the data arrives and also the order of data.

• SPAs should process data-in-motion, which requires a buffering mechanism for random
access to data.

• SPAs should perform one-pass processing on the incoming data as multiple passes in
order to avoid performance degradation.

System architecture: A stream processing system (SPS) is a middleware, for which an SPA
digests, analyzes, and outputs the incoming stream data. We can consider two main com-
ponents for a typical SPS: an application development environment and an application
runtime environment.

Application development environment

This environment provides the framework and tools to implement stream processing
applications and contains two components:

• a programming model that provides a query or programming language to develop the
application’s internal processing logic and structure

• a development environment that provides a platform for implementing, testing, and
debugging the applications

Application runtime environment

The application runtime environment provides the infrastructure (i.e., support and serv-
ices) for running one or more SPAs. This environment normally consists of a software layer
that is distributed over a multi-host cluster for running instances of the SPAs. There are
also components that manage the runtime environment itself. The SPS runtime environ-
ment should also provide the administrators with enough tools to manage SPAs.

Runtime management interfaces should also provide tools for application life cycle man-
agement, access and management of computational resources, data transport, fault toler-
ance, and authentication and security management.

Kafka—A Distributed Streaming Platform

There are several implementations of SPSs by different research institutes and companies.
In this part, we will focus on one of the state-of-art SPSs: Apache Kafka.

Apache Kafka is a distributed event streaming platform capable of managing trillions of
events per day. Initially conceptualized as a messaging queue, Kafka is based on the idea
of a distributed commit log (which will be explained in greater detail shortly). Kafka was
developed by LinkedIn in 2011 (written in Scala and Java), and has quickly evolved from a
messaging queue to a fully-fledged event streaming platform (Apache Kafka, 2017a).

44

The main building block of Kafka is an immutable commit log, to which any number of
systems and real-time applications can subscribe and publish data. Unlike most messag-
ing queues, Kafka is a highly scalable, fault-tolerant distributed system, allowing it to be
implemented for purposes such as the managing of passenger and driver matching at
Uber. Put simply, Kafka is a platform that provides a durable publish-subscribe messaging
system (Apache Kafka, 2017a).

Figure 13: Apache Kafka Components

Source: Apache Kafka, 2020a.

A complete Kafka system requires four main components: the broker (cluster), Apache
ZooKeeper (a cluster coordination tool), producers, and consumers.

A broker handles client requests (producers, consumers) and stores replicated data on the
Kafka cluster, which is a cluster of brokers. A producer publishes the records to the broker.
The consumer uses the data on the broker and ZooKeeper then stores the state of the
cluster (brokers, users, topics, configurations, etc.) and coordinates the system.

Before explaining these four components in more detail, we should define the core
abstractions in Kafka for a stream of records: topics and partitions.

Topics

A topic is a category or feed name on the Kafka cluster to which messages are published.
In other words, the records are organized by topic. Producers publish data into topics and
consumers subscribe to data stored on topics. Topics in Kafka are multi-subscriber; that is,
a topic can have zero, one, or many consumers. Records stay in the cluster for a configura-
ble retention period. For example, for a two-day retention policy, a published record is
available for two days, after which it will be removed to free up space. By this time, down-
stream databases for data persistence should have caught up with the two-day-old data.

45

Partitions

In Kafka, topics are split into partitions, which contain records in an immutable sequence
that is continually appended to a structured commit log. To identify each record inside a
partition, they are assigned a sequential ID called the “offset.”

Figure 14: Anatomy of a Topic and Partition

Source: Alavirad, 2020.

Usually, a consumer will advance its offset in a linear fashion, but, as the consumer can
control this position, it can also consume records in an arbitrary order. For example, a con-
sumer can consume an older offset to reprocess data, or jump to the most recent record
and start consuming from “now.”

Figure 15: Kafka Offsets

Source: Alavirad, 2020.

Partitioning topics has its advantages, including:

• It makes it possible to have logs larger than can be stored on a single server. Although
every single partition should fit the size of the host server, a topic may have several par-
titions distributed over a cluster of servers.

• Each partition can act as a parallel unit.

Having introduced the core abstractions of the data model in Kafka, we will now look at
Kafka’s main components.

46

Round robin (RR)
In a round robin method,
the available resources
are distributed between a
partition equally and in a
circular order without pri-
ority.

Broker

As mentioned before, Kafka is a distributed streaming system that provides the basic func-
tionalities of a publish-subscribe system. Kafka is designed to run on multiple hosts. Each
host in the Kafka cluster contains a server called the broker. The broker stores messages
published to the topics and serves consumer requests.

When one of the hosts is unavailable, other hosts continue running. This feature is what
enables the “no downtime” and “unlimited scaling” characteristics of publish-subscribe
systems.

Kafka assigns each partition one “leader server” and zero or more “follower servers.” The
main job of the leader is to manage read and write requests for that partition. The follower
servers passively mirror the leader. When the leader goes offline, one of the followers
takes over the leadership. A server may play the role of the leader for partition A and the
role of a follower server for partition B. With this method, loads are well distributed among
servers.

There is another broker for each partition called the controller. The main task of this
broker is to maintain the leader/follower relationship for all partitions.

ZooKeeper

This module is not technically a part of the Kafka framework, but Kafka does not work
without it. ZooKeeper has the following tasks:

• Electing a controller. ZooKeeper elects a controller for each partition, makes sure there
is only one, and then elects a new one if the original controller goes offline.

• Cluster membership. ZooKeeper manages which brokers are alive and part of the clus-
ter.

• Topic configuration. ZooKeeper also controls the existing topics, number of partitions
per topic, who is the preferred leader, etc.

• Metadata storing. the location of partitions, the configuration of topics, and other meta-
data are stored outside of Kafka, in a separate ZooKeeper cluster.

Producer

In Kafka, a producer publishes (sends) data to the topics. It is the responsibility of the pro-
ducer to choose which record should be assigned to which specific partition. The proce-
dure can be managed in a round robin method to distribute the load over partitions, or it
can be done using a semantic partition function.

47

Figure 16: Brokers in a Pub-Sub System

Source: Alavirad, 2020.

Consumer

The consumer is an application that reads messages from a Kafka topic, runs validations
against them, and writes the results to another data store. For this purpose, Kafka pro-
vides the Consumer API (KafkaConsumer) to create a consumer object. Kafka’s consumers
read messages from the partition, starting from a specific offset. In Kafka, consumers can
choose to read which offset a message is from, enabling them to join the cluster at any
point in time.

In Kafka, we label consumers with a consumer group name. The idea behind this label is
to deliver each data record of a topic into just one consumer instance within a subscribing
consumer group. In the figure below, you can see the anatomy of Kafka clusters and con-
sumers. In this example, we have two brokers (Server1 and Server2), four partitions (P0—
P3), and two consumer groups (group A and group B). Group A has four consumer instan-
ces (C1—C4) and Group B has two consumer instances (C5 and C6).

Figure 17: Most Common System Encryption Algorithms

Source: Alavirad, 2020.

48

Record flow in Apache Kafka

To understand the mechanism of the data stream in Kafka, we will take as an example a
system with a single broker and two topics, where each topic has four partitions.

Figure 18: Apache Kafka Record Flow Step 1

Source: Alavirad, 2020.

In the first step, the producer sends a record to the first partition in Topic 1. As this parti-
tion is empty, the offset takes the value 0.

Figure 19: Apache Kafka Record Flow Step 2

Source: Alavirad, 2020.

When the producer sends more records to this partition, the offset takes values 1, 2, etc.
This is called a commit log, as it is impossible to change the existing record in the log.

49

Figure 20: Apache Kafka Record Flow Step 3

Source: Alavirad, 2020.

Kafka streams API

Now let’s have a look at the real-time stream processing using Kafka. In Kafka, a stream
processor receives continual streams of data from input topics, processes them, and pro-
duces continual streams of data to the output topics.

When we want to do simple, real-time processing directly, it is possible to perform it with
only producer and consumer APIs. However, for more complex transformations, Kafka
offers a fully-integrated Streams API (Apache Kafka, 2017b). This API facilitates solving
more complex problems like managing out-of-order data, reprocessing input as code
changes, and performing stateful computations.

Use Cases of Kafka Streams API

Here are some use cases of Kafka’s Streams API (Apache Kafka, 2020b):

• The New York Times uses Apache Kafka and Kafka Streams to store and distribute the
published content in real-time.

• Zalando uses Kafka as an ESB (enterprise service bus) for the transition from a mono-
lithic to a microservice architecture. Using Kafka for processing event streams enables
Zalando to perform near real-time business intelligence.

• Trivago uses Kafka Streams to enable its developers to access data within the company.
Kafka Streams empowers the analytics pipeline and provides endless options to explore
and operate on data sources.

Spark Streaming

Let us have a brief look into another streaming processing tool from Apache: Spark
Streaming. Spark Streaming, which is an extension for the core Spark API, provides scala-
ble, high-throughput, fault-tolerant stream processing of live data streams. The source
data can be delivered to Spark Streaming from different sources like Kafka or TCP sockets.

50

No need for italics.

These data can be processed using algorithms expressed with high-level functions like
map, reduce or join. The processed data can be written to file systems, databases, and live
dashboards.

Figure 21: Spark Streaming

Source: Alavirad, 2020.

The data processing flow with Spark Streaming is as follows: Spark Streaming receives
data streams from input sources and breaks the data into batches. Then, the Spark engine
processes the batch data and generates a stream of batch-processed data.

Figure 22: Spark Streaming Workflow

Source: Alavirad, 2020.

The latency of Spark Streaming ranges from milliseconds to a few seconds, compared to
Kafka Streams, whose latency is less than milliseconds. However, Spark Streaming is more
flexible regarding data sources. Spark Streaming can, for instance, be run on Amazon EC2
with Hadoop YARN. The upstream source of Spark Streaming could be HDFS, Apache Cas-
sandra, or Apache Hive, for example.

51

SUMMARY
We have now learned about data processing systems and discussed two
such systems in detail: batch and stream processing systems.

When delivering the processing results in real time is not a critical
requirement, it is possible to process data periodically, like at the end of
each working day. In this case, we collect data during a specified time
period in a batch and then process the data batch in a single processing
job without the direct interaction of the user. This is what we call batch
processing. One application of such a processing approach is processing
financial transactions (at a financial institute) at the end of each working
day.

However, there are some business use cases where the client cannot
wait for the delivery of process results, so the results should be delivered
in near-real-time. Stream processing systems were developed for this
purpose. Some applications of stream processing are monitoring a pro-
duction line, geospatial data processing, and Smart Grid.

We have discussed four ancestors of modern stream processing systems,
known as information flow processing systems: active databases, con-
tinuous queries, publish-subscribe systems, and complex event process-
ing. We then discussed the paradigm of typical streaming processing
systems by discussing data model, processing, and system architecture.
Finally, we reviewed two modern implementations of streaming sys-
tems: Apache Kafka and Spark Streaming.

52

Please rework this to say something like “This unit focused on…” or similar.

UNIT 3
MICROSERVICES

STUDY GOALS

On completion of this unit, you will have learned …

– what the monolith architecture of a software product is and what its drawbacks are.
– what the microservice architecture of a software product is and how it functions as a

modern alternative to monolithic architectures.
– how to implement a microservice application in a software product.
– how to migrate from an existing monolithic architecture to a microservice architecture.

3. MICROSERVICES

Introduction
Microservice architecture is an approach in software design used to create a software sys-
tem with, or split a software system into, a collection of small interactive services (micro-
service). Each service is

• loosely coupled with other services,
• deployable independently of other services,
• specific in its functionality,
• developed and maintained by a small development team, and
• highly scalable, maintainable, and testable.

Unlike this, in a monolithic architecture, the whole software is made of multiple entangled
modules, all contained in a single repository or file (for example, a .JAR or .EXE file). In this
section, we will discuss monolithic architecture and its drawbacks briefly, followed by an
introduction to microservice architecture as an alternative. Finally, we will discuss how to
implement a microservice application.

In this unit, we will take a fictional food delivery application called FoodYNow as our
example. Customers of this application can order meals from a nearby restaurant, which
will then be delivered by app’s local e-bikers. Therefore, this application has three types of
users: customers, restaurant owners, and e-bikers.

3.1 Introduction to Monolithic
Architecture
Before starting with the microservice architecture concept, it is advantageous to have a
look at traditional monolithic architecture. After a brief introduction to this architecture,
we will discuss the drawbacks it has, which eventually led to the introduction of a novel
alternative (microservice architecture).

To explain this architecture, consider the FoodYNow application mentioned in the intro-
duction. After deciding on the business concept of this application, the development team
should start by designing, engineering, and coding the project. Following the traditional
software design school, this application could consist of different modules all combined
into a single program. These building block modules have different responsibilities, such
as authorizing access to the user’s account, managing HTTP requests, responding to the
HTTP request via HTML or JSON/XML messages (presentation module), managing data of
different entities (customers, restaurants, e-bikers, etc.), and delivering notifications. A
simplified version of this proposed FoodYNow architecture can be seen in the figure
below. At the heart of the FoodYNow application is the business logic, which consists of

54

Vague language

modules responsible for different services, domain objects, and events. We have a module
responsible for “Customer” management, a module responsible for “Order” management,
a module for “Restaurant” management, and a module for “E-biker” management. There
are also modules for “Billing,” “Payment,” and “Notification.”

These modules exchange data with the external world entities such as mobile clients and
databases using the relevant connectors. For example, a MySQL adapter exchanges data
with the SQL database, the REST APIs communicate with the “Customer,” “Restaurant,”
and the “E-Biker” mobile devices, WEB-UI communicates with other web applications, the
“PayPal” adapter makes communication with the PayPal payment platform possible, and
the “MailChimp” and “Twilio” adapters are responsible for “Notification” management.

Figure 23: Monolithic Architecture of FoodYNow Application

Source: Alavirad, 2020.

In this architecture, all modules are packed in a single unit of a program that reminds us of
a monolith: a single and very large organization that is very slow to change (Oxford Dic-
tionary, n.d.). A monolith application is self-contained: all components (modules) required
to run the application are integrated into the application code. After finishing the applica-
tion coding, all developed modules are integrated (built) into a single file (such as a JAR,
WAR, or EXE file). This single file is then deployed into a platform such as the Tomcat appli-
cation server so that the application is made accessible to its users. Using such a singular,
massive unit of code has some advantages, such as:

55

Quartz
A job scheduling library

for Java applications,
Quartz is used for organi-
zation-class applications
to support process work-

flow and system manage-
ment actions, as well as

providing timely services.

• Developing a monolithic application is reasonably straightforward, as normally there is
a single language and a single platform to develop the software. At the beginning, it is
also the most natural way to build an app, especially when with a small team. There-
fore, such an application can be developed using a team of developers who are experts
in that specific language and platform.

• As there is a single unit of the program, the deployment of monolith applications is also
fairly simple.

• A monolithic application is self-contained, a characteristic that makes testing such an
application less complicated, as there is normally no required external dependency to
execute the test.

• The application being self-contained also makes management of the application easier.
• To some extent, a monolithic application is also scalable. In the scaling process, differ-
ent copies of the application will be run on different nodes (if the application has been
developed as a multithreaded application) and a load manager will manage the traffic
among the nods to improve reliability and availability.

Let’s assume that your monolith FoodYNow application fascinates a lot of customers and
the number of users grows exponentially after a year. This means that, sooner or later, you
will need to improve your application by adding extra features and adapt its performance
to match the growing load. After a year or two, your small and simple application will have
turned into a large, complex, complicated application.

With its current monolithic design, your application has some drawbacks:

• Further development of a large and complex monolithic application is challenging, as it
becomes difficult for any individual software architect and developer to understand the
whole code (this applies especially to new members of the development team). As a
result, the development process will slow down and the modular characteristic of the
software will perish. Together, these obstacles will result in a decline in software quality
over time.

• An increasing software size (with respect to the code) will overload the Interactive
Development Environment (IDE), which will slow down the development process.

• The web container will overload as the size of the application increase, which will result
in longer start-up times. Therefore, if the developers have to restart the application’s
server several times per day, a majority of their time will be wasted waiting for the
application to start up.

• Another drawback of a giant monolithic application is its continuous deployment. In
this scenario, to update a single module of the application, developers have to redeploy
the entire application. This process will interrupt the background jobs, for example, the
Quartz jobs in Java applications. This could result in software failure. Therefore, devel-
opers might be very reluctant to implement frequent updates.

• A massive, monolithic application can only be scaled up one-dimensionally. To under-
stand one-dimensional scaling, consider a monolithic application, where one of its
modules implements CPU intensive image processing logic and another module is an
in-memory database. As these two modules are integrated into a single application, it is
not possible to scale the resources of each module separately (CPU for module A or

56

memory for module B). The only scaling option here would be scaling all resources one-
dimensionally (i.e., keeping memory and CPU together for all modules, irrespective of
whether all modules need those extra resources).

• As all modules of a monolithic application are running within the same process, a fault
in a single module, such as a memory leak, could result in the whole application experi-
encing a software failure.

• Let us assume that the monolithic software has been designed for a specific framework.
It would be extremely resource and time-consuming to redesign it for a modern frame-
work, as all of the software would have to be rewritten from scratch.

