[bookmark: _Hlk153625901]	
	PI Name: Guy Leshem

Development of universal methods to enhance policy enforcement across various fields using natural language processing and anomaly detection systems

Detailed description of the basic research program
1. Scientific background
1.1 Setting and motivation.
 The research aims to develop universal methods for enhancing policy enforcement across various domains using natural language processing (NLP) and anomaly detection systems. Numerous studies have highlighted a significant gap between theoretical frameworks, documented protocols, and real-world implementation, resulting in ambiguity and gaps in policy interpretation. To demonstrate the versatility of the proposed system, we will explore two distinct examples of its potential applications.
 The first example will examine military attacks (e.g., the Yom Kippur War, 1973 or October 7 War, 2023), by using this system, we will analyze whether it could have detected anomalies between the basic assumptions of the defense doctrine, the objectives of the defense strategy and the actual events, that occurred on October 6 (1973) and/or 7 (2023) in Sinai and the Golan Heights and/or Gaza Strip. This analysis will focus on factors such as the forces' knowledge of the area, early unit deployment, force strength, and preparedness for an attack. For instance, military theory often assumes that the contact line between attacking and defending forces will be breached at some point. While such a breach is expected, but it is considered as manageable as long as it does not affect critical areas, there is sufficient strategic depth (the buffer between the front lines and civilian areas), and the breach can be reversed. We will assess whether the system could detect discrepancies between this theoretical framework and the actual situation on the ground. Additionally, we will evaluate the available intelligence and explore whether it could have identified signs of an impending large-scale attack, rather than just routine training exercises.
 The second example, in stark contrast to the first, will address the planning and implementation of a communication network. Network planning often prioritizes hardware and protocols over policy definition, leaving network operators to interpret vague or incomplete policies. Many organizations form policy committees to outline acceptable network usage in high-level natural language. However, the translation of these policies into technical configurations often leads to gaps and ambiguities for operators. This disconnects between policy documentation and its implementation poses a significant challenge. Poorly structured policies can hinder operators from enforcing policy intent effectively, resulting in misinterpretations or errors in enforcement. Clear and well-defined policies are essential to avoid these issues. Moreover, it is critical not only to prevent policy violations but also to detect instances where preventive measures fail—such as unauthorized network traffic being allowed. Anomaly detection plays a crucial role in identifying abnormal behavior within datasets.
This research focuses on developing innovative, universal anomaly detection algorithms capable of learning normal system behavior without prior knowledge of the model or the nature of anomalies. These algorithms employ information metrics derived from the Lapel-Ziv universal compression algorithm to assign optimal probabilities to normal behavior during the learning phase and estimate the likelihood of new data during operational phases, classifying anomalies accordingly. By leveraging the algorithm's universality and efficient implementation, the proposed methods aim to improve policy enforcement by analyzing the quality of network policies through NLP, providing guidelines for drafting clearer policies, and converting natural language queries into actionable database queries. Additionally, new tools based on information theory will be developed to detect anomalies and identify policy violations.
[image:]Figure 1: Network Policy Generation, Translation and Enforcement Workflow (Related to the second example)
 We categorize network policies into the following groups based on the description of network traffic or packets: (1) Policies related to network traffic with clear packet header information, (2) Policies requiring further processing of network traffic, (3) Policies needing network state information, and (4) Policies with exceptions. An example of a simple network policy is: "The University Wireless Network should not be misused; in particular, you should not use the network to run peer-to-peer (P2P) file sharing software, e.g., BitTorrent." This policy requires that BitTorrent traffic be blocked. It can be enforced and monitored by analyzing the low-level details associated with the BitTorrent protocol, which places it in the first policy group due to the presence of protocol-specific information. The main challenges in enforcing natural language network policies are: (1) difficulties in fully and accurately understanding the policies, and (2) limitations of current tools and techniques for policy enforcement and verification in complex and dynamic network environments, which must meet the diverse needs of organizations. To address these challenges, we propose the development of three new tools aimed at improving network policy enforcement:
1. Natural Language Processing (NLP)-Based Tool: This tool will tackle network policies written in high-level natural language. NLP provides a feasible solution for interpreting policy text, helping to "understand" the intent behind it. One effective NLP technique is named entity extraction, which extracts useful information from text and filters out redundant information. By applying named entity extraction models, we can analyze network policies, derive key insights, and clarify policy intent.
2. Software-Defined Networking (SDN)-Based Tool: SDN introduces mechanisms to manage and control traditional networks by separating the data plane from the control plane, allowing for more flexible control over network devices. Network operators can write custom applications that dictate how traffic is handled, allowing for the insertion of fine-grained policy rules that may not be supported by conventional network devices. Additionally, SDN provides a comprehensive view of the network, enabling operators to monitor and detect potential policy violations.
3. Anomaly Detection Tool: The third tool focuses on detecting policy violations by identifying abnormal network behavior. This tool employs anomaly detection methods based on information measures derived from the Lempel-Ziv universal compression algorithm. The algorithm assigns optimal probability values for normal behavior during the learning phase and estimates the likelihood of new data during operation, classifying it accordingly. The method inherits the algorithm’s key strengths: universality and efficient implementation.
 Together, these tools will significantly enhance the understanding, enforcement, and monitoring of network policies in complex environments.

