FindContributoriiane (string Htl)

avatar * alte\";

jonStart += Pattern.Length;
NemeStart
c NameEnd =
(Namestart

Sectionstart:

) IndexOf Sectionstart);
21 8 NameEnd 1= -1 8% NameEnd

string W

= Wl
return Name;

Substring(NemeStart, NeseEnd -

1ogger -Adduine("Cont

INTO uuunne
perso

people’ »mm [
o\ %

mion AL AL
- oo
of mv“ ook AL
muv T
) nmnu e o oL
ople oo
e o
Y
-\izrﬁ“ m L ywon A
umnn Fenal®S,
1 orou o orovh 0 oF o AL

e w2’

e

Course Book

e
biyiet W
i Tt i

b s
oo
proer e
Lo Tt
Vaarn: Tk

Wgny: Thutons
Batcel: o

procesare
e
frocecu

e
e

e
e S
St W)
ettt e

e s s g

e

e o

o WM s
e T e

s e S gt ok
955

’lv o re \»mmw:v*wm et ekt ¥

""““" e 3, T2 W

mrv.,mm e

e 8 o
o

e

s s 1
et i
mmw ot)
e 1

peslisop = tres

esd et i
4 reestston Source

]
et

" (HenL Substring SourceTndex, patter

ndex += Pattern.Length;

sttern.Lengths

nghn) == pattern)

INTERNATIONAL
UNIVERSITY OF
APPLIED SCIENCES

DATA SCIENCE SOFTWARE

MASTHEAD

Publisher:

IU Internationale Hochschule GmbH

IU International University of Applied Sciences
Juri-Gagarin-Ring 152

D-99084 Erfurt

Mailing address:
Albert-Proeller-Strafle 15-19
D-86675 Buchdorf
media@iu.org

www.iu.de

DLBDSDSSEO1
Version No.: 001-2023-0811
N.N.

© 2023 IU Internationale Hochschule GmbH

This course book is protected by copyright. All rights reserved.
This course book may not be reproduced and/or electronically edited, duplicated, or dis-
tributed in any kind of form without written permission by the IU Internationale Hoch-

schule GmbH (hereinafter referred to as IU).

The authors/publishers have identified the authors and sources of all graphics to the best
of their abilities. However, if any erroneous information has been provided, please notify

us accordingly.

TABLE OF CONTENTS

DATA SCIENCE SOFTWARE ENGINEERING

Introduction

Signposts Throughout the Course Book
Suggested Readings

Learning Objectives

Unit1
Requirements Engineering

1.1 Requirements Engineering
1.2 Waterfall Model
1.3 Rational Unified Process

Unit 2
Agile Project Management

2.1 Agile Project Management
2.2 Introduction to Kanban
2.3 Introduction to Scrum

2.4 From Traditional to Agile

Unit 3
Testing

3.1 Why Testing?

3.2 Unit and Integration Tests

3.3 Approaching Testing

3.4 Testing Machine Learning Software
3.5 Performance Monitoring

Unit 4
Software Development Paradigms

4.1 Programming Paradigms
4.2 Program Design
4.3 Programming Styles

Y]

11

13
17
21

31

32
37
42
48

53

55
58
64
67
70

75

76
82
85

Unit 5
Experimentation and Production

5.1 Experimentation and Production
5.2 Continuous Integration and Delivery
5.3 Building a Scalable Environment

Appendix
List of References
List of Tables and Figures

93

94
103
107

116
125

INTRODUCTION

WELCOME

SIGNPOSTS THROUGHOUT THE COURSE BOOK

This course book contains the core content for this course. Additional learning materials
can be found on the learning platform, but this course book should form the basis for your
learning.

The content of this course book is divided into units, which are divided further into sec-
tions. Each section contains only one new key concept to allow you to quickly and effi-
ciently add new learning material to your existing knowledge.

At the end of each section of the digital course book, you will find self-check questions.
These questions are designed to help you check whether you have understood the con-
cepts in each section.

For all modules with a final exam, you must complete the knowledge tests on the learning
platform. You will pass the knowledge test for each unit when you answer at least 80% of
the questions correctly.

When you have passed the knowledge tests for all the units, the course is considered fin-
ished and you will be able to register for the final assessment. Please ensure that you com-

plete the evaluation prior to registering for the assessment.

Good luck!

SUGGESTED READINGS

GENERAL SUGGESTIONS

Brookshear, G., & Brylow, D. (2019). Computer science: An overview. Pearson Education.

Hunt, A., & Thomas, D. (1999). The pragmatic programmer: From journeyman to master.
Addison-Wesley.

Martin, R. C. (2008). Clean code. Prentice Hall.
Sammons, A. (2019). Agile project management with Scrum + Kanban 2 In 1: The last 2
approaches you’ll need to become more productive and meet your project goals. M & M

Limitless.

Stephens, R. (2015). Beginning software engineering. John Wiley & Sons.

Arif, S. U., Khan, Q., & Gahyyur, S. A. K. (2010). Requirements engineering processes, tools/
technologies & methodologies. International Journal of Reviews in Computing, 2(6), 41
—56.

Cesarotti, V., Gubinelli, S., & Introna, V. (2019). The evolution of project management (PM):
How agile, lean and six sigma are changing PM. Journal of Modern Project Manage-
ment, 7(3), 1—29.

Ries, E. (2011). The lean startup: How today’s entrepreneurs use continuous innovation to
create radically successful businesses (pp. 1—78). Crown Publishing Group.

Kochhar, P. S., Xia, X., & Lo, D. (2019). Practitioners’ views on good software testing practi-
ces. Proceedings of the 41st international conference on software engineering: Software
engineering in practice (ICSE-SEIP) (pp. 61—70). IEEE.

Zhang, J. M., Harman, M., Ma, L., & Liu, Y. (2019). Machine learning testing: Survey land-
scapes and horizons. arXiv.

Available online.

Gries, P., Campbell, J., & Montojo, J. (2017). Practical programming: An introduction to com-
puter science using Python 3 (pp. 1—65, 297—317). The Pragmatic Bookshelf.

Kim, G., Humble, J., Debois, P., & Willis, J. (2016). The DevOps handbook (pp. 1—100). IT
Revolution Press.

Rao, D. (2019). Keras to Kubernetes. The journey of a machine learning model to production
(pp. 223—289). Wiley.

LEARNING OBJECTIVES

The course Data Science Software Engineering gives a detailed overview of the relevant
methods and paradigms that data scientists need to know in order to develop enterprise-
grade models. The goal of this course is to give students a common foundation in software
engineering so that they can efficiently communicate their requirements with engineering
teams, work alongside engineers, and articulate their technical ideas on the job. On suc-
cessful completion of this course, students will be able to understand the concept of
project management approaches, apply Agile approaches in software development, cre-
ate their own automated software tests, understand various software paradigms, and eval-
uate the steps necessary to bringing models into a production environment.

You will be introduced to traditional project management, including requirements engi-
neering, the waterfall model, and the rational unified process (RUP). Whatever approach
you find yourself using at work, project management is the basis of working productively
in teams, and having a good understanding of best practices goes a long way. We will then
discuss Agile project management, including an introduction to Kanban and Scrum. Here,
you will also learn how to best move a team from traditional project management meth-
odology to Agile, an whether this solution is a good fit for your team.

We will address the process of and reasons for testing your sofware. You will also see
example of how to build and run your own tests using pytest. Special focus is given to the
topic of testing and the consideration of how to bring a model into a production environ-
ment. Next, we will explore relevant software development paradigms such as test-driven
development, pair programming, mob programming, and extreme programming. Leading
on from this, the final unit explores how to bring your model into a production environ-
ment. This brings together concepts from earlier units and introduces concepts such as
versioning, DevOps, and MLOps.

UNIT 1

STUDY GOALS

On completion of this unit, you will have learned ...

what software project requirements are and what the software requirement engineer-
ing process involves.

some methods for software requirement engineering processes.

traditional software management methods, such as the waterfall method.

about the rational unified process model for software development life cycle manage-
ment.

12

1. REQUIREMENTS ENGINEERING

Introduction

According to the Project Management Institute (PMI) (2008), a project is “a temporary
endeavor undertaken to create a unique project service or result.” The development of
software for an enhanced business process, the construction of a house or bridge, and the
expansion of businesses into a new geographic market all are examples of projects.

Project management is the employment of knowledge, experiences, skills, tools, and
methods to perform activities to satisfy the project requirements. Software project man-
agement is the art and science of planning and leading software projects (Stellman &
Greene, 2005). By using the software project management disciplines, software projects
are planned, monitored, and controlled to deliver software solutions according to their
requirements.

A failure in software project management results in project shut down or the delivery of a
software solution that does not meet the client’s requirements. Among the most common
causes of software project management failures we can mention

« unreliable or unarticulated project objectives and goals,

« incorrect estimations of required resources (software developers, budget, etc.),

+ poorly specified system requirements,

+ inadequate reporting of the project’s status to the project stakeholders (client, develop-
ers, project managers, etc.),

« unmanaged risks,

+ application of immature technologies and methods,

« inability to manage the project’s complexity,

+ poor development practices,

« stakeholder politics, and

« financial pressures (Charette, 2005).

The goal of software project management models is to mitigate the aforementioned cau-
ses of failure to deliver the right software solution to the customers with the provided
resources. Since the birth of software products, many software project management mod-
els have been developed by software companies. In this unit, we will focus mainly on two
of the classic (traditional) software management models: the waterfall model (which focu-
ses mainly on matching user requirements to a delivered software solution) and the
rational unified model as an iterative software development model. As the project require-
ments have a critical role in both of these models, we will start this section with an intro-
duction to software requirement management and engineering.

1.1 Requirements Engineering

Every project starts with a statement of requirements. Let us assume that you are going to
build your dream house. For this reason, you purchase the land and hire a construction
team. However, there is still something missing: a detailed blueprint of your dream house.
This blueprint is a set of instructions and drawings, which includes information about the
house, such as floor plan, exterior elevations, foundation and basement plans, roof fram-
ing plans, and so on. This blueprint gives the construction team a clear idea and image of
what your expectations are (requirements) regarding your dream house and also the
requirements needed to define their job as completed. The Project Management Institute
(2008) defines a project requirement as “a condition or capability that must be met or pos-
sessed by a system, product, service, result, or component to satisfy a contract, standard,
specification, or other formally imposed documents. Requirements include the quantified
and documented needs, wants, and expectation of the sponsor, customer, and other
stakeholders.” Simply put, project requirements specify the characteristics of the end
product of said project.

Figure 1: Blueprint of a Residential House

Source: Hiraeth (2018).

We can apply the general definition of a project requirement to software development
projects. The IEEE standard glossary of software engineering terminology defines a
requirement in a software project in three categories. A requirement can be considered

13

14

1. acondition or capability required by a user to solve a problem or complete a task;
a condition or capability that must be satisfied or possessed by a system or system
component to complete a contract, standard, specification, or other formally imposed
documents; or

3. adocumented copy of a condition or capability as in (1) or (2) (IEEE Computer Society,
1990).

The above definition of requirement makes it dependent on the concrete organization and
industry it is implemented in, as well as their users. In defining the requirements of a soft-
ware project, the stakeholders should try to answer primarily “what” should be done
instead of “how” it should be done. In the beginning, requirements are formulated as
questions and should only express needs, not suggest solutions.

There are numerous approaches to classify requirements and three of them are shown as
instances in the table below (Aurum & Wohlin, 2005). The classes shown in this table are
only some of the many possible ways of categorizing requirements. The elements in class
1 are divided into functional and non-functional requirements; however, there is often no
clear line separating the two. For example, we can assume that security is classified as a
non-functional requirement. However, during the implementation of the security require-
ment, developers encounter the user authorization, which is a functional requirement.

The elements in class 2 are classified from the perspective of different areas such as
design, product, goal, and application domain. The elements in class 3 are also catego-
rized according to the type of the requirement: primary (defined by the stakeholders) or
secondary (derived from the primary requirements). It should be emphasized that these
three sample classes are independent. In fact, a requirement (for example, the security
requirement) could belong simultaneously to at least one element in each class: security
is simultaneously a non-functional requirement (class 1), a design level requirement (class
2), and could be also a primary requirement (class 3).

Table 1: Some Examples of Requirements Classifications

Class 1 Functional requirements Define “what” the designed system will do

Non-functional requirements Define the constraints on the solutions that
will satisfy the functional requirement, such
as security and modifiability of the software

product
Class 2 Goal level requirements Define business-related requirements
Domain level requirements Define problem area requirements
Product level requirements Define product domain requirements
Design level requirements Defines what to build
Class 3 Primary requirements Provided directly by stakeholders
Secondary requirements Derived from the primary requirements

Source: Aurum & Wohlin (2005).

Requirement Engineering Process

After understanding the meaning of software project requirements, we will briefly discuss
the process of engineering the requirements. Requirements engineering is an iterative set
of actions that guarantee that elicitation, documentation, refinement, and changes of
requirements are sufficiently dealt with through the project life cycle (Coventry, 2015).
There are several process models for requirement engineering, such as the purely linear
model (Macaulay, 2012), the linear model (Kotonya & Sommerville, 1998), and the spiral
model (Boehm, 1988).

The pure linear model proposed by Macaulay (2012) incorporates several requirement
engineering activities, such as

+ requirements elicitation,

+ requirements analysis and negotiation,
« requirements documentation, and

« requirements validation.

In the purely linear model, the requirement engineering process flow sequentially exe-
cutes each of the four activities as shown in the following figure.

Figure 2: Purely Linear Requirements Engineering Model

Requirements
analysis and
negotiation

Requirements
documentation

Requirements

Requirements elicitation e

Source: Created on behalf of IU (2022).

The linear model proposed by Kotonya and Sommerville (1998) also incorporates the iter-
ation between the same requirement engineering activities as the purely linear model.
However, in this model, all of these activities repeatedly overlap during the requirement
engineering process, as shown in the following figure. This iteration process continues
until all stakeholders agree on the requirements and the requirement specification docu-
ment is finalized. This model is most appropriate for the cases when the requirements
should be pinpoint accurate and validated multiple times by the stakeholders (Shams-Ul-
Arif et al., 2010).

15

16

Figure 3: Linear Model for Requirements Engineering Process

Requirements
analysis and
negotiation

Requirements Requirements
documentation validations

Requirements
elicitation

User needs domain
information, existing
system information,

regulations, s ficati
standards, etc. ystem specifications

Source: Alavirad (2020).

Requirements
documents

Agreed requirements

Stakeholders in Requirement Engineering

In a daily context, a stakeholder is a person or an organization that has an interest or share
in a project or business. The term “stakeholder” is a generalization of the traditional terms
of customer or user in requirements engineering to refer to all parties involved in a sys-
tem’s requirements (Glinz & Wieringa, 2007). Pouloudi & Whitley (1997) defined stakehold-
ers as “participants in the development process together with any other individuals,
groups, or organizations whose actions can influence or be influenced by the develop-
ment and use of the system whether directly or indirectly” (p. 3). Usually, instead of con-
sidering individuals as stakeholders, people assume roles as stakeholders. Typical stake-
holders in a software project include the product managers, different users and
administrators from the client and project management sides, and different development
teams from the software development side.

The first step in requirement engineering is identifying the stakeholders. For example, let
us assume that we are going to obtain the requirements for a software project. According
to Glinz & Wieringa (2007), to identify the stakeholders, we should look for people (or
roles) who have a keen interest in the system because they will use, develop, manage,
operate, and maintain it after its development. In addition, stakeholders can also be the
people who design, develop, and test the system, as well as those who manage the devel-
opment project. Generally speaking, stakeholders are also those people who are involved
in the business that the system supports or automates, benefit from it financially, or who
are negatively affected by the system. The latter are also called negative stakeholders; for
example, the shop floor employees who will be fired after the automation of the produc-
tion line.

After recognizing the stakeholders, the next step is to prioritize them, as they are not all
equally important. For example, it is possible to divide them into critical, major, and minor
stakeholders by assessing the risk arising from neglecting them (Glinz & Wieringa, 2007).
These terms are defined as follows:

« Critical. A stakeholder is critical when ignoring them results in project failure.

« Major. A stakeholder is major when neglecting them results in a significant impact on
the system.

+ Minor. A stakeholder is minor when neglecting them results in a marginal effect on the
system.

The finalized and agreed requirements (as the end product of the requirement engineer-
ing process action) should be documented in the software requirement document (SRD).
The SRD—which is a document or a set of documents—ensures that the project’s stake-
holders are on the same page regarding the software products’ goals, scope, constraints,
and functional requirements. According to the IEEE 12207.1-1997 standard (IEEE Com-
puter Society, 1998), a typical SRD should contain

« interfaces,

« functional capabilities,

« performance levels,

« data structures or elements,
« safety,

« reliability,
 security or privacy,

« quality, and

« constraints and limitations.

1.2 Waterfall Model

The process that is used by the software industry to design, develop, test, and maintain
the software products is known as the software development life cycle (SDLC). The goal of
any SDLC is to produce a high-quality software product according to the requirements
defined and agreed upon by the stakeholders. The SDLC defines a methodology to
improve the quality of the final software product as well as the development process. A
common framework for the SLDC has been also defined by the international standard
ISO/IEC 12207 (International Organization for Standardization, 2017).

A typical software development life cycle consists of six main steps, as follows (however,
these may vary from model to model):

requirements engineering

system design according to the gathered and analyzed requirements

coding the designed software using the appropriate programming languages
testing the developed software

deployment of the developed software product in the production environment
maintenance of the software product during its operational lifetime

SRS

There are several different SDLC models, a few of which are defined below:

Interfaces

These are shared bounda-
ries between two compo-
nents within a system or
between two systems to
exchange information.

Performance

As a general definition,
performance measures
the effectiveness of a soft-
ware system with respect
to time constraints and
allocation of resources
(Cortellessa et al., 2011).

Software reliability
This is the likelihood of a
software running free
from failure during a
specified time period in a
specified environment.

17

18

+ The waterfall model is the most straightforward and one of the oldest models for a soft-
ware development life cycle based on the very simple principle—finish one step before
starting the next one.

« The V-shaped model is an extension of the waterfall model (also known as the verifica-
tion and validation model). In this model, each step will be followed by the correspond-
ing testing phase.

+ The iterative model starts with a minimum set of requirements to develop the first ver-
sion of the software, while a new and more mature version of the final software will be
produced in the following iterations. However, the final software product will be deliv-
ered at the end of the last iteration, when the product is ready for delivery (Lithmee,
2020). An example of the iterative model is the spiral model. This model goes through
four steps (phases) iteratively around a circle (see figure below). The four steps are as
follows:

1. Planning phase to collect the requirements

2. Risk analysis phase to identify risks and alternative solutions

3. Engineering or implementing phase to code the software solution using the pro-
gramming languages

4. Evaluation phase to evaluate the developed software solutions

In this model, as we follow the spiral from inside to outside (more iterations), the product

satisfies more and more of the software requirements.

Figure 4: Spiral Model of Software Development Life Cycle

Planning Risk analysis

Evaluation Engineering

Source: Alavirad (2020).

The Agile model is an iterative development methodology. This model adapts easily to the
changes in the requirements. In this approach, the product is divided into smaller incre-
mental steps during which a set of requirements are chosen before a version of the soft-

ware product is developed and discussed with the customer. If the feedback from the cus-
tomer is positive, then the development team moves to the next set of requirements. The
difference between this and the iterative model is that functional software should be
delivered at the end of each iteration (Arntz, 2020).

The waterfall model was discussed for the first time by Royce (1970) in a publication in
which he tried to explain his personal view about managing large software projects for
spacecraft mission planning, commanding, and post-flight analysis. The representation of
his proposal for managing the software development life cycle has been depicted in the
figure below. In this model, each software project is divided into distinct phases (steps),
where each step can be started when the preceding step has been completed and
approved. For this reason, this model is also known as the linear sequential model. The
author, however, did not exclude the iteration from his model, instead making it so that
“there is an iteration with the preceding and succeeding steps but rarely with the more
remote steps in the sequence” (Royce, 1970, p. 328).

Figure 5: Steps of the Waterfall Model

Software
requirements

Implementation &
unit tests

Integration &
system testing

Operation &
maintenance

Source: Alavirad (2020).

As you can see in the figure above, the waterfall model consists of five steps which are
briefly outlined below.

» Software requirement. In the first step of the software development life cycle, the
requirements from different project stakeholders will be gathered, analyzed, and docu-
mented in the software requirement document (SRD).

« System design. Using the SRD as input from the first step, the development team
designs the software system including software and hardware architecture (in simple
words, how different building blocks of the software system and the required hardware
are put together) and user interface mockups, among other things. The output of this

19

High-level design

This is the overall system
design that covers the
system architecture and
database design, which
describes the relation
between different parts of
the system.

Low-level design

This is a detailed version
of the high-level design
that describes the actual
logic for each component
of the software.

20

step specifies in detail how the project should be implemented from a technical per-
spective. The outputs of this step are high-level design (HLD) and low-level design
(LLD) documents.

+ Implementation and unit testing. With the system design documents (HLD and LLD
documents) in hand, the development team can start coding and implementing the
software solution. In other words, this step translates the system design documents into
a machine-readable format. To avoid complexity and more easily detect errors and
bugs, a software project is divided into smaller units, for each of which one developer or
a team of developers is responsible. A unit could be, for example, a single function or a
collection of functions and the related codes. After coding each unit in this step, the unit
will be tested in isolation from other units to assess whether it performs as expected.
Unit testing helps to find the errors and bugs in the very early stage of development.

+ Integration and system testing. After implementing and testing individual units, the next
step is to put all system parts together to build the desired software system (integra-
tion). Now we have the complete system which needs to be tested to see if it satisfies
the defined requirements before delivering it to the customer.

+ Operation and maintenance. After testing the developed system against the criteria
defined in the software requirement document and resolving the possible issues and
bugs, the system is deployed into the customer’s operational environment (i.e., the
infrastructure on which the software solution operates). The maintenance of the system
during its life cycle will resolve any issues and failures and also deliver updates to
improve the performance of the system.

Now the question is when the waterfall model should be used to manage the life cycle of a
software development project. This model is more suitable for

» projects with well-defined and unchangeable requirements,
+ projects with well-established and non-dynamical technologies, and
« projects of small size.

The waterfall model has been used historically to develop traditional enterprise software
solutions, such as customer relationship management (CRM) systems, human resource
management systems (HRMS), and supply chain management systems (SCMS). There are
several pros and cons of the waterfall methodology as one of the earliest software devel-
opment life cycle management methods.

Table 2: Pros and Cons of the Waterfall Model

Pros Cons

Itis easy to understand and to follow the develop- No functional software is produced until the final

ment procedure. step.

The start and end criteria are well defined and pre- Small modifications or errors in the final product

cise. are not easy to resolve.

It is suitable for small projects when the require- For complex projects with changing and dynamic

ments are well defined. requirements, this approach is not the best solu-
tion.

Pros

Cons

Documentation of each step is very valuable for the
next step, as well as for future development and
improvement.

The client intervention is minimal in this approach
and the development team can focus on the devel-
opment.

Documentation sometimes takes a lot of time from
the stakeholders.

As the client intervention is minimal during the
development implementation and testing phase,
the valuable feedback from the client is missing

during the development phase in this method.

Source: Alavirad (2020).

As an example of the failure rate of the waterfall model, we can look to the U.S. Depart-
ment of Defense (DoD) as one of the most frequent users of this model (Leffingwell, 2007).
In the 1980s and 1990s, it was mandatory to manage the DoD’s projects using waterfall
methodology as emphasized in the published standard DoD STD 2167 (Department of
Defence, 1988). The studies showed that 75 percent of the projects failed or have never
been used, which resulted in a radical overhaul of the DoD software development stand-
ards (Leffingwell, 2007). The failure rate then decreased after revising the internal DoD’s
standards regarding software project management.

1.3 Rational Unified Process

Rational unified process (RUP) is a software engineering process that manages tasks and
responsibilities assignments within a development organization (Jacobson & Bylund,
2000). It was developed by the Rational Software Corporation in the 1990s, which was
acquired by IBM in 2003 (Darryl, 2003). Using the modern terminology of software devel-
opment, it is an iterative software development life cycle (SDLC) methodology.

RUP divides the SDLC into four phases: inception, elaboration, construction, and transi-
tion. During these four phases, the core software development activities (i.e., business
modeling, requirements, analysis and design, implementation, test, and deployment)
happen. To better understand the concept of RUP, we can use a two-dimensional diagram
known as the RUP hump, which is shown in the following figure (Krutchen, 2003).

21

Milestone

A milestone is a point in
time at which a decision
should be made and by
which key goals must
have been achieved
(Boehm, 1996).

22

Figure 6: Rational Unified Process Visualization

1 E1 E2 (o] c2 c Ch T T2

Susiness mociting o
Reauirements |

Analysis and design

Implementation

Test e, ., ...

Deployment —-A

Time B

Source: Dutchguilder (2007).

The horizontal axis represents time and shows the dynamic aspect of the process. It is
described in terms of phases (four phases) and cycles (each cycle works on a new genera-
tion of the software product and consists of four phases). Each phase is also divided into
smaller units called iterations (in the figure above, these go from C1 to C4); each iteration
generates a new release of a subset of the final product. Therefore, we have three different
time scales: cycles consisting of phases consisting of iterations. The vertical axis repre-
sents the static aspect of the process (how it is described in terms of main activities). An
activity can happen during different phases.

Next, we will discuss different phases and activities within the RUP model. It is worth men-
tioning the difference between phase and activities here. Activities are a set of tasks that
should be performed to reach a specific goal, whereas a phase is a set of tasks performed
over a specific time period, defined by the start and end of the phase. The same activities
may occur during different phases of the software life cycle (see figure above).

Time Dimension

The software life cycle is divided into separate cycles, where each cycle works on a new
version of the software. One development cycle in RUP is divided into four phases and
each phase is concluded with a well-defined milestone. The four main phases of each
cycle of the software development life cycle could be considered as follows (Gornik, 2017).

1. Inception phase. During the inception phase, all basic business cases for the project
should be identified. The business case includes the success criteria, risk assessment,
estimate of resources, and the phase plan for the major milestones. The deliveries of
this step are a vision document (a document that represents the general vision of the
core project’s requirements) and a project plan (describing phases and iterations).

2. Elaboration phase. In the elaboration phase, we analyze the problem domain,
develop the project plan, and eliminate the highest risk elements of the project. In
this phase, we also develop a sound architecture of the system by considering the sys-
tem’s scope and the main functional and non-functional requirements. This phase is
the most critical phase of the project because, at the end of it, we should decide
whether or not to commit to the next phases. The deliveries of this phase are a soft-
ware architecture description, a revised risk list of the business case, a development
plan for the whole project, and a preliminary user manual.

3. Construction phase. During the construction phase, all component and application
features of the systems are developed and integrated into the product. The deliveries
of this phase are a software product integrated into adequate platforms, a user man-
ual, and a release note.

4. Transition phase. At this point, the transition phase begins and the software product
will transition into the user community. After the product release, there might be
some issues that have to be resolved by new developments and bug fixing. We could
start the transition phase when the product is mature enough to be deployed into the
user environment.