Therefore, monolithic application architecture is not a sustainable method for developing
modern, dynamic applications which need to improve and change scale frequently
throughout their life cycles. In the next section, we will introduce the microservice archi-
tecture pattern as an alternative approach to resolving the aforementioned problems.

3.2 Introduction to Microservices
As we have learned in the previous section, we encounter some difficulties and complexi-
ties when dealing with a massive size monolith application, such as scalability, reliability,
and so on. To overcome these problems, you can develop the application as a set of
loosely coupled services that communicate with each other through APIs—these services
are known as microservices. Each microservice is an individual micro-application with a
very specific functionality, such as customer management or order management. To com-
municate with other microservices in the application, and also with the application’s
external clients, each microservice provides an API.

The microservice architecture approach is based on a combination of some proven con-
cepts, such as (Amazon, 2020o)

• agile software development,
• service-oriented architecture,
• API-first design, and
• continuous integration/continuous delivery.

This architecture has been implemented by Amazon, Netflix, and eBay. In the figure below,
the microservice architecture variant of the FoodYNow application has been depicted.
With this novel design, instead of a big business logic which contains all functionality of
the application, we have small microservices interconnected with APIs. For example, one
microservice manages the e-bikers who are responsible for picking up the food from res-
taurants and delivering it to the customers. This service uses the notification microservice
to inform an available e-biker about a pick-up from a nearby restaurant. Each backend
microservice (such as “Customer management,” “E-Biker management,” and so on) is pro-
vided by an API to communicate to other microservices or Web UIs. There are also some
adapters to connect to external services, like the “PayPal adapter” for the “Billing” and
“Payment” microservices. The API gateway is responsible for communication between the
external entities (e.g., customers’, e-bikers’, or restaurant owners’ mobile clients) and the

57

platform, as the client applications do not have direct access to the backend microservi-
ces. This component is also responsible for load balancing, monitoring, and authorized
access. We will discuss the API gateway in more detail later in this unit.

Figure 24: Microservice Version of the FoodYNow Application

Source: Alavirad, 2020.

To achieve a loose coupling between microservices, each is provided with a database and
a database schema. In the figure below, the database of each microservice for the FoodY-
Now application has been shown. Each microservice uses a suitable database and data-
base schema that considers its functionality and requirements. We will discuss the data
consistency approach between these databases in more detail later.

58

Figure 25: Microservices and Databases

Source: Alavirad, 2020.

If we consider the scale cube, introduced by Abbott and Fisher (2015), the microservice
architecture is equivalent to the y-axis scalability, i.e., functional decomposition. In this
cube, x-axis scaling corresponds to running multiple copies of the same application on
multiple nodes when the loads are monitored and managed by a load balancer. The z-axis
scaling is similar to the x-axis scaling; multiple copies of the same application run on mul-
tiple nodes, but each node is responsible for a specific portion of the data.

59

Figure 26: Scale Cube

Source: Alavirad, 2020, based on Abbott & Fisher, 2015.

Advantages of Microservices

Because every single microservice is much smaller in size than a massive monolithic appli-
cation, it is easier to understand the microservices and to apply relevant modifications, to
fix microservices bugs, and to improve them. In other words, such an application is more
maintainable and extendable. Each microservice can be tested quickly, as there is a loose
decoupling between services.

Unlike monolithic applications, each service can be deployed independently, which
inspires developers to implement more changes. Developers also need not coordinate
local change deployments with other microservices’ teams. The software project can be
broken down into small batches (each includes one or several services), where each devel-
opment team is responsible for its batch. Therefore, the development process can be
accelerated.

Also unlike in monolithic applications, the IDEs are not overloaded, so the development
process will not be slowed down. When there are some bugs and faults with a microser-
vice, it is easier to track and isolate those faults. It is also easier to migrate to new technol-
ogies, as it is possible to upgrade each microservice independently, unlike with the modu-
lar structure of monolith architecture, where all modules should be upgraded
simultaneously.

60

Remote Procedure Call
An RPC is a method of
interprocess communica-
tion for distributed client-
server based applica-
tions. In this approach,
the invoked procedure is
not required to exist in
the same address space
as the calling procedure.
CAP Theorem
The CAP theorem in dis-
tributed data stores states
that such systems can
only satisfy two of the the
three following criteria:
availability, consistency,
and partition tolerance.

Disadvantages of Microservices

Managing and testing the intercommunication between different services is not always
straightforward. This intercommunication can be accomplished, for example, by messag-
ing or Remote Procedure Call (RPC). Designing functionality that spans multiple micro-
services is ambiguous. Distributed databases are another source of complexity in a micro-
service architecture. It is very common to have transactions that update multiple business
entities. In the monolithic applications, this is quite clear as there are only a few (some-
times only one) databases and only these databases should be updated. In the case of
microservice architecture, however, each service has its database and the transaction
should follow the CAP theorem.

The testing procedure of microservice applications could be more difficult. For example,
testing the REST APIs of a web application design based on a monolithic application with
an automated test procedure framework like Spring Boot is fairly simple by starting up the
application inside this framework. However, in the case of the microservice application,
the associated microservice of the under-test API and all dependent microservices should
be executed.

Complicated deployment is also another disadvantage of microservice applications. In the
case of a monolithic application, multiple copies of the application run on several servers
where each copy is identified by the host server locations. However, each microservice
application consists of many microservices. For example, Netflix has over 500 microservi-
ces (SmartBear Software, 2015), and each of these services have several runtime instan-
ces. Add to this complexity a mechanism to discover the location of the required services
by internal services or external applications. Therefore, a successful deployment should
be as automated as possible, for example, CloudFoundry provides an automated platform
for deploying microservices.

3.3 Implementing Microservices
Having discussed the basics of microservice architecture, we will now consider different
aspects regarding implementing microservices. We will look at the following topics:

• client-microservice communication
• microservice intercommunication
• service discovery mechanisms in a microservice application
• distributed data management in a microservice architecture
• deployment strategies of microservices
• migration from a monolith application to a microservice application.

Client-Microservice Communication

In a monolith application, the external client-application communication is almost unam-
biguous: there is only one set of endpoints (application replications) that are assigned or
loaded by a load-balancer component. However, in a microservice architecture, each

61

microservice provides a set of endpoints, as each microservice is a mini-application. To
make this point clearer, consider the FoodYNow mobile application. On a specific restau-
rant page inside the customer mobile application (an external client), there is a collection
of information such as

• general information about the restaurant (e.g., name, type, address, and opening
hours)

• customer reviews of popular dishes
• current special offers

Figure 27: Mobile Client Application of FoodYNow

Source: Alavirad, 2020.

Assume this application has been designed in a monolithic architecture. To retrieve all this
information about the restaurant from the database, the mobile client requests a single
REST call to the application:

GET api.foodynow.de/restaurantsdetail/restaurantID

The request will be delivered by a load balancer to one of the several running copies of the
FoodYNow application.

However, if we want to design this application based on the microservice architecture, we
should have a microservice for almost every information unit displayed on the client
mobile application and send a REST request to each of them. In this scenario, a load bal-
ancer makes direct communication between the mobile client and the application possi-
ble. Such an approach has some drawbacks, like microservices factoring in future devel-
opment (merging or splitting microservices). It also increases the chance of a client-
microservice protocol mismatch.

62

Figure 28: Mobile Client Application Direct Communication with a Collection of
Microservices

Source: Alavirad, 2020.

A more efficient approach is to instead design a server as a single entry point to the micro-
service application, i.e., the API gateway. This component hides the complexity of the
internal system of the application from the (mobile) client with tailored APIs for each cli-
ent. The API gateway also plays the role of a protocol translator, request router, balancer,
and combiner. Therefore, in this scenario, there is no direct external client-microservice
communication: every single request from external client applications will be directed to
the API gateway, which then redirects the requests to the relevant microservice or a group
of microservices.

For example, if the FoodYNow application is designed based on the microservice architec-
ture below, a single request by the client application, for example,

GET api.foodynow.de/restaurantsdetail/restaurantID

will be sent by the mobile client application to the API gateway. This request will be
decomposed by the API gateway into several requests to the individual micro-services, for
example “restaurant basic info” microservice, “customer reviews” microservice, and so on.
The responses will then be combined in a single response and sent to the mobile client. In
this case, the API gateway will also translate the incoming requests from web-friendly pro-
tocols of the mobile client, such as HTTP, into less web-friendly intercommunication pro-
tocols of the microservices.

63

Figure 29: API Gateway in Microservice Architecture

Source: Alavirad, 2020.

An example of an API gateway for microservices is Netflix Zuul (Netflix, 2020c). This appli-
cation is the front door to all Netflix’s server infrastructure and microservices (Netflix,
2016). Zuul dynamically routes the client requests from different devices such as mobile
phones and tablets to the relevant Netflix microservices. It also provides Netflix’s develop-
ers with services for testing and debugging new services, system health monitoring, and
helps protect the infrastructure from cyberattacks. Zuul also balances the traffic among
multiple Amazon Auto Scaling groups.

Zuul has other functionalities, such as load shedding: it drops requests that exceed the
predefined load capacity. This component also tests a server by adding load gradually to it
to gauge its performance (stress testing).

Service Discovery

Unlike with traditional applications, where the network location of services that are run-
ning on physical hardware is relatively static, with modern cloud-based applications the
network location of applications is dynamic. In the case of microservice applications, the
number of microservices also changes dynamically. For instance, the Amazon EC2
Autoscaling component changes the number of service instances depending on the load.
Therefore, finding the relevant service is a challenge in implementing microservice appli-
cations.

64

Service registry
A service registry is a
database with the infor-
mation about the availa-
ble services, including
their netwok locations
and ports.

Figure 30: Service Discovery Problem

Source: Alavirad, 2020.

There are two approaches to discovering service locations, including IP address and port
(Richardson, 2020):

Client-side discovery: in this approach, the client (client application or API gateway) is
responsible for discovering the location of services inside the system by requesting a serv-
ice registry. The service client then uses a load balancer approach to deliver the request.

One benefit of this approach is fewer moving parts relative to other discovery approaches,
as we will see in the rest of this section. However, there are also drawbacks with this
approach:

• In this approach, the client has to be coupled tightly with the service registry.
• For each programming language used by the client, such Java or Scala, a client-service

discovery logic must be developed.

65

Figure 31: Client-Side Discovery of Microservices

Source: Alavirad, 2020.

A client-side service discovery could be developed, for example, using Netflix Eureka (Net-
flix, 2020a) and Netflix Ribbon (Netflix, 2020b). Netflix Eureka is a REST-based service regis-
try that provides an API for managing service-instance registration and a list of the availa-
ble services. Ribbon is an HTTP client that routes HTTP request to the relevant services by
querying to Eureka. Ribbon reads the status attribute of the available microservices from
the Eureka server and assigns only the instances with an UP status for load balancing.

Figure 32: Designing a Client-Side Service Discovery Using Netflix Eureka and Netflix
Ribbon

Source: Alavirad, 2020, based on Netflix, 2020a; 2020b.

66

Thrift
A lightweight, language-
independent software
stack, Thrift is used for
point-to-point remote
procedure call (RPC)
implementation.

In a server-side discovery approach, the client (e.g., API gateway) sends a request via a
router to the service registry. After receiving the response from the service registry about
the relevant service, the router sends the request via load balancer to that service.

Figure 33: Server-Side Discover Approach

Source: Alavirad, 2020.

In this mechanism, the client code is simpler compared to the client-side discovery, as the
client is not engaged with the service discovery task. Some cloud platforms such as AWS
also provide similar server-side discovery routers such as the Elastic Load Balancer (ELB).
The drawback of this approach is that there are more moving parts (router), which all
require development and configuration. The router must also support the required com-
munication protocols (e.g., HTTP, or Thrift).

An example of a server-side discovery router is the AWS Elastic Load Balancer (ELB). The
client application makes an HTTP or TCP request to the ELB and it distributes the load
among a set of registered Elastic Compute Clouds (EC2) instance. The service registry is
integrated within ELB.

In both cases discussed above, a service registry is an important element of the service
discovery mechanism. A service registry is a database of available services, their locations,
and also instances of services. When a service starts up, it is registered on the service regis-
try and when it shuts down, it is deregistered from the service registry. The registration
could be accomplished in two different approaches:

• With the self-registration approach, the microservice registers itself by the service regis-
ter.

• With the third-party registration approach, a third party component is responsible for
registering and deregistering microservices.

67

Please rework the phrasing

Microservice Intercommunication

In this subsection, we will discuss the intercommunication mechanism between microser-
vices in a microservice application.

In a microservice architecture, each service is a process that runs on a specific host (often
in the cloud). Therefore, an inter-process communication (IPC) mechanism must be
designed to manage the intercommunication of services. We will discuss four such IPC
mechanisms.

Synchronous messaging

In this approach, the client uses request/response protocols such as REST and Apache
Thrift to request a service (Raj et al., 2017). In many cases, the client blocks a thread until it
receives a response from the server. This approach has benefits like the simplicity of
request/response protocol implementations. However, it has several drawbacks. In this
approach, we have a lower system availability, as the client and the server are blocked
during the IPC messaging process. The service discovery for this approach is client-side
discovery.

Asynchronous messaging

There are different types of asynchronous messaging mechanism:

1. Request/asynchronous response. In this mechanism, a client sends a request to a
server and expects to receive the response: not promptly, but eventually, at some
point in the future. Therefore, the client does not block the server, unlike the synchro-
nous messaging mechanism.

2. Notifications. In this mechanism, a sender sends one message to one or several
receivers and does not expect any response from receivers. The receiving channels for
notifications could be SMS message, e-mail, REST callback, AMQP, MQTT, and so on
(EdgeX Foundry, 2020).

3. Publish/subscribe. A publisher publishes a message to zero, one, or many subscribers.

The asynchronous IPC mechanism has several benefits, such as higher availability
because the message broker buffers message until they are requested by the subscriber/
receiver. The drawback of this mechanism is higher complexity compared to the remote
process call approach. Apache Kafka is an example of an asynchronous messaging system.

Domain-specific protocols

It is also possible to use some domain-specific protocols like e-mail protocols (e.g., IMAP)
or media streaming protocols (HLS, HDS, etc.) to fulfill the communication between micro-
services.

In the figure below, the intercommunication between some of the microservices in the
FoodYnow application have been shown. The customer mobile application sends a
notification to submit an order which is collected (picked up) by the “Order manage-

68

ment” microservice (through the API gateway). The “Order management” microservice
requests customer information from the “Customer management” microservice and
after receiving the response it publishes a created order which is received by the “Dis-
patcher” microservice (Richardson & Smith, 2016).

Figure 34: Intercommunication between Services in FoodYNow Microservice Application

Source: Alavirad, 2020, based on Richardson & Smith, 2016.

The development of the API services depends on IPC mechanisms. For example, when we
use RPC mechanism and using HTTP, the API should include URLs and when we use asyn-
chronous messaging, the API should contain the message channels and the message
types.

Distributed Data Management

To ensure the highest decoupling degree, it is necessary to encapsulate the data of each
microservice privately and make the data accessible only through APIs. Besides, as each
microservice inside the system has different functionality, it is very common that micro-
services have different types of databases and database schemas. For example, the “res-
taurant basic info” service may use a MySQL relational database, while the “trip” microser-
vice uses a NoSQL database like Neo4J.

Therefore, it is very probable that a microservice application uses different types of data-
bases. Such a data system architecture creates some challenges regarding data manage-
ment.

For example, let us imagine that, on the FoodYNow application, a customer can use the
bonus (credit) on his account to order food on the platform. The “Customer management”
microservice contains information about the customer and the “Order management”

69

Message broker
A service that helps other

services within a micro-
service architecture to

perform intercommunica-
tion via messaging is

called a message broker.

microservice contains information about the order. The “Order management” microser-
vice should check if the cost of the order does not exceed the customer’s bonus. The prob-
lem here is that the data of each microservice is private and, for example, the “Order man-
agement” microservice has to request access to the “Customer management”
microservice’s data through an API. It cannot access this information directly.

Another challenge is querying data from multiple microservices. In the previous example,
we looked at retrieving data from “Customer” and “Order” microservices. If the “Cus-
tomer” microservice uses a SQL database and the “Order” microservice uses a NoSQL
database, the data retrieving process could be also challenging (because of the possible
aggregation of different types of data).

One approach for overcoming these data management problems, i.e., data consistency
and querying data across multiple independent and different databases, is to use an
event-driven architecture. In this approach, a microservice publishes a message to a mes-
sage broker. When some pre-configured event happens, for example, a customer places
an order (this intercommunication mechanism is different from what is presented in the
previous figure), the “Order management” microservice publishes an event
(order_created) to the message broker containing information about the order
(customer_ID, total_amount, etc.). The “Customer management” microservice, which
has been subscribed to the message broker, consumes this order_created event and
checks if the customer_bonus does not exceed total_amount. If not, the “Customer”
microservice publishes a bonus_reserved event to the message broker. The “Order”
microservice uses this event to change the order_status inside its database from new to
open. Such a transaction does not guarantee an ACID transaction, but does guarantee
some weaker constraints like eventual consistency. In eventual consistency, if there are no
new updates to the system, all accesses eventually will return the last updated value
(Vogels, 2008).

