
ALGORITHMS, DATA
STRUCTURES, AND
PROGRAMMING LANGUAGES

DLBCSL01-01

ALGORITHMS, DATA
STRUCTURES, AND
PROGRAMMING LANGUAGES

MASTHEAD

Publisher:
IU Internationale Hochschule GmbH
IU International University of Applied Sciences
Juri-Gagarin-Ring 152
D-99084 Erfurt

Mailing address:
Albert-Proeller-Straße 15-19
D-86675 Buchdorf
media@iu.org
www.iu.de

DLBCSL01-01
Version No.: 001-2023-0601
N.N.

© 2023 IU Internationale Hochschule GmbH
This course book is protected by copyright. All rights reserved.
This course book may not be reproduced and/or electronically edited, duplicated, or dis-
tributed in any kind of form without written permission by the IU Internationale Hoch-
schule GmbH (hereinafter referred to as IU).
The authors/publishers have identified the authors and sources of all graphics to the best
of their abilities. However, if any erroneous information has been provided, please notify
us accordingly.

2

PROF. DR. PAUL LIBBRECHT

Mr. Libbrecht has been a lecturer in Computer Science at IU International University of
Applied Sciences since 2020. His main areas are the World Wide Web, data management, and
general computer science.

Mr. Libbrecht studied Mathematics at the University of Lausanne (Switzerland) and the Uni-
versité du Québec à Montréal (Canada). He received his doctorate in Computer Science from
Saarland University (Germany). He has been a substitute professor at the University of Edu-
cation Weingarten (PH Weingarten) and senior developer at the Leibniz Institute for Research
and Information in Education. He is a member of the W3C Math Working Group and has been
active in the OpenMath Society.

Mr. Libbrecht’s research focusses on the technology of learning systems, often with a focus
on mathematics. He has published in international conferences and journals. Since 2010, he
has worked as a web development consultant for German, French, and US companies.

3

TABLE OF CONTENTS
ALGORITHMS, DATA STRUCTURES, AND PROGRAMMING LANGUAGES

Module Director . 3

Introduction
Signposts Throughout the Course Book . 8
Basic Reading . 9
Further Reading . 10
Learning Objectives . 13

Unit 1
Basic Concepts 15

1.1 Algorithms, Data Structures, and Programming Languages as the Basis of Program-
ming . 16
1.2 Detailing and Abstraction . 20
1.3 Control Structures . 24
1.4 Types of Data . 30
1.5 Basic Data Structures (List, Chain, Tree) . 33

Unit 2
Data Structures 41

2.1 Advanced Data Structures: Queue, Heap, Stack, Graph . 42
2.2 Abstract Data Types, Objects, and Classes . 55
2.3 Polymorphism . 58

Unit 3
Algorithm Design 63

3.1 Induction, Iteration, and Recursion . 64
3.2 Methods of Algorithm Design . 70
3.3 Correctness and Verification of Algorithms . 75
3.4 Efficiency (Complexity) of Algorithms . 81

4

Unit 4
Basic Algorithms 87

4.1 Traversing and Linearization of Trees . 89
4.2 Search Algorithms . 92
4.3 Sorting Algorithms . 94
4.4 Search in Strings . 101
4.5 Hash Algorithms . 104
4.6 Pattern Recognition . 106

Unit 5
Representing Structured Data 111

5.1 Structure of XML documents . 114
5.2 Accessing XML Documents with the DOM and SAX Approaches 119
5.3 Transformation of XML documents using XSL . 123
5.4 Alternative Document Representations . 126

Unit 6
Measuring Programs 129

6.1 Type Inference and IDE Interactive Support . 130
6.2 Cyclomatic and Referential Complexity . 133
6.3 Digesting Code Documentation . 137
6.4 Compiler Optimization . 140
6.5 Code Coverage . 142
6.6 Unit and Integration Testing . 145
6.7 Heap Analysis . 148

Unit 7
Programming Languages 153

7.1 Programming Paradigms . 154
7.2 Execution of Programs . 161
7.3 Types of Programming Languages . 163
7.4 Syntax, Semantics, and Pragmatics . 167
7.5 Variables and Type Systems . 171

Unit 8
Overview of Important Programming Languages 177

8.1 Assembler and Webassembly . 178
8.2 C and C++ . 183
8.3 Java and C# . 186
8.4 Haskell, Lisp . 192
8.5 JavaScript and Its Relatives . 197
8.6 Other Imperative Programming Languages . 200

5

Appendix
List of References . 204
List of Tables and Figures . 208

6

INTRODUCTION

WELCOME
SIGNPOSTS THROUGHOUT THE COURSE BOOK

This course book contains the core content for this course. Additional learning materials
can be found on the learning platform, but this course book should form the basis for your
learning.

The content of this course book is divided into units, which are divided further into sec-
tions. Each section contains only one new key concept to allow you to quickly and effi-
ciently add new learning material to your existing knowledge.

At the end of each section of the digital course book, you will find self-check questions.
These questions are designed to help you check whether you have understood the con-
cepts in each section.

For all modules with a final exam, you must complete the knowledge tests on the learning
platform. You will pass the knowledge test for each unit when you answer at least 80% of
the questions correctly.

When you have passed the knowledge tests for all the units, the course is considered fin-
ished and you will be able to register for the final assessment. Please ensure that you com-
plete the evaluation prior to registering for the assessment.

Good luck!

8

BASIC READING
Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2022). Introduction to algorithms

(4th ed.). MIT Press. http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=
true&db=cat05114a&AN=ihb.51016&site=eds-live&scope=site

Sebesta, R. W. (2016). Concepts of programming languages (11th ed.). Pearson. http://searc
h.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=cat05114a&AN=ihb.49
270&site=eds-live&scope=site

9

http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=cat05114a&AN=ihb.51016&site=eds-live&scope=site
http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=cat05114a&AN=ihb.51016&site=eds-live&scope=site
http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=cat05114a&AN=ihb.49270&site=eds-live&scope=site
http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=cat05114a&AN=ihb.49270&site=eds-live&scope=site
http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=cat05114a&AN=ihb.49270&site=eds-live&scope=site

FURTHER READING
UNIT 1

Even, G., & Medina, M. (2012). Digital logic design: A rigorous approach. Cambridge Univer-
sity Press. Chapter 8 http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct
=true&db=cat05114a&AN=ihb.49269&site=eds-live&scope=site

O’Regan, G. (2018). The innovation in computing companion:A compendium of select, pivo-
tal inventions. Springer. Chapter 23 http://search.ebscohost.com.pxz.iubh.de:8080/log
in.aspx?direct=true&db=cat05114a&AN=ihb.49268&site=eds-live&scope=site

UNIT 2

Andreiana, A.-D., Badica, C., & Ganea, E. (2020). An experimental comparison of implemen-
tations of Dijkstra’s single source shortest path algorithm using different priority
queues data structures. In L.-F. Bărbulescu (Ed.), 2020 24th international conference on
system theory, control and computing (ICSTCC) (pp. 124—129). IEEE. http://search.ebsc
ohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=edseee&AN=edseee.9259693
&site=eds-live&scope=site

Deo, N. (2018). Graphs. In D. P. Mehta & S. Sahni (Eds.), Handbook of data structures and
applications (2nd ed., pp. 49—68). CRC Press. Chapter 4 http://search.ebscohost.com.
pxz.iubh.de:8080/login.aspx?direct=true&db=cat05114a&AN=ihb.49271&site=eds-live
&scope=site

UNIT 3

Roughgarden, T. (2021). Beyond the worst-case analysis of algorithms. Cambridge Univer-
sity Press. Chapter 1 (Available online)

Sommerville, I. (2016). Software engineering (10th ed.). Pearson. Chapter 8 http://search.e
bscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=cat05114a&AN=ihb.49267
&site=eds-live&scope=site

10

http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=cat05114a&AN=ihb.49269&site=eds-live&scope=site
http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=cat05114a&AN=ihb.49269&site=eds-live&scope=site
http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=cat05114a&AN=ihb.49268&site=eds-live&scope=site
http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=cat05114a&AN=ihb.49268&site=eds-live&scope=site
http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=edseee&AN=edseee.9259693&site=eds-live&scope=site
http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=edseee&AN=edseee.9259693&site=eds-live&scope=site
http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=edseee&AN=edseee.9259693&site=eds-live&scope=site
http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=cat05114a&AN=ihb.49271&site=eds-live&scope=site
http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=cat05114a&AN=ihb.49271&site=eds-live&scope=site
http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=cat05114a&AN=ihb.49271&site=eds-live&scope=site
http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=cat05114a&AN=ihb.49267&site=eds-live&scope=site
http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=cat05114a&AN=ihb.49267&site=eds-live&scope=site
http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=cat05114a&AN=ihb.49267&site=eds-live&scope=site

UNIT 4

Goodrich, M. T., Tamassia, R., & Goldwasser, M. H. (2013). Data structures and algorithms in
Python. Wiley. Chapter 13 http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?d
irect=true&db=cat05114a&AN=ihb.49266&site=eds-live&scope=site

Olukanmi, P., Popoola, P., & Olusanya, M. (2020). Centroid sort: A clustering-based techni-
que for accelerating sorting algorithms. 2020 2nd international multidisciplinary infor-
mation technology and engineering conference (IMITEC) (pp. 1—5). IEEE. http://search.
ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=edseee&AN=edseee.933
4102&site=eds-live&scope=site

UNIT 5

DOM. (n.d). Living Document. WhatWG. (Available online)

JSON. (n.d). Introducing JSON. (Available online)

Meggison, David (2004). About SAX. SourceForge.(Available online)

Mozilla Corporation (2023) XSLT Reference. Mozilla Developer Network. (Available online)

UNIT 6

Reitz, K., & Schlusser, T. (2017). The hitchhiker’s guide to Python: Best practices for develop-
ment. O’Reilly. Chapter 4 http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?di
rect=true&db=cat05114a&AN=ihb.45687&site=eds-live&scope=site

Zhai, H., Casalnuovo, C., & Devanbu, P. (2019). Test coverage in Python programs. MSR ‘19
proceedings of the 16th international conference on mining software repositories (pp.
116—120). IEEE. http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=tru
e&db=edseee&AN=edseee.8816791&site=eds-live&scope=site

UNIT 7

Hemmendinger, D. (2003). Syntax, semantics, and pragmatics. In A. Ralston, E. D. Reilly, &
D. Hemmendinger (Eds.), Encyclopedia of computer science (4th ed., pp. 1737—1738).
John Wiley and Sons Ltd. (Available online)

Smaragdakis, Y. (2019). Next-paradigm programming languages: What will they look like
and what changes will they bring? In H. Masuhara & T. Pietricek (Eds.), Onward! 2019:
Proceedings of the 2019 ACM SIGPLAN international symposium on new ideas, new para-
digms, and reflections on programming and software (pp. 187—197). Association for
Computing Machinery. http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?dire
ct=true&db=edsbas&AN=edsbas.2FFFC074&site=eds-live&scope=site

11

http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=cat05114a&AN=ihb.49266&site=eds-live&scope=site
http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=cat05114a&AN=ihb.49266&site=eds-live&scope=site
http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=edseee&AN=edseee.9334102&site=eds-live&scope=site
http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=edseee&AN=edseee.9334102&site=eds-live&scope=site
http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=edseee&AN=edseee.9334102&site=eds-live&scope=site
http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=cat05114a&AN=ihb.45687&site=eds-live&scope=site
http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=cat05114a&AN=ihb.45687&site=eds-live&scope=site
http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=edseee&AN=edseee.8816791&site=eds-live&scope=site
http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=edseee&AN=edseee.8816791&site=eds-live&scope=site
http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=edsbas&AN=edsbas.2FFFC074&site=eds-live&scope=site
http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=edsbas&AN=edsbas.2FFFC074&site=eds-live&scope=site

UNIT 8

Nanz, S., & Furia, C. A. (2015). A comparative study of programming languages in Rosetta
code. ICSE ‘15: proceedings of the 37th international conference on software engineer-
ing (pp. 778—788). IEEE. http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?dir
ect=true&db=edsarx&AN=edsarx.1409.0252&site=eds-live&scope=site

Ray, B., Posnett, D., Devanbu, P., & Filkov, V. (2017). A large-scale study of programming
languages and code quality in GitHub. Communications of the ACM, 60(10), 91—100. htt
p://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=edscma&AN=
edscma.3126905&site=eds-live&scope=site

12

http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=edsarx&AN=edsarx.1409.0252&site=eds-live&scope=site
http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=edsarx&AN=edsarx.1409.0252&site=eds-live&scope=site
http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=edscma&AN=edscma.3126905&site=eds-live&scope=site
http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=edscma&AN=edscma.3126905&site=eds-live&scope=site
http://search.ebscohost.com.pxz.iubh.de:8080/login.aspx?direct=true&db=edscma&AN=edscma.3126905&site=eds-live&scope=site

LEARNING OBJECTIVES
This course, Algorithms, Data Structures, and Programming Languages, will provide
students with a basic understanding of algorithms, data structures, and programming lan-
guages, which are the foundations of computer programming. It will equip the students
with a basic understanding of how to represent algorithms in different ways and how to
use control structures, such as loops, conditionals, and recursion, to write programs.

This course will provide the student with a basic understanding of data structures—the
building blocks of algorithms. Basic data structures, such as lists, chains, and trees, will be
covered. This will be followed by advanced data structures, such as stacks, queues, heaps,
and graphs. The concept of abstract data types (ADT) will be introduced for modeling data
structures. Students will be taught how to implement data structures using objects and
classes.

On completion of the course, the students will have an understanding of basic algorithms
and be able to apply them in practical situations. Students will be able to design and ana-
lyze basic algorithms and apply suitable algorithms to problems arising in different appli-
cations. Additionally, students will have gained a basic understanding of tree traversal,
searching, sorting, searching in strings, hashing, and pattern recognition algorithms.

The course will introduce various methodologies for proving the correctness, verification,
and testing of programs. On completion of the course, students will understand and be
able to apply various program measurement methodologies, as well as explain and com-
pare various programming paradigms and languages.

13

UNIT 1
BASIC CONCEPTS

STUDY GOALS

On completion of this unit, you will be able to …

– explain the role of algorithms, data structures, and programming languages in pro-
gramming.

– represent algorithms in various ways.
– understand the role of abstraction and encapsulation in programming.
– define concepts of control structures in programming languages.
– differentiate between different data types.
– create basic data structures, including lists, chains, and trees.

1. BASIC CONCEPTS

Introduction
The stepwise execution of a sequence of instructions to accomplish a given task is ubiqui-
tous in our daily lives. Cooking a dish based on a recipe, searching for a book on a book-
shelf in a library, or searching for the shortest route to a destination on a digital map all
involve stepwise execution of instructions, with or without the help of a computer. In fact,
algorithms and algorithmic computing existed long before the advent of the modern-day
digital computer. Ancient civilizations devised systematic methods, or sequences of
instructions, to carry out various tasks. Architects in antiquity, such as those in ancient
Egypt, devised various systematic geometric constructions using rulers, compasses, and
knotted strings. The celebrated algorithm for finding the “greatest common divisor” of two
whole numbers was suggested by the Greek mathematician Euclid around 300 BCE. A
popular algorithm for finding prime numbers, the “Sieve of Eratosthenes,” is attributed to
Eratosthenes of Cyrene, an ancient Greek polymath who lived around the second century
BCE. Around 250 BCE, the Greek mathematician Archimedes proposed an algorithmic pro-
cedure for computing an approximation of π using the ratio of the circumference and
diameter of a circle. Although several approximations of π had been proposed earlier,
most were merely estimated constant values. Archimedes was the first to suggest an itera-
tive algorithm to compute the value of π, with the accuracy increasing with each iteration.
With the advent of digital computers and the increasing complexity of problems solved by
them, a systematic paradigm of programming has emerged. For a given problem specifica-
tion, an algorithm is designed. Data structures will then provide a means of efficient stor-
age, retrieval, and processing of the data encountered by the algorithm. Programming lan-
guages then provide the constructs to implement and map the design ideas in the
algorithms and data structures to executable code.

1.1 Algorithms, Data Structures, and
Programming Languages as the Basis of
Programming
The word “algorithm” owes its origin to the Latin translation of the Arabic work of the
ninth century Persian mathematician Muhammad ibn Musa al-Khwarizmi (Horowitz et al.,
2008). Over the years, computer scientists have come to define an algorithm as a finite
sequence of unambiguous instructions that accomplishes a well-defined task in a finite
amount of time. Computer algorithms are characterized by the following features (Horo-
witz et al., 2008):

• input (zero or more input values)
• output (one or more output values)
• definiteness (clear and unambiguous set of instructions)

16

Architecture
An architecture describes
a set of rules and specifi-
cations for how software
and hardware that com-
prise a computer system
are organized and inter-
act.

• termination (ends in a finite number of steps)
• effectiveness (instructions must be feasible)

This definition is machine-independent and would also apply to a pen and paper execu-
tion.

The von Neumann Architecture

The Electronic Numerical Integrator and Computer (ENIAC), built in 1946, was one of the
first general-purpose digital computers (O’Regan, 2018). Although ENIAC is regarded as the
first programmable digital computer, it did not have program storage capabilities. ENIAC’s
inventors, John Mauchly and John Presper Eckert, proposed its successor, the Electronic
Discrete Variable Automatic Computer (EDVAC). Most general-purpose computers and
computing as we know them today draw inspiration from the classical architecture pro-
posed by John von Neumann (von Neumann, 1945). EDVAC was based on this. This archi-
tecture defines what is known as a “stored-program model of computation.” In the von
Neumann architecture, a computer consists of the following (Liang, 2017):

• a main memory called random access memory (RAM). Instructions and data reside in
the read-write main memory.

• a central processing unit (CPU) consisting of a control unit and an arithmetic and logic
unit. The CPU fetches instructions and data from the main memory and performs oper-
ations on the data according to the instructions. Results of computations are then writ-
ten back into the main memory.

• secondary storage units. The data stored in RAM are ephemeral and are no longer avail-
able once the system is switched off. Secondary storage units allow us to store data and
programs permanently, to be retrieved as required.

• input-output (I/O) units. These include devices such as the keyboard, mouse, monitor,
and printer, which allow the user to communicate with the computer.

There are often multiple algorithms for solving a problem. It is good practice to choose
one based on efficiency considerations, such as time or space requirements, or ease of
implementation.

Programming the Algorithms

Algorithms need to be mapped into instructions in a language that is comprehensible to
the computer. This mapped set of instructions is called a “program”. Data and programs
are stored in memory as “bits” (0s and 1s). The smallest addressable unit of storage is usu-
ally a “byte” (8 bits). How each type of data is mapped to bytes depends on the program-
ming language, its version, and the machine concerned. Bytes in memory have unique
addresses that can be used to locate, read, and write them.

The language in which the program is written is called a “programming language”. Com-
puters have a set of hardware-specific built-in instructions called the “machine language”.
So, a seemingly obvious choice is to map the algorithm to a machine language program.
Programming in machine language involves writing code in a binary number system. That
would not only be cumbersome, but such programs would also be hard to read, compre-

17

hend, debug, and edit. To circumvent such problems, assembly languages were created.
An assembly language replaces machine language code with instructions using mnemon-
ics. The assembly language code can be translated into machine language using an
assembler. Assembly language is still difficult to work with, while also being machine
dependent. Programs are, therefore, more commonly written in platform-independent
languages known as “high-level languages”. Examples include Python, Java, C, and C++,
but there are many others. Programs written in high-level languages are translated into
machine code using “compilers” and “interpreters”. Compilers translate the whole code
into machine language, whereas interpreters translate one statement at a time. Java, C,
and C++ are examples of compiled languages. Python and Lisp are interpreted languages.

Example Program

Below is a simple Python program fragment for computing the greatest common divisor
(GCD) of two positive integers.

Gcd.py

Code
first = eval(input('Enter first positive integer:'))
second = eval(input('Enter second positive integer:'))
answer = 1
divisor = 2
while ((divisor <= first) and (divisor <= second)):
 if(((first % divisor)==0) and ((second % divisor)==0)):
 answer = divisor
 divisor += 1
print(answer)

This program reads in two positive integers. These are entered as user input from the ter-
minal and stored in main memory as the variables “first” and “second”. The variable
names refer to storage locations where these values are stored. The program checks the
integers from 2 onwards as possible candidates for GCD. It continues this for as long as the
candidate divisor is less than or equal to the smaller of the two input numbers. The varia-
ble “answer” is another memory location where the program stores the value of the com-
mon divisor found. The assignment statement

answer = divisor

overwrites the value at this location when a higher valued common divisor is discovered. A
common divisor cannot be larger than the minimum of the two numbers. Hence, once this
candidate divisor has been checked, the value of the answer as stored in memory is prin-
ted out as the GCD of “first” and “second”.

18

pseudocode
This is text made of words
that are understood as
elementary programmed
operations without being
written in a formal pro-
gramming language.

Linear search
A linear search is a search
algorithm to locate a key
value in a sequence of
unordered elements by
comparing the key with
elements in the sequence
one after the other in the
same order.

Introduction to Algorithm Analysis

Since there can often be multiple algorithms for the same problem, anyone implementing
the algorithm is frequently faced with the problem of deciding which one to choose. Effi-
ciency measures can assist us in making comparisons and arriving at a decision regarding
the choice of the algorithm. According to Cormen et al. (2009) two common measures of
efficiency are “space complexity”, a measure of the amount of memory the algorithm
needs, and “time complexity,” a measure of how fast the algorithm runs.

There are also other types of complexity measures. The message complexity in distributed
algorithms is an example. Programs also use efficient means of structuring data. To meas-
ure the efficiency of a data structure, we measure the space used by the data structure
(space complexity), the time taken to build the data structure (preprocessing time), the
time taken to run a particular query on the data structure (query time), or the time taken
to update the data structure (update time).

When measuring the actual time required by an algorithm, there are some challenges. The
time required would depend on several factors, such as the machine used, the software
environment, and the data set used. Of course, the algorithm must be programmed first.
Algorithm analysis involves computing efficiency measures from thepseudocode by
counting “primitive operations,” such as assignments, comparisons, arithmetic opera-
tions, function calls, and returns from functions. A basic assumption is that a primitive
operation corresponds to, at most, a constant number of instructions on the computer,
thus actual times taken by different primitive operations are similar. Hence, the actual
time taken by the algorithm is proportional to the number of primitive operations. We call
the time taken for an algorithm to run the “running time” or “time complexity”, and we
measure it in terms of the “input size”. Consider the following Python code for linear
search:

linearSearch.py

Code
def linSearch(numList, keyValue):
 index = 0
 while(index < len(numList)):
 if(keyValue == numList[index]):
 return index
 index += 1
 return -1

To analyze the algorithm, note that the two statements index = 0 and return -1 are
always executed. If the list has n elements (i.e., numList is equal to n), the while loop is
executed at most n times. The statement while(index < len(numList)) includes a
function call to len() and a comparison. The statement if(keyValue ==
numList[index]) includes a == operator and is read from a specified position in the list.
The statement return index adds one more primitive operation. Finally, the increment
operation and the assignment index +=1 may be counted as one or two operations. We

19

can summarize and claim that the running time of linear search is n · k + 2 where k is a
small constant and n is the size of the list being searched. There is a better search algo-
rithm, called “binary search”, which takes time proportional to logn. These two time com-
plexities are customarily specified as O n and O log n respectively, using the notation
for “asymptotic upper bound below”, which guarantees that these bounds hold for all suf-
ficiently large values of n.

Asymptotic upper bound

We define O g n = f n : There exist positive constants c and n0 such thatf n ≤ c ⋅ g n ∀n ≥ n0. The expression f n = O g n denotes the membership of f n
in the set O g n (Cormen et al., 2009).

Asymptotic lower bound

We define Ω g n = f n : There exist positive constants c and n0 such that0 ≤ c ⋅ g n ≤ f n ∀n ≥ n. The expression f n = Ω g n denotes the membership off n in the set Ω g n (Cormen et al., 2009).

Asymptotic tight bound

We define Θ g n = f n : There exist positive constants c1, c2, and n0 such thatc1 ⋅ g n ≤ f n ≤ c2 ⋅ g n ∀n ≥ n0 . The expression f n = ϴ g n denotes the mem-
bership of f n in the set ϴ g n (Cormen et al., 2009).

There are situations when more than one parameter is used to specify the time or space
complexity. Conventionally, complexity of graph algorithms is specified in terms of the
number of vertices V and the number of edges E . Also, there are situations when the
complexity may be measured in terms of an input value itself rather than the number of
such values. The GCD algorithm presented above runs in time O min m, n , where m andn are the numbers whose GCD is being computed. There is a better algorithm for the GCD
problem called Euclid's algorithm that runs in O log min m, n time (Cormen et al.,
2009).

1.2 Detailing and Abstraction
Once the algorithm has been designed, the designer needs to specify the algorithm clearly
and unambiguously. How the data will be organized also needs to be specified. The pres-
ence or absence of certain features in a given language influence the algorithm and data
structure design, which, in turn, can make the programming effort greater or smaller.

20

Specifying Algorithms

Natural language

Using natural language to represent algorithms is a seemingly attractive choice. However,
natural language is inherently ambiguous and, by definition, algorithms need to be repre-
sented in clear unambiguous steps. Therefore, this turns out to be an impractical choice.
At the same time, an additional natural language description of an algorithm sometimes
complements or augments other forms of representations of the algorithm and improves
clarity of understanding for the reader. This is an approach often followed in books,
research papers, and technical documents. Despite its natural drawbacks of being ambig-
uous, natural language is an advantage when the details of an algorithm need to be com-
municated to people who may not be familiar with programming. Below is a simple natu-
ral language description of Euclid’s algorithm for finding the GCD of two non-negative
numbers.

To find the GCD of two non-negative numbers,

• read the two numbers as input.
• let m be the maximum and n be the minimum of the two numbers.
• if n = 0, output m as the answer.
• otherwise, divide m by n and let r be the remainder. Now set m = n and n = r and

return to the second step.

Pseudocode

As a method of representation of algorithms, pseudocode comes somewhere in between a
natural language description and a program written in a high-level language. It is a more
precise representation of the algorithm but usually at a level higher than that of the pro-
gram. However, since there are no standardized notations to represent pseudocode, peo-
ple follow their own conventions. It is assumed anyone with some knowledge or back-
ground in programming would be able to understand the algorithm. Yet pseudocode has
the advantage of being programming language agnostic. The pseudocode describing
Euclid’s algorithm for finding GCD can take the following form:

GCD

Code
begin
 read a, b
 m ← maximum(a, b)
 n ← minimum(a, b)
 while (n ≠0)
 r ← m mod n
 m ← n
 n ← r

21

 endwhile
return m
end

Flowcharts

Presenting an algorithm as a flowchart was in fashion in the early days of computing. It is
still a useful tool to teach or present simple algorithms. The major disadvantage of flow-
charts is that they do not scale up well to more complex problems. Below is the flowchart
version of Euclid’s GCD algorithm.

Figure 1: Euclid’s Greatest Common Divisor Algorithm

Source: Created on behalf of IU (2022) based on Euclid.

Choice of Programming Language

Finally, the designed algorithm needs to be mapped to a programming language for exe-
cution on a computer. Readability, writability, and reliability are the three most important
evaluation criteria for choosing a programming language (Sebesta, 2016). The ease with
which software developers can read and understand programs also determines how easily
they can be maintained. For example, traditionally, C has been for systems programming,
and Lisp or Prolog for artificial intelligence applications. Writability determines how easily
the algorithm can be converted to a program. This can be aided by choosing a language
more appropriate to the target domain for which it is to be used.

22

Abstract data type
An abstract data type is a
mathematical model of a
data structure that identi-
fies the type of data
stored in the data struc-
ture and the operations
allowed.

Various attributes of a good language have been identified over the years (Pratt & Zelko-
witz, 2001; Sebesta, 2016). These include:

• clarity and simplicity. The simpler the programming language, the easier it is for the
algorithm designer to map the algorithms to programs. The algorithm can then be
specified with a pseudocode very close to the target language itself.

• expressivity. These include powerful features in the language that allow the program-
mer to express solutions to problems in clear and natural ways.

• orthogonality. Fewer numbers of primitive and independent constructs and a set of
rules for combining them in all possible ways can make a language more convenient to
use. If constructs of a language are orthogonal, the language is easy to learn. Exceptions
do not need to be learned, since virtually all combinations are allowed.

• support for abstraction. The data structures required for the problem being solved are
often different from what is provided in terms of the built-in types. It is the responsibil-
ity of the software developer to create appropriate abstractions required for the solu-
tion. Implementing these abstractions requires support from the language. For exam-
ple, Python provides support for object-oriented programming.

• portability or transportability across machines.
• cost of use.

Abstraction and Encapsulation

Procedural or process abstraction in the form of subprograms is a central concept in high-
level programming languages. This allows programs to be subdivided into units that are
referred to as procedures, functions, or subroutines depending on the language. The units
can be authored and used independently by different sets of people. Procedural abstrac-
tion allows us to operate the subprograms without knowledge of the low-level implemen-
tation details. For example, the function factorial(x) in the math module of Python
computes the factorial of x. To use the function, we need not worry about how it is
actually implemented. The function call is the language feature that supports the abstrac-
tion. Other than the name of the function and its parameters, nothing needs to be known
to the calling function. The algorithm used by the called function is abstracted out.

Data abstractions allow us to use a data type without details of how it is implemented
(Sebesta, 2016). A data abstraction is defined in terms of the associated defining opera-
tions.

In data structure design, data abstraction is supported through abstract data types
(ADTs). The ADT for a data structure specifies what is stored in the data structure and what
operations are supported without detailing how the operations are implemented.
“Objects” are instances of ADTs.

Whereas the primary goal of data abstraction is hiding unwanted information, data encap-
sulation refers to hiding data within an entity along with methods to control access. Since
the data organization inside can be manipulated by a controlled set of operations defined
by a programmer, only these limited sets of defining operations depend on the internal
representation. One often calls the organization of the data the data representation. If the
data representation is changed, only the limited set of defining operations needs to

23

change. Data encapsulation also helps the programmer to ensure that private data rules
are enforced. These rules are called “representation invariants.” For instance, one may
enforce a rule that an ordered list may contain only unique items. If defining operations
can only generate objects that follow the representation invariant, then that leads to cor-
rect-by-construction implementation—the user cannot create objects that violate these
rules.

1.3 Control Structures
The control structures in a programming language facilitate the flow of control inside a
program. The control flow, or sequence control, refers to the sequence in which program
instructions are executed on a computer. There are three levels at which control structures
operate (Pratt & Zelkowitz, 2001):

1. Structures used inside statements, such as those governed by rules of associativity
and operator precedence

2. Structures used with groups of statements, such as those associated with conditional
statements and iterative loops

3. Structures that facilitate the flow of control between program units

Arithmetic Expressions

Rules and conventions for the evaluation of arithmetic expressions in programming lan-
guages usually follow those in mathematics.

Arithmetic expressions are made up of operators, operands, parentheses, and function
calls. An operator may be unary, binary, or ternary depending on the number of operands.
Binary operators are mostly infix, appearing between their operands, for example, the bit-
wise “"and"” operation in Python is performed as a & b.

Operator evaluation

The control flow in order of evaluation of the operators partly depends on the established
“precedence of operators” as defined by the programming language. For instance, con-
sider the Python expression 3+4*2. Here, the multiplication operation 4*2 is carried out
first, since the multiplication operator * has a higher precedence than the addition opera-
tor +.

Rules for associativity in the programming language govern the order of evaluation of
operators of the same precedence. For example, consider the Python expression 2**3**2.
Here, ** is the exponentiation operator, which associates right to left. Hence the expres-
sion evaluates to 512 and not 64.

Parentheses can be used to alter the implied order of evaluation as determined by the
precedence and associativity rules. The expression (2**3)**2 will evaluate to 64 in
Python because the parentheses override the rules for associativity.

24

Assignment Operator

The assignment operator, in its simplest variant, takes the following form:

variable = expression

This requires the expression on the right to be evaluated first before the assignment takes
place.

Compound assignments

In many languages, compound assignment operators are supported. Consider the follow-
ing Python assignments:

Code
a = 2
a *= 3 #equivalent to a = a*3
print(a)

This will print the value of a as 6.

Multiple assignments

Consider the following assignment statement in Python:

a = b = c = 1

This is equivalent to the three assignments:

Code
c = 1
b = c
a = b

Multiple assignments can be done in many languages. Another Python example is

a, b, c = 1, 2, 3

This is equivalent to:

Code
a = 1
b = 2
c = 3

This can be used to exchange the values of x and y as

25

x, y = y, x

Comparison Operators and Boolean Expressions

In addition to arithmetic expressions, programming languages also provide constructs for
comparison operators and Boolean expressions. The comparison operators supported in
Python are ==, !=, >=, <=, >, and <.

Boolean expressions also involve the logical operators or, and, and not. A Boolean
expression evaluates to True or False. Logical operators in general work on Boolean
operands.

A positive integer is also treated as True and 0 is treated as False.

Conditional Statements

A conditional statement facilitates branching in programs, allowing the execution to
choose between two or more alternate paths. In its simplest form, a Python conditional
statement is as follows:

Code
if(condition):
 statement

if((x % 3)==0):
 print("Divisible by” 3")

Here the intent is to do nothing if the conditional expression is not true. Conditional state-
ments may come with two alternatives. For example, in Python:

Code
if(condition):
 Statement 1
Else:
 Statement 2

if(x%2 == 0):
 print("Even")
else:
 print("Odd")

Chained conditionals in Python include multiple conditions and statements:

Code
if(condition 1):
 Statement 1
Elif(condition 2):

26

 Statement 2
.
.
elif(condition n):
 Statement n
else:
 Statement n+1

Nested conditionals allow complex logic to be implemented. A Python example is here:

Code
if(a == b):
 print("a equals b")
else:
 if(a < b):
 print("a is less than b")
 else:
 print("a is greater than b")
Conditional statements can often be written in many equivalent ways.
The following six statements are equivalent in Python:A) if(x > 0):
 if(x < 100):

B) if((x > 0) and (x < 100)):

C) if x > 0 and x < 100:

D) if (x > 0 and x < 100):

E) if 0 < x < 100:

F) if (0 < x < 100):

Iterative Loops

Iterations are repetitive computations of a sequence or a block of statements and form
fundamental building blocks of programs. Programming languages support various mech-
anisms to control how many times the block of statements must be repeated. Two com-
mon types of loop control structures provided by programming languages are

• logically controlled loops, e. g., the while loop, and
• counter-controlled loops, e. g., the for loop.