As stated above, each phase of RUP can also be broken into iterations, i.e., complete
development loops generating an internal or external release of an executable product or
a subset of the final product (such as E1, E2, ..., T2 in the figure above). Using the iteration
approach in the software development life cycle has certain advantages over the non-iter-
ative models (e.g., the waterfall model), such as an early identification of the risks which
allows the team to mitigate them, improve change management, and increase product
quality overall (Gornik, 2017).

Process Dimension

The process determines “who” does “what,” “how,” and “when” and the rational unified
process (RUP) is represented through four main modeling elements (Gornik, 2017). They
are as follows:

« Workers (who). This element describes the responsibilities of individuals or a team; one
individual could have different responsibilities.

« Activities (how). This describes a unit of work that a specific worker should undertake.

« Artifacts (what). This element describes a piece of information produced, modified, or
used by a process. If we think of an activity as a function, artifacts are the function’s
parameters. Source code or a document are examples of artifacts.

« Workflows (when). This describes a meaningful sequence of activities by workers that
produce observable values.

The main process workflow of the RUP model can be divided into the following six work-
flows:

23

24

1. Business modeling. In this workflow, we document the business process using busi-
ness cases (success criteria, risk assessment, an estimate of resources, and the phase
plan for the major milestones).

2. Requirements The goal of this workflow is gathering the software requirements from
the perspectives of different stakeholders. In this workflow, the use cases (defining
the system behavior) are also identified and developed according to the stakeholders’
needs. Each use case describes how the system interacts with different actors (such as
users, admins, and operators) and what the system does step-by-step.

3. Analysis and design. This workflow defines how the system should be realized in the
implementation phase. The output of this workflow is a design model, which is a
blueprint for the developer about how they should implement different system func-
tionalities.

4. Implementation. In this workflow, the team defines code organization, implements
classes and objects in terms of components (e.g., binaries, source files, and executa-
bles), tests the developed units (unit testing), and integrates the individual unit into
an executable system.

5. Test. In this workflow, the team verifies the interaction between different units, the
integration of units into the software system, and the fulfillment of the requirements.
In addition, they also find all issues and resolve them before entering the next work-
flow.

6. Deployment. At the end of this workflow, the team should deliver the final software
product to end-users.

In addition to the workflows, RUP also provides six best practices that make it suitable for
a wide range of software development life cycle management (Gornik, 2017). They are as
follows:

1. Develop software iteratively. We continually obtain an understanding of the problem
through successive refinements until we obtain an effective solution after multiple
iterations.

2. Manage requirements. RUP provides knowledge of how to elicit, organize, and docu-
ment the required functionalities and constraints.

3. Use component-based architecture. RUP provides a systematic approach to design an
architecture using existing and new components.

4. Visually model software. Using the unified modeling language (UML), it is possible to
visualize the software model to capture the structure and behavior of architectures
and components. This visualization enables us to share the architecture of the system
more easily with the nontechnical stakeholders.

5. Verify software quality. RUP assists in planning, design, implementation, execution,
and evaluation of reliability, functionality, and system performance tests.

6. Control changes to the software. RUP describes how to monitor and track changes to
enable iterative development.

Unified Modeling Language
The idiom “a picture is worth a thousand words” perfectly explains the idea behind the

unified modeling language (UML). The main purpose of the UML is to define a standar-
dized approach to visualize the data system design. UML facilitates the modeling, design,

and analysis process for software designers and architects (Bell, 2003). For example, UML
is utilized in the rational unified process to visualize this development process. Although
UML has been designed for software systems, it is also applicable to other domains, such
as visualizing the process flow in a manufacturing unit. We should mention that the UML is
not a programming language similar to C++ or Python, but rather a visual language made
of visual blocks.

UML was adopted by the Object Management Group (OMG) as a standard in 1997 and the
ISO approved the UML standard in 2005 (International Organization for Standardization,
2005). The current main version of UML is 2.0 (Booch et al., 2005). The building blocks of
the UML language can be categorized into three main categories, as listed below (Miller,
2003).

Figure 7: UML Building Blocks

UML building
blocks
|
[[]
Things Relationships Diagrams
|
[| [|

Structural Behavior Grouping Annotation — Dependency (— Class
I— Component Interaction \— Package L Note |— Association | — Object
— Class State machine L Generalization '~ Use case

— Interface

— Use case

— Actor

Source: Alavirad (2020).

1. Things,i.e., the mostimportant building blocks which explain physical elements
2. Relationships, i.e., representations of the relation (connection) between things
3. Diagrams, i.e., a collection of things and their relations for a specific goal

The “things” building blocks can be categorized the following into the following sub-cate-
gories:

State machine
This is any device that
saves the status of an
object at a given time.

26

+ Structural things are nouns that represent the static aspect of the model (physical and
conceptual elements). Examples of structural things are the component that describes
the physical elements of the system; the class that represents a set of objects with simi-
lar properties; the interface that specifies the class responsibilities through a set of
operations; the use case that represents a set of actions that should be performed by
the system for a specific goal; and the actors representing an entity that interacts with
the system.

+ Behavior things are the verbs that represent the dynamic or behavior of the model.
Some examples in this group are the interaction diagrams representing a group of mes-
sages exchanged between elements to perform a specific task, and the state machine,
representing the state of an object as it is changing during its life cycle in response to
events.

+ Grouping things bind different elements of a UML model. There is only one concept for
grouping things in UML, which is called a package.

« Annotation things are used to add remarks, descriptions, and comments into the UML
elements. UML uses the concept of a note for annotating things.

Among the relationships building blocks, we can mention the dependency relationship
indicating the connection between the source and target elements, and the association
relationship indicating how many elements are involved in that relationship.

Diagrams in UML are a collection of "things" and their relationships, which build a system.
In UML 2.0, there are thirteen main diagrams, three of which we will address here (Booch
etal., 2005):

1. Theclass diagram that represents the system classes and their relationships

2. The object class that instantiates a class diagram (i.e., show a concrete example of a
general class)

3. Use case diagram that represents the function of a system from the perspective of an
external user.

For example, a use case model from the requirement workflow can be visualized by using
the UML use case diagram as shown in the following figure for an online shop. In this use
case diagram, we have things, such as use cases (“log in,” “view items,” “make purchase,”
“check out”) and actors (customer, PayPal), and the relations between these things (such

as communication between “customer” and “view item”).

Figure 8: UML Use Case Diagram for an Online Shop

Online shop

Authentication
/@

Provider

Customer

Make purchase

i /
PayPal

Check out

Source: Alavirad (2020).

Another example of a UML diagram for an online shop system is a class diagram for the
products managed by an administrator. In this class diagram, we have two classes:
“Admin” and “Products” classes with the “Manage” association between them. “1.*” on
the “Product” class side means each Admin can Manage one or several Products and the
“1” on the “Admin” class side means each Product should have one Admin. The “Admin”
class has attributes such as ID (type: integer), Name (type: character), and operations,
such as ViewProducts()and AddProducts(). The “Products” class also has different
attributes (ID, Name.), but no operation. We can expand this class diagram to include
more classes, such as “Customer” class, “Cart” class, and so on.

27

28

Figure 9: UML Class Diagram for an Online Shop

Admin

Id: Integer Manage

Name: Char Id: Integer

Name: Char
ViewProducts() 1 1.* Group: Char
AddProducts() Subgroup: Char
DeleteProducts()
ModifyProducts()
MakeShipment()
ConfirmDelivery()

Source: Alavirad (2020).

In Wei & Field (2004), you will find a real case study with real-world experiences of how a
development team in Ford Financial successfully developed and deployed an iterative
methodology using RUP. The development team set out to resolve several obstacles by
using the RUP. One of these obstacles was the difficulty with sharing project deliverables
across projects as every individual team had its own set of templates and its own method-
ology. Another problem was the late involvement of service teams (i.e., the teams that are
outside the application team and provide good products and services to projects), as well
as the late identification of project risks. Finally, an additional challenge was posed by the
fact that framework architects were overburdened by irrelevant questions, such as how to
organize a project and what process to use (Wei & Field, 2004).

@/-I(j'l: SUMMARY

In this unit, we learned about the traditional approaches to the manage-
ment of the software development life cycle. Each project (software or
hardware) starts with gathering the requirements from different individ-
uals and organizations who are engaged in the project (the stakeholder)
and analyzing them. Clients, developers, operation teams, and clients of
the clients are all examples of project stakeholders. First, we defined
software requirements and requirement engineering (an iterative set of
actions for the elicitation, documentation, refinement, and changes of
requirements). We also discussed different software requirement engi-
neering approaches, such as pure linear and linear requirement engi-
neering methods.

Secondly, we introduced one of the earliest and most straightforward
approaches to the software development life cycle (SDLC) management
models—the waterfall model. This model is based on five steps or pha-
ses: requirement gathering, system design, implementation, integration,
and operation. In the waterfall model, each step starts when the previ-

ous step has been finished and approved. This model is more appropri-
ate for small software projects with exact and non-changing require-
ments.

Then, we discussed another traditional approach to software develop-
ment life cycle management, namely the rational unified process (RUP),
an iterative approach mainly developed by IBM. RUP divides the SDLC
into four separate phases (inception, elaboration, construction, and
transition), during which, the main software development activities are
performed, e.g., design and implementation. The changes and the risks
in this model are more manageable compared to the waterfall model, as
this is an iterative approach which considers changes in each iteration.
Finally, we explained the unified modeling language (UML), an approach
used to visualize the phases and activities in the RUP model.

29

UNIT 2
AGILE PROJECT MANAGEMENT

STUDY GOALS

On completion of this unit, you will have learned ...

- thedifferent definitions of Agile project management.

- the concept of Agile Kanban.

- the structure of the Agile Scrum method.

- whatisimportant when transitioning from traditional to Agile project management.

Agile project
management

This is a model that fol-
lows a non-linear process,
is flexible to changes, and
focuses more on team-
work and collaboration

instead of following linear

32

phases.

2, AGILE PROJECT MANAGEMENT

Introduction

Traditional project management (TPM) models are suitable for managing projects with
clear plans, requirements, goals, and a low degree of uncertainty in the project phases.
The TPM-based model’s primary focus is on the initial planning, prediction, and tracking
of the defined phases. During the project development phases of this model, developers
implement phases linearly and changes are mostly unacceptable (Coram & Bohner, 2005;
Shenhar & Dvir, 2007). Furthermore, the project owner or customer is not involved in the
project’s development phases (Coram & Bohner, 2005). For example, car manufacturers
can use a TPM model for developing cars on their assembly lines where processes are car-
ried out in a sequential phase. TPM models can be used where changes do not come from
the customer and the requirements are precise.

However, in areas like software development in which the use of technology is growing
and change is inevitable, TPM-based models may not be very useful. In such scenarios,
customer requirements can change during the project development phases, projects have
a high uncertainty level, and there are no clear goals or plans (Shenhar & Dvir, 2007).
Hence, we need a project management model that enables us to develop and manage
projects under such circumstances, adjust customer requirements, and support custom-
ers to find a clear goal during the project development phases.

2.1 Agile Project Management

Agility is the ability to effectively and efficiently respond to changes during project devel-
opment. To complete high-quality projects an organization can apply an Agile methodol-
ogy to different phases of the project, e.g., to developer teams, departments, or share-
holders involved in project management. Organizations or groups must consider the
following three characteristics to make their system Agile (Sherehiy et al., 2007).

1. Flow. This relates to how the system works. When results are produced at a sustained
and constant rate, the system is viewed as a high-rate flow that works smoothly and
the team becomes more productive.

2. Learning. This refers to a strategy that allows the system to learn from previous expe-
riences, mistakes, and other people’s knowledge.

3. Collaboration. This refers to different strategies or cultures that identify how people
involved in project development can work together to achieve the project’s goals.

Agile project management has its origins in software development. In 2001, many soft-
ware developers came together to discuss project management approaches in the soft-
ware development area. For brand new software development, a TPM-based model like
the waterfall method is not the best choice because of the high level of uncertainty,
changes in user needs, and goals. The developers tried to create a lightweight and better

software development method called Agile. In the Agile Manifesto written by Fowler and
Highsmith (2001) for this methodology, the developers introduced the following four val-
ues of Agile.

Figure 10: Agile Values

Individuals and interactions Responding to change over

over processes and tools following a plan

Agile values

Customer collaborations over Working software over

contract negotiation comprehensive documentation

Source: Asadi (2020).

A software development team of people, i.e., programmers, testers, project managers, and
customers, must work together effectively. The most crucial factor for developing software
is people and how they interact or work together. For example, a team of skilled develop-
ers with good communication but without perfect management tools might work better
compared to a junior team with ideal management tools. It is skills and communication
that make a project successful, not only a perfect project management workflow.

Another important factor is customer collaborations, since the customer is the only person
who can tell developers more about the project’s target and about their needs and
requests. As a contract is established after the first meeting with a customer, it is possible
that in the early stages, they do not have the skills to precisely specify the goals of the
project and can change their target when they get more information from developers.
Having a close collaboration and educating customers along the way is more important
for understanding their requirements during the development phase than only sharing
the initial contract with them. For example, in a TPM or waterfall method, customers will
have an initial meeting with the project managers to explain what they want to create and
sign a contract with the company responsible for creating the project. Then, the project
department or team has to deliver customer requirements. During the first meeting it
could be the case that the target is not clear for the customer which means that additional
communication with the development team will be needed after the initial contract to
make the target clear and to explain the requirements. Considering such value will also
help understand changes from the customer’s side and update the development team so
that it can successfully adjust to them.

33

34

It is also essential to consider that the customer prefers to have a working software rather
than a heavy document describing the steps towards the achievement of the targets in a
software development project. Still, having some guidelines in place is beneficial to the
development of the final product (Fowler & Highsmith, 2001). In addition to outlining the
four core values of Agile, the Agile Manifesto also introduces 12 principles designed to help
project teams better understand what Agile software development is all about (Fowler &
Highsmith, 2001). They are as follows:

1. The highest priority is to satisfy the customer through early and continuous delivery
of valuable software. In software development, there is no need to plan everything in
advance. The software is broken down into small functional elements called incre-
ments. Delivering these increments in the early stage of the development phase can
help speed up the process of getting customer feedback and planting their request,
thereby increasing customer satisfaction.

2. Changing requirements should always be welcomed, even late in the development.
Agile processes harness change to guarantee the customer’s competitive advantage.
As previously explained, conditions will change rapidly, but quick responses to these
changes can increase competitive power in the market.

3. Working software should be delivered frequently—between every two weeks and a
few months—with a preference for a shorter time scale. Shorter development phases
lead to a more frequent delivery of working functions, or increments, to the custom-
ers and helps developer teams receive immediate and informative feedback.

4. Business people and developers must work together daily for the duration of the
project. A successful project needs regular involvement of the stakeholders. Agile pro-
vides companies with tools and techniques that enable stockholders to participate in
the development phases of the project.

5. Projects should be built around motivated individuals. Give them the environment,
support them, and trust their ability to get the job done. In an Agile team, it is neces-
sary to have people who are willing to collaborate, share knowledge, and learn from
each other.

6. The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation. A face-to-face meeting is a more effi-
cient way of conveying information when collaborating and it also helps the team to
understand the project’s critical factors and be involved in all discussions during the
development phase.

7. Working software is the primary measure of progress. Delivering working software
should be the main goal of the software development team.

8. Agile processes promote sustainable development. The sponsors, developers, and
users should be able to maintain a constant pace indefinitely. The customer or stock-
holder should then be able to maintain the final product.

9. Continuous attention to technical excellence and good design enhances agility. High-
quality source codes can play a key role in the project’s success.

10. Simplicity is essential. The tasks should be small enough to be doable.

11. The best architectures, requirements, and designs emerge from self-organizing teams.
The team should have the skills needed for developing the final product. These will
help in making independent decisions and organizing autonomously to achieve the
project’s goals.

12. At regular intervals, the team should reflect on how to become more effective and
adjust its behavior accordingly. This will help an Agile team improve its project man-
agement workflow and avoid unnecessary tasks.

Now that we understand Agile project management’s values and principles, we can fur-
ther explore this new methodology’s workflow.

Agile Workflow

Agile is an iterative project management methodology that helps organizations or soft-
ware development teams deliver their products and services to their customers quickly
and efficiently (Highsmith, 2009). The Agile method is based on an iterative process in
which the project is broken down into small functional increments known as user stories.
Developer teams will focus and deliver user stories during a short development cycle
called a sprint. Sprints are at the heart of the Agile methodology. When this methodology
is implemented correctly, your Agile team can deliver better software with fewer head-
aches.

Before explaining the Agile workflow, it is essential to clarify the rules and responsibility of
people who are participating in an Agile project.

+ User or customer. The Agile team has to understand customers’ requirements and sup-
port them in solving their challenges. The customer has to keep communication with
the Agile team open, while the Agile team has to give high priority to its customers.

« Product Owner. They are the voice of the customer or internal stakeholders in the Agile
team. The role of Product Owner entails analyzing and summarizing ideas, gaining
knowledge, and giving feedback on a product to the developer team. They are responsi-
ble for splitting customer requirements into detailed user stories. Each user story
should carry information about who the customer is, the problem being faced, how it
may have been solved before, why a new solution is essential for them, and the accept-
ance criteria at the end of the sprint. As part of an Agile team, the Product Owner will
support the developer in creating acceptable products in a feasible and manageable
way.

« Product or software development team. In the Agile methodology, a group of develop-
ers uses its advanced skills to complement a project and focuses mainly on delivering
functional products based on customer requests. To achieve the values and cover the
characteristics of Agile, the development team has to have frequent—even daily—inter-
nal meetings to assess the progress and struggles and to distribute responsibilities.

Sprint

This is a short period of
time during which an
agile team comes
together to get a certain
amount of work done.

35

36

Figure 11: Agile Workflow

Develop DIV (6]

Sprint Develop Sprint Develop

Requirements Requirements
understanding understanding

Source: Asadi (2020).

In the Agile workflow, illustrated in the figure above, each sprint starts with understanding
the requirements of the customers and shaping them into user stories. Since the Agile
methodology promotes a more supportive group culture, the developer team will design
and develop the first solution in close collaboration. During each sprint, every developer
will focus on user stories, develop their solution for it, and test it internally to get feedback
from other developers. They then focus on the feedback they receive and use it to improve
their skills and products. At the end of a sprint, the team will review user stories and
deliver them to the customer, who can suggest more changes and give feedback about the
products. If necessary, the developer team can consider the customer feedback or modifi-
cations in the next sprint.

The Agile project development workflow places primary focus on the process of software
or project development and especially on the quality of the final product. To have a pro-
fessional Agile environment, the Agile team should consider the following characteristics
of Agile (Miller, 2001):

« lterative. Agile focuses on customer requirements, which the developer team tries to
satisfy during the current sprint and improve upon in the following ones.

+ Modular. During the development phases of Agile, the Product Owner splits tasks into
user stories.

» Time-boxing. The developer team completes each module in a sprint cycle, which usu-
ally lasts between one and six weeks.

+ Parsimony. The Agile team should remove unnecessary tasks and activities to save time,
control risks, and reach sprint targets.

+ Adaptive. The team will adopt changes and address the new customer requirements
before the next sprints.

» Collaborative. Agile culture helps people to collaborate and interact more with each
other.

+ Customer-oriented. The customer is the core and main focus of an Agile team. The
group will increase customer satisfaction by getting customers involved and enabling
them to actively take part in the processes, clearing and shaping the targets, and sup-
porting them in achieving their targets.

Impact of Agile on Project Teams

Agile project management is a successful project management method that offers organi-
zations many advantages and makes them more productive (Masson et al., 2007). How-
ever, its implementation in a team might be difficult because it is necessary for professio-
nal and skilled people to take on all roles and responsibilities in order to have a
professional Agile team. Therefore, when moving towards Agile, some team members
could be let go, while new ones can be hired to bring the required skills to the team.
Besides having skilled people, having an Agile mindset in the organization is essential. The
heart of this transmission is moving away from the traditional hierarchical structure and
going towards a collective leadership mindset. In such organizations, leaders sees them-
selves as a part of the developer team and developers see themselves as self-organized.
When considering Agile, the following restructuring will happen for a leader, development
team, and the customer.

Figure 12: Traditional vs. Agile Team Structure

Traditional team structure Agile team structure
[3

Leader .‘ 8.

. ® 0 o
Seniors aaa ‘. -

' Y Y

: e 6 6 0 ©

Juniors aaaaaa aa

Source: Asadi (2020).

In fact, the structure of Agile affects the working culture and mindset of people in an
organization (Gannod et al., 2018). In this new culture, the main focus is on the customer
and their requirements. The developers are more collaborative and supportive and will try
to be more productive and deliver a high-quality product. Developers try to create more
value for customers during each sprint. The team should hold short feedback loops with
customers to understand new changes and requirements. Such collaborations will
increase customer satisfaction and let them be more involved in the development phase.
In the last few years, different approaches have been introduced based on Agile concepts.
Two very well-known methods are Scrum and Kanban, which we will explore in the next
sections.

2.2 Introduction to Kanban

In the middle of the twentieth century, the Toyota production system introduced a visual
method for managing their production lines’ workflow (Sugimori et al., 1977). Before this
method, the industry worked based on a push system. This kind of system brings addi-
tional costs and requires more time and resources because products are manufactured
regardless of whether or not there is a demand for them, then have to stay in the show-

Push system

In a push system, the

industry will produce

products without cus-
tomer demand for it.

37

Pull system

This is based on customer
demands for actual prod-
ucts. The industry will
create a product when
there is a demand for it.

38

rooms until a customer requests one. For example, when a brand wants to create a new
product design in the fashion industry, it will make many new products. Then, the sales
and marketing department will start advertising and marketing their new product. If cus-
tomers are not interested in the latest products, or if some external or unseen factors
affect the expected sales, the organization will incur significant costs (Sugimori et al.,
1977).

Kanban helps to remove additional costs and struggles related to its project development
by using the pull system (Sugimori et al., 1977). It means they only make products based
on customer requests. In the production lines of Toyota, when a customer orders a car, the
demand will come to the production line and the needed parts will be collected from sup-
pliers. After finishing the product, the production line will satisfy the customer’s request
by sending them a new car. In recent years, Kanban has been adapted and applied to
many industries. Another good example of a Kanban system is a restaurant: When you
order food, your request goes to the kitchen where it will be prepared and, after a short
amount of time, your order will be ready.

In the twenty-first century, the software industry realized that Kanban could offer great
support when answering customer requests and could help increase productivity (Ahmad
et al., 2013). Such a strategy also helps to reduce production costs for the organization and
final product costs for customers. Kanban’s visual system focuses on the tasks and shows
what has to be done, when, and in what quantity. In the following figure, you can see the
original workflow of the Kanban structure.

Figure 13: Kanban Structure

Manufacturing Distribution

@ @ @ Consumption

Red ._ Kanban card (or label)
zone returns to table
‘ " >]

Kanban table

If red zone reached, then production
(e. g., reconstitution of the consumption)

Source: Waldner (1992).

This structure has different components, i.e., the manufacturing or product team, distribu-
tion or the contact point with the customer, a Kanban card, and a Kanban table or board.
According to this structure, a developer pulls a card from the red zone whenever there is a
customer request. Whenever a request comes in, a developer will start a task in the pro-
duction line. After the production is complete, distribution will deliver the product to the

customer and return the related card to the Kanban board. A Kanban board shows all the
tasks the developer team is working on. It also offers a visual representation of the pro-
gress of each job by displaying the status of the tasks.

A team splits the Kanban board into different columns to show the current status of the
task. Based on the team or project needs, the number of columns can change. The stand-
ard number of columns is three: “to do,” “in progress,” and “done,” which show general
ideas, work in progress, and completed tasks, respectively. Each Kanban card shows a task
and its status to the development team. In a Kanban board, a team can also be assigned
different tasks, thereby visualizing the various projects or progress levels running in the

team.

The Kanban board helps your team to visualize tasks and maintain transparency regarding
the status of the project. It allows for quickly identifying bottlenecks as well as under-
standing and removing any obstacles or risks during the development phase of projects.
Many teams use an offline (on-site) Kanban board, which is easy to understand and visual-
ize, and is accessible for team members (Hammarberg & Sunden, 2014). This type of board
is helpful when the team is sitting together all in one location. Nowadays, with the growth
of the internet and technology, team members often work remotely and, therefore, need
to use an online board that can be accessed from anywhere. Kanbanboard is a free open-
source project management software that helps you to run Kanban to visualize your
works, limit the works in progress, and drag and drop to manage your projects’ user sto-
ries with a simple installation (kanbanboard, n.d.). The figure below shows a demonstra-
tion of this online board.

Figure 14: Kanbanboard

B Demo Project

Menu~ @ Overview I Board Calendar EE List 3= Gantt
<+ Backlog ~ <+ Ready ~ <+ Work in progress ~
#52~ O #53~ Q #o- ()
Update screenshots Fix APl bug (edge case) Improve the documentation
documentation api documentation|
C E 1 0/1h P3 [<15m]<15m
#50 ~ (A]
Improve Markdown editor
(ux]
PO [<15m]<15m
#51~ (4]

Validate installation on Debian Jessie

Source: kanbanboard (n.d.)

39

40

Kanban Board Principles and Practices

In the original concept, introduced by Toyota, Kanban had four principles and six practices
that every team needed to consider when using this methodology in order to achieve suc-
cessful project development (Sugimori et al., 1977). The four principles of Kanban are
shown in the figure below.

Figure 15: Kanban Principles

1. Start with 2. Agree to improve through
what you do incremental and
now evolutional changes

Kanban Principles

3. Encourage or 4, Respect the rules and
act like a leader responsibilities of
at all levels the current process

Source: Asadi (2020).

Since Kanban focuses on the tasks, team members must visualize their current task and
explain what they are doing. The Kanban team can agree to split duties into small incre-
ments (also called user stories); they also have to be flexible towards any changes coming
from customers. Kanban allows team members to select what they would like to work on
and how they want to do it. It can give them freedom and help them to be more self-
organized. If you want to reach a positive outcome, acting as a leader who encourages and
supports their team members rather than simply managing them is absolutely essential.
Furthermore, following the rules and feeling responsible for the current process is key to a
thriving work culture. The six practices of Kanban are illustrated in the following figure
(Ahmad et al., 2013).

Figure 16: Kanban Practices

Manage Evaluate
the flow and improve

Make policies
explicit

\ /

Kanlgan Use feedback
practices loops

Limit WIP

Visualize @———— >

Source: Asadi (2020).

Kanban is a visual system, which is useful when there’s a need to visualize work, work-
flows, struggles, and risks. Another characteristic is that the team has to limit the total
number of works that it has in progress based on its resources and capacities. While run-
ning Kanban, it is essential to ensure that tasks are moving in the right direction within the
workflow. When a job is complete, a team member can review it before moving it to the
“done” column and giving the developer feedback. Based on this feedback, developers
can then improve the quality of work and skills. In order to create a smooth workflow, the
rules and policies that the Kanban team creates should be explicit.

Agile Kanban and Its Advantages

A team can mix the Agile principles and practices with Kanban to obtain an Agile Kanban
project management methodology. In this new method, the team can use Kanban to man-
age the process workflow and complete tasks. Each user story in Agile corresponds to a
card on the Kanban board containing clear information about the job. Each team member
could move the tasks from one column to another on the Kanban board after they have
considered related policies. The Agile team has to limit the amount of work in progress.
The iterative cycle of the Agile sprint can be applied to Kanban. For example, a software
development team can agree that they will have a two-week sprint cycle. When a team
member finishes a task before the end of the current sprint, they can select a new card
from the Kanban board if they have the capacity to do so; they do not need to wait until
the end of the current sprint to get a new task. The team can also add new requests from
customers directly to the board as a new card.