Atomicity of transactions in an event-driven data management architecture is another
fundamental challenge. Consider that the “Order management” microservice updates the
order_table with a new row containing the information of a new order. However, the
system crashes just before the “Order management” microservice could publish the
order_created event into the message broker, which leads to the data inconsistency of
the data system.

Event sourcing is an approach to achieve atomicity (Event Sourcing, 2015). The fundamen-
tal concept in event sourcing is as follows: instead of persisting the current status of a
business object, a microservice persists the object’s state-changing events. The event-
driven application will reconstruct the current status of the object (for example an order),
by replaying the sequence of events. When an event happens, this event will be appended
to the list of events. As inserting a single entity (new entity) is a single operation, this
approach is atomic. For example, the “Order management” microservice updates the
Order_20 table inside the event store by inserting a new row with values like
order_created, order_confirmed, order_shipped, etc. The event store is a database
containing the events data and provides APIs for updating or retrieving the data. This com-
ponent also plays the role of the message broker in this example.

70

Figure 35: Event-Sourcing Approach to the Atomicity of Event-Driven Applications

Source: Alavirad, 2020, based on Event Sourcing, 2015.

Microservice Deployment Strategy

We will now discuss some microservice application deployment strategies. The deploy-
ment of monolith applications is simple: you deploy several monolithic application instan-
ces across a suitable number of servers.

In the case of microservices applications, each microservice is a micro-application that
should be started with the required resources, such as CPU and memory. In addition, the
number of running copies of a microservice is not constant, as it is a function of the
demand and is managed by a load balancer. In the following, we will discuss some deploy-
ment strategies for microservice applications.

Multiple microservice instances per host

In this approach, we run multiple instances of different microservices on a physical or vir-
tual host. In this strategy, the engineers can deploy each microservice as a single process,
for instance a Java virtual machine (JVM) process. It is also possible to group multiple
microservices in a single JVM process.

71

Figure 36: Multiple Microservice Instances per Host

Source: Alavirad, 2020.

There are two benefits to this approach:

• As multiple service instances share the same server, the resource usage is economical.
• The deployment is fast, as it is only required to copy the microservice (e.g. .JAR or .WAR

files in the case of Java applications) into the host and start it.

The main drawback of this approach is the lack of isolation of the microservice instances.
Service isolation can only occur in the case of one process per microservice. Otherwise,
there is little or zero isolation when multiple microservices are grouped in a single proc-
ess. For example, when multiple Java microservices share the same JVM heap, a malfunc-
tioning microservice could cause the failure of all other microservices running in this JVM.
Besides, if multiple microservice instances are grouped in a single process, the resource
management of each microservice instance is challenging.

Single service instance per virtual machine

In this approach, each microservice will be deployed into a single and isolated virtual
machine such as an Amazon EC2 AMI. This approach has been used by Netflix to deploy its
video streaming microservices. Multiple platforms provide tools for building virtual
machines like Packer (2020) and Boxfuse (2020).

72

Figure 37: Single Service Instance per Virtual Machine

Source: Alavirad, 2020.

This deployment approach has several benefits such as:

• complete isolation of the microservices
• benefits from the virtual machines cloud platform infrastructure such as load balancing

and auto scaling of AWS
• easier deployment because, after packing the microservice as a virtual machine, the

VM’s management API becomes the deployment tool and the service itself becomes a
black box

The drawback of this approach is the wasting of resources. If we overestimate the required
resources by a microservice, the extra resources will be wasted, as there are no other pro-
cesses to use these extra resources. In addition, most VM cloud providers charge you for
each VM, irrespective of its status (active or idle).

It is also possible to use a container to deploy microservices. A container virtualizes the
operating system (virtualization at the operating system level) in such a way that multiple
workloads can run on a single operating system (unlike the virtual machines that virtual-
ize the hardware to run multiple instances of the operating system) (Chamberlain, 2018).
In this model, we pack the microservice in a container image consisting of the application
and the libraries required to run the application.

73

Serverless deployment

The final strategy we will discuss is serverless deployment. In this approach, we use the
deployment infrastructure of a service provider like Amazon Lambda (Amazon, 2020n). In
this scenario, we copy the ZIP file of the microservice together with the required metadata
and the infrastructure of the service provider runs the microservice.

The infrastructure uses virtual machines or containers to isolate microservices. There are
different examples of serverless deployment infrastructures like Amazon AWS Lambda,
Google Cloud Functions (Google, 2020i), and Azure Functions (Microsoft, 2020f).

An AWS Lambda function is a stateless component that is used to handle events. To create
such a function, the engineer packs the application written in Java, Python, or NodeJS in a
ZIP file and uploads it on the AWS Lambda. Then when an event is published, the AWS
Lambda runs an idle instance of your Lambda function to handle the event. AWS Lambda
also runs enough instances of the Lambda function to handle the load reliably.

There are four methods to call a Lambda function:

1. Configure the Lambda function to be called when an event is created by an AWS serv-
ice like S3, Kinesis, and DynamoDB

2. Configure the AWS Lambda Gateway to direct the HTTP request to a specific Lambda
function

3. Call the Lambda function explicitly using the AWS Lambda Web Service API
4. Configure the Lambda function to run periodically

Some of the benefits of a serverless deployment are:

• There is no infrastructure to manage or maintain.
• It is easy to deploy.
• You can pay per request.
• It is automatically scalable.

The drawbacks of a serverless deployment are:

• Constraints and limits are imposed by the infrastructure provider.
• Often, only certain programming languages are supported.
• AWS Lambda is restricted to limited input sources.
• Unless lightweight microservices are used, the service’s response time won’t be accept-

able.

Migration from Monolithic to Microservice

The last part of this section will discuss different strategies to turn your existing monolithic
application into a modern microservices application. Of course, we will not discuss rewrit-
ing a monolith application here, as this approach is not a migration, but a new develop-
ment and design procedure.

74

Strategy A

The most straightforward strategy is to develop new features of an existing monolith
application in the form of microservices. These new microservices coexist with the main
monolith application. This strategy stops the monolith application from growing. A gate-
way component is required to route the requests to the newly developed microservices or
the old monolith application. To make the direct communication between the monolith
part and new microservices, another component known as glue code is required. This
component could be a part of the monolith application or the microservice and its main
role is data integration as the monolith component needs the data from microservices and
vice versa. Although this strategy helps to prevent the monolith application from being
unmanageable, it cannot resolve the existing problems of the monolith application.

Strategy B

We can generally split any existing monolith application into three components:

1. The presentation layer, which is responsible for communication to the external world
by handling HTTP requests using a REST API or an HTML-based web UI

2. The business logic layer, which contains the main code and functionalities of the
application

3. The data-access layer, which is responsible for accessing the infrastructure compo-
nents, e.g., databases

In this strategy, we separate the presentation layer from the business and data access lay-
ers and make their communication possible through a REST API. In this strategy we split
the monolith application into two smaller components, where each of them can function
like a microservice. After splitting the main monolith application into two smaller compo-
nents, the developer team can develop, maintain, scale, and deploy each component eas-
ier. The REST API component developed for communication between components also
could be used by newly developed microservices following strategy A. Again, this strategy
is not the most ideal solution. We need another strategy to resolve the problems associ-
ated with our monolith application.

Strategy C

In this approach, we extract the modules of the existing monolith application and rewrite
them into microservices. This strategy also shrinks the size of the monolith application
and, in the end, we can transform our entire monolith application into a microservice
application.

In this strategy, the main question is which module should we choose first to turn into a
microservice. Here are some things to consider when choosing:

75

1. Choose a module that has a very different resource requirement pattern to the other
modules, for example, a module that needs a cache or high computational resources.
Isolating these modules is beneficial because, after isolating them, they can be scaled
independently.

2. Choose a module that needs updating more frequently.
3. Choose a module that is loosely coupled with the rest of the modules in the monolith

application.
4. Extracting a module that exchanges information in the form of asynchronous messag-

ing with other components of the monolith application would be easier than extract-
ing a module that communicates with synchronous messaging.

After choosing the right module to convert into a microservice, we should now define a
coarse-grained interface between the module and the rest of the monolith application
components. This process could be challenging, as there is a complex and tangled com-
munication process between the module and the monolith application (as the example in
the figure below shows). In this example, we have chosen to convert module Z into a
microservice. Module Z calls module Y and is called by module X. In the first step, we
define the coarse-grained interface between modules X, Y, and Z. We define an interface
that is used by module X to call module Z and then we define another interface used by
module Z to call module Y. Finally, we rewrite the module’s code to be a standalone micro-
service. The communication will be realized by developing the relevant APIs, as shown
below.

76

Figure 38: Choosing a Module from a Monolith Application to Convert into a
Microservice

Source: Alavirad, 2020.

SUMMARY
In this unit, we learned about monolithic and microservice architec-
tures. We started with a brief introduction to monolithic applications as
a single body of code (such as a single .EXE file) which is made up of sev-
eral modules, with each module having specific functionalities. We have
shown that, as the size of the software grows, this architecture is not a
sustainable design method for massive or complex software.

77

We then discussed microservice architecture as an alternative to mono-
lithic architecture. A microservice application is a set of loosely coupled
services that communicate with each other through APIs. We also dis-
cussed the advantages and disadvantages of this model, such as chal-
lenges with managing the distributed databases.

Finally, we discussed different topics regarding the implementation of
microservices. Some aspects, such as client-microservice communica-
tion, microservices intercommunications, service discovery mechanisms
in a microservice application, distributed data management in a micro-
service architecture, deployment strategies of microservices, and migra-
tion from a monolith application to a microservice application, were
covered here.

78

UNIT 4
GOVERNANCE & SECURITY

STUDY GOALS

On completion of this unit, you will have learned …

– what data protection is.
– about the General Data Protection Regulation (GDPR).
– what the effect of the GDPR on data system design is.
– what system security is.
– some examples of security requirement engineering methods.
– what data governance is.
– how data governance is used within organizations.

There should only be 3-6 study goals. Please delete one.

4. GOVERNANCE & SECURITY

Introduction
In this unit, we will introduce three measures regarding the data within an organization.
To begin, we will discuss data protection, data regulation, and the rules regarding cus-
tomer data collection and processing. In this section, we will focus primarily on the Euro-
pean General Data Protection Regulation (GDPR) as an example of a data protection act.
Following this, we will discuss data security and how to secure collected data from unau-
thorized access and misuse. Finally, we will introduce the concept of data governance, a
set of principles and practices used to support efficient performance in evaluating, gener-
ating, storing, processing, and deleting corporate data.

4.1 Data Protection
Data protection, which is also known as data privacy, is the process of protecting an indi-
vidual’s data from misuse by data collection and processing companies. This concept
should not be confused with the protection of very sensitive and confidential data of an
organization from unauthorized access, which is known as data security. Both data secur-
ity and data protection are concerned with protecting data but focus on different types of
threats. Data protection policies protect an individual’s data against data collection com-
panies, while data security measures protect companies’ and organizations’ data against
unauthorized access and cyberattacks.

The main focus of data protection is giving an individual control over their private data
(Kneuper, 2019). Data protection has stemmed primarily from the topic human rights, as is
emphasized by Charter of Fundamental Rights of the European Union: “Everyone has the
right to the protection of personal data concerning him or her” (European Parliament,
2012, Art. 8).

As cultural aspects also play a role in the creation of data protection measures and regula-
tions, different data protection legislations can be found around the world. For example,
there are the Singapore Personal Data Protection Act, the Indian Data Protection Law, the
Asia-Pacific Economic Cooperation’s APEC Privacy Framework (APEC, 2015), and, since
May 2018 in the European Union, the General Data Protection Regulation (GDPR). In the
rest of this section, we will focus on GDPR as an example of a data protection act.

General Data Protection Regulation (GDPR)

GDPR is the European Union regulation regarding the protection of an individual's (EU citi-
zen's) data against data collectors within the EU, as well as the transfer of this collected
data outside the EU's borders. The core concept of GDPR has been stated in article 5: “per-
sonal data shall be processed lawfully, fairly and in a transparent manner in relation to the
data subject (‘lawfulness, fairness and transparency’)” (European Parliament, 2012).

80

This is just a summary, which is meant to be at the end of the unit. Can we properly introduce this topic to engage students?

This will need to be localized per region.

Ensure all commas and quotation marks are curly.

Requirement
engineering (RE)
The term requirement
engineering comprises
the identification, analy-
sis, specification, and val-
idation of all the charac-
teristics and basic
requirements of a soft-
ware system that are
required or relevant dur-
ing its life cycle.

In designing a data system that uses an EU citizen’s data, engineers always should work
closely with the legal department to design a product that is compliant with GDPR. Before
starting to discuss how to develop a data protection-compliant software product, we
should first define personal data as the main subject of data protection legislation. GDPR
defines personal data as “any information relating to an identified or identifiable natural
person” (European Parliament, 2012, Art. 4). We should therefore consider the email
address of person X, the social security number of person Y, or the bank information of
person Z as personal data which should be protected in data systems by applying GDPR
measures.

Article 4 of GDPR distinguishes between three different entities that are involved in a data
processing process:

1. The data subject is the identified or identifiable natural person who should be protec-
ted against data misuse. The data subject could be an individual website visitor, an
employee of a company, or a customer of an online shop.

2. The data controller is the body that determines the purposes and means of personal
data processing. The controller could be the customer of a software company and is
the collector of data.

3. The data processor is the body that processes personal data on behalf of the control-
ler following the rules and policies determined by the controller. There are many
cases where the controller and processor are the same entity. An example of a data
processor is a cloud service provider.

4. It should be emphasized that software companies, as far as not collecting and pro-
cessing individual data is concerned, are not subject to the GDPR, as they do not col-
lect or process the data of individuals. However, their product should still be compati-
ble with GDPR to be applicable in collecting and processing the individuals’ data in
the EU.

GDPR and Software Engineering

Implementing data protection legislation in data systems is one of a system engineer’s
tasks that could be categorized under requirement engineering. Legal regulations are
the primary motivation for implementing data protection requirements into the software
design life cycle (Hjerppe et al., 2019). The GDPR’s requirements for data protection
impose restrictions on data systems that process individual data in the European Union.

From the perspective of software development, there are a number of principles (Px) and
rights (Rx) that should be considered during the design and development phases
(Kneuper, 2019):

Principles of GDPR-compliant design

P1, Purpose limitation: The collected data could only be processed for the purposes which
are originally collected for. For example, the data collected for newsletter subscription,
could not be sold to a third party advertisement company (like Facebook) to push adver-
tisements to the newsletter subscriber. If there is a new purpose of data processing, the

81

software development team must inform the customer of the software development proc-
ess (the controller or the processor) about this new usage and they should confirm legiti-
macy (by informing the data subject).

P2, Data minimization: Collecting data “just in case” is strictly forbidden. The software
engineers should ensure that for the defined purpose, the minimum possible data should
be collected. For example, an application that manages email newsletter subscriptions,
must not collect mobile phone numbers, and physical addresses of subscribers.

P3, Storage limitation: Not only the collected data should be minimized, but they should
not be stored longer than the required or agreed period. Unlike P1 and P2, this task
requires more engagement from the design and development team as they should imple-
ment the relevant functionalities in the software to identify the data which are not
required anymore or existing longer than the agreed storage limit. For example, a platform
that collects the applicants’ information to share with the employers, cannot store the
applicant data after the period which is mentioned in the terms and conditions of the plat-
form.

P4, Confidentiality: The data collector and data processors should prevent any unauthor-
ized access to the data subject. For example, the credit card information of the users of a
payment platform, should not be accessible to all employees of the payment platform.
This principle requires the engagement of the data system engineers to implement the rel-
evant functionalities.

Rights of data subjects

In addition to the above principles, GDPR also defines some “rights” which should be also
considered during the software design and development process (Regulation 2016/679):

R1, Right to transparent information (Article 12): The controller or the processor should
provide transparent and easy-to-understand information about the purpose of data usage
to the data subject. This information should be provided in written form. An example of
the implementation of this is when a website notifies visitors about cookies.

R2, Right of access by the data subject (Article 15): The data subject should have the right
to request their stored data and perform processes on this data. This right requires the
presence of the relevant functionalities in a data system in order to retrieve the required
information for a specific data subject. This task could be complex, especially in the case
of unstructured data such as the photos, comments, and “likes” of a user on a social
media platform.

R3, Right to rectification (Article 16): The data subject has the right to modify and update
their stored and processed data. The software development team should therefore ensure
the relevant features for editing individual data are present. In this case, a modification of
unstructured data is challenging, especially when data redundancy must be considered.

82

R4, Right to be forgotten (Article 17): The data subject has the right to request the removal
of their individual data. The most famous case of this right was the European court deci-
sion about removing the data subject information from Google search results under cer-
tain conditions if a data subject requests it (Mantelero, 2013). The implementation of such
a deletion functionality could be challenging for the software development team.

R5, Right to data portability (Article 20): The data subject has the right to migrate their
individual data to another processor. That is, a data subject should be able to move their
data from Platform A to Platform B.

R6, Right of Data Traceability (Article 30): User requests and data must be traceable to ena-
ble the discovery of any potential data exposure to third parties and any potential trans-
fers of personal data outside of the EU. To implement traceability in a data system, accu-
rate logging should be used (Hjerppe et al., 2019).