27

Function Calls and Recursion

Built-in functions

Languages provide several built-in functions, for example, print(), type(), input(), max(),
and min() in Python. Consider the example of the max() function:

Code
>>>max(2,3)
3
>>>max(2,3,4)
4
>>>max(max(2,3),4)
4

'c'
>>>max("abc","bcd")
'bcd'
>>>max(2,"two")
TypeError

User-defined functions

User-defined functions help in code reuse and in organizing and simplifying code. A simple
Python example is

Code
def plus5(a):
 return(a+5)
>>>plus5(7)#returns 12

Multiple arguments

Functions may have multiple arguments, such as:

Code
>>> max(15, 23, 12)
23
>>> max(15, 23.1,12)
23.1

Multiple return values

Functions may return multiple values, for example, in the following code:

28

maxmin1.py

Code
def maximinOf3(x, y, z):
 max3 = max(max(x,y),z)
 min3 = min(min(x,y),z)
 return(max3, min3)
print(maximinOf3(15,23,12))
print(maximinOf3(15,23.1,12.5))

This prints (23, 12) and (23.1, 12.5), respectively.

No return values

The following example, maxmin2.py, demonstrates a “void” function, which returns noth-
ing. Functions that return something are called “fruitful”.

maxmin2.py

Code
def maximinOf3(x, y, z):
 max3 = max(max(x,y),z)
 min3 = min(min(x,y),z)
 print (max3, min3)
maximinOf3(15, 23, 12)

Recursion

Recursion is a mechanism wherein functions invoke themselves. It often leads to elegant
solutions since some problems can be modeled recursively in a natural way.

Recursive functions have a base case that enables us to terminate it. Consider the follow-
ing factorial function: factorial n = 1, n = 0n*factorial n − 1 , n ≥ 1
The corresponding Python function is

fact.py

Code
def fact(n):
 if (n==0):
 return 1
 else:
 return n*fact(n-1)

29

Without the base case under the if clause, the function would run indefinitely, causing a
runtime error.

1.4 Types of Data
Every programming language provides constructs for structuring data. The types and type
system are important characteristics of a programming language and vary from language
to language.

Type

A type is defined by a set of values and a set of operations that operate on those values.
There are language-specific constraints on the usage of types in a program. A variable of a
type can only be operated on by operations defined on the type. A type, in turn, attaches
specific meanings to an entity in a program, such as a variable. The hardware would not
discriminate between meanings associated with a sequence of bits, that is, whether it is to
be interpreted as a string, integer, or character. However, the programming language
defines the operations that can be done on the sequence of bits, and the execution of the
program translates into microprocessor instructions that manipulate those bits.

Utility of Types

Types have several utilities. Types assist in the hierarchical conceptualization of data. For
instance, “employee ID” and “salary” could both be integers. Computing the sum or aver-
age is fine for salaries, whereas it would not make sense for the employee ID. Defining sep-
arate types for these would require an integer field in both, but a different set of opera-
tions could be defined.

Types also ensure correctness. The type system defines rules of usage, which are checked.
For instance, the “+” operation in C would represent the addition of numeric types like
integers and floating-point numbers. Trying to add two strings would flag an error. In
Python, a + b would be interpreted as arithmetic addition if both a and b are numeric
types. However, if both a and b are strings, a+b would be interpreted as string concatena-
tion. If a is a string and b is a numeric type, the Python interpreter flags an error, while in
other languages such as JavaScript, both operands are converted to strings and concaten-
ated. A compiler or an interpreter will check if a program is type safe, that is, if all opera-
tions are performed in the program with correct types.

Types also define the amount of storage that needs to be allocated. For example, a “char”
in C would require one byte of storage. Sometimes, the sizes for different types vary for
different implementations of the language.

30

Type Systems

The type system of a programming language is a logical system defined with a set of con-
structs to assign types to entities like variables, expressions, or return values of functions
(Gabrielli & Martini, 2010). The type system defines the set of built-in types for the lan-
guage, provides the constructs for defining new types, and defines rules for control of
types. There are rules for type compatibility; for example, if a function expects an argu-
ment to be a floating-point number, will an integer value for the argument be allowed?
Another set of rules defines how the type of an expression is computed from the types of
its constituents.

Fundamental Types

Some fundamental types are supported by the language. These usually correspond to the
most common and basic ways of structuring data. The set of built-in or fundamental types
varies from language to language. For instance, int (for integers), bool (for Booleans),
char (for characters), and float (single-precision floating-point) are some of the built-in
types in C++. There are also more specific types, such as the signed and unsigned variants
of char or int, or the long and short variants of int. Python built-in types include str
(strings), int, float, list, tuple, range, dict (dictionaries), set, and bool (Booleans).

User-Defined Types

User-defined types allow users of a programming language to extend the fundamental
types by creating customized types. Object-oriented languages like Python allow the user
to create types called classes. Mechanisms are provided allowing one to create a new
class, create objects of that class, and create operations manipulating such objects.

Creating new user-defined types allows the programmer to write programs with the new
types closely aligned with the concepts of the application. This helps in writing more con-
cise code and makes the program more readable. Moreover, illegal usage of objects can be
detected at compile time, greatly simplifying testing. Type casting is an explicit operation
of the programmer to change the type of a variable so that the compiler (and develop-
ment environment) know which members are accessible. It is necessary, for example,
when the function parameter is of a generic type but operations only available to objects
of more specific types are necessary.

Strong and Weak Typing

The type system of a programming language lays down a set of rules that the programs
written in that language must follow. These rules constrain the set of valid programs that
can be written, but are these rules strong enough to ensure that the valid programs do not
have type errors? The extent to which this can be guaranteed defines whether the type
system is strong or weak. A language with a strong type system is classified as “strongly
typed” (Sebesta, 2016). Languages that are not strongly typed are “weakly typed.” Note
that these definitions are not precise and there are different viewpoints on the relative
strengths of languages. In general, however, an overly restrictive type system may be eas-

31

ier to check but may severely restrict the set of legal programs. This may also require the
user to write more code to ensure type safety, for instance, by explicit conversions using
type casting. This is a trade-off that language designers must keep in mind.

Static and Dynamic Type Checking

Statically typed languages obey a static type system, meaning the checking of the type
system rules is accomplished at compile time. Declaring all variables with designated
types and requiring that expressions have well-defined types are ways to ensure that type
safety can be verified at compile time. Examples include Java, C, C++ and Haskell.

In languages with dynamic typing, the checking of the type system rules is conducted at
run time. Dynamic checking slows down program execution. In a dynamically typed lan-
guage, a variable may be bound to an object (but not a type) during compilation, but the
binding to is delayed until run time. Examples include Python, Lisp, and JavaScript.

Static typing implies a strongly typed language although the converse is not true. Java is a
statically typed language and Python is dynamically typed, but both are regarded as
strongly typed language.

Byte Oriented Representations

The smallest unit of storage on a computer is a single bit, 0 or 1. Computers usually oper-
ate in groups of bits—eight bits make up a byte and multiple bytes make up a word. More
significant bits and bytes of a word, that is, those written to the left when seen on paper in
English, are called “higher order” and less significant ones are referred to as “lower order”.
Algorithms acting on words are implemented in hardware. Common word sizes are 32 bits
and 64 bits, as determined by the manufacturer. The type of an operand determines its
size (Hennessy & Patterson, 2017). There are multiple views on words and bytes, such as

• logical. This is viewed as a string of bits. There are bitwise operators that act according
to this view.

• integer. This can be operated on according to rules of arithmetic operations. Two’s com-
plement representation is the most common representation for signed integers. For
example 23 in binary over 8bits is 00010111and −23in binary over 8bits in two’s com-
plement is 11101000(taking minus changes the top bit and inverts all other bits).

• floating-point. The operations are the same as for integers, but the word is divided into
the sign bit, the mantissa, and the exponent. The mantissa represents the actual bits of
the floating-point number, and the exponent represents the power of the radix (in this
case two) in the scientific notation. For instance, 25.375 in binary is11001.011 = 1.1001011 · 24, where 1.1001011 is the mantissa and the unbiased expo-
nent is 100 (or 4 in decimal). The exponent is usually stored after adding what is called a
“bias”. Since the mantissa always starts with a 1, often only the rest of it, called the nor-
malized mantissa, is stored. Usually, hardware manufacturers follow IEEE 754, which is
the technical standard for floating-point arithmetic. Single-precision floating-point usu-
ally uses 32 bits and double precision uses 64 bits for representation.

• character. The view represents a character code like 8-bit ASCII, 16-bit Unicode, or 32-bit
Unicode.

32

Big and Little Endian

There are two ways of storing multi-byte data (Even & Medina, 2012):

1. If the machine is Big Endian, the most significant or the leftmost byte of the multi-byte
data is stored first (at the lowest address).

2. If the machine is Little Endian, the least significant or the rightmost byte of the multi-
byte data is stored first (at the lowest address).

Below is a Python code snippet to determine the “endianness” of a Windows machine:

Code
import sys
print(sys.byteorder)
>>little

Endianness becomes important if a file is being read on a machine with a different endian-
ness than the one on which it was written. Software circumvents this problem by including
a switch to swap bytes if required.

1.5 Basic Data Structures (List, Chain,
Tree)
List

The “list” or the “singly linked list” is an unordered sequence of items. We need to be able
to maintain the relative positions of these items, so we call the first and last elements of
the list the head and tail of the list, respectively. The location of the head of the list is
explicitly known, and the location of the i + 1-th item in the sequence is stored with the i-
th item. There is no next item corresponding to the last item on the list. We will construct a
Python implementation of a list data structure below, and, for simplicity, we will assume
that our lists cannot contain duplicate items. Note that native Python lists are implemen-
ted using arrays and are different from linked lists.

Structure

The linked list is built as a collection of basic building blocks called nodes. Each node
stores two fields—a data element and a next node information. A Python implementation
is shown below:

33

sList.py

Code
class Node:
 def __init__(self, elem):
 self.element = elem
 self.nextNode = None
 def getElement(self):
 return self.element
 def getNextNode(self):
 return self.nextNode
 def setElement(self, elem):
 self.element = elem
 def setNextNode(self, elem):
 self.nextNode = elem

Supported operations

We will construct a list data structure that supports the following operations:

• LinkedList()constructs an empty list.
• isEmpty() returns True/False based on whether the list is empty or not.
• getLength() returns the number of elements in the list.
• addNode(element) adds a new element to the front of the list.
• deleteNode(element) removes the element from the list.
• searchNode(element) searches for the element’s item in the list, returning True/
False.

sList.py

Code
class LinkedList:
 def __init__(self):
 self.length = 0
 self.head = None
 def isEmpty(self):
 return (self.length==0)
 def getLength(self):
 return self.length
 def addNode(self,elem):
 temp=Node(elem)
 temp.setNextNode(self.head)
 self.head=temp
 self.length +=1

 def deleteNode(self, elem):
 lastNode = None

34

 thisNode = self.head
 found = False
 while not found:
 if(thisNode == None):
 break
 if thisNode.getElement() == elem:
 found = True
 else:
 lastNode = thisNode
 thisNode = thisNode.getNextNode()

 if(thisNode==None):
 print("Element not in list")
 elif lastNode == None: #head node gets deleted
 self.head = thisNode.getNextNode()
 self.length -=1
 else:
 lastNode.setNextNode(thisNode.getNextNode())
 self.length -=1

 def searchNode(self, elem):
 thisNode = self.head
 found = False
 while ((not found) and (thisNode != None)):
 if thisNode.getElement() == elem:
 found = True
 else:
 thisNode = thisNode.getNextNode()
 return found

In our implementation, deleteNode and searchNode take O n time, where n is the size
of the linked list. The other operations take O 1 time.

Chain

A chain is also known as a doubly linked list. It is similar to a singly linked list, except that
each node has a pointer to both its predecessor and successor on the list. The symmetrical
nature of the doubly linked list makes it easier to implement certain operations on it.
However, the price we pay is an extra pointer per node that not only occupies space, but
also needs to be correctly updated during list operations. We maintain two sentinel nodes
at the head and tail of the list, which simplifies some special cases. The Python implemen-
tation follows:

35

dList.py

Code
class DNode:
 def __init__(self,elem = None, prev=None, next=None):
 self.element = elem
 self.prevNode = prev
 self.nextNode = next
 def getElement(self):
 return self.element
 def getPrevNode(self):
 return self.prevNode
 def getNextNode(self):
 return self.nextNode
 def setElement(self, elem):
 self.element = elem
 def setPrevNode(self, elem):
 self.prevNode = elem
 def setNextNode(self, elem):
 self.nextNode = elem

class DoublyLinkedList:
 def __init__(self):
 self.length = 0
 self.head = DNode(None)
 self.tail = DNode(None)

 def isEmpty(self):
 return (self.length==0)

 def getLength(self):
 return self.length

 def _addNodeIntermediate(self, elem, prev, next):
 #Add element between nodes prev and nextelem
 temp = DNode(elem, prev, next)
 prev.setNextNode(temp)
 next.setPrevNode(temp)
 self.length +=1

 def _deleteNodeIntermediate(self, elem):
 #Remove intermediate node from list
 lastNode = elem.getPrevNode()
 nextNode = elem.getNextNode()
 lastNode.setNextNode(nextNode)
 nextNode.setPrevNode(lastNode)

36

 self.length -=1

 def addNodeFront(self,elem):
 #Add element immediately after head node
 self._addNodeIntermediate\
 (self, elem,self.head,self.head.nextNode)

 def addNodeEnd(self,elem):
 #Add element immediately after head node
 self._addNodeIntermediate\
 (self,elem,self.tail.prevNode, self.tail)

Trees

The tree is a fundamental data structure that helps to represent connectivity and hierar-
chy. For example, graphs and trees can be used to model chemical compounds (Ahmad &
Koam, 2020) to help visualize their atomic-level connectivity. In 1857, mathematician
Arthur Cayley invented the concept of trees when trying to model the problem of counting
the number of possible isomers of an alkane (Wilson, 2010). Since then, trees have been
widely used to model various problems in chemistry, geology, biology, computer science,
and other disciplines.

Figure 2: Tree Representation of Butane Isomers

Source: Created on behalf of IU (2022).

Trees enable us to naturally organize data in the form of file systems, HyperText Markup
Language (HTML) pages, organizational structures in companies, and genealogical dia-
grams called family trees. Trees are also used to represent expressions. In programming
language compilers and in natural language processing, parse trees represent the deriva-
tion of strings in the language according to the rules of the underlying grammar.

Definitions

Trees may be used for representing acyclic relationships connecting entities, but many
trees are rooted. A rooted tree is a collection of nodes storing data elements with the fol-
lowing properties (Goodrich et al., 2013):

37

• An empty collection is a tree.
• A nonempty tree has a designated node as its root.
• Every node other than the root has a parent.
• A root has no parent.
• If node u is the parent of node v, then node v is the child of node u.

Note that the tree is a recursive structure. A tree T is either empty or consists of a root
node r connected to possibly empty subtrees rooted at nodes v where v is a child of r
(Goodrich et al., 2013).

If nodes u and v have the same parent w, then u and v are called “sibling nodes”.

“External nodes”, or “leaf nodes”, do not have any children.

Any node a on the path from the root to node v is called an “ancestor” of v. Any node d on
the path from node v to a leaf node is called a “descendant” of v (Goodrich et al., 2013).

Nodes with one or more child nodes are called “internal nodes” (Goodrich et al., 2013).

In an m-ary tree, each internal node has at most m child nodes. If each internal node has
exactly m children, the tree is called a full m-ary tree. The most common m-ary tree is the
binary tree for m = 2.

The length of the path, in terms of the number of nodes, from the root to a node v in the
tree is called the “level” of v. The maximum of the levels of all the vertices in the tree is
called the “height” of the tree (Goodrich et al., 2013).

SUMMARY
An algorithm is a finite sequence of unambiguous instructions that
accomplishes a well-defined task in a finite amount of time. Algorithms
are used to solve problems, but in order to do so, they must be mapped
into instructions in a language that is comprehensible to the computer.
This mapped set of instructions is called a “program”. Methods for speci-
fying an algorithm including natural language, flowcharts, and pseudo-
code.

Most general-purpose computers as we know them today draw inspira-
tion from the classical architecture proposed by John von Neumann and
consist of RAM, CPU, secondary storage, and I/O.

Procedural abstraction allows us to operate subprograms without
knowledge of the low-level implementation details. Data abstractions
allow us to use a data type without the details of how it is implemented.
Data encapsulation features involve hiding data within classes along
with methods to control access.

38

Control structures facilitate the flow of control through a program.
These include structures inside statements governed by rules of opera-
tor precedence and associativity, structures for conditional statements
and loops, and flow of control between subprograms.

The programming language features of functions and function calls sup-
port procedural abstractions. Recursive functions are an elegant yet
powerful feature that allows functions to invoke themselves.

Types are programming language features that facilitate the structuring
of data. Types include built-in and user-defined types, type systems, and
static and dynamic typing. Important types include basic data structures
include lists, chains, and trees with their Python implementations.

39

UNIT 2
DATA STRUCTURES

STUDY GOALS

On completion of this unit, you will be able to …

– implement the data structures: stack, queue, heap, and graph.
– understand the concepts of abstract data types, objects, and classes.
– apply different types of polymorphism.

2. DATA STRUCTURES

Introduction
Data structures represent data and relationships among data for efficient manipulation.
Data are much more than collections of bits and bytes. Data are associated with objects
and their representations. Objects could be persons, physical objects, events, or abstract
concepts. For representations, there are choices to be made regarding what attributes are
to represent the objects, what queries we need to ask of the objects, and how frequently.
Consider a simple problem of storing and querying a set of integers. The goal is to answer
a search query from the user about the presence or absence of an integer of the user’s
choice in our collection. Suppose the design decision to make is whether we should store
it in a sorted array or an unsorted array. In general, search works better in sorted arrays.
There are algorithms to execute our search problem on a sorted array within a time that is
logarithmic relative to the number of integers stored. A brute-force scan through the array
would take linear time. However, if our set is unsorted to start with, we will need to sort it
first, but then the time taken to sort followed by a binary search would be expensive com-
pared to a brute-force linear search. So, does that mean that we should use linear search
as opposed to binary search for this problem? Yes, if we simply had to search only once. If
we had to search several times, the cumulative advantage of the logarithmic searches over
linear ones would be significant, even considering the overhead of the sorting step. Now,
scale this problem up to web searching. We expect our answers immediately! The search
engine is able to satisfy our requirement for speed because of sophisticated preprocessing
and data storage ahead of processing our query.

Object-oriented programming allows us to identify the fundamental objects in our design,
publish an abstraction with essential methods, and hide the implementation details. Fea-
tures of languages supporting this paradigm also allow us to encapsulate these objects
into classes. In this unit (which describes data structures as classes) these principles are
demonstrated as they are applied.

2.1 Advanced Data Structures: Queue,
Heap, Stack, Graph
Stacks

A “stack” is a collection of data items following a “Last In, First Out” (LIFO) paradigm
(Goodrich et al., 2013). The basic operations supported by a stack are as follows (using
Python nomenclature):

• push(element) adds an element to the top of the stack.
• pop() removes an element from the top of the stack.
• topOfStack() reads an element from the top of the stack.

42

• isEmpty() checks if the stack is empty and returns True/False.
• size() returns the number of elements in the stack.

Stacks can be implemented using singly linked lists, although the simpler array implemen-
tations are also common. An array implementation of a stack using Python lists is given
below:

stack.py

Code
class Stack:
 def __init__(self):
 self.elements = [] #Initialized to empty list

 def isEmpty(self):
 return self.elements == []

 def size(self):
 return len(self.elements)

 def topOfStack(self):
 return self.elements[len(self.elements)-1]

 def push(self, newElement):
 self.elements.append(newElement)

 def pop(self):
 return self.elements.pop()#Python's in-built pop

One important application of stacks is in stack frames in function invocation. An “activa-
tion record” (also called “stack frame”) is created when a function is invoked. This stores
information about variables and arguments of the function. When functions invoke other
functions, new activation records are created and pushed onto the “call stack.” Later, as
the called function returns control to the calling function, the former’s activation record is
popped from the call stack. Other applications of stacks include matching parentheses in
parsed expressions, depth-first search in graphs, and matching tags in HyperText Markup
Language (HTML).

43

Figure 3: Railroad Car Switching Using Stacks

Source: Created on behalf of IU (2022).

Stacks can be used to switch railroad cars of a train in a switching yard (Knuth, 2013). In
the figure above, railroad cars arrive at the switching yard in the order D, C, B, and A. A
stack-like structure is used to switch the cars so that they leave the yard in the order C, A,
B, and D. The following Python code simulates the process:

Code
s=Stack()
s.push("D")
s.push("C")
print(s.pop())
s.push("B")
s.push("A")
print(s.pop())
print(s.pop())
print(s.pop())

This prints C,A,B,D, in that order.

Queues

A “queue” is a collection of data items following a “First In, First Out” (FIFO) paradigm
(Goodrich et al., 2013). An example of a queue is the departure queue of flights taking off
from a particular runway at an airport. An aircraft that is ready to depart enters the queue.
Aircraft in the queue wait for their turn. The aircraft at the front of the queue takes off after
receiving permission from air traffic control.

44

Figure 4: Departure Queue of Aircrafts on a Runway

Source: Created on behalf of IU (2022).

The basic supported operations of a queue are as follows:

• enQueue (element) adds an element to the rear of the queue.
• deQueue() removes an element from the front of the queue.
• isEmpty() checks if the stack is empty and returns True/False.
• size() returns the number of elements in the queue.

A queue can be implemented using linked lists or circular arrays. An implementation using
Python lists is given below:

queue.py

Code
class Queue:
 def __init__(self):
 self.elements = []

 def isEmpty(self):
 return self.elements == []

 def size(self):
 return len(self.elements)

 def enQueue(self, newElement):
 self.elements.insert(0,newElement)

 def deQueue(self):
 return self.elements.pop()

Queues are also used in job scheduling, traversal mechanisms in graphs such as breadth-
first search (or BFS, which will be explained later on), as well as other applications.

Heaps

A “heap” is a data structure that is used as a building block in two important problems—
heapsort and implementation of priority queues. Many algorithms, such as Dijkstra’s
shortest path algorithm, Prim’s minimal spanning tree algorithm, and various job schedul-

45

Heapsort
A heapsort is a sorting

algorithm that builds a
heap of the numbers to

be sorted and repeatedly
removes the maximum

(or minimum).

Complete binary tree
A complete binary tree is
a binary tree with the fol-
lowing properties: (a) all

leaves are either at the
last level or the last level

and the penultimate level
and (b) leaves at the last

level are packed as far left
as possible.

ing and selection problems, use a heap as a fundamental data structure (Cormen et al.,
2009). We consider the binary heap here. There are other variants, including the Binomial
Heap, Fibonacci Heap, and Leftist Heap, among others, that have their own properties
(Brodal, 2013).

Priority queue operations

Let us consider the problem of implementing a priority queue using a heap. The basic item
is a <data, priority> pair. The priority queue attempts to keep track of the item with the
highest priority (Goodrich et al., 2013).

The supported operations are as follows:

• insert (element) adds an element to the priority queue.
• extractMax ()/extractMin() removes the element of highest or lowest priority.
• reportMax()/reportMin() returns the highest or lowest priority value.

Heap property

Let T be a complete binary tree with nodes v having fields defined as follows:

• key v is the key associated with node v.
• Left v is the left child of v.
• Right v is the right child of v.

Let r be the root of T. T is a heap if

• T is NULL or

b) Key r ≥ max key Left r , key Right r .
c) The subtrees rooted at Left r and Rigℎt r are heaps.

This is called a MAX-heap. Analogously, we can define a MIN-heap (Cormen et al., 2009).

Heap implementation

A binary heap can be implemented using a linked structure in the form of a binary tree. A
commonly preferred implementation is using an array. A MAX-heap implemented using
Python lists is given below:

heaps.py

Code
class Heap:
 def __init__(self):
 self._X = []

 def isEmpty(self):

46

 return self._X == []

 def size(self):
 return len(self._X)

 def _parent(self, i):
 return((i-1)//2)

 def insert(self, newElement):
 #Append at the end
 self._X.append(newElement)
 i = self.size()-1
 #Bubble up
 while(i > 0):
 top = self._parent(i)
 if(self._X[top] < self._X[i]):
 self._X[top],self._X[i] \
 = self._X[i],self._X[top]
 else:
 break
 i = top

 def _maxChild(self, i):
 if 2*i + 2 >= self.size():
 maxChild = 2*i+1
 elif self._X[2*i+1] > self._X[2*i+2]:
 maxChild = 2*i+1
 else:
 maxChild = 2*i+2
 return(maxChild)

 def extractMax(self):
 #Remove the maximum element from heap and return
 maxElement=self._X.pop(0)
 if(self.size() != 0):
 #Bring last element to front
 lastElement=self._X.pop()
 self._X.insert(0, lastElement)
 #Trickle down
 i = 0
 while(2*i < self.size()-1):
 m = self._maxChild(i)
 if(self._X[m] > self._X[i]):
 self._X[i],self._X[m] \
 = self._X[m],self._X[i]
 else:
 break

47

 i =m
 return maxElement

 def reportMax(self):
 return(self._X[0])

 def printHeap(self):
 print(self._X)

Of the operations, reportMax takes O 1 time while both extractMax and insert takeO logn time, where n is the number of items in the heap when the operation is per-
formed.

Figure 5: Aircraft Landing Problem

Source: Created on behalf of IU (2022).

An application

Consider an aircraft landing problem at an airport, where the air traffic control tries to pri-
oritize the landing of aircraft based on various factors quantified by a priority value. Air-
craft with higher priority land earlier. For instance, an airplane that is already low and very
close will have a high priority. Consider the scenario shown in the figure, where aircraft
with different priority values seek landing permission. These priorities are inserted into a
priority queue implemented as a MAX-heap. Then, an aircraft arrives seeking an emer-
gency landing. It has the priority value 13, which is the maximum. The priority queue
returns this value for the extractMax operation. These operations are executed using our
heap implementation as follows:

Code
H=Heap()
H.insert(5)
H.insert(12)

48

H.insert(9)
H.insert(7)
H.insert(1)
H.insert(8)
H.insert(13)
H.extractMax()

The structure of the MAX-heap as it evolves while executing an insert(13) followed by
extractMax is shown below.

Figure 6: Heap Operations

Source: Created on behalf of IU (2022).

Graphs

The celebrated problem of Königsberg bridges asked whether the seven bridges of the
Prussian city of Königsberg, over the river Preger, could all be traversed in a single trip
without going through any bridge twice (Rosen, 2019). The additional requirement was
that the trip must end in the same place it began. In 1736, Leonhard Euler showed that the
Königsberg bridge problem could not be solved. This initiated the study of graph theory,
which is central to computer science today (Rosen, 2019).

49

Self-loops
These are edges in graphs

that start and end at the
same vertex.

A graph G = V , E consists of a set of vertices V and a set of edges E ⊆ V · V .

An edge A, B , AϵV and BϵV connects vertices A and B.

Figure 7: A Graph

Source: Created on behalf of IU (2022).

In the graph representation of the Königsberg bridge problem, each vertex represents a
landmass, and each edge represents a bridge.

Figure 8: The Konigsberg Bridge Problem

Source: Created on behalf of IU (2022).

A “simple graph” has no self-loops and does not have multiple edges between vertices. A
graph with multiple edges or self-loops is called a pseudo-graph (Rosen, 2019).

50

A “directed graph” has only directed edges between pairs of vertices. An “undirected
graph” has no directed edges (Rosen, 2019).

Figure 9: A Directed Graph

Source: Created on behalf of IU (2022).

Applications

Social networks are often represented as graphs. We sometimes call such graphs “social
graphs.” The entities represented by vertices could be individuals, posts, or some com-
ments. The edges connecting the vertices represent some relationship between the enti-
ties between the vertices. For example, the edge of a graph showing Facebook connec-
tions would represent friendship. Graphs may have different types of vertices. For
instance, in a collaboration network, a vertex may be an author or a research paper. In
some networks, the edges represent different types of relationships, such as friendship,
familial relationships, or acquaintance. In others, such as trust networks, the edge may be
weighted. The relationship is non-random, and, often, the entities form clusters of “com-
munities”, which are not necessarily disjointed. The graph representation also depends on
what type of data will be mined. A collaboration network in research may be represented
with (a) vertices as authors and edges indicating co-authorship, (b) vertices as papers with
edges indicating the presence of common authors, or (c) each vertex being either an
author or a paper and an edge indicating authorship of a paper.

Other applications of graphs include (Rosen, 2019)

• road networks.
• web pages and their hyperlinks.
• communication networks.
• collaboration networks.
• airline network (connectivity between cities).

51

Cycles
A cycle is a sequence of
vertices such that every

consecutive pair in the
sequence is connected by
an edge, and the last ver-

tex in the sequence is
connected to the first.

Cycles

Various problems are modeled using cycles in graphs.

Figure 10: An Undirected Graph with Cycles

Source: Created on behalf of IU (2022).

In directed graphs, we look for a directional sequence to determine a cycle.

In the graph below, A-E-D-A and A-B-C-D-A are cycles, but A-B-C-D-E-A is not.

Figure 11: A Graph with Directed Cycles

Source: Created on behalf of IU (2022).

52

Directed acrylic graphs
A DAG is a directed graph
with no directed cycles.

Sparse
A sparse graph is a graph
with |V| vertices and O(|V|)
number of edges.

DAGs

Directed acyclic graphs (DAGs) are useful for modeling dependencies between tasks.

Graph representation

Two popular ways in which graphs may be represented are “adjacency lists” and “adja-
cency matrices” (Rosen, 2019).

For an undirected graph G = V , E , the adjacency list for vertex v, Adj v , stores the list
of vertices connected to v, that is: Adj v = u v, u ϵE u, v ϵE if v, u ϵE. This is
usually the preferred representation if the graph is sparse. An adjacency list representa-
tion of an undirected graph is shown below along with the adjacency lists. For example,
the self-loop at vertex A and a straight edge between A and C results inAdj A = A, C .

Figure 12: Adjacency List of an Undirected Graph

Source: Created on behalf of IU (2022).

For a directed graph G = V , E , the adjacency list for vertex v, Adj v stores the list of
neighbors u v, u ϵE . In some applications, Adj v may store incoming edges at v.

53

Dense
A dense graph is a graph

with |V| vertices and O(|V|
2) number of edges.

Figure 13: Adjacency List of a Directed Graph

Source: Created on behalf of IU (2022).

For any simple graph G, directed or undirected, let us assume that the vertices are namedv i , 0 ≤ i ≤ n − 1. The adjacency matrix A is a two-dimensional Boolean matrix whereA i, j = 1 if, and only if, v i , v j is an edge in the graph. This is sometimes the prefer-
red representation if the graph is dense.

Figure 14: Adjacency Matrix of an Undirected Graph

Source: Created on behalf of IU (2022).

The adjacency matrix of an undirected graph is symmetric. This need not be the case for a
directed graph.

54

Figure 15: Adjacency Matrix of a Directed Graph

Source: Created on behalf of IU (2022).

Both adjacency list and adjacency matrix representations are widely used; however, adja-

cency matrices have a space requirement of O V 2 , while adjacency lists have a space

requirement of O V 2 E .

2.2 Abstract Data Types, Objects, and
Classes
ADTs

The abstract data type (ADT) for a data structure specifies what is stored in the data struc-
ture and what operations are supported on them, as shown for the stack or the queue
data structure above. The ADT does not detail how the operations are implemented.

Defining a graph ADT

Let us define an ADT for the graph data structure. A graph consists of vertices and edges,
so we need to define ADTs for these as well. Suppose we use a graph to represent a net-
work of highways connecting a set of cities. Each vertex represents a city. Each edge repre-
sents a pair of cities that are connected by a direct highway between them. We assume the
edge is undirected.

Our ADTs will include the following:

• Vertex ADT

55

◦ VerteVertex(name) creates a vertex with a given city name.x ADT
◦ getName() returns the name of the vertex.

• Edge ADT
◦ Edge(a, b, w) creates an edge between vertices a and b with weight w.
◦ getVertices() returns a pair (a, b) of vertices representing the edge.

• Graph ADT
◦ Graph() creates an empty graph.
◦ getNumVertices() returns the number of vertices of the graph.
◦ getNumEdges() returns the number of edges of the graph.
◦ addVertex(a) adds a vertex to the graph for a city named a.
◦ deleteVertex(a) deletes the vertex for the city named a, if any, from the graph.
◦ addEdge(a, b) adds an edge between vertices with names a and b.
◦ deleteEdge(a, b) removes the edge between vertices with names a and b.
◦ getVertices() iterates through all vertices of the graph.
◦ getEdges() iterates through all edges of the graph.
◦ degree(v) returns the degree of vertex v.
◦ neighbors(v) returns all neighbors of vertex v.
◦ getEdgeBetween(a, b) returns the edge, if any, between vertices a and b.
◦ pathCost(a, b) returns the length of the shortest path between cities named a and
b (the sum of all weights).

Note that we have not defined details of the representation of the graph, for example,
whether we are using adjacency lists or adjacency matrices. The ADT serves as the public
interface for those using the graph data structure. The implementation details are hidden.

To implement ADTs in a language, a suitable syntactic structure needs to be provided so
that the clients of the abstraction can declare instances of the ADT and operate on them.
The data representation and implementations of the operation are hidden from the out-
side world. Sometimes, support may be required to allow objects of ADTs to be operated
on by a few general built-in operations, such as assignment and comparison, since these
may need to be redefined for the user-defined type.

Heap ADT

In the heap example, the heap ADT may be defined as follows:

• Heap() constructs an empty heap.
• isEmpty() returns True if the heap is empty, False otherwise.
• size() returns the number of elements in the heap.
• insert(element) adds an element to the heap.
• extractMax() removes and returns the maximum element of the heap.

This is the heap’s public interface. Information that is notably not a part of the ADT
includes:

• internal representation, whether an array or a linked tree structure is used.
• details of how the functions implement the supported operations.
• some operations, such as _parent and _maxChild, that are for internal computations.