The Agile Kanban methodology helps to deliver high-quality products quickly and effi-
ciently. The collaboration inside the team can speed up the delivery of Agile Kanban. Agile
Kanban has the following benefits for the project team (Lage Junior & Godinho Filho,
2010).

41

42

+ It has a flexible approach towards accepting customer changes.

« It reduces wasted work, time, and costs.

+ It helps to focus on the continuous delivery of customer requests and products.
« Itincreases the productivity of the team.

+ Itincreases knowledge of team members.

+ It brings about a better collaboration culture for the team.

A pull structure-based industry, where the production will only start after a customer
request, can use Agile Kanban. For example, suppose you work on an automotive compa-
ny’s data science team where you have all data ready and accessible from the start. The
technical department regularly asks your team questions on how to improve their product
that need to be answered based on the data sources. Each of these questions will consti-
tute a task on the Kanban board; once you have met all requirements and finished your
current job, you can pull a new one from the “to do” column of the Kanban board, thereby
answering all questions from the technical department one by one.

2.3 Introduction to Scrum

Scrum is a framework that helps the developer team to develop, deliver, and improve dif-
ferent types of projects. Takeuchi and Nonaka (1986) first introduced this model in the
Harvard Business Review, a general management magazine covering various management
and business-related topics. The Scrum authors published their article with the title “The
new product development game,” in which they used the term “Scrum?” for the first time in
the field of software development. Originally borrowed from rugby, the word “scrum”
refers to a type of teamwork and collaboration in which the team tries to move the ball
while simultaneously staying united (Takeuchi & Nonaka, 1986). The following figure
shows the concept of scrum in rugby.

Figure 17: Scrum in Rugby

Source: Baucherel (2019).

Like a rugby team practice, Scrum as a project management method encourages teams to
collaborate closely, learn from feedback, be self-organized, and express struggles and
challenges in order to get support and improve products. The initial emphasis of Scrum
for developing projects is in the software development area. During the last few years, dif-
ferent industries have also made attempts to adopt the Scrum methodology in project
management (Sutherland, 2004).

Scrum is an iterative project management method for managing and supporting the team
and enables it to develop a high-quality product in increments. This framework provides
a structure, principles, and practices that a team can follow to gain knowledge, learn how
to adapt work, and leverage product development experience (Sutherland, 2004). In order
to satisfy customer needs, a Scrum-based team should know that the customer’s mindset,
requests, and goals might change over time. These unpredictable changes are not suited
to prediction-based project management methods, e.g., the waterfall method. Instead,
the Scrum team has to consider these changes and adapt to the new customers’ requests.
The Scrum team must also be aware of the project’s challenges but cannot define the proj-
ect’s concrete targets upfront. Rather than focusing exclusively on delivery, this model
also focuses on responding to changes and adapting to new technologies quickly and effi-
ciently.

Increment

This is any work done as
part of the current and
previous sprints that
meets the Definition of
Done. The increment
should provide value and
it should not just be a list
of tasks or features added
to the products in the pre-
vious sprints.

43

Agile Scrum Framework

Based on this model’s regular iteration, team members can focus on the tasks, organize

themselves, and improve their delivery without interruption. During a sprint, the team

needs to communicate and collaborate closely to support each other. This model is suita-

ble for projects or companies that can break down their product development phases into

Agile scrum small increments that team members can complete during a sprint. The Agile Scrum

Thisis an iterative sprint- method aims to build valuable increments and deliver a functional product at the end of
based project manage- . . - . .

ment method thatsup- €ach sprint. To create a successful Agile Scrum team, it is essential to consider the follow-

portstheteamin ing practices (Schwaber & Beedle, 2002):
delivering a high-value

product based on agile . .
and Scrumrulesand ¢ Transparency. The Agile Scrum team should create a culture and environment that ena-

practices. ble members to share knowledge about the process, struggles, and obstacles of the
project so that they are able to solve them together.

+ Inspection. The Agile Scrum team needs to regularly assess or review the tasks to
improve the final product’s quality. All team members should agree to receive and give
feedback.

+ Adaptation. In an Agile Scrum team, team members should continuously check and
revise items that do not add value to the project.

Agile Scrum consists of different elements, different rules, and responsibilities for each
team member. You can see an effective Scrum structure in the figure below.

Figure 18: Agile Scrum Structure

Product Y ISP °
stakeholder liaison backlog .. ® 0
;\ refinement g & aa
[3N)
[J -aa e Daily Scrum
A o0 £
Product owner o &
FIESSSSS Development team
i
5 Team forecasts
- work needed |:||:|
to achieve .

g Q\" sprint goal Potentially
0 | o 'eleasable o
i Sprint Sprint P o & increment M
13 lannin backlo erative-incrementa o0 P
— p . £ development & delivery 4 & @ aae
= Topic 1: forecast PBIs A g z ;
7 Topic 2: plan work (e.g., tasks) . .
Product Sprint Sprint]
backlog review retrospective

Source: Created on behalf of U (2022).

Agile Scrum Sprint

In Agile Scrum, the project development length is broken down into equal parts known as
sprints. Each sprint is a time when the Scrum team plans and works together to deliver
functional increments (Takeuchi & Nonaka, 1986). If the task is unknown or complex, it is
better to have a shorter sprint. The team can plan a sprint’s duration of one to four weeks
but, if necessary, it can change the sprint’s size. All events in an Agile Scrum team will hap-
pen during the sprint. A sprint can also become a project if the developer team delivers all
parts necessary to run the projects within the sprint.

Consistently adjusting the size of the sprint will help in the estimation of the project costs.
For example, in four-week-long sprints, the price for developing and delivering a project
will be equivalent to the team members’ monthly salary. Many teams try to use a fixed-
length sprint as a best practice—usually not longer than one or two weeks. During the
sprint, it is essential to finish all identified tasks. Therefore, planning the right sprint
affects the efficiency and productivity of the team. For healthy sprint planning, you have
to be able to answer the following questions:

« What is the objective of the sprint?

+ How does the developer team achieve goals?

» Who will be doing and delivering a task?

« What is the input for developing a valuable outcome?
« Whatis the output of a task?

Agile Team Structure

An Agile Scrum team is a self-managing, cross-functional, and focused team that tries to
achieve the project targets. In an Agile Scrum team, people can take on different roles
based on their skills and experiences. The following roles are necessary for a successful
Agile Scrum (Sims & Johnson, 2012):

» Product Owner. This is the same role as an Agile Product Owner. They represent the cus-
tomers and stockholders when determining the product’s vision for the development
team. During the sprint planning, the Product Owner, with the team’s agreement, iden-
tifies the objective of the sprint.

« Scrum Master. This role helps to facilitate Scrum and ensures the team follows Agile val-
ues and principles. Scrum Masters work with each Scrum team member, guiding and
coaching them to ensure that the team will achieve the sprint goals. They are not team
leaders, they ensure that the development team completes all the required tasks. They
are also the owners of the processes and responsible for managing events. Since a
Scrum team should be able to focus during a sprint, the Scrum Master is the point of
contact of the team, together with the product owner.

«+ Developer. If you are passionate about product development and have skills that enable
you to deliver high-quality products quickly, which makes customers happy, this would
be a perfect role for you in an Agile Scrum team.

45

Artifacts

These are pieces of infor-
mation or tools that we
make or use to solve a

46

problem.

Agile Scrum Artifacts

In an Agile Scrum, artifacts are the main part of the workflow. The team and customers
use it to show detailed information about products and actions to perform in order to
deliver the developed project (Jongerius et al., 2013). These artifacts are briefly outlined
below:

+ Product backlog. A product backlog is a broken-down master list of the tasks that the
development team must complete and it is maintained by the Product Owner. The
maintenance of the product backlog is the Product Owner’s responsibility, as is the
identification of each item’s business value. The task is divided into user stories that are
options for the development team to work on and can be selected for the next sprints.
There is no guarantee that the development team will deliver all user stories created by
the Product Owner. Therefore, the Product Owner focuses on the tasks which have a
high business value and removes the ones with a low value. Each user story gives a full
definition of the job, features, requirements, owner name, developer name, etc., which
will be an input for the sprint backlog.

+ Sprint backlog. A sprint backlog contains a list of items or user stories that the develop-
ment team should work on in the current sprint. These items determine the sprint goal
or what the team wants to achieve at the end of the sprint.

+ Increment. The sprint goal is collecting tasks or product elements that can represent a
reliable function or create a usable product from a sprint. It must meet the Definition of
Done and be deliverable to the customer.

« Definition of Done. These are standards, roles, or acceptance criteria common to every
user story in the sprint backlog. The development team created this definition and
agreed with the Product Owner to accept items in the sprint backlog at the end of the
sprint. For example, a software development team can deliver a new version of a prod-
uct at the end of each sprint. Therefore, the Definition of Done is realizing a new version
with a new functionality that has undergone a code review and a unit test, and that is
immediately deployable on the customer side.

Agile Scrum Events

Scrum defines four events or ceremonies that must take place during an excellent sprint
cycle (Jongerius et al., 2013). These help Scrum team members to improve communica-
tion and transparency. In the following figure, you can see these events and their relations
to the other elements of Scrum.

Figure 19: Events in Agile Scrum

Scrum events

Sprint

Sprint
planning

Product
backlog

4 ®
A P
Scrum
[J
A

Master

' Y Y %
Customers Product

owner

Sprint
review

Sprint
backlog

Definition of done

Increment

Source: Asadi (2020), based on Takacs (2018) .

Sprint planning is a sequential meeting or event that kicks off the start of a sprint, where
the product owners and developer team identify the plan and tasks that will be carried
out during the sprint (Boschetti et al., 2014). The Scrum Master leads this meeting, which
usually lasts more than one hour. The team selects items from the product backlog and
pushes them to the sprint backlog. These items are aligned with the goal of the sprint and
agreed upon with the product owner. Every Scrum developer has to be clear about what
they can deliver at the end of the sprint.

The daily Scrum or stand-up is a short daily meeting lasting about 15 minutes, taking
place at a specific time (typically mornings) and which should be as quick as possible.
Everyone in the team shares updates on what they have done and what they plan to do in
the next 24 hours. Daily stand-ups help the team to be on the same page and remain
aligned with the sprint goals.

At the end of a sprint, two meetings take place: the sprint review and the retrospective. In
the sprint review, the entire team can view a demo of the product in an informal environ-
ment or review all the team’s tasks completed in the current sprint. In this meeting, stock-
holders or customers involved in the project can get an update about their products, give
feedback to the developers, and suggest additional changes to the products. The Product
Owner can consider these new changes as new product backlog items for future sprints.
They can also decide whether the team can realize the latest version or not. At the end of

a7

48

the sprint review, the development team, including the Product Owner, comes together to
talk about their performance during the sprint, what worked, and what did not (James &
Walter, 2010). The retrospective is related to the project sprint, items, tools, people, rela-
tions, and all other things that affect the team’s efficiency and productivity (James & Wal-
ter, 2010). It will also help the team to create a healthy environment and successful Scrum.

There are many tools and software which can support an organization in creating an Agile
Scrum workflow. Jira Software is an Agile project management tool that helps the Agile
team to run Scrum. This software offers an Agile board to report, plan, track, and manage
all steps of your Agile project with a single tool. You can review this software on their offi-
cial website and try to create an Agile Scrum for your project management workflow (Jira,
n.d.).

Agile Scrum Benefits and Limitations

Scrum is a simple project management workflow with rules and events that are easy to
use and understand. The conversion of complex tasks into manageable user stories makes
this model suitable for complex tasks. This model is beneficial for industries with compli-
cated project processes which care about customers and results (Srivastava et al., 2017).
Quick realization and continuous delivery of the products increase the Scrum team’s moti-
vation and customers’ satisfaction. Furthermore, this model adapts quickly to customers’
changes, which helps the organization to remain competitive. In the Scrum method, there
is no boss to tell the team what to do and when to do it, instead, the team is self-organized
and members communicate often to support each other in finishing tasks. In Scrum, a
software development team can also use pair programming: In this technique, two devel-
opers work together, one writing the code and the other one supporting and reviewing
each line of the code at the same time.

In general, Scrum manages to bring commitment, courage, focus, and respect to an organ-
ization. Start-ups, such as WordPress, Dell, and Airbnb, have also implemented Agile
Scrum into their environment (Kahootz, 2015; Poskitt, 2018). However, Scrum also has
some limitations. For example, for teams that work remotely, part-time, with special skills,
which have projects with many stakeholders, or which have many external dependencies,
the Agile Scrum methodology is generally not the best approach to adopt (Srivastava et
al., 2017). In the end, it is up to every individual team whether it wants to use Scrum or
not; if team members see some limitations, they can also optimize it to suit their needs.

2.4 From Traditional to Agile

Many organizations are still using traditional methods for their project management, as
they see the benefits in using these models. In today’s world, technology is growing fast
and customer requirements are changing quickly; therefore, it is necessary to focus on
Agile-based models. The main focus of Agile is on customers and their requirements. Dur-
ing an Agile process, the project team tries to incorporate the customers’ needs into the
development process and supports customers to reach their targets. The following table
compares traditional project management with Agile.

Table 3: Comparison of Agile and Traditional Project Management Methods

Traditional project manage-

ment Agile project management
Requirements Clear requirements with low Clear requirements with high
change changes
Customer Not involved in the process Close collaboration
Documentation Formal documentation required Implicit knowledge
Scale of project Large-scale Small and medium
Organization structure Linear Iterative
Model preference Adaptation to changes Anticipation of changes

Source: Asadi (2020).

Nowadays, many big and small companies, including start-ups, are using Agile to success-
fully develop their projects (Yau & Murphy, 2013). Suppose you want to set up your start-
up and introduce your product to the market. After your start-up has been growing for a
while, you have to find a suitable project management methodology. Agile can be a per-
fect fit for you in this case. You may need to combine different Agile methodologies to find
the best solution for your team based on Agile values. This methodology enables you to
improve flexibility, accelerate the time-to-market, improve product quality, improve col-
laboration, and respond quickly to customers’ requests for changes. If you want to imple-
ment Agile successfully, you need to have a reason to change to Agile before you commu-
nicate it to your team members and make sure they are willing to support you through this
transition. It is essential to demonstrate the importance of Agile and the method you want
to work on, i.e., Scrum or Kanban. As your team is the primary driver of Agile, it is crucial
to keep all members motivated. The team structure should be clear since Agile, unlike tra-
ditional methods, requires a clear team structure and identification of Agile roles and
responsibilities. You need to get your team to agree to do Agile events and identify the
tasks that need to be completed. Based on the model you adopt, you can select a proper
tool specifically tailored to your needs. During a test run, you can find and optimize the
Agile model for your team.

When it comes to managing complex projects, many organizations work based on the
waterfall method, which ensures that the team will follow the planned development pha-
ses and reach the target on time and under the budget (Petersen et al., 2009). This model
is especially well-suited to projects consisting of a series of dependent steps that start
with a thorough plan and run the phases based on the plan. This model works particularly
well with simple and straightforward projects, however, when a task is more complex and
the target is not clear, it would be better to choose a different methodology. For example,
if you want to create a website for an online business, you have to consider the fact that
technology is growing quickly and that you do not know your users’ requirements or what
particular feature they like, which makes it difficult to plan in advance. Such digital
projects contain a lot of unknown steps because, in this field, it is impossible to predict the
project’s final output and the project requirements. In these projects, you need to learn

49

50

from the test run in order to create a clear plan and product, and to gain experience. As in
the waterfall method, testing is not part of the development process and there is no room
to incorporate feedback which is why adding changes can result in additional costs. As we
have already mentioned, Agile methods can perform better in a complex project, as they
break down projects into user stories; however, there are some points to consider when
transitioning from a waterfall method towards Agile (Carilli, 2013). They are as follows:

+ Team capacity. Figure out your team capacity or working hours.

+ Individual capacity. Planning each team member’s workload individually helps you to
better understand their potential and communicate changes to them based on their
ability.

« Estimation. The proper assessment of the effort required to complete a task affects your
team members’ productivity.

+ Sprint length. Find the right sprint length based on your needs.

» Client transition. Your clients need to participate more in the project development pro-
cesses. You have to help them understand the break-down framework and collaborative
processes, the value of embracing uncertainty, the need to have the willingness to give
feedback, and flexibility towards time, cost, and efforts.

Transitioning to Agile means changing the work culture and collaboration style of your
organization. It is essential to support culture changes and take Agile values into consider-
ation. It is also important to remember that, in order to change the work culture, Agile will
also change management and leading processes and measure the team’s progress and
achievements (Carilli, 2013). For example, in Scrum, the target is to finish all user stories in
a sprint backlog. In order to achieve that, you have to find a way to measure team per-
formance based on Agile values. During this transition, the organization needs to have
experienced people taking on roles and responsibilities in the team. To do that, you can
choose whether to hire a new member or train the team members to fill the need for spe-
cific skills.

A sudden move from traditional to Agile project management can be tough for your team,
especially for team members who are not familiar with this model and who need to learn a
whole new project management approach. Smoothly aligning your legacy project man-
agement method with an Agile framework requires skills and patience. You need to spend
time and money bringing the right knowledge and model to your team. Furthermore, in
addition to changing rules, events, and responsibilities, you also have to bring a new lan-
guage and working culture to your organization. Agile requires agility, but it’s worth the
effort to try. The transition from waterfall to Agile is a lengthy process, but it will improve
your team collaboration and work quality. However, bear in mind that Agile is a journey,
not a destination, so in the end, you have to make sure the transformation does not hurt
your team, but rather helps it to be more productive.

E‘ﬁ SUMMARY

This unit provides an overview of Agile-based project management
approaches for developing high-quality products. We presented the
essential characteristics of these models and covered how they can help
organizations move towards successful project developments. We first
talked about the main Agile values, principles, roles, and characteristics.
This model brings a new working and collaboration culture between
team members, customers, and stakeholders. It breaks down projects
into doable tasks and tries to cover customer changes to increase cus-
tomer satisfaction. Next, we explored Kanban as an Agile model that vis-
ually illustrates the tasks on a board to give quick information about the
work status to the team members. We discussed the pull and push sys-
tem and showed how Kanban, as a pull system, could support the
organization to improve its project development experience.

We introduced Agile Scrum as another important Agile-based model
mainly used in the software development field. This model is based on
iterative development sprint processes. In Agile Scrum, tasks are distrib-
uted among three prominent roles: Product Owner, Scrum Master, and
developer. These roles help teams and organizations to become more
productive and focused on the customer’s requirements and changes.

Finally, we assessed the advantages of Agile in comparison to traditional
project management models. The Agile methodology benefits small and
medium-sized projects and increases customer satisfaction thanks to its
ability to implement customer change during the iterative development
phase. We mentioned some features of Agile that need to be considered
when first adopting this method or changing from a traditional model to
Agile. The main change that Agile brings is cultural change. From the
developers to the top managers, they all have to adopt Agile values to
have a successful Agile experience. Every organization has to find a per-
fect model based on their requirements; there is no one-size-fits-all
model for all projects in the project management field.

51

UNIT 3

STUDY GOALS

On completion of this unit, you will have learned ...

why testing is useful in any software project.

what unit and integration tests are and how you can use them in your projects.
how software development teams approach testing.

how machine learning systems can be tested effectively.

how to continuously assess the quality of your code base.

54

3. TESTING

Introduction

Testing software is an integral part of the software development life cycle. What it means
to test something can vary widely from having basic, automated sanity checks to compli-
cated manual test procedures to see if the workflow of a user on a website works as inten-
ded by the programmers. For instance, a company building an e-commerce platform will
spend enormous amounts of time and effort to ensure their payment system is very solid
and cannot be exploited, and they will do so both by testing their fundamental payment
functionality in isolation and by having test users check out actual items in the shopping
cart. Testing isn’t easy and, in this unit, we will explore the basic paradigms of software
testing in a pragmatic fashion.

As a data scientist, you might not face the same problems as software developers, but any
code that you touch that ultimately finds its way into the product of a company must be
tested with the same scrutiny as any other component. For instance, when you have fin-
ished training a machine learning model on predicting the likelihood of users clicking on
an ad on an e-commerce platform, it is not enough to simply trust that this model will
function as expected. You need to have basic and advanced safeguards in place to make
sure your model will perform in practice, too. In this example, if you continually overpre-
dict the click-probability of users and sell ad space on your site proportional to this proba-
bility, then this prediction is linked to someone’s ad spending and overpredicting means
that they pay too much. In the worst case, your model will assign high value to an ad
placement that is essentially worthless, eventually leading to your company losing adver-
tisers’ trust and potentially a lot of money. However, with proper tests in place, scenarios
such as these can often be avoided completely, or at least be spotted before the issue
becomes too large to effectively deal with.

Ideally, testing is a team effort supported by all parts of a company. Often you find dedica-
ted testing teams working with and supporting the core development team. Automated
software testing and implementing testing pipelines that only allow new code to be ship-
ped to production environments when all tests pass have become a staple of modern soft-
ware development. While there is no such thing as a perfectly tested piece of software,
assessing how much of its functionality is covered by tests is worthwhile. Larger compa-
nies go as far as to create whole testing strategies and prioritizing testing according to the
project’s risk factors in an effort to mitigate them. There are many levels at which you can
test software, and projects in general, and also many stakeholders with different interests.
For instance, backend developers might have a vested interest in ensuring their applica-
tion servers have few to no outages, while a frontend developer is more focused on having
as little friction in the user flow as possible.

In this unit, we will investigate the value of testing from a data scientist’s perspective, dis-
cuss how to write different types of tests in Python, how to approach testing in practice,
and look into how machine learning systems can be tested properly.

3.1 Why Testing?

In the introduction to this unit, we talked about how ubiquitous testing is in software
development and hinted at a few reasons for this, but it is good to take a step back and
ask: Why are we testing software systems in the first place?

Validity and Correctness

In spite of our best intentions, humans make errors all the time. By extension, even the
best programmers in the world err, and they do so quite frequently. We test software to
make sure our programs execute and run correctly, even in edge cases. This problem
becomes even more prominent when several programmers work on the same project and
modify each other’s code, which is the norm.

Let’s have a look at a basic Python example that shows that correct behavior of a program
needs to be properly defined and scoped out. Let’s say you want to add two numbers and
return the result to the user. A function with that functionality could look like this:

Code
def add(a, b):
return a + b

Simple enough, but does this program run as intended? If we provide two numbers as
input to this function it will indeed return their sum. However, Python has operator over-
loading and the plus operator “+” does not only work on pairs of numbers, but also on
strings or lists, which allows you to misuse the add function above for other types:

Code

add("test", "this")
'testthis'
add([4], [3, 2, 1])
[4, 3, 2, 1]

What is worse is that you can actually break this function by providing mixed input types.
For instance, if you input one integer and one string argument, you will get a Python
TypeError:

Code
add("3", 42)
TypeError: can only concatenate str (not "int") to str

While in this artificial example the consequences may not be too serious, you can easily
imagine more complicated functions used in a large code base, consisting of thousands of
lines of code, in which unintended usage can cause disaster. It’s best to prevent this kind
of problem altogether by introducing type checking and catching incorrect inputs.

Operator overloading
Many programming lan-
guages allow you to over-
load operators, such as
“+7 “” or “=" to other
contexts and custom
functionality, while others
strictly forbid it. One of its
benefits is that it makes
for very readable code.

55

56

In the concrete example of the add function, we could check that both input arguments to
the function are either of float or int type in Python and make sure to throw an informative
error if that’s not the case. Python has the built-in assert keyword that you can use in such
situations. A slightly improved version of the add function could look like this:

Code
def dis_number(value):
return isinstance(value, float) or disinstance(value, int)

def add(a, b):

assert is_number(a) and is_number(b), "Both inputs must be numerical"

return a + b

Now, if you try to use this function with lists or strings as input, executing the code will fail,
as expected:

Code
add([4], [3,2,1])
AssertionError: Both inputs must be numerical

Note that we improved our implementation by adding a basic safeguard. Doing so allowed
us to better scope the input arguments, thereby making this function more testable. Still,
the testing itself was manual in the sense that you have to execute the above code in a
Python runtime and see if it returns the result you wanted. Automating this kind of proce-
dure is what software testing is all about, and we will see more on this topic in the next
section. For now, keep in mind that testing is used to ensure the following:

+ Correctness. Does the program execute without any errors when provided valid input
arguments and does it return the correct result in all cases? For instance, does the pro-
gram correctly compute the sum of its arguments?

» Validity. Does the program make the right assumptions about the context and scope in
which it is to be executed? For instance, do we restrict input arguments to the right
types?

Requirements and Documentation

In the example of the above add function, it became clear that software functionality is a
result of the requirements, i.e., the intended behavior we impose on it. We required the
add function to only take in numerical values as input arguments, which is a design
choice. It is conceivable that we could also have chosen otherwise and purposefully
allowed add to take various other arguments.

Companies do requirements engineering to match their code with the expectations of
their users and customers. Testing software can be one way of ensuring these expecta-
tions are met. In the add function example, we know from manually testing it that it only

works on numerical inputs. In fact, the error message that gets returned when this is not
the case highlights this within the function body, i.e., the numerical input requirement is
documented in the function itself.

The tests you write can more generally be understood as an expression of the require-
ments and documentation of intended behavior. Without explicitly testing “add” it would
be unclear how to use it. When a new programmer joins a company and starts working on
a new code base, it is considered good practice for them to check out and run the tests
first.

Lower Support Costs and More Trust

When software is properly tested, a company will need to spend less time on support, as
there are fewer bugs in the code base and the applications will run more reliably. In gen-
eral, it is advisable to invest in good tests upfront rather than to let your users discover
bugs for you. In an evolving system, it is virtually impossible to eradicate all sources of
error entirely, but, with good test coverage, you minimize the risk of something failing
fundamentally. It’s usually unfeasible or impractical to aim for 100 percent test coverage,
but a high percentage should be the goal. In the example of our add function, we’ve essen-
tially covered 100 percent of the functionality, but, for more complex functions, it
becomes increasingly difficult to do so.

Ultimately, good testing is a requirement to stay in business. If your customers trust you to
continually produce high-quality software with every release, there is a much higher
chance that you can retain them. Reliability and quality are prerequisites for good user
experience and a necessity to grow your customer base.

Development Frameworks and Best Practices

The trust your customers gain is reflected by the trust your developers have in their own
software, internally. Having a good testing framework, accompanied by a set of engineer-
ing best practices, will help development teams to be more productive. For instance, jun-
ior staff members will find it easier to go through their onboarding process when they can
rely on the benefits of a tested code base (e.g., by understanding its intended behavior
faster).

By contrast, untested software is often difficult to deal with, in particular when you want
to modify and extend it. This is because a lack of testing means that you can never be
entirely sure if a modification breaks part of the existing functionality.

Refactoring

Code bases naturally evolve over time as customer requirements change, technology
becomes obsolete or gets replaced, and new functionality gets added. This implies the
necessity to change existing code, to refactor it. When you start to refactor a project, you
need to be careful not to break things. Good tests can guide a developer in their refactor-
ing efforts by giving vital feedback. If your project has good test coverage for a specific
function and you rewrite this function from scratch to cater to an extended use case, after

Requirements
engineering

The process of defining
the specific functional
needs for a piece of soft-
ware, as agreed upon by a
group of stakeholders, is
called requirements engi-
neering. It precedes the
implementation of any
code and is the basis of it.