R7, Right of database physical location: The data subject has the right to know the physi-
cal location where their data is stored. To properly account for this right, integration of
cloud architecture in the software product may be necessary.

A GDPR-Compliant Software

Considering just the principles and rights above, implementing a GDPR “request interface”
and “request service,” as shown below, could make a software product GDPR-compliant
(Hjerppe et al., 2019). It should be noted that the GDPR has 99 articles and a GDPR-compli-
ant software should be compatible with all articles.

The GDPR “request interface” in the figure below is the component through which users
can exercise their rights. At the top of this architecture, we have a public-facing system
such as a web server. Through this system, an authenticated user can make a GDPR
request. This request will be directed to the “GDPR request interface.” This component is
connected to a “GDPR request service” which is a part of the private system. The system
administrator uses this request service to approve or decline a GDPR request received
from the GDPR request interface. The communication between the “administrator user
interface” and the “GDPR request interface” is realized by a “request API.” The “request-
specific database” stores some personal data required for handling requests. Sensitive
personal data are stored on the “core personal data module.” For example, the “request
specific database” stores information about the usernames and email addresses and the
“core personal data module” stores the real name and credit card information of users.

83

Figure 39: GDPR Request Interface

Source: Alavirad, 2020, based on Hjerppe et al., 2019.

4.2 System Security
What is System Security?

We start this section by introducing system security and differentiate it from system safety.
These two concepts are sometimes used interchangeably, but there is a notable difference
between them. We can distinguish between these two concepts with the following state-
ment (Axelrod, 2013): a safe system should not harm the world and a secure system
should not be harmed by the world. Therefore, the goal of a safety-critical system is pre-
venting contamination and the goal of a security-critical system is protection.

84

Please ensure there is always text between headings.

Citations at the end of the sentence.

Figure 40: Safe vs. Secure System

Source: Alavirad, 2020.

In more technical terms, the goal of security measures for a data system is to permit all
intended use of the system and prevent any unintended or unauthorized use of the sys-
tem, its data, and its information.

Security Requirement Engineering

Requirement engineering is critical to developing any software project. Security require-
ment engineering is not an exception. An evaluation of a data system is possible if the
security requirements are correctly defined. In this subsection, we will discuss two
approaches to developing security requirements for the life cycle of a data system (Allen,
2008).

Misuse and abuse cases

When we design a software product, we normally consider the use cases, not the misuse
cases. Misuse cases are use cases for attackers. By assessing the misuse cases and think-
ing from the perspective of a hacker, we can better secure our data system against cyber-
attacks.

Hackers generally try to attack well-known locations inside the software system, for exam-
ple, by using the intersystem communication. When a software architect designs a system
that always validates all requests from the web-server to the database, hackers use this
design vulnerability to make an unintended request to the database server.

Because a system engineer knows their system better than the attackers, they can use this
extra knowledge to increase system security and reliability. To achieve this goal, the sys-
tem engineer should find the answers to questions such as:

85

• What implicit assumption has been implemented in the system?
• Under which conditions can these assumptions be falsified?
• What possible security attacks could stem from this falsified assumption?

Creating a misuse case table by answering the above questions is very helpful in security
requirement engineering. For example, the assumption that the user “won’t” change the
cached data because they do not understand it is an assumption that can result in some
security risks, as it is not an obstacle for attackers.

In the figure below, you can see a well-known use case and misus case diagram intro-
duced by Alexander (2003). In this diagram, the use cases are shown in orange and the
misuse cases in grey. By looking into the system (a car in this example) from the viewpoint
of a hacker to the system (car thief), we can develop the security requirements: lock the
car, lock the transmission.

Figure 41: Misuse Case vs. Use Case

Source: Alavirad, 2020, based on Alexander, 2003.

Sindre and Opdahl (2001) developed an iterative method, based on common risk and
threat analysis, for developing a security requirements diagram using misuse cases. It is as
follows:

1. Find the critical assets in the data system.
2. Define the security goals for each data asset.
3. Identify the threats for each security goal. These threats are caused by stakeholders

that attack the system or its environment. In this step, a sequence of actions that may
result in intentional harm should be developed.

4. Analyze the risks of the threats.
5. Define security requirements for these threats.

86

The result of the iterative misuse case analysis is a use case diagram that contains use
cases, security uses cases, and misuse cases.

In the figure below, we have depicted the misuse case and use cases for an online shop
(Chun, 2005). In this UML diagram, the relation between “use case” and “misuse case”
entities could be “threaten” or “mitigate”: the use case can mitigate a misuse case and
a misuse case can threaten a use case. For example, here, the use case is “screen input” to
reduce the chance of an outside crook spreading malicious code.

Figure 42: Misuse Cases and Use Cases for an Online Store

Source: Alavirad, 2020, based on Chun, 2005.

Security quality requirement engineering (SQUARE)

Security Quality Requirement Engineering (SQUARE) is a process for developing a tool for
eliciting, categorizing, and prioritizing the security requirement in an information system
(Mead et al., 2005). The main focus of this model is to integrate the security concepts in the
very early stages of the software life cycle.

This process can be summarized in the following nine steps (Mead, 2006):

87

1. Agree on definitions. During this step, different parties involved in the data system
project will discuss their concerns regarding system security requirements. It is also
possible to use the standards, like IEEE standards, for a clear and standardized defini-
tion of security measures and requirements.

2. Identify the security goals. In this stage, the security goals of different stakeholders
inside the organization will be identified. For example, for the Human Resources
department, the security goal is to keep employees' data safe; for the Finance depart-
ment, the security of the organization’s financial data is the main concern.

3. Develop artifacts. Developing documented normal uses, threat scenarios, and misuse
cases will support all subsequent requirement engineering activities.

4. Perform risk assessment. Using a risk assessment method and utilizing the artifacts
from step 3 as input, the engineers can identify high-priority security exposures.

5. Select the elicitation technique. This technique is important when there is a diverse
range of stakeholders. When there are different stakeholders with different cultural
backgrounds, using methods like structured interviews is beneficial to resolve com-
munication issues. When there is only a single stakeholder, an interview with them
would be sufficient.

6. Elicit security requirements. This step is the implementation of the selected elicitation
technique in step 5.

7. Categorize requirements. In this step, the security requirement engineers will catego-
rize the collected essential security requirement and goals.

8. Prioritize requirements. The categorized requirements in step 7 will be prioritized in
this step to find which security requirements have a high pay-off relative to their cost.
There are also other factors when prioritizing security requirements, like loss of repu-
tation, loss of customers, and so on.

9. Requirement inspection. In the final step, the requirements engineer inspects the pri-
oritized requirements which are still incomplete and should be revised. Ultimately,
the project team will have a clear list of security requirements to implement.

Security Pattern

In the final part of this section, we will review some of the security patterns. A security pat-
tern provides a solution to a security problem by controlling (stopping or mitigating) a set
of specific threats. This solution can be explained by using UML classes, states, and activ-
ity diagrams.

Each pattern is composed of the following parts (Rosado et al., 2006):

• Intent. This is a description of what the pattern does.
• Context. This the context of the problem.
• Problem. This is a statement of the problem.
• Description. This is a scenario that illustrates a design problem.
• Solution. This illustrates the solution to the problem.
• Use case. This gives some examples of implementations.

Table 1: Authorization pattern

Intent Asks the question: who is authorized to access the data system?

88

Strange phrasing in the table. Please rework.

Context Any data system where access to the system should be limited and controlled.

Problem The permission granted to a “security subject” so it has access to a “protected object”
should be explicitly indicated.

Description To structure the permissions, we distinguish between active entities (security subjects)
and passive entities (protection objects).

Solution The relationship between the “Subject” class and the “Object” class determines which
“Subject” is authorized to access the “Object.”

Use case This pattern is used in the access control systems of most commercial products such
Unix, Windows, and Oracle.

Source: Alavirad, 2020.

Figure 43: Authorization Pattern

Source: Alavirad, 2020.

Table 2: Role Bases Access Control Pattern (RBAC)

Intent Provides authorized access to the data system based on role

Context Any data system where the access to the system should be limited and controlled according
to the “Subject” role

Problem The permission granted to a security subject in order to grant access to a protected object
should be explicitly indicated according to its roles.

Description This pattern improves the administration process by giving different access levels to differ-
ent “subjects” or a group of “subjects.”

Solution This is an extension of the authorization pattern by defining roles as subjects.
“Users” are assigned to “Roles” and “Roles” are given “Rights” according to their functions
(roles). The “Right” association class defines the type of access.

Use case IBM’s WebSphere, Oracle, Microsoft Defender, and Azure

Source: Alavirad, 2020.

89

It is really awkward having all the tables one after another like this. Can we add some analysis between each example?

Figure 44: Role Bases Access Control Pattern (RBAC)

Source: Alavirad, 2020.

Table 3: Multilevel Security Pattern

Intent Access management in a security system with several levels of security classification

Context Appropriate for any system with several security levels

Problem How can security in a system with several security classifications be managed?

Description This provides different security levels for both “Subject” and “Object.”

Solution To provide a multilevel security structure, we define the “Subject classification” and
“Object classification.” The instances of these classes are used to define the level and
object security categories.

Use case IBM’s Informix

Source: Alavirad, 2020.

90

Figure 45: Multilevel Security Pattern

Source: Alavirad, 2020.

Table 4: Single Access Point Pattern (SAP)

Intent This pattern provides an interface for communication from external entities to the system.

Context Communication with external entities

Problem When a system has multiple access points to the external entities, managing these access
points could be a security challenge.

Descrip-
tion

It prevents any direct access from external entities to the internal modules of the system.
Each access request is directed through a supervised channel.

Solution SAP is the single connection point to the external world and all incoming requests are direc-
ted to the SAP instance. To apply certain policies, an instance of the “Check Point” class is
applied.

Use case Windows NT login applications

Source: Alavirad, 2020.

91

Imperial system
This is a system of meas-

urement in use in the Uni-
ted Kingdom and other
Commonwealth coun-

tries, consisting of units
such as the inch, the mile,

and the pound.

Figure 46: Single Access Point Pattern

Source: Alavirad, 2020.

4.3 Data Governance
We start this section with a story about a failed $125 million project at NASA (Douglas,
1999). In 1999, a failure in the transferring of information between the Mars Climate
Orbiter spacecraft team in Colorado and the mission navigation team in California led to
the loss of the Mars Polar Lander spacecraft in 1999. The reason? One team did the calcu-
lation using the imperial system instead of the metric system. The lack of a central policy
on how to uses data within an organization (here, NASA) led to the project failing.

Data governance defines a set of principles and practices to support efficient performance
in evaluating, generating, storing, processing, and deleting corporate data.

IBM (2020a) defines data governance as: “Data governance is the overall management of
data availability, relevancy, usability, integrity and security in an enterprise” (para. 1).

The Data Governance Institute (2008) explains data governance as: “Data Governance is a
system of decision rights and accountabilities for information-related processes, executed
according to agreed-upon models which describe who can take what actions with what
information, and when, under what circumstances, using what methods” (p. 3).

92

This is an example of a great intro to a topic. I am interested to read more and understand the importance of the subject.

Data governance includes the methods, roles, measures, and metrics that guarantee the
efficient and productive usage of data and information. It should not be confused with
data management, change management, data cleansing, data warehousing, or database
design. The goals of data governance could be listed as (Sweden, 2009):

• ensure transparency
• enable better decision making
• reduce operational friction
• meet stakeholder needs
• establish common approaches
• establish standard repeatable processes
• reduce costs
• increase effectiveness

The deliverables of a successfully executed data governance program are as follows:

• Data policies. A set of statements that controls data integration, storage, security, and
usage. In simple terms, they tell us what to do and what not to do with our data.

• Data standards. They provide the methods to implement data policies concretely, like
naming and modeling standards for data.

• Data management projects. Data governance regulates data management projects in
the organization and increases the success rate of such projects.

• Data quality. The core product of data governance is higher quality data and informa-
tion, i.e., uncomplicated access to data and manageable and auditable security meas-
ures of data.

• Data value. In an enterprise with well-implemented data governance, the value of data
assets is more transparent and extractable.

Areas of Focus

The objective of a data governance program falls within one of the following focus areas.
In general, a data governance program is not limited to only one focus area and they cover
normally most of the areas (Data Governance Institute, 2009).

Data governance programs with a focus on policies, standards, and strategy

These programs are required when, for example, an organization’s team needs help
(orders) from cross-functional leadership. For instance, let's take a company that has deci-
ded to migrate from silo development to enterprise systems. The application develop-
ment teams at this company may oppose the decision of data engineers. In this case, data
governance policies, supported by cross-functional leadership, could resolve the situation
regarding the architectural positions.

These types of data governance programs choose, review, approve, and monitor data poli-
cies and standards. They also contribute to business rules and data strategies.

93

Figure 47: DGI Definition of Data Governance Focus Areas

Source: Alavirad, 2020, based on Data Governance Institute (2009).

Data governance programs with a focus on data quality

These programs are important when there are issues with data quality, integrity, and usa-
bility. The quality efforts normally start with master data. These programs define direc-
tions for data quality and control data quality.

Data governance with a focus on privacy/compliance/security

These types of programs are typically important when there are issues around data pri-
vacy, access management, or compliance with regulatory, contractual, or internal require-
ments. These programs protect sensitive data, assess risk, and define controls to manage
risks.

Data governance programs with a focus on data architecture

These types of programs are relevant when a major change, modification, or development
in the enterprise data system architecture is needed and requires cross-functional deci-
sion-making. For example, migrating an enterprise data system from on the premises to a
cloud architecture.

94

This program ensures data consistency in data models and definitions, provides architec-
tural policies and standards, and supports metadata programs and enterprise data man-
agement.

Data governance programs with a focus on data warehouses and business intelli-
gence (BI)

These types of programs concern a specific data warehouse or business intelligence tool.
They define rules and standards before the new system becomes operational.

Data governance programs with a focus on management support

These types of programs are important when managers struggle with making routine
data-related decisions. These programs help managers to make decisions with more con-
fidence.

These programs measure the data value, monitor data, report data-related projects, and
promote data-related messages.

Data Governance Framework

The data governance framework is the roadmap for implementing and maintaining data
governance within an organization. It is a collection of strategies, legislations, policies,
and relevant tools.

The Data Governance Institute (2008) describes the purpose of a (data governance) frame-
work: “Frameworks help us organize how we think and communicate about the complica-
ted or ambiguous concept” (p. 5). Among the advantages of a data governance framework,
we can name:

• clarity
• ensuring value from the efforts
• creating a clear mission and vision
• maintaining scope and focus
• establishing accountabilities
• defining measurable successes

We will examine the data governance framework proposed by the Data Governance Insti-
tute (2009). Here, the main components of the framework and the sequence used to real-
ize a data governance program are described. In this framework, we encounter the Why,
What, How, When, and Who domains.

1. The “mission” explains why a data governance program is required in the organiza-
tion. The mission should be in line with the enterprise objectives and is set by the
management team of the enterprise.

2. The “focus area” states what the short-term and long-term goals of executing a data
governance program are.

95

3. “Data rules and definitions” explain how enterprise rules could be transformed into
data policies, data standards, and data definitions. To realize this task, the “data gov-
ernance offices”, data stewards, and data owners should work closely together.
a) The "decision rights" manage daily enterprise data assets. They define, for exam-

ple, which topics data stewards have the right to make decisions about and which
decisions should be made by the data governance committee.

b) "Accountabilities" determine who is responsible for what within the organization.
c) "Control mechanisms" monitor the realization of data rules and accomplishments

of goals.
4. Who is engaged in a data governance program?

a) Data stakeholders: they are directly responsible for the data within the organiza-
tion.

b) Data governance offices: these set policies and procedures for data governance.
c) Data stewards: these enforce data governance policies within the organization.

5. The “data governance process” defines how the standardized and documented data
governance program is deployed and when each milestone should be performed and
repeated (the life cycle of the data governance program). It includes seven steps:
a) Develop a value statement. Before starting the program and deciding on roles, the

program’s value statement should be defined.
b) Prepare a roadmap. The roadmap should be developed and shared with the

stakeholders.
c) Plan and fund
d) Design the program
e) Deploy the program
f) Govern the data
g) Monitor, measure, and report

SUMMARY
In this unit, we learned about data protection. We discussed a specific
example of a data protection act: the General Data Protection Regula-
tion (GDPR), which protects the data of the European Union citizens
against the data collectors and data processors. We also discussed the
effect of the GDPR implementation on a software product from the data
system engineer’s prospect.

We then discussed software security and defined security requirement
engineering (SRE). We briefly introduced two methods of SRE: misuse
and abuse cases and security quality requirement engineering
(SQUARE). We discussed some basic security plans, such as authoriza-
tion pattern and single access point pattern.

96

Finally, we introduced data governance and its importance for organiza-
tions. We have learned that, to have a successful data governance pro-
gram, a data governance framework is required.

97

UNIT 5
COMMON CLOUD PLATFORMS & SERVICES

STUDY GOALS

On completion of this unit, you will have learned …

– what cloud computing is.
– what Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a

Service (SaaS) are.
– about the Amazon Web Services (AWS) cloud computing platform and the services it

provides.
– about the Google Cloud Platform (GCP) cloud computing platform and the services it

provides.
– about the Microsoft Azure cloud computing platform and the services it provides.