56

Objects and Classes

A “class” is a fundamental means of abstraction in object-oriented programming. In
Python, every data item is an instance of a class. This is true for both built-in types and
user-defined types. Classes are instantiated as objects: an object of a given class is called
an instance. In the heap example, the statement H=Heap() creates an object of class
Heap. The class determines how information is represented, while the instance (generally
called “object”) stores the concrete information. The basic data represented in our heap
example are a sequence of integers. This is implemented using a Python list _elements.
This list is called a “data member” or “field” of the class. Whether _elements is a list or
tree is internal to the class and is not of concern to the users of the class. The class also
defines behavior in the form of methods or member functions.

Constructors

Once we have defined a class, we can create instances or objects of the class using a “con-
structor”. For example, we can create an instance of the Heap class by invoking the con-
structor as Heap(). This accomplishes two things: It creates an object in the memory and
it calls the __init__ method of the class to initialize (assign data to) object.

Inheritance

“Inheritance” adds a powerful feature to object-oriented programming that facilitates
modular and hierarchical organization. This enables us to define new classes based on the
existing class. The new class is called the “derived class” or “subclass”. The existing class
from which the subclass is derived is known as the “superclass” or “base class” (Goodrich
et al., 2013).

The subclass

• inherits some methods from the base class.
• extends the base class with new methods.
• overrides some methods from the base class.

As an example, consider classes of parallelograms.

parallelograms.py

Code
class Parallelogram:

def __init__(self, p, q):
self.first = p
self.second = q
self.third = p
self.fourth = q

def perimeter(self):

return(self.first + self.second +

57

self.third+self.fourth)

class Rectangle(Parallelogram):

def __init__(self, p, q):
 super().__init__(p,q)

def area(self):
return(self.first*self.second)

class Square(Rectangle):

def __init__(self, p):
super().__init__(p,p)

def area(self):

return(self.first*self.first)

P=Parallelogram(3,4)
print(P.perimeter())

R=Rectangle(3,4)
print(R.perimeter())
print(R.area())

S=Square(5)
print(S.perimeter())
print(S.area())

In the above example, we observe that

• the Rectangle class inherits the perimeter method from the base class
Parallelogram, as does the Square class,

• the Rectangle class extends the base class Parallelogram with an area method, and
• the Square class area method overrides the area method from the Rectangle class.

Python supports object-oriented programming through the mechanism of “abstract base
classes” (Goodrich et al., 2013). One cannot create objects of these classes. Instances are
created from concrete classes derived from the abstract base classes.

2.3 Polymorphism
Software reuse implies better productivity. The ability to use the same subprogram for
different types of data leads to software reuse and is a powerful facility provided by differ-
ent languages supporting object-oriented programming. This facility is known as “poly-
morphism” and manifests itself in different ways in programming languages (Goodrich et
al., 2013).

58

In “ad-hoc polymorphism”, a function can have different implementations depending on
the types of its arguments. Function overloading in C++ is an example of ad-hoc polymor-
phism. C++ also provides support for generic types in the form of templates.

In Python, support for polymorphism exists for both built-in types and for user-defined
classes.

The Len Function

The len function in Python works for several types, including ranges, strings, lists, tuples,
sets, and dictionaries:

Code
A = range(0, 5) #range
print(len(A))

B= [2,3,4,5] #list
print(len(B))

C= (4, 5,6) #tuple
print(len(C))

D = {4,5,6,7,8,9} #set
print(len(D))

E = {'a':2, 'b':3} #dictionaries
print(len(E))

The + Operator

The + operator works for a variety of types, such as strings, numeric types, lists, and
tuples, but both operands must be of the same type:

Code
a = 23
b = 45
print(a+b) # 68

a = "abc"
b = "def"
print(a+b) # abcdef

a = [1,2,3]
b=[4,5]
print(a+b) # [1, 2, 3, 4, 5]

59

a = (1,2,3)
b = (3,4,5)
print(a+b) # (1, 2, 3, 3, 4, 5)

Python allows the "+" operator to be overloaded with objects of a user-defined class as
operands. A method __add__ needs to be defined for the class. For the expression obj1
+ obj2 where obj1 and obj2 are objects of some user-defined class,
obj1.__add__(obj2) is invoked.

Polymorphism with Inheritance

Let us revisit the Parallelogram example. Note that the perimeter is implemented in the
base class Parallelogram, but not in the derived classes Rectangle and Square. When
we instantiate an object S of class Square and invoke S.perimeter(), the perimeter()
method defined in the superclass Parallelogram is called. Now, consider the area meth-
ods defined in the Rectangle and Square classes. When we create an object S of the
Square class and invoke S.area(), the area method defined in class S is called. If we
delete this method, since class Square is a subclass of the class rectangle, the rectangle’s
area method will be invoked whenever S.area() is called.

In general, an object of a derived class can be passed on as a parameter of a superclass. If
a method is implemented in some, but not all, classes in the inheritance hierarchy, the
implementation in the nearest superclass to the invoked object’s class is invoked (Liang,
2017).

SUMMARY
Important data structures include stacks, queues, heaps, and graphs.

Stacks are structures following the LIFO paradigm. The main operations
for a stack are the PUSH and the POP. The PUSH operation involves the
addition of an element to the top of the stack. The POP operation
involves the removal of an element from the top of the stack. They can
be implemented using linked lists or arrays. We proposed an implemen-
tation using Python lists. Stacks are useful in many algorithms including
parentheses matching in expressions, matching tags in HTML, and sup-
porting stack frames to process function calls.

Queues are FIFO structures that support operations of enqueue to add
elements at the end of the queue and dequeue to remove them from the
front. We proposed an implementation using Python lists.

60

Heaps are used in Heapsort and for implementing priority queues. They
come in two varieties: MAX-heap and MIN-heap. The basic operations
supported include returning the maximum or minimum in O 1 time
and removing the same in O logn time. The heap also supports an
addition of a new element in O logn time.

Graphs are a fundamental data structure used for modeling relation-
ships such as computer networks, social networks, communication net-
works, road networks, and biological networks.

We considered ADTs, objects, and classes as fundamental tools to imple-
ment abstraction in object-oriented programming. Inheritance adds a
powerful feature to object-oriented programming, which facilitates
modular and hierarchical organization. This enables us to define new
classes based on the existing class. We studied polymorphism as an
important concept in object-oriented programming. We saw examples in
Python where support for polymorphism exists for both built-in types
and user-defined classes.

61

UNIT 3
ALGORITHM DESIGN

STUDY GOALS

On completion of this unit, you will be able to …

– use iteration and recursion to generate repetition in programs.
– design algorithms using basic algorithm design paradigms.
– prove correctness of programs.
– apply program verification and testing methodologies.
– understand formal analysis of algorithms, notations, and complexity classes.

3. ALGORITHM DESIGN

Introduction
To solve a problem on a computer, we need efficient algorithms and data structures that
we then map to programs in a programming language of our choice, which also needs to
be efficient. Algorithm design involves mapping the specifications of a problem, possibly
in natural language, to an algorithmic pseudocode that can be universally understood. For
better understanding later, it may be necessary to create a correctness proof, particularly
if some steps of the algorithm are nontrivial.

Since there may be multiple algorithms for the same problem to choose from, the pro-
grammer will need some basis for the choice. Hence, it will also be necessary to augment
the solution description with an analysis of resource requirements, which mostly trans-
lates to the running time and space. Over time, standard methodologies have emerged for
all these steps of algorithm design, analysis, and correctness proofs. Although each algo-
rithm is different, over the years, some “design patterns” or templates have also emerged
for algorithm design methodologies. These apply to a large class of problems. Finally,
standard measures of complexity help in comparing multiple algorithms for the same
problem. Once the program is written, we need program verification techniques to ensure
the program acts according to specifications. Rigorous testing techniques are then
employed to test whether the program meets the requirements and to unearth any bugs.

3.1 Induction, Iteration, and Recursion
Iteration

“Iterations” are repetitive computations of a group of statements. They form fundamental
building blocks of algorithms and programs, allowing them to be more compact. Many
problems fundamentally depend on repetitive computations; hence, programming lan-
guages support various mechanisms for “loops”. These mechanisms differ in how they
control the number of times a block of statements must be repeated and the location of
the condition check in the code (Sebesta, 2016). Languages also provide different loop
control mechanisms, such as “break” and “continue”, for example, that allow the pro-
grammer to decide the exact location of the control mechanism within the body of the
loop. “Break” shifts the control out of the loop, whereas “continue” shifts it to the begin-
ning of the loop.

The while loop

The “while loop” is a construct in which a loop is controlled using a test condition that
evaluates to True or False. The condition is tested at the beginning of the loop.

The syntax for the while loop in Python is

64

Iterable
An iterable is an object
that allows iteration
through a sequence of
values. The concept exists
in various programming
languages.

Code
while(condition):

statements

The statements are executed for as long as the condition is true.

The following Python code prints the natural numbers from 1 to 25. The test condition for
the while loop fails when n = 26, and the loop then terminates.

Code
n = 1
while (n <= 25):

n += 1
print(n)

Note that if n had been initialized to 26, the while loop would not be executed at all.

The do-while loop

The “do-while” loop is a construct that tests a condition at the end of the loop rather than
at the beginning. Python does not have a do-while loop.

The syntax in C and C++ is as follows:

Code
do {

statements;
} while (condition);

The statements in the body of the do-while loop are executed until the condition is evalu-
ated to be false. The do-while loop is always executed at least once, even if the condition
is false throughout.

The for loop

In many programming languages, the “for loop” uses a counter to control the loop. In
Python, the for loop is controlled by looping through any objects that are iterable(Good-
rich et al., 2013). Lists, tuples, strings, and dictionaries are examples of iterables. Equiva-
lent concepts also exist in other languages.

The general syntax is

Code
for variable in sequence:

statements
else:

statements

65

The else part is optional and executed when the for loop exits normally. It will not execute
when the exit is through a break statement.

The following prints all the natural numbers from 21 to 34, inclusively:

forloops.py

Code
for i in range(21,35):
 print(i)

The following prints the names of the fruits in the list fruitBasket:

Code
fruitBasket=["apple","banana","mango","cherry","kiwi"]
for i in fruitBasket:
 print(i)

The following lines all print 2, 4, 6, 8 in consecutive lines

Code
for i in (2,4,6,8):
 print(i)
for i in [2,4,6,8]:
 print(i)
for i in "2468":
 print(i)

The for loop in C-based languages has the following general form:

Code
for(expression; expression; expression)

statements

Here, the first expression is used for initialization and the second for the condition to be
tested for the loop to continue. The third expression is used for any action at the end of
the loop, such as incrementing the loop control variable. All expressions are optional.

User-controlled mechanisms

Programming languages also support loop control mechanisms wherein the exact loca-
tion of the control mechanism within the body of the loop can be decided by the user.
Python supports two such constructs: break and continue. Break allows the control to exit
the loop, whereas continue allows the control to skip the rest of the statements in the loop
body and return to the start of the loop.

66

For example, consider the following Python code fragment to print the odd numbers in
the range 501,1000 starting from 501 until it encounters an odd multiple of 37. It prints
the sequence 501, 503, ..., 555.

break.py

Code
for i in range(501,1000,2):
 print(i)
 if(i % 37==0):
 break

The following Python code fragment prints all odd multiples of 37 in the range 501,1000 :

continue.py

Code
for i in range(501,1000,2):
 if(i % 37!=0):
 continue
 print(i)

Iterators

“Iterators” are user-defined functions that traverse a data structure in some sequence
(Goodrich et al., 2013). Each time it is called, it returns another element of the data struc-
ture. For instance, Python allows the creation of iterators that walk through the elements
of an iterable object.

In the following example, the Python code snippet creates an iterator for a list of integers
and iterates through the list, printing them one by one:

iterator.py

Code
alist = list(range(1,21))
i = iter(alist) #creates iterator
while (1):
 try:
 print(next(i)) #iterates through list
 except StopIteration:
 break

Of course, in Python, the for loop would have automated this process of creating an itera-
tor for an object and invoking the next element repeatedly before calling the
StopIteration exception (Goodrich et al., 2013).

67

Generators

“Generators” are an alternative to a traditional function and are suitable when we need
the results one by one. Here is an example that generates the prime factors of a natural
number in Python. Note the use of the “yield” construct instead of a “return”.

generator.py

Code
def generatePrimeFactors(num):
 fact = 2
 while fact * fact <= num:
 if num % fact:
 fact += 1
 else:
 num //= fact
 yield fact
 if num > 1:
 yield num

This is used as follows to generate the prime factors of 3,000:

Code
for i in generatePrimeFactors(3000):
 print(i)

Recursion

“Recursion” is an elegant alternative to loops for generating repetition. A function makes
one or more calls to itself, trying to express the solution to a problem in terms of solutions
to smaller subproblems. Consider the following recursive variant of the Python function to
compute the prime factors of a natural number num. It must be invoked as
primeFactors(num, 2), which returns the prime factors in a list.

primes.py

Code
 def primeFactors (num, fact):
 if num < fact*fact:
 return [num]
 if num % fact == 0:
 return [fact] + primeFactors (num // fact, 2)
 return primeFactors (num, fact + 1)

68

Above is an example of linear recursion since only one of the two calls to primeFactors
in the body of the function will be executed. The number of such calls may be more than
one.

The following example illustrates a case of binary recursion in Python. Fibonacci numbers
are defined for all non-negative integers n as follows:fib n = n, 0 ≤ n < 2fib n − 1 + fib n − 2 , n ≥ 2
This definition leads to a straightforward binary recursive implementation.

binFib.py

Code
#Binary Recursive Fibonacci
def fib(n):
 if(n==0):
 return 0
 elif(n==1):
 return 1
 else:
 return(fib(n-1)+fib(n-2))
print(fib(6))

Although recursion is elegant, it must be used judiciously. Recursive calls have system
overheads. Moreover, although a certain way of programming may be “natural”, it may not
be the most efficient. The above may be improved to a linear recursive version as follows.

linFib.py

Code
def linearFibonacci(n):
 #Returns F(n) and F(n-1)
 if (n <= 1):
 return (1,0)
 else:
 (current, prev) = linearFibonacci(n-1)
 return (current+prev, current)

The difference between the two implementations is significant. The binary variant runs in
exponential time, whereas the linear version takes O n time, as we shall see below.

69

Loop invariant
A loop invariant is a prop-

erty that is true both
before and after the exe-

cution of a loop.

Induction Proofs

“Mathematical induction” is a fundamental tool in the design and analysis of algorithms.
In proving the correctness of algorithms, we often employ loop invariants(Sebesta, 2016).
For iterative algorithms, the iterations provide a sequence on which induction can be nat-
urally applied. For recursive algorithms, properties can be proved by applying induction to
arguments of the recursive call. In data structure design, too, induction is used for proving
properties of recursive structures like heaps or binary trees. Analysis of time or space com-
plexity often uses recurrences, and induction is often useful in asymptotic solutions to
recurrences. Induction takes two basic forms: weak and strong.

Weak induction

Suppose we need to prove that a property P n is true for all non-negative integers n ≥ 0.
The steps are as follows:

• basis. Show that P 0 is true.
• induction step. Show that for all n ≥ 1, if P n − 1 is true, then P n is true.

Strong induction

In this case, to prove that a property P n is true for all non-negative integers n ≥ 0, the
steps are as follows:

• basis. Show that P 0 is true.
• induction step. Show that for all n ≥ 1, if P k is true for all k < n, then P n is true.

Note that we may use a different basis condition depending on the problem.

3.2 Methods of Algorithm Design
Algorithm design is often guided by analysis in the quest for more efficient solutions.
While each problem is different, some basic techniques are useful for a large class of prob-
lems.

A Simple Algorithm

A “simple algorithm” is the simplest one for solving the problem; it is usually an obvious
one based on the problem statement directly. We consider the Maximum Contiguous Sub-
array Problem, which is defined as follows: We are given a sequence Aof nintegersA 1 . . n and we need to find the largest sum possible in a contiguous subsequenceA i . . j of A. This and similar problems arise in applications, such as bioinformatics,
computer vision, and data mining (Brodal, 2013; Bentley, 2000).

For example, consider the sequence A = −6, − 22, 1, 6, − 5, 3, 4 . Here, the
maximum contiguous subsequence is 1, 6, − 5, 3, 4 with a sum of 9.

70

Brute-force algorithm
This is a straightforward
algorithm that typically
adopts a simple approach
like considering all possi-
ble cases.

A possible brute-force algorithm for this problem could simply be to compute the subar-
ray sum for each possible pair i, j satisfying 0 ≤ i ≤ j ≤ n − 1 and keep track of the
maximum. Below is a Python implementation of this algorithm, with the sequence repre-
sented as a Python list.

maxContiguousBF.py

Code
def maxContiguousSubseq(A):
 maxSum = 0
 n = len(A)
 for i in range(0,n):
 for j in range(i,n):
 subseqSum = 0
 for k in range(i,j+1):
 subseqSum += A[k]
 maxSum=max(maxSum, subseqSum)
 print(“maxSum =”, maxSum)

The loop with index i is executed n times. The loop with index j is executed n − i ≤ n
times. The loop with index k is executed j − i + 1 ≤ n times. So, overall, this is an O n3
algorithm for the problem.

Dynamic Programming

In many situations, problems have overlapping subproblems. Solving the overlapping
subproblems independently entails wasted resources, such as computing time and space.
“Dynamic programming” is an algorithm design technique that involves solving such over-
lapping subproblems only once and reusing the results. In the Maximum Contiguous Sub-
array Problem, note that Sum(i, j), the sum for the subsequence A[i..j], can be
obtained from Sum(i, j-1), the sum of the subsequence A[i..j-1], by simply adding
A[i]. The second sum need not be recomputed from scratch, but instead computed from
the solution to the subproblem sum.Sum i, j = A i ifj = i .Sum i, j − 1 + A j ifi < j < n
This leads to an improved algorithm because we optimize on space by not storing the par-
tial sums. The Python code is displayed below.

maxContiguousDP.py

Code
def maxContiguousSubseqDP(A):
 maxSum = 0
 n = len(A)
 for i in range(0,n):

71

 subseqSum = 0
 for j in range(i,n):
 subseqSum += A[j] #Compute Sum(i,j)
 maxSum=max(maxSum, subseqSum)
 print("maxSumDP =", maxSum)
listA=[-6, -22, 1, 6, -5, 3, 4]
maxContiguousSubseqDP(listA)

The loop with index i is executed n times, and the loop with index j is executed n − 1 ≤ n
times. So, overall, this is an O n2 algorithm for the problem, which is an improvement on
the brute-force O n3 approach.

Divide-and-Conquer

“Divide-and-conquer” is a widely used, and often efficient, design technique. It consists of
three steps (Levitin, 2012):

1. The given problem is subdivided into two or more smaller subproblems.
2. The subproblems may be solved recursively or using a different algorithm.
3. To get a solution to the original problem, we combine the solutions to the smaller

problems (the “conquer” step).

Let’s design a divide-and-conquer algorithm for the Maximum Contiguous Subarray Prob-
lem (Bentley, 2000):

1. Divide the array into two parts.
2. Compute the sum of the Maximum Contiguous Subarray residing exclusively on the

left.
3. Compute the sum of the Maximum Contiguous Subarray residing exclusively on the

right.
4. Compute the sum of the Maximum Contiguous Subarray that crosses the boundary.
5. Return the maximum of the three sums computed.

The Python implementation is as follows:

maxContiguousDC.py

Code
def maxContiguousSubseqDC(A, low, high):
 if(low == high): #single element
 return max(0,A[low]) #if negative return 0
 mid=(low+high)//2

 #find max crossing subsequence to the left
 subseqSum = 0
 maxLeftSum = 0

72

 for i in range(mid,low-1,-1):
 subseqSum += A[i]
 maxLeftSum=max(maxLeftSum, subseqSum)

 #find max crossing subsequence to the right
 subseqSum = 0
 maxRightSum = 0
 for i in range(mid+1,high+1):
 subseqSum += A[i]
 maxRightSum=max(maxRightSum, subseqSum)

 #find max subsequence exclusively to the left
 left = maxContiguousSubseqDC(A, low, mid)

 #find max subsequence exclusively to the right
 right = maxContiguousSubseqDC(A, mid+1, high)

 print("low, mid, high, left, right, maxLeft, maxRight", low, mid, high,
 left, right, maxLeftSum, maxRightSum)
 return(max(left, maxLeftSum+maxRightSum, right))

listA=[-6, -22, 1, 6, -5, 3, 4]
print("maxSumDC=", maxContiguousSubseqDC(listA,0,6))

Let the running time for this algorithm be expressed as T n , where n is the size of the
input. We subdivide the problem into two parts and recurse on each. Finding the maxi-
mum crossing subsequences takes O n time.

T n = O 1 , n ≤ 12T n2 + O n , n > 1
This solves to T n = O nlog n because there is O n amount of work involved in each ofO log n levels of recursion.

Greedy Algorithms

Consider an optimization problem that has an associated objective function F . Among
multiple candidate solutions, the goal is to find the one that maximizes or minimizes F .
We refer to the maximum or minimum value thus found as the “optimal value” and the
candidate solution as an “optimal solution”. Whether “optimal” refers to the maximum or
minimum depends on the specific problem. An optimal solution in this context is not nec-
essarily unique. Solutions to optimization problems go through steps with choices at each
step. A “greedy algorithm” always makes a locally optimal choice. Sometimes the locally
optimal choice leads to a globally optimal solution. This works well for several practical
problems.

73

Customers at a grocery store

Consider the following problem of n customers at a grocery store waiting to be served at a
single counter. Customer j requires c j units of time to be served. The total waiting time
for customer j before being served is equal to the total serving time of customers served
before customer j. Suppose the grocery store owner wants to minimize the total waiting
time of the n customers. In what order should the customers be served to achieve this
goal?

It turns out that if the customers are served in the order of non-decreasing c j , the opti-
mal solution is achieved. Here, the store owner makes the greedy choice by choosing the
customer with the minimum c j (ties broken arbitrarily) among those still waiting as the
next customer to be served. We illustrate this with an example:

Consider a problem instance with n = 5 customers.

Let c 1 , c 2 , c 3 , c 4 , c 5 = 25,21,14,10,5 .

Consider the schedule 5,14,10,25,21 .

Cumulative waiting times are 0,5,19,29,54 .

The sum of waiting times is 5 + 19 + 29 + 54 = 107.

Now, consider an alternate schedule 5,10,14,25,21 .

Cumulative waiting times are 0,5,15,29,54 .

The sum of waiting times is 5 + 15 + 29 + 54 = 103.

Finally, consider the greedy schedule 5,10,14,21,25 .

Cumulative waiting times are 0,5,15,29,50 .

The sum of waiting times is 5 + 15 + 29 + 50 = 99.

Note that the cumulative waiting time decreases if a customer’s position in the queue is
exchanged with another customer with a higher service time who is ahead in the queue.
The greedy schedule with a non-decreasing order of service times gives the minimal solu-
tion.

74

3.3 Correctness and Verification of
Algorithms
Correctness of a Greedy Algorithm

Let us revisit the problem of customers at a grocery store waiting to be served by a single
counter. The grocery store owner’s goal is to minimize the total waiting time of the n cus-
tomers. The question we must answer is: what order should the customers be served to
achieve this goal? The proposed algorithm tries to achieve this goal by serving the cus-
tomers in the order of non-decreasing c j . We prove below that this is correct, that is, if
the customers are served in the order of non-decreasing c i , 0 ≤ i < n, the solution ach-
ieved is an optimal solution.

The condition is c 1 ≥ c 2 ≥ ⋯ ≥ c n .

The goal is to minimize the sum of the waiting time of all customers.

The claim is: The total waiting time is minimized if the customers are processed in the
order. S = s 1 , s 2 , …, s n .
We define this with s i = c i for i = 1, . . . n .
Proof

We prove the claim to be correct by the method of contradiction. The claim implies thats 1 ≤ s 2 ≤ s 3 ≤ … ≤ s n . Let us assume that this order of serving customers, S,
adopted by the greedy algorithm is incorrect and does not minimize the total waiting time.
Let an optimal schedule minimizing the total waiting time for processing the customers beT = t 1 , t 2 , …, t n . As T is optimal and S is not, they must differ at one or more indi-
ces. Let i be the smallest index such that t i ≠ s i :s 1 = t 1 , s 2 = t 2 , …, s i − 1 = t i − 1
Since t i ≠ s i , t i = s k for some k > i and t j = s i for some j > i.

Since s 1 ≤ s 2 ≤ s 3 ≤ ⋯ ≤ s n , we get t j ≤ t i .

Let T ′ be the schedule obtained from T by swapping t i and t j .

Since j moves j − i places up and i moves j − i places down in the schedule,Wait T ′ =Wait T + t j ⋅ j − i − t i ⋅ j − iWait T ′ =Wait T − j − i ⋅ t i − t j

75

Since j > i and t j ≤ t i , Wait T ′ ≤ Wait Ts 1 = t 1 , s 2 = t 2 , …, s i − 1 = t i − 1 , t i ≠ s iT ′ = t′ 1 , t′ 2 , …, t′ ns 1 = t′ 1 , s 2 = t′ 2 , …, s i − 1 = t′ i − 1 , s i = t′ iWait T ′ ≤ Wait TT matches S up to position i − 1.T ′ matches S up to position i.

Thus, we can find schedules T = Ti + 1, T ′ = Ti, Ti + 1, …, Tn where Tj matches S up to
position j.Wait S = Wait Tn ≤ Wait Tn − 1 ≤ … ≤ Wait Ti + 1 = Wait T .

Thus, Wait S ≤ Wait T .

But, since T is an optimal schedule, Cost T ≤ Cost S .

Hence, Wait S = Wait T , that is, the optimal schedule has the same cost as the greedy
schedule, which we had assumed does not minimize the total waiting time. This is a con-
tradiction. Therefore, we conclude that the greedy schedule must minimize the total wait-
ing time.

The proof methodology used here is general and has been applied for many greedy algo-
rithms. “Matroid theory” provides a mathematical basis to show that a greedy algorithm is
correct by using a combinatorial structure called a matroid (Cormen et al., 2009). This has
been used for many greedy algorithms but is not necessarily applicable to all.

Correctness of an Iterative Algorithm

Example

Consider the following Python function for computing factorials.

factorial.py

Code
def factorial(n):
 index = 0
 value = 1
 while(index < n):

76

 index += 1
 value *= index
 return value

We would like to prove the following statement P r for each r,P r : if the while loop executes r times, r ≥ 0, value = r!.
Proof

The basis P 0 is true. By definition 0! = 1 . Before the while loop executes,value = 0! = 1.

The induction step is as follows: Let P k − 1 be true. Assume that if the while loop exe-
cutes r = k − 1 times and value = r! = k − 1 !. The variable index tracks the number of
iterations of the while loop. Thus, at this point index = k − 1. Then, in the next iteration
index gets incremented to k and value = value ⋅ k = k − 1 ! ⋅ k. Hence, P k is true.

Correctness of a Recursive Algorithm

Example

Consider the following Python program which computes the highest power of a factorfact ≥ 2 that divides a natural number num ≥ 2.

Code
1. def powersOfFactor(num, fact):
2. if (num < fact):
3. return 0
4. if(num == fact):
5. return 1
6. elif num % fact == 0:
7. return(powersOfFactor(num//fact, fact)+1)
8. return 0

Let us prove that this program is correct by using strong induction. Note that we assume
that the following inequality always holds because of the nature of the problem: fact ≥ 2.

Proof

This is achieved by strong induction on the first function argument num.

The basis is as follows: The function works correctly for num = 0,1,2. If num = 0 or 1,num < fact, hence the function correctly returns 0 in line 3. If num = 2, and num < fact,
again the function returns a 0 in line 3, which is correct. If num = fact = 2, the function
correctly returns a value of 1 (line 5).

77

The induction step is as follows: Suppose the function works correctly for all values ofnum satisfying 0 ≤ num < k. Now consider num = k.

Case 1: If fact > num, the function will return 0, which is correct.

Case 2: If fact = num, the function will return 1, which is correct.

Case 3: If fact < num and num % fact = 0, then fact divides num. Then, the highest
power of fact that divides num is one more than the highest power of fact that dividesnum/fact.

Since k/fact < k, according to the induction hypothesis, the function works correctly fornum = k/fact and returns the highest power of fact that divides num/fact. Hence, the
function correctly returns one more than the highest power of fact that divides num/fact
(line 7).

Hence, by induction on num, the above arguments prove that the function correctly
returns the highest power of fact that divides num for all integers num ≥ 0 and all inte-
gers fact ≥ 2.

Loop Invariants

Loops are fundamental constructs in programming and proving them to be correct is of
paramount importance in program verification. A standard technique used in such cases is
the “loop invariant”. We revisit the problem of Maximum Contiguous Subarray yet again.
The problem can be optimally solved using Kadane’s algorithm in O n time (Bentley,
2000). Below is a Python implementation of Kadane’s algorithm, which may seem unintui-
tive to start with:

maxContiguousOPT.py

Code
def maxContiguousSubseqOpt(A):
 maxSum = 0
 subseqSum = 0
 n = len(A)
 for i in range(0,n):
 subseqSum = max(subseqSum+ A[i], 0)
 maxSum = max(maxSum, subseqSum)
 print("maxSumOpt =", maxSum)
listA=[-6, -22, 1, 6, -5, 3, 4]
maxContiguousSubseqOpt(listA)

To see why this is correct, note that the variable subseqSum tracks the maximum sum for
a subsequence ending at the most recently processed position, which is i − 1 at the start
of the loop and i at the end. The variable maxSum tracks the maximum sum for the entire
processed subsequence, which is A 0 . . i − 1 at the start of the loop and A 0 . . i at the

78

end. The values of subseqSum and maxSum are both zero initially, which is correct by
definition. If the value A i when added to subseqSum is negative, then A i cannot be
appended to any existing subsequence to create a maximum subsequence and no maxi-
mum subsequence ends at position i. Otherwise, subseqSum is updated with the value ofA i . The last line of the loop updates maxSum with the new value of subseqSum if the
latter is greater. Thus, the algorithm correctly maintains the meanings associated withsubseqSum and maxSum across loops. The formal proof can be done using mathemati-
cal induction on the loop variable i.

Program Verification

Today, information technology (IT) systems are increasingly dependent on complex soft-
ware. Often, checking for faults via manual reviews, rigorous testing, and simulations is
not enough. Correctness of a program has been traditionally viewed in three ways (Pratt &
Zelkowitz, 2001):

1. Semantic modeling. Given a program, what are its specifications?
2. Correct-by-construction development. Given a specification, develop a program that

is correct according to the specification.
3. Program verification. Does the behavior of a program match its specification?

Over the years, research in formal methods in software engineering has focused on the
development of rigorous techniques for specification, development, and verification of
software systems. Using rigorous specifications and verifying that the implementation
meets the specifications can help to detect errors early or to eliminate them. As a limita-
tion, note that formal verification methods only verify whether the system is correct
according to the specification, but there is no guarantee that the specification itself is
completely correct.

There are different approaches to formal verification (Almeida et al., 2011):

• proof tools. These include “automatic theorem provers,” which automatically construct
proofs using axioms and rules of inference, and “proof assistants”, which are interactive
theorem provers that can help analyze complex properties and prove expected behav-
iors based on theoretical deductions.

• model checkers. These use the program’s “state space”, the set of all possible variable
states in the programme's memory. The system is specified using logic, and desired
properties are validated. A counterexample is provided if a desired property is not valid.
Model checkers suffer from the problem of state space explosion and do not scale well
to large systems. One way this problem is circumvented is by using higher levels of
abstraction. Another way is by using "bounded model checking" (Clarke et al., 2001).
Bounded model checkers consider only those states that can be reached within a num-
ber of steps below a fixed bound.

• program annotation (Peled & Qu, 2003). These are logical properties to be verified that
are placed in the code. These additional instructions are executed during the verifica-
tion process. The additional code does not alter the behavior of the original program. A
common usage is to add simple assertions as preconditions and postconditions to
pieces of code.

79

Testing

Testing programs has two broad goals (Sommerville, 2016):

1. To demonstrate that a program behaves according to the requirements (validation
testing)

2. To find inputs for which the program output is incorrect (defect testing)

In practice, commercial software goes through stages of testing including testing done
during development, testing done at the time of release, and testing done by users. Test-
ing usually involves both manual and automated processes.

Unit or component testing

Unit or component testing involves testing individual components in isolation. Compo-
nents could include functions, classes, or class methods (Sommerville, 2016). It usually
operates at the level of source files or single classes. A challenge faced in unit testing is
that the behavior of the class being tested may depend on other classes that are not
present. This requires the creation of mock objects that simulate the behavior of the more
complex real objects they represent.

Integration testing

Integration testing involves integrating components in an almost realistic setting and sub-
jecting the integrated system to testing. The goal here is to check that the individual
pieces are compatible, integrate smoothly, and transfer data correctly through interfaces
(Sommerville, 2016).

Release testing

Release testing is the process of testing a particular release of the software and is intended
to ensure that the product or program is ready to be released for general consumption by
external users before they receive the release (Sommerville, 2016).

Performance testing

The goal of performance testing is to verify that the system can operate and deliver an
adequate service under the intended load. This is carried out after the system is fully inte-
grated (Sommerville, 2016).

User testing

User testing is typically carried out by users and customers to experiment and provide
feedback on a new system with the aim of ensuring that interaction with the software
under scripted and unscripted conditions yields expected behaviors (Sommerville, 2016).

80

3.4 Efficiency (Complexity) of Algorithms
Faced with the task of choosing the best algorithm or data structure for a problem, a pro-
grammer often depends on the available efficiency measures, such as time and space
complexity. Even if the algorithm is correct, if it consumes too much time or space it may
not be feasible to deploy it in practice.

Thus, the running time is of interest, and, in particular, how the running time grows with
the size of the input rather than the exact time, which could depend on the computational
resources available to the user. For this, we count some fundamental steps of the algo-
rithm, such as comparisons, arithmetic, and logic operations. Our analysis should yield
the order of growth, typically in terms of the input size, and we then choose the algorithm
based on this measure.

Asymptotic Complexity

Asymptotic upper bound

We define O g n = f n : There exist positive constants c and n0 such thatf n ≤ c ⋅ g n ∀n ≥ n0}. The expression f n = O g n denotes the membership off n in the set O g n (Cormen et al., 2009).