Test coverage

In software testing, cover-
age is a measure of how
much of the functionality
in your code base is tes-
ted for correctness, i.e.,
“covered” by tests.

57

Refactoring

In software engineering,
we speak of refactoring as
the practice of modifying
or rewriting existing code
in order to maintain or

58

extend it.

you’ve finished the rewrite all tests should still pass, i.e., the previous functionality should
still work. Without tests, it is largely impossible to keep large software projects alive, as
they will need to be refactored constantly. Once a code base grows beyond what a single
person (or group) can reliably monitor, automated tests are the only way to ensure modifi-
cations don’t introduce new bugs.

3.2 Unit and Integration Tests

When talking about testing, it is useful to distinguish between different types of tests. One
of the most common differentiations is between unit tests and integration tests.

Unit Tests

These tests check smaller, standalone code units in isolation. Unit tests will usually run
very fast, so developers can execute them frequently, e.g., whenever saving a file they just
modified. Unit tests give developers confidence of the validity of the “building blocks” of
the code base, but do not test how components interact with each other in complex and
intricate ways.

Integration Tests

In contrast, integration tests are aimed at testing how various components or modules
interact with each other in the grand scheme of things. Integration tests will often run
much slower, due to the added complexity, and developers cannot afford to run them as
frequently as unit tests. Often, integration tests can be so resource intensive that develop-
ers cannot afford to run them on their local machines at all. However, integration tests are
an integral component of testing, as they are less isolated than unit tests, and are more
concerned with a higher level interaction that resembles the type of interaction users will
face when using the final product.

While unit and integration tests make up the most relevant part of the testing tool chain
for data scientists, they cannot cover everything that is needed, so there are other types of
tests to fill these gaps. For instance, companies building complex graphical user interfaces
(UI), for example, for a web application, often require manual testing of the workflow of Ul
components. This can be quite expensive, as human labor is much more expensive than
running tests on computers. Tests that automatically check the complete workflow of a
user in an application are aptly called end-to-end (E2E) tests and can be considered an
extension of integration tests in the sense that they are even more integrated. The draw-
back is that E2E testing is even slower and more expensive (in terms of compute resour-
ces) than integration testing. To summarize what we have discussed so far, we can define a
test automation pyramid as explained in Cohn (2009) in the following diagram.

Figure 20: Test Automation Pyramid

More 4 4 Slower
integration

E2E tests

Integration tests

More Unit tests
isolation v

v Faster

<

Source: Pumperla (2020), based on Humble & Farley (2015).

Unit and Integration Testing in Python

As data scientist you need to be able to test the software you write. Here, you will get a
short introduction to the unit and integration test framework pytest available for the
Python programming language. There are other tools to choose from, like unittest or
nose, but pytest is a very popular choice and likely the easiest to pick up. To get started
with pytest for your projects, you must install it first with a package manager, such as

pip:

Code
pip install pytest

In this example, we are creating a file called arithmetic.py and putting the latest ver-
sion of the add function we defined in the last section into it. So far, we have only man-
ually tested this functionality, but it's now time to automate the process by writing tests
into a new file called test_arithmetic.py. Let’s start with a simple correctness check:

Code
import pytest
from arithmetic import add

def test_add():
assert add(2, 3) == 5

If you run this test file with

Code
pytest test_arithmetic.py

the output on your system should look as follows:

59

Decorator

In Python, decorators are
used to provide existing
functions with additional
functionality, like wrap-
ping a single test case
into a parametrized ver-

60

sion.

Code
collected 1 +item
test_arithmetic.py . [100%

In this case, pytest was able to collect one test and run it without failure, leading to 100
percent correctly executed tests. This is good news, as it enables us to automate all the
tests we ran manually before. For instance, remember that we didn’t want to allow mixed-
type inputs and non-numerical types as input to the add function. With testing, we can
check, and simultaneously document, the intended behavior of our little arithmetic
library. Here’s how to check for incorrect types:

Code
def test_mixed_types_error():
with pytest.raises(AssertionError):
add("3", 42)

def test_list_type_error():
with pytest.raises(AssertionError):
add([4], [3,2,1])

Note how we catch the assertion errors emitted by the incorrectly used add function calls
in both new tests with pytest.raises, which takes the type of error to catch as argu-
ment. When you run pytest again, after adding these two tests into
test_arithmetic.py, you will now see three passing tests.

An interesting feature of pytest is that you can easily parametrize tests with it, i.e.,
instead of writing essentially the same test over and over again, but each time passing
different values into it, you can provide a list of input parameters in a decorator. A para-
metrized version of our first test_add test would look like this:

Code
@pytest.mark.parametrize(
("a", "b", "expected"), [(1, 2, 3), (2, 3, 5), (42, 7, 49)]
)
def test_add_params(a, b, expected):
assert add(a, b) == expected

Adding this parametrized test to our test suite and running pytest again will result in a
total of six successfully executed tests, as we provide three sets of parameters to our test
case. Specifically, what pytest does here is

+ uses a Python decorator (indicated by the “@” sign) from the pytest library called
pytest.mark.parametriize;

« specifies parameters strings in a Python tuple, here the three parameters “a,” “b,” and
“expected”; and

« provides a list of parameter values that will successively be passed as arguments into
the test function, whose input parameters have the same name as those specified in the
decorator.

Up until this point, we have only scratched the surface of what the testing framework
pytest can do. For parametrization, we have already seen markers, which are important
for many different aspects in pytest. For instance, custom markers allow you to build a
suite of tests that can distinguish between unit and integration tests. To do so, let’s define
a file called pytest.ini that we put next to our library and test code files, with the fol-
lowing content:

Code

[pytest]

markers =
unit: fast-running unit tests
integration: slower +integration tests

This defines two custom markers, namely “unit” and “integration.” The crucial part of this
definition are the names of the markers. What follows after the colon (“:”) is just optional
documentation. When you type pytest --markers into your shell you will see your new,

custom markers prompted on top of the list of built-in markers from pytest:

Code
@pytest.mark.unit: fast-running unit tests
@pytest.mark.integration: slower integration tests

Using these test markers is now straightforward, you simply annotate your tests with the
above decorators. For instance, if we wanted to make our very first test a unit test, we
would just have to mark it accordingly:

Code
@pytest.mark.unit
def test_add():
assert add(2, 3) == 5

Running only unit tests and running all non-unit tests has the following syntax, where the
“-m” flag stands for module:

Code
pytest -m “unit” # run the single test marked as unit test
pytest -m “not unit” # run the other five tests not marked as unit test

61

62

Likewise, you could mark a test as a unit test by using the @pytest.mark.integration
decorator and run the respective tests with

Code
pytest -m “integration”

This covers the very basics of pytest as a unit and integration test framework. It is worth
noting that pytest is modular and comes with many interesting extensions, such as
pytest-cov for analysing test coverage.

Other Testing Dimensions

We introduced unit and integration tests by essentially distinguishing them using two
dimensions, namely how integrated or isolated they are, and how fast or slow they exe-
cute. There are other interesting dimensions relevant for implementing successful soft-
ware testing strategies, among which are the business-technology and the development-
product dimensions. They are defined as follows:

1. Business-technology dimension. Is the test in question coming from a business
requirement or is it purely a test of the underlying technology stack?

2. Development-product dimension. Is the test designed to aid the development team or
is it built to check the workflow of the product?

The axes of these two dimensions span across four quadrants known as Brian Marick’s
quadrant (Humble & Farley, 2015). Not every product team needs to put equal emphasis
on all quadrants, but checking each of them before a new release is worthwhile.

Figure 21: Marick’s Quadrant

Business facing

Q2 Q3

Functional acceptance tests Usability tests

(Automated) Exploratory tests
Showcases
(Manual)

Development support Product critique

Q1 Q4

Unit tests Non-functional acceptance tests
Integration tests (Manual/automated)

System tests

(Automated)

Technology facing

Source: Pumperla (2020), based on Humble & Farley (2015).
Technology-facing tests that support development (Q1)

It is no coincidence that these are precisely the type of tests we have already looked at:
automated unit and integration tests. To many developers and data scientists who write
these tests, these are the most relevant tests in their daily work. Note that the system we
test, also called the system under test (SUT), might have external dependencies, such as
third-party application programming interfaces (APIs) or data sources. In systems testing
you will usually mock the external dependencies and provide test data for them to test
your internal system exclusively. Systems testing tests the system as a whole, while inte-
gration and unit tests apply to parts of the system.

It is important to note that all of these tests are functional tests that describe precisely
what is supposed to happen in the software according to the requirements. Opposed to
that, non-functional requirements are concerned with how things do what they are inten-
ded to do. For instance, a bottle’s functional requirement is the ability to hold fluids and
the amount of fluid to hold, while its design is entirely non-functional.

Business-facing tests that support development (Q2)

Tests in this quadrant are usually referred to as functional acceptance tests. In an accept-
ance test you predefine criteria that have to be met so that the test can be “accepted” by
the business stakeholders of the project. An acceptance test that is also functional by the
above definition is a functional acceptance test. As these tests are business-facing, the cor-
responding acceptance criteria can easily be formulated in plain English.

Mocking a system

To isolate and test com-
ponents with external
dependencies, providing
an implementation that
emulates the external sys-
tem on a basic level, is
called mocking.

63

User journey

In software quality con-
trol, the term “user jour-
ney” means the experi-
ence a user has when
using a product.

64

E2E tests, as we previously introduced, are an example of tests in this quadrant, as they
are functional by nature and test the whole system, thereby covering high-level business-
facing requirements. In E2E tests the goal is to simulate real user scenarios (Katalon,
2020). E2E testing differs from systems testing in that the latter mocks the environment,
while the former tests all connection to external systems like APIs as well.

Business-facing tests that critique the product (Q3)

These tests are mostly manual and check that the product is shipped in the way custom-
ers expect it to be. They not only check for the underlying functionality, but also take into
consideration non-functional aspects, such as usability. For instance, a test in this quad-
rant might consist of a demo of showcase that demonstrates a concrete case from a user
journey, by stepping through the product. Also, tests in this quadrant can often be of an
exploratory nature, trying to surface bugs that only occur in rare edge cases and other
similar situations. If an exploratory test led to a new insight and is considered to have
long-term value, said test might make it into the automated test suite in Q2.

Quite often the manual part of the testing in this quadrant and in quadrant 4 are done by
dedicated teams of testers whose job it is to design and run complex test scenarios and
report the result back to the stakeholders (both technical and business).

Technology-facing tests that critique the product (Q4)

The tests in this quadrant are acceptance tests, but are non-functional in nature. For
instance, such tests might check for reliability, availability, or scalability of a service. Test-
ing such requirements is very important, as downtime of a service or very long response
times of a website can lead to customer dissatisfaction or lower sales. Non-functional
acceptance tests can be automated but are usually only executed at the very end of the
testing pipeline, usually after having made sure that all tests from Q1 pass.

3.3 Approaching Testing

Now that we know some of the basics of testing in Python, it is worth investigating how to
approach the topic of testing in practice. While some companies take a very structured
approach to testing with whole teams dedicated to the various aspects of testing as intro-
duced in Marick’s quadrant, others take a more pragmatic approach and test as much or
as little as they deem necessary. Among the more structured approaches, we will discuss
three software development and testing techniques in more detail, namely

« test-driven development (TDD),
« acceptance-test-driven development (ATDD), and
+ behavior-driven development (BDD).

Test-Driven Development (TDD)

In test-driven development the basic idea is that you start by writing the tests first, and
then provide an implementation that makes those tests pass. To inexperienced develop-
ers this technique often comes as unnatural, as you are required to devote all your initial
time writing tests for which there is nothing that they could be checked against. In our
running example of the add function, applying the TDD paradigm would mean to write the
suite of six tests first in order to specify and document the requirements for the yet to be
implemented add function.

One of the benefits of this technique is that it is much harder for developers to deviate
from the originally imposed requirements, which are directly expressed as tests. This addi-
tionally ensures that developers are familiar with business requirements in the first place,
a useful safeguard. On the other hand, TDD can sometimes lead to confusion on the part
of the development team, as members can find it difficult to figure out where to start, how
to set up a test, how much to test in an iteration, or how exactly to provide the first imple-
mentation, respectively figuring out why a test fails (North, 2020).

Once the test suite is written and all stakeholders agree on it, it is the responsibility of the
development team to provide an implementation that satisfies these tests. Only once all
the tests, reflecting the requirements, finally pass is the implementation considered valid.
According to Beck (2014), the TDD process can be expressed in the following steps:

1. Write tests for functionality that has not been written yet. By construction, this test
will fail.

2. Write the simplest code possible that makes the tests pass. Your code should not
anticipate future requirements and thereby complicate the design. Making the pre-
defined tests pass is what matters.

3. Run all tests to check that they do, in fact, pass.

4. An optional last step is to do some refactoring and clean up your code base. This
might not be necessary in the first iteration, but once you go back and define your
requirements and write more tests, it is likely that there are some redundant code
parts or code that can be refactored to be more elegant.

As indicated in the last step, this TDD process is actually a life cycle, in the sense that the
above steps, once completed, are repeated in a new cycle. While initially setting up a
project with TDD might appear unintuitive as you don’t have any functionality yet, just
tests. Once you have an established code base and regularly enter the above cycle of
steps, the development in TDD often doesn’t look too different from a code-first and test-
later approach, and development teams tend to get used to this style of programming
quite quickly.

Acceptance-Test-Driven Development (ATDD)

TDD usually refers to a specification of unit and integration tests, and hence take a very
developer-centric and functional view of the requirements held by a company. By con-
trast, in acceptance-test-driven development (ATDD) you go through the same four life
cycle steps as in TDD, but you start with an active discussion between stakeholders, often

65

Domain-specific
language (DSL)

In software development,
aDSLis alanguage that
has been designed and
crafted to work with the
abstractions commonin a
specific application

66

domain.

involving and focusing on the needs of clients, which results in a set of acceptance tests to
be implemented. The ATDD methodology is, therefore, more business-facing than TDD
and mostly corresponds to testing in Q2 of Marick’s quadrant (as acceptance tests are usu-
ally functional in nature), while TDD falls into Q1, which is why both approaches comple-
ment each other.

Behavior-Driven Development (BDD)

Behavior-driven development (BDD), introduced by Dan North (2006), is another develop-
ment paradigm related to TDD and ATDD, but with a clear focus on putting user behavior
first. In BDD, new functionality is specified by examining concrete examples of users’
behavior and examples are formulated in scenarios which follow a simple “given-when-
then” structure. This means “given” an initial context, “when” an event occurs, “then” a
certain outcome is expected. One of the main advantages of BDD is that its requirements
are expressed in plain English, which helps bridge potential communicational gaps
between software developers and business units and makes sure all stakeholders have a
common understanding of the expected functionality of the software they are building.

Gherkin is a domain-specific language (DSL) implementing the semantics of the “given-
when-then” structure of modelling behavior (Gherkin, n.d.). Sticking with our simple
example of adding two numbers, a Gherkin feature file would look as follows:

Code
Feature: Addition
Functionality for adding objects
Scenario: “+” should add two numbers
Given the number 5
When I add 3 to it
Then the total should be 8

In Gherkin, you define a feature by giving it a name (in this example, Addition) and an
optional description, and then move on to define one or several scenarios, which follow
the aforementioned “given-when-then” logic. If you have multiple clauses, you can chain
them with an And qualifier. For instance, the above Gherkin feature file, which we store as
addition. feature, can functionally equivalently be written like this:

Code
Feature: Addition
Functionality for adding objects
Scenario: “+” should add two numbers
Given the number 5
And the number 3
When I add them
Then the total should be 8

Of course, this example is extremely simplistic, especially since we only defined it for two
concrete numbers. Gherkin only really shines when describing more complex scenarios,
but this example gives you a good enough idea of how this DSL is built. If we wanted to
implement a BDD test in Python, we could leverage the BDD extension of pytest called
pytest-bdd, which you install with

Code
pip install pytest-bdd

Having installed the library and given the above feature file, we can now define a BDD test
for the add function (which would not have been written at the point of specifying the
test):

Code
from pytest_bdd import scenario, given, when, then
from arithmetic import add

@scenario('addition.feature', '“+” should add two numbers')
def test_add():
pass

@given("the number 5")
def first_number():
return 5

@when("I add 3 to 1it")
def add_to_it():
return add(first_number(), 3)

@then("the total should be 8")
def result():
assert add_to_1it() == 8

Note that this test will only work if you specify the correct feature file and choose the exact
same naming conventions in the scenario, given, when,and then decorators provi-
ded by pytest-bdd as in the respective fields of the feature file.

3.4 Testing Machine Learning Software

Machine learning (ML) is a crucial part of any data scientist’s work, which, on a high level,
requires the selection of suitable algorithms and data to train these algorithms. The train-
ing process itself, i.e., letting the machine learning algorithm learn from the data, then
produces a trained model that somehow has to be put into production. Once the model is
live in a production environment, it needs to be continuously monitored to ensure it does

67

68

what it is intended to do. All of these steps need thorough testing to ensure the final prod-
uct delivers the value expected. This section is focused on the testing aspects involved in
machine learning, but is not an introduction to machine learning itself.

To give an example of the need for testing in machine learning, imagine you are working
for an online marketing company that wants to give users of an e-commerce platform
smart product recommendations using machine learning to yield more customer satisfac-
tion. To do this well, you have to test several steps and assure high quality of each. These
steps are as follows:

+ Data collection and processing. Data collection describes the process of retrieving and
storing data in the first place, while data processing entails transforming the data suita-
bly so that it fits the given use case. For instance, to train a recommendation model, if
your data set does not include the dates of previous sales, your model cannot account
for seasonal effects like Christmas sales.

+ Model training. Once you make sure you have the right data and have selected an algo-
rithm, you will have to ensure that the training procedure is running smoothly and pro-
duces good recommendations.

+ Model monitoring. After successfully training your model and putting it in production,
you need to ensure that it performs well on live data, e.g., when a new user visits the e-
commerce site you are working on for the first time, do they get good recommendations
from the start?

These are just examples, but they give a good first impression of what testing for machine
learning can look like. In the rest of this section, we will introduce you to both testing
mechanisms for model training and deployment.

Testing Machine Learning Training Processes

From a software engineering perspective, one of the aspects that makes machine learning
paradigmatically different from traditional programming is that in ML, models are not
explicitly programmed by humans, but rather learned from data. Hence, there is a funda-
mental difference in the output of both approaches, and an ML model can be somewhat of
a black box. Of course, any ML project also still contains code in the traditional sense,
namely the code to set up the ML model in the first place, prior to letting it learn.

What’s more, ML models are often nondeterministic, meaning that given the same inputs
you might not get a single, deterministic answer all the time, but rather a range of possibil-
ities that have to be interpreted. As an example, an ML model that has learned to classify
pictures as having either dogs or cats in them and that is shown a picture of a previously
unseen dog will assign a probability to that picture corresponding to the likelihood that
this picture does indeed have a dog in it, according to the model. If the model predicts a
very high probability, human operators might be confident in this result, but what can you
expect for an example picture that has 51 percent probability of having a dog in it? That’s
essentially a coin flip and should be investigated more closely.

It is thus necessary that testers of a machine learning training procedure test several
aspects, such as the data, the code to set up the ML model, the ML framework that is
responsible for the training (usually a third-party library), and the choice of algorithm. We
formally define a learning program to be the algorithm chosen for the use case, plus the
code used to implement it in a given ML framework and all the configuration needed to set
it up. Essentially, it’s all that you need to train a model, minus the data.

Testing these aspects can be very time-consuming and require a lot of domain-specific
knowledge (Zhang et al., 2019). While testing the code falls under the realm of traditional
software testing, testing the ML framework is considered the responsibility of the respec-
tive framework vendor.

Testing data

As indicated in the introduction to this section, testing the data required for an ML model
training procedure is not to be taken lightly and requires testers to check for several key
questions, which we list with examples from the above cat-and-dog classifier:

1. Is there enough training data available for training? To train an image classifier, you
likely need several thousands of images, for instance.
2. Does the data need to be cleaned or preprocessed? For example, images might come
in different resolutions and aspect ratios, and they first have to be normalized to “fit” Data normalization
into the same ML model. In machine learning and
3. Does the model fairly represent future data? For example, if our data set contains only related fields, data nor

malization describes the
one breed of dogs, the trained model might not be very accurate for predicting other process of transforming

types of dogs. potential!y heterogene-
. ous data into the same
4. Does the data contain a lot of noise? For instance, are the objects we are interested in ¢hape or form for further

(cats and dogs) partially occluded by other objects? processing by an ML
model.
It is not possible to give a generally valid prescription of how to test data in ML model
training, but there are a few best practices that you can follow (Heck, 2020). They are as
follows:

« Schema and type validation. Whenever possible, impose a strict schema on data and
check for data types. Relational database systems do this for you, for instance. Doing to
helps ensuring good data quality and prevents mal-formatted inputs (Kim et al., 2018).

« Checking constraints and sanity checks. Oftentimes you can check for patterns and con-
straints in subsets of your data and how they relate to other subsets (Kim et al., 2018).
For instance, all purchased items on an e-commerce platform must previously have
been in the shopping cart, but not all cart items will lead to a purchase. Quick sanity
checks can help immensely in spotting that something is wrong in your dataset.

«+ Using testing platforms. There are cloud service providers that help you check whether
you are properly testing your data quality. For instance, Google has a data validation
system that generates synthetic test data for a given schema, so that you can test your
models with it (Breck et al., 2019).

69

70

Testing the learning program

When training an ML model, you need to evaluate its performance, keeping several met-
rics in mind (Zhang et al., 2019). These metrics are as follows:

+ Correctness. The model should be as correct as possible given a predefined measure to
test it against. For instance, in the example of classifying cat and dog pictures, you
might be interested in accuracy, defined as the number of correct predictions divided by
the number of all predictions, usually reported as a percentage.

» Interpretability. As mentioned before, ML models can often have aspects of a black box,
but there are efforts to make the reasoning of these models more understandable and
explicit. For instance, the ML Interpretability module available for H20 aims to give
users feedback on the causes underpinning predictions (H20, n.d.).

« Fairness. Ethical aspects such as fairness of predictions, e.g., not to discriminate against
certain demographics, become more and more important in ML (Dwork et al., 2012). For
instance, when trying to predict human attributes or behavior, a bias in data can lead to
unwanted outcomes. One example of a tool used to mitigate discrimination and bias is
the Al Fairness 360 framework (IBM, 2020).

Machine Learning Model Monitoring

Once your ML model makes it into production, it should be constantly monitored to pre-
vent unwanted behavior. Though there are many others, we distinguish between three
basic types of monitoring in ML systems (Gade, 2019). They are as follows:

1. Input data monitoring. You need to make sure that the data feeding into your model is
stable over time by tracking its statistics. For instance, if you observe that the “onsite
duration” of the users on your e-commerce platform goes down significantly, that
might not only lead to a shift in your model’s performance, but also hints at a bug in
your website.

2. Model operations monitoring. You have to keep track of factors, such as latency,
response time, and throughput of your models. If the predictions take too long, your
ML service might slow down the entire operation.

3. Model performance monitoring. Do your predictions remain of high quality, or can
you observe a drop-off, e.g., in accuracy over time? If this is the case, you might have
to go back and retrain your model.

3.5 Performance Monitoring

So far in this chapter, we have discussed how testing of software components is done on
an individual level, meaning what aspects you as a data scientist have to look out for.
When working in a company that has to ensure its products are stable and well-tested, you
need to make sure that all the tests that have been set up by individual contributors like
yourself are properly automated. This is done by setting up a development pipeline with
the following components, each of which we will discuss in more detail:

« continuously contributing and automatically building new code to the team’s code base
and delivering this code to production environments on a regular basis

« continuously testing the changes committed to the code base

« applying the first two points to an ML workflow, continuously training your models

Continuous Integration

Continuous integration (CI) is a software development paradigm that was introduced in
1999 which enables developers to integrate new code into existing code bases as quickly
as possible in order to iterate faster (Beck, 1999). One of the core ideas of Cl is that it is
easier to spot software quality problems when making small, frequent changes as
opposed to large, infrequent changes. Continuous integration is based on the following
building blocks (Humble & Farley, 2015):

« Version control. Your software, including code, configuration files, scripts, and other
files, needs to be checked into a version control system like the ubiquitous Git (Git, n.d.).

« Automated builds. For cases in which your programming language has a compilation
step or other required build steps, there should be tooling to automatically rebuild your
code when it changes. Modern integrated development environments (IDEs) can take
care of this for you.

» Team agreement. Continuous integration is a philosophy based on teamwork, which
requires commitment from each team member. For instance, all team members need to
agree to use the same version control system and use automated builds in their tool-
chain.

Continuous Delivery

While Cl is focused on developers and ensuring that they can quickly introduce new code,
continuous delivery (CD) is a method for continually delivering software in a timely man-
ner, so that companies can deliver value to their customers more quickly (Chen, 2015). We
often speak of CI/CD together, as parts of continuous integration are also found in CD and
the two methodologies naturally fit into common frameworks. To implement a CD pipe-
line, the development team of a company has to set up the following development and
testing steps (Chen, 2015):

1. Committing code. Providing new code, e.g., with a version control software like Git
introduced in the CI subsection, is the first step in the CD pipeline. Upon committing
code, the unit tests of the project can be run, which is not always the case in this step
and might only be done in the next. As with each step in this pipeline, if an error
occurs, the pipeline stops and gives the developers feedback about what went wrong.
Once the issue is fixed, the pipeline can proceed to the next step.

2. Building and testing the software. After building the software (if necessary), all unit
and integration tests are run. Only if all tests are passed can the pipeline move into
the next phase. This step will usually also include various reports, such as code cover-
age, formatting hints or code smells, which automatically tell the developers that
some parts of the code base can be improved in the future. A build step will generally

71

72

produce some artifacts, e.g., in Java, compiling your project’s source code will pro-
duce a JAR with compiled classes that can be used in production. These artifacts are
then uploaded to a repository for deployment in later steps.

3. Running acceptance tests. Once the software has been built and the artifacts are
uploaded, an environment emulating the production environment is built, i.e., setting
up servers, installing the software, and properly configuring the service. This environ-
ment is often called the staging environment, preceding production. Once that is
done, acceptance tests can be run to ensure that the software is also ready from a
user’s perspective.

4. Running performance tests. This step checks for non-functional requirements, such as
latency and throughput of requests, and generally makes sure the new update does
not degrade performance of the service.

5. Shipping to production. Finally, the last step is to ship all artifacts to the production
environment and start a new service with your software updates.

Figure 22: Continuous Delivery Pipeline

Performance
Test

Acceptance
Test

Code Commit Production

Source: Pumperla (2020).

Continuous Testing

A topic related to CI/CD is that of continuous testing (CTe). As we have discussed before,
there are several kinds of tests involved in a testing pipeline, e.g., unit, integration, and
acceptance tests (Sakolick, 2020). In CTe we make sure that automated testing is an inte-
grated part of the CI/CD pipeline we just introduced. For instance, we indicated that unit
tests are both part of a regular Cl setup and belong to the first step of a CD pipeline. More
complicated tests that require a production-like server setup, such as integration, accept-
ance, and performance tests, should be part of later steps of the CD pipeline, following the
build step.