5. COMMON CLOUD PLATFORMS &
SERVICES

Introduction
In this unit, we will briefly discuss cloud computing principles and introduce some of the
well-established cloud computing platforms. We will first discuss cloud computing and
three delivery models to provide cloud computing services: Infrastructure as a Service
(IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). We will also discuss
cloud service characteristics like agility, elasticity, and billing and metering.

We will then introduce the Amazon Web Services (AWS) platform and some of its services,
like the Amazon Elastic Compute Cloud (EC2) service, Amazon Aurora, Amazon Dyna-
moDB, AWS Security Hub, and Amazon CloudWatch.

Google Cloud Platform will be discussed along with some of its services, like Cloud Func-
tions, Google Kubernetes Engine, Cloud Storage, Virtual Private Cloud, BigQuery, and
Dataflow.

Finally, we will discuss Microsoft's cloud computing platform: Microsoft Azure. Through its
many services, we will discuss Azure Kubernetes Service (AKS), Azure Functions, Azure SQL
Database, Azure Storage, Azure Databricks, and many more.

5.1 Cloud Computing
The National Institute of Standards and Technology (NIST) defines cloud computing as :

cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to
a shared pool of configurable computing resources (e.g., networks, servers, storage, applications
and services) that can be rapidly provisioned and released with minimal management effort or
service provider interaction (Mell & Grance, 2011, p. 2).

Microsoft defines cloud computing as “the delivery of computing services—including serv-
ers, storage, databases, networking, software, analytics, and intelligence—over the Inter-
net (“the cloud”) to offer faster innovation, flexible resources, and economies of scale. You
typically pay only for cloud services you use, helping you lower your operating costs, run
your infrastructure more efficiently, and scale as your business needs change” (2020q,
para. 1).

Amazon also defines cloud computing as “the on-demand delivery of compute power,
database storage, applications, and other IT resources through a cloud services platform
via the Internet with pay-as-you-go pricing” (2020p, para. 1).

100

Again, could we use this space to introduce the topic rather than summarise what we are going to talk about? We summarise at the end, so this is repetitive.

The companies that provide cloud services are called cloud providers. Examples of these
are Amazon, Google, Microsoft, IBM, and SAP. Cloud providers offer a wide range of prod-
ucts and services which can be summarized in the following categories:

• Computer services, which are used as infrastructure to run applications in the cloud.
Virtual machines (VMs), functions, container instances, and virtual services are among
these.

• Database services, including fully-managed databases to be used with cloud-based
applications. Relational, NoSQL, in-memory, and time-series databases are among
these types of services.

• Storage services, which provide storage services for storing data such as objects and
files. Among products of this category are file storage, archive storage, disk storage, and
cache services.

• Networking services, which facilitate a secure connection between the cloud servers
and the enterprise data warehouses. API gateways, load balancer, and VPN gateways
services belong to this category of services.

• Security services, which are crucial to any cloud computing platform. These services
protect data, applications, and infrastructure against threats by identifying them using
advanced methods like machine learning. Application gateways, certificate managers,
firewall managers, and threat detectors belong to this category of services.

Cloud Delivery Models

There are three main cloud delivery models:

1. Infrastructure as a Service (IaaS). In this model, the cloud provider hosts all required
infrastructure for the clients such as hardware, software, storage, networking, and so
on. In this delivery model, the client has control over all the provided infrastructure.
For example, the user can create virtual machines on an IaaS platform, install operat-
ing systems on those virtual machines, deploy middleware such as databases,
develop and deploy an application, and run that application. Although the user has
more control over the system with this model, they also have more responsibility con-
cering the system maintenance. IaaS is normally used for migrating workloads, testing
and development, and storage, recovery, and backup scenarios.

2. Platform as a Service (PaaS). In this model, the cloud providers offer a set of develop-
ment and middleware services to the users to test and deploy their application on the
cloud. In PaaS, the users do not have as much control over the infrastructure as the
IaaS. However, the user has fewer maintenance responsibilities. For example, the can-
not create virtual machines and install operating systems on them. These services are
normally used for development framework and analytics and business scenarios.

3. Software as a Service (SaaS). The third model we will examine is SaaS, where the user
has very limited control over the infrastructure and the deployment platform. In this
model, the cloud providers host the infrastructure as well as the required applica-
tions. The users cannot install anything on the SaaS platform; they simply log in and
use the deployed software.

101

In the figure below, you can see the difference between these three cloud delivery models
and the on-premises model (in-house hosting). As you can see in the on-premises model,
the user has full control over the infrastructure, while on the SaaS, the user has zero con-
trol over the infrastructure and applications.

Figure 48: laaS vs. PaaS vs. SaaS

Source: Williamson, 2020.

Cloud Service Deployment Models

Taking NIST's definition into account, we can consider the following cloud service deploy-
ment methods (Mell & Grance, 2011):

• Public cloud. in this model, all services are fully deployed in the cloud (i.e., infrastruc-
ture, including software and hardware). The cloud infrastructure is provided for open
use by the general public and it may be owned, managed, and operated by a business,
academic, or government organization (or some combination of these). The infrastruc-
ture is installed on the premises of the cloud provider.

102

• Community cloud. The cloud infrastructure is provided for a particular use by a specific
community of consumers from organizations that have shared concerns (e.g., mission,
security requirements, policy, or compliance considerations). It may be owned, man-
aged, and operated by one or more of the organizations in the community, a third party,
or some combination of these. The infrastructure is installed on or off premises.

• Private cloud. This model is very similar to legacy IT infrastructure. The cloud infrastruc-
ture is provided for exclusive use by a single organization, including various consumers
(e.g., business units). It may be owned, managed, and operated by the organization, a
third party, or some combination of these. The infrastructure is installed on or off prem-
ises. This model is used when, for example, due to low latency requirements, workloads
need to remain on-premises, local data processing is required, or the organization has
legacy architecture.

• Hybrid. In this deployment model, the existing on-premises IT infrastructure of an enter-
prise will be connected to the on-demand (cloud) infrastructure of a cloud service pro-
vider in order to scale the organization IT infrastructure. In this model, the cloud infra-
structure is a combination of two or more separate cloud infrastructures (private,
community, or public) that are unique entities, but are joined in such a way that enables
data and application portability (e.g., cloud bursting for load balancing between
clouds).

Cloud Service Characteristics

Elasticity

This is the ability to increase or decrease resources dynamically or automatically (Clinton,
2019). This characteristic is important because, in most cloud computing platforms, users
are charged for resources (like computing power and storage) on a per-use basis. Resour-
ces are used when they are needed for computational purposes. When they are not
required, they will be de-provisioned so the user does not pay for idle resources. Scalabil-
ity is similar to elasticity but is not necessarily automatic (Clinton, 2019).

Workload management

As the cloud service is a distributed service around the globe, it is very important to
orchestrate these distributed services to manage workloads.

Agility

This is the ability to quickly allocate and de-allocate resources.

Availability

The cloud service should provide the required hardware and software to keep the services
up with very little down-time.

Disaster recovery

The cloud service should be able to recover a down service quickly and automatically.

103

Fault tolerance

The cloud service should be able to keep services up even when some components are not
functional.

Billing and metering

The cloud service should provide tools to measure and predict the resources and the rele-
vant costs.

Management services

A cloud service should provide tools to users to manage cloud computing. For example,
security services and data governance are very critical for any cloud computing platform.

5.2 Amazon Web Services
In 2006, Amazon Web Services (AWS) launched a service offering IT infrastructure services
to businesses. This service was called Web Services and still is the name of the Amazon’s
cloud computing platform.

The infrastructure of the AWS Cloud is distributed around the globe in different AWS
Regions and Availability Zones. Each AWS Region, which is a physical location somewhere
in the world, is composed of multiple AWS Availability Zones (shown below). Each Availa-
bility Zone is made up of one or more separate data centers, where each data center has
redundant power, networking, and other resources, all housed in separate facilities. This
redundancy within each Availability Zone provides higher availability, scalability, and fault
tolerance. As of today, AWS has 24 Regions and 77 Availability Zones.

Each AWS Region is completely isolated from other AWS zones. However, Availability
Zones inside an AWS Region are connected by low latency connections. Users can store
their data within multiple AWS Regions and across several AWS Availability Zones within
each AWS Region.

104

Figure 49: AWS Regions and Availability Zones

Source: Alavirad, 2020.

AWS Services

Amazon Web Services offers a wide range of services including compute, storage, databa-
ses, analytics, and networking services (Amazon, 2020o). As of today, AWS provides 140
services. In this section, we will discuss some of the main AWS services.

Compute services

AWS provides different compute services as computing power for running applications in
the cloud. Amazon's Elastic Compute Cloud (EC2) service is the most well-known of these
services and facilitates web-scale computing for developers by providing secure, scalable
compute capacity in the cloud. Put simply, EC2 enables users to rent virtual machines
from AWS to run their applications.

There are three types of EC2 instances (Amazon, 2020m):

• On-demand. In this model, the user pays for the compute capacity on an hourly basis.
The user chooses the required computing capacity for the application and pays only for
the hours that the application has consumed the compute capacity.

• Reserved. In this payment model, the user reserves a specific amount of compute
capacity and pays for it. This model can be up to 75 percent cheaper than the on-
demand instance type, but the user must pay for idle resources. Therefore, the user
should be sure about the amount of resources that will be used in advance.

• Spot. In this model, the user takes advantage of unused EC2 capacity in the cloud,
reducing the cost by up to 92 percent compared to the on-demand method. Here, the
user bids on EC2 computing capacity and the spot instances are available as long as the
client is not outbid by a another bidder. These instances can therefore be shut down
within seconds and they should not be used for critical applications.

105

Serverless computing
Services that provide and

maintain the required
hardware and software

infrastructiure for running
users' applications are

called serverless comput-
ing services.

To use Amazon EC2, an Amazon Machine Image (AMI) is initially created that includes an
operating system, applications, and configuration settings. The AMI is then uploaded to
the Amazon Simple Storage Service (Amazon S3) and registered to Amazon EC2. This gen-
erates an AMI ID. Once this is done, the user can start multiple virtual machines using pre-
defined settings. The number of virtual machines can be increased or decreased in real
time. To add or remove EC2 instances, AWS provides a scaling service called EC2 Auto
Scaling.

Another AWS compute service is Amazon Lambda, which is designed for the serverless
running of applications (Amazon, 2020h). The user writes AWS Lambda functions, i.e., self-
contained applications that are written in one of the programming languages and run-
times supported by AWS Lambda. The functions are then uploaded to AWS Lambda and
executed by AWS Lambda efficiently and flexibly by managing the required resources. For
example, a real-time file processing application code can be deployed to AWS Lambda. In
this case, the user utilizes the AWS S3 to trigger AWS Lambda processing the data after it is
uploaded in AWS S3. This service also can be used for real-time stream processing, such as
IoT backends.

Figure 50: Using AWS Lambda for Real-Time Image Processing

Source: Alavirad, 2020.

Database services

Amazon Aurora is a SQL and PostgreSQL-compatible relational database engine managed
entirely by Amazon Relational Databases Services (Amazon, 2020l; 2020i).

Amazon Relational Database Services (RDS) automates tedious management tasks such
as hardware provisioning, database setup, patching, and backups (Amazon, 2020i).

Amazon DynamoDB is a key-value and document database that can be used for serverless
web, mobile backend, and microservice applications (Amazon, 2020b). DynamoDB can
handle more than ten billion requests per day and supports peaks of more than 20 million
requests per second.

AWS Lambda, Amazon Kinesis (a real-time streaming data analysis service), and Amazon
DynamoDB can cooperate to process streaming data in real-time in order to track applica-
tion activity, process order transactions, perform clickstream analysis, cleanse data, gen-

106

erate metrics, filter logs, perform indexing, analyze social media activity, and perform tele-
metry and measurement of IoT device data (Amazon, 2020b; Amazon, 2020g). Such an
architecture is shown below.

Figure 51: Social Media Streaming Data Analysis Using Amazon Kinesis, AWS Lambda,
and DynamoDB

Source: Alavirad, 2020.

Storage services

Amazon Simple Storage Service is an object storage service that supports the storage of
many use cases from websites and mobile applications to IoT devices and big data analyt-
ics. This storage system is designed for 99.999999999 percent of data durability, as it auto-
matically creates duplicates of data across multiple systems (Amazon, 2020j). The Amazon
S3 Access Point service facilitates data access for applications using shared datasets on S3
(Amazon, 2020j).

Amazon S3 offers a variety of storage classes that can be used for different use cases:

• S3 Standard class for general storage of data with frequent access
• S3 Intelligent tiering class for data storage with unknown or changing access patterns
• S3 Standard-Infrequent Access class (S3 Standard IA) and S3 One Zone-Infrequent

Access class (S3 One Zone-IA) for long-term data with less frequent access
• Amazon S3 Glacier class (S3 Glacier) and Amazon S3 Glacier Deep Archive class (S3 Gla-

cier Deep Archive) for long-term archiving and preservation of digital data

Amazon S3 Standard, S3 Standard-IA, S3 One Zone—IA, and S3 Glacier are all designed for
a 99.999999999 percent annual durability. This durability level is equivalent to an annual
expected object loss of 0.000000001 percent. For example, if you store 10,000,000 objects
with Amazon S3, you can expect, on average, to lose a single object every 10,000 years. In
addition, Amazon S3 Standard, S3 Standard-IA, and S3 Glacier are designed to preserve
data even if an entire S3 Availability Zone fails.

107

Figure 52: Amazon S3

Source: Alavirad, 2020.

Amazon Elastic File System (EFS) provides an elastic, scalable NFS file system for Linux-
based workloads in AWS Cloud services and for on-premises infrastructures. This service
can be scaled in size up to petabytes. Users can choose between two different storage
classes: standard storage class and the Infrequent Access Storage class (EFS IA), which is
appropriate for files that need not be frequently accessed. AWS can move the infrequent
access files to the EFS IA to reduce the storage costs, as EFS IA is cheaper than the stand-
ard EFS. This functionality is activated by enabling EFS Lifecycle Management service on a
file system (Amazon, 2020c).

The use cases of EFS range from home directories to big data analytics, content manage-
ment, media and entertainment workflow, database backups, and container storage.

The workflow of storing data using Amazon Elastic File System is as follows:

1. Create a file system in the Amazon EFS console and choose the performance and
throughput mode

2. Mount the EFS file system on an EC2 instance with NFSv4
3. Test and optimize the workloads’ performance
4. Copy the data into EFS file system

Security services

AWS Security Hub is a single platform that provides a comprehensive overview of the
security status and alerts from all AWS security services like Amazon GuardDuty, Amazon
Inspector, and AWS’s partner products (Amazon, 2020k). AWS Security Hub supports
industry standards like Center for Internet Security (CIS), AWS Foundations Benchmark,
and Payment Card Industry Data Security Standard (PCI DSS).

Amazon GuardDuty is a threat detection service based on machine learning, anomaly
detection, and integrated threat intelligence. It continuously monitors for malicious activ-
ity and unauthorized behavior in order to protect the AWS accounts, workloads, and data
stored in Amazon S3 (Amazon, 2020e).

108

Amazon Inspector is a service used to check the security compliance of applications
deployed on AWS. This service helps the user to check for unintended network access of
the EC2 instances (Amazon, 2020f). After performing an assessment, Amazon Inspector
produces a detailed list of security findings, ranked by severity.

Management and governance services

Amazon CloudWatch is a monitoring service for DevOps engineers, developers, site relia-
bility engineers (SREs), and IT managers. CloudWatch collects monitoring and operational
data in the form of logs, metrics, and events, providing you with a unified view of AWS
resources, applications, and services that run on AWS and on-premises servers (Amazon,
2020a).

CloudWatch captures monitoring and operational data in the form of logs, metrics, and
events and visualizes them through automated dashboards. This gives a complete over-
view of AWS resources and applications, as well as services running in AWS and on servers.
Users can correlate the metrics and logs to get a better overview of the health and per-
formance of the resources. Users can also create alerts based on custom metric thresholds
or monitor the resources for abnormal behavior using machine learning algorithms. To
respond quickly and reduce the meantime to resolution, the user can configure automa-
ted actions to notify you when an alarm is triggered. It also provides a comprehensive
insight by analyzing metrics, logs, and traces.

Analytics services

Amazon Elastic MapReduce (Amazon EMR) is a big data cloud platform that uses open
source tools such as Apache Spark, Apache Hive, and Apache HBase, combined with sev-
eral AWS products in order to perform tasks such as web indexing, data mining, log file
analysis, machine learning, scientific simulation, and data warehousing (Amazon, 2020d).
Below, you can see a simple architecture of an Amazon EMR job flow using Amazon EC2,
Amazon Simple Storage System (S3), and Amazon CloudWatch.

Figure 53: Amazon Elastic MapReduce (Amazon EMR)

Source: Alavirad, 2020.

109

5.3 Google Cloud
Google Cloud Platform (GCP) began in 2008 when Google announced the release of
AppEngine, a development and hosting platform for web applications in Google data cen-
ters. Since then, Google has been constantly adding more services to its cloud platform.