Asymptotic lower bound

We define Ω g n = {f n : There exist positive constants c and n0 such that0 ≤ c ⋅ g n ≤ f n ∀n ≥ n. The expression f n = Ω g n denotes the membership off n in the set Ω g n (Cormen et al., 2009).

Asymptotic tight bound

We define Θ g n = {f n : There exist positive constants c1, c2, and n0 such thatc1 ⋅ g n ≤ f n ≤ c2 ⋅ g n ∀n ≥ n0}. The expression f n = ϴ g n denotes the mem-
bership of f n in the set ϴ g n (Cormen et al., 2009).

Note that f n = Θ g n if, and only if, f n = O g n and f n = Ω g n (Cormen et
al., 2009).

An example follows. Suppose the running time of an algorithm in terms of its input is given
asT n = 5n2 − 20n + 1T n ≤ 5n2 + n2 + n2 ≤ 7n2∀n ≥ 1T n = O n2

81

T n = 5n2 − 20n + 1T n = n2 + 4n n − 5 + 1T n ≥ n2∀n ≥ 5T n = Ω n2
Since T n = O n2 and T n = Ω n2 , T n = Θ n2
Little oh and little omega

These are used to describe upper and lower bounds which are strict.

We define o g n = f n : ∀ constants c > 0, ∃ constant n0 > 0 such thatf n < cg n ∀n ≥ n0} (Cormen et al., 2009).

We define ω g n = {f n : ∀ constants c > 0, ∃ constant n0 > 0 such thatc ⋅ g n < f n ∀n ≥ n0} (Cormen et al., 2009).

Properties based on limits

Using limits provides an alternative way to determine the above memberships (Cormen et
al., 2009). limn ∞ f ng n = 0 f n = O g nlimn ∞ f ng n = ∞ f n = Ω g nlimn ∞ f ng n = c > 0 f n = ϴ g n
Asymptotic comparison

When faced with a choice of algorithms, we choose the asymptotically faster algorithm.
Note that the asymptotic complexity captures the practical notion that we are interested
in comparisons for sufficiently large n. A case in point is the comparison between the func-
tions f n = n3 and g n = 2n. Notice that while g n < f n for 1 < n < 10, f n is
asymptotically smaller.

82

Figure 16: Complexity Comparison

Source: Created on behalf of IU (2022).

Common complexity measures

Certain asymptotic complexity measures occur frequently in algorithm analysis. These are
listed in order of increasing complexity for sufficiently large n:

• constant: O 1
• logarithmic: O logn
• log: O log log n
• linear: O n
• n-logn: O n ⋅ logn
• quadratic: O n2
• cubic: O n3
• polynomial: O nk
• exponential: O 2n
• factorial: O n!
Polynomial Time Solvability

Many problems we encounter are solvable in polynomial time, that is, there is an algo-
rithm for the problem that runs in time bounded by O nk , where n is the size of the input,
for some constant k ≥ 0. One natural question that arises is whether all problems are, in
fact, solvable in polynomial time. In the early days of the study of algorithmic complexity,
it was observed that, although several problems are solvable within a time that is a low-

83

degree polynomial in n, such solutions were elusive for many problems. So, it seems there
is some fine line dividing problems that are solvable in polynomial time from those that
are not. There are two complexity classes of utmost importance:

1. The class P . All problems in this class are solvable in polynomial time.
2. The class NP (NP-complete). No polynomial time algorithms are known for these

problems. Moreover, no one has been able to prove that such algorithms do not exist
(Cormen et al., 2009). Also, if any one of these problems is solvable in polynomial
time, all of these problems would be solvable in polynomial time!

The P ≠ NP question is one of the long-standing open problems in computer science.NP -complete problems are important since many of them occur in real-life scenarios. The
knowledge that a problem is NP -complete, and thus does not have a known polynomial
time solution, lets the algorithm designer attempt other means like heuristics and approx-
imation algorithms to get reasonable solutions to the problem (Cormen et al., 2009).

SUMMARY
Well-known and fundamental algorithm design techniques include
divide-and-conquer, greedy algorithms, and dynamic programming.
These techniques apply to a large class of problems.

As an example, the Maximum Contiguous Subarray sum can be found
using a simple brute-force approach, while improved algorithms using
dynamic programming and divide-and-conquer methodologies can be
designed.

The greedy technique can be applied to multiple domains, for example,
to a scheduling problem.

For correctness proofs, mathematical induction. We proved the correct-
ness of iterative and recursive algorithms. The proofs employed both
weak and strong variants of induction. There are specialized techniques
for greedy algorithms that show the correctness of a greedy solution by
the successive transformation of any other optimal solution to the
greedy solution and proving that the greedy solution is no worse than
the optimal. We studied the correctness of the greedy scheduling algo-
rithm using the same framework.

Having mapped the algorithm to a program, we need to verify and test
it. Formal verification of programs involves formally checking if the pro-
gram matches its specification. Techniques include proof tools, model
checkers, and program annotations. Program testing goals include vali-
dation testing to check if the program meets the requirements and

84

defect testing to unearth bugs. These are accomplished through unit or
component testing, integration testing, and release testing. The program
is also tested for performance.

85

UNIT 4
BASIC ALGORITHMS

STUDY GOALS

On completion of this unit, you will be able to …

– implement algorithms for traversal and linearization of trees.
– apply basic algorithms for searching.
– differentiate between various algorithms for sorting.
– utilize the trie data structure for searching for a word in a string.
– apply various hashing techniques to search problems.
– understand fundamental algorithms for pattern recognition.

4. BASIC ALGORITHMS

Introduction
Of the many algorithms that we encounter, some are ubiquitous in practical applications.
These common algorithms often serve as fundamental building blocks in algorithmic solu-
tions to more complex problems.

Trees are useful for representing acyclic relationships and connectivity information in
numerous applications. In many such applications, it is necessary to visit all the nodes
and process them in some systematic order.

Whether we are arranging a list of names in a directory, a list of books in a bibliography, a
list of files in a folder on our desktop, or applying painter’s algorithm in computer graphics
to render objects in reverse order of their distances from a viewer, we use a sorting algo-
rithm in the process.

In the twenty-first century, we are faced with a data deluge and are thus building applica-
tions that are increasingly data dependent. Therefore, it is imperative that we be able to
locate data efficiently when needed. Hence, search algorithms are fundamental to many
such applications.

Whether the data are ordered or not is a basic distinction that we need to make while
deciding on the type of search algorithm to apply. We can find a word quickly in a diction-
ary because the words are ordered. Many hotels and restaurants across the world have a
valet parking service, wherein a valet parks the customer’s car. When the car needs to be
retrieved later, the valet knows exactly where it is.

Hash algorithms try to generalize this idea of finding objects by computing a data item’s
location from a table or a series of possible locations.

Text processing remains a major application area today, despite the increase in multime-
dia content. Locating a series of words in a preprocessed text is common to many applica-
tions. Data structures like “tries” support such string searches. On the other hand, pattern
matching algorithms solve a complementary problem by preprocessing a pattern to speed
up searching in a text document.

We will be looking at some fundamental algorithms within the following categories:

• tree traversal algorithms
• searching algorithms including linear search, binary search, and hashing
• basic sorting algorithms
• string-based algorithms

88

Rooted
Trees that are rooted
have a designated vertex
as their root.

4.1 Traversing and Linearization of Trees
In many applications, such as natural language processing (NLP), we need to visit, list, or
print the vertices of a tree in some required order (Filippova & Strube, 2009). These prob-
lems are classified under “linearization” or “tree traversal” problems. We assume that the
trees are rooted. In our examples, the traversal problems merely visit the node and print
the data contained in the node. In applications, other complex computations may replace
the simple print.

Representation

We consider a list-of-lists representation of trees in Python (Miller & Ranum, 2013). In this
representation, the tree is a Python list T . Although this representation can be generalized
to represent any tree, we illustrate its usage on binary trees here. The root is represented
by T 0 . The left subtree is a Python list T 1 and the right subtree is another Python listT 2 .

For example, consider the following binary tree.

Figure 17: Binary Tree

Source: Created on behalf of IU (2022).

Below is a Python list-of-lists representation of this tree:

Code
aTree=['A', #Root
 ['B', #Left Subtree
 ['D',[],[]],
 []],
 ['C', #Right Subtree

89

 ['E',
 ['G',[],[]],
 []],
 ['F',[],[]]
]]

def treeRoot(aTree):
 if(aTree):
 return aTree[0]

def leftSubTree(aTree):
 if(aTree):
 return aTree[1]

def rightSubTree(aTree):
 if(aTree):
 return aTree[2]

We can print the root, left subtree, and right subtree:

Code
print(treeRoot(aTree))
print(leftSubTree(aTree))
print(rightSubTree(aTree))

The following is printed:

Code
A
['B', ['D', [], []], []]
['C', ['E', ['G', [], []], []], ['F', [], []]]

In-order Traversal

In inorder traversal, we recursively perform an in-order traversal of the left subtree, fol-
lowed by a visit to the root node. This is followed by a recursive in-order traversal of the
right subtree (Cormen et al., 2009). The Python implementation is shown below.

Code
def inorder(aTree):
 if aTree:
 inorder(leftSubTree(aTree))
 print(treeRoot(aTree))
 inorder(rightSubTree(aTree))

90

If we invoke inorder(atree) with the tree above, the characters stored in the nodes are
printed in the following order: D B A G E C F.

Preorder Traversal

In preorder traversal, we visit the root node first. This is followed by recursive preorder
traversals of each of the subtrees (Cormen et al., 2009). While this applies to any tree, we
illustrate it for a binary tree below.

Code
def preorder(aTree):
 if aTree:
 print(treeRoot(aTree))
 preorder(leftSubTree(aTree))
 preorder(rightSubTree(aTree))

For our example, a call to preorder(atree) prints the characters stored in the nodes in
the following order: A B D C E G F.

Postorder Traversal

In postorder traversal, we first visit the subtrees from the leaves upwards to the root. This
is followed by a visit to the root node (Cormen et al., 2009). A Python implementation is
shown below. Like preorder traversal, this can also be extended to other types of trees.

Code
def postorder(aTree):
 if aTree:
 postorder(leftSubTree(aTree))
 postorder(rightSubTree(aTree))
 print(treeRoot(aTree))

For the example above, a call to postorder(atree) prints the characters stored in the
nodes in the following order: D B G E F C A.

Breadth-First Traversal

The breadth-first traversal (BFS) is also called “level-order traversal” since the nodes are
visited level-by-level starting from the root. Within a level, the nodes may be visited in any
order (Goodrich et al., 2013). A Python implementation is displayed below.

Code
def bfSearch(aTree):
 if aTree:
 qList=[aTree]
 while qList:

91

 nextNode = qList.pop(0)
 if(nextNode):
 print(treeRoot(nextNode))
 qList.append(leftSubTree(nextNode))
 qList.append(rightSubTree(nextNode))

For our example, a call to bfSearch(aTree) prints the characters stored in the nodes in
the following order: A B C D E F G.

4.2 Search Algorithms
Searching is a fundamental problem in computer science, and problems arising in many
applications can be formulated as search problems. In a simple generic instance of such a
problem, we have a table of records. Each record is a collection of attribute values. One
such attribute is the search key. For a user-defined search key value x, the goal is to find a
record whose key value is exactly x. For simplicity, we assume that each element consists
of only the corresponding key value. We also assume a Python list is the storage structure
for the table.

Sequential Search

In a linear or sequential search, we walk through the list, comparing each element in turn
to the user-given key value x, until we find an element equal to x, or until we reach the
end of the list. A Python implementation is as follows:

Code
def linearSearch(numList, keyValue):
 index = 0
 listLen = len(numList)
 while(index < listLen):
 if(keyValue == numList[index]):
 return index
 index += 1
 return -1

The above implementation implicitly assumes that the list is unordered. If the list being
searched is ordered, we can take advantage of this by terminating the search early, that is,
upon finding a value in the list greater than the key being searched for.

Code
def orderedLinearSearch(numList, keyValue):
 index = 0
 success = False
 stop = False
 listLen = len(numList)

92

 while index < listLen and not success and not stop:
 if(keyValue == numList[index]):
 success = True
 else:
 if(numList[index] > keyValue):
 stop = True
 else:
 index+=1
 return success

A linear search takes O n time in the worst case. On an ordered list, the unsuccessful
searches are faster than in the unordered case when there is an early termination. How-
ever, it is still O n in the worst case.

Binary Search

For an ordered sequence, there is a better algorithm to search for a key than linear search.
A binary search is based on gradual refinement of the possible interval of indices within
which we need to search. The algorithm first compares the user-defined search key
keyValue with the middle element. If they are equal, it terminates successfully, returning
the index of the middle element. If keyValue is larger than the middle element, the lower
half of the list is removed from consideration. If keyValue is smaller than the middle ele-
ment, the upper half of the list is removed from consideration. In either case, we continue
with another iteration. Since the size of the interval within which we need to search is
halved in each iteration, the algorithm either terminates successfully or the size of the
interval is reduced to one; thus, the algorithm has O logn iterations. The Python code is
given below.

Code
def binarySearch(numList, keyValue):
 left = 0
 right = len(numList) – 1

 found = -1
 while left <= right:
 mid = (left + right) // 2
 if numList[mid] == keyValue:
 found = mid
 break
 else:
 if keyValue < numList[mid]:
 right = mid - 1
 else:
 left = mid + 1
 return found

93

Consider the list aList = [-17, -1, 12, 13, 27, 45, 57, 82]. The call binarySearch(aList,
13) returns 3 since the key 13 is in index position 3. The call binarySearch(aList,28)
returns −1 because 28 is not present.

Binary search is a divide-and-conquer algorithm whose running time satisfies the recur-
rence

T n = 1ifn = 1T n2 + 1otherwise.
This solves to T n = O logn .

4.3 Sorting Algorithms
Given a table of n elements, x1, x2, …xn, the sorting problem involves finding a permuta-
tion π 1 , π 2 , …, π n of the integers 1,2, …, n such that xπ 1 ≤ xπ 2 … ≤ xπ n .
Sorting has many applications, and many algorithms require sorting as a preprocessing
step. Some broad categories of applications include the following (Knuth, 1998):

• solution to the “togetherness” problem. Sorting helps in grouping items with the same
key value together.

• matching two sets of items. Comparisons become easier if the items are sorted.
• searching for information by key values. For instance, a binary search is only applicable

on a sorted sequence.

Insertion Sort

Insertion sort addresses the problem of inserting a new element into a subsequence of
elements that is already sorted. Assuming that the subsequence is already sorted in non-
decreasing order, the algorithm starts from the end of the subsequence and moves back-
ward, looking for the correct place to insert the new element (Cormen et al., 2009). If the
input is stored in an array aList, the idea is successively applied to aList[0..i] for 0≤
i ≤ n-2. Once the subsequence aList[0..i] is sorted, we try to insert aList[i+1] at
an appropriate position, shifting elements to make space. A Python implementation is as
follows:

Code
def insertionSort(aList):
 seqLen = len(aList)
 for index in range(1, seqLen):
 toInsert = aList[index]
 j = index
 while j > 0:
 if(toInsert >= aList[j-1]):
 break

94

 aList[j] = aList[j-1]
 j -= 1
 aList[j] = toInsert

aList = [12,3,22,44,15,13,7,45,77,33]
insertionSort(aList)
print(aList)

Figure 18: Insertion Sort

Source: Created on behalf of IU (2022).

The figure illustrates some intermediate steps of “insertion sort” on an example. The sub-
sequence [3, 12, 22, 44] is already sorted. The algorithm first tries to insert 15 into
this subsequence. The positions where the algorithm tries to place the number are circled.
This is followed by insertion of 13 into the subsequence [3,12,15,22,44]. Insertion sort
takes O n2 comparisons and O n2 exchanges in the worst case, where n is the size of the
input. The number of comparisons can be reduced to O nlogn by using a binary search
to locate the position where the insertion would take place. The overall running time is
still dominated by the number of exchanges and hence is O n2 .

Bubble Sort

In a “bubble sort,” we make a pass through the sequence comparing consecutive elements
and swapping them if they are not in order. After the first pass, the largest element ends
up in the last position. If we repeat the process, after the second iteration, the second larg-
est element ends up in the penultimate position. If we repeat this n − 1 times, where n is
the number of elements, the array will be sorted. Also, if during an iteration we notice that
no interchanges take place, we can conclude that the sequence is already in order and ter-
minate the algorithm (Cormen et al., 2009). A Python implementation is as follows:

Code
def bubbleSort(aList):
 seqLen = len(aList)
 swapped = True
 for lastIndex in range(seqLen-1, 0, -1):
 if not swapped:
 break

95

 swapped = False
 for k in range(0, lastIndex):
 if aList[k] > aList[k+1]:
 aList[k],aList[k+1]=aList[k+1],aList[k]
 swapped = True
aList = [12,3,22,44,15,13,7,45,77,33]
bubbleSort(aList)
print(aList)

Figure 19: Bubble Sort

Source: Created on behalf of IU (2022).

The figure shows some intermediate steps of running a bubble sort on an example. Adja-
cent pairs of elements to be exchanged are marked. Also marked are the “locked” ele-
ments, which will no longer be moved because they are already sorted. Bubble sort takesO n2 comparisons and O n2 exchanges in the worst case, where n is the size of the
input.

Selection Sort

“Selection sort” is similar to bubble sort in that the i-th largest element is located in the i-
th iteration and moved to its correct destination. It differs from bubble sort in that selec-
tion sort performs exactly one exchange per iteration. It locates the element to be moved
first and moves it to its correct destination with a single swap (Goodrich et al., 2013). A
Python implementation is depicted below:

Code
def selectionSort(aList):
 seqLen = len(aList)
 for lastIndex in range(seqLen-1, 0, -1):
 maxIndex =0
 for k in range(1, lastIndex + 1):
 if aList[k] > aList[maxIndex]:
 maxIndex = k
 aList[lastIndex], aList[maxIndex] \
 = aList[maxIndex],aList[lastIndex]
aList = [12,3,22,44,15,13,7,45,77,33]
selectionSort(aList)
print(aList)

96

aList = [12,3,22,44,15,13,7,45,77,33]
selectionSort(aList)
print(aList)

Figure 20: Selection Sort

Source: Created on behalf of IU (2022).

The figure above shows some of the steps in running a selection sort on an example. Ele-
ments to be exchanged are circled. Note that, unlike bubble sort, selection sort exchanges
pairs of elements that may or may not be adjacent. Selection sort takes O n2 compari-
sons and O n exchanges in the worst case, where n is the size of the input.

Quicksort

Quicksort is one of the most popular sorting algorithms. It works by choosing a pivot ele-
ment p and partitioning the sequence into two groups of elements: the elements x ≤ p
and elements x ≥ p. The algorithm then recurses into the two partitions. A Python imple-
mentation using the first element of the subsequence being sorted as the pivot is given
below:

Code
def partition(aList, left, right):

pivot = aList[left]
i=left + 1
j=right
while True:

while (i <= j) and (aList[i] <= pivot):
i+=1

while (i <=j) and (aList[j] >= pivot):
j-=1

if(i <= j):
aList[i],aList[j] = aList[j],aList[i]

else:
break

aList[left],aList[j]= aList[j],aList[left]
return j

def qSort(aList, left, right):

97

Median
The median is the middle

element of a set if n is
odd, and one of the two

middle elements if n is
even.

if(left >= right):
return

partIndex = partition(aList, left, right)
qSort(aList,left,partIndex-1)
qSort(aList,partIndex+1,right)

def quickSort(aList):

seqLen = len(aList)
qSort(aList, 0, seqLen-1)

aList = [12,3,22,44,15,13,7,45,77,33]
quickSort(aList)
print(aList)

Figure 21: Quicksort

Source: Created on behalf of IU (2022).

The figure shows some steps of a quicksort on an example. If the pivot element always
creates a balanced partition, the recurrence for the running time T n is as follows, with a
and b constants:

T n = aifn = 1T n2 + bnotherwise.
This solves to T n = O nlogn .

However, the partition may not always be balanced, and quicksort has a worst-case run-
ning time of O n2 . We could get an O nlogn worst-case algorithm if we could always
generate equal-sized partitions, which is theoretically possible by using the O n median-
finding algorithm (Cormen et al., 2009). However, this algorithm is complex and is never
used in practical scenarios. Using a random pivot, however, the O nlogn expected run-
ning time can be achieved for a randomized quicksort algorithm (Cormen et al., 2009).
However, the generation of pseudo-random numbers is an expensive process and slows
down the algorithm. So, a compromise often used in practice is to use the median of the
three elements (Miller & Ranum, 2013).

98

Merge Sort

Like quicksort, mergesort is also a divide-and-conquer algorithm. The sequence is divided
into two equal parts, which are then sorted recursively. The two sorted subsequences are
then merged to create a sorted version of the original sequence (Cormen et al., 2009). The
Python implementation below first defines the merge function for merging two sorted
Python lists. The merge function is invoked within the recursive mergeSort function.

Code
def merge(A,B,C):

a=b=0
la, lb, lc = len(A), len(B), len(C)
while(a+b < lc):

if((b==lb) or ((a < la) and (A[a]<B[b]))):
C[a+b],a,b=A[a],a+1,b #Select from A

else:
C[a+b],a,b = B[b],a,b+1 #Select from B

return C

def mergeSort(aList):

seqLen = len(aList);
if seqLen <= 1:

return
mid = seqLen//2
lower = aList[:mid] #Copy lower half
upper = aList[mid:] #Copy upper half
mergeSort(lower) #Sort lower half
mergeSort(upper) #Sort upper half
aList = merge(lower,upper,aList)

aList = [12,3,22,44,15,13,7,45,77,33]
mergeSort(aList)
print(aList)

bList = [3,12,15,22,44,7,13,33,45,77]
merge(bList[:5],bList[5:10],bList)
print(bList)

99

Integrated development
enivronment

This is an application that
combines text-editors and

language analysis with a
running and debugging

environment.

Figure 22: Merge Sort

Source: Created on behalf of IU (2022).

The figure shows steps of merge sort applied to an example. The shaded subsequences
are being merged into bigger subsequences. Merge sort creates almost balanced parti-
tions, where the sizes of the two partitions differ by at most one. Its running time isO nlogn in the worst case.

Using the Spyder Integrated Development Environment

The “Scientific PYthon Development EnviRonment”, or Spyder integrated development
enivronment (IDE), is a development environment for the Python language that is free,
open-source, interactive, and powerful. It has advanced features for interactive testing,
editing, debugging, and introspection.

Useful features of Spyder include the following:

• There is an IPython (Qt) console as an interactive window.
• The console can also display plots inline.
• The user may execute code snippets from the editor in the console.
• Files in the editor can be parsed partially or fully.
• Visual warnings about potential errors are provided.
• Step-by-step execution is possible.
• There is a variable explorer to show attributes of variables, such as value and size.

Using the Spyder IDE to step through the code, one can study the sorting algorithms in
detail. In the figure, the contents of the Python list being sorted are shown in the variable
explorer (top-right pane) and are also printed in the Python console (bottom-right pane).
The editor is on the left pane.

100

Prefix property
The prefix property states
that no string is a proper
prefix of another.

Figure 23: Spyder ID

Source: Prosenjit Gupta (2022), based on Spyder IDE (2021).

4.4 Search in Strings
We consider the following broad problem: How can a given set of strings S be stored effi-
ciently, such that for a given query string q, it can be quickly determined whether q is in S.
An example is a user searching for a specific word in a set of words in a fixed text. Addi-
tional queries of interest are prefix queries wherein we search for all words that start with
the query prefix. Here, the text will be preprocessed to make the searches faster (Goodrich
et al., 2013).

Tries

Also known as digital search trees, “tries” are important data structures in information
retrieval. Instead of a search method based on comparisons between elements, tries
attempt to take advantage of the representations of the elements as a sequence of charac-
ters or digits (Goodrich et al., 2013).

Standard tries

Let Σ be an alphabet. Let S be a set of strings from Σ with total length n satisfying the
prefix property. We define a trie over S to be a tree satisfying the following properties
(Goodrich et al., 2013):

• Each edge is labeled with a character from Σ.
• Each node has, at most, Σ children.
• Edges connecting a node to its child nodes are all labeled differently.
• The number of leaf nodes is exactly S .
• Each leaf node v is associated with a string that is the concatenation of the characters

on the path from the root to v.

101

• The total number of nodes in the trie is n + 1.
• The height of the trie is the same as the size of the longest string in S.

Figure 24: A Trie of Some English Words

Source: Created on behalf of IU (2022).

A Python implementation follows.

Code
class Trie:
 def __init__(self):
 self._top = dict() #Create top level dictionary

 def buildTrie(self,aList):
 for word in aList:
 d = self._top
 for letter in word:
 if letter not in d:#no entry for letter
 d[letter] = dict() #create entry
 d = d[letter]#descend subtree by letter

 def searchTrie(self,word):
 d = self._top
 for letter in word:
 if letter not in d:#no entry for letter
 print("Not Found")
 return False
 d = d[letter]#descend subtree by letter
 print("Match Found")
 return True

102

 def printTrie(self):
 print(self._top)

aList = ["all","aloud","above","at","about"]
trial = Trie()
trial.buildTrie(aList)
trial.printTrie()
trial.searchTrie("aloud")
trial.searchTrie("albeit")
trial.searchTrie("abo")

The output is:

Code
{'a': {'l': {'l': {}, 'o': {'u': {'d': {}}}}, 'b': {'o': {'v': {'e': {}},
'u': {'t': {}}}}, 't': {}}}
Match Found
Not Found
Match Found

Other Structures

Searching on a set of strings can also use standard search algorithms, such as linear
search and binary search. We need to define the comparison operator suitably. In Python,
the usual operators <, >, ==, >=, and <= work with strings in the sense of lexicographic
comparison. To apply binary search on a set of strings stored as a Python list, we can sort
them lexicographically using any of the standard sorting algorithms and then apply binary
search. Likewise, search structures like hash tables and binary search trees can be used
with strings just as they are used with numeric data (Cormen et al., 2009). There is a modi-
fied trie structure called Patricia trie that uses a simple compression idea to reduce a
redundant chain of edges into a single edge (Goodrich et al., 2013). The Patricia trie takesO S space as opposed to the O n space required by the standard variant, where n is
the total size of all the strings. The Patricia trie for our example is shown below.

103

Dictionary
A dictionary is an abstract

data type that supports
insert, delete, and search

operations.

Figure 25: Patricia Trie Example

Source: Created on behalf of IU (2022).

4.5 Hash Algorithms
Being efficient and easy to implement, hash tables are a popular structure for dictionar-
ies. The algorithms for search queries are content-based as opposed to being comparison-
based. The data are stored in locations that are computed by simple functions using the
data themselves and are typically based on one or more attributes of the values called
keys (Cormen et al., 2009).

Hashing is the mapping of keys to locations of a one-dimensional array, which we will
refer to as the hash table T of size m. The mapping is computed by a hash function. If K is
the set of keys, the hash function ℎ maps k ∈ K to ℎ k ∈ 0,1, …, m − 1. A “collision” is
said to occur if two keys map to the same location:k1 ∈ K, k2 ∈ K, ℎ k1 = ℎ k2 , k1 ≠ k2.

The basic questions we encounter when designing a hashing scheme from a source of n
elements to a table of m locations are (Knuth, 1998):

• What should be the hash function?
• What should be the collision resolution algorithm?

The pair (hash function and collision resolution algorithm) together define a hashing
scheme. Note that in hashing, the hash function generates the key values, which are table
indices. The search algorithm simply looks up the table at those indices. The insert and
delete operations also need to search with the key first and make use of the same hash
function.

104

Universal hash functions
These are a collection H
of hash functions such
that for any pair of keys a
and b, the number of
hash functions for which
they map to the same
location is at most |H|/m,
where m is the number of
memory locations.

Hash Functions

Two desirable properties of hash functions are that they should be (a) easy to compute
and (b) able to distribute the keys into table locations with approximately equal probabil-
ity (Cormen et al., 2009). In practice, the distribution is difficult to estimate.

Division method

If there are m locations in the hash table numbered 0 . . m − 1, a simple hash function isℎ k = kmodm. This is called the “division” method. This can be computed quickly, and
the distribution of keys into locations is well-spread for m prime.

Multiplication method

In the “multiplication” method, we define ℎ k = kϴmod1 , where 0 < ϴ < 1 and x is
the largest integer greater than or equal to x. Results indicate that a value ofϴ = 5 − 1 /2 and ϴ = 1 − 5 − 1 /2 works well (Knuth, 1998).

Universal hashing

One potential problem with hashing is that if someone chooses all or several keys such
that ℎ k is the same for each key, severe collision and consequent performance degrada-
tion takes place. To counter that, the universal hashing scheme chooses a hash function
randomly from a collection of universal hash functions in a way that is independent of
the keys being stored (Cormen et al., 2009). Although universal hashing distributes the
keys satisfactorily on average, they are also expensive to compute.

Collision Resolution Schemes

When keys are mapped to the same location, the collision needs to be resolved. A variety
of collision resolution schemes have been proposed to address this (Cormen et al., 2009).

Chaining

In chaining, each location in the hash table is a linked list of keys that has been mapped to
that address by the hash function. We create m lists L i , 0 ≤ i < m. List L i stores all
the keys that get mapped to location i. Under the “simple unform hashing assumption”,
any element is equally likely to be mapped by the hash function onto any of the table loca-
tions (Cormen et al., 2009). Under this assumption, the search takes ϴ 1 + α whereα = n/m is the load factor, m the number of locations, and n is the number of elements.
If we maintain α < 2m, the search time is constant. A way to maintain this is to increase
the table size and rehash once n = 2m.

105

Open addressing

Under “open addressing,” all items are stored in the hash table directly. For collisions, we
search for alternative positions within the table itself. To generate this probe sequence, we
must find any empty slots and design a sequence that is a permutation of0,1,2,…, m − 1 .

To search, we follow the same probe sequence as that used for insertion. If we encounter
an empty slot during the search, we immediately conclude that the element being
searched for is not present in the table because the insert operation followed the same
probe sequence and would not have missed the empty slot. If ℎ k is the original hash
function, let g k, i denote the i-th location probed. The common algorithms for generat-
ing the probe sequence are as follows (Cormen et al., 2009):

• linear probing. Here, g k, i = ℎ k + i modm for 0 ≤ i < m. This leads to “primary
clustering” where several adjacent locations can be filled up.

• quadratic probing. Here, g k, i = ℎ k + c1 ⋅ i + c2 ⋅ i2 modm for 0 ≤ i < m. Ifℎ a = ℎ b , then g a, i = g b, i for all i. This leads to “secondary clustering,” which
can be seen as less severe than primary clustering as more spots are used.

• double hashing. Let g k, i = ℎ1 k + i ⋅ ℎ2 k modm where ℎ1 and ℎ2 are auxiliary
hash functions and ℎ2 k must be relatively prime to m for the probe sequence to
explore all locations. The performance of double hashing is more efficient and therefore
faster than that of linear or quadratic probing when m is prime or a power of two.

4.6 Pattern Recognition
In the classical pattern matching problem, we have an alphabet Σ , and we are given a
pattern P 0 . . m − 1 and a text T 0 . . n − 1 where both P and T are strings over Σ. We
wish to find all occurrences of P in T (Cormen et al., 2009). Other variants of the problem
include finding either the first or any occurrence (Goodrich et al., 2013). We denote s to be
a “valid shift” if P occurs in T with a shift s, starting at position s. Otherwise, the shift is
deemed to be invalid (Cormen et al., 2009). One occurrence begins within another one. In
the example shown below, P = aba, T = cbabababaa, P occurs at s = 2, s = 4, ands = 6.

106

Figure 26: Pattern Matching

Source: Created on behalf of IU (2022).

Naïve Pattern Matching

Naïve pattern matching is a simple brute-force algorithm that tries every possible value of
the shift s and checks whether it is a valid shift. There are n − m + 1 possible choices for s.
Below is a Python implementation.

Code
def naiveMatch(p,t):
 if not p or not t:
 return 0
 m = len(p)
 n = len(t)
 found = False
 for i in range(n-m+1):
 j=0
 k=i
 while j < m and i < n and p[j]==t[k]:
 j+=1
 k+=1
 if j== m:
 print("Found valid shift", i, "for", p)
 found = True
 if not found:
 print("No match for",p)

naiveMatch('aba','cbabababaa')
naiveMatch('abc','cbabababaa')

With the two nested loops, the running time is O n − m + 1 m . The algorithm’s ineffi-
ciency has a reason; in the event of a mismatch, partial matches between the pattern and
the text are not taken advantage of later.

107

The Knuth-Morris-Pratt Algorithm

The Knuth-Morris-Pratt algorithm (KMP algorithm; Cormen et al., 2009) corrects the prob-
lem associated with the naïve algorithm. If a prefix of p of size r has matched with s, fol-
lowed by a mismatch, we try to determine the longest suffix of the matched part that is
also a prefix of p. The key observation here is that this portion is already a matched part of
text and need not be matched again. Additionally, some preprocessing of the pattern can
support this computation, as depicted in the figure below.

Figure 27: The Prefix Function

Source: Created on behalf of IU (2022).

In this example, the substring abcab of the text matches a prefix of the pattern abcabb.
When the last character of the pattern fails to match, the brute-force algorithm would try
to shift the pattern by one position and attempt a rematch. However, the suffix ab of the
matching substring abcab is also a prefix of the pattern. This substring is already matched
with the substring ab of text at positions five and six. The pattern is now realigned (as
shown) for a new attempted match, without a required rematch of the prefix ab. This
saves comparisons over the brute-force algorithm. We pre-compute a prefix function in a
table based on the pattern without knowledge of the text. Essentially, table[j]=k tells us
that if the pattern fails to match at position j+1, we can assume that the first k characters
of the pattern are already matched and proceed. A Python implementation of the prefix
table computation is depicted below.

Code
def prefix(p):
 m = len(p) #size of pattern
 table = [0]*m #Creates a list of m zeros.
 i = 0
 for j in range(1,m):
 while i > 0 and p[i] != p[j]:
 i=table[i-1]
 if p[i] == p[j]:
 i+=1
 table[j]=i
 return table

108

A call to prefix('abcabb') returns [0, 0, 0, 1, 2, 0]. Here, Table[4] = 2 tells
us that when a failure to match occurs at position 5 of the pattern, as in our example, a
prefix of the pattern of size two is matched up when the pattern is realigned as shown in
the figure.