Another important type of test is regression testing, in which you compare the test results
of the currently deployed solution against that of the intended update (Basu, 2015). If the
new update would lead to worse performance compared to the production environment,
we would speak of a regression in performance and reject the update in the CD pipeline.

Continuous Training

The last aspect of automated and continuous testing is that of continuous training (CT),
which refers to automating the training and deployment steps of an ML project. According
to Google Cloud (Google, n.d.), the following steps need to be executed to build a CT pipe-
line from ML projects:

« Data validation. This step checks if the data follow the expected schema and have been
cleaned.

« Data preparation. In this step, the data are pre-processed to fit the requirements of the
ML algorithm that the data will be fed into.

« Model training. After the data have been checked and prepared, the model training step
is automatically triggered.

« Model evaluation. After the training procedure is finished, the model is passed some
hold-out test data to compute performance metrics on them, like accuracy. Only if the
model passes a certain threshold does it go into the next phase.

+ Model validation. An additional model validation step might then be required to make
sure that the trained model passes standards for production deployment, which might
entail a manual testing procedure to gain confidence in prediction results.

Figure 23: Continuous Training Pipeline

Data validation Data Model Model Model

preparation training evaluation validation

Source: Created on behalf of U (2022).

Additionally, the pipeline should store and manage metadata for each pipeline run, such
as data and model versions, when the pipeline got triggered and when the process ended,
and what parameters have been used to execute it.

A new CT pipeline run could be triggered for various reasons, e.g., when a human operator
triggers a new run manually, following a predefined schedule, when new data becomes
available, or when the model’s performance regresses. A CT pipeline should have the fol-
lowing characteristics (Google, n.d.):

+ Rapid experimentation. To ensure a fast ML experimentation cycle, the five steps of the
CT pipeline should be executed quickly and seamlessly.

« Training on production data. It should be guaranteed that the ML model is trained auto-
matically in production using the latest data available to avoid staleness.

« Experimental-operational symmetry. The exact same pipeline should be used for locally
training models, e.g., on a data scientist’s laptop and in the production environment.
This ensures that local experimentation and production training will not deviate and
will produce comparable results.

« Engineering best practices. The components of an ML pipeline should follow software
development industry standards, such as reusability, modularity, and composability.

73

74

==

=‘j'|\ SUMMARY

This unit introduced you to the basics of software testing for data scien-
tists. First, we investigated the many reasons why thorough testing is
worth the effort it requires, including gaining and retaining trust from
both customers and your development team, checking basic correctness
and validity of your code, and the ability to safely refactor code. Sec-
ondly, you learned about unit and integration tests and how they relate.
We explored basic testing in Python with the pytest library to show you
how to automate testing for your own work and introduced Marick’s four
test quadrants as a more general classification of testing in business
contexts.

The third section introduced you to the topic of how to approach testing
in practice. We looked into the paradigms of test-driven development
(TDD), acceptance-test-driven development (ATDD), and behavior-driven
development (BDD) and gave examples of them in Python. Then, you
were confronted with the crucial problems in testing machine learning
software, including the necessity of cleaning and normalizing data and
testing the learning program.

Finally, we considered production requirements for testing, in particular,
setting up automated build and test environments such as CI/CD pipe-
lines, aspects of continuous testing and what it means to do continuous
training for ML experiments.

UNIT 4
SOFTWARE DEVELOPMENT PARADIGMS

STUDY GOALS

On completion of this unit, you will have learned ...

- theidea behind the software development paradigm.

- thedifference between imperative and declarative programming.

- the major programming paradigms.

- different methodologies of software design.

- the definitions and concepts of pair, mob, and extreme programming.

76

4, SOFTWARE DEVELOPMENT PARADIGMS

Introduction

Software development paradigms refer to the procedures and steps that are taken during
software design and development. There are several approaches suggested and currently
in operation, so we are going to discuss these paradigms in software engineering. These
can be combined into different groups, although they would likely overlap. Roughly
speaking, programming is a subset of software design, which is itself a subset of software
development, as illustrated in the following diagram (Tutorialspoint, n.d.).

Figure 24: Software Development

Software development

Software design

Programming

Source: Kobdani (2020).

In this unit, we will first discuss the most important programming paradigms. Then, we
will take a closer look at software design paradigms. Finally, we will explore a few well-
known software development frameworks.

4.1 Programming Paradigms

A programming paradigm describes the basic style in which a program is designed. It
defines which principles are applied and which approaches are used (Guigova, 2009).
There are several kinds of programming paradigms; however, there are four major para-
digms: imperative, declarative, object-oriented (which is considered a subset of the imper-
ative paradigm), and functional (which is considered a subset of the declarative para-
digm).

Most programming languages are able to work simultaneously with different program-
ming paradigms. Usually, it is not mandatory for programmers to commit to one program-
ming paradigm and stick to it throughout the code. It can be shown that if a problem can
be solved using one paradigm, it is also possible to solve it using the others. However,
some types of problems lend themselves better to particular paradigms (UCF, n.d.). In this
section, we will discuss some of the major programming paradigms.

Imperative versus Declarative

If we simplify the situation so that there are only two different ways to write source code,
then we end up with an imperative and a declarative approach. These two approaches
are, in a way, based on different philosophical views, which differ in ways that we will
address below.

Imperative programming

The point of this is to give the machine a precise sequence of events through which to ach-
ieve a desired result. In other words, you tell the compiler what should happen step by
step. For example, the following code is an imperative Python code used to calculate the
sum of an array.

Code

my_list = [1,2,3]

sum = 0

for x in my_Llist:
sum += X

print(sum)

Examples of imperative programming languages are C, C++, Java, Kotlin, PHP, Python, and
Ruby.

Declarative programming

Here, it is a matter of conveying to the machine what one wants to achieve and to let the
computer find out how this can be done best. In other words, you write code that
describes what you want, but not necessarily how to get it done. The declarative form of
the imperative example above for calculating the sum of an array can be as follows:

Code
my_list = [1,2,3]
print(reduce(lambda x,y: x+y, my_Llist))

Examples of declarative programming languages are SQL, regular expressions, Prolog,
OWL, SPARQL, and XSLT.

7

Subroutine

This is a sequence of pro-
gram instructions that
performs a specific task,
packaged as a unit.

78

Procedural Programming

The first programming paradigm that a new developer usually learns is procedural pro-
gramming. Procedural code essentially contains the logical steps that explicitly instruct a
computer on how to complete a task. A hierarchical top-down approach is used by this
model and considers data and procedures as two distinct entities. Procedural program-
ming breaks the program into procedures (also known as functions or routines), which
comprise a sequence of steps to be executed. Simply put, procedural programming means
writing down a list of instructions to tell the machine what it should do to complete the
task step by step. The main features of procedural programming are briefly outlined below
(Bhatia, 2020):

+ Predefined function. This is an instruction or subroutine which is identified by a name.
Predefined functions are included in the programming language. Usually, a predefined
function belongs to a library. Two examples of predefined functions in Python are
float() (which returns a floating point number), and format() (which formats a
specified value).

+ Local variable. This is a variable that is declared in a method’s main structure and limi-
ted to the local scope assigned to it. The local variable may only be used in the system
in which it is specified, and the code will stop functioning if it is used outside of the
defined method. In the following Python example, “x” is a local variable.

Code

def funcl():
x = "I am a local variable"
print(x)

funcl()

+ Global variable. This is a variable that is declared above every other code-defined func-
tion. For this reason, unlike local variables, global variables can be used in all functions.
In the following Python example, “y” is a global variable.

Code
y = "I am a global variable"
def func2():
print(y)
func2()

+ Passing parameters. This is a procedure that is used to pass parameters to functions,
subroutines, and processes. The passing of parameters can be achieved by “pass by
value,” “pass by reference,” “pass by result,” “pass by value-result,” and “pass by name.”

Here is an example of parameter passing in Python.

” «

Code
def sum(m,n):
sum = m + n
return sum
print(sum(5, 10))

Examples of procedural programming languages are C, C++, Lisp, PHP, and Python.
Object-Oriented Programming

When creating software applications, it is important to put the different building blocks of

the software into related groups. In procedural programming, we can achieve this by cre-

ating functions. Object-oriented programming (OOP) allows us to do this by a single defi-

nition: class. Everything we need to execute the code correctly is defined in the classes class

(oodesign, n.d.). An object is an instance of a class. When a program is executed, the object 'r‘r;ﬁj:fg°’iﬁ(‘st?japgf'e

is created based on its class definition, and it behaves as defined by the class. The proper- ﬁrintor'pitoly;e thali

ties of an object represent its state, while its methods represent all the actions it can per- defines the variables and

form. The main principles of object-oriented programming are briefly outlined below the functions common to
all objects of a certain

(Rouse, 2020): kind.

« Encapsulation. This means that the execution and state of each entity are privately kept
inside a given boundary (i.e., a class). Other objects do not have access to the content of
the class, but can only call up a list of public functions or methods. This data-hiding
characteristic provides greater program security and prevents the accidental corruption
of data.

« Abstraction. According to this principle, objects disclose only internal mechanisms that
are important to the use of other objects, covering any unnecessary code for implemen-
tation. This idea allows developers to make improvements and enhancements more
easily over time.

« Inheritance. It is possible to allocate relationships and subclasses between objects, ena-
bling developers to reuse a common logic while still retaining a specific hierarchy. This
property forces a more rigorous analysis of data, reduces development time, and
ensures a higher accuracy.

+ Polymorphism. Depending on the context, objects may assume more than one type. For
any execution of that entity, the program can decide which purpose or use is required,
thereby minimizing the need to repeat code.

The following example shows a simple class and object definition in Python.

Code

class MyClass:

x = "I am a class property, my name is X"
y = "I am a class property, my name 1is Y"

myObject = MyClass()
print(myObject.x)
print(myObject.y)

79

Function

This is a block of organ-
ized, reusable code that is
used to perform a single,
related action.

Immutable

Also called an unchangea-
ble object, this is an
object whose state can-
not be modified after it is
created.

Log

This is a detailed list of
application information,
system performance, or
user activities.

80

Examples of object-oriented programming languages are Java, JavaScript, Python, C++,
C#, Ruby, Scala, and PHP.

Functional Programming

In imperative programming, a program consists of a sequence of instructions that usually
change variables (Sebesta, 1996). In functional programming, programs consist exclusively
of functions. At first, there are often many strange technical terms in the context of func-
tional programming, but its basics are actually easy to understand.

In general, functional procedures can be reduced to a few core principles. Some program-
ming languages (e.g., Haskell) implement these principles directly in the language, others
(e.g., JavaScript) require the programmer to take care of their compliance. The two most
important principles for functional programming are as follows:

« Functions have inputs and outputs, but no side effects; they do not process any data
that has not been explicitly passed to them (they are pure functions).

+ Data (“variables”) are never really changed, but only serve as a static starting point for
generating other static data (known as immutability) (Rollins, 2018).

Examples of functional programming languages are Lisp, Haskell, Scala, Erlang, and Clo-
jure, but other languages, such as Python, R, and JavaScript, also allow you to write parts
of programs in a functional style. Even in Java, functional programming has found its
place with Lambda expressions and the stream API, which were introduced in Java8. The
following example shows the usage of “list” and “map” in functional programming. It con-
verts the elements of an array to uppercase and prints them.

Code

cities = ['berlin', 'london', 'paris']
upperedCities = list(map(str.upper, cities))
print(upperedCities)

Aspect-Oriented Programming

Aspect-oriented programming (AOP) is a programming paradigm for object-oriented pro-
gramming, which allows you to use generic functionalities over several classes. These
generic functionalities are called cross-cutting concerns (Spring, n.d.).

The first question that we are addressing is: What is aspect-oriented programming? To
answer this question, consider the places in the programming of an application where you
need recurring functionalities that are not part of the actual program logic. A classic exam-
ple of this is logging, e.g., logging errors and other data. This is integrated in many places
and intersperses the code with “unnecessary” code that does not directly belong to the
functionality, leading to a worse readability of the actual application. Such requirements
are called cross-cutting concerns because they cut through the core functionality. In con-
trast, the modules of the core functionality are called core concerns. Further examples of
such requirements, which do not affect the actual core functionality, are security, authen-
tication, tracing, and profiling. The modular implementation of such cross-cutting con-

cerns is the core idea of aspect-oriented programming. These cross-cutting modules are
called aspects and are added at runtime. There are a number of AOP implementations,
but some of the more common ones are AspectJ, Spring AOP, AspectC++, and Aspecti.

Rule-Based Programming

Rule-based programming is a programming paradigm based on mathematical logic. In
contrast to imperative programming, a rule-based program does not consist of a sequence
of statements, but of a set of axioms, which are to be understood here as a pure collection
of facts or assumptions. If the user of a rule-based program asks a question, the machine
tries to calculate the solution statement from the axioms alone.

For this purpose, a set of rules and statements constructed according to the syntax are
inserted into the program code together with the information needed for the solution.
Rule-based programming languages belong to the declarative programming languages
and have their origins in the research field of artificial intelligence.

An imperative program describes exactly how and in which order a problem is to be
solved. In contrast to this, a rule-based program ideally describes only what is valid. The
“how” is already given by the solution method, which is derived from the existing rules. In
other words, we model the program as a set of constraints that the system should satisfy
and the inference machine tries to create a process satisfying those constraints. Perhaps
the most well-known rule-based programming language is Prolog.

Symbolic Programming

Symbolic programming is a model of programming in which the program may manipulate
its own formulas and components as if they were plain data. Complex processes that con-
struct other more complicated processes by combining smaller units of logic or function-
ality can be built by symbolic programming. Thus, such programs can alter themselves
efficiently and tend to learn, making them more suitable for different kinds of applica-
tions, such as artificial intelligence, expert systems, natural language processing, and
computer games.

Generally, complex data structures are easy to build in symbolic programming languages.
You can generate them just by writing them and then expand on them by performing sim-
ple operations. If you have ever created a linked list in C, you know it takes a lot of function
calls to do so. In fact, the appeal of symbolic programming for Al is mainly the ease of con-
structing and manipulating complex data structures in Lisp or Prolog, just to name a few
examples (Covington, 2010).

Event-Driven Programming

Event-driven programming is a software paradigm in which the interaction of components
is controlled by events. Events can be triggered both externally (e.g., by user input or sen-
sor values) and by the system itself (e.g., change notifications). An event can be a trigger
for event handling, with which the system responds. An event-driven approach has little
control over when data is processed. Event-driven programming relies on an event loop

81

Domain

This is the targeted sub-

ject area of a computer

82

program.

that is constantly listening to the new events arriving. The operation of event-driven soft-
ware is based on events. After entering an event loop, the events decide whether to exe-
cute and in what order. A simple example is the graphical user interface, where the user
determines when and which data are processed by performing actions that trigger events.

The use of this paradigm requires that all systems involved in the processing of the event
are able to communicate with each other during planning and development. Typically,
event-driven programming requires a definition of what is considered an event. For this,
computer systems or sensors monitor the status of objects and can trigger an event if nec-
essary. This is followed by the processing of the event according to defined rules and the
consequence of the event itself. If it is not possible to immediately achieve the defined
sequence of the event during event processing, the event is temporarily stored in the ach-
ieved status and only continued when the sequence can be achieved.

Event-driven programming can be the most beneficial if it is already taken into account in
the planning phase. In fact, rewriting an already existing software to an event-driven
equivalent can lead to unreasonable effort due to the lack of the required interfaces.

4.2 Program Design

Software design paradigms are a critical element of program design. A paradigm is basi-
cally a way of thinking, and, generally, a software design paradigm tries to introduce solu-
tions for the design, programming, and maintenance of software systems. It is possible to
use design paradigms either to define a design solution or as an approach to problem
solving (Stephens, 2015). Using a design paradigm, problem solving happens through
abstraction of the problem. This approach is similar to the use of language metaphors;
metaphors are used to help clarify new or foreign concepts and to bridge between a prob-
lem we understand and a problem we don’t.

A software design paradigm in software engineering is a general, reusable approach to a
frequently occurring problem within a given context in software design. It is not a comple-
ted specification that can be translated into source or computer code directly. Rather, in
several different situations, it is a summary or blueprint for solving a problem. In this
sense, design patterns can formalize the best practices that can be used for designing an
application or system. An overview of the major design and development paradigms in
software engineering is given in this section.

Domain-Driven Design

Domain-driven design (DDD) describes procedures that are intended to make complex
software projects more transparent for all those involved. At the same time, it defines a
series of techniques and elements with which an optimized domain model is to be ach-
ieved. The term itself expresses what is special about domain-driven design: The design
should be based on the domain. In other words, the architecture and implementation are

consistently oriented to the domain. Since most software is implemented specifically to
support domain-oriented processes, alignment with the domain is an obvious way to sup-
port these processes even further (Evans, 2010).

Usually, people from a wide variety of backgrounds will come together while working on a
project. To keep communication as free from misunderstandings as possible, a uniform
standard for describing all components of the project is crucial—a ubiquitous language.
This language consists of all the terms that domain experts use when they talk about the
domain. In fact, experience shows that projects tend to develop their very own language.
The terms from the language should then also be used in the code and in the database to
name fields, classes, columns, or tables. This makes it easier to implement the technical
terms in the software because the domain-oriented terms do not have to be translated
into other terms that are used in the technical implementation. In domain-driven design,
each domain can be built from the following components (Evans, 2010):

« Modules. Domain-specific components of the domain

« Entities. Objects with mutable or ambiguous properties defined by their unique identity
(e.g., people)

« Value objects. Objects uniquely defined by their properties and typically immutable

« Associations. Relationships between objects in the model

+ Aggregates. Unit of objects and their relationships

«+ Service objects. Domain-relevant functionalities important for several objects of the
domain

« Domain events. Domain-relevant events registered by special objects and made visible
to other parts of the domain (e.g., sending events in one aggregate to other aggregates
in the domain)

«+ Factories. Different generation patterns (mostly factory or builder patterns) used for
complex scenarios

+ Repositories. Clean separation of domain and data layer for abstraction of the system

Data-Oriented Design

Data-oriented design is a design paradigm for optimizing programs by carefully consider-
ing the memory layout of data structures for better performance. In other words, it means
designing architectures with a focus on data representation, specifically with an emphasis
on efficient memory layout and access (Fabian, 2018). The principles of data-oriented
design are listed here (Sharvit, 2020):

+ Separate code from data.

+ Model entities with generic data structures.

« Data are immutable.

« Data are comparable by value (i.e., data collections are considered to be equal if they
represent the same collection of values).

« Data have a literal representation (i.e., a precise definition).

Data structure

This is a data organiza-
tion, management, and
storage format that ena-
bles efficient access and
modification.

83

User experience (UX)
This refers to a person’s
emotions and attitudes
about using a particular

product, system, or serv-
ice.

84

Data-Driven Design

Data-driven design is often used to improve user experience. In the context of user experi-
ence, data-driven design can be described as a data-supported design for a better under-
standing of the target audience. It shows that your work is on the right track, finds the sore
points, and can help to improve the design by adding objectivity (Chapman, n.d.).

Without trying to do any user research, many designers believe they know what users
want. Roughly speaking, designers in the vast majority of cases are not consumers and
usually do not have enough evidence to support the choices made on how to build the
best user experience. Data provide designers with knowledge so they can produce the
best possible designs for the individuals who use their products. Such knowledge can
come in different ways, from primary and secondary sources. For designers, the crucial
thing is finding out which data are worth using and which can be ignored.

Data-driven design allows designers to overcome their biases and encourages them to
step beyond best practices. Designers can use insights from their particular audience to
customize user experience. In addition, data play an important role in Agile development,
especially in some key areas, such as product management. One of the major benefits of
using a data-driven approach is the ability to address the underlying challenges surround-
ing delivery that improve the agility of development. Data as a measurement basis can
simplify the decision-making process by

+ showing where problems lie in the UX, so that these can then be specifically resolved;

+ drawing a clearer and more objective picture of user needs, since they are generated by
the users themselves and are not subject to personal tastes or preferences; and

+ developing hypotheses on the basis of such data, recording clear, unambiguous, and
precise formulations, measurability, a time frame, and expectations (Chapman, n.d.).

Behavior-Driven Development

Behavior-driven development (BDD), also known as specification-driven development
(SDD), is a technique of Agile software development that strengthens the collaboration
between quality management and business analysis in software development projects.

In behavior-driven development, during the requirements analysis, the tasks, goals, and
results of the software are recorded in a specific text form, which can later be executed as
automated tests and thus the software can be tested for its correct implementation. The
software requirements are, therefore, mostly written in “if-then” sentences. This is inten-
ded to facilitate the transition between the language of the definition of the functional
requirements and the programming language by means of which the requirements are
implemented. Behavior-driven development consists of the following elements (North,
n.d.):

«+ Strong stakeholder involvement in the process is encouraged through outside-in soft-
ware development focused on meeting the requirements of the clients, end users, oper-
ations, and insiders.

« A textual description of the behavior of the software and software parts is provided
through case studies, the use of standardized keywords to mark preconditions, external
behavior, and desired behavior of the software.

« The automation of these case studies uses mock objects to simulate software parts that
have not yet been implemented.

« There is a successive implementation of software parts and replacement of the mock
objects.

4.3 Programming Styles

The search for an optimal approach to software development often inspires new process
models, which are mostly described in the form of Agile frameworks. Such frameworks
aim to increase transparency and the speed of change and are intended to lead to faster
deployment of the developed system in order to minimize risks and undesirable results in
the development process.

Extreme Programming

Extreme programming (XP) essentially describes the way software is programmed. It focu-
ses on Agile processes, short development cycles, and fast response times to new or
changing requirements (AgileAlliance, n.d.-a). The main characteristic of extreme pro-
gramming is the cyclic approach at all levels: from programming through daily coordina-
tion in the development team to joint requirements management with the customer.

In principle, extreme programming is targeted to the requirements of the customer. This
sounds obvious at first, but classic software development can only respond to customer
wishes to a limited extent, and it becomes especially difficult when these wishes change
regularly. Extreme programming also tries to promote the creativity of developers and
accepts errors as a natural factor in the work. At the same time, extreme programming,
like other Agile methods, is based on iterative processes. Completing a big project from
start to finish and investing several months only to find at the end that the result does not
fit simply breaks XP. Instead, there is a specific focus on constant testing, discussion, and
publication in short cycles. In this way, errors can be quickly identified and eliminated.

To meet the requirements, a rather clear framework has been developed. It comprises var-
ious values, principles, and techniques. In addition, concrete roles are assigned so that
tasks can be clearly allocated.

Values

The extreme programming values are communication, simplicity, feedback, courage, and
respect. These values are outlined below (AgileAlliance, n.d.-a):

Stakeholder

This is a person or group
who has a legitimate
interest in the course or
result of a process or
project.

Outside-in

This method optimizes
the process of software
development by focusing
on satisfying the needs of
stakeholders.

85

Class-responsibility-
collaboration

This is a brainstorming
tool used in the design of
object-oriented software.

86

Communication. The software development process relies on communication to trans-
fer information between team members. Extreme programming highlights the signifi-
cance of an effective form of contact like face-to-face conversation with the aid of a
white board or other drawing mechanism.

Simplicity. This means asking the question of what the easiest way that is going to work
is. Here, the goal is to prevent waste and to do only absolutely necessary tasks in order
to keep the design of the system as simple as possible so that it is easier to manage,
maintain, and revise. Simplicity also means discussing only the requirements that you
know about and not trying to predict the future.

Feedback. Teams can find areas for improvement and are able to revise their practices
through continuous feedback on previous activities. The team builds something, col-
lects input on the concept and execution, and then adjusts the product accordingly.
Courage. This is needed to solve organizational problems that reduce the productivity
of the team. We need to be bold enough to stop doing something that does not fit and
try something new. We need the confidence to embrace and act on input, even when it
is hard to accept.

Respect. Team members need to value each other in order to be able to communicate
effectively, as well as to provide and accept feedback. Respectful communication
improves collaboration and allows the team to recognize clear designs and solutions.

Rules

Don Wells defines the rules of extreme programming as follows (Wells, 1999):

Planning

o writing user stories

o scheduling releases in release planning

o making frequent, small releases

o dividing the project into iterations

o doing iteration planning at the beginning of each iteration
Management

o giving the team a dedicated workspace

o setting a pace that can be maintained

o holding a stand-up meeting at the beginning of each day
o measuring the pace of the project

o moving team members around

o fixing XP when it breaks

Software design

o valuing simplicity

o choosing a system metaphor

o using CRC (class-responsibilities-collaboration) cards
o not adding any functionality early

o refactoring whenever possible

Program

o ensuring the continued availability of the customer

o writing code according to agreed standards

o coding the unit test first

o creating all code in production in pair programming

o ensuring that only one pair of developers integrates
o integrating often
o using a dedicated integration machine to increase the speed and quality of work
o using joint ownership of the code
« Test
o ensuring that all code undergoes unit tests
o ensuring that all code passes all unit tests before it is released
o creating tests when a bug is found
o running acceptance tests often and publishing the result

Practices

Extreme programming also suggests the use of 12 practices while implementing applica-
tions (Altexsoft, 2018). They are as follows:

1. Test driven development. Developers first write the test for a functionality and then
the actual production code. The incremental approach of small tests taking only a few
minutes’ time and the implementation of the code ensures that testing and develop-
ment are closely intertwined.

2. The planning game. This is a meeting to decide which user stories to schedule into the
next iteration or release. The participants come from the project’s team, IT, and the
business stakeholders group.

3. On-site customer. This refers to a customer or user representative who will be present
and working with the implementation team. The end user should be completely
involved in the production process. The customer should be present at all times to
answer team questions, set goals, and settle conflicts, if necessary.

4. Pair programming. This describes a scenario in which two programmers share a work-
station and work together on the development of a feature or task.

5. Continuous integration. This is a software development method in which new code is
continuously integrated into the existing code base. Developers will always keep the
application completely integrated. Extreme programming teams take iterative devel-
opment to a new level since they commit code several times a day.

6. Code refactoring. This means improving, clarifying, and optimizing the internal struc-
ture of existing code without affecting its external behavior. Refactoring does not
involve rewriting code or fixing bugs. The term “refactoring” refers to specific, finite
methods for refactoring code, such as the extract method used to clarify the meaning
and purpose of a piece of code.

7. Small releases. A release is the final delivery of a software package after the comple-
tion of multiple iterations or sprints. A release can be either the initial development of
an application or the addition of one or more complementary features to an existing
application. A release should take less than a year to complete, and in some cases it
may take as little as a few months.

8. Simple design. The easiest one that works is the best software design. If any ambigu-
ity is detected, it should be eliminated. The right design should pass all checks, have
no redundant code, and include as few methods and classes as possible. It should
also clearly represent the purpose of the programmer.

Integration

This is the process of
combining subroutines,
software modules, or
complete programs with
other components of the
software in order to cre-
ate an application or to
enhance the functionality
of an existing application.

87

88

9. Collective code ownership. This practice declares the responsibility of a whole team
for a system’s design. Codes may be checked and updated by each team member.
Developers with access to code are not going to get into a situation where they do not
know the correct place to implement a new feature. The practice discourages duplica-
tion of code. The introduction of collective code ownership helps the team to collabo-
rate together and feel free to suggest new ideas.