Google defines its cloud platform as a set of physical resources such as memory, comput-
ers, and virtual resources such as virtual machines, which are contained in Google data
centers around the world (Google, 2020e).

Like AWS, Google also divides the geographical distribution of its data centers into regions
and zones. Regions are specific geographical regions where users can host their resources,
like East Asia, West Europe, and so on. As of today, Google Cloud has 24 regions. Each
region has one or more zones and most regions have three or more zones (called a, b, c,
d). Each zone is isolated from the other zones and are identified by a combination of the
region and zone names. For example, the us-west1 region is the west coast of the United
States, and has three zones: us-west1-a, us-west1-b, and us-west1-c.

Regarding regions and zones, access to resources is divided into three categories:

• Zonal resources are the resources which are accessible by other resources that are hos-
ted in the same zone, for example, virtual machine instances or zonal persistent disks
are examples of zonal resources.

• Regional resources are the resources which are accessible by all resources that are hos-
ted in the same region, regardless of zone. Static external IP addresses are an example
of regional resources.

• Global resources are the resources which can be accessed by any resource regardless of
region and zone. Images, snapshots, instance templates, and firewalls are among the
regional resources.

110

Figure 54: Global, Regional, and Zonal Resources in Google Cloud Platforms

Source: Alavirad, 2020.

All allocated Google Cloud resources must belong to a specific project. A project forms the
basis for creating, enabling, and using all Google Cloud services, such as managing APIs,
managing permissions for resources, and billing. A project has the following parts:

• Project name. This is a readable name that can be edited and changed during the
project life cycle, as they are not used by any Google API.

• Project ID. This is a unique and user-defined ID and is used by Google APIs. The project
ID cannot be modified once it has been created or assigned, and it cannot be used
again, even if the project is deleted.

• Project number. This is a unique, automatically generated identifier for the project.

Google Cloud Platform Services

In this section, we review some of the commonly used Google Cloud Platform services.
Google Cloud has roughly 90 different services.

Computing and hosting service

Google Cloud provides several services for computing and hosting. In the following, we
will discuss some of these services, ordered from least maintenance responsibility to high-
est maintenance responsibility:

• serverless computing
• managed application platform

111

WebHook
A WebHook is an HTTP

callback: an HTTP POST
that happens when an

event happens. It is a sim-
ple event notification via

HTTP POST.

• container technologies
• building the cloud-based infrastructure

Serverless computing in Google Cloud is possible by using the Cloud Functions, known as
functions as a service (FaaS). Cloud Functions provide an environment for building and
connecting cloud services in a serverless mode (Google, 2020i). In this approach, the user
writes a simple and single-purpose function (e.g., in JavaScript, Python 3, Go, or Java) that
is triggered by events from other cloud services. A cloud event could be a change in a data-
base, a new file in a storage system, or a new virtual machine instance.

In the serverless model, Google Cloud takes responsibility for managing servers, configur-
ing software, updating frameworks, and patching operating systems. Use cases of server-
less computing are asynchronous workloads like lightweight ETL (extract, transfer, load),
WebHooks, and IoT.

Another Google Cloud compute service is the managed application platform (Google,
2020a). App Engine is Google Cloud’s platform as a service (PaaS), which handles most
applications' resource management. The user can write an application here in Go,
Java, .NET, Node.js, PHP, Python, or Ruby. Applications on App Engine can be connected
with Google databases like Cloud SQL, Firestore (in Datastore mode), and Cloud Storage. It
is also possible to connect App Engine applications to third-party data storage systems
like Redis, MongoDB, and Cassandra databases.

In container-based computing services, developers can focus on application development
instead of deployment and integration into the hosting environment (Google, 2020k). Goo-
gle Cloud provides a container-based computing service through Google Kubernetes
Engine (GKE). Google Cloud's containers as a service (CaaS) is built on the open-source
Kubernetes system.

Google Cloud also offers an unmanaged compute service: Compute Engine, which is their
infrastructure as a service (IaaS). The Compute Engine user must configure, manage, and
monitor the system. With this option, the user can use the virtual machines (instances) to
execute applications (Google, 2020f). The user can also choose the region and zone for
application deployment, as well as the operating system, development stacks, languages,
and frameworks.

In most cases, it is beneficial to combine different computing service types. One example
of hybrid computing service types is reliable task scheduling using Compute Engine and
Cloud Scheduler. In this solution, we use Cloud Scheduler (Google, 2020m) for scheduling
and Pub/Sub (Google, 2020l) for distributed messaging. As a result, the user can reliably
schedule tasks across a fleet of Compute Engine instances. In this architecture, events are
scheduled in Cloud Scheduler and are then transmitted to Compute Engine instances
using Pub/Sub (Google, 2020q). A Cron job is a time-based job scheduler for Unix-like com-
puter operating systems.

112

Figure 55: Reliable Task Scheduling on Compute Engine

Source: Alavirad, 2020.

Database services

Google cloud provides SQL and NoSQL databases.

Cloud SQL is a fully-managed relational database for MySQL, PostgreSQL, or SQL. As a
fully-managed relational database, Cloud SQL automates backups, replication, encryption
patches, and capacity scaling (Google, 2020n). In the figure below, you can see an example
of implementing Cloud SQL in retail. The data from beacons are sent to the OneMarket
platform, which has a node pool consisting of cloud load balancing and a Kubernetes
engine functioning as an “order processing” microservice. The results are then saved in
the “order store,” which is a Cloud SQL database.

113

Figure 56: Cloud SQL in Retail

Source: Alavirad, 2020.

As a NoSQL database service, Google Cloud offers two products: Firestore, to store the
document-like data (Google, 2020h), and Cloud Bigtable, for table-like data (Google,
2020c).

Firestore is a real-time, cloud-hosted NoSQL database. The database’s client is notified in
real time when the data inside Firestore change. The data are stored in documents (unit of
storage) that contain key-value pairs and the documents themselves are organized into
collections. Documents can have sub-collections and nested objects.

Each document is identified by its name. For example, a document that represents the
user AndMüller looks like:

Code
AndMüller
(document)
first: “Andreas”
last: “Müller”
born: “1984”

Where first: “Andreas” is a key-value pair (field).

Documents themselves are nested inside collections. For example, we can have the users
collection:

114

Code
users
(collection)
AndMüller
(document)
first: “Andreas”
last: “Müller”
born: “1984”
FraMüller
(document)
first: “Frank”
last: “Müller”
born: “1986”

Therefore, sub-collections live inside documents. A sub-collection is a collection associ-
ated with a user. For example, in the users collection, we can define a messages sub-
collection for each document (user) which contains documents like message_1,
message_2, and so on.

Code
users
(collection)
AndMüller
(document)
first: “Andreas”
last: “Müller”
born: “1984”
Messages
(subcollection)
Message1
(document)
from: ”Frank”
msg: “Hello”

As stated earlier, it is possible to use an arbitrary database on Compute Engine Service
using persistent disks (e.g., setting up MongoDB).

Storage services

Google Cloud provides services to store media files, backups, and other file-like objects.
Some of the storage services from Google Cloud are:

Cloud Storage which is a consistent and scalable large-capacity data storage available in
several flavors (Google, 2020o):

115

• Standard storage is suitable for hot data (data that are frequently accessed) or the data
which are stored for a short period. The typical monthly availability in a multi-region
scenario is >99.99%.

• Nearline storage is suitable for infrequently accessed data and a storage duration of at
least 30 days. The typical monthly availability in a multi-region scenario is 99.95%.

• Coldline storage is suitable for infrequently accessed data and storage duration of at
least 90 days. The typical monthly availability in a multi-region scenario is 99.95%.

• Archive storage is suitable for data archiving, online backup, disaster recovery accessed
data, and for a storage duration of at least 365 days. The typical monthly availability in a
multi-region scenario is 99.95%.

Networking Services

Google Cloud also provides networking services to assist users with load-balancing traffic
of resources, creating DNS records, and connecting existing infrastructure to the Google
Cloud.

Virtual Private Cloud (VPC) provides networking services for the virtual machines of Com-
pute Engine, Google Kubernetes Engine (GKE) containers, and the App Engine environ-
ment (Google, 2020p). Any VPC network is a global resource. It consists of one or more
regional virtual subnetworks (subnets) in data centers. All subnets are connected via a
global wide-area network. All VPC networks are logically isolated. In the following figure,
you can see an example of a VPC network. Inside the Cloud Platform, we have a project
and inside this project, we have a VPC network spread over two regions: us-west1 and
us-east1, which consist of subnets and zones. As you can see, several zones of a region
can share the same subnet (subnet3 covers us-east1-a and us-east1-b zones). A zone
can also be covered by several subnets (us-east1-a is covered by subnet2 and
subnet3).

In general, a VPC network provides the following functionalities (Google, 2020p):

• It connects the Compute Engine virtual machine (VM) instances, including Google
Kubernetes Engine (GKE) clusters, App Engine environment instances, and other Google
Cloud products built on Compute Engine VMs.

• It offers internal TCP/UDP load balancing and proxy systems for internal HTTP(S) load
balancing.

• It facilitates a connection to on-premises networks by using a Cloud VPN.
• It distributes traffic from Google Cloud external load balancers to backend services.

116

Figure 57: VPC Network Example

Source: Alavirad, 2020.

Big data services

Google Cloud also provides services to process and query big data in the cloud. Some of
these big data services are BigQuery (Google, 2020b), Dataflow (Google, 2020g), and
Pub/Sub (Google, 2020l). BigQuery is a petabyte-scale enterprise data warehouse for stor-
ing and querying massive datasets. Dataflow is a managed service and a set of SDKs for
batch and stream data processing. Pub/Sub is a real-time asynchronous messaging serv-
ice for sending and receiving messages between independent applications. This service
decouples event producer services from event processor services.

Below, you can see a solution for processing high-priority and standard-priority payments
(Google, 2020d). In this single pipeline, the payment notifications are sent by a streaming
data source and are received by the Pub/Sub service. The payment information is then
processed by Dataflow and is written to the BigQuery.

117

Figure 58: Big Data Processing Using Google Cloud Services

Source: Alavirad, 2020.

5.4 Microsoft Azure
Like Amazon AWS and Google Cloud, Microsoft Azure is a cloud computing platform which
provides different services using infrastructure located around the globe.

In Azure infrastructure, a region is a geographical area which has one or more data cen-
ters. The datacenters of each region are connected. Azure has 60 regions. When the user
selects a service, they should also select the region of this service. To decrease data redun-
dancy, Azure implemented the region pairs concept: each Azure region is paired with
another region in a similar geographical area (like the US and Europe). Azure prefers at
least 300 miles of physical separation between two paired regions.

118

Figure 59: Region Pairs in Azure

Source: Microsoft, 2020p.

Azure also divides the globe into geographies: geopolitical boundaries or country borders,
which are also discrete markets. Each geography has two or more regions. The main
advantages of geographies are respecting data residency, sovereignty, compliance, and
resiliency requirements within geographical boundaries.

Azure geographies are divided into the following areas:

• America
• Europe
• Asia-Pacific
• The Middle East and Africa

Azure Services

Azure provides compute services to run applications.

119

Compute services

Azure Kubernetes Service (AKS) facilitates serverless deployment of Kubernetes applica-
tions (Microsoft, 2020h). Kubernetes is open-source software for deploying and managing
microservices containers at scale. AKS also provides an integrated continuous integration
and continuous delivery (CI/CD). Azure handles the health monitoring and maintenance
tasks: Azure manages the Kubernetes masters and users manage the Kubernetes nodes.

The Azure Functions service provides servers for keeping users’ applications running at
scale (Microsoft, 2020f). The user writes a small piece of code (function) and Azure Func-
tions runs the code. A function is triggered by an event: a response to data change and
messages, scheduled triggers, or HTTP request triggers. Azure Functions supports C#,
Java, JavaScript, Python, and PowerShell languages.

Database services

Azure SQL Database is a managed platform as a service (PaaS) for SQL database engines.
This service handles most of the database management tasks, like upgrading, patching,
backup, and monitoring (Microsoft, 2020n). This service runs on the SQL Server database
engine. Using this service, users can develop a data-storage layer for applications on
Azure.

There are two methods to deploy Azure SQL Databases:

• Single database, where there is a single and isolated database. This method is appropri-
ate for microservice applications, where each microservice should have its own private
and isolated database.

• Elastic databases pool, in which the several databases share resources like CPU and
memory. The advantage of this model is that it allows allocating resources to a pool of
databases. This allocation method results in saving in resources when the databases
have unpredictable usage patterns.

Another product of Azure for databases is Azure Cosmos DB, which is a globally distributed
multi-model database service. This service enables developers to scale throughput and
storage across several Azure regions (Microsoft, 2020b). Cosmos DB supports different APIs
like SQL, MongoDB, Cassandra, and Gremlin.

The main advantage of Azure Cosmos DB is its ability to replicate data close to the user.
Therefore, application users can access the data close to their geographical location.

One use case of Cosmos DB is in the gaming industry. Mobile game applications need sin-
gle-millisecond latencies for reads and writes in order to offer an engaging in-game experi-
ence. A gaming database should therefore be fast and able to handle a massive spike in
requests during the first phase of application launch. Cosmos DB offers an elastic scaling
up or scaling down performance to allow games to update the profiles and stats of up to
millions of simultaneous users. This service also supports millisecond reads and writes to
prevent latency during gameplay.

120

Azure Cosmos DB could also be used for event sourcing to empower event-sourcing archi-
tectures like online-shop applications. In this use case, Azure Functions microservices
incrementally read inserts and updates (for example, order events) made to an Azure Cos-
mos DB by for another Azure Function (E-Commerce Checkout API).

Figure 60: Using Cosmos DB for an Online Shop Application

Source: Alavirad, 2020.

Storage services

Azure Storage Platform is Microsoft’s modern storage solution for data storage scenarios.
This platform is composed of the following services: a massively scalable object store for
data objects (Azure Blob), a managed file share for cloud or on-premises deployments
(Azure Files), a NoSQL store for schema-less storage of structured data (Azure Tables),
block-level storage volumes for Azure virtual machines (Azure Disks), and a messaging
store for reliable messaging (Azure Queues) (Microsoft, 2020o).

Azure Blob is Microsoft’s service for the storage of object files. This storage service is opti-
mized for large unstructured data. Access to Blob objects is possible via HTTP/HTTPS
using Azure Storage's REST API, Azure PowerShell, Azure CLI, or an Azure Storage client
library (Microsoft, 2020a).

1. The storage account is a unique namespace in Azure for user’s data. Every object that
is stored in Azure Blob has a unique address starting with the account name. For
example, if the storage account is called user1storageaccount, the default end-
point of the Blob Storage would be:
http://user1storageaccount.blob.core.windows.net

2. The container is similar to a file system and organizes the blobs. A storage account can
have an unlimited number of containers.

3. Azure Blob provides blobs, of which there are three types:
• Block blobs, which are used for storing binary and text data up to 4.75 TB.
• Append blobs, which are suitable for append operations.
• Page blobs, which are used for storing random access files up to 8 TB.

121

Figure 61: Storage Account, Containers, and Blobs in Storage Blog Service

Source: Alavirad, 2020, based on Microsoft, 2020a.

Azure Queues Storage is an Azure solution for storing large numbers of messages. The
stored data on the Queue Storage can be accessed via HTTP/HTTPS using authenticated
calls. The size of a queue message can be up to 64KB and a Queue Storage can contain
millions of messages. This service is used for creating backlogs of work for asynchronous
processing (Microsoft, 2020j). The building blocks of Queues Storage are:

1. The storage account is used to access the Azure Storage platform, including Azure
Queues Services.

2. The URL format is used to address queues; such as
https://<storage account>.queue.core.windows.net/<queue>

3. A Queue is the storage unit and contains messages.
4. Messages are stored in the Queue Storage

Figure 62: Storage Account, Queue, and Messages in the Azure Queue Storage Service

Source: Alavirad, 2020, based on Microsoft, 2020j

Security services

Azure provides several services for security, such as:

122

HSM
This stands for hardware
security module, and is a
physical element that
provides extra security. It
does this by managing
digital keys, encryption
and decryption, and
authentication for the use
of applications (Rouse,
2015).

• Azure Sentinel, which is a security information event management (SIEM) and security
orchestration automated response (SOAR) service (Microsoft, 2020m).

• Azure Information Protection, which enables enterprises to classify and protect their
documents and emails by labeling them automatically or manually (Microsoft, 2020g).

• Azure Dedicated HSM (hardware security module), which is a cryptographic key storage
service (Microsoft, 2020e).

• Azure Security Center for IoT, which is a cloud-based security service for end-to-end
threat detection within hybrid cloud workloads and IoT solutions (Microsoft, 2020l).

Here, we will focus on Azure Security Center for IoT. This service is composed of the follow-
ing services:

• IoT hub integration
• device agents (optional)
• send security message SDK
• analytics pipeline

The workflow of Azure Security Center for IoT could be as follows (Microsoft, 2020k):

1. Turn on the security option in the IoT hub and install Azure Security Center for IoT
device agents on IoT devices.

2. Azure Security Center for IoT device agents collects, aggregates, and analyzes raw
security events from IoT devices. Raw security events could be IP connections, proc-
ess creation, or user logins.