Code
def kmp(p,t):
 m = len(p) #size of pattern
 n =len(t)
 table=prefix(p)
 j=0
 for i in range(n):
 while j > 0 and p[j] != t[i]:
 j=table[j-1]
 if(p[j] == p[i]):
 j+=1
 if j == m:
 print("Match found at", i)
 return i-m+1

kmp('aba','cbabababaa')

The running time for the KMP algorithm is ϴ m + n (Cormen et al., 2009).

SUMMARY
Tree traversal algorithms involve visiting all the nodes of a tree in a sys-
tematic order. There are four fundamental tree traversal algorithms:
inorder, preorder, postorder, and level-order.

Searching and sorting are fundamental algorithmic problems with
broad applications. A basic linear search comes in two variants: those for
unordered and those for ordered sequences. For ordered sequences, a
more efficient algorithm is the binary search algorithm. Some funda-
mental sorting algorithms include insertion sort, bubble sort, selection
sort, quicksort, and mergesort. Preprocessing a set of strings to facilitate
efficient search with strings is a common problem in text processing
applications. The trie is an example of a data structure that stores such
preprocessed strings.

Hash tables support content-based search. The basic challenges in
designing a good hashing scheme include designing a good hash func-
tion and building a good collision resolution scheme. Examples of hash-
ing schemes include the multiplication method, division method, and
universal hashing.

109

Common collision resolution schemes are chaining and open address-
ing. Under open addressing, the different algorithms for generating the
probe sequence are linear probing, quadratic probing, and double hash-
ing.

There are different approaches to the problem of searching for a fixed
preprocessed pattern string in a block of text. The naïve algorithm runs a
sliding window of the pattern across the text trying to discover matches.
The Knuth-Morris-Pratt algorithm, which constructs a prefix table to
record information about prefixes of the pattern that occurs within it,
enables us to get a faster solution than the naïve one.

110

UNIT 5
REPRESENTING STRUCTURED DATA

STUDY GOALS

On completion of this unit, you will be able to …

– understand the background and purpose of extensible markup language (XML).
– understand how to store and share data across platforms.
– use XML to automatically present data in the form of a web page.
– use JSON (an XML alternative) to process data.

5. REPRESENTING STRUCTURED DATA

Introduction
In this unit, we will look at a common approach to storing data in a way that is machine-
readable and platform-independent. XML, which was introduced in 1998, is a markup lan-
guage that enables the automated storage and retrieval of data. Several other markup lan-
guages are also commonly used, including JSON and YAML, both of which we will explore
later.

A markup language describes the properties, membership, and hierarchy of a set of data.
The most well-known markup language is hypertext markup language (HTML), which is
the basis for the entire presentation of all web pages. HTML primarily aims to represent
the content of a web page and therefore describes, for example, the placing of an image or
text. XML describes how the data to be stored is to be structured in terms of its properties
and hierarchy alone. XML therefore, is not the most precise description of a web page, nor
is it a universal representation of data. Moreover, XML is not to be understood as a pro-
gramming language, as it is not made up of commands or of programing flow control.

XML can be seen as an extension of the comma separated values (CSV) format for organiz-
ing data. However, it was intended to offer far more than this format in terms of structur-
ing possibilities. Later, XML evolved into an entire family of languages. An overview of this,
including its core building blocks, is shown below.

112

Figure 28: Overview of the Core Family of Languages around XML

Source: Created on behalf of the IU (2023) based on Vonhoegen (2018, p.34).

At the center is the core specification, which is set by the XML 1.0 standard. This was exten-
ded by XML namespaces and finally, in 2001, by XML Schema, which together allow for the
description of different content models. Later XML 1.1 was defined, with additional clarifi-
cations and restrictions. The supplementary specifications currently include:

• extensible stylesheet language (XSLT), which is used to transform XML documents
• XML Schema, which is used to formally specify the structure a document is allowed to

have
• XPath, which is used to express ways to navigate between nodes of the XML-tree
• XLink, which defines how relative and absolute links are expressed and resolved.

Furthermore, the XML language family contains XML applications, which can be under-
stood as an XML vocabulary for predefined application areas. These include, for example:

113

• the XML serialization of HTML: an XML-compliant reformulation of HTML
• scalable vector graphics (SVG): a language for describing two-dimensional graphics

applications)
• mathematical markup language (MathML): a language for representing mathematical

formulas
• simple object access protocol (SOAP): a language used for communication between

web-services

The XML language family also offers a number of programming interfaces to enable other
programs or websites to store data in XML, or to access data stored in XML. These pro-
gramming interfaces are similar in many different programming languages. They include,
for example (Vonhoegen, 2018):

• the document object model (DOM), which has been standardized by the W3C
• SAX , which is a simple application programming interface (API) for XML that offers a

streaming approach to parsing
• lightweight in-memory representations of the XML tree as objects (in Python: minidom,

in Java: JDOM)
• pull-based parsing approaches (in XPP, XML pull-parsing; pulldom in Python; and StAX

in Java)
• “marshalling” approaches where XML elements are mapped to and from instances of

classes (objects) in the programming languages (such as JAXB for Java)

5.1 Structure of XML documents
Any document that is to hold data in XML can only function as such if it is "well-formed"
according to the XML standard. An XML document consists of elements of the form
<tag>content</tag>, where <tag> denotes the start of an element and </tag>
denotes the end of the element. The document is framed by what is called a root element,
and all other elements are part of a parent element. In other words, XML describes a tree
structure. For example, a person can be described in XML as follows:

<person>
 <name>Last</name>
 <first name>First</first name>
 <residence>Exampletown</residence>.
 <email>first@example.com</email>
</person>

A start tag can contain additional attributes, as in <email type="private">.

An XML document is well-formed if it satisfies the following conditions:

• For each start tag there must be a corresponding end tag.
• Different elements must be switched correctly (i.e. before an element can be closed, all

sub-elements must be closed).

114

• Tag names are case-sensitive (i.e. <tag> is different from <Tag>).
• There must not be two attributes with the same name within one element.
• The values of attributes of an element must be enclosed in quotes.
• Within an XML document, there must be exactly one root element that is not contained

in the content of another element.

The XML standard takes into account both the physical and the logical form of the XML
document at hand (Sperberg-McQueen, 2008). Let's look at an example of the structure of
an XML document created to manage the members of an interdisciplinary team:

<? xml version="1.0" encoding="UTF-8"?>
<team>
 <person>Hanna Meier</person>
 <branch>Software Development</branch>
 <phone>1234</phone>
 <person>Max Mustermann</person>
 <branch>Accounting</branch>
 <phone>7890</phone>
</team>

An XML document starts with the formal definition of the XML standard used: in this case,
version 1.0 with encoding in 8-bit UCS transformation format (UTF-8). We then introduce
that we want to declare a team by opening the <team> tag. On the next lower outline
level, we then devote ourselves to the individual people, in this case, Hanna Meier and
Max Mustermann. The next outline level describes the attributes of the two team members
(in our example, their field of activity and the corresponding telephone number). We can
already see that XML uses a tree structure for data management. The logical view of the
data is called the information set.

Physically, an XML document is nothing more than a document made up of characters,
with an XML processor reading in these individual characters and interpreting them as
structured data. The latter are referred to as "entities", while an entire document is refer-
red to as a "document entity". Each entity has content and a specific name. The document
entity, on the other hand, contains all individual entities and is regarded by an XML parser
as a container for the entities (Vonhoegen, 2018).

The most important units into which an XML document can be divided are called "ele-
ments". An XML document can thus be understood as a document in a tree structure that
is made up of elements. The function that these elements ultimately fulfill depends on the
tag introduced in each case. The structure of an XML document is shown in the following
figure.

115

Figure 29: Representation of the Structure of an XML Document

Source: Created on behalf of the IU (2023) based on Vonhoegen (2018, p.50).

The XML version used is specified with the help of the prolog: this is recommended, but
not mandatory. This can be extended with information about the encoding used, which
indicates how characters are represented in bytes and bits (i.e. how they are are to be
encoded), and whether the XML document at hand is to be extended by an external docu-
ment definition. Here is a common prolog:

<? xml version="1.0" encoding=utf-8"?>

The information represented in the XML document contains the content of a root element
which, in turn, can contain other elements. Each element can contain text, attributes, and
further elements. To illustrate this, let's look at the example of a team containing different
members. The corresponding XML section would look as follows:

<team>
 <person>Hanna Meier</person>
 <person>Max Mustermann</person>
</team>

In this example, <team> would be the element and the two <person> tags would be the
associated child elements. It is also clear that an end tag always has the outer form </
tag>, while the start tag is introduced by <tag>. Some tags can be written in the self-clos-
ing form if they have no content such as <special-needs/> to indicate that the content
of this child is empty. Furthermore, elements can have any number of attributes. Let's
assume that it is essential for us to also store the number of members in our team. We can
realize this as shown below:

<team>
 <person size = "170">Hanna Meier</person>
 <person size = "185">Max Mustermann</person>
</team>

116

If we would like to additionally provide our XML document with a comment, which is only
captured as data for those looking at the source, we achieve this as follows:

<!--
This is a comment field
-->

In the previous section, we looked at building a small team using XML tags. Let's now turn
to a more complicated example, where we consider the contents of a warehouse contain-
ing various products. Again, these can be described using different information such as
color, material, material group, and so on. Moreover, a document type declaration (DTD),
for example, can be used to define a formal language definition for the correct description
of the inventory of a warehouse. DTDs define what the XML document in question should
look like in concrete terms. This defines a specialization of XML but is written in a syntax
that is different from XML syntax. We will now look at an example of a DTD to understand
its structure in more detail (Vonhoegen 2018, p. 36).

<?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE bearing[
 <!ELEMENT order_number (#PCDATA)>
 <!ELEMENT name (#PCDATA)>
 <!ELEMENT color (#PCDATA)>
 <!ELEMENT price (#PCDATA)>
 <!ELEMENT supply (#PCDATA)>
 <!ELEMENT item (order_number,color,price,supply)>
 <!ELEMENT storage (item+)>
]>

This minimal example of a DTD defines the dialect to be used for a concrete implementa-
tion of an XML document, in this case one designed to manage stock. Let's look at this
with an example:

<storage>
 <article>
 <order_number>1234</order_number>
 <supply>4</supply>
 <price>14,99</price>
 </article>
 <article>
 <order_number>4567</order_number>
 <supply>3</supply>
 <price>19,99</price>
 </article>
</storage>

117

Here we have introduced a minimal example of a warehouse, consisting of two products (1
and 2), which can be uniquely described by the attributes: item no., description, color,
price and stock. We can also represent this structure of an XML document graphically in
the form of a tree structure, as can be seen in the figure below.

Figure 30: Tree Diagram of the Document in the Example

Source: Created on behalf of the IU (2023).

The root element is the warehouse itself, containing two child elements "item", which in
turn are represented by their attributes (also represented as child elements in XML).

In addition to the original DTDs, there are now various other mechanisms for defining the
structure of XML documents for a specific application purpose. The most widespread are
XML Schema and Relax NG. A well-formed document that also complies with such a struc-
ture definition is called valid.

XML has been adopted broadly and can be used to serialize data of many different types.
For example, if you want to transfer a data type of object over a network connection, this
object must first be converted into a transferable form and XML can be used. In this way, it
is also possible to store an object in XML format in a file and, if necessary, to read it out
again to restore the original object.

118

5.2 Accessing XML Documents with the
DOM and SAX Approaches
For a program to be able to process an XML document, a parser that will convert the
stream of bytes to the structured information that the document represents is needed.
There are multiple parsing approaches that are different in their APIs and have varying
degrees of effectiveness in terms of ease-of-programming and performance.

The DOM approach enables the creation of a uniform programming interface to manipu-
late the data of an XML document, including reading and writing. An XML parser loads an
arbitrary XML document and makes it available in the form of structured elements. The
typical structure of a DOM document is shown in the following figure and is available for
most programming languages.

Figure 31: XML Document Accessed Through a DOM Parser

Source: Created on behalf of the IU (2023) based on Vonhoegen (2018, p.416).

The basic idea is that the class of the elements of an XML document provides functions of
the type setAttribute() or getAttribute(), with which the values of an element of
an XML document can be manipulated or read.

119

Class
This is a summary of vari-
ous functions that can be

used to manipulate an
XML document.

The DOM API is a standardized API with the same method and class names across all lan-
guages. Contrary to this approach, lightweight approaches such as ElementTree in Python
or JDOM in Java leverage the special approaches of the language to offer an easier pro-
grammatic representation. However they are not translatable to other languages.

Let's now try to read the XML document at hand using Python's minidom, a reduced
implementation of the DOM interface in Python.

The basis for this is to first parse a document.

from xml.dom.minidom import parse, Node
xmldoc = parse("data/sample.xml")

Then, we obtain the root node of the DOM tree. This is done using the following command:

stockNode = xmldoc.documentElement

In the next step we want to get a list of all child elements of this root node (i.e. all articles
in the warehouse). We can achieve this as follows:

nodeList = stockNode.childNodes

This gives us a list whose elements we can access by means of an index [i] as follows:

articleNode = nodeList[i]

or through a loop like the one below:

for itemNode in nodeList:
 print(itemNode.nodeType)

Note that a node is a generic object that can be of any nature: element, text (including
whitespace text), processing-instructions, and comments. The type can be checked with
nodeType. In order to access the elements, one needs to filter through the list. Let's define
articleNode to be nodeList[1], the first article.

Debugging can be done with the string representation of the object as follows:

articleNode = nodeList[1]
print(str(articleNode))
outputs: <DOM Element: article at 0x1079c3490>

120

Reading head
This is a data-structure
that imitates the reading
head of vinyl-discs’ or
magnetic tapes’ readers:
it collects information at
the position it is pointed
to and transmits it.

We will now face the task of searching through the tree for the price of an article with the
given order_number. We can loop through the children of the root node, then loop
through each of their children and collect the price and order-number, returning the value
if the order-number matches:

def searchPrice(searchedOrderNum):
 for itemNode in nodeList:
 if (itemNode.nodeType == Node.ELEMENT_NODE):
 foundNum = 0
 foundPrice = 0
 for attNode in itemNode.childNodes:
 if attNode.nodeType == Node.ELEMENT_NODE \
 and attNode.nodeName == "order_number":
 foundNum = attNode.childNodes[0].data.strip()
 if attNode.nodeType == Node.ELEMENT_NODE \
 and attNode.nodeName == "price":
 foundPrice = attNode.childNodes[0].data.strip()
 if foundNum == searchedOrderNum:
 return foundPrice

This function uses a simple traversal of the tree, avoids using non-element nodes, then
collects the price and the order number. At the end of this collection it matches the price
to the expected number and, if found, returns it. This technique is as follows: one builds a
reading head that walks through the in-memory representation of the document.

DOM allows not only the parsing and reading of XML documents but also their creation
and modification. After modifications, one can write the document back using
node.writexm. However, for these operations to happen, the object graph of the com-
plete document needs to go into memory, making it inappropriate for large documents.

SAX as an Alternative to DOM

The storage of DOM elements can pose a problem in terms of memory, however there are
alternative strategies available. Whereas in DOM, data is typically stored in a tree struc-
ture, other approaches follow the paradigm of XML parsing as a stream. In stream-based
approaches, it is not necessary for a large collection of nodes to be loaded in memory. The
most established example of this is called "simple API for XML" (SAX). SAX delivers the
parsing result as events to a registered handler. The handler then collects the necessary
information according to the application requirements.

SAX is available in most programming languages in which the definition of objects that are
of a subclass of a SAX handler are allowed. In Python, this is done by creating a subclass of
ContentHandlerof the module xml.sax.handler. The subclass overrides methods to
collect the information, or simply ignores the events: startDocument, startElement,
endElement, or characters are among the widespread methods.

121

The task of searching the price of an article for a given order-number can be done using
SAX: Here, the reading-head approach explained above is also used however, the reading
head needs to be activated only at the right place, within the appropriate elements.

from xml.sax import parse
from xml.sax.handler import ContentHandler

class StockSearchHandler(ContentHandler):

 _searchedNum = ""
 _readPrice = ""; _readNum = ""
 _inOrderNum = False; _inArticle = False
 _inPrice = False
 _foundPrice = ""

 def __init__(self, searchedOrderNum):
 super().__init__()
 self._searchedNum = searchedOrderNum

 def startElement(self, name, attrs):
 if name == "order_number":
 self._inOrderNum = True
 if name == "article":
 self._inArticle = True
 self._readPrice = ""; self._readNum = ""
 if name == "price": self._inPrice = True

 print(f"BEGIN: <{name}>, {attrs.keys()}")

 def endElement(self, name):
 if name == "order_number":
 self._inOrderNum = False
 if name == "article":
 self._inArticle = False
 ## now check if this was the right item
 if self._searchedNum == self._readNum:
 self._foundPrice = self._readPrice
 if name == "price": self._inPrice = False

 print(f"END: </{name}>")

 def characters(self, content):
 if content.strip() != "":
 if self._inOrderNum: self._readNum += content
 if self._inPrice: self._readPrice += content
 print("CONTENT:", repr(content))

122

 def getFoundPrice(self):
 return self._foundPrice

The resulting code is a single pass that includes parsing and collecting information. It
would be inappropriate if it had to be carried out multiple times per second: In this case
in-memory representation would be better. However, this code is able to tolerate collec-
tions of billions of articles and still remain effective in terms of memory.

Alternatives to DOM and SAX parsing have continue to emerge. Language-specific versions
such as JDOM or ElementTree have appeared, claiming to offer ease of use for develop-
ment, especially for inexperienced developers. Latecomers have contributed pull-parsing
to the landscape: Instead of streaming using a handler that is called, the streaming is
directed by a reading-head that the application pilots itself. It can then give such instruc-
tions such as “read till the end of this element”, an elementary action which can only be
done by manipulating flags or stacks using the SAX approach.

5.3 Transformation of XML documents
using XSL
Although an XML document is generally readable by humans, it is ultimately somewhat
unwieldy if larger amounts of data stored in XML documents are to be processed man-
ually. An automated way to render an XML document more user-friendly is to use the XSLT
language to transform the data into a document that can be understood or processed
more easily, for example, in an HTML document to be shown to the browser. XSLT applies
“stylesheets”, which are a pack of templates that each process a small part of the source
XML, with each template being selected by a given condition.

123

Figure 32: Process of Creating a New Document Using XSLT

Source: Created on behalf of the IU (2023) based on Vonhoegen (2018).

The conversion is not limited to a conversion to HTML. It can also be to another XML docu-
ment or to pure text.

01 <?xml version="1.0"?>
02 <xsl:stylesheet version=”1.0”
03 xmlns:xsl ="http://www.w3.org/1999/XSL/Transform">
04 <xsl:output method = "html"/>
05 <xsl:template match="/">
06 <html>
07 <head>
08 <title>Stock</title>
09 </head>
10 <body>
11 <h1>The warehouse currently contains:</h1>
12 <xsl:for-each select="storage/article">
13 <p><xsl:value-of select="order_number"/></p>
14 <p><xsl:value-of select="label"/></p>
15 <p><xsl:value-of select="color"/></p>
16 <p><xsl:value-of select="price"/></p>
17 <p><xsl:value-of select="stock"/></p>
18 </xsl:for-each>
19 </body>
20 </html>
21 </xsl:template>
22 </xsl:stylesheet>

124

Line 2 defines the document as an XSL template, while line 3 specifies that the output
document should be an HTML document. We tell the XSL processor by means of line 4 that
it should first locate itself in the root of the XML document. This is followed by outputting
the start of the HTML document with the title "Stock". In line 12, we systematically step
through the article elements that are below the storage elements in our XML document
and then output the associated stored data. An example of a possible result of this output
(applied to the previous example) is shown below:

The warehouse currently contains:
<h1>12345</h1>
<p>Product 1</p>
<p>Blue</p>
<p>25.90</p>
<p>22</p>
<p>65432</p>
<p>Product 2</p>
<p>Black</p>
<p>9.99</p>
<p>34</p>

XSLT can be applied by calling XSLT-processors. Currently Xalan and xsltproc are two clas-
sic XSLT-processors. However, web-browsers can also process XSLT. In order for a web
browser to know how to convert the XML document into an HTML document at the end
using the XSL template when it traverses an XML document, we open the XML document
with the following lines:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl"
href="StorageStylesheet.xsl"?>

The actual reference to the XSL template is made by means of the href attribute. XSLT can
operate on a pull basis, where, for example, children are extracted and transform (for
example, by using xsl:value-of). It is also in a position to push the processing by letting
any matching template be called, for example, using the xsl:apply-templates element
which will search for any template matching the currently selected element. The flexibility
of this push and pull mechanism has made XSLT into a universal tool for manipulating
XML.

125

5.4 Alternative Document
Representations
The popularity of XML has established the feasibility of representing structured informa-
tion using a text based language. However, XML has also been criticized for its rich struc-
ture. Among the greatest concerns are the fact that namespaces have introduced a com-
plexity that prevents simple parsers from operating.

Some alternative languages aim for more simplicity while still retaining the flexibility of
XML structures. We will present two notable examples: JSON and YAML. Both of these lan-
guages have supporting parsers, producers and validators for most programming lan-
guages, some using streaming approaches.

JavaScript object notation emerged from the web-browser community where a simple
hypertext transfer protocol (HTTP) request could obtain “object data” simply by loading
an extra JavaScript file. The JavaScript syntax used to write the data of objects shown
here

[
 {"order_num": 1234, "supply": 4, "price": 14.99},
 {"order_num": 4567, "supply": 3, "price": 19.99}
]

has been the basis for the JSON specification which allows array encoding (between
[and]), objects (between { and }), object properties in the form "name": value as
well as atomic constants as strings (between double quotes), Booleans, null or numbers.
Contrary to XML, JSON is always encoded in UTF-8. Note that JSON is more strict than
JavaScript in its syntax: property names need to be quoted and comments are not suppor-
ted. The minimalism of the JSON model and its compact appearance, however, has con-
vinced many programmers and the syntax is used widely in software projects (JSON, n.d.).

Both XML and JSON allow whitespace to be used freely. This provides the flexibility to
decide when to put two attributes beside each other or one on each line: Other characters
can be used to mark the separation of data. YAML follows the Python approach, employing
newlines and indentation in order to structure data (Ben-Kiki et al., 2021). Compared to
JSON, YAML is richer in its notations, allowing almost all of JSON syntax aside from more
normal indent-based structures. YAML also includes producers, parsers and validators in
multiple programming languages.

The code below shows our storage example in YAML. Note that more compact notations
would be possible too.

- order_num: 1234
 supply: 4
 price: 14.99

126

- order_num: 4567 # this is the second item
 supply: 3
 price: 19.99

SUMMARY
XML makes it possible to store data in a structured manner and to load
and process it as required. Processing such documents involves parsing
and producing them, and may also involve validating them against a set
of rules. There are several APIs for XML processing, each with their own
advantages: Some are standardized, others are easy to manipulate, or
they may be well-suited to performing at high volumes. Classical
approaches include DOM (in memory) and SAX (event-based) parsing.

XML is one of the most advanced structured data languages (often called
markup languages). However, alternatives have been popularized that
offer other possibilities such as light weight or the use of indents: YAML
and JSON are notable examples.

127

UNIT 6
MEASURING PROGRAMS

STUDY GOALS

On completion of this unit, you will be able to …

– apply type inference mechanisms.
– understand tools used to generate documentation
– apply knowledge of best practices in documentation sharing.
– develop an awareness of compiler optimization techniques and difficulties.
– compare several tools for code coverage analysis.
– understand and apply a range of principles of unit and integration testing.
– discover bugs using the apply heap analysis tools.

Type system
A type system is a logical

system defined with a set
of constructs to assign

types to entities, such as
variables, expressions, or

return values of functions.

6. MEASURING PROGRAMS

Introduction
Measurements are of paramount importance in any scientific process. Observations based
on measurements lead to generalizations and the development of theories that facilitate
the implementation of the process. The software development process, including design,
coding, debugging, testing, verification, and integration, has also benefited from the
development and application of measurement methodologies.

Different types of metrics have evolved to capture and measure various aspects of pro-
grams. Some metrics attempt to capture features of the product such as complexity, size,
or performance. One such measure is “cyclomatic complexity.” Based on the cyclomatic
number in graph theory, this metric tries to measure the difficulties involved in testing and
understanding a program.

Quality improvements can be made by focusing on the reduction of complexity. Product
quality metrics include “defect density,” which tries to measure defects relative to the size
of the software, for example, lines of code. The “mean time to failure” tries to measure the
average time between encountering two defects in the program.

“Process metrics” are those that target improvements of the software development proc-
ess and maintenance. A primary goal in the software development process is to ensure
that the implementation meets the requirement specifications. To achieve this goal, “code
coverage” was one of the first metrics developed for software testing. It tries to measure to
what extent the program is covered by the test cases. This is defined in terms of various
criteria, such as lines of code, instructions, functions, function calls, or branches, which
are expected to resemble a representative usage. A combination of instruction coverage
and branch coverage is commonly used today, and test coverage is an important consider-
ation in equipment certification in the avionics and automotive industries.

6.1 Type Inference and IDE Interactive
Support
The types and type system are important characteristics of a programming language and
vary between languages. A type is defined by a set of values and a set of operations that
operate on those values. There are language-specific constraints on the usage of types in a
program. The type system defines the set of built-in types for the language, provides the
constructs for defining new types, and defines rules for control of types. In some lan-
guages, the types of variables may need to be specified by the programmer completely.
“Type inference” involves the derivation of the types of expressions in a programming lan-
guage, usually performed at the time of compilation. Logical inference algorithms then
derive these unspecified types (Sebesta, 2016).

130

Difficulties in Python

Python is dynamically typed. To illustrate the problem of type inferencing in Python, con-
sider the following code fragment:

Code
from random import randint
def typeCheck(num):
 if(num%2):
 a = 123
 else:
 a = "123"
 print(type(a))
typeCheck(randint(1,1000))

What is the type of a in line number six? Here, if num is odd, the type of a is “integer”. If num
is even, the type of a is “string”. Since the argument to the function typeCheck is ran-
domly generated, its parity becomes known only at runtime. Another difficulty is that
Python allows new code generation at runtime: any code optimization done with knowl-
edge of the full code is at risk of becoming invalid.

Type Inferencing in ML

Type inference has a long history in the context of functional programming languages.
Practical type inferencing was applied to the programming language, meta language (ML)
by Robin Milner (Sebesta, 2016). ML is primarily a functional programming language with
support for the imperative style of programming. It has a syntax similar to many impera-
tive languages and is strongly typed, with all types being statically inferred. In ML, type
declarations are not required if the types can be derived unambiguously. Standard ML (S
ML) is a modern dialect of ML. Saarland Online S ML (SOSML) is the online integrated
development environment (IDE) for S ML developed at Saarland University. Consider the
computation of the semi-perimeter of a rectangle as the sum of its width and height in
SOSML. The following definitions are all equivalent, and all produce the correct result
whenever the type (real) of at least one of either width, height, or the function, is speci-
fied. The type inference mechanism infers the missing types as real.

Code
fun semiperimeter7(width:real, height:real):real = width + height;
print(semiperimeter7(10.5,2.3));

fun semiperimeter6(width:real, height:real) = width + height;
print(semiperimeter6(10.5,2.3));

fun semiperimeter5(width:real, height):real = width + height;
print(semiperimeter5(10.5,2.3));

fun semiperimeter4(width:real, height) = width + height;

131

print(semiperimeter4(10.5,2.3));

fun semiperimeter3(width, height:real):real = width + height;
print(semiperimeter3(10.5,2.3));

fun semiperimeter2(width, height:real) = width + height;
print(semiperimeter2(10.5,2.3));

fun semiperimeter1(width, height):real = width + height;
print(semiperimeter1(10.5,2.3));

Figure 33: SOSML IDE

Source: Prosenjit Gupta (2022), based on Jujuedv & PHP Wellnitz (n.d.).

If none of the types are specified, all the types default to integer, and the program reports
an error when invoked with real parameters. An example is the code below which com-
putes the half of the perimeter of the rectangle given the lengths of the sides:

Code
fun semiPerimeter0(width, height) = width + height;
print(semiPerimeter0(10.5,2.3));

Statically Typed Languages

Statically typed languages obey a static type system, and the type system rules can be
checked at compile time. Declaring all variables with designated types and requiring that
expressions have well-defined types are ways to ensure that type system rules can be veri-
fied at compile time. However, this can be interpreted as too conservative and comes at a
price. Consider the following Python code fragment:

132

Product metric
A product metric is a soft-
ware metric associated
with the software itself as
opposed to control met-
rics, which are associated
with software processes.

Code
x=1
if(0==1):
 x="2+3"
else:
 x=x+2
print(x)

This executes without error in Python and the value of x is correctly printed as 3. The if
branch is not executed and so does not interfere with the rest of the computation. How-
ever, the types of x in the two branches of the conditional statement being different, a
static type checker would have flagged an error.

6.2 Cyclomatic and Referential
Complexity
Cyclomatic Complexity

“Cyclomatic complexity” is an example of a predictor, or product metric. It is the measure
of complexity in a program. While there are many complexity measures, it is important to
choose one that is largely independent of implementation characteristics such as source
formatting and programming language. This measure was originally proposed by Thomas
McCabe (Kan, 2016), and tries to quantify the testability and maintainability of software.
For example, to measure the complexity of the control structure of a program, we consider
its control flow graph. Cyclomatic complexity is the number of linearly independent paths
through this graph. Mathematically, the cyclomatic complexity CC G of a control flow
graph G with e edges, v vertices, and k components is defined as follows (Kan, 2016):CC G = e − v + 2k
If the number of components k = 1, CC G = e – v + 2.

This also represents the minimum number of paths whose linear combination can gener-
ate all possible paths in the graph. High complexity, in general, is a major cause of soft-
ware errors as it makes it difficult to fully understand the code. Studies have shown that
cyclomatic complexity has a high correlation with errors in software (Watson & McCabe,
1996).

Consider the following Python function:

Code
def testMax(num1, num2, num3):
 if(num1 > num2):
 maxNum = num1

133

 else:
 maxNum = num2
 if(num3 > maxNum):
 maxNum = num3
 return maxNum

The control flow graph for the above is the graph G1 below:

Figure 34: Control Flow Graph G1

Source: Created on behalf of IU (2022).

If we add the following (redundant) code just before the return, the control flow graph
changes to the graph G2 below.

Code
else:
 maxNum = num2

Figure 35: Control Flow Graph G2

Source: Created on behalf of IU (2022).

For G1, the cyclomatic complexity CC G1 = e − v + 2 = 7 − 6 + 2 = 3.

For G2, CC G2 = e − v + 2 = 8 − 7 + 2 = 3.

134

Planar graph
A planar graph is a graph
that can be drawn on the
plane without any edge
crossings.

Simplified calculations

A straight-line control flow graph with one start and one exit node has a complexity ofe − v + 2 = 1. If we add p binary decision tests, they add p to the cyclomatic complexity
since each decision predicate adds two edges and one vertex, which adds one to the
cyclomatic complexity. Thus, a control flow graph with all predicates being binary predi-
cates has a cyclomatic complexity of p + 1 where p is the number of binary decision predi-
cates.

For a planar graph, Euclid’s formula gives us the number of edges e, the number of verti-
ces v, and the number of regions r in the planar embedding of the graph (Rosen, 2019):r = e − v + 2. Since CC G = e – v + 2, CC G = r. Thus, if the control flow graph is pla-
nar, the cyclomatic complexity is the number of regions in the planar drawing of the
graph.

Cyclomatic complexity using Radon

Radon is a Python tool that computes various software metrics from source code. Metrics
computed include cyclomatic complexity, raw metrics related to the number of lines, Hal-
stead metrics, and maintainability index, among others.

In a file radonTest.py, we define the functions to be tested:

Code
aList = [23,34,2,13,11,-1,33,-44]
def linSearch(numList, keyValue):

index = 0
while(index < len(numList)):

if(keyValue == numList[index]):
return index

index += 1
return -1

def typeCheck(num):
if(num%2):

x = 123
else:

x = "123"
print(type(x))
def testMax(num1, num2, num3):

if(num1 > num2):
maxNum = num1

else:
maxNum = num2

if(num3 > maxNum):
maxNum = num3

return maxNum

135

Application
programming interface
An application program-

ming interface, or API,
serves as an intermediate
layer that allows applica-

tions to communicate.

The contents of the above file are fed to Radon’s ComplexityVisitor application pro-
gramming interface (API).

Code
from radon.visitors import ComplexityVisitor
f=open("radonTest.py","r")
v = ComplexityVisitor.from_code(f.read())
f.close()
print(v.functions)

This prints the output below. The complexity value refers to cyclomatic complexity (Wat-
son & McCabe, 1996):

Code
[Function(name='linSearch', lineno=3, col_offset=0, endline=9,
is_method=False, classname=None, closures=[], complexity=3),
Function(name='typeCheck', lineno=10, col_offset=0, endline=14,
is_method=False, classname=None, closures=[], complexity=2),
Function(name='testMax', lineno=16, col_offset=0, endline=23,
is_method=False, classname=None, closures=[], complexity=3)]

Cyclomatic complexity helper functions are available in radon.complexity (Python Soft-
ware Foundation, 2021a).

Code
from radon.complexity import cc_rank
 print(cc_rank(5), cc_rank(8), cc_rank(13), \
 cc_rank(26), cc_rank(36), cc_rank(45))

This prints A, B, C, D, E, F .

In Radon, the cyclomatic complexity score is converted to a rank using the following equa-
tion: rank = score/10 − H 5 − score
where H is the Heaviside step function (which gives 0for negative numbers and 1 for posi-
tive numbers). The rank in turn is converted to a letter grade with A for a rank = 0 and Ϝ
for rank ≥ 5, with A indicative of a simple block and Ϝ indicating a very high-risk block.
The higher the cyclomatic complexity is, the more complex the code will be. Such code is
likely to be prone to coding errors and may be unstable, requiring frequent modifications
and bug fixes.

136

Live variable
A variable is said to be live
between its first and last
references within a func-
tion.

Data Referencing Metrics

The data dependency complexity, within and across modules, is captured by the data flow
metrics. These measures are useful in practice. Dunsmore’s “data flow complexity” is
defined as the average number of live variables per statement in a block of code (Chung,
1990).

Chung (1990) redefined data flow complexity based on live variable referencing (places
where a variable is used later than its declaration).