10. System metaphor. This means a basic design with a collection of certain characteris-
tics. New team members need to be able to understand the design and its structure.
Without spending too much time reviewing requirements, they should be able to start
work on it. In addition to these, there should be coherent naming of groups and meth-
ods. Developers can try to name an entity as though it already exists, rendering the
overall system design comprehensible.

11. Coding standards. The team must have similar sets of coding standards, using the
same formats and styles for writing code. The implementation of a standard helps all
team members to read, exchange, and refactor code easily; track who worked on what
pieces of code; and make learning faster for other programmers. The code written in
compliance with the same laws promotes collective ownership.

12. 40-hour week. Extreme programming projects require developers to work efficiently,
to be productive, and to maintain the quality of the product. They should feel well
and rested in order to comply with these criteria. Maintaining a work-life balance
avoids the burn-out of professionals. In extreme programming, the maximum number
of hours should not exceed 45 hours per week.

Pair Programming

Pair programming describes a scenario in which two programmers share a workstation
and work together on the development of a feature or task (Altexsoft, 2018). One of the
two programmers writes the code. The other one reviews and provides strategic direction.
As they work on this task, the two programmers regularly switch roles. One or both pro-
grammers continually comment on the development process (Tuple, n.d.). For pair pro-
gramming to be effective, the workspace must also be designed for two people—the desk
should at least have enough room for two chairs. The background noise in the room
should be kept low and not be much louder than a quiet conversation between one or
more such pairs.

Pair programming is often considered to be a part of extreme programming. In fact, pair
programming belongs to the 12 traditional practices of extreme programming. Since
extreme programming is considered an Agile method, pair programming is often descri-
bed as an Agile approach. This is correct to a certain extent; however, pair programming
can also be used in classic developments.

In pair programming, there are two main roles that are assigned at the beginning of a
project (Bockeler, 2020). One programmer is the pilot or driver. This programmer writes
the code and ideally explains their approach and train of thought out loud so that their
partner can understand it. The second acts as the navigator or observer. During the input,
this second programmer checks the code for errors, possible problems, and simpler solu-
tions while keeping the overall problem in mind. This process ensures that the code being
created is as good and simple as possible.

In pair programming, the regular exchange of roles is an essential step. In addition to the
distribution of roles, the composition of the pairs should also always be varied. Not only
the exchange of roles, but also regular breaks must be observed. Since the programming
method requires high concentration over long phases, the process can be exhausting.
Breaks are essential to keep looking at the code with fresh eyes and to clear the head in
between.

Another important aspect of implementation is to understand pair programming not as a
form of control or supervision, but as collaborative development aimed at finding the
optimal solution. Accordingly, both partners are on an equal footing and any problems
that the navigator notices are discussed and solved in this way. However, this only suc-
ceeds if a uniform programming style is mastered throughout the team.

Pairs

The pairs should be regularly regrouped. In terms of employee experience, three basic
constellations are possible, each offering different advantages and disadvantages (Bock-
eler, 2020). The possible constellations are

« expert-expert,
+ expert-newcomer, and
« Newcomer-newcomer.

If two experts work together as a pair, this initially promises fast results with a high-quality
output. However, it can happen that both are “stuck” in the existing structures and do not
question them, meaning that other possible solutions or approaches are not even consid-
ered.

The combination of an expert with a newcomer offers the opportunity to carry out the
familiarization and onboarding during the day-to-day business. At the same time, new
ideas can be created, since the novice may question current procedures and methods and
the employee who has already been with the company for a longer period of time may
have to reflect on these to find the reason behind the existence of these procedures. How-
ever, it may also be that a new employee does not directly dare to express critique ini-
tially. Because of this, they may fall into a passive role and merely watch the expert or
implement what the expert says when coding. In addition, the expert may tend to ignore
comments coming from the newcomer. Therefore, an appropriate framework of trust
should be created and care should be taken to ensure that equality is maintained in this
constellation as well.

The pairing of two newcomers involves a certain risk, since both programmers have little
or no knowledge of the company’s internal procedures and code base. At the same time,
the teamwork here reduces the potential for errors compared to the individual work of
each new employee who has little experience to date, since the partner also provides a
control authority that can notice any errors (AgileAlliance, n.d.-b).

89

90

Advantages

There are a number of advantages that are often mentioned in the context of pair pro-
gramming (Green, 2020). They are as follows:

+ Knowledge transfer. Knowledge between both participants is shared and increased.
Other perspectives broaden individual horizons.

+ Enjoyment of the work. Often, the joy of exchange and interaction increases, at least for
a certain amount of time.

+ Improved collaboration. This can be observed in the tandem and also in the entire
development team thanks to pair rotation.

In addition to the aforementioned advantages, additional benefits include better code,
fewer errors, lower risk, improved discipline, and higher efficiency (Green, 2020).

These benefits may or may not apply to every situation. Even though two developers
implement a common idea to solve a task, another idea might still be better. The imple-
mentation of the idea may be efficient, but if the wrong idea is implemented, effectiveness
suffers. So, it is important not only to do things right, but also to do the right things.

People also like to refer to an “integrated” code review. Since four eyes see more than two,
it can be assumed that more errors can be found during implementation than during a
self-test by a single developer. However, is this really more effective or efficient than if
done by a separate developer? In any case, it is clear that this advantage should also be
examined in each individual case.

Best practices

There are some aspects and recommendations that organizations and/or the pairs can use
to make their lives a little easier. Some best practices are briefly outlined below (Green,
2020):

» Clarify the general scope of pair programming.

« Clarify the specific collaboration, e.g., when you start in the morning, when you stop,
when there are scheduled breaks, or at which workstation you work.

+ Work on one task at a time—one task, one goal, one approach.

+ ldeally, there are coding conventions and coding styles in the organization. The naviga-
tor should make sure that they are adhered to or inform the driver of any violations.

+ Discussions are part of pair programming, but collaboration often takes place in open-
plan offices, so the volume should be considered reasonable.

+ Use line numbers to make it easier to identify specific lines of code.

+ Play “ping pong.” For example, in the course of test-driven development, developer A
writes a test (ping) while developer B writes the implementation to pass the test (pong).
Then, developer A extends the test (ping) and developer B extends the implementation
(pong), going back and forth until the task is complete.

» It can be useful to use a timer to switch roles at fixed times, for example, every 20
minutes. The more well-rehearsed a tandem is, the less important the use of a timer
becomes.

« Tandem programming is also a matter of attitude. Instead of “I have an idea, give me
the keyboard,” it would be more desirable to have an “I have an idea, you take the key-
board sometime” approach.

« Last but not least, arrange lessons learned or retrospectives to learn from and with each
other.

Mob Programming

Mob programming is a relatively new software development method that relies on a spe-
cial kind of teamwork. Five to ten developers work on a task at the same time and in the
same room. They also use a single terminal whose user interface can be projected onto a
large area of the wall with the help of a projector. As a rule, team members take turns
every 30 minutes or so, but they communicate constantly, do preliminary conceptual
work, and contribute new ideas to collaborative development. Mob programming is mod-
eled on Agile methods, specifically pair programming, which is designed to improve the
quality of software through the principle of dual control. This principle is extended by mob
programming to an even more comprehensive control of functionality and quality of the
application.

Although the term has been around for longer, developer Woody Zuill (2014) has been
considered the founder of this development approach since his “mob programming” pre-
sentation at JavaOne 2014 in San Francisco (Zuill, 2014). According to Zuill, mob program-
ming is a process in which programmers come together in one place and collaborate on
the same project, sharing even the same computer. Mob programming can increase pro-
ductivity on certain projects by having multiple developers work collectively on a prede-
fined problem (Zuill, 2014).

According to Zuill (2014), mob programming is designed to prevent blockages that are
unavoidable with other development approaches. Communication barriers, personnel
changes, and decision-making problems would get in the way of productivity on many
projects. Zuill experimented with different ways of working a few years ago and found it
best to let team members decide how they want to work or figure it out as they go. With a
team of six developers, he tried different coding techniques.

Advantages

Mob programming (also called mobbing) has some advantages over other methods. Simi-
lar to pair programming, mob programming can reduce the error rate. Two pairs of eyes
see more than one and four even more than two. Also, given the continuous discussion,
the quality of the code is bound to increase because ideas are only implemented when
everyone involved agrees; workarounds and emergency solutions that don’t really satisfy
anyone rarely make it into the code.

In addition, team members from all disciplines sit together in mob programming. Waiting
times because the expert for one area is busy with another task are a thing of the past. The
work in progress is automatically limited to one item and everyone contributes their
knowledge directly to each work step. Even internal team meetings to exchange informa-

91

tion about the project status become largely unnecessary; everyone knows where the
project stands at any time, tasks do not have to be distributed, and telephone calls can be
handled jointly. The flow of information within the team could not be better.

Eﬂi SUMMARY

In this unit, we learned about software development paradigms. We saw
several kinds of programming paradigms and the difference between
imperative and declarative programming paradigms, which are consid-
ered the two main ways of writing source code. In addition, we learned
about software design paradigms and discussed domain-driven design,
data-driven design, data-oriented design, and behavior-driven develop-
ment.

We have also briefly explored three software programming frameworks,
namely extreme programming, pair programming, and mob program-
ming. We considered the values, rules, and practices of extreme pro-
gramming. We discussed the different roles available in pair program-
ming, as well as some advantages and best practices. Finally, there was
a short introduction to the concept of mob programming.

UNIT S5
EXPERIMENTATION AND PRODUCTION

STUDY GOALS

On completion of this unit, you will have learned ...

- the process of developing a machine learning model and how it differs from the stand-
ard process of software development.

- the life cycle of a model once it reaches production.

- the function of continuous integration and continuous development.

- how to build a scalable environment based on virtualization, containers, and platforms
aimed at machine learning pipelines.

Machine learning model
This is an algorithm that
can be trained on data. A

trained model can be
used to get predictions on
previously unseen data,
e.g., to recognize certain
types of patterns.

94

5. EXPERIMENTATION AND PRODUCTION

Introduction

In this unit, we will discover the development process of a machine learning solution, the
steps needed to develop machine learning models that generate predictions, and how it
differs from the model of traditional software development. We will get to know the
explorative and iterative nature of the development process, starting from understanding
the problem, to gathering and exploring data, generating candidate solutions, testing
them, and integrating it all into a system. We will then explore the specific challenges
involved in bringing a machine learning solution to production, due to its nondeterminis-
tic nature, the kind of teams that develop it, and its dependency on the data used to train
it. We will learn about the requirements and challenges of version control, testing, and
monitoring for a machine learning solution in production.

We will then delve into the challenges presented by adopting an Agile and iterative devel-
opment model, its effect on the structure of an organization, and its internal processes.
We will explore the DevOps approach with all its intricacies, and how it structures a pipe-
line from development to production.

When we want to run a large machine learning model, new issues appear. We will learn
how to build replicable development environments, how to encapsulate processes in con-
tainers, and how to manage them at scale. We will discover well-known tools such as
Docker and Kubernetes, and get acquainted with KubeFlow for machine learning (ML)
deployment pipelines.

5.1 Experimentation and Production

In this context, a machine learning model can be considered as a black box that, given a
set of inputs, returns some outputs. The model is trained on known data, using a range of
possible algorithms; the process is intrinsically experimental, and the result is intrinsically
nondeterministic. When developing traditional software, we are presented with a limited
set of conditions to react to, while in the domains where we use machine learning the con-
ditions can be very complex. As an example, we could train a computer to differentiate
between images of dogs and cats. We could try to define manually all the defining charac-
teristic of “a dog” and of “a cat” in an image, but it will be time-consuming, and brittle in
case of changes. What if we also want to differentiate between cats, dogs, and sheep?
When using machine learning, we give a model input images and labels telling the model
whether the image is a cat or a dog, and it then learns an association between inputs and
labels, so that it can hopefully predict the right answer (cat or dog) for previously unseen
images.

The development of a model has to bring value to the organization developing it, and we
can conceptually divide the process into the following seven steps:

understanding the problem,

finding good assumptions and hypotheses,

collecting the available data,

exploring it to see if the assumptions and hypothesis seem realistic,

experimenting with possible models and data processing steps to solve our problem,
training a model, and

deploying it on a development pipeline to make sure it behaves as expected.

No ok wbhe

As we delve deeper into this topic, please keep in mind that all steps are connected to
each other and they do not really happen in isolation, they inform each other, and we
often go back and forth between one step and another (Educba, n.d.).

Understanding the Problem and Generating Hypotheses

We first need to understand the problem, and generate hypotheses about how to solve it.
The scope tends to start somewhat vague, like “improving turnover,” “reducing churn,” or
“identifying customers that won’t pay,” and it is necessary to find out what is actually nee-
ded for the project to succeed in a process called requirements engineering. To achieve
this, we generally apply project management techniques, interviews with matter experts
and stakeholders, and design thinking, among other processes. We often go back and
forth checking and correcting assumptions: data science is still a relatively new field, and

many organizations have not adopted a data-driven approach.

At the end of this process, we will have established clear goals with clear performance
indicators. Rather than “identifying problematic customers,” we now have a more con-
crete goal, such as “reducing the number of customers not paying after two weeks by at
least 20 percent.” Once the problem is defined, the next step is to start generating hypoth-
eses about what could solve it, and what kind of data we would need. The data science
process is very much about data: We need the right kind, and enough data, to properly
train a model.

Data Collection, Cleaning, and Wrangling

Armed with an understanding of the problem and some hypotheses on how to tackle it,
we now need data to work with. In some cases, we can get it from a database or a spread-
sheet; in most cases, we need to gather and extract it thought much more complex proc-
ess of ETL (extract, transform, load). In cases where we lack the data we need, we must
either access it from other sources, or find ways to generate it ourselves. Finally, we could
discover that the necessary data is just not available, and we would need to change our
approach or find a way around the lack of data.

The collected data will generally need cleaning and reformatting for the intended purpo-
ses. A process called data wrangling or data munging involves transforming and mapping
data from one format to another to make it more appropriate for our uses, adapting
ranges, removing some fields, applying standardization, and cleansing invalid values
(Wikipedia, 2020a).

ETL

This is an acronym that
stands for “extract, trans-
form, load.” It refers to
the general procedure of
copying data from one or
more sources into a desti-
nation system.

95

Exploratory data
analysis (EDA)

This is an approach to
analyzing data sets to
summarize their main
characteristics, often visu-
ally.

Feature selection

This is the process of
selecting a subset of rele-
vant features for use in
model construction.

Dimensionality
reduction

The transformation of
data from a high-dimen-
sional space into a low-
dimensional space while
retaining some meaning-
ful properties is called
dimensionality reduction.

96

Exploratory Data Analysis

Once the data has been collected, cleaned, and stored, we can start working with it. We
want to see what it can tell us, what sort of information we can extract, and what could be
the appropriate next step. This step is called exploratory data analysis (EDA), a process
of investigating the data to discover patterns, test hypotheses, and check assumptions
using summary statistics and visual methods.

It is a practical and exploratory process, strongly based on the experience and skillset of a
data scientist, involving new ideas to explore, many dead ends, and very little reproduci-
bility. A data scientist will explore different possibilities and delve deeper into something
when it looks interesting. It can involve using summaries about the type, number, and
average values of the data, and often involves visualizations, since humans are very visual
beings, and we can see, at a glance, patterns that would escape us in a tabular format. At
the end of the EDA process, we have clearer, more refined hypotheses, as well as some
algorithms in mind to use in training the models.

Experimentation, Feature, and Model Selection

With the data accessible and useable, and an idea of what the data can tell us, we start
experimenting with models. We generally test several different models, with different lev-
els of complexity, starting from the simplest ones (e.g., linear regression, which is a linear
approach to modeling the relationship between a scalar response and one or more varia-
bles), scaling up if needed to state-of-the-art models like the neural networks (computing
systems vaguely inspired by the biological neural networks) that are getting a lot of atten-
tion in the last few years. If a simpler solution is sufficient, it is often better to stop there,
because they tend to be lighter and easier to train and deploy.

It is important to understand that a machine learning model needs to be trained; we feed
it some data and check the result against other data for which we have known results. The
process is nondeterministic, and often resource and time-consuming. During the experi-
mentation phase, we often use only a subset of the available data to speed up training and
iterations, and we include the full dataset only during the final stages of training.

When training a model, we have a choice of what features (input variables of the given
model, e.g., variables and predictors) of the dataset to use. This process is called feature
selection. Some features can contain noise that would confuse the model and make it less
precise and too many features can incur in the curse of dimensionality, making it hard (or
impossible) for the model to reach an optimal point during training. One way to avoid the
curse of dimensionality is to use methods for dimensionality reduction with the goal of
maintaining as much relevant information as possible while reducing the number of fea-
tures. Once this is done, we can consider possible models. The main kind of machine
learning problems are: supervised, unsupervised, and reinforcement learning. They are
defined as follows:

+ Supervised learning maps input data to known output data (e.g., categorizing images as
cats and dogs or predicting the stock market).

« Unsupervised learning explores patterns in your data (e.g., clustering documents by
topics by looking at similarities in those documents without specifying the topics
beforehand).

« Reinforcement learning studies how agents interact with their environment by reward-
ing favorable situations and punishing bad ones (e.g., learning to play a videogame or a
board game).

Once we have selected the model that we want to try, we divide our data into train, test,
and sometimes validation data sets. The train data are used to train the model, and the
test data are used to evaluate the performance of the model on the metrics we are interes-
ted in. The two sets generally cannot overlap. Similar to university tests, it is not useful to
ask the exact same questions during a test that have been asked while studying (training).
We often set aside a validation data set to compare the performance of the different mod-
els we are considering.

We have noted that this exploratory step is often performed with only a subset of the data

in order to select the most promising models. These models can then be retrained with

more data and choosing different characteristics of the models (called hyperparameters) Hyperparameters

to improve performance. This process is called hyperparameters tuning, and it involves These are parameters
.. ith diff th t d selecting th dels with th whose values are used to

training several models with different hyperparameters and selecting the models wi € control the learning proc-

better results. ess.

Training

Once we have selected some models and tuned their hyperparameters, we can start train-
ing them to compare their performance. We usually train several models with different
choices of features. In case our dataset is very large, and in the case of models requiring a
lot of time and resources to train, it can be useful to use only a subset of the dataset. Once
we have selected the desired model, or very few candidates, we can proceed with the
whole dataset.

Depending on the dataset size, this can require a lot of time. One of the biggest existing
models, GPT-3 by OpenAl, has 175 billion parameters and would require 355 years and
$4,600,000 to train on current hardware (Brown et al., 2020). However, models often take
between a few hours to several days to train, so it is important to do it only when we are
quite confident the result will be, if not useful, at least informative.

At the end of the process we have our trained models and can check their performance
using the test dataset.

97

98

Initial Deployment and Integration

The model alone is not very useful, so it needs to be made available to the one or more
applications in the organization. A common way of doing this is to encapsulate the model
in an application that provides the predictions as services to the other applications. Once
this is done, we can do some basic tests of usability, connect it to other services, and set it
up in a development pipeline to make sure it behaves as expected.

Figure 25: Model Development and Production Lifecycle (1)

Problem
understanding

Initial deployment Data collection
[and integration Cleaning wrangling
Training, Exploratory data
final selection analysis

T l

Hyperparameters Experimentation, feature,

tuning and model selection

Deployment
in production

Source: Created on behalf of IU (2022).

Differences to Software Engineering

The machine learning development life cycle has some similarities and some differences,
compared to the traditional software engineering life cycle. In both cases, it is necessary to
understand the problem we are solving for the organization; however, in the traditional
process, the problem tends to be much better defined and the development tends to be
more straightforward, even if subject to cycles of implementation and testing assump-
tions. The machine learning life cycle, on the contrary, is all about experimentation and
iterations, testing hypotheses, and making sure the performance of the metrics we care
about is within a desired range. The result of our process depends not only on the algo-
rithms we use, but also on the data we use for training. While the result of a traditional
software development is supposed to be deterministic, the result of a machine learning
development process is a statistical, nondeterministic model satisfying some constraints

that will hopefully perform as expected on new, real data (Hegde, 2020). For this reason,
this process has sometimes been called Software 2.0, using machine learning models to
solve problems (Karpathy, 2017).

Bringing a Model to Production

The requirements to bring models to production have many similarities to the production
life cycle of traditional software, but also present some key differences. For example, the
process needs to be integrated in a continuous development and deployment pipeline,
allowing for quick turnarounds. However, the complete ML system contains the code to
create the model, the trained model itself, other possible artifacts (outputs created by the
training process), and the data used to create the model; all of this must be integrated in a
deployment pipeline.

Bringing and keeping models in production requires versioning the code and everything
needed to generate it; storing it; deploying it; making sure the interfaces that other appli-
cations used to access the models do not break; serving the predictions; logging the
results; and monitoring health, performance, and what happens when new unseen data is
used (Google, n.d.).

Figure 26: Model Development and Production Lifecycle (I1)

Experimental phase Iterate tuning and training
Identify problem Choose an ML Experiment with Tune the
and collectand — algorithmand — data and model — model
analyze data code your model training hyperparameters
Production phase Iterate tuning and training
Serve the model Monitor the
— Transform data — Train model — foronline/batch — model’s
prediction performance

Source: Pedori (2020).

Models in Production

Machine learning systems are software systems, so when they are in production, they face
all challenges of traditional systems, and some additional specific ones connected to the
nondeterminism and the effect of new data and a changing environment. We can think
about the following systems we use practically every day to identify the challenges they
can present.

99

100

+ Online search engines are machine learning systems that try to match a search query to
the best possible web page corresponding to it. The result should be accurate and fast,
and the system needs to be constantly retrained on fresh web content. They sometime
adapt to the usage of the user, too.

+ Movie streaming websites often include recommendation systems, which propose new
content based on previously watched films. They need to learn constantly, be available,
and serve huge amounts of data.

+ Financial services monitoring transactions to identify fraud are machine learning sys-
tems that need to react very quickly. They must be up-to-date on patterns of usage with
a very thin margin of error, since rejecting a valid transaction annoys the users, and
accepting fraudulent transactions can be very expensive.

If we consider these examples, we can imagine the huge challenges presented by these
systems: they must be fast, constantly available and updated, and be able to revert to a
working state in case something goes wrong. To achieve this, we need to keep track of
everything used to create and serve the models (with version control), deploy the models,
test them, monitor their performance and health, and be able to react when things go
wrong. Let us investigate these steps in more detail (Fowler, 2019).

Version Control

Version control is the management of changes to documents, computer programs, and
other collections of information. We use it to track changes, be able to revert to previous
working solutions, and coordinate updates. We usually identify the changes via numbers
or letters, called revisions or revision numbers. In machine learning, an initial version of a
set of files or code could be “revision 1,” increasing the number after any change, moving
to “revision 2,” etc. With a version control system, we can keep track of changes (when and
by whom they were made), compare different versions, and synchronize changes between
different parts of an application that need to communicate with each other.

While in in traditional software development we only have to keep track of code (both the
application and code used to support and integrate it), in a machine learning system, in
addition to tracking the code used to create the model and to deploy it, we need to keep
track of the trained model itself, as well as of the data used to create the model.

Versioning code

In this case, there are two kinds of code written in a programming language: the imple-
mentation code (used to connect and serve components) and the modeling code (used for
model development). They can often be written in different programming languages, and
can be developed by different teams. We version the code to keep track of releases and
dependencies that could need to be updated, and to make sure it interacts with other
components as we expect. This is the same in traditional software development, and we
will cover the concept of infrastructure as code in a later section. A machine learning sys-
tem also needs to version data and models.

Versioning data

The data used to train a model can change both its content and the way it is structured.
We use metadata to refer to the way the data are structured, their format, names, order,
and number of columns. New data can have different statistical properties and distribu-
tions, or they can just contain cases not seen during the development of a model. If we
want be able to generate the same model over and over again (a requirement for reliable
deployment), we need to make sure we are using the same data that we used when we
shipped. We achieve this by versioning both the data and their metadata.

One issue in versioning the data used to generate the model is its size. Traditional version
control systems expect the code to be in kilobytes or megabytes, while training data can
consist of hundreds of gigabytes, or more. This has given rise to systems specializing in
versioning data.

Versioning models

We also need to keep track of and version the models and other artifacts generated during
the model development, matching them with the code used to generate and support
them and the data used to train them. The storage requirements for the models are sim-
pler than the ones for the data, but still bigger than most code, so our version control sys-
tems often need to be expanded to allow for it. Versioning data and code allows us, in
principle, to be able to re-generate a specific model, but since this takes time and resour-
ces, we want to store a specific version of a model together with the rest.

Deployment

Once developed and trained, we need to deploy the model so that it can be useful. There
are two main scenarios: We can embed it as an artifact (the model file) in an application,
building it together with the application using it; or we can deploy it as a service, wrapping
it in an interface. The latter allows us to decouple model and applications, but it can
increase latency and complexity.

Testing and Quality

In traditional software engineering, we use tests to make sure our system behaves cor-
rectly, and to be warned early if something breaks, either due to an update or an external
change. In a machine learning environment, the scope is bigger and we want to test

« integration with other components, similar to traditional systems.

« data, validating it against the expected schema describing the metadata, and making
sure it conforms to the data the model expects.

« model quality, since they are nondeterministic and we need to make sure their perform-
ance metrics fall in the range we are ready to accept.

« bias and fairness, a huge topic that we are not able to cover entirely in such a limited
space. In short, we need to make sure the model behaves in a way that is aligned with
the goals of the organization.

101

Key performance
indicator (KPI)

This evaluates the suc-
cess of an organization or
of a particular activity in
which it engages.

Model drift

The degradation of a
model’s prediction power
due to changes in the
environment is called

102

model drift.

Monitoring and Observability

Once the model is live, we need to understand how it performs in production, closing the
feedback loop to the development process and gathering data on how the model per-
forms on live data. Monitoring is a standard practice for production software, covering:
KPI (key performance indicator), software reliability, performance, debugging information
in the case of faults, and other indicators that something unexpected is happening. We
can use and adapt the same tools and practices for machine learning, capturing a number
of different results.

+ Modelinputs. These are the data that are being sent to the models.

« Model outputs. Here, we compare the results to the predictions or recommendations,
based on certain inputs, to understand how the model is behaving on real data.

« User action and rewards. This is the next step after the users receive the outputs. To
make sure we are actually solving the stated problem, we need to keep track of the
effect of the predictions. Do users buy the suggested items, watch the movie, click on
the webpage, and pay on time?

« Model fairness. We want to make sure the model continues to behave in a way that is
aligned with our values.

» Model computational performance. The reaction time can be critical in some cases, and
we want to keep track of the central processing unit (CPU) and memory load in case we
need to scale.

When Things Go Wrong

So far, we have considered the steps necessary to bring a model to production and the
challenges involved. Most of what we have covered has the goal of keeping the model in
production, minimizing the problems, or allowing us to react properly when things go
wrong. If a system is in production long enough, things will go wrong, and we need to
recover.The following list details things that can go wrong and how we can deal with them:

+ If the model has been in production long enough, the data used to create it, and the
data it is exposed to, will drift apart. This phenomenon is called model drift and will
require us to retrain the model. Versioning keeps track of the new data, and testing
ensures the new model works as expected.

« Part of the infrastructure can fail, and we need to be able to re-deploy or retrain a model
when needed.

» Monitoring the health of the system lets us know when the aforementioned steps are
needed.