3. Device agents utilize the Azure send security message SDK to send security data into
Azure's IoT hub.

4. The IoT hub receives the security information and sends it to the Azure Security Cen-
ter for IoT service.

5. Azure Security Center for IoT's analytics pipeline receives and analyzes all received
security information from different sources in Azure. The analyzed security informa-
tion is sent to the Azure Security Center for IoT.

6. Azure Security Center for IoT generates recommendations and alerts based on the
analyzed security information received from the pipelines.

7. The alerts and security recommendations are written to the user's Log Analytics work-
space.

Analytics service

Azure also provides several analytics services, such as:

• Azure Data Explorer, which is a service used to analyze data streaming from different
sources like applications, website, and IoT devices in real-time (Microsoft, 2020c).

• Azure Databricks, which is a platform for data analysis on Azure based on Apache Spark
(Microsoft, 2020d).

• Azure Data Lake Analytics, which is an on-demand, distributed, cloud-based data pro-
cessing architecture for big data analysis.

123

We will now discuss Azure Databricks in more detail. As stated above, this service integra-
tes Apache Spark into the Azure Cloud Platform. The workflow of this big data analysis
process is as follows:

1. The raw data are ingested into Azure. For this purpose, we can use Azure Data Factory
(for batch ingestion) or Apache Kafka, Azure Event Hub, or Azure IoT Hub (for
streamed, near-real-time ingestion).

2. The data are stored in Azure Blob Storage or Azure Data Lake Storage.
3. The data will be analyzed using Azure Databricks, empowered by Apache Spark.
4. The analyzed data will be written to databases like Azure Cosmos DB, Azure SQL Data-

base for modeling, and storage.
5. The applications which are written in Azure can access the analyzed data to visualize

and report the analysis results.

Figure 63: Big Data Analysis Workflow Using Azure Databricks

Source: Alavirad, 2020.

The Apache Spark implemented in Azure Databricks has the following components (Micro-
soft, 2020d):

• Spark SQL, which is a module for managing structured data
• the dataframe, which is a distributed collection of structured data organized on col-

umns with unique names, equivalent to the Python dataframes
• Streaming, which is used for processing and analyzing of real-time data from different

sources
• MLlib, which is a machine learning library for classification, regression, clustering, col-

laborative filtering, dimensionality reduction, and optimization primitives
• GraphX, which is Apache Spark's API for graphs and graph-parallel computation
• Spark Core API, which is used for supporting languages like Python, R, Scala, SQL, and

Java

124

Figure 64: Azure Spark Ecosystems in Azure Databricks

Source: Alavirad, 2020, based on Microsoft, 2020d.

SUMMARY
In this unit, we have learned about three cloud computing platforms:
Amazon AWS, Google Cloud Platform, and Microsoft Azure.

We started with a brief introduction into cloud computing and the differ-
ent cloud delivery systems: Infrastructure as a Service (IaaS), Platform as
a Service (PaaS), and Software as a Service (SaaS). With IaaS, the user
has more control over the resources but also more responsibility for the
maintenance, while with SaaS, the user has the least control over the
resources but the cloud service provider takes control of all infrastruc-
ture and application maintenance.

Following this, we started with a brief introduction of each of these plat-
forms and discussed some of the services each platform provides.

125

UNIT 6
DATA OPS

STUDY GOALS

On completion of this unit, you will have learned …

– about DevOps, DataOps, and the principles of DataOps.
– about MLOps and the various stages of an operationalizing data science project plan.
– what the application containerization deployment method is.
– what Docker and Kubernetes are.
– about the machine learning pipeline and its seven components.
– about the architecture of a typical machine learning pipeline.
– about Michelangelo ML workflow, an Uber product.

3-6 study goals. Please delete one.

6. DATA OPS

Introduction
The main focus of the final unit of this book is not designing data systems, but operation-
alizing developed data analysis and machine learning solutions.

We start this unit with an introduction to DevOps, DataOps, and MLOps. In this section, we
will discuss the eighteen principles (manifesto) of DataOps and the different phases of an
operationalizing a data science project plan, i.e., building, managing, deploying, and mon-
itoring.

We will then discuss the containerization approach to deploying and integrating data sci-
ence pipelines into business applications and Docker, a tool used to containerize applica-
tions. We will introduce Kubernetes as a platform for managing the deployed container-
ized application.

Finally, we will introduce the machine learning pipeline and its seven steps. We will also
briefly discuss Michelangelo, Uber's machine learning workflow.

6.1 Defining Principles
Reducing the time between the end of the development phase and the business realiza-
tion phase is the aim of any successful software business. At the O’Reilly Velocity Confer-
ence in 2009, Flickr engineers John Allspaw and Paul Hammond held the presentation
“10+ Deploys per Day: Dev and Ops Cooperation at Flickr.” In their presentation, they dem-
onstrated the interplay between development and operations teams during a typical soft-
ware deployment process. They showed each team blamed the other team for any prob-
lems: “It’s not my code, it’s your machines!” They suggested that having seamless,
transparent, and fully integrated application development and operations activities is the
only way to avoid such struggles (Allspaw & Hammond, 2009). Nowadays, the idea they
presented is known in the IT world as DevOps (Mezak, 2018). DevOps (a contraction of
development and operations) is a set of practices used to reduce the time to market and
achieve continuous integration and continuous delivery (CI/CD).

Continuous integration is the development method of continually integrating new code
into the shared repository to avoid “integration hell,” where many developers try to per-
form changes at the end of a sprint.

After changes (code) are implemented, continuous delivery strives to build, test, and
release software with one-click deployments from development into operational environ-
ments. To accomplish continuous delivery, DevOps engineers must place every project

128

We should not indicate which unit this is.

This intro is a bit sparse. Is there a way to add some more interesting information about the subject matter? It would be good to have some context about the role of these elements that we are going to discuss rather than a list that adds no insight.

Only capitalize the first letter (in this case “1” so no action necessary) and proper nouns.

component, such as code, tests, and deployment instructions, into the source control
(Altis.com, 2020). This method has been used by companies such as Facebook and Ama-
zon to push releases as often as every minute.

Figure 65: The Lifecycle of DevOps

Source: Alavirad, 2020.

As the first aim of DevOps is to enhance the life cycle of a general software product by
shortening the time to market after the development phase, DataOps was introduced to
improve the quality of the data analytics initiatives. DataOps is a combination of tools and
methodologies used to optimize the data analytics cycle time and quality (Bergh et al.,
2019). DataOps is applied to the entire data analysis life cycle, from data generation and
cleansing to data visualization and reporting.

Gartner (2020) defined DataOps as “a collaborative data management practice, really
focused on improving communication, integration, and automation of data flow between
managers and consumers of data within an organization” (para. 1)

In other words, DataOps reevaluates elements in an analytics project where (Bergh et al.,
2019):

• individuals and interactions have more importance than processes and tools
• functioning analytics have more value than comprehensive documentation of the ana-

lytics solution itself
• the collaboration and engagement of the client has more value that the terms written in

the contract
• experimentation, iteration, and feedback from different parties of an analytics project

have more value than an enormous, upfront design
• the cross-functional responsibility of operations is more valuable than the siloed

responsibilities

DataOps is based on eighteen principles (its manifesto), which are as follows (Bergh et al.,
2019):

129

Lean production
The economical and time-
efficient use of operating

resources, personnel,
materials, and organiza-

tion in company activities
is called lean production.

1. Continuous customer satisfaction: the highest priority of an analytics project is cus-
tomer satisfaction by early and continuous delivery of valuable analytical insights
over periods ranging from minutes to weeks.

2. Providing functioning analyses: the most important measure of data analytics per-
formance is an insightful analysis, which is built on robust frameworks and systems.

3. Openness to change: the team should embrace customers’ dynamic and evolving
needs.

4. DevOps is a team sport: analysis teams always have a range of roles, skills, favorite
tools, and titles. This variety and diversity of backgrounds and views enhances both
innovation and creativity within the data science project.

5. Daily discussions: clients and DevOps teams must work together closely every day
during the analytics project lifetime.

6. Self-organization: the best analytical insights, algorithms, architectures, require-
ments, and designs come from self-organized teams.

7. No heroism: as the speed and scope of analytical insight requirements increase con-
tinuously, the analytical teams should aim to minimize heroism and instead build sus-
tainable and scalable teams and processes.

8. Reflection: analytical teams should optimize their performance by periodically reflect-
ing feedback from customers and themselves as well as operational statistics.

9. Analysis is code: analytical teams use different tools and methods to integrate, model,
visualize, and access data. Each of these tools and methods produces code and con-
figuration data that describe the actions that should be taken in order to gain insight.

10. Orchestration: the consistent orchestration of data, tools, code, and teams is a vital
element for a successful analytics project.

11. Reproducibility: since reproducible results are indispensable, the team should version
everything, including data, hardware, and software configurations, as well as the code
and configuration for each tool in the entire toolchain.

12. Disposable working environments: it is important to minimize the experimentation
effort for team members by providing them easy-to-create, isolated, and secure devel-
opment environments that closely mimic the production and operation environment.

13. Simplicity: a persistent emphasis on technical innovation and sound engineering
increases agility, and simplicity (the art of minimizing unnecessary work) is essential.

14. Analytics is manufacturing: analytics pipelines are similar to lean production lines.
We believe that a basic principle of DataOps is a focus on process thinking, which
strives to continually enhance the delivery of analytical insight.

15. Quality above all: analytical pipelines should be constructed on solid bases that are
capable of automatically detecting anomalies in code, configuration, and data. They
should also deliver continuous feedback to the team for error prevention.

16. Quality and performance monitoring: it is essential to continuously measure and
monitor performance and quality indicators to detect unexpected deviations and also
to generate operational statistics.

17. Reusability: a basic principle of efficiency in gaining analytical insight is not to repeat
previous works by individuals or teams.

18. Improving lead times: we should try to reduce the amount of time and work needed
to transform a customer need into an analytical blueprint, implement it in the devel-
opment phase, make it available as a reproducible product, and, finally, improve and
reuse the end product.

130

Capitalize the full sentences.

Implementing the DataOps and DevOps practices into machine learning (ML) and data sci-
ence pipelines is called MLOps, which is defined as the process of operationalizing data
science by getting ML models into production in order to monitor their performance and
ensure they are fair and in compliance with applicable regulations (Sweenor et al., 2020).
MLOps provides repeatable processes to deploy, monitor, and maintain the machine
learning and data science pipelines in operational systems.

Assume that you have developed a machine learning application within your enterprise.
To check if the application is MLOps compatible (having not only ML models, but also ML
operations), you should answer questions like (Sweenor et al., 2020):

1. Are you able to manage the development of new models parallel to the existing pro-
duction and operational models?

2. Can you explain why specific predictions are made by your model?
3. Have you versioned your code and implemented approval processes to support your

ML operations?
4. Are application developers, DevOps engineers, IT managers, and line-of-business

managers involved in the life cycle of the product?
5. Do you consider the whole process as a life cycle?

As stated in the Introduction, this unit is mostly about operationalizing data science.
Below, you can see different phases of an operationalizing data science project plan. Such
a plan is necessary to implement the data science project for analysis and predictions of
real-world scenarios before they become outdated due to operational obstacles (Sweenor
et al., 2020).

Figure 66: Steps to Operationalize Data Science

Source: Alavirad, 2020, based on Sweenor et al., 2020.

131

Awkward phrasing. Please rework.

Feature engineering
The process of using

domain knowledge of the
data to create features

that make machine learn-
ing algorithms work is

called feature engineering
(Shekhar, 2018).

The data science model and all its transformations (e.g., the transformation of the raw
data to be more appropriate as an input for the model) must be managed as an artifact
throughout the pipeline and the life cycle of the data science project. To realize this, the
team should consider the following steps (Sweenor et al., 2020):

1. Build. The first step of operationalizing a data science project is to build analysis pipe-
lines using programming languages like Python and R. To create a predictive data
analysis pipelines, data scientists use machine learning standards. To improve the
quality of predictions of the machine learning models, data scientists build transfor-
mations by performing feature engineering.

2. Manage. The data science models should be managed during their life cycles. Using a
central repository makes the management process more efficient. On such a platform,
it is possible to track the provenance, versioning, testing, deployment, accuracy met-
rics, links between models, datasets, etc., of the models.

3. Deploy and integrate. In this step, the data science pipeline is integrated into the busi-
ness application environment. The deployed pipeline should also be consistent with
the host runtime environment. There are different deployment methods. For exam-
ple, modern MLOps architectures provide containerized deployment of the data
model pipelines. There is a difference between deployment and integration (Sweenor
et al., 2020). Deployment is the process of detaching the developed model from the
development environment and execute it in a format to be appropriate for the host
runtime environment. Integration is the process of embedding the deployed model
into the runtime environment.

4. Monitor. After the data science model has been deployed and started its operational
phase, it is necessary to monitor it constantly to evaluate the accuracy of its predic-
tions and its business criteria.

6.2 Containerization
We have already introduced containers as a method of deploying and integrating data
pipelines into business applications such as (Sweenor et al., 2020):

• an execution endpoint like a database, in order to analyze the data stored in the data-
base

• a website, in order to enhance the user experience
• an IoT device, in order to monitor and predict the machine condiction

As stated before, deployment is followed by integration. Deployment methods depend on
integration endpoints (targets or hosts) and vice versa. Among these deployment meth-
ods, we can mention (Sweenor et al., 2020):

• code generation, such as with C++, Python, Java, or C#
• serverless deployment, like Google Functions (function as a service)
• container deployment, like model inferencing within a Docker

For integration endpoints there are also many methods, like (Sweenor et al., 2020):

132

“Etc.” should only be used in brackets.

Example of awkward phrasing.

• Batch option. This is when, for example, one collection of data will be analyzed at a
time.

• Interactive apps. This is where the model is run via an API.
• Real-time streaming. This is where the data will be analyzed as they are generated in

real-time.
• Edge integration. This is where the model is executed on edge devices (like IoT devices).

In the rest of this section, we focus on the container method for the deployment of data
science models.

Container

A container is a standard unit of software that wraps up the application code and all its
dependencies (e.g., libraries) in a single package (container), so that the application can
run and move between different environments (Docker, 2020b). In other words, containers
abstract the applications from the runtime environments (hosts). They provide a deploy-
ment approach through which the development team can focus on their task while the IT-
operational team manages the deployment of the application in different environments.

Figure 67: Containerization of Applications

Source: Alavirad, 2020.

Containers and virtual machines (VMs) have some similarities and differences. A virtual
machine is a guest operating system (e.g., Linux) which is running on the top of a host
operating system (e.g., Windows). VMs, like containers, isolate applications and their libra-
ries from the host environment. However, containers provide a much lighter isolation
mechanism with smaller disk occupation and lower overhead, as you can see in the figure
below. Indeed, VMs virtualize at the hardware level, while containers perform the virtuali-
zation at the operating system level. Multiple containers run at the top of the kernel of the
host operating system. The containers share the operating system kernel and they use less
memory than the VMs to boot.

133

Figure 68: Containers vs. VMs

Source: Alavirad, 2020.

There are different forms of containers and, in the following, we will discuss two of them:
Dockers and Kubernetes. The former is applied to containerize applications, and the latter
manages the containerized applications in operational environments.

Docker

Docker is an open-source platform that provides the encapsulation of applications’ code
and dependencies in containers (IBM, 2020b). Docker containers can run on-premises or
on on-demand hosts. It was originally developed for Linux operating systems, but now is
also available for Windows and MacOS (using a virtual machine).

Docker containerization can facilitate both workflow and communication between the
development and IT operation teams, as you can see in the figure below (Matthias & Kane,
2018). In this workflow, the development team builds the Docker image and delivers it to
the registry. The IT operation team then provides the configuration information to the
development team and they trigger the development. This simplification is possible
because Docker permits the discovery of dependency issues during the development and
test phases. Therefore, when the application is ready for deployment and integration, all
possible issues have been resolved during the development and test phases.

134

Figure 69: Application Deployment Workflow Using Docker

Source: Alavirad, 2020, based on Matthias & Kane, 2020.

A simplified version of the Docker architecture could be assumed as a server/client archi-
tecture as shown below (Matthias & Kane, 2018). In this model, Docker is assumed as a
server that performs building, running, and managing of containers and also a client
which is used to manage and configure the server. There is also an optional document
called the registry, which is used to store Docker images and the relevant metadata. It is
possible to run the Docker daemon on any number of servers.

135

Figure 70: Client-Server Model of Docker Architecture

Source: Alavirad, 2020, based on Matthias & Kane, 2020.

Let us introduce some of the main Docker components (Yegulab, 2019):

1. Dockerfile. This is a text configuration document that contains some information
about how to build the Docker image such as host operating system, environmental
variables, file locations, network information. Docker can build an image using the
information provided in a Dockerfile.

2. Docker image. After providing the Dockerfile, the user can build a docker image using
docker build instruction. A Docker image contains the components to run an appli-
cation as a container (code, configuration files, libraries, environmental variables,
etc.). The Docker image has multiple filesystem layers where the most top layer is a
writeable/readable on the top of read-only layers. The filesystem layers are build by
the command line (instructions) in the Dockerfile during the Docker image building
process. The instructions RUN, COPY, and ADD create the layer of Docker images.