A definition of a variable v occurs in a statement whenever there is an assignment of a
value to v. A definition clear path to v is a path in which v is not reassigned. The definition
of a variable v reaches the top of a block b of code if, and only if, there is a definition clear
path from the definition of v to the top of block b. Analogously, we can describe the notion
of the definition of v reaching the bottom of b. The definition of v is live at the top of b if the
definition reaches the top of b and it is referenced later. Variable v is live at the top or bot-
tom of a block b if there is a live definition of v. The total number of live variables in a block
or the total of live definitions of all live variables in the block are suitable complexity
measures.

6.3 Digesting Code Documentation
Documentation consists of explanatory remarks and comments that assist in better under-
standing the code. However, software documentation is often plagued by numerous
issues, such as poor content or ambiguous information. This has led to research and
development in automatic generation and recommendation of documentation.

Tools

Context-aware recommendation tools generate documentation that is both context-sensi-
tive and of high quality (Aghajani et al., 2020). These include tools that use text summari-
zation algorithms to create summaries from bug reports, code snippets and changes,
classes and methods, and unit tests (Aghajani et al., 2020).

Doxygen

Originally developed for C++, Doxygen can be used to generate documentation for C, C#,
Java, Python, and PHP. It can generate a HyperText Markup Language (HTML) file for
online browsing or a LaTeX file for creating an offline manual. It can also be used to derive
structure from code and to generate dependency graphs and collaboration diagrams.

137

RESTful APIs
A RESTful API is an API

conforming to the REST
software architectural

style, which defines a set
of rules for creating web

services.

Docstring
A docstring is any string

appearing as the first
statement of a class, a
member function of a
class, a function, or a

module in Python.

Sphinx

Sphinx is a popular and comprehensive document generator for Python but is also used
for other languages. It generates automatic cross-referencing links for functions and
classes and creates indices. It also allows customization through user-defined indices. It
uses the powerful reStructuredText markup language (Garcia-Tobar, 2017), which is the
basis of the Read the Docs (n.d.) website.

Javadoc

Javadoc is used to generate HTML pages from Java source files and to parse declaration
and documentation comments in Java source files. The HTML pages describe the public
and protected classes, interfaces, nested classes, methods, and constructors. The
javadoc command can be run on entire packages or individual source files.

Swagger

Swagger is an “interface description language” for describing RESTful APIs used to com-
municate with web services. Swagger Core generates an OpenAPI interface from existing
Java code. The documentation can be generated automatically from the API definition.

pdoc

pdoc is used for generating Python documentation; it is simpler than Sphinx and has mini-
mal setup requirements. The documentation is simply entered as a markdown language.
Moreover, pdoc automatically links identifiers in Python docstrings to corresponding doc-
umentation. Source code of functions and classes can be viewed in HTML.

Pydoc

Pydoc is an online help system and document generator in Python. The document may be
created as text or HTML and is derived from docstrings. In Python, docstrings help to
embed documentation into the source code (Goodrich et al., 2013), and are demarcated
by triple quotes (“””) at the beginning and end. There are various ways to retrieve the doc-
umentation. For example, help(obj) for any object obj generates the corresponding
documentation. Alternatively, the documentation could also be retrieved using
repr(linSearch.__doc__).

Below is an example using help(obj):

Code
aList = [23,34,2,13,11,-1,33,-44]
def linSearch(numList, keyValue):
 """Search for keyValue in numList.
 Args:
 numList: a list of values

 keyValue: a value being searched for in numList.

138

 Returns:
 index of keyValue in numList if found.
 -1 otherwise.
 """
 index = 0
 while(index < len(numList)):
 if(keyValue == numList[index]):
 return index
 index += 1
 return -1

print(linSearch(aList,11))
help(linSearch)

Best Practices

Various best practices have been established by the developers' community over time,
facilitating code maintainability. Similar guidelines exist for any documentation generator
based on code. Guidelines for using docstrings in Python, for example, were documented
in PEP 257 (Goodger & van Rossum, 2010). Recommended best practices include

• documenting modules. Each module should start with a top-level docstring that out-
lines the purpose of the module. The subsequent paragraphs should describe the mod-
ule operations.

• documenting classes. There should be a class-level docstring for every class, describing
the purpose and operations. It should also describe the public attributes and methods,
and provide guidance for deriving subclasses, including information on attributes and
methods.

• documenting functions. This is similar to modules and classes. Additionally, there
should be explanatory entries for function arguments, return values, and any special
behaviors.

Issues in Sharing

Good documentation facilitates collaboration. However, various issues arise in the process
that need to be tackled effectively (Aghajani et al., 2019), including

• what the documentation contains. These include the qualities of being correct, com-
plete, and current.

• how the content is written and organized. These include ease of use, readability, and
usefulness for the intended purpose. For instance, a relevant issue is whether the docu-
mentation can be understood by the intended audience.

• documentation generation tool and documentation processes.

139

Peephole optimization
A peephole optimization

is a code optimization
technique applied on a

small amount of code
appearing in a sliding

window.

6.4 Compiler Optimization
When we write programs in a high-level language, our efforts to make the program more
efficient are focused on using algorithms that take less time or memory. However, the
code generated by compilers can often be optimized. The optimized code may take less
time, less memory, or both. Increasingly, energy efficiency is also an objective, and opti-
mizing compilers generate transformations that make the code more efficient. Some opti-
mizations are machine-independent while others are not.

Code Optimization Techniques

Local and global optimization

Several optimizations are classified under peephole optimizations, which are local. In
global code optimization, improvements are based on analysis, usually of data flow,
across blocks (Aho et al., 2007). These are usually based on data flow analysis.

Making small functions inline

Often, we can replace function calls with the code for the function itself. This can improve
performance in the case of small functions.

Taking repetitive computations outside loops

Consider the following Python example:

Code
pi=3.14
for index in range(0,20):
 alist.append(2*pi*index)

print(alist)

Here, the computation 2 × π is being done once for each iteration of the loop. This can be
made more efficient as follows:

Code
alist=[]
pi=3.14
twoPi=2*3.14
for index in range(0,20):
 alist.append(twoPi*index)

print(alist)

140

Elimination of common subexpressions

Consider the following Python code snippet:

Code
a=2
b=3
y=3**a + 3**a*b
print(y)

Computing y as y=3**a*(1+b) is more efficient, since it eliminates one exponentiation
operation.

Eliminating redundant stores

If a variable appears on the left side of an assignment statement but is never used again,
the assignment operation is redundant and may be removed.

Eliminating unreachable code

Some parts of the code may be unreachable and hence may be removed. This could hap-
pen as in the example below if flag is never false and the else part is never reached.

Code
flag=True
if flag:
 a += 1
else:
 b+=1

Reduction in strength

Often operations can be replaced by more efficient alternatives (Aho et al., 2007). For
instance, x**5 is more efficient than making a function call pow(x,5).

Loop unrolling

Since condition checking of a loop is an overhead, if the loop runs for a small constant
number of times, it is more efficient to eliminate the loop construct and instead repeat the
code the required number of times (Aho et al., 2007).

Difficulties

Compiler optimization involves solving problems such as instruction scheduling, loop
fusion, and register allocation. On many machines, the order of execution of instructions
strongly influences their total execution time. Compilers need to take advantage of the
inherent parallelism that can be exploited in scheduling while simultaneously ensuring

141

correctness. Loop fusion merges two or more loops resulting in a merged loop that often
runs faster. Register allocation maps values to hardware registers during code generation.
All these processes include problems that are NP-complete. Heuristics are applied to
obtain practical solutions in a reasonable time.

6.5 Code Coverage
Commercial software goes through several stages of testing, which is resource intensive.
Hence, organizations need measurable ways of determining testing completeness. “Code
coverage” is a software metric that tries to quantify to what extent the software is verified
by measuring the degree to which a suite of tests exercises a software system. It applies to
any stage of testing, such as unit or integration testing. Usually, 70 to 80 percent coverage
is considered acceptable, though critical applications may demand a higher coverage.

To measure coverage, we need to first identify what part of the software is under consider-
ation: a file, module, library, or system.

The Metrics

The coverage can be counted at various levels of granularity in terms of the following
(Qian Yang et al., 2009):

• statements or lines of code. These are commonly used measures.
• blocks. Here, a sequence of non-branching instructions is considered as a unit, and we

measure how many of them are covered.
• classes, branches, and functions.
• loops. Coverage analyses how many loops are executed zero, one, or more times.

Python Tool

Let’s look at the popular tool Coverage.py, which provides support for measuring code
coverage in Python, and illustrate its usage with an example. Consider the following
Python function to find the highest power of a given number that is a factor of a second
given number:

Code
def powersOfFactor(num, fact):
 if(num == fact):
 return 1
 elif num % fact == 0:
 return(powersOfFactor(num//fact,fact) + 1)
 return 0

Let us assume that this function is in a file factors.py. Let us create another file
test_factors.py with the following code:

142

Code
from factors import powersOfFactor
powersOfFactor(8,8)

We execute the command coverage run test_factors.py followed by the com-
mands coverage report and coverage html. A file test_factors_py.html is gener-
ated in the folder htmlcov. Coverage is 57 percent and the remaining 43 percent not cov-
ered by the test case is marked. Then, we add another test case
powersOfFactors(1024,2) and repeat the process. The code coverage now improves to
86 percent. Finally, adding the third test case powerOfFactors(10,3) gives us a 100 per-
cent test coverage.

143

Figure 36: Test Coverage Report

Source: Prosenjit Gupta (2022), based on Batchelder (2022).

144

6.6 Unit and Integration Testing
During the process of software development, a software system needs to be regularly tes-
ted to discover bugs and defects (Sommerville, 2016). The testing process includes unit
and integration testing.

Unit Testing

Unit testing includes testing individual functions, classes, and methods with different
parameters. The wording “unit” testing does not imply that a notion of unit is defined in
the programming languages, but simply that it refers to a small part that can be tested.
When testing a class, all parameters need to be checked, all attributes need to be set, and
all values verified. When using inheritance, operations need to be verified in subclasses as
well. Unit tests have a dual role: They should demonstrate the correct expected behavior
and also discover bugs.

Some accepted best practices for creating test cases (Whittaker, 2009) are as follows:

• those leading to the generation of all possible error messages
• those causing input buffers to overflow
• those having the same sequence of inputs several times
• those resulting in invalid outputs being generated
• those generating extremely small or extremely large numeric outputs

The UnitTest framework

Programming languages have supporting “unit testing frameworks” that make it easier to
build, maintain and automate unit tests. Python is supported by frameworks like Pytest,
UnitTest, and Nose. One example based on UnitTest is presented below.

Consider a supermarket that maintains a list of their customers and awards points to them
from time to time during promotional offers. The points can be redeemed against purcha-
ses. Consider an example: During one such promotion, the supermarket, Green and Fresh,
decides to award 50 points to all customers in the age group of 18,25 whose point bal-
ance is currently nil. In the example below, we define a Python class for the customer data,
and also define a method offer() to calculate if an offer is being made to a customer
and, if so, update their points balance. The code is as follows:

Code
import unittest

class CustData:
 def __init__(self, ID, age):
 self._ID = ID
 self._age = age
 self._points = 0

145

 def get_ID(self):
 return self._ID

 def get_age(self):
 return self._age

 def get_points(self):
 return self._points

 def update_points(self,r):
 self._points+=r

 def offer(self, low, high, amt):
 if(self._age in range(low,high+1)):
 if(self._points == 0):
 self.update_points(amt)
 else:
 return False
 return True

For testing purposes, we create a dataset of four customers. We add 50 points to the bal-
ance of the customer with the ID 1322.

Code
custList=[]
custList.insert(0,CustData(1555,18))
custList.insert(1,CustData(1322,23))
custList[1].update_points(50)
custList.insert(2,CustData(1687,25))
custList.insert(3,CustData(3231,53))

The first three customers are in the target age group for the current promotion, but the
second customer already has a non-zero balance and hence will not receive an offer. The
fourth customer is not in the offer’s target group. We create four tests to capture this
behavior, using Python “assertions”. Assertions are statements that must be true in a pro-
gram. The Python assert statement has an associated condition and an optional error
message. If the condition is not satisfied, the program halts and reports an
AssertionError. The optional error message, if specified, is also printed. The code is as
follows:

Code
def test_offer():
 assert custList[0].offer(18,25,50) == True,\
 "test_offer0_FAIL"

 assert custList[1].offer(18,25,50) == False,\
 "test_offer1_FAIL"

146

 assert custList[2].offer(18,25,50) == True,\
 "test_offer2_FAIL"

 assert custList[3].offer(18,25,50) == False,\
 "test_offer3_FAIL"

test_offer()

The following statements allow us to run this from the command line with the command
python -m unittest:

Code
if __name__ == '__main__':
 unittest.main()

UnitTest reports a FAIL with an AssertionError: test_offer3_FAIL message. This
happens due to a bug in our offer method. Once we correct the code as follows, the test
passes, and UnitTest reports an OK.

Code
def offer(self, low, high, amt):
 if(self._age in range(low,high+1)) \
 and (self._points == 0):
 self.update_points(amt)
 return True
 else:
 return False

Integration Testing

In integration testing, previously tested individual units are integrated into larger compo-
nents with the focus being on testing the program with its interfaces (Somerville, 2016). In
software development, several interacting objects are combined into larger components.
Access to the object functionality is achieved via component interfaces. Assuming unit
testing on individual objects has been performed, the focus is then on testing the interfa-
ces and the components as a group to determine if they work together as required (Som-
merville, 2016). The following interfaces should be tested:

• parameter interfaces through which components exchange data and function referen-
ces

• shared memory interfaces in which components share a block of memory
• procedural interfaces wherein one component encapsulates procedures or functions

that are called by other components
• message passing interface

147

Heap
A heap is a block of stor-

age wherein portions are
dynamically allocated

and freed.

Decorator
This is a line added on top
of classes or function dec-

larations that annotates
them without changing

their essential nature.
The more general term

annotations is present in
many programming lan-

guages.

Errors can result from the calling component passing wrong parameter types, an incorrect
number of parameters, or parameters in an incorrect order. Errors can also occur due to
the calling component not sending parameters satisfying some required properties. For
instance, the calling component may invoke a function with an unordered list when an
ordered list is required.

Interface testing can be difficult since any defects may show up only under certain condi-
tions depending on the behavior of other components.

6.7 Heap Analysis
Managing storage for data is one of the major concerns of programmers and language
designers. Heap storage is required because of language features allowing storage to be
allocated or freed at arbitrary points in the program resulting from the creation, updates,
and deletion of data structures. This requires addressing various problems related to allo-
cation, compaction, and reuse of storage.

Python Heap Analysis

Investigation of performance bottlenecks often requires analysis of memory usage. Heap
analysis tools enable the programmer to take corrective actions. Python relies on its own
memory management.

Memory Profiler

The memory usage of a process is monitored by a Python module called the Memory Pro-
filer. A line-by-line analysis of memory consumption is generated by the Memory Profiler.
It is built on top of the Python library psutil (process and system utilities), which moni-
tors and retrieves information on running processes and system utilization (Python Soft-
ware Foundation, 2021b).

To use the Memory Profiler, we can invoke Python from the command line as

python -m memory_profiler filename.py

With the decorator @profile, the functions being profiled can be marked. Here is an
example usage:

Code
from memory_profiler import profile

@ profile

def profileAnalysis():
 a = [0] * (10**7)
 b = a.copy()

148

 c = a[:]
 del c
 del b
 return a

if __name__ == '__main__':
 profileAnalysis()

The output is depicted in the figure below.

Figure 37: Using the Memory Profiler in Python: Example One

Source: Prosenjit Gupta (2022), based on Pedregosa (2021).

Note that in the second case, as we increased all list sizes by an order of magnitude, the
corresponding numbers also increased in the “Increment” column, which shows the
increase and decrease in memory usage as lists are dynamically created and deleted.

To generate and plot the memory usage over time, we can invoke the Memory Profiler as
follows:

Code
mprof run filename.py
mprof plot

The resultant plot for the above program is depicted in the figure below.

149

Figure 38: Memory Usage over Time

Source: Created on behalf of IU (2022).

Consider another profiled program, as depicted below.

Code
@profile
def profileAnalysis():
 a=[]
 b=[]
 for i in range(0,10**5):
 a.append(0)
 b.append(0)
 c = a.copy()
 d = a[:]
 del d
 del c
 del b
 return a

150

Figure 39: Using the Memory Profiler in Python: Example Two

Source: Prosenjit Gupta (2022), based on Pedregosa (2021).

In this case, c is an alias of a, so the creation of c does not require any incremental mem-
ory. But d is a copy of a, so the creation of d requires an incremental memory. Finally, d, c,
and b all point to independent memory, hence their deletions release memory. Note that
here the statistics would vary with the runs. The internal implementation of the Python list
does not allocate memory for each append. How the memory is allocated and freed
depends on internal memory management algorithms.

SUMMARY
Type inferencing is a feature in programming languages, wherein the
type of an expression is derived when not explicitly specified by the pro-
grammer. An example of a programming language with strong type
inferencing capabilities is ML. There are, however, difficulties with type
inferencing in a dynamically typed language like Python.

A software metric called cyclomatic complexity is an important element
of the analysis of code. This measures the testability of a program by
counting the number of linearly independent paths in the control flow
graph of the program. The cyclomatic complexity can be computed
using tools, such as the Python tool “Radon”.

Various tools can be used to generate software documentation, includ-
ing Doxygen, Sphinx, Javadoc, Swagger, pdoc, and Pydoc.

Despite efficiency being a key concern for programmers, code can often
be optimized automatically. Compiler optimization techniques include
local and global optimization, making small functions inline, taking

151

repetitive computations outside loops, eliminating common subexpres-
sions, eliminating redundant stores, eliminating unreachable code,
reduction in strength, and loop unrolling.

“Code coverage” is a software metric that tries to quantify to what
extent the software is verified by measuring the degree to which a suite
of tests exercises a software system. The Python tool Coverage.Py can be
used for this purpose.

During the process of software development, a software system needs to
be regularly tested to discover bugs and defects. The testing process
includes unit testing and integration testing.

Finally, heap analysis or memory profiling must be performed. Investiga-
tion of performance bottlenecks often requires analysis of memory
usage, and heap analysis tools, such as the Python Memory Profiler, ena-
ble the programmer to take corrective actions. These tools are used to
monitor memory consumption of a process and generates analysis line-
by-line, as well as over time.

152

UNIT 7
PROGRAMMING LANGUAGES

STUDY GOALS

On completion of this unit, you will be able to …

– differentiate between various programming paradigms.
– understand the process of program execution.
– classify programming languages based on paradigms.
– analyze program syntax, semantics, and pragmatics.
– infer types of variables using type system rules.

7. PROGRAMMING LANGUAGES

Introduction
Over the years, many languages have been designed and implemented. The study of pro-
gramming languages is not just about studying the syntax of individual languages in isola-
tion, though. When mapping a problem’s solution to a computer program, the program-
mer must choose an appropriate programming language and then express the solution
efficiently in the chosen language.

While languages support a wide variety of features, a few programming styles, or para-
digms, common to many languages have gradually emerged and evolved. Each paradigm
has its distinct advantages and disadvantages and is more suitable for certain types of
applied algorithms than others. Each paradigm also requires support in the form of cer-
tain programming language features for effective usage. There are programming lan-
guages that are exclusively meant for programming in one paradigm. Haskell, for example,
is a purely functional language. Some languages primarily provide support for one para-
digm more than other paradigms. For instance, Lisp is primarily a functional programming
language, although modern dialects of Lisp have features of imperative programming.
Many languages like Python or C++ are deemed to be multi-paradigm and can be used to
implement programs in different paradigms according to the requirement.

There are concepts, such as “lazy evaluation” that are pervasive across languages and can
lead to code improvement, if used appropriately. Within the same language, there are
often alternative features to choose from, such as multiple loop constructs, for example. A
good understanding of different programming paradigms and certain key concepts and
features that are common to many programming languages is extremely useful for good
programming.

7.1 Programming Paradigms
Different programming patterns, or paradigms, have evolved over the years. For a particu-
lar class of problems, programmers often find one programming paradigm more suitable
than another. A programming language is deemed to provide support for a particular
paradigm if it provides features that facilitate programming in that paradigm. The effort
required by the programmer to solve a programming problem in a particular paradigm
varies from language to language. The main paradigms of programming include

• imperative programming,
• object-oriented programming,
• functional programming,
• logic programming,
• programming for streaming data, and
• event-driven programming.

154

Imperative Programming

The imperative paradigm of programming is command-driven, sometimes referred to as
statement-oriented. Following the von Neumann model of a computer whereby a program
is executed as a sequence of instructions, a program in imperative programming is written
as a sequence of statements, expressing commands for the computer to perform. As such,
it can be considered to be the oldest paradigm. The statements result in a change of val-
ues in one or more memory locations. Most programming languages follow this paradigm,
which essentially takes advantage of the von Neumann architecture. The computer’s
memory stores the instructions of the program, as well as the data on which these instruc-
tions act. The instructions include the assignment operator as a central construct. The
program is viewed as a list of instructions that continually changes the memory state until
a goal state is reached. In its simplest form, the imperative style is difficult to scale. Lan-
guage support for this style of programming includes features such as variable declara-
tions, expressions, control structures for selection, iteration and branching operations,
and procedural abstractions.

Consider the problem of partitioning an array of integers, which involves rearranging them
so that integers less than or equal to a pivot appear before those that are greater. This
problem is fundamental and forms a building block of other algorithms, such as quicksort
and various selection algorithms (Cormen et al., 2009). Below is a Python implementation
of this algorithm using a simple imperative style.

partition1.py

Code
L=[11,59,26,17,2,1,25,9,3,15]
pivot = 11
i=0
j=len(L)-1
while True:
 while (i <= j) and (L[i] <= pivot):
 i+=1
 while (i <=j) and (L[j] > pivot):
 j-=1
 if(i <= j):
 L[i],L[j] = L[j],L[i]
 else:
 break
print(L)

This code can be placed inside a function, with the list and pivot as parameters.

155

partition2.py

Code
def partition(L,p):
 i=1
 j=len(L)-1
 while True:
 while (i <= j) and (L[i] <= p):
 i+=1
 while (i <=j) and (L[j] > p):
 j-=1
 if(i <= j):
 L[i],L[j] = L[j],L[i]
 else:
 break
 return L
aList=[11,59,26,17,2,1,25,9,3,15]
partition(aList,11)

Object-Oriented Programming

In the object-oriented paradigm, the first task is to identify the fundamental objects in the
design. Then, an abstraction is created, keeping the implementation details hidden. Lan-
guage features supporting the object-oriented paradigm facilitate the creation of classes
to implement these objects.

Let us revisit the same problem of partitioning and consider a Python implementation
using the object-oriented paradigm. We encapsulate our solution in a class called Scores.
Then, as shown in the example below, we invoke the constructor for Scores and create an
object called bList, which is an instance of the class Scores. Finally, we invoke the parti-
tioning method by a call to bList.part(). The code is as follows:

partition3.py

Code
class Scores:
 def __init__(self,L):
 self.S = L

 def part(self,p):
 i=0
 j=self.size()-1
 while True:
 while (i <= j) and (self.S[i] <= p):
 i+=1
 while (i <=j) and (self.S[j] > p):
 j-=1

156

 if(i <= j):
 self.S[i],self.S[j] = self.S[j],self.S[i]
 else:
 break
 self.S[0],self.S[j]= self.S[j],self.S[0]
 return self.S

 def isEmpty(self):
 return self.S == []

 def size(self):
 return len(self.S)
bList =Scores([11,59,26,17,2,1,25,9,3,15])
print(bList.part(11))

Functional Programming

Functional programming models a problem of computation as a collection of mathemati-
cal functions. Here, we consider a Python implementation of the partitioning problem
using the functional style. In the functional style of implementation, we can make use of
constructs such as lambda, map, reduce, and filter.

Python lambda, map, reduce, and filter

The lambda construct offers a way to define anonymous functions in Python. Consider the
following lambda function which adds 13 to an argument:

Code
lambda a : a + 13

We apply this to a parameter 11 to get a result 24:

Code
(lambda a : a + 13)(11)

The map function in Python has a syntax map (f, iter), where iter represents one or
more iterables and f is a function that is applied to each element of the iterables.

The reduce function has a syntax reduce(f, iter[,initial]), where iter repre-
sents one iterable and f is a two-argument function that is cumulatively applied to each of
its elements. This can be used, for example, to apply an aggregation function, such as
sum, to the elements in a list. The optional argument [,initial] can be used to specify
an initial value of the aggregation.

The filter function in Python has a syntax filter(f, iter), where iter represents
an iterable and f is a Boolean-valued function that is applied to each element of the itera-
ble. Only those items x in iter for which f(x) is true are output.

157

Functional style partitioning in Python

Let’s apply the Python functional constructs to solve the partitioning problem. First, we
define a lambda function to filter out the elements x <= pivot:

Code
list(filter(lambda x: x<= p,L))

This is followed by another lambda function to filter out elements x > pivot:

Code
list(filter(lambda x: x > p,L))

Finally, we concatenate the two results and wrap them around another lambda function,
to get our final solution, as follows:

partition4.py

Code
aList=[11,59,26,17,2,1,25,9,3,15]
pivot=11
ans=(lambda L,p: list(filter(lambda x: x<= p,L)) + \
 list(filter(lambda x: x> p,L)))(aList,pivot)
print(ans)

Logic Programming

Logic programming follows a declarative style of programming. Programs written in such
languages specify the goals of the computation rather than details of an algorithm to
reach the goal (Tucker & Noonan, 2007). Logic programming is completely non-proce-
dural. The programmer cannot give detailed instructions on how the computation needs
to be done. Here, we solve the partitioning problem in Python using the logic program-
ming paradigm, making use of the kanren package in Python. First, we collect all elements
less than the pivot in list a, elements equal to the pivot in b, and elements greater than the
pivot in c. We concatenate the results into list d. Note that we did not give detailed instruc-
tions using loop constructs or similar devices to implement the individual steps but rather
specified the goals of the computation.

Putting it all together:

Code
from kanren import run, eq, membero, var, conde
from kanren.arith import lt,gt
x =var()
L=[11,59,26,17,2,1,25,9,3,15]
pivot = 11

158

a=run(0,x,(membero, x, L),(lt,x,pivot))
b=run(0,x,(membero, x, L),(eq,x,pivot))
c=run(0,x,(membero, x, L),(gt,x,pivot))
d=run(0,x,(membero,x,a+b+c))
print(d)

Data Stream Programming

Objects that support looping through a sequence of values are called “iterables”. Exam-
ples in Python include collection structures, as well as lists, tuples, sets, and dictionaries.
Functions that iterate through an iterable object are known as “iterators”. One problem
associated with iterables is that all data need to be stored in memory before we can iter-
ate through them in a loop. There are situations where we may not need the entire
sequence after all and may break out of the loop after processing a few elements.

A “data stream” is a sequence of data items that are available one at a time. Python sup-
ports processing such streams of data by using a construct called the “generator” (Good-
rich et al., 2013). Consider the following function to generate the sequence of Fibonacci
numbers.

fibGen.py

Code
def generateFib():
 one = 0
 other = 1
 while (1):
 yield one
 another = one + other
 one = other
 other = another
gen = generateFib()

def getLessThan(g, n):
 i=next(g)
 while i < n:
 print(i)
 i=next(g)

getLessThan(gen, 100)

The statement gen = generateFib() creates a generator for all Fibonacci numbers. The
function call next(gen) gets the next item from the stream of Fibonacci numbers and the
function call getLessThan(gen,100) gets all the Fibonacci numbers less than 100.

159

Event-Driven Programming

Event-driven programming is a programming paradigm wherein the control flow is deter-
mined by events, such as mouse clicks. It is the principal programming paradigm used in
Graphical User Interface (GUI) programming. In this paradigm, usually, there is a main loop
that looks for events and calls a special function whenever an event is detected (Liang,
2017). An example in Python is shown below.

event.py

Code
from tkinter import *
def clickButton():
 print("Button Clicked")

w = Tk()
l = Label(w, \
 text = "Event-Driven Programming")
b = Button(w, \
 text = "Click here",command=clickButton)
l.pack()
b.pack()
w.mainloop()

A label and a button are created and displayed as shown below. We define a function
clickButton() that is bound to the defined button. When the user clicks the button,
the program processes this event via the callback function clickButton (). The pro-
gram then prints “Button Clicked”.

Figure 40: Tkinter Label and Button

Source: Created on behalf of IU (2022).

160

Process
A process is a program in
execution.

7.2 Execution of Programs
The operating system controls and monitors various system-level activities. It also allo-
cates shared resources to programs, including the central processing unit (CPU), random-
access memory (RAM), disks, and input/output (I/O) devices. The operating system takes
care of scheduling various actions of programs that require the usage of these shared
resources.

The Fetch and Execute Cycle

All programs are finally converted to machine language, which is a set of basic instructions
in binary code. The CPU runs the program in a sequence of “fetch” and “execute” com-
mands: Fetch the next instruction, execute it, and repeat the process in a cyclic manner.
Some instructions are control instructions, which determine the order in which the CPU
executes the instruction sequence. This may require the CPU to go back to an earlier
instruction in the sequence while executing a loop. It may also skip certain statements
while executing a conditional instruction.

The CPU allocates an area in RAM where the program is loaded. It also allocates space for
data. The typical layout of a process in memory is shown in the figure below.

Figure 41: Typical Layout of a Process in Memory

Source: Created on behalf of IU (2022).

The execution of a program begins from the first instruction. The CPU outputs the address
of the memory location containing the next instruction. This is stored in the program
counter. The logic for the address decoding helps select not only the RAM chip, but also
the location allocated to the concerned address. The code for the instruction is retrieved
from RAM into the CPU via the data bus. This is read into an instruction register. The con-
tents of the register are decoded by the CPU, and instruction processing is initiated. The
data or operands on which the instruction must act are fetched from RAM via the data bus,
similar to how the instruction was fetched.

161

Once the operands have been fetched, they are processed by the data processing logic in
the CPU. More data items may be required to be fetched, depending on the instruction.
The partial results are stored in data registers and may be required to be written back into
RAM. The program counter is then incremented to the address of the next instruction. The
operating system, program code, and data are all in RAM at the time of execution.

Executing Multiple Programs

The operating system also provides support for concurrency, which allows multiple pro-
grams to work together. This includes

• multithreading, which allows multiple tasks belonging to the same program.
• multitasking, which refers to multiple programs working on the same processor.
• multiprocessing, whereby multiple processors are available.

A process with a single thread has a single program counter. The execution of the process
proceeds sequentially until termination, one instruction at a time. A program with multi-
ple threads also has multiple program counters, one for each thread. As the program exe-
cutes, the process changes between the following various states:

• new. The process is being created.
• ready. The process is ready to be scheduled.
• running. The process is executing.
• waiting. The process is waiting for something, for example, I/O.

The CPU executes a scheduling algorithm to select a program to run. CPU scheduling algo-
rithms are at the heart of multiprogramming. In a CPU with a single core, only a single
process runs at a time, while other processes wait for the CPU to be free. Typically, a proc-
ess must wait to complete an I/O request. The CPU would remain idle during this time
unless it can be engaged in some other activity. The operating system uses this time to
schedule another process.

The scheduling algorithm may be preemptive or non-preemptive. In non-preemptive
scheduling, a program continues to run on the CPU until terminated, or while it is forced
to wait for an I/O or the termination of another process. Otherwise, scheduling is preemp-
tive: a program can be interrupted after a fixed amount of time in order to allow other pro-
grams to run. Once the CPU scheduler has selected the process to be scheduled, the dis-
patcher gives control of the CPU core to the process. Many CPU scheduling algorithms are
chosen based on properties such as optimization of throughput, CPU utilization, turn-
around time, and waiting time. Some basic algorithms include

• first-come, first-served. CPU is allocated to the process that requests it first.
• shortest job first. The job selected is that whose next CPU burst is the smallest.
• round-robin. Each process is selected in turn and the CPU is allocated for a quantum of

time.
• priority scheduling. Each process has a priority and the process with the highest priority

is selected to be scheduled.

162

Multi-paradigm
A multi-paradigm pro-
gramming language is
one that supports multi-
ple programming para-
digms.

7.3 Types of Programming Languages
There is no standard classification of programming languages, but a paradigm-based clas-
sification is the most natural. The main paradigms of programming are imperative pro-
gramming, object-oriented programming, functional programming, and logic program-
ming. Although many languages are multi-paradigm, languages often primarily support
one paradigm over others.

Imperative Programming Languages

Most programming languages follow this paradigm, which is modeled on the von Neu-
mann architecture. The program is written as a sequence of statements expressing com-
mands for the computer to perform. The statements result in a change of values in one or
more memory locations. Imperative programming is the oldest approach and closest to
the actual behavior of computers. Some of the early imperative languages were, in fact,
close to assembly languages.

Language examples

C, FORTRAN, Pascal, Ada, JavaScript, PHP, and Ruby are examples of imperative lan-
guages. Other multi-paradigm languages that also support the imperative style include
Python and C++.

Key features

Language support for this style of programming includes features such as procedural
abstractions, variable declarations, expressions, control structures for selection, iteration,
and branching operations.

The imperative style evolved with procedural abstractions at its core. The programmer
starts with a specification of a function along with its input and output parameters. This
allows the developer to concentrate primarily on the interface between the function and
what it computes, and to ignore the algorithm and details of how it was computed (Tucker
& Noonan, 2007). This leads to the development of the program by a process of stepwise
refinement. First, the programmer starts with a description of the program to be written
along with its input and output specifications. This is then broken down hierarchically into
smaller functions to be implemented.

At the heart of the syntax of all imperative languages is the assignment statement, which
takes the following form:

Code
variable = expression

The expression is evaluated, and the output value is copied to the left-hand side. When the
right-hand side is also a variable, we need to distinguish between the cases where the
assignment merely creates an alias or a separate copy of the right-hand side.

163

Consider the following Python code fragment:

alias.py

Code
a = [2,3,4,5]
b = a
b[0]=-1
print(a)
print(b)

This prints [-1, 3, 4, 5] twice, because b is just an alias for a.

Now consider a modified version:

copy.py

Code
a = [2,3,4,5]
b = a[:]
b[0]=-1
print(a)
print(b)

The above code prints [2, 3, 4, 5] followed by [-1, 3, 4, 5]. Here, b is a copy of a.