« If we deploy an updated or newly trained model, we need to monitor it to ensure it
behaves as expected; versioning allows us to roll back if it does not.

+ If our model is constantly updated and retrained, we need to monitor its performance to
make sure it does not degrade, and to be able to roll back to a known working state if, or
when, it does.

5.2 Continuous Integration and Delivery

Software applications are increasingly developed in an Agile manner, and it is important
to be able to ship early, and ship often (AOE, n.d.). To achieve this, it is necessary to auto-
mate the IT processes and infrastructures supporting the deployment to production. This
often requires cultural changes in existing organizations in order to bring development
and operations closer together. This gave rise to the concept of DevOps, a set of practices
combining software development and IT operations, aimed at shortening the develop-
ment life cycle and providing continuous delivery with high software quality. It also gave
rise to the related concept of infrastructure as code (laC), the process software runtime
environment, and networking settings and parameters so that they can be stored and
modified on request in simple textual format in the code repository (Null, 2020). The goal
here is to be able to release a new version of the application quickly, allowing for rapid
iteration cycles of development and testing, checking assumptions, correcting bugs and
other errors, and adding necessary features. Currently, the most common way to ensure
this is to adopt the concept of DevOps.

DevOps
DevOps is mostly about culture and procedures, and requires the adoption of an Agile
mindset. The main concept for us here is the DevOps pipeline, outlining the transition

from programming to operations and bringing the two closer together.

Figure 27: DevOps Pipeline

P i 0t i T Sl o o>

Source: Kobdani (2020).

Plan

It is important to plan the whole workflow before the developers start coding, involving
product and project managers to generate a production plan for the whole team. In this
stage, we work on segmenting the project in smaller parts that can be tackled in develop-
ment sprints of one to several weeks in which individual team members work on their
assigned tasks.

Develop

This is the actual programming stage, often involving shared coding guidelines. At the end
of this stage, developers push the result to a shared coding repository, requiring pull
requests and code reviews from other team members before having it in the master
branch, the one used for building software for delivery.

Ship early, ship often
This exemplifies a soft-
ware development phi-
losophy that emphasizes
the importance of early
and frequent releases in
creating a tight feedback
loop between developers
and testers or users.

103

Coding repository

This is a data structure
that stores metadata for a
set of files or directory
structure in a revision
control system.

Code reviews

This is a software quality
assurance activity in
which one or several peo-
ple check the source code
of a program.

104

Build

In a typical case, the pull request initiates an automated process that compiles the code
into a build, a deployable package, or an executable. Some programming languages need
to be compiled while others (like Python) do not. However, they all need to be checked for
code problems to identify errors before they go through the pipeline and cause a bigger
issue. In case of code problems, the build fails, the developer is notified of the issue, and
the original pull request generally fails.

Test

Once the build succeeds, we move to testing. Tests can be manually run by the developers
or automated. In the DevOps approach, there is no separate team for testing and quality
assurance, instead, the developers design the tests themselves. Testing can also involve
security checks, run load tests, and performance tests.

Release

If the tests pass, that gives us some assurance that there will not be any unexpected prob-
lems and we can move on to the release stage, which is sometimes considered a mile-
stone. In some environments, the release happens automatically once the built test pha-
ses are passed, as we will see when covering continuous deployment. In many other
organizations, it can involve a manual process of making sure that everything works and
ensuring that the new release is up to the expected standards before approving it.

Deploy

When a release is ready, the application can be moved to production and deployed. When
only minor changes are being implemented, the deployment can be an automatic proc-
ess. In case of big changes, the build might first be deployed to a production-like setting to
monitor how it works, often called staging.

In the case of critical updates, it is common to use a blue-green deployment strategy. This
entails having two similar development environments where the latest application is hos-
ted by one environment while the modified version is hosted by the other, usually called a
staging environment. This lets the developers send the live requests to the staging envi-
ronment, making sure it behaves as expected, and it allows the program to quickly revert
to a known working environment in case there are issues not caught during the testing
process.

Operate

Once the new version is live in the production environment and exposed to users, the pro-
duction team makes sure that everything runs smoothly. This includes scaling resources
when needed and collecting feedback from the users to make sure that the new version is
not only technically sound, but solves the right problems.

Monitor

The live running system is monitored for performance, and for the result of user interac-
tion, including the user feedback mentioned above. We collect data, logs, and analytics,
and check for possible bottlenecks in the pipeline. Using the data collected during moni-
toring, the loop starts again planning new releases, improvements, and fixes.

Best Practices

A DevOps approach includes several best practices in an attempt to implement the lessons
learned by several organizations and years of trial and error in different teams. We will
cover two main aspects: the CI/CD pipeline (continuous integration and continuous deliv-
ery or development), and the concept of infrastructure as code (laC).

Continuous integration (Cl)

In any bigger modern development team, different developers work on different features
of the same application. The way things were traditionally done was having a specific day
to merge all the different features, sometimes called a “merge day.” This could involve a
huge amount of work, since the developers would have to solve conflicts created by the
different source code branches.

In the framework of continuous integration, developers can merge the branches they are
working on at any time, once a day or even more often. The contribution is automatically
validated and tested for integration with the rest of the environment, ensuring that the
functionality is not compromised (Patel, 2020).

Continuous delivery (CD)

After automating builds and unit and integration testing, continuous delivery can auto-
matically release the validated code to a repository. This requires that Cl be integrated in
the pipeline. The goal of continuous delivery is to have the code base ready for the pro-
duction environment at any time; if it is merged to the master branch, we can ship it. Every
change is expected to be able to deliver production ready builds that the operation team
can quickly deploy into production (Patel, 2020).

Continuous deployment (CD)

Continuous deployment can be considered a natural extension of continuous delivery.
When a production-ready build is released, it is automatically deployed into production,
without a manual step or approval. This means that the whole pipeline must be very well
thought out, making sure that issues are caught before the last stage, since the changes
implemented by the developers end up live right away, potentially within minutes or less.
This allows us to get feedback very quickly, but at the cost of introducing unexpected
breaking changes. The whole process is designed to maximize the advantages while mini-
mizing the risks.

105

Provisioning

The process

of setting up

infrastructure is called

106

provisioning.

The DevOps CI/CD diagram shown below presents a simple comparison of continuous
integration, delivery, and deployment.

Figure 28: DevOps CI/CD

Continuous integration Continuous delivery

Continuous deployment

Source: Kobdani (2020).
Infrastructure as code

Infrastructure as code refers to the process of defining all software runtime environment
and networking settings and parameters in files that can be stored and modified on
request in simple textual format in the code repository as opposed to physical hardware
configuration or interactive configuration tools (Null, 2020).

The text files are generally called manifests, and can be provisioned and configured auto-
matically to build servers, define testing, staging, development, and production environ-
ments. There, operations can be versioned and tracked, and we can make sure every stage
of the pipeline uses the same environment, avoiding the famous issue of “works fine on
my computer,” where the code that worked in development or testing does not work in
production.

Automatically provisioning the environment reduces the chance of human error, allows
for faster scaling, and speeds up the development pipeline (Ziolkowski, 2020).

Impact on Team and Development Structure

The DevOps approach of getting development and operations to work together has the
direct goal of developing, testing, and deploying applications faster. This requires changes
in the team and development structure. First of all, it is necessary to eliminate, or at least
minimize, the compartmentalization of teams and responsibilities, often called silos
(DevOps, 2015). Doing so requires reconsidering and changing the team structure, also
affecting team size and leadership.

Team Size

Teams should be small enough to easily work together, share information, and have very
short coordination meeting, including the idea of a “morning stand-up meeting,” where
everybody is standing, providing more encouragement to make it short. Amazon even
introduced the idea of the two-pizza team, i.e., teams should be small enough that two
pizzas would be enough to feed everyone (Gitlab, n.d.). This usually means five to eight
people, including project managers and non-developers.

For some organizations, changing team size can be challenging, requiring big structural
revisions, moving to functional or role-aligned teams, more communication, and a more
Agile structure. This process, however hard, is part of the benefits of adopting a DevOps
mindset, resulting in a number of smaller, company-aligned teams headed by team man-
agers.

Leadership

An Agile DevOps-inspired mindset can be challenging for some leadership styles. It implies
less control, iterations quickly testing assumptions, and smaller independent teams that
cannot be directly managed by the company management. This change often requires fur-
ther organizational adjustments that can be hard to accept, embrace, or implement, and
that cannot be merely superficial. The organization needs to change, and to overcome the
issues of change resistance, low change readiness, and weak employee commitment.
Tackling these challenges gave rise to the concept of transformational leadership, a lead-
ership style in which leaders promote, empower, and motivate workers to make changes
that help the organization grow and shape its potential success (Wikipedia, 2020b).

Right mix

To enable an organization to move towards smaller, DevOps aligned teams and to
embrace a fast development pipeline, it is necessary to identify skill gaps and bottlenecks.
This also means determining which combination of roles and skills a company still needs
to acquire in order to achieve the goals of the teams, not only on the technical level, but at
the level of interpersonal and soft skills. This can involve upskilling current employees or
recruiting new ones who bring the desired skillsets and personalities. One result of this is
seeing a more diverse workforce as a strength.

5.3 Building a Scalable Environment

Scalability is one of the key objectives in a modern infrastructure because an organization
that can scale consistently is one with a great potential for growth. This skill allows us to
configure our systems to grow during high demand and to scale down when demand falls.
The approaches we delineated describing an Agile development pipeline both enable and
require scalability. This also applies to machine learning systems, which are, at their core,
software systems.

107

Microservice

A microservice is a kind of
architecture that arranges
an application as a collec-
tion of loosely coupled
fine-grained services con-
nected via lightweight
protocols.

108

A way to allow scaling is to concentrate on the elements of the CI/CD pipeline. As we poin-
ted out, one important element of DevOps is infrastructure as code, which allows us to
create replicable environments. This can happen in two main ways: virtualization or con-
tainerization.

Virtualization

Virtualization is the process of running a virtual instance of a computer system, called vir-
tual machine (VM), in a layer abstracted from the actual hardware, generally running sev-
eral operating systems. The applications running on top of a virtualized machine appear
to have a dedicated machine, with the operating system and supporting libraries in the
guest virtualized system not directly connected to the host operating system below.

A virtual machine is the emulated equivalent of a computer system that runs on top of
another system. Virtual machines may have access to any number of resources, for exam-
ple, computing power through hardware-assisted but limited access to the host machine’s
CPU and memory; one or more physical or virtual disk device for storage; a virtual or real
network interface; and any devices, such as video cards, USB devices, or other hardware,
that are shared with the virtual machine. The virtual machine is created, managed, and
run by a program called hypervisor. Many modern operative systems have hypervisors
built in, as in the case of Linux, with the kernel-based virtual machine (KVM) and Windows,
with Microsoft Hyper-V (Opensource, n.d.; Wikipedia, 2020c).

Containers

Another concept related to VM is that of containers, which are conceptually similar to vir-
tual machines, but more limited in scope. Both containers and virtual machines allow for
running applications in an isolated environment, but containers are not fully isolated and
independent machines. Containers run as isolated processes, sharing the same host oper-
ating system and libraries. This means they all share the same operative system, but are
allowed to access specific libraries and data. It also means they are much lighter, faster to
launch, and appropriate for running even a single program, or a separate application
(Opensource, n.d.).

Containers are a very commonly used to provide the services of a machine learning model
to other applications in an organization. The model is wrapped in an application providing
an interface and a protocol to access the predictions of the model as a service, and it is
deployed as a microservice in a container.

Docker

One of the most commonly used container technologies is Docker, an open-source solu-
tion that allows us to package our application and the associated dependencies into an
image and run it on any machine. Docker extends existing Linux container functionalities,
providing versioning of images and containers (Tozzi, 2017). The following terms are some
basic Docker-specific terms you should know as taken from the Docker glossary (n.d.-a).

« Dockerfile. A text file that contains commands to create an image.

« Image. A Docker image contains elements, such as code, config files, environment varia-
bles, libraries, and run time, that are required to run an application as a container.

« Container. A standardized unit that can be easily built to deploy a particular application
or environment.

« Docker registry. A service that contains Docker images and repositories.

« Docker daemon. A server which is a type of long-running program called daemon proc-
ess. A daemon (also known as background process) is a Linux or UNIX program running
in the background.

» Docker engine. A client-server application comprised of the Docker daemon, the API,
and client services, forming the interface between the resources of the host and the run-
ning containers.

+ Docker network. Docker includes support for networking containers through the use of
network drivers.

« Docker volume. The preferred mechanism for persisting data generated by and used by
Docker containers.

Figure 29: Docker Components

Manages Manages

Container Image

Network Client docker CLI Data volumes

REST API

Server docker daemon

Manages Manages

Source: Kobdani (2020).

An image is an executable package that includes all you need to run an application,
namely code, runtime, libraries, environment variables, and configuration files. A con-
tainer is launched by running an image. The following diagram illustrates the concept of
Docker images and containers and how they are related to each other (Docker, n.d.).

109

110

Figure 30: Docker Image vs. Container

Docker run

Docker image Docker container

Is instance of

Docker images Docker ps -a

Host OS

Image registry

Source: Kobdani (2020).

Orchestration

When operating on a large scale with several containers interacting with each other, it is
necessary to coordinate them. The process of deciding which ones start first, which ones
depend on others, and how to behave in case of failure and shutdowns, is called orches-
tration. Container orchestration automates the provisioning, management, scaling, and
networking of containers, and it is particularly necessary in an organization managing
hundreds of containers (Redhat, n.d.). This is particularly important when paired with a
microservice architecture. With microservices in containers, it is possible to orchestrate
their services more easily. Container orchestration allows you to automate and manage
the following tasks:

+ provisioning and deployment

+ configuration and planning

+ resource allocation

« container availability

+ scaling or removing containers to evenly distribute workloads across your infrastructure
+ load balancing and traffic routing

« monitoring of the container status

«+ configuring applications based on the container in which they will run

+ securing interactions between containers

Container orchestration tools provide a framework for managing containers and microser-
vice architectures on a large scale. There are many container orchestration tools that can
be used for container life cycle management, such as Kubernetes.

Kubernetes

Kubernetes is an open-source tool for the orchestration of containers, originally devel-
oped and designed by Google. It allows the development of application services that span
multiple containers, planning and scaling of containers across clusters, as well as monitor-
ing their health over time (Kubernetes Documentation, 2020). Kubernetes eliminates
many of the manual processes associated with the deployment and scaling of container-
ized applications. You can have cluster groups of hosts (either physical or virtual
machines) running containers because Kubernetes provides the right platform to manage
these clusters easily and efficiently. More generally, with Kubernetes you can implement
an infrastructure in your production environments that is completely container-based and
reliable. The main concepts needed to understand Kubernetes are clusters and pods.

A Kubernetes cluster is a set of node machines for running containerized applications.
Running Kubernetes means we are running at least a cluster containing a control plane
and one or more compute machines, or nodes, at a minimum. A Kubernetes cluster con-
sists of two types of resources: the master, responsible for the administration and coordi-
nation of the cluster, and nodes, the workers that run applications. The master coordi-
nates all activities in the cluster, such as scheduling applications, managing the desired
status of applications, scaling applications, and rolling out new updates.

A node is a virtual machine or a physical computer that serves as a working machine in a
Kubernetes cluster. Each node has a “kubelet,” an agent to manage the node and commu-

nicate with the Kubernetes master. The following diagram illustrates a Kubernetes cluster.

Figure 31: Kubernetes Cluster

Docker Docker
Node Node
Docker Docker Docker
Node Node Node
Kubernetes cluster

Source: Kobdani (2020).

When we run applications on Kubernetes we have one master and one or more nodes. We
instruct the master to start the application containers as well as the nodes that communi-
cate with the master via the Kubernetes API, which end users can also use to interact with
the cluster directly.

111

112

Pods are the smallest computing units one can build and manage in Kubernetes. They are
a group of one or more containers, with shared storage and network resources, and a
specification on how to operate the containers (Kubernetes Documentation, 2020). A pod
models an application-specific “logic host,” which includes one or more application con-
tainers that are relatively tightly coupled.

A pod always runs on a node, and a node may have several pods, all managed by the
Kubernetes master.

MLOps

A machine learning system is a software system, meaning we can adapt the DevOps tech-
niques used in the development and operation of large-scale software systems using the
following criteria:

+ Team skills. Data scientists are part of the team and are not always experienced engi-
neers, so their code often needs some work to reach production quality.

+ Development. Machine learning is experimental and nondeterministic. It is challenging
to keep track of what did or did not work, maintaining reproducibility and code reusa-
bility.

» Testing. Testing an ML system includes elements not present in other software systems.
In addition to typical unit and integration tests, you need data validation, trained model
quality evaluation, and model validation.

+ Deployment. Machine learning systems can require deployment in a multi-step pipeline
to automatically retrain and deploy models, adding complexity and the necessity to
automate steps that are manually performed by data scientists before deployment.

+ Production. The performance of machine learning systems can be affected by the qual-
ity of coding, but also by the changes in data profiles. Models can decay in more ways
than other software systems, and it is vital to keep track of this using statistics and mon-
itoring, sending notifications, or automatically rolling back to known working versions.

As such, machine learning and other software systems are similar in the requirements for
continuous integration of source control, unit testing, integration testing, and continuous
delivery of the software module or the package. However, they differ in a few areas. Cl is
no longer only about testing and validating code and components, but also testing and
validating data, data schemas, and models. At the same time, CD is no longer about a sin-
gle software package or a service, but rather a system (an ML training pipeline) that should
automatically deploy another service (model prediction service). We can also add the new
property of continuous training (CT), unique to ML systems, which is concerned with auto-
matically retraining and serving the models (Google, n.d.). These different and added
requirements led to the creation of the concept of MLOps.

MLOps (a compound of “machine learning” and “operations”) is a practice for collabora-
tion and communication between data scientists and operations professionals to help
manage the production machine learning life cycle described in the previous section
(Google, n.d.).

MLOps and Pipeline Management with Kubeflow

Kubeflow, started by Google as an open-source platform for running TensorFlow, is a
multi-cloud, multi-architecture framework machine learning platform that manages
deployments of ML workflows on Kubernetes. It is aimed at data scientists building and
experimenting with data pipelines, and for deploying machine learning systems to differ-
ent environments, as well as for testing, development, and production (Kubeflow, n.d.-a).
It offers tools to support most of the steps we covered when discussing model creation

and the deployment pipeline.

Figure 32: Model Development and Production with Kubeflow

Experimental phase KUl]e1=i6o10Y

Identify problem Choose an ML Experiment with Tune the
and collectand — algorithmand — data and model — model
analyze data code your model training hyperparameters

PyTorch]

scikit-learn Fairing

TensorFlow

upyter Notebook

Pipelines

XGBoost

Production phase EItRCLLEi]

Serve the model Monitor the
— Transform data — Train model — for online/batch — model’s
prediction performance

Chainer Metadata

KFServing
MPI NVIDIA TensorRT TensorBoard
MXNet PyTorch
PyTorch TFServing

TFJob Seldon

Pipelines

Iterate tuning and training

Iterate tuning and training

Source: Kubeflow (n.d.-b).

TensorFlow

Itis a free and open-
source software library for
machine learning.

113

PyTorch

This is an open-source
machine learning library
based on the Torch
library.

Scikit-learn

This is a machine learning
library for the Python pro-
gramming language.
Jupyter Notebooks

This is an application that
allows users to create and
share documents that
contain live code, equa-
tions, visualizations, and
narrative text.

114

As you can see from the diagram, Kubeflow integrates commonly used tools (PyTorch,
scikit-learn, Jupyter Notebooks, etc.) and adds some components specific to KubeFlow.
KubeFlow offers services for spawning, managing, and sharing Jupyter Notebooks; inter-
active data science; experimenting with ML workflows; using pods or containers in the
cluster instead of locally; permitting the use of standardized images of development envi-
ronments; and granting access to specific teams or individuals.

KubeFlow Pipelines offers a platform for building, deploying, and managing multi-step ML
workflows based on Docker containers (Kubeflow, n.d.-b). It also offers support for build-
ing, deploying, and managing multi-step ML workflows based on Docker containers, using
KubeFlow Pipelines. A pipeline is a description of an ML workflow written in Python code,
showing all components and how they interact in a graph form, and including the defini-
tion of inputs and outputs of each component. Every component of a pipeline is a Docker
image with self-containing code that performs one step of the pipeline.

Kubeflow offers several components that you can use to build your ML training, hyper-
parameter tuning, and serving workloads across multiple platforms, supporting the reso-
lution of many of the issues we discussed in the previous sections (Kubeflow, n.d.-c).

~Y—

=(j'l; SUMMARY

This unit introduced the characteristics of the development process of a
machine learning model: exploratory, iterative, and nondeterministic.
We explored some challenges related to data quality, exploration, devel-
opment, testing, and deployment of machine learning models. We then
approached the many challenges of bringing and keeping a machine
learning system in production, some similar to the ones encountered to
the traditional software development process, some slightly different,
and some intrinsic to the nondeterministic and data driven nature of
machine learning. We explored how versioning and testing is different in
the field of machine learning, and how to adapt to potential issues.

We then covered the concepts related to deployment pipelines, includ-
ing continuous integration, continuous deployment, and the DevOps
approach. We introduced the concept of MLOps, the practice of collabo-
ration between data scientists and other members of the production
team. We covered virtualization, containers, and orchestration, with spe-
cific examples of Docker and Kubernetes. Finally, we reviewed how
KubeFlow, built on top of Kubernetes, helps in the steps involved in sup-
porting a machine learning system in production.

BACKMATTER

116

LIST OF REFERENCES

AgileAlliance. (n.d.-a). Extreme programming. https://www.agilealliance.org/glossary/xp/

AgileAlliance. (n.d.-b). Pair programming.https://www.agilealliance.org/glossary/pairing/

Ahmad, M. 0., Markkula, J., & Oivo, M. (2013). Kanban in software development: A system-
atic literature review. Proceedings of the 2013 39th Euromicro conference on software
engineering and advanced applications (SEAA) (pp. 9—16). IEEE. https://doi.org/10.110
9/SEAA.2013.28

Altexsoft. (2018, February 23). Extreme programming: Values, principles, and practices. http
s://www.altexsoft.com/blog/business/extreme-programming-values-principles-and-p

ractices/

AOE. (n.d.). Agile methods & processes in companies. https://www.aoe.com/en/agile.html

Arntz, M. (2020). Iterative development vs. Agile. Cprime. https://www.cprime.com/resourc
es/blog/iterative-development-vs-agile

Aurum, A., & Wohlin, C. (2005). Requirements engineering: Setting the context. In A. Aurum
& C. Wohlin (Eds.), Engineering and managing software requirements (pp. 1—15).
Springer. https://wohlin.eu/rm_chapter05.pdf

Basu, A. (2015). Software quality assurance, testing and metrics. PHI Learning.

Baucherel, K. (2019). Scrum in rugby. Pixabay. https://pixabay.com/photos/rugbyscrum-h
eineken-cup-saracens-4498375/

Beck, K. (1999). Embracing change with extreme programming. Computer, 32(10), 70—77.
https://doi.org/10.1109/2.796139

Beck, K. (2014). Test-driven development: By example. Addison-Wesley.

Bell, D. (2003, June 14). UML basics: An introduction to the Unified Modeling Language. IBM.
https://developer.ibm.com/technologies/web-development/articles/an-introduction-
to-uml

Bhatia, S. (2020, August 24). Procedural programming [definition]. hackr-io. https://hackr.io
/blog/procedural-programming

Bockeler, B. (2020, January 15). On pair programming. Martin Fowler. https://martinfowler.
com/articles/on-pair-programming.html

Boehm, B. W. (1988). A spiral model of software development and enhancement. Com-
puter, 21(5), 61—72. https://doi.org/10.1109/2.59

https://www.agilealliance.org/glossary/xp/
https://www.agilealliance.org/glossary/pairing/
https://doi.org/10.1109/SEAA.2013.28
https://doi.org/10.1109/SEAA.2013.28
https://www.altexsoft.com/blog/business/extreme-programming-values-principles-and-practices/
https://www.altexsoft.com/blog/business/extreme-programming-values-principles-and-practices/
https://www.altexsoft.com/blog/business/extreme-programming-values-principles-and-practices/
https://www.aoe.com/en/agile.html%22%20/
https://www.cprime.com/resources/blog/iterative-development-vs-agile
https://www.cprime.com/resources/blog/iterative-development-vs-agile
https://wohlin.eu/rm_chapter05.pdf
https://pixabay.com/photos/rugbyscrum-heineken-cup-saracens-4498375/
https://pixabay.com/photos/rugbyscrum-heineken-cup-saracens-4498375/
https://doi.org/10.1109/2.796139
https://developer.ibm.com/technologies/web-development/articles/an-introduction-to-uml/
https://developer.ibm.com/technologies/web-development/articles/an-introduction-to-uml/
https://hackr.io/blog/procedural-programming
https://hackr.io/blog/procedural-programming
https://martinfowler.com/articles/on-pair-programming.html
https://martinfowler.com/articles/on-pair-programming.html
https://doi.org/10.1109/2.59

Boehm, B. (1996). Anchoring the software process. [EEESoftware, 13(4), 73—82. https://ieee
xplore.ieee.org/document/526834

Booch, G., Rumbaugh, J., & Jacobson, I. (2005). Unified Modeling Language user guide (2nd
ed.). Addison-Wesley.

Boschetti, M. A., Golfarelli, M., Rizzi, S., & Turricchia, E. (2014). A Lagrangian heuristic for
sprint planning in Agile software development. Computers & Operations Research,
43(1), 116—128. https://doi.org/10.1016/j.cor.2013.09.007

Breck, E., Polyzotis, N., Roy, S., Whang, S. E., & Zinkevich, M. (2019). Data validation for
machine learning. Proceedings of the 2nd SysML conference. SysML. https://mlsys.org/
Conferences/2019/doc/2019/167.pdf

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T.,
Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., ... Amodei, D. (2020). Language
models are few-shot learners. arXiv. https://arxiv.org/abs/2005.14165v4

Carilli, J. F. (2013). Transitioning to Agile: Ten success strategies [Paper presentation].
Project Management Institute Global Congress.

Chapman, C. (n.d.). An overview of data-driven design. Designers.https://www.toptal.com/
designers/ux/data-driven-design

Charette, R. N. (2005). Why software fails. [EEE Spectrum,42(9), 42—49. https://doi.org/10.1
109/MSPEC.2005.1502528

Chen, L. (2015). Continuous delivery: Huge benefits, but challenges too. IEEE Software,
32(2), 50—54. https://doi.org/10.1109/MS.2015.27

Cohn, M. (2009). Succeeding with Agile: Software development using Scrum. Addison-Wes-
ley.

Coram, M., & Bohner, S. (2005, April). The impact of Agile methods on software project
management. Proceedings of the 12th IEEE international conference and workshops on
the engineering of computer-based systems (ECBS 2005) (pp. 363—370). IEEE. https://d
0i.0rg/10.1177%2F875697281704800101

Cortellessa, V., Di Marco, A., & Inverardi, P. (2011). Model-based software performance anal-
ysis. Springer.

Coventry, T. (2015). Requirements management—planning for success! Techniques to get
it right when planning requirements. Proceedings of the PMI global congress 2015—
EMEA. Project Management Institute.

Covington, M. A. (2010, August 23). First lecture on symbolic programming and LISP. Univer-
sity of Georgia.