3. Docker run. This is a command to launch a container where a container is an instance
of the Docker image.

4. Docker engine. This is the core of the Docker containerization platform to create and
run container applications (Docker, 2020a). Docker engine acts as a client-server
application. The server is a long-running daemon process (docked) and the client is a
command-line interface (docker).

To better understand the concept of Docker, let us look at a typical Docker workflow (Mat-
thias & Kane, 2018):

1. Revision Control. There are two forms of revision control provided by Docker. One is
for tracking the filesystem layers (containing container images), the other one is for
tagging the container images.

136

When examples are given in brackets, they should be preceded with “e.g.” This has been the case throughout the course book, so be sure to keep it consistent.

The filesystem layer structure facilitates the changes to the container application. If a
change is necessary (and also applied), only the modified layers should be deployed,
where each layer is identified with a hash. Docker uses as many as possible base lay-
ers and rebuilds only the layers affected by the code modifications.
Docker has an image tagging mechanism at the deployment time to provide applica-
tion versioning. Using image tags we could find out for example what was the last ver-
sion of the application that was deployed.

2. Building. The building of an image from the Dockerfile is performed by the docker
build command.

3. Testing. Although Docker does not provide a specific testing mechanism, if developers
do some unit or full-integration testing, Docker guarantees that the tested version will
be delivered for deployment and integration. For example, if we have a successful unit
test against a Docker image, we could be sure that there would not be any problem
with the versioning of the underlying library of the Docker application during the
deployment.

4. Packaging. Docker produces a single, multi-layered Docker image.
5. Deploying. The deployment of the Docker applications would be handled by Docker

standard client on a single host and there are tools for deploying the Docker applica-
tions on multiple nodes.

Kubernetes

We have now taken a look at how to use Docker to create containerized applications. The
next step after deploying the application is to manage those applications in the produc-
tion and operational environments. For example, when one container is down, another
container should be started automatically. This container management task could be han-
dled by Kubernetes. Kubernetes is a portable, extensible, open-source platform for man-
aging containerized workloads and services that facilitates both declarative configuration
and automation (Kubernetes.io, 2020). Google released the Kubernetes open-source
project in 2014.

Kubernetes can be considered as a:

• container platform
• microservices platform
• portable cloud platform

Kubernetes provides a container-centric management environment. It coordinates the
computing, networking, and storage infrastructure of user’s workloads. This offers the
simplicity of Platform as a Service (PaaS) together with the flexibility of Infrastructure as a
Service (IaaS) and facilitates portability between infrastructure vendors.

By deploying Kubernetes, we create a Kubernetes cluster which consists of nodes, each
run containerized applications (Kubernetes.io, 2020). The application workloads (called
pods) are hosted by nodes and both pods and nods are managed by the control plane in
the cluster.

137

Review hyphenated words. Merriam-Webster tends to omit hyphens.

Please rework lead-in.

Pod
The smallest deployable
units of computing that

you can create and man-
age in Kubernetes are

called pods.

To providing fault tolerance and also high availability in production environments, the
control plane runs over multiple computers, where a cluster runs multiple nodes.

In this part, we explain the components needed to have a complete and working Kuber-
netes cluster. These components of the Kubernetes cluster are shown below.

Figure 71: Kubernetes Cluster Components

Source: Alavirad, 2020, based on Kubernetes.io, 2020.

Control plane components are responsible for making global decisions about the cluster
(e.g., scheduling) and for recognizing and reacting to cluster events (starting a new pod if
the replicas field of a replication controller is not satisfied). Control plane components can
run on any computer in the cluster. For simplicity, setup scripts typically start all control
plane components on the same machine where no user containers run on that machine.
The components of the control plane are as follows (Kubernetes.io, 2020):

• kube-apiserver. This makes the Kubernetes API available and it is the front-end for the
Kubernetes control plane. It is designed for horizontal scaling, i.e., it scales up by pro-
viding more instances.

• etcd. This is the key-value storage used as backup storage for all cluster data.
• kube-scheduler. This monitors new pods without nodes and selects the node on which

the new pods should be executed.
• kube-controller-manager. This runs the controller processes. Each controller is a dis-

tinct process, but to make things easier, all controllers are grouped into a single binary
file and executed in a single process.

• cloud-controller-manager. This allows users to link the cluster into the cloud provider's
API.

On each node, two components run to maintain the running pods and providing the
Kubernetes runtime environment.

• kubelet ensures that containers in a pod are running.

138

Awkward phrasing

• kube-proxy enables Kubernetes service abstraction by maintaining network rules on the
host and handling connection forwarding.

6.3 Building Data Pipelines
We start this section with a brief introduction to machine learning (ML) pipelines. We will
then discuss the architecture of the ML pipelines in more detail.

Machine Learning Pipeline

An ML pipeline is an independently executable workflow of a complete machine learning
task. Subtasks are encapsulated as a series of steps in the pipeline. The input of each step
of an ML pipeline is the output of the preceding step (Microsoft, 2020i). Unlike general data
science process models that typically emphasize the iterative and cyclical nature of
designing a data science solution, a pipeline operationalizes and automates the necessary
steps to to run a model in a production environment.

The key benefit of using an ML pipeline is automating the machine learning solution life
cycle. When new data are available, they will be processed automatically, which reduces
the cost of data science projects (Hapke, 2020).

We can list the main steps of a general machine learning pipeline (Koen, 2019b):

1. Problem definition. The first step is to define the problem which should be tackled by
a machine learning solution/project.

2. Data ingestion. The next step is to recognize and collect the data to feed our machine
learning application.

3. Data preparation. After ingesting raw data into the model, and before feeding them
into the ML algorithm, they should be prepared. Invalid and duplicated data should be
removed and some data need to be reformatted.

4. Data segregation. In this step, the data will be split into subsets to train, test, and vali-
date the model against new data.

5. Model training. The training subset from the data segregation step will be used by the
ML algorithm to recognize the pattern.

6. Candidate model evaluation. In this step, the test and validation subsets from the
data segregation step will be used to evaluate the prediction of the ML algorithm. This
step is iterative and will be executed until the most optimal model (defined by the
model/problem criteria) is marked.

7. Model deployment. After finding the appropriate model, it should be deployed into an
operational environment.

8. Performance monitoring. After deploying and integrating the ML model, it should be
monitored continuously to evaluate its predictions in real-world scenarios.

These steps are shown below.

139

Can we add information about the topic rather than a summary of what we will discuss?

Use ML unless there is a specific reason for spelling it out fully.

Figure 72: ML Pipeline

Source: Alavirad, 2020, based on Koen, 2020b.

All the steps mentioned above should be orchestrated (e.g., the steps should be executed
in the correct order) in order to have a reliable automated machine learning project. For
example, a step cannot be executed before the input has been generated by the previous
step (Hapke, 2020). Such orchestration can be done via many tools, such as Apache Beam,
Apache Airflow, Kubeflow Pipelines for Kubernetes infrastructures, and MLflow.

Most of the ML pipeline orchestration tools (e.g., Apache Beam and Apache Airflow) and
platforms (e.g., Kubeflow Pipelines) use a graph representation of task dependencies to
manage the tasks in an ML pipeline. This graph representation is called a directed acyclic
graph (DAG): a graph that has a finite number of vertices (a step in ML pipeline) and edges
(dependencies between steps), where it is not possible to start at any vertex, follow a con-
sistently-directed sequence of edges, and return to the same vertex. In a DAG, the edges
flow in only one direction (they are directed). This starts with a start task and ends with an
end task

DAG implementation guarantees that (Hapke, 2020):

• a task does not start without all dependencies are available (executed and calculated).
For example, training of the model only happens after creating a training data subset.

• a graph is not linked to a previously completed graph. This results in the pipeline run-
ning until it reaches the end step.

140

Figure 73: A Directed Acyclic Graph

Source: Alavirad, 2020, based on Hapke, 2020.

In this section, we will briefly discuss Kubeflow Pipelines, which is a ML pipeline orchestra-
tion platform. The Kubeflow Pipelines platform consists of the following components
(Kubeflow, 2020):

• User interface (UI). This component is used for monitoring and managing jobs.
• Engine. This is used for scheduling multi-step machine learning workflows.
• Software development kit (SDK). This is used for defining and configuring the pipelines

and building Docker containers.
• Notebooks. This is used for interacting with systems using the SDK.

After installing Kubeflow Pipelines, some extra tools will be installed, like a workflow con-
troller, an SQL database instance, and an ML metadataStore (which stores the metadata of
a machine learning pipeline). When Kubeflow Pipelines is running, each component runs
as its own Kubernetes pod.

141

Argo
A collection of tools for

managing workflows
developed originally to
manage DevOps tasks,

Argo manages all tasks as
containers within the

Kubernetes environment
(Argo, 2020).

Figure 74: Overview of the Kubeflow Pipelines

Source: Alavirad, 2020, based on Kubeflow, 2020.

Kubeflow Pipelines uses Argo to orchestrate dependencies of the individual components.

ML Pipeline Architecture

As, nowadays, business operations are very time-sensitive, machine learning solutions
should also be able to make predictions in real time. For example, when you purchase an
item on Amazon, Amazon’s machine learning platform should suggest new items based on
your previous purchases and your search history.

We can break this real-time machine learning pipeline into two separate layers (Koen,
2019a):

• Online model analytics. In this layer, the ML model is applied to streaming data for real-
time decision making.

• Offline data discovery. In this layer, the ML model will be trained by analyzing the histor-
ical data.

Considering this online-offline splitting approach, we will discuss the architecture and
steps of a machine learning model for a real-time business application in more detail
(Koen, 2019a):

142

1. Data ingestion. The first step is to import the raw data into the application without
any transformation. This is important because the original data should be recorded
immutably. The data could be ingested from different data sources by request (pub-
sub) or they can be streamed into the application. This step has both offline and
online layers.
a) Offline layer. In the offline layer, data is collected via an “ingestion service,” which

runs on a schedule or trigger. The data is stored in a database (“raw data store”)
and is labeled by a batch_id. To accelerate the data ingestion process, there is an
“ingestion service” for each data source. Within each pipeline, the data are parti-
tioned to decrease total run time using multiple server cores.

b) Online layer. In this layer, data is ingested directly from data sources into the pro-
cessing and storage components by the “online ingestion service.” In this layer,
data are stored on “raw data storage,” as in the case of offline ingestion. At the
same time, they are ingested into the processing components. An example of such
an online ingestion service is Apache Kafka, which is a pub-sub messaging system,
and Apache Flume, which is used for the long-term storage of data in databases.

2. Data preparation. In this step, ingested data are investigated for format differences,
outliers, trends, missing values, and anomalies. The feature engineering process is
also a part of this step, which includes extraction, transformation, and selection pro-
cesses. This step has also online and offline layers.
a) Offline layer. After the data are ingested into the raw data store, “data preparation

service” is triggered to apply feature engineering on the raw data. The generated
features are stored in the feature data store. In this step, the data are also parti-
tioned to decrease the run time of the data cleansing and feature engineering pro-
cesses.

b) Online layer. The raw streaming data is ingested directly to the “online data prepa-
ration service” and the generated features are stored in an in-memory database
(“online feature data store”) for low latency access. The features are also stored in
the “feature data store” for future training.

3. Data segregation. In this step, data is split into training, test, and validation subsets for
training, testing, and validating the ML models. For this purpose, the existing labeled
data are used. Therefore, this step has only an offline layer and the following subsets
of data:
a) Training subset. This is the actual subset that we use to train the model.
b) Validation subset. This is a sample subset of the data that is used for an unbiased

evaluation of the trained model.
c) Test subset. This is a sample subset of the data that is used for an unbiased final

evaluation of the trained model. The test subset could be also the same as the
training subset, although this is not the best approach. This subset should be
chosen very carefully. The test subset should be independent of the training sub-
set, although both have the same probability distribution.

There are different approaches to splitting the dataset into training, validation, and
test subsets. For example, we could start with two subsets: training and test subsets.
We then keep aside the test subset and split the training dataset into two subsets: the
new training subset (e.g., 80%) and the validation subset (the remaining 20%).

143

4. Model training. In this step, the training data subset from the segregation step is used
to train the ML model. This step also only contains an offline layer. The “model train-
ing service” receives the training parameters (e.g., model type, relevant features, etc.)
from the “configuration service” and will be triggered by events or executed according
to schedules. It also requests the training dataset from the “data segregation API.”

5. Candidate model evaluation. In this step, we evaluate the model performance using
the validation subset. This step also only has an offline layer. The accuracy of this
model is evaluated by comparing the model prediction on the evaluation data subset
to true values using metrics parameters. The best model is selected to perform the
prediction for the new datasets using the test dataset. The “model evaluation service”
requests the evaluation dataset from the “data segregation API.” The models are
requested from the “model candidate repository” and the evaluation results are
saved back into the repository. The best model is labeled for the deployment.

6. Model deployment. In this step, the best model is deployed to the operational plat-
form for offline (asynchronous) and online (synchronous) predictions. In this step, we
can use the containerization approach to encapsulate the prediction model. The
model can then be deployed using the continuous delivery implementation
approach. In this method, all requirements are packed, evaluated, and deployed into
a running container.
a) Offline. In this layer, the model can be deployed into a container and executed as

a microservice. The models can be run on multiple parallel pipelines.
b) Online. In this layer, the model will be also deployed in a container and then

deployed into a service cluster to improve scalability.
7. Model monitoring. In this step, we collect metadata during the model serving time,

such as the number of times the model has been served, the predicted results versus
the real results, and so on. We then use them for monitoring the model. The “perform-
ance monitoring service” is called when a new prediction is served. This service then
evaluates the performance of the ML model and stores the results and pushes the rel-
evant notifications.

These steps are shown in the following three figures.

144

Figure 75: Data Ingestion

Source: Alavirad, 2020, based on Koen, 2020a.

145

Having just one graphic on each page makes the book look like a rough draft. Is there a way we can fix it?

Figure 76: Data Preparation

Source: Alavirad, 2020, based on Koen, 2020a.

146

Figure 77: Data Segregation and Data Training and Evaluation

Source: Alavirad, 2020, based on Koen, 2020a.

ML Pipelines at Uber

As a real-world implementation of an ML pipeline, we can refer to Uber's machine learning
platform: Michelangelo, a platform for building, deploying, and operating machine learn-
ing solutions (Hermann & Del Balso, 2017). For example, the UberEATS application uses
Michelangelo to predict a meal's estimated time of delivery (ETD). A typical ETD includes
the following time slots:

• the customer’s order confirmation from the restaurant
• meal preparation by the restaurant
• dispatch of an Uber driver to pick up the food once it is ready
• finding a parking spot near the restaurant, walking to the restaurant, picking up the

food, walking back to the car
• finding a parking spot near the customer, walking to the customer’s location, and deliv-

ering the food

At Uber, data scientists use information from the submitted order (e.g., type of order, time
of the day, location, etc.), historical features (e.g., the average time for food preparation in
the last seven days), and near-real-time calculated features (e.g., the average time for food
preparation in the last hour) to feed the Michelangelo pipeline. Data prediction models are

147

then deployed to the Michelangelo model's serving containers and are invoked via net-
work requests by UberEATS microservices (Hermann & Del Balso, 2020). The estimated
time of delivery will be shown to the customer on their mobile application.

Uber has implemented the following six-step workflow for Michelangelo (Hermann & Del
Balso, 2020):

1. Manage data
2. Train models
3. Evaluate models
4. Deploy models
5. Make predictions
6. Monitor predictions

SUMMARY
In this unit, we have learned about operationalizing developed data sci-
ence models and solutions. We started by defining DevOps, DataOps,
and MLOps. In this section, we also briefly reviewed the eighteen princi-
ples (manifesto) of DataOps and the main steps of operationalizing a
data science plan: build, test, deploy, and monitor.

We then discussed the containerization approach to deploying and inte-
grating data science pipelines into business applications. We first
defined the container concept and then introduced Docker as a solution
for containerizing applications and Kubernetes as a tool for managing
deployed, containerized applications in an operational environment.

Finally, we introduced machine learning pipelines as the independently
executable workflow of a complete machine learning task, where its key
benefit is automating the machine learning solution life cycle. We also
introduced the seven steps of a typical machine learning pipeline: data
ingestion, data preparation, data segregation, model training and evalu-
ation, model deployment, and performance monitoring. We then dis-
cussed the architecture of the ML pipeline in more detail and, finally,
briefly looked at Michelangelo: Uber's machine learning workflow.

148

	Introduction
	Signposts Throughout the Course Book
	Suggested Readings
	Required Reading
	Learning Objectives

	Foundation of Data Systems
	Reliability
	Scalability
	Maintainability

	Data Processing at Scale
	Batch Processing
	Stream Processing System

	Microservices
	Introduction to Monolithic Architecture
	Introduction to Microservices
	Implementing Microservices

	Governance & Security
	Data Protection
	System Security
	Data Governance

	Common Cloud Platforms & Services
	Cloud Computing
	Amazon Web Services
	Google Cloud
	Microsoft Azure

	Data Ops
	Defining Principles
	Containerization
	Building Data Pipelines

	Backmatter
	List of References
	List of Tables and Figures