The former is called “assign by reference” or “reference semantics.” The latter is called
“assign by copy” or “copy semantics.” The latter is more common among imperative lan-
guages.

Expressions are composed using arithmetic and logical operators, as well as built-in func-
tions of the language. In C, the assignment is also an operator, which returns a value and
hence can appear in an expression. This allows statements such as a = b = c.

Object-Oriented Languages

In general, an abstraction is a representation of an entity that includes a subset of signifi-
cant attributes, while filtering out others, in order to create an abstract idea of the entity
appropriate to the program being created. A data structure has an associated abstract
data type that specifies what data is stored within the data structure and what operations
are supported to be performed on the data. For users of the data structure, the abstract
data type serves as a public interface. The implementation details of the data structure are
not exposed in the abstract data type specification. To implement abstract data types in a
language, an appropriate syntactic structure is required to enable the clients of the
abstraction to declare instances of the abstract data type and execute various operations
on them. Such a syntactic structure is provided by object-oriented languages.

164

Language examples

C++, Java, Python, and Ruby are some examples of object-oriented languages.

Key features

In object-oriented programming, a basic means of abstraction that supports the creation
of user-defined types is the class. Instantiations of classes are called objects. How data are
represented is determined by the class. The actual data are stored by the object. The class
also has defined member functions, also called methods.

Inheritance adds a strong feature to object-oriented programming. It helps to modularly
and hierarchically organize the classes. We can define new classes using inheritance by
deriving them from an existing class, also called the base class or superclass. The new
class is called the derived class or subclass. These derivations create a hierarchy of
classes.

Another feature of object-oriented programming is polymorphism, which allows us to use
the same function or method with arguments of different types. An object of a derived
class can be used as a parameter where a parameter of a superclass in the inheritance
hierarchy is expected.

Language support for object-oriented languages includes facilities for encapsulation and
information hiding. Data defined in a class are accessible through member functions.
Access to data across the class hierarchy is controlled. For example, in C++, this access is
restricted by classification into public, private, or protected. Data members or member
functions of classes labeled public are accessible wherever the class is instantiated. The
ones labeled private are accessible only inside the class itself. The protected label extends
the access to derived classes as well.

Functional Programming Languages

The development of functional programming languages started in the 1960s. These were
widely used for symbolic computation, rule-based systems, theorem proving, natural lan-
guage processing, and artificial intelligence-related fields. It was felt that the needs of the
researchers in these areas were not being met by the imperative languages that were then
available (Tucker & Noonan, 2007).

Language examples

Lisp, Haskell, Scheme, ML, OCaml, and F# are some examples of functional programming
languages.

165

Key features

The functional programming style is regarded as the first significant departure from the
imperative style of programming. Lisp is the most widely used functional programming
language. It began as a pure functional programming language, but its subsequent dia-
lects incorporated various imperative features to improve computational efficiency.

A key feature of the imperative style is the notion of state, which is captured by values of
variables. This needs to be tracked during development. A pure functional programming
language has no variables or state (Sebesta, 2016). Without variables, iterative loops can-
not be implemented as in imperative languages. These are implemented indirectly using
recursion (Sebesta, 2016).

In functional programming, a computation is viewed as a mathematical function mapping
its arguments to outputs. A functional language typically provides some built-in functions,
a mechanism to create more complex functions from the primitive ones, and a function
application operation.

Logic Programming Languages

Logic programming emerged as a strong non-imperative paradigm in the 1970s. It is also
known as rule-based programming. It has been used in applications, such as expert sys-
tems, natural language processing, and database query retrieval.

Language examples

Prolog is the most well-known and widely used logic programming language. Other exam-
ples include ALF, Alice, and Datalog.

Key features

Logic programming languages follow a declarative style of programming. Programs writ-
ten in such languages specify the goals of the computation rather than details of an algo-
rithm to reach the goal (Tucker & Noonan, 2007). The goals are specified as a collection of
rules and constraints in symbolic logic, rather than assignments and control flow state-
ments. The language needs to support a mechanism to specify the rules and the goal as
logical statements, as well as an inference mechanism to reach the goal. In Prolog, for
instance, the representation of the rules and facts uses first-order predicate logic. The
inference mechanism employs a process of “resolution”. This involves creating a negation
of the goal and reaching a contradiction by repeated application of a simple rule: (A OR
B) AND (~A OR C) implies that (B OR C) is true. Whereas the programming effort is
reduced in logic programming, logic programming languages can be slow. The efficiency
of the solution is dependent on the efficiency of the inference mechanism.

166

7.4 Syntax, Semantics, and Pragmatics
A programming language should be both concise and clear to be widely adopted. Concise
formal definitions may not be understood by all stakeholders. At the same time, simple
and informal descriptions may lead to imprecise descriptions and create many variations
of the language concerned. One difficulty is the diversity of the audience involved.

The form of the expressions, statements, and procedural units of a programming language
is called its “syntax”, and the meaning of these syntactical units is called the “semantics”.
“Pragmatics” refers to what the statements achieve in practice (Sebesta, 2016).

Example

Consider the syntax of the following while loop in Python:

Code
while boolean_expression:

statement

The semantics of the while loop state that if the Boolean expression is true, the statement
will be executed. If there are multiple statements in the same block, they would all be exe-
cuted in order. Once this is completed, control returns to the Boolean expression for evalu-
ation again. This is repeated until the expression evaluates to false. As an example, con-
sider the following code snippet in Python:

while1.py

Code
n=13
while n < 20:
 n+=1
 print(n)

The semantics of the while loop states that when the current value of the Boolean expres-
sion is true, the statements in the scope of the while loop will be executed. Here, the while
loop prints the integers from 14 to 20. When n = 20 the condition fails, and control leaves
the while loop.

Now consider another variation of the same loop:

167

Infinite loop
An infinite loop is a loop
that does not terminate.

while2.py

Code
n=13
while n > 20:
 n+=1
 print(n)

The semantics of the while loop construct have not changed. However, this loop will not
be executed since the Boolean expression will always be false.

A third variation is as follows:

while3.py

Code
n=21
while n > 20:
 n+=1
 print(n)

Here, the control enters the while loop but never leaves since the Boolean expression is
always true. This is an infinite loop.

This example illustrates a simple while loop construct, the syntax of which is well-defined
and the semantics well understood. The pragmatics indicate different behavior under dif-
ferent conditions.

Short-Circuit Evaluation

Consider the following Python code fragment:

short1.py

Code
x = 20
y = 0
x > 20 and x/y < 5

The condition evaluates to False. Although the division by zero is not permissible, the
Python interpreter is still able to evaluate the truth value of the expression. Since the sub-
expression x > 20 is False, the result of a logical and of any Boolean expression with
False would be False. So, the interpreter evaluates the whole expression to False with-
out evaluating the second subexpression x/y < 5. This is an example of “short-circuit
evaluation” or “lazy evaluation”. This provides a special and important opportunity for

168

code improvement and increased readability. If the first subexpression is a very unlikely
condition, and the second subexpression involves a very expensive function call, short-cir-
cuit evaluation leads to significant time savings (Scott, 2016).

If we modify the above code fragment by initializing x to 21, x > 20 is True. So, the sec-
ond subexpression x/y > 5 is evaluated and the interpreter flags a
ZeroDivisionError. This can be corrected by introducing a “guard clause” as follows:

short2.py

Code
x = 21
x > 20 and y!= 0 and x/y < 5

The semantics of the and expression is that it is both commutative and associative, so the
order of evaluation of the subexpressions should not matter. However, from the point of
view of the pragmatics of the short-circuit evaluation, we may reorder such subexpres-
sions to our advantage and improve the code.

Another advantage of short-circuit evaluations is how they evaluate expressions involving
pointers. Consider the following example of traversing a linked list in C (Scott, 2016):

short3.c

Code
p = my_list;
while (p && p->key != val)
 p = p->next;

If p is NULL, the subexpression p->key != val is not evaluated. This works because of
short-circuit evaluation.

Specifying Syntax

A language L is defined over an alphabet set Σ. The set of all strings that one can form
using characters from Σ is denoted as Σ*. The language L is a subset of Σ*. The syntax
rules of the language specify which strings are in L. At the lowest level, such strings, called
lexemes, include elements such as numeric literals, operators, and operands. A program
written in the language is a string of such lexemes. These lexemes are divided into groups
called tokens. For example, for a statement like i = 2j + 5, the tokens in a language could
include identifiers, integer literals, multiplication operators, and semicolons (Sebesta,
2016).

Languages may be defined by recognition or generation. To define a language by recogni-
tion, we need to construct a recognizer, which can be used to test whether a string is in the
language or not. Parsers perform such tests. Grammars are used to define languages by
generation. The forms of tokens can be described as “regular grammars”. The syntax of a

169

programming language can mostly be captured by context-free grammars (CFGs; Sebesta,
2016). Given such a grammar, a recognizer for the language concerned can be constructed
using standard software. One of the early such systems was the Yet Another Compiler
(YACC), which can construct a complier from the CFG specifications of a language. Such
tools are useful for generating compilers for new or special-purpose languages.

An Ambiguity

Ambiguity in languages is often a necessary evil to avoid an explosion of rules in the
underlying grammar. Although programming languages use mostly unambiguous syntax,
there are notable exceptions. Let us consider the following two similar Python code frag-
ments:

if_then_else1.py

Code
x=0
i=1
if i >= 0:
 if i==0:
 x=1
else:
 x=2
print(x)

The value printed on executing the above code is 0.

if_then_else2.py

Code
x=0
i=1
if i >= 0:
 if i==0:
 x=1
 else:
 x=2
print(x)

The value printed upon executing the above code is 2. The two print statements print
differently although the code fragments have identical statements and are similar barring
indentation. This is an example of a larger issue of syntactic ambiguity, which is: Which if
block do we pair the last else with? Python resolves this by allowing the user to specify
the correspondence by using appropriate indentation.

170

Languages such as C and C++ resolve this ambiguity by associating such a dangling else
with the textually closest if, allowing the user to override this default behavior by using
explicit braces.

Specifying Semantics

Although the grammar rules of a language can capture most syntactical rules, there are
some which cannot be captured. An example is the rule in many languages that requires
that variables must be declared before use. There are other rules specified by the type sys-
tem that require complex rules of grammar to be captured. These rules are covered by
static semantic rules of the language. These rules have more to do with the validity of pro-
gram syntax than the meaning of the program execution. Such static semantic rules are
specified and checked using the mechanism of attribute grammars (Sebesta, 2016). Static
semantics is so-called because it can be checked at compilation time.

Dynamic semantics deals with the meaning of statements, expressions, blocks, and func-
tions. Describing the dynamic semantics of a language is more difficult than describing
static semantics. Precise semantic specifications could potentially lead to correct-by-con-
struction programs and make testing redundant.

In operational semantics, the meaning of a statement, construct, or program is described
by specifying what happens when it is executed on a machine. This may consider individ-
ual steps of the computation as in structural operational semantics or the overall results
as in natural operational semantics (Sebesta, 2016). A rigorous formal method used in
describing dynamic semantics is denotational semantics (Tucker & Noonan, 2007).

7.5 Variables and Type Systems
A type in a programming language defines a set of values along with a set of operations
that act on those values. When associated with a variable, the type determines what val-
ues the variable can take. A function may also have a return type, which determines the
set of values it can return. An operation has types associated with its operands and result.
The value associated with a type is stored in memory as a sequence of bits. The type of the
variable associates an interpretation with the sequence of bits as either a string, integer, or
floating-point number. Types may be built-in or user-defined. The set of types varies from
one programming language to another.

Scope of Variables

The scope of a variable defines the part of the program where the variable can be assigned
or referenced. The scope rules of a language determine how a particular reference to a var-
iable is associated with a declaration. The scope can be static or dynamic. In static scop-
ing, also known as lexical scoping, the scope can be determined once the code is written,
prior to execution. In dynamic scoping, the scope of the variable depends on the calling
sequence of functions and hence can only be determined at runtime. Most modern lan-
guages support static scoping.

171

Local variable
A variable that is accessi-
ble only in a specific part

of a program is called a
local variable.

Scopes may be nested or disjoint. When the scoping is disjoint, the same name can be
used for different entities. In C and C++, a block of statements enclosed within braces “{”
and “}” defines a new scope (Tucker & Noonan, 2007). Blocks, but not functions, may be
nested in C and C++. Scoping rules in Python, however, are based on functions, so nested
functions are possible in Python.

Local and global scoping

In Python, the scope of a local variablewithin a function starts from the point of creation
and ends with the last statement of the function (Liang, 2017). Many languages allow vari-
able definitions to appear outside all functions but be visible everywhere. These are called
global variables. In Python, global variables can be referenced in functions but can be
assigned only if declared to be global (Sebesta, 2016).

global1.py

Code
x=1
def A():
 x=2
 print("A", x)
A()
print("Global", x)

Here, the two print statements print 2 and 1 respectively because the variable x inside
function A() is local, and the assignment x=2 does not change the value of the global vari-
able x, which is assigned a value of 1. Next, we change the variable inside function A() to
be global. Now, both print statements print 2 because the y being updated in A() is the
same variable as the y originally assigned to 1. The code is as follows:

global2.py

Code
y=1
def A():
 global y
 y=2
 print("A", y)
A()
print("Global", y)

Consider an example of nested functions in Python. The values of x printed are
1,2,3,2,1, in that order. The reassignment x=3 inside function B() does not change the
value of x=2 inside A , as can be seen in the code below:

172

global3.py

Code
x=1
print("Global1", x)
def A():
 x=2
 print("A1",x)
 def B():
 x=3
 print("B", x)
 B()
 print("A2",x)
A()
print("Global2", x)

Scopes and namespaces

When an identifier is assigned a value in Python, a scope gets defined based on the loca-
tion of the assignment statement. Each distinct scope is represented by an abstraction
called the “namespace”. When a variable is referenced in a statement in Python, the name
resolution process searches the most locally enclosing scope first and gradually moves
outward. We can retrieve information about the most locally enclosing namespace, stored
as a dictionary, by using the dir() and vars() commands. Here, vars() returns the
whole dictionary, whereas dir() returns the keys. The code is as follows:

namespace1.py

Code
x=1
def A():
 y=2
 def B():
 z=3
 print(vars())
 print(dir())
 B()
 print(vars())
 print(dir())
A()

Type Systems

The type system associated with a programming language defines the built-in types, as
well as a set of rules for the creation of user-defined types and the usage of types in the
language. A type error results when a type system rule is violated. Type checking, per-
formed either at compile time or run time, is intended to detect type errors.

173

Type compatibility
The property that allows
a value of one type to be
acceptable when a value
of another type is expec-

ted is called type compat-
ibility.

Type checking tests type compatibility in various situations, including the following:

• compatibility between operands of an operation. Some rules define how the type of an
expression is computed from the types of its constituents.

• assignment statements. Rules govern the relationship between the type of the variable
on the left-hand side and the expression on the right-hand side of an assignment state-
ment.

• compatibility between the actual and formal parameters of a function. For example, if a
function expects an argument to be of a certain type according to its declaration, would
an argument of another type be acceptable in the function call?

Compatibility may be ensured by explicit or implicit conversion to a legal type. Incompati-
bility results in a type error.

Explicit type conversion

While carrying out computations involving data of mixed type, it often becomes necessary
to convert variables from one type to another. Type conversion may be explicit, with sup-
port from built-in functions within the language. For example, in Python, built-in functions
int(), float() and str() convert arguments to integers, floating-point numbers, and
strings, respectively, so we have int(4.9) returns 4,float(4) returns 4.0 and
str(3.2) returns the string '3.2'.

Implicit type conversion

The type system of the language has rules that govern when values of one type are auto-
matically converted into those of another, compatible, type. These conversions are known
as “automatic type promotions” or “coercions”. This allows expressions of mixed but com-
patible types to be evaluated. For example, Python implicitly converts integers to floating-
point numbers whenever required, as follows:

• The result of the expression a + b is an integer if both a and b are integers. However,
the type of the result is a floating-point number if the type of at least one of a or b is a
floating-point number.

• Consider the integer division 15//2, which evaluates to 7, but 15//2.0, where 15 is
implicitly converted into a floating-point number, is evaluated to 7.5.

• Also, bool(1==1) is True and bool(1==1) + 5 evaluates to 6. Here, the intermediate
expression True + 5 is evaluated to 6, since the Boolean value True is coerced into 1.

SUMMARY
Different programming patterns, or paradigms, have evolved over the
years, such as imperative, object-oriented, functional, and logic pro-
gramming. A programming language may primarily support one of the
paradigms; however, a multi-paradigm language like Python allows us

174

to program in different paradigms. The operating system provides sup-
port for the execution of programs: The CPU runs the program in a
sequence of fetch-execute cycles.

Programming languages are often classified along their paradigm(s).
There are certain key features of languages in each category. Language
support for the imperative style of programming includes various fea-
tures, such as procedural abstractions, variable declarations, expres-
sions, control structures for selection, iteration, and branching opera-
tions. Object-oriented languages provide a syntactic structure to
leverage abstract data types in the language, facilities for classes, and
inheritance. Functional programming languages view a computation as
a mathematical function mapping its arguments to outputs. A functional
language typically provides some built-in functions, a mechanism to cre-
ate more complex functions from the primitive ones, and a function
application operation. Logic programming languages follow a declara-
tive style of programming. Programs written in these languages specify
the goals of the computation rather than the details of an algorithm to
reach the goal.

Every programming language is characterized by syntax, semantics, and
pragmatics, and programs need to be viewed through all three perspec-
tives.

A fundamental aspect of programming is the set of scoping rules for vari-
ables in programs. This includes the notions of local scoping, global
scoping, and namespaces, and how explicit type conversions and auto-
matic type promotions allow expressions of mixed, but compatible,
types to be evaluated.

175

UNIT 8
OVERVIEW OF IMPORTANT PROGRAMMING
LANGUAGES

STUDY GOALS

On completion of this unit, you will be able to …

– develop compiled applications using WebAssembly for execution on the web.
– understand the features that distinguish C++ from C.
– distinguish between generic programming in C# and Java.
– compare and contrast functional programming in Haskell and Lisp.
– use HTML DOM to create a JavaScript application embedded in HTML.
– evaluate unique features of a range of imperative programming languages.

8. OVERVIEW OF IMPORTANT
PROGRAMMING LANGUAGES

Introduction
Different programming languages have features that support programming paradigms,
such as imperative, object-oriented, functional, or logical. Often, a language can be classi-
fied based on the paradigm, but it provides certain features that also support another
paradigm. Languages have their unique features and so, over time, they have found usage
in some specific application domains. WebAssembly enables the execution of compiled
code on the web and supports many languages. C has been popular for systems program-
ming because of its low-level features. C++ is a multi-paradigm language; it includes pow-
erful constructs to support object-oriented programming. Java is an object-oriented lan-
guage, with support for efficient memory management, multithreading, and distributed
computing. The reach and power of Java influenced the design of C#, which was created
by Microsoft for its .NET framework (Sebesta, 2016). Haskell and Lisp are two well-known
functional programming languages. Haskell is a purely functional, statically typed lan-
guage with lazy evaluation, list comprehension, and minimalist syntax, whereas Lisp is
considered more flexible and is dynamically typed. Originally conceived as a functional
alternative to Java, today JavaScript is a central language in web applications. JavaScript
has been designed around the idea of the Document Object Model (DOM) with a hierarchy
of parent and child objects. Ada, an imperative programming language, was also an
important milestone in the development of programming languages because certain
important features went on to influence the design of other programming languages. New
languages continue to appear regularly. Knowledge of the key features of different lan-
guages will help us choose one that suits our needs for a particular requirement.

8.1 Assembler and Webassembly
Assembler

Assembler, or assembly language, is a low-level programming language. The instructions
in the assembly language have a close relationship with the machine language instruction
in the architecture being used. The assembly language code is converted to the machine
code by a utility program, also known as the assembler. Usually, every instruction in the
assembly language specifies a single machine language instruction. Assembly language
makes low-level programming easier while resulting in more efficient code than what
could be achieved through high-level languages. Typically, each line of the assembly lan-
guage program has an optional label; a mnemonic for the instruction, such as MOV, JMP,
or ADD; an optional list of operands; and an optional comment. The operand may be a list
of data items or parameters. The assembly language program may also include data direc-
tives to hold data and variables. There may also be assembly directives to the assembler
(the program translating the assembly code to the machine code) to perform operations

178

other than assembling. Since the assembly code is dependent on the machine code, every
assembly language must be designed for a specific architecture. Below is a small C pro-
gram and its corresponding assembly code in an 8086-like assembly language generated
using the CtoAssembly tool. The comments in the assembly code are summarized from
comments generated by the CtoAssembly tool.

CtoAssemblyTest.c

Code
int main ()
{
 int a = 1;
 int b = 2;
 int i = 0;
 while (i < 5)
 {
 a = a + b;
 i++;
 }
 return 0;
}

main:
 PUSH %BP ; Push base pointer onto stack
 MOV %SP, %BP; base pointer = stack pointer
@main_body:
 SUB %SP, $4, %SP ; reserve space on stack for a
 MOV $1, -4(%BP); set a = 1
 SUB %SP, $4, %SP; reserve space on stack for b
 MOV $2, -8(%BP); set b = 2
 SUB %SP, $4, %SP; reserve space on stack for i
 MOV $0, -12(%BP); set i = 0
@while0:
 CMP -12(%BP), $5; compare i with 5
 JGE @false0; exit while loop if i >= 5
@true0:
 ADD -4(%BP), -8(%BP), %0; compute a+ b
 MOV %0, -4(%BP); a = a + b
 INC -12(%BP); i++
 JMP @while0; control goes back to while loop start
@false0:
@exit0:
@main_exit:
 MOV %BP, %SP; stack pointer = base pointer
 POP %BP; pops value from stack
 RET

179

WebAssembly

WebAssembly (Wasm) enables execution of compiled code on the web without plug-ins
and includes the following components:

• a binary module and format (.wasm format) for executable code
• a human-readable text format (.wat) for assembly code
• a compilation target

WebAssembly supports several compiled and interpreted languages. The syntax of the
program is made of symbolic expressions or S-expressions. As an example, consider a C-
function computing Fibonacci number as follows:

fib.c

Code
int fib(int n)
{
 int curr, next, sum;
 curr = 1;
 next = 1;
 for(int i = 1; i <= n-2; i++) {
 sum = curr + next;
 curr = next;
 next = sum;
 }
 return sum;
}

The tool WasmFiddle (Rourke, 2018) was used to generate the WAT code below.

fib.wat

Code
(module
 (table 0 anyfunc)
 (memory $0 1)
 (export "memory" (memory $0))
 (export "fib" (func $fib))
 (func $fib (; 0 ;) (param $0 i32) (result i32)
 (local $1 i32); local variables declared
 (local $2 i32)
 (local $3 i32)
 (block $label$0
 (br_if $label$0
 (i32.lt_s
 (get_local $0)

180

 (i32.const 3); loop skipped if n < 3
)
)
 (set_local $0
 (i32.add
 (get_local $0)
 (i32.const -2); compute n - 2
)
)
 (set_local $2
 (i32.const 1); next = 1
)
 (set_local $3
 (i32.const 1)
)
 (loop $label$1
 (set_local $2
 (i32.add
 (tee_local $1
 (get_local $2)
)
 (get_local $3)
)
)
 (set_local $3
 (get_local $1)
)
 (br_if $label$1
 (tee_local $0
 (i32.add
 (get_local $0)
 (i32.const -1)
)
)
)
)
)
 (get_local $2); the final result
)
)

WasmFiddle also creates the Wasm binary. The WAT is the textual representation of this
and is extremely useful for development and debugging. In the WAT expression, the func-
tion parameter n in fib(int n) is indicated as (param $0 i32), where the variable $0
represents n, and i32 represents a 32-bit integer. The type of the return value is indicated
by (result i32). The three local variables are declared as $1, $2, and $3. WASM execu-
tion is defined in terms of a stack machine. The instruction get_local pushes the value
of a local variable read onto the stack. The instruction i32.add pops the top two values

181

from the stack, adds them, and pushes the result back onto the stack. The instruction
set_local pops from the stack into a local variable and tee_local reads from the stack
into a local variable but does not pop.

WebAssembly is a low-level binary format that is compatible with common web browsers.
Neither WebAssembly code nor the text-based WAT code is written by human developers
but generated from code written in high-level languages, such as C, C++, Rust, and Go. The
resultant code can be made to use memory very carefully, and is, generally, fast. The
Wasm code is loaded and executed in the browser using JavaScript WebAssembly applica-
tion programming interface (API).

The WasmFiddle interface is shown in the figure below. The C code is input by the user.
The WAT and JavaScript content is generated by WasmFiddle.

Figure 42: WasmFiddle

Source: Created on behalf of IU (2022).

The following JavaScript code is generated by WasmFiddle:

wasm.js

Code
var wasmModule = new WebAssembly.Module(wasmCode);
var wasmInstance = new WebAssembly.Instance(wasmModule, wasmImports);
log(wasmInstance.exports.main());

The global WebAssembly object has two child objects WebAssembly.Module and
WebAssembly.Instance that are used to interact with WebAssembly and debug. The
WebAssembly.Module object contains WebAssembly code that has already been com-
piled. The WebAssembly.Instance object is an instance of a WebAssembly.Module,
which contains all the exported WebAssembly functions.

182

Type casting
An operator that converts
a data type into another is
said to be type casting.

Namespace
A namespace is a region
in the program that
defines the scope of iden-
tifiers declared inside it.

Although JavaScript code can be embedded in HyperText Markup Language (HTML), there
are heavy applications that are difficult to implement in JavaScript and run in the web
browser. WebAssembly offers an alternative route via implementation in C, C++, Rust, or
Go, and embedding the Wasm code using JavaScript WebAssembly API.

8.2 C and C++
C was originally designed for the development of the UNIX operating system (Kernighan &
Ritchie, 1988) and has strongly influenced the design of many programming languages
subsequently (Sebesta, 2016). For example, C introduced the type casting operator
(type) expression, and braces to indicate blocks. Arrays, structures, unions, and point-
ers all help C to create data structures. C also supports macros and conditional compila-
tion. Embedded software is ubiquitous in electronic devices today and much of it was writ-
ten in C.

Later, influenced by languages such as Smalltalk, C++ was created as an extension of C
supporting object-orientation and features like iterators, exception handling, templates,
and overloading (Tucker & Noonan, 2007). C does not support object-oriented program-
ming, so support for polymorphism and inheritance is absent. Although some of these can
be done by the generic nature of pointers, C++ provides all these and much more.

Namespaces

C++ provides a simple data-hiding principle based on namespaces. We aggregate related
data, functions, and variables into separate namespaces. This facilitates information hid-
ing. It also allows different identifiers with the same names to be used for different purpo-
ses. For example, we define a queue data structure in C++ and place that in a queue name-
space.

Queue.cpp

Code
#include <iostream>
#include "string.h"

using namespace std;
namespace Queue
{
 void enQueue(int);
 int deQueue();
}
void testQ(int n)
{
 Queue::enQueue(n);
 if(Queue::deQueue() == n) cout << "PASS\n";
 else cout << "FAIL\n";

183

}
namespace Queue
{
 const int maxSize=100;
 int val[maxSize];
 int num=0, front=0, rear=0;
 bool isFull=0;

 void enQueue(int n)
 {
 if(isFull) return;
 val[rear]=n;
 num++;
 rear=(rear+1)% maxSize;
 if(num==maxSize) isFull=1;
 }

 int deQueue()
 {
 if(num==0) return-1;
 int temp = val[front];
 front =(front+1)% maxSize;
 num--;
 return temp;
 }
}
int main()
{
 testQ(35);
}

Classes

User-defined types allow users of a programming language to extend the fundamental
types and create their own customized types. C++ allows us to create our own types called
classes. For any class, we can create objects of that class and create operations manipulat-
ing these objects. Although classes also support information hiding, they are different
from namespaces. Classes are datatypes. We can instantiate multiple objects of these
types. Namespaces cannot be instantiated as objects.

The class hierarchy, an important feature of object-oriented programming, is supported in
C++. Through inheritance, it facilitates modular and hierarchical organization, which ena-
bles us to define new classes based on the existing class. The new class is called the
derived class or subclass. The existing class from which the subclass is derived is known as
the superclass or base class. The derived class inherits methods from the base class, and it
may also add new methods or override existing base class methods.

184

Templates

Consider a C implementation of a function fun to compute the sum a+b+c of three integer
variables a, b, and c.

sum.c

Code
#include <stdio.h>
int fun(int i, int j, int k);

int main() {
 int a = 2, b = 3, c=1;
 printf("a=%d, b=%d, c=%d\n",a,b,c);
 printf("Result=%d\n",fun(a,b,c));
 return 0;
}

int fun(int i, int j, int k)
{
 return (i+j+k);
}

If we now need a function to operate on arguments that are of type double, we need to
implement a different function. The template feature of C++ offers a simple solution to
this problem. The same function can operate on arguments of different types. In the
example below, the function fun is called with variables of type int, double, and
string. In the first two cases, it adds the arguments. For strings, the function interprets
a+b+c as the concatenation of strings a, b, and c,

sum.cpp

Code
#include <iostream>
#include "string.h"
using namespace std;
template<class T> T fun(T i, T j, T k);
template<class T> T fun(T i, T j, T k)
{
 return (i+j+k);
}

int main() {
 int a = 2, b=3, c=1;
 std::cout << "a=" << a << ", b=" << b << ", c=" << c << "\n";
 std::cout << "Result = " << fun(a,b,c) << "\n";
 float d=2.3, e=2.5, f=1.1;

185

Just-in-time
This refers to compilation

during execution rather
than before.

 std::cout << "Result = " << fun(d,e,f) << "\n";
 string r = "Apple", s = "Orange", t = "Peach";
 std::cout << "Result = " << fun(r,s,t) << "\n";
 return 0;
}

Exception Handling

Often, when an error occurs, the action to be taken depends on the module that invoked
the function rather than the function where the error is detected. C++ allows us to define
an error handling function that is invoked on detection of the error. The exception han-
dling mechanism is a system stack unwinding mechanism that serves as an alternative
return mechanism, which has used beyond exception detection and recovery. Due to the
lack of such exception handling mechanisms, C programs return a zero in case of success,
or non-zero in case of error, instead of returning a useful value.

8.3 Java and C#
Java was developed around 1990 in response to the requirement for an architecture-inde-
pendent language for applications running in consumer electronic devices, such as micro-
wave ovens, toasters, and remote controls (Schildt, 2017). These devices used many differ-
ent CPUs as controllers, and it was expensive to create compilers for languages that were
designed to be compiled for specific targets. So, efforts began to design a portable and
platform-independent language that could generate code that ran on a variety of CPUs.
This led to the creation of Java (Schildt, 2017). The emergence of the World Wide Web,
with its associated portability issues, led to the large-scale success of Java. Today, Java is
used in a wide variety of application areas.

Java is an object-oriented language, with support for efficient memory management, mul-
tithreading, and distributed computing.

The key to the success of Java is the bytecode (Schildt, 2017), which is the output of the
Java compiler. It is a highly optimized set of instructions that is executed on the Java Vir-
tual Machine (JVM), Java’s runtime system and interpreter for the bytecode. The JVM
needs to be implemented for different platforms, but not the Java bytecode (Schildt,
2017). However, now many Java programs are also compiled using a just-in-time (JIT)
compiler when they start running, which compiles Java bytecodes to machine code at run
time.

Java has both classes and primitive types. Java arrays are instances of a specific class.
Instead of pointers, Java uses a reference type to point to instances of a class. One cannot
write stand-alone subprograms in Java, and all subprograms need to be wrapped in
classes as methods. In Java, a class can be derived from a single class only, although some
benefits of multiple inheritance can be achieved through the usage of a feature called
interface.

186

Multiple inheritance
This is a feature in some
object-oriented lan-
guages wherein a class
may be derived from mul-
tiple classes.

Generics
The feature of classes
called generics allow a
method to operate on
objects of various types.

Java supports an elaborate system of type conversions and automatic type promotions
that facilitates programming. For example, possible automatic type promotions among
numeric types in Java are shown in the figure below. An arrow from type A to type B
means that a variable of type A may be promoted to type B.

The Java package is a naming encapsulation construct. Public and protected variables
and methods, as well as those with no access specifiers, are visible to all other classes
within the same package.

Figure 43: Automatic Type Promotion in Java

Source: Created on behalf of IU (2022).

Java supports templates, or generics, that allow for type parameterized classes. The syn-
tax for a generic class is className<T>, where T is a type variable. For generic methods
in Java, generic parameters must be user-defined classes and not primitive types. We can
instantiate such generic methods multiple times. However, internally, the method oper-
ates on Object class objects (Sebesta, 2016).

C#

The reach and the power of Java influenced the design of C#, which was created by Micro-
soft for its .NET framework. C# is closely related to Java, shares similar syntax and object
models, and provides support for distributed computation.

The C# “assembly” is an encapsulation construct that is larger than a class. It consists of
one or more files. One or more assemblies, in turn, make up a .NET application. Compo-
nents of an assembly A include the following:

• its program code in the Common Intermediate Language (CIL).
• metadata describing every class defined in the assembly and external classes used
• a collection of all other assemblies referenced by A and the version number

187

In addition to public, private, and protected, C# has an additional access modifier called
“internal”, and a variant of this called “protected internal”. A protected internal member is
accessible to classes in the current assembly and derived classes in other assemblies. An
internal member of a class is accessible only from classes in the current assembly. C#
assemblies are similar to Java Archive (JAR) of Java (Sebesta, 2016).