117

https://ieeexplore.ieee.org/document/526834
https://ieeexplore.ieee.org/document/526834
https://doi.org/10.1016/j.cor.2013.09.007
https://mlsys.org/Conferences/2019/doc/2019/167.pdf
https://mlsys.org/Conferences/2019/doc/2019/167.pdf
https://arxiv.org/abs/2005.14165v4%22%20/
https://www.toptal.com/designers/ux/data-driven-design
https://www.toptal.com/designers/ux/data-driven-design
https://doi.org/10.1109/MSPEC.2005.1502528
https://doi.org/10.1109/MSPEC.2005.1502528
https://doi.org/10.1109/MS.2015.27
https://doi.org/10.1177%2F875697281704800101
https://doi.org/10.1177%2F875697281704800101

118

Darryl, T. (2003). IBM acquires Rational. eWeek. https://www.eweek.com/pc-hardware/ibm
-acquires-rational

Department of Defense. (1988). Military standard: Defense system software development.
(DOD-STD-2167A). U.S. Department of Defense.

DevOps. (2015). Comparing DevOps to traditional IT: Eight key differences.

Docker. (n.d.). Docker homepage. https://docs.docker.com/

Dutchguilder. (2007, October 16). Iterative development illustration. Wikimedia Commons.
https://commons.wikimedia.org/wiki/File:Development-iterative.png

Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R. (2012). Fairness through aware-
ness. arXiv. https://arxiv.org/abs/1104.3913v2

Educba. (n.d.) Introduction to Machine Learning (ML) lifecycle. https://www.educba.com/m
achine-learning-life-cycle/

Evans, E. (2010). Domain-driven design: Tackling complexity in the heart of software. Addi-
son-Wesley.

Fabian, R. (2018). Data-oriented design. https://www.dataorienteddesign.com/dodbook/d
odmain.html

Fowler, M. (2019). Continuous delivery for machine learning. Martin Fowler. https://martinf
owler.com/articles/cd4ml.html

Fowler, M., & Highsmith, J. (2001). The Agile manifesto. Software Development, 9(8), 28—
35. http://users.jyu.fi/~mieijala/kandimateriaali/Agile-Manifesto.pdf

Gade, K. (2019). Al needs a new developer stack! Fiddler. https://blog.fiddler.ai/2019/06/ai-
needs-a-new-developer-stack/

Gannod, G. C., Eberle, W. F., Talbert, D. A., Cooke, R. A., Hagler, K., Opp, K., & Baniya, J.
(2018). Establishing an Agile mindset and culture for workforce preparedness: A base-
line study. Proceedings of the 2018 IEEE frontiers in education conference (FIE) (pp. 1—
9). IEEE. http://dx.doi.org/10.15439/2019F198

Gherkin. (n.d.). SpecFlow. https://specflow.org/bdd/gherkin/

Git. (n.d.). Git homepage. https://git-scm.com/

Gitlab. (n.d.). Create the ideal DevOps team structure. https://about.gitlab.com/blog/2019/
06/12/devops-team-structure/

Glinz, M., & Wieringa, R. J. (2007). Stakeholders in requirements engineering. IEEE Soft-
ware, 24(2), 18—20. https://doi.org/10.1109/MS.2007.42

https://www.eweek.com/pc-hardware/ibm-acquires-rational
https://www.eweek.com/pc-hardware/ibm-acquires-rational
https://devops.com/comparing-devops-traditional-eight-key-differences/
https://docs.docker.com/%22%20/
https://commons.wikimedia.org/wiki/File:Development-iterative.png
https://arxiv.org/abs/1104.3913v2%22%20/
https://www.educba.com/machine-learning-life-cycle/
https://www.educba.com/machine-learning-life-cycle/
https://www.dataorienteddesign.com/dodbook/dodmain.html
https://www.dataorienteddesign.com/dodbook/dodmain.html
https://martinfowler.com/articles/cd4ml.html%22%20/
https://martinfowler.com/articles/cd4ml.html%22%20/
http://users.jyu.fi/~mieijala/kandimateriaali/Agile-Manifesto.pdf
https://blog.fiddler.ai/2019/06/ai-needs-a-new-developer-stack/%22%20/%22%20/
https://blog.fiddler.ai/2019/06/ai-needs-a-new-developer-stack/%22%20/%22%20/
http://dx.doi.org/10.15439/2019F198
https://specflow.org/bdd/gherkin/%22%20/
https://git-scm.com/
https://about.gitlab.com/blog/2019/06/12/devops-team-structure/%22%20/
https://about.gitlab.com/blog/2019/06/12/devops-team-structure/%22%20/
https://doi.org/10.1109/MS.2007.42

Google. (n.d.). MLOps: Continuous delivery and automation pipelines in machine learning. h
ttps://cloud.google.com/solutions/machine-learning/mlops-continuous-delivery-and
-automation-pipelines-in-machine-learning

Gornik, D. (2017). IBM rational unified process: Best practices for software development
teams. IBM. ftp://ftp.software.ibm.com/software/rational/web/whitepapers/2003/rup
bestpractices.pdf

Green, D. M. (2020, January 21). Pair programming: Benefits, tips & advice for making it
work. SitePoint. https://www.sitepoint.com/pair-programming-guide/

Guigova, I. (2009, March 12). Approaches, styles, or philosophies in software development.
Codeproject. https://www.codeproject.com/Articles/33992/Approaches-Styles-or-Phil
osophies-in-Software-Deve

Hammarberg, M., & Sunden, J. (2014). Kanban in action. Manning Publications.

Heck, P. (2020). Testing machine learning applications. Fontys. https://fontysblogt.nl/testi
ng-machine-learning-applications/

Hegde, R. (2020, April 22). How machine learning lifecycle is different from a software devel-
opment lifecycle? Medium. https://medium.com/@rajeshhegde/how-machine-learnin
g-lifecycle-is-different-from-a-software-development-lifecycle-cacdc1fd0077

Highsmith, J. (2009). Agile project management: Creating innovative products. Pearson.

Hiraeth, M. L. (2018). Technologie Blaupause Haus Zeichnung [Blueprint of a residential
house.]. Pixabay. https://pixabay.com/de/illustrations/technologie-blaupause-haus-z
eichnung-3216744/

Humble, J., & Farley, D. (2015). Continuous delivery: Reliable software releases through
build, test, and deployment automation. Addison-Wesley.

H20. (n.d.). Machine learning interpretability.https://www.h20.ai/explainable-ai/

IBM. (2020). Al fairness 360. http://aif360.mybluemix.net/

IEEE Computer Society. (1990). IEEE standard glossary of software engineering terminology.
IEEE.

IEEE Computer Society. (1998). Industry implementation of international standard ISO/IEC
12207: 1995 (ISO/IEC 12207). |EEE.

International Organization for Standardization. (2005). Information technology—Open dis-
tributed Processing—Unified modeling language (UML) version 1.4.2. (ISO/IEC Standard
No. 19501:2005). ISO. https://www.iso.org/standard/32620.html

119

https://cloud.google.com/solutions/machine-learning/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning%22%20/
https://cloud.google.com/solutions/machine-learning/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning%22%20/
https://cloud.google.com/solutions/machine-learning/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning%22%20/
ftp://ftp.software.ibm.com/software/rational/web/whitepapers/2003/rup_bestpractices.pdf
ftp://ftp.software.ibm.com/software/rational/web/whitepapers/2003/rup_bestpractices.pdf
https://www.sitepoint.com/pair-programming-guide/
https://www.codeproject.com/Articles/33992/Approaches-Styles-or-Philosophies-in-Software-Deve
https://www.codeproject.com/Articles/33992/Approaches-Styles-or-Philosophies-in-Software-Deve
https://fontysblogt.nl/testing-machine-learning-applications/
https://fontysblogt.nl/testing-machine-learning-applications/
http://https://medium.com/@rajeshhegde/how-machine-learning-lifecycle-is-different-from-a-software-development-lifecycle-cacdc1fd0077
http://https://medium.com/@rajeshhegde/how-machine-learning-lifecycle-is-different-from-a-software-development-lifecycle-cacdc1fd0077
https://pixabay.com/de/illustrations/technologie-blaupause-haus-zeichnung-3216744/
https://pixabay.com/de/illustrations/technologie-blaupause-haus-zeichnung-3216744/
https://www.h2o.ai/explainable-ai/
http://aif360.mybluemix.net/
https://www.iso.org/standard/32620.html

120

International Organization for Standardization. (2017). Systems and software engineering
—Software life cycle processes (ISO/IEC/IEEE Standard No. 12207:2017). /SO. https://w
ww.iso.org/standard/63712.html

Jacobson, I., & Bylund, S. (2000). The road to the unified software development process.
Cambridge University Press.

James, M., & Walter, L. (2010). Scrum reference card. CollabNet Inc. https://www.collab.net
[sites/default/files/uploads/CollabNet_scrumreferencecard.pdf

Jira. (n.d.). Jira homepage. Atlassian. https://www.atlassian.com/software/jira

Jongerius, P., Offermans, A., Vanhoucke, A., Sanwikarja, P., & van Geel, J. (2013). Get Agile!
Scrum for UX, design & development. BIS Publishers.

Kahootz. (2015, June 3). Uber and Airbnb: The importance of Agile working in 2015. https://
www.kahootz.com/uber-and-airbnb-the-importance-of-agile-working-in-2015/

kanbanboard. (n.d.). Kanbanboard homepage. Github. https://github.com/kanboard/kanb
oard

Karpathy, A. (2017, November 11). Software 2.0. Medium. https://medium.com/@karpathy
/software-2-0-a64152b37¢35

Katalon. (2020). What is end-to-end (E2E) testing? All you need to know. https://www.katalo
n.com/resources-center/blog/end-to-end-e2e-testing/

Kim, M., Zimmermann, T., DeLine, R., & Begel, A. (2018). Data scientists in software teams:
State of the art and challenges. IEEE Transactions on Software Engineering, 44(11),
1024—1038. https://doi.org/10.1109/TSE.2017.2754374

Kotonya, G., & Sommerville, I. (1998). Requirements engineering: Processes and techniques.
Wiley.

Kruchten, P. (2003). The rational unified process: An introduction. Addison-Wesley.

Kubeflow. (n.d.-a). Kubeflow: An introduction to Kubeflow. https://www.kubeflow.org/docs/

about/kubeflow/

Kubeflow. (n.d.-b). Overview of Kubeflow pipelines. https://www.kubeflow.org/docs/pipeli
nes/overview/pipelines-overview/

Kubeflow. (n.d.-c). Kubeflow overview.https://www.kubeflow.org/docs/started/kubeflow-o

verview/

Kubernetes Documentation. (2020). Concepts. Kubernetes. https://kubernetes.io/docs/con

cepts/

https://www.iso.org/standard/63712.html
https://www.iso.org/standard/63712.html
https://www.collab.net/sites/default/files/uploads/CollabNet_scrumreferencecard.pdf
https://www.collab.net/sites/default/files/uploads/CollabNet_scrumreferencecard.pdf
https://www.atlassian.com/software/jira
https://www.kahootz.com/uber-and-airbnb-the-importance-of-agile-working-in-2015/
https://www.kahootz.com/uber-and-airbnb-the-importance-of-agile-working-in-2015/
https://github.com/kanboard/kanboard
https://github.com/kanboard/kanboard
https://medium.com/@karpathy/software-2-0-a64152b37c35
https://medium.com/@karpathy/software-2-0-a64152b37c35
https://www.katalon.com/resources-center/blog/end-to-end-e2e-testing/
https://www.katalon.com/resources-center/blog/end-to-end-e2e-testing/
https://doi.org/10.1109/TSE.2017.2754374
https://www.kubeflow.org/docs/about/kubeflow/%22%20/
https://www.kubeflow.org/docs/about/kubeflow/%22%20/
https://www.kubeflow.org/docs/pipelines/overview/pipelines-overview/%22%20/
https://www.kubeflow.org/docs/pipelines/overview/pipelines-overview/%22%20/
https://www.kubeflow.org/docs/started/kubeflow-overview/%22%20/%22%20/
https://www.kubeflow.org/docs/started/kubeflow-overview/%22%20/%22%20/
https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/concepts/

Lage Junior, M., & Godinho Filho, M. (2010). Variations of the Kanban system: Literature
review and classification. International Journal of Production Economics, 125(1), 13—
21. https://doi.org/10.1016/].ijpe.2010.01.009

Leffingwell, D. (2007). Scaling software agility. Pearson.

Lithmee. (2020). What is the difference between Agile and iterative. Pediaa. https://pediaa.c
om/what-is-the-difference-between-agile-and-iterative/

Macaulay, L. A. (2012). Requirements engineering. Springer.

Masson, R., losif, L., MacKerron, G., & Fernie, J. (2007). Managing complexity in Agile global
fashion industry supply chains. The International Journal of Logistics Management,
18(2),238—254. https://doi.org/10.1108/09574090710816959

Miller, G. G. (2001). The characteristics of Agile software processes. Proceedings of the inter-
national conference on technology of object-oriented languages (pp. 0385—0387). IEEE.
http://faculty.salisbury.edu/~xswang/research/papers/serelated/agile/12510385.pdf

Miller, R. (2003). Practical UML - A hands-on introduction for developers. Borland Developer
Network.

Mitchell, I. (2015). Scrum framework. Wikimedia Commons. https://commons.wikimedia.or
g/wiki/File:Kanban_principles.jpg

North, D. (2006, June 5). Behavior modification. Stickyminds. https://www.stickyminds.co
m/better-software-magazine/behavior-modification

North, D. (n.d.). Introducing BDD. Dan North & Associates. https://dannorth.net/introducin
g-bdd/#translations

Null, C. (2020). Infrastructure as code: The engine at the heart of DevOps. TechBeacon. https
://techbeacon.com/enterprise-it/infrastructure-code-engine-heart-devops

oodesign. (n.d.). Design principles. https://www.oodesign.com/design-principles.html

OpenSource. (n.d.). Virtualization. https://opensource.com/resources/virtualization

Patel, C. (2020). DevOps best practices. DZone. https://dzone.com/articles/devops-best-pra
ctices

Petersen, K., Wohlin, C., & Baca, D. (2009). The waterfall model in large-scale development.
Proceedings of the international conference on product-focused software process
improvement (pp. 386—400). Springer.

Poskitt, C. (2018, June 5). 4 examples of businesses who have made Agile working work.
Turbine. https://www.turbinehg.com/blog/4-examples-agile-working

121

https://doi.org/10.1016/j.ijpe.2010.01.009
https://pediaa.com/what-is-the-difference-between-agile-and-iterative/
https://pediaa.com/what-is-the-difference-between-agile-and-iterative/
https://doi.org/10.1108/09574090710816959
http://faculty.salisbury.edu/~xswang/research/papers/serelated/agile/12510385.pdf
https://commons.wikimedia.org/wiki/File:Kanban_principles.jpg
https://commons.wikimedia.org/wiki/File:Kanban_principles.jpg
https://www.stickyminds.com/better-software-magazine/behavior-modification%22%20/
https://www.stickyminds.com/better-software-magazine/behavior-modification%22%20/
https://dannorth.net/introducing-bdd/%23translations
https://dannorth.net/introducing-bdd/%23translations
https://techbeacon.com/enterprise-it/infrastructure-code-engine-heart-devops
https://techbeacon.com/enterprise-it/infrastructure-code-engine-heart-devops
https://www.oodesign.com/design-principles.html
https://opensource.com/resources/virtualization%22%20/
https://dzone.com/articles/devops-best-practices%22%20/
https://dzone.com/articles/devops-best-practices%22%20/
https://www.turbinehq.com/blog/4-examples-agile-working

122

Pouloudi, A., & Whitley, E. A. (1997). Stakeholder identification in inter-organizational sys-
tems: Gaining insights for drug use management systems. European Journal of Infor-
mation Systems, 6(1), 1—14. https://doi.org/10.1057/palgrave.ejis.3000252

Project Management Institute. (2008). A guide to the project management body of knowl-
edge (PMBOK guide) (4th ed.). PMI.

Redhat. (n.d.). What is container orchestration? https://www.redhat.com/en/topics/contain
ers/what-is-container-orchestration

Rollins, S. (2018, January 20). Functional programming principles every imperative pro-
grammer should use. DZone. https://dzone.com/articles/functional-programming-prin
ciples-every-imperative

Rouse, M. (2020). Object-oriented programming (OOP). Techtarget. https://searchapparchit
ecture.techtarget.com/definition/object-oriented-programming-OOP

Royce, W. W. (1970). Managing the development of large software systems. Proceedings of
IEEE WESCON (pp. 328—338). IEEE. http://www-scf.usc.edu/~csci201/lectures/Lecturel

1/royce1970.pdf

Sakolick, 1. (2020). What is Cl/CD? Continuous integration and continuous delivery
explained. InfoWorld. https://www.infoworld.com/article/3271126

Schwaber, K., & Beedle, M. (2002). Agile software development with Scrum. Prentice Hall.

Sebesta, R. W. (1996). Concepts of programming languages. Addison-Wesley.

Shams-Ul-Arif, Q. K., Khan, Q., & Gahyyur, S. A. K. (2010). Requirements engineering pro-
cesses, tools/technologies & methodologies. International Journal of Reviews in Com-

puting, 2(6), 41—56.

Sharvit, Y. (2020, September 29). Principles of data oriented programming. Klipse. https://b
log.klipse.tech/databook/2020/09/29/do-principles.html

Shenhar, A. J., & Dvir, D. (2007). Project management research—The challenge and oppor-
tunity. Project Management Journal, 38(2), 93—99. https://doi.org/10.1177%2F875697
280703800210

Sherehiy, B., Karwowski, W., & Layer, J. K. (2007). A review of enterprise agility: Concepts,
frameworks, and attributes. International Journal of Industrial Ergonomics, 37(5), 445
—460. https://doi.org/10.1016/j.ergon.2007.01.007

Sims, C., & Johnson, H. L. (2012). Scrum: A breathtakingly brief and Agile introduction.
Dymaxicon.

Spring. (n.d.). Aspect oriented programming with Spring. https://docs.spring.io/spring-fram
ework/docs/2.0.x/reference/aop.html

https://doi.org/10.1057/palgrave.ejis.3000252
https://www.redhat.com/en/topics/containers/what-is-container-orchestration%22%20/
https://www.redhat.com/en/topics/containers/what-is-container-orchestration%22%20/
https://dzone.com/articles/functional-programming-principles-every-imperative
https://dzone.com/articles/functional-programming-principles-every-imperative
https://searchapparchitecture.techtarget.com/definition/object-oriented-programming-OOP
https://searchapparchitecture.techtarget.com/definition/object-oriented-programming-OOP
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf%22%20/
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf%22%20/
https://www.infoworld.com/article/3271126%22%20/
https://blog.klipse.tech/databook/2020/09/29/do-principles.html
https://blog.klipse.tech/databook/2020/09/29/do-principles.html
https://doi.org/10.1177%2F875697280703800210
https://doi.org/10.1177%2F875697280703800210
https://doi.org/10.1016/j.ergon.2007.01.007
https://docs.spring.io/spring-framework/docs/2.0.x/reference/aop.html
https://docs.spring.io/spring-framework/docs/2.0.x/reference/aop.html

Srivastava, A., Bhardwaj, S., & Saraswat, S. (2017). SCRUM model for Agile methodology.
Proceedings of the2017 international conference on computing, communication and
automation (ICCCA) (pp. 864—869). IEEE. https://doi.org/10.1109/CCAA.2017.8229928

Stellman, A., & Greene, J. (2005). Applied software project management. O’Reilly.
Stephens, R. (2015). Beginning software engineering. Wiley.

Sugimori, Y., Kusunoki, K., Cho, F., & Uchikawa, S. (1977). Toyota production system and
Kanban system materialization of just-in-time and respect-for-human system. The
International Journal of Production Research, 15(6), 553—564. https://doi.org/10.1080/
00207547708943149

Sutherland, J. (2004). Agile development: Lessons learned from the first Scrum. Cut-
terAgile Project Management Advisory Service: Executive Update, 5, 1—A4.

Takacs, P. Z. (2018, February 25). Scrum Events. Scrumthing. https://scrumthing.org/2018/
02/25/scrum-events/

Takeuchi, H., & Nonaka, I. (1986). The new product development game. Harvard Business
Review, 64(1), 137—146. https://hbr.org/1986/01/the-new-new-product-development-
ame

Tozzi, C. (2017). Understanding why Docker is so popular. Container Journal. https://contai
nerjournal.com/features/understanding-why-docker-popular/

Tuple. (n.d.). Pair programming guide. https://tuple.app/pair-programming-guide

Tutorialspoint. (n.d.). Software engineering overview. https://www.tutorialspoint.com/soft
ware_engineering/software_engineering_overview.htm

UCF. (n.d.). Major programming paradigms. University of Central Florida. http://www.eecs.
ucf.edu/~leavens/ComS541Fall97/hw-pages/paradigms/major.html

Waldner, J. (1992). Kanban principles. Wikipedia Commons. https://commons.wikimedia.or
g/wiki/File:Kanban_principles.svg

Wells, D. (1999). The rules of extreme programming. ExtremeProgramming. http://www.ext
remeprogramming.org/rules.html

Wei, J., & Field, M., (2004). A case study: Using IBM rational unified process as the methodol-
ogy framework. 1BM. https://www.ibm.com/developerworks/rational/library/4474.ht
ml

Wikipedia. (2020a). Data wrangling. https://en.wikipedia.org/wiki/Data_wrangling

Wikipedia. (2020b). Transformational leadership. https://en.wikipedia.org/wiki/Transforma
tional leadership

123

https://doi.org/10.1109/CCAA.2017.8229928
https://doi.org/10.1080/00207547708943149
https://doi.org/10.1080/00207547708943149
https://scrumthing.org/2018/02/25/scrum-events/
https://scrumthing.org/2018/02/25/scrum-events/
https://hbr.org/1986/01/the-new-new-product-development-game
https://hbr.org/1986/01/the-new-new-product-development-game
https://containerjournal.com/features/understanding-why-docker-popular/%22%20/
https://containerjournal.com/features/understanding-why-docker-popular/%22%20/
https://tuple.app/pair-programming-guide
https://www.tutorialspoint.com/software_engineering/software_engineering_overview.htm
https://www.tutorialspoint.com/software_engineering/software_engineering_overview.htm
http://www.eecs.ucf.edu/~leavens/ComS541Fall97/hw-pages/paradigms/major.html
http://www.eecs.ucf.edu/~leavens/ComS541Fall97/hw-pages/paradigms/major.html
https://commons.wikimedia.org/wiki/File:Kanban_principles.svg
https://commons.wikimedia.org/wiki/File:Kanban_principles.svg
http://www.extremeprogramming.org/rules.html
http://www.extremeprogramming.org/rules.html
https://www.ibm.com/developerworks/rational/library/4474.html
https://www.ibm.com/developerworks/rational/library/4474.html
https://en.wikipedia.org/wiki/Data_wrangling%22%20/
https://en.wikipedia.org/wiki/Transformational_leadership%22%20/
https://en.wikipedia.org/wiki/Transformational_leadership%22%20/

124

Wikipedia. (2020c). Hyper-V. https://en.wikipedia.org/wiki/Hyper-V

Yau, A., & Murphy, C. (2013). Is a rigorous Agile methodology the best development strategy
for small scale tech startups? (Technical report no. MS-CIS-13-01). University of Penn-
sylvania. https://repository.upenn.edu/cgi/viewcontent.cgi?article=2025&context=cis

reports&httpsredir=1&referer=

Zhang, J. M., Harman, M., Ma, L., & Liu, Y. (2019). Machine learning testing: Survey, land-
scapes and horizons. arXiv. https://arxiv.org/abs/1906.10742v2

Ziolkowski, D. (2020, November 12). What is software provisioning? A detailed introduction.
Plutora. https://www.plutora.com/blog/software-provisioning-introduction

Zuill, W. (2014, September 1). Mob programming. Life, Liberty, and the Pursuit of Agility. htt
p://zuill.us/WoodyZuill/category/mobprogramming/

https://en.wikipedia.org/wiki/Hyper-V
https://repository.upenn.edu/cgi/viewcontent.cgi?article=2025&context=cis_reports&httpsredir=1&referer=
https://repository.upenn.edu/cgi/viewcontent.cgi?article=2025&context=cis_reports&httpsredir=1&referer=
https://arxiv.org/abs/1906.10742v2
https://www.plutora.com/blog/software-provisioning-introduction
http://zuill.us/WoodyZuill/category/mobprogramming/
http://zuill.us/WoodyZuill/category/mobprogramming/

LIST OF TABLES AND

FIGURES

Figure 1: Blueprint of a Residential House

Table 1: Some Examples of Requirements Classifications
Figure 2: Purely Linear Requirements Engineering Model
Figure 3: Linear Model for Requirements Engineering Process

Figure 4: Spiral Model of Software Development Life Cycle

Figure 5: Steps of the Waterfall Model

Table 2: Pros and Cons of the Waterfall Model
Figure 6: Rational Unified Process Visualization
Figure 7: UML Building Blocks

Figure 8: UML Use Case Diagram for an Online Shop
Figure 9: UML Class Diagram for an Online Shop
Figure 10: Agile Values

Figure 11: Agile Workflow

Figure 12: Traditional vs. Agile Team Structure
Figure 13: Kanban Structure

Figure 14: Kanbanboard

Figure 15: Kanban Principles

Figure 16: Kanban Practices

Figure 17: Scrum in Rugby

Figure 18: Agile Scrum Structure

13

14

15

16

18

19

20

22

25

27

28

33

36

37

38

39

40

41

43

44

125

126

Figure 19:

Eventsin Agile Scrum

Table 3: Comparison of Agile and Traditional Project Management Methods

Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:

Figure 32:

Test Automation Pyramid

Marick’s Quadrant

Continuous Delivery Pipeline

Continuous Training Pipeline

Software Development

Model Development and Production Lifecycle (1)
Model Development and Production Lifecycle (l1)
DevOps Pipeline

DevOps CI/CD

Docker Components

Docker Image vs. Container

Kubernetes Cluster

Model Development and Production with Kubeflow

47

49

59

63

72

73

76

98

99

103

106

109

110

111

113

@ IU Internationale Hochschule GmbH
IU International University of Applied Sciences
Juri-Gagarin-Ring 152
D-99084 Erfurt

=) Mailing Address
Albert-Proeller-Strafte 15-19
D-86675 Buchdorf

media@iu.org
WWW.iu.org

9,
o=
Ca Help & Contacts (FAQ)
@] .
On myCampus you can always find answers
to questions concerning your studies.

	Introduction
	Signposts Throughout the Course Book
	Suggested Readings
	Learning Objectives

	Requirements Engineering
	Requirements Engineering
	Waterfall Model
	Rational Unified Process

	Agile Project Management
	Agile Project Management
	Introduction to Kanban
	Introduction to Scrum
	From Traditional to Agile

	Testing
	Why Testing?
	Unit and Integration Tests
	Approaching Testing
	Testing Machine Learning Software
	Performance Monitoring

	Software Development Paradigms
	Programming Paradigms
	Program Design
	Programming Styles

	Experimentation and Production
	Experimentation and Production
	Continuous Integration and Delivery
	Building a Scalable Environment

	Backmatter
	List of References
	List of Tables and Figures