Get Set Methods

“Get” and “set” methods give public access to private variables in a class. In the following
Java program, public access to the private field _value of class GetSetTest is provided
by means of the getVal and setVal methods:

GetSetTest.java

Code
class GetSetTest{
 private int _value;

 GetSetTest() {
 _value=0;
 }
 public int getVal()
 {
 return _value;
 }
 public void setVal(int x)
 {
 _value = x;
 }
 }
 public class Test{

 public static void main(String []args){
 GetSetTest t = new GetSetTest();
 t.setVal(25);
 System.out.println("Value=" + t.getVal());
 }
}

In C#, the get and set methods do not need to be explicitly invoked. Its mechanism allows
us to access private variables with a syntax similar to that for public ones. An example pro-
gram follows:

188

Customer.cs

Code
using System;

public class Customer
{
 private string _name;
 public string name
 {
 get
 {
 return _name;
 }
 set
 {
 _name = value ;
 }
 }
 int _age;
 public int age {
 get { return _age; }
 set { _age = value; }
 }
 public int ID
 { get; set; }

}

public class Program
{
 public static void Main()
 {
 var t = new Customer();
 t.name = "John Doe";
 Console.WriteLine(t.name);
 t.age = 25;
 Console.WriteLine(t.age);
 t.ID = 111222333;
 Console.WriteLine(t.ID);
 }
}

189

Generics in C#

C# also supports generics or template types. A method can be defined with arguments or
return objects of generic type T. C# also supports generic collection classes, which allow
for the definition of arrays, lists, stacks, queues, and dictionaries of generic type. The fol-
lowing is an example of using generic stacks in C#:

GenericStacks.cs

Code
using System;
using System.Collections.Generic;

public class Program
{
 public static void Main()
 {
 Console.WriteLine("Stack of Strings");
 Stack<string> numbers = new Stack<string>();
 numbers.Push("twenty one");
 numbers.Push("thirty two");
 numbers.Push("sixty three");

 foreach(string s in numbers)
 {
 Console.WriteLine(s);
 }

 Console.WriteLine("\nPop", numbers.Pop());
 Console.WriteLine("Top: '{0}'",numbers.Peek());
 Console.WriteLine("Pop", numbers.Pop());

 Console.WriteLine("\nStack of Integers");
 Stack<int> figures = new Stack<int>();
 figures.Push(21);
 figures.Push(32);
 figures.Push(63);

 foreach(int i in figures)
 {
 Console.WriteLine(i);
 }

 Console.WriteLine("\nPop", figures.Pop());
 Console.WriteLine("Top: {0} ",figures.Peek());
 Console.WriteLine("Pop", figures.Pop());
 }
}

190

Generics in Java

In Java, we can define our own classes, variables, or methods with arguments of generic
type with parameterized declarations, as follows:

Code
class MyClass<T>
public T myData;
public void myMethod<T>(T myArg)

However, support for generics is stronger in Java with wildcard types. Wildcard types are
not supported in C#.

Test.java

Code
import java.util.ArrayList;
import java.util.List;
import java.util.Arrays;
import java.util.Collection;
import java.util.List;
public class Test{
 public static void test(Collection<?> c){
 for (Object n: c) {
 System.out.print(n+" ");
 }
 System.out.println("");
 }
 public static void main(String []args){
 List<Integer> L1=
 Arrays.asList(1,2,3,4,5);
 test(L1);
 List<Float> L2=
 Arrays.asList(1.1f,2.1f,3.1f,4.1f,5.1f);
 test(L2);
 List<String> L3=
 Arrays.asList("a","b","c","d","e");
 test(L3);
 }
}

This prints

Code
1 2 3 4 5
1.1 2.1 3.1 4.1 5.1
a b c d e

191

Lambda calculus
This is a formal system in

mathematical logic based
on function abstractions

and applications.

The signature of the test method test(Collection<?> c) allows us to work with lists of
type Integer, Float, and String. If we change this to test(Collection<? extends
Number>), it will work with Integer and Float, but not String. In general,
test(Collection<? extends X>) will work with a subclass of X, and
test(Collection<? super X>) will work with a superclass of X. This gives us more
flexibility in working with generic types.

8.4 Haskell, Lisp
Haskell and Lisp are two well-known functional programming languages. Whereas Haskell
is a purely functional, statically-typed language, Lisp is considered more flexible and is
dynamically typed.

Lisp

Lisp (an abbreviation of “list processor”) was designed by John McCarthy in 1960 and is
regarded as the first functional programming language. It is also regarded as the first “arti-
ficial intelligence language” (Tucker & Noonan, 2007). Used primarily for symbolic data
processing, Lisp has been used for solving various problems in artificial intelligence, game
playing, electronic circuit design, and other areas. Today, many dialects of the original
Lisp exist. However, due to portability problems, Common Lisp was created in the 1990s
and it combined features of several dialects, including Scheme, while preserving the syn-
tax, primitive functions, and basic features of pure Lisp (Sebesta, 2016).

The two basic data objects in Lisp are atoms and lists. Atoms are indivisible objects and
may be either numeric or symbolic. In Lisp, integers are real numbers and are examples of
numeric atoms. Symbolic atoms consist of strings with different restrictions on the charac-
ters allowed depending on the Lisp dialect being used. The list is a recursive structure con-
sisting of an opening parenthesis “(‘followed by zero or more atoms or lists, and ending
with a closing parenthesis’)”. The following are valid lists in Lisp:

(1 2 3 4 5)

(1 (2 3) (4 (5 6)))

The syntax of Lisp is characterized by uniformity and simplicity: Both data and programs
take the same form, that of lists. Consider the list (A B C). Interpreted as data, it consists
of three atoms A, B, and C. Interpreted as a program, it represents a function named A,
followed by two arguments B and C (Sebesta, 2016). Such symbolic expressions, or S-
expressions, are similar to those used in the WAT format of WebAssembly. We can define
anonymous functions in Lisp using lambda expressions. The term “lambda” owes its ori-
gin to lambda calculus. Such an expression in Lisp evaluates to function object. Let us
define an anonymous function to compute the expression f x, y = 2x + 3y + 2.

192

fxy.lisp

Code
(LAMBDA (x y) (+ (* 2 x) (* 3 y) 2))

To evaluate this, we simply wrap this as the first member in a list, with arguments follow-
ing as second and third members:

Code
((LAMBDA (x y) (+ (* 2 x) (* 3 y) 2)) 3 4)

To print the result, wrap the above as the second member in yet another list, with the print
function as the first:

Code
(print ((LAMBDA (x y) (+ (* 2 x) (* 3 y) 2)) 3 4))

This prints the answer 20.

We can define a named function using the defun keyword. Consider the following Fibo-
nacci number example:

fib.lisp

Code
(defun fib (n)
 (if (or (zerop n) (= n 1)) n
 (+ (fib (- n 1)) (fib (- n 2)))))
(print (fib 9))

Lisp is used extensively for list processing and has support for list operations. The funda-
mental list operations CAR, CADR, CONS, and LIST are illustrated below.

The CAR function returns the first element of a list. Some examples are shown below. The
single quotation marks indicates that what follows is a list and not a function followed by
its arguments.

list1.lisp

Code
(print (CAR '(A B C)))
(print (CAR '((A B) (C D))))
(print (CAR '(A (B C))))

These print A, (A B), and A respectively.

193

The CDR function returns the given list with the first element removed. The CAR and CDR
functions may also be combined to create a composite function. CDDR is CDR(CDR) and
CADR is CAR(CDR). Most dialects of Lisp allow between two and four such compositions.

list2.lisp

Code
(print (CDR '(A B C)))
(print (CDR '(A (B C))))
(print (CADR '(A B C)))
(print (CDDR '(A B C)))

These print (B C), ((B C)), B, and (C) respectively.

The CONS and the LIST functions create lists from arguments. CONS is a function with two
arguments, that creates a list, with the first argument of the function becoming the first
element of the list and the second argument forming the rest of the list. LIST takes any
number of arguments and returns a list, the elements of which are the function argu-
ments.

list3.lisp

Code
(print (CONS 'A '(B C)))
(print (LIST 'A '(B C)))
(print (LIST 'A '(B C) 'D))

These print (A B C), (A (B C)), and (A (B C) D) respectively.

Haskell

Haskell is a purely functional language. Like Lisp, the fundamental data structure in Has-
kell is the list. Some key features in Haskell include lazy evaluation, list comprehension,
and minimalist syntax.

List comprehension

Lists in Haskell can be defined by enumeration, as in [2,3,5,7,9], and using ellipses (..)
as in [1,3..11]. Lists can also be defined by list comprehension, which is based on the
idea of a function called a generator. We define each element of a list A as a function of the
corresponding element of another list B, i.e., A[i]=f(B[i]). For instance, we may define
a list as [2*x+1 | x <- [0..10]]. List comprehensions also allow us to define infinite
lists, as in [2*x | x <-[0,1..]].

194

Non-strict
Being non-strict is a prop-
erty of a language that
allows a function to be
evaluated, even if all
actual parameters are not
evaluated.

list1.hs

Code
print $ [2,3,5,7,9]
print $ [1,3..11]
print $ [2*x+1 | x <- [0..10]]

Lazy evaluation

Haskell has non-strict semantics, which increases efficiency by using lazy evaluation to
avoid some computations (Sebesta, 2016). In lazy evaluation, a parameter of a function is
evaluated only if its value is needed for the evaluation of the function. Lazy evaluation
allows us to work with infinite lists. An example of a linear search on an ordered list fol-
lows. It works not only for finite lists, but also for infinite ones.

linSearch.hs

Code
linSearch x (m:y)
 | m < x = linSearch x y
 | m == x = True
 | otherwise = False
main = do
print $ linSearch 21 [2*x+1 | x <-[12,13,17,22,23,25]]
print $ linSearch 21 [2*x+1 | x <-[0,1..]]
print $ linSearch 22 [2*x+1 | x <-[0,1..]]

This prints False, True, False.

Minimalist syntax

Consider the simple Haskell program for computing Fibonacci numbers below.

recFib.hs

Code
fib 0 = 0
fib 1 = 1
fib n = fib (n-1) + fib (n-2)
main = do
print $ fib 10

The iterative solution to the same problem is as follows:

195

iterFib.hs

Code
f a b = a : f b (a + b)
fib = f 0 1
main = do
 print $ take 10 fib

This prints the first ten Fibonacci numbers as [0,1,1,2,3,5,8,13,21,34]. Note that
there is no keyword to define the function in Haskell. The first line defines the function f
with parameters a and b. It outputs a to the output list and then implements the pseudo-
code: sum=a+b; a = b; b = sum. The last line iterates this ten times. The second line initi-
alizes the first two Fibonacci numbers: 0 and 1.

Haskell programs are succinct. Below is an example of finding the factors of a number:

factors.hs

Code
factors n = [f | f <-[1..n], mod n f == 0]
main = do
print $ factors 60

This prints the factors of 60. The first line defines factors of n as the list of numbersf, 1 ≤ f ≤ n such that nmodf = 0.

Now, consider the problem of partitioning an array of integers that involves rearranging
them so that integers less than or equal to a pivot appear before those greater than the
pivot. This problem forms a building block of other algorithms, such as quicksort and vari-
ous selection algorithms (Cormen et al., 2009). We again notice the strong declarative style
in the short Haskell solution below:

part.hs

Code
part (i:j) = [x|x<-j, x <= i]++[i]++[x|x<-j, x > i]
main = do
print $ part [13, 9, 44, 53, 6, 5, 23, 2, 39]

This prints the list [9,6,5,2,13,44,53,23,39]. As in classical quicksort partitioning,
the first element is chosen as the pivot. The first line defines a partial solution as a list con-
taining elements less than or equal to the pivot among the other elements in the list. This
is concatenated with a singleton list containing the pivot and a list containing elements
greater than the pivot.

196

8.5 JavaScript and Its Relatives
JavaScript is a central language in web applications. It uses the browser as a platform and
first appeared in the Netscape Navigator browser in 1995. It brings a dynamic functionality
to websites by facilitating the usage of forms filled in by users. It helps to track all user
actions including mouseovers, selecting, scrolling, clicking, and zooming. It forms an
interface between the user and the webpage. JavaScript runs inside the browser and has
access to the elements in the web document, local file systems, and system resources. It is
fully compatible with most browsers and is widely used for client-side front-end scripting
(Sebesta, 2016). Since then, JavaScript has found its way as a programming language for
servers, data-science, and many other applications. The engine used is the same as that of
a browser but without graphical aspects.

Basic Features

The basic syntax of JavaScript has similarities with C, with support for variables, expres-
sions, operators, conditionals, and loops. The code can be embedded in HTML code, as
shown in the following example to compute the mean of a sequence of numbers entered
by the user.

mean.html

Code
<!DOCTYPE html>
<html>
<body>
<h2>Computing Mean</h2>
<p>Mean of a sequence of numbers.</p>
<p id="example"></p>
<script>
var n, i=0, sum = 0;
var body = document.body;
n = prompt("Enter count of numbers, range [1,50]", "");
var p1 = document.createElement('p');
if((n < 1) || (n > 50)){
 p1.appendChild(document.createTextNode("Error!"));
}
else {
 var aList = new Array(50);
 p1.appendChild(document.createTextNode("Sequence: "));
 for(i=0; i < n; i++) {
 aList[i] = prompt("Enter next number","");
 var t1 = document.createTextNode(aList[i]+" ")
 p1.appendChild(t1);
 sum+=parseInt(aList[i]);
 }
 var t2=document.createTextNode("Mean=" + sum/n);

197

Application
programming interface
An application program-

ming interface, or API,
serves as an intermediate
layer that allows applica-

tions to communicate.

 p1.appendChild(t2);
}

body.appendChild(p1);
</script>
</body>
</html>

The mean is computed for a sequence 1,2,3,4 entered by the user.

Figure 44: Computing Mean

Source: Created on behalf of IU (2022).

The Document Object Model

The Document Object Model (DOM) is a World Wide Web Consortium (WC3) standard
defining an application programming interface (API) for web documents to manipulate
the tree of HTML elements. The HTML DOM is a standard for accessing, adding, deleting, or
updating elements of an HTML document. JavaScript has been designed around the idea
of the DOM with a hierarchy of parent and child objects. We illustrate this using an exam-
ple, in which a hierarchy of objects is defined using the document.createElement()
method with various table objects as arguments. The following (child, parent) relation-
ships are defined among various objects: (table, body), (tblbody, table), (row,
tblbody), (cell,row), and (cellText, cell).

table.html

Code
<!DOCTYPE html>
<html>
<body>
<p id="example"></p>
<input type="button" value="Create a table" onclick='create_table()'>
<script>
function create_table() {
var n=0, i=0, sum = 0, num=0;
var body = document.body;
n = prompt("Enter count of distinct values, \
 in the range [1,10]", "");
 if((n < 1) || (n > 10)){
 t1=document.createTextNode(" Error, wrong value");
 body.appendChild(t1);

198

 }
 else {
 var A = new Array(10);
 var B = new Array(10);
 for(i=0; i < n; i++) {
 A[i] = prompt("Enter next score","");
 B[i] = prompt("Enter next frequency","");
 sum+=parseInt(A[i]*B[i]);
 num+=parseInt(B[i]);
 }

 var table1 = document.createElement("table");
 var tblBody = document.createElement("tbody");
 for (var i = 0; i < 3; i++) {
 var row = document.createElement("tr");
 for (var j = 0; j <= n; j++) {
 var cell = document.createElement("td");
 var m;
 switch(i) {
 case 1:
 if(j==0) m="Score";
 else m=A[j-1];
 break;
 case 2:
 if(j==0) m="Frequency";
 else m=B[j-1];
 break;
 default:
 if(j==0) m="Index";
 else m=j;
 }
 var cellText =document.createTextNode(m);
 cell.appendChild(cellText);
 row.appendChild(cell);
 }
 tblBody.appendChild(row);
 }
 table1.appendChild(tblBody);
 body.appendChild(table1);
 table1.setAttribute("border", "2");
 t2=document.createTextNode("Mean=" + sum/num);
 body.appendChild(t2);
}
}
</script>
</body>
</html>

199

With a set of five scores and frequencies, the HTML page renders and displays the table as
follows:

Figure 45: Displaying Scores and Frequencies

Source: Created on behalf of IU (2022).

The Relatives

Despite the popularity of JavaScript, there are similar languages that are more suitable for
specific applications and can be easily compiled into JavaScript. These include Typescript,
Coffeescript, Elm, Roy, Opal, and Clojurescript (Fogus, 2013). Moreover, JavaScript is often
processed by various transformation tools so that it becomes more compact, more con-
textualized, less readable, or better performing. Finally, JavaScript is, as of May 2022,
becoming increasingly popular for server-side applications where the NodeJS environ-
ment allows the language to perform extremely well in input-output operations because
of its functional aspects.

8.6 Other Imperative Programming
Languages
The imperative programming paradigm, based on the von Neumann architecture, is the
oldest and most developed paradigm. The imperative programming languages include
features such as procedural abstractions, control structures, input/output (I/O), expres-
sions, and assignments.

Ada

Ada was developed as part of an extensive effort in the 1970s by the US Department of
Defense (Tucker & Noonan, 2007). In Ada 95, extensions for supporting object-oriented
programming were added to the original, largely imperative, Ada 83, making Ada a multi-
paradigm language (Tucker & Noonan, 2007). Ada was an important milestone in the
development of programming languages since certain important features went on to
influence the design of other programming languages (Sebesta, 2016), including the fol-
lowing:

• Ada includes a facility for encapsulation using packages.
• Ada’s usage in critical embedded applications influenced the development of extensive

support for user-defined exception handling.

200

Rendezvous
This is a mechanism for
synchronization between
a pair of tasks, allowing
data to be exchanged
between them and coor-
dinated execution.

• The idea of generics was introduced allowing procedures to be defined with parameters
of unspecified types. The generic procedure can be instantiated for a particular type at
compile time.

• Support for concurrency is provided through the rendezvous mechanism for synchroni-
zation and communication (Tucker & Noonan, 2007).

Ada 2005 added some more features, such as interfaces and greater control over schedul-
ing algorithms. Ada is widely used in avionics, air traffic control, and rail transportation
(Sebesta, 2016).

Perl

Perl found wide usage as a scripting language. It can be compiled into a machine-inde-
pendent bytecode, which can then be interpreted or compiled into an executable pro-
gram.

Perl is dynamically typed. Built-in data structures include dynamic arrays with integer
indices and associative arrays with string indices. Support for classes was added in Ver-
sion 5, allowing Perl to be used as a multi-paradigm language. Perl lacks generics, over-
loading, and exception handling (Tucker & Noonan, 2007), but a strength of Perl lies in its
support for regular expressions; it is not surprising that Perl is best known for text process-
ing.

PHP

With the need for dynamic, database-driven content for websites, technologies support-
ing such content emerged in the mid-1990s. The Hypertext Preprocesssor (PHP), devel-
oped by Rasmus Lerdorf, was originally called “Personal Home Page Tools”. It emerged as
a general-purpose server-side scripting language that can be embedded in HTML (Java-
Script is used for client-side scripting).

PHP is integrated with several database management systems including MySQL, Microsoft
SQL Server, Oracle, Informix, and PostgreSQL. It has a simple syntax, is open-source, and is
loosely typed, making it easy to use (Nixon, 2018).

SUMMARY
Among the many programming languages that exist, many stand out
due to some specific features. At the same time, languages that are
closely related, for example, by supporting similar programming para-
digms, have certain crucial differences.

The assembly language, or assembler, is designed for specific architec-
tures.

WebAssembly enables the execution of compiled code on the web.

201

C is a simple and structured imperative programming language that has
been popular for embedded systems programming and has strongly
influenced the design of many programming languages.

C++, barring some minor exceptions, is a superset of C. It is a multi-para-
digm language and includes powerful constructs, such as namespaces,
classes and inheritance, operator and function overloading, templates,
and features for exception handling.

Java was developed in response to the requirement for an architecture-
oblivious language for applications running in consumer electronic devi-
ces. The key to its success is the bytecode.

The design of C# was influenced by Java, with which it is closely related.
C# and Java share similar syntax and object modeling, and both provide
support for distributed computation.

Haskell and Lisp are functional programming languages. Whereas Lisp is
considered more flexible and is dynamically typed, Haskell is a purely
functional language and statically typed. Some key features in Haskell
include lazy evaluation, list comprehension, and a crisp syntax.

JavaScript is a central language in web applications. It uses the browser
as a platform but is used increasingly (also as a server environment).
Both features bring dynamic functionality to web pages. It facilitates the
usage of forms filled in by users. JavaScript has been designed around
the idea of the DOM, a W3C standard. This can be used to create Java-
Script applications embedded in HTML.

Other imperative programming languages include Perl, Ada, and PHP.

202

BACKMATTER

LIST OF REFERENCES
Aghajani, E., Nagy, C., Linares-Vásquez, M., Moreno, L., Bavota, G., Lanza, M., & Shepherd,

D. C. (2020, July 6—11). Software documentation: The practitioners’ perspective. 2020
IEEE/ACM 42nd international conference on software engineering (ICSE) (pp. 590—601).
IEEE.

Aghajani, E., Nagy, C., Vega-Marquez, O. L., Linares-Vasquez, M., Moreno, L., Bavota, G., &
Lanza, M. (2019). Software documentation issues unveiled. 2019 IEEE/ACM 41st interna-
tional conference on software engineering (ICSE) (pp. 1199—1210). IEEE.

Ahmad, A., & Koam, A. N. A. (2020). Computing the topological descriptors of line graph of
the complete m-ary trees. Journal of Intelligent and Fuzzy Systems, 39(1), 1081—1088.
https://doi-org.pxz.iubh.de:8443/10.3233/JIFS-191992

Aho, A. V., Lam, M. S., Sethi, R., & Ullman, J. D. (2007). Compilers: Principles, techniques,
and tools (2nd ed.). Addison-Wesley.

Almeida, J. B., Frade, M. J., Pinto, J. S., & Melo de Sousa, S. (2011). Rigorous software devel-
opment: An introduction to program verification. Springer.

Batchelder, N. (2022). Coverage.py (Version 6.3.2) [Computer software]. https://coverage.re
adthedocs.io/en/6.3.2/#

Ben-Kiki, O., Evans, C. Net, I.D., (2021) YAML Ain’t Markup Language. YAML Development
Team. https://yaml.org/spec/1.2.2/

Bentley, J. (2000). Programming pearls (2nd ed.). Addison-Wesley.

Brodal, G. S. (2013). A survey on priority queues. In A. Brodnik, A. López-Ortiz, V. Raman, &
A. Viola (Eds.), Space-efficient data structures, streams, and algorithms. Lecture notes
in Computer Science (Vol. 8066). Springer. https://doi.org/10.1007/978-3-642-40273-9_
11

Chung, C.-M. (1990, September 24—27). Software development techniques—Combining
testing and metrics. IEEE TENCON’90: 1990 IEEE region 10 conference on computer and
communication systems: Conference proceedings (Vol. 1, pp. 424—428). IEEE. https://do
i-org.pxz.iubh.de:8443/10.1109/TENCON.1990.152646

Clarke, E., Biere, A., Raimi, R., & Zhu, Y. (2001). Bounded model checking using satisfiability
solving. Formal Methods in System Design, 19(1), 7—34. https://doi.10.1023/A:10112765
07260

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to algorithms
(3rd ed.). MIT Press.

204

https://doi-org.pxz.iubh.de:8443/10.3233/JIFS-191992
https://coverage.readthedocs.io/en/6.3.2/
https://coverage.readthedocs.io/en/6.3.2/
https://yaml.org/spec/1.2.2/
https://doi.org/10.1007/978-3-642-40273-9_11
https://doi.org/10.1007/978-3-642-40273-9_11
https://doi-org.pxz.iubh.de:8443/10.1109/TENCON.1990.152646
https://doi-org.pxz.iubh.de:8443/10.1109/TENCON.1990.152646
https://doi.10.1023/A:1011276507260
https://doi.10.1023/A:1011276507260

Even, G., & Medina, M. (2012). Digital logic design: A rigorous approach. Cambridge Univer-
sity Press. https://.doi.10.1017/CBO9781139226455.009

Filippova, K., & Strube, M. (2009). Tree linearization in English: Improving language model
based approaches. NAACL-short 09’: Proceedings of human language technologies: The
2009 annual conference of the North American chapter of the Association for Computa-
tional Linguistics, companion volume: Short papers (pp. 225—228). https://doi-org.pxz.i
ubh.de:8443/10.3115/1620853.1620915

Fogus, M. (2013). Functional JavaScript. O’Reilly.

Gabrielli, M., & Martini, S. (2010). Programming languages: Principles and paradigms.
Springer.

Garcia-Tobar, J. (2017). Sphinx as a tool for documenting technical projects. https://doi-org.
pxz.iubh.de:8443/10.5281/zenodo.439242

Goodger, D., & van Rossum, G. (2010). Docstring conventions. In M. Alchin (Ed.), Pro Python
(pp. 303—307). Apress. https://doi-org.pxz.iubh.de:8443/10.1007/978-1-4302-2758-8_1
5

Goodrich, M. T., Tamassia, R., & Goldwasser, M. H. (2013). Data structures and algorithms in
Python. Wiley.

Hennessy, J. L., & Patterson, D. A. (2017). Computer architecture: A quantitative approach
(6th ed.). Morgan Kaufmann.

Horowitz, E., Sahni, S., & Rajasekaran, S. (2008). Computer algorithms/C++. Universities
Press.

JSON (n.d) Introducing JSON. https://www.json.org/json-en.html

Jujuedv, & PHP Wellnitz. (n.d.). SOSML IDE (Version 1.6.4) [Computer software]. https://sos
ml.org/

Kan, S. H. (2016). Metrics and models in software quality engineering (2nd ed.). Pearson.

Kernighan, B. W., & Ritchie, D. M. (1988). The C programming language (2nd ed.). Pearson.

Knuth, D. E. (1998). The art of computer programming: Sorting and Searching (2nd ed., Vol.
3). Pearson.

Knuth, D. E. (2013). The art of computer programming: Fundamental algorithms (3rd ed.,
Vol. 1). Addison-Wesley.

Levitin, A. (2012). Introduction to the design and analysis of algorithms (3rd ed.). Pearson.

Liang, Y. D. (2017). Introduction to programming using Python. Pearson.

205

https://.doi.10.1017/CBO9781139226455.009
https://doi-org.pxz.iubh.de:8443/10.3115/1620853.1620915
https://doi-org.pxz.iubh.de:8443/10.3115/1620853.1620915
https://doi-org.pxz.iubh.de:8443/10.5281/zenodo.439242
https://doi-org.pxz.iubh.de:8443/10.5281/zenodo.439242
https://doi-org.pxz.iubh.de:8443/10.1007/978-1-4302-2758-8_15
https://doi-org.pxz.iubh.de:8443/10.1007/978-1-4302-2758-8_15
https://www.json.org/json-en.html
https://sosml.org/
https://sosml.org/

Miller, B. N., & Ranum, D. L. (2013). Problem solving with algorithms and data structures
using Python (2nd ed.). Franklin Beedle Publishers.

Nixon, R. (2018). Learning PHP, MySQL and JavaScript (5th ed.). O’Reilly.

O’Regan, G. (2018). The innovation in computing companion. A compendium of select, pivo-
tal inventions. Springer. https://doi.org/10.1007/978-3-030-02619-6_23

Pedregosa, F. (2021). Memory-profiler (Version 0.60.0) [Computer software]. https://pypi.or
g/project/memory-profiler/

Peled D., & Qu, H. (2003). Automatic verification of annotated code. In H. Konig, M. Heiner
& A. Wolisz (Eds.), Formal techniques for networked and distributed systems—FORTE
2003. Lecture notes in computer science (Vol. 2767). Springer. https://doi.org/10.1007/
978-3-540-39979-7_9

Pratt, T. W., & Zelkowitz, M. V. (2001). Programming languages: Design and implementation
(4th ed.). Prentice-Hall.

Python Software Foundation. (2021a). Radon (Version 5.1.0) [Computer software]. https://
pypi.org/project/radon/

Python Software Foundation. (2021b). Memory Profiler (Version 0.58.0) [Computer soft-
ware). https://pypi.org/project/memory-profiler/

Qian Yang, J., Li, J., & Weiss, D. M. (2009). A survey of coverage-based testing tools. The
Computer Journal, 52(5), 589—597.

Read the Docs. (n.d.). Read the Docs: documentation simplified. https://docs.readthedocs.i
o/en/stable/about/index.html

Rosen, K. H. (2019). Discrete mathematics and its applications (8th ed.). McGraw-Hill.

Rourke, M. (2018). Learn WebAssembly. Packt.

Scott, M. L. (2016). Programming language pragmatics (4th ed.). Morgan Kaufmann.

Schildt, H. (2017). Java: The complete reference (10th ed.). Oracle Press.

Sebesta, R. W. (2016). Concepts of programming languages (11th ed.). Pearson.

Sommerville, I. (2016). Software engineering (10th ed.). Pearson.

Sperberg-McQueen, C. M, (2008). Extensible Markup Language (XML) 1.0 (5th ed.) W3C. http
s://www.w3.org/TR/xml/

Spyder IDE. (2021). Spyder (Version 5.2.1) [Computer software]. https://www.spyder-ide.or
g/

206

https://doi.org/10.1007/978-3-030-02619-6_23
https://pypi.org/project/memory-profiler/
https://pypi.org/project/memory-profiler/
https://doi.org/10.1007/978-3-540-39979-7_9
https://doi.org/10.1007/978-3-540-39979-7_9
https://pypi.org/project/radon/
https://pypi.org/project/radon/
https://pypi.org/project/memory-profiler/
https://docs.readthedocs.io/en/stable/about/index.html
https://docs.readthedocs.io/en/stable/about/index.html
https://www.w3.org/TR/xml/
https://www.w3.org/TR/xml/
https://www.spyder-ide.org/
https://www.spyder-ide.org/

Tucker, A. B., & Noonan, R. E. (2007). Programming languages: Principles and paradigms
(2nd ed.). McGraw Hill.

Vonhoegen, H. (2018): XML: Einstieg, Praxis, Referenz. Das XML-Handbuch mit vielen Anwen-
dungsbeispielen [XML: Introduction, praxis, reference: The XML handbook with exam-
ples] (9th ed.). Rheinwerk Computing.

von Neumann, J. (1945). First draft of a report on the EDVAC. University of Pennsylvania.

Watson, A. H., & McCabe, T. J. (1996). Structured testing: A testing methodology using the
cyclomatic complexity metric (NIST Special Publication 500—235). NIST. http://www.m
ccabe.com/iq_research_nist.htm

Whittaker, J. A. (2009). Exploratory software testing. Addison-Wesley.

Wilson, R. J. (2010). Introduction to graph theory (5th ed.). Pearson.

207

http://www.mccabe.com/iq_research_nist.htm
http://www.mccabe.com/iq_research_nist.htm

LIST OF TABLES AND
FIGURES

Figure 1: Euclid’s Greatest Common Divisor Algorithm . 22

Figure 2: Tree Representation of Butane Isomers . 37

Figure 3: Railroad Car Switching Using Stacks . 44

Figure 4: Departure Queue of Aircrafts on a Runway . 45

Figure 5: Aircraft Landing Problem . 48

Figure 6: Heap Operations . 49

Figure 7: A Graph . 50

Figure 8: The Konigsberg Bridge Problem . 50

Figure 9: A Directed Graph . 51

Figure 10: An Undirected Graph with Cycles . 52

Figure 11: A Graph with Directed Cycles . 52

Figure 12: Adjacency List of an Undirected Graph . 53

Figure 13: Adjacency List of a Directed Graph . 54

Figure 14: Adjacency Matrix of an Undirected Graph . 54

Figure 15: Adjacency Matrix of a Directed Graph . 55

Figure 16: Complexity Comparison . 83

Figure 17: Binary Tree . 89

Figure 18: Insertion Sort . 95

Figure 19: Bubble Sort . 96

Figure 20: Selection Sort . 97

208

Figure 21: Quicksort . 98

Figure 22: Merge Sort . 100

Figure 23: Spyder ID . 101

Figure 24: A Trie of Some English Words . 102

Figure 25: Patricia Trie Example . 104

Figure 26: Pattern Matching . 107

Figure 27: The Prefix Function . 108

Figure 28: Overview of the Core Family of Languages around XML 113

Figure 29: Representation of the Structure of an XML Document . 116

Figure 30: Tree Diagram of the Document in the Example . 118

Figure 31: XML Document Accessed Through a DOM Parser . 119

Figure 32: Process of Creating a New Document Using XSLT . 124

Figure 33: SOSML IDE . 132

Figure 34: Control Flow Graph G1 . 134

Figure 35: Control Flow Graph G2 . 134

Figure 36: Test Coverage Report . 144

Figure 37: Using the Memory Profiler in Python: Example One . 149

Figure 38: Memory Usage over Time . 150

Figure 39: Using the Memory Profiler in Python: Example Two . 151

Figure 40: Tkinter Label and Button . 160

Figure 41: Typical Layout of a Process in Memory . 161

Figure 42: WasmFiddle . 182

Figure 43: Automatic Type Promotion in Java . 187

209

Figure 44: Computing Mean . 198

Figure 45: Displaying Scores and Frequencies . 200

210

IU Internationale Hochschule GmbH
IU International University of Applied Sciences
Juri-Gagarin-Ring 152
D-99084 Erfurt

Mailing Address
Albert-Proeller-Straße 15-19
D-86675 Buchdorf

media@iu.org
www.iu.org

Help & Contacts (FAQ)
On myCampus you can always find answers
to questions concerning your studies.

	Introduction
	Signposts Throughout the Course Book
	Basic Reading
	Further Reading
	Learning Objectives

	Basic Concepts
	Algorithms, Data Structures, and Programming Languages as the Basis of Programming
	Detailing and Abstraction
	Control Structures
	Types of Data
	Basic Data Structures (List, Chain, Tree)

	Data Structures
	Advanced Data Structures: Queue, Heap, Stack, Graph
	Abstract Data Types, Objects, and Classes
	Polymorphism

	Algorithm Design
	Induction, Iteration, and Recursion
	Methods of Algorithm Design
	Correctness and Verification of Algorithms
	Efficiency (Complexity) of Algorithms

	Basic Algorithms
	Traversing and Linearization of Trees
	Search Algorithms
	Sorting Algorithms
	Search in Strings
	Hash Algorithms
	Pattern Recognition

	Representing Structured Data
	Structure of XML documents
	Accessing XML Documents with the DOM and SAX Approaches
	Transformation of XML documents using XSL
	Alternative Document Representations

	Measuring Programs
	Type Inference and IDE Interactive Support
	Cyclomatic and Referential Complexity
	Digesting Code Documentation
	Compiler Optimization
	Code Coverage
	Unit and Integration Testing
	Heap Analysis

	Programming Languages
	Programming Paradigms
	Execution of Programs
	Types of Programming Languages
	Syntax, Semantics, and Pragmatics
	Variables and Type Systems

	Overview of Important Programming Languages
	Assembler and Webassembly
	C and C++
	Java and C#
	Haskell, Lisp
	JavaScript and Its Relatives
	Other Imperative Programming Languages

	Backmatter
	List of References
	List of Tables and Figures