1.2 Related work.
 In this section, we review related works on: (1) various artificial intelligence (AI) techniques, such as Natural Language Processing (NLP) and machine learning models, and how these AI techniques contribute to network policy management, (2) SDN-based solutions, and (3) anomaly detection algorithms, which form the foundation of this proposed research. We focus on works that aim to simplify network policy enforcement by introducing intent-definition languages and other abstractions that bridge the gap between high-level network policy specifications and detailed policy implementations. Following this, we explore research on network testing and verification to assess whether networks are correctly configured according to their policies. One of the main challenges is the gap between network policies written in high-level natural language and the low-level configurations required for implementation, which makes the translation process tedious and prone to errors. To address this issue, researchers have proposed various approaches, including intent-definition languages and other abstractions, to accurately capture the intent behind network policies or administrators' requirements. A notable example is Nile, an intent-definition language introduced in [1], which effectively captures the intent of network operators. While operators still express their network requirements in natural language, the system utilizes platforms like Google Dialogflow [2] to extract valuable information from these inputs. The system employs natural language understanding techniques to process user inputs and ensure accurate policy enforcement. To improve the translation from user input to network configuration, the authors leveraged a sequence-to-sequence learning model [3], comprising two recurrent neural networks and a Long Short-Term Memory (LSTM) unit. This model is designed to map user statements into Nile, enabling efficient and precise translation of network policy intent into actionable configurations. This body of research highlights the progress made in simplifying the policy enforcement process and improving the accuracy of network configuration through AI and intent-definition languages, providing a foundation for the continued development of more intuitive and robust network management systems.
[image:]
[image:]

 Figure 2: Natural Language Processing
 In the context of SDN-based solutions, the work introduced in Policy Graph Abstractions (PGA) [4] allowed network operators to express network policies using graph-based abstractions. This approach was particularly useful in scenarios where multiple operators needed to simultaneously create and modify network policies. PGA also provided a mechanism to detect and resolve potential conflicts among the graphs, ultimately producing a unified graph containing all network policies without conflicts. Building on this, Janus, a framework proposed in [5], extended PGA by adding support for Quality of Service (QoS) policies, dynamic policies, and temporal policies that involve time constraints. These advancements allowed for more flexible policy expression but still required network operators to learn how to use the tools effectively. Existing SDN frameworks have also introduced additional modules that serve as intent-based Northbound Interfaces (NBI), supporting the definition of network policies for various purposes. For example, the ONOS (Open Network Operating System) intent framework [6] provides users with the ability to transform their high-level intents into specific SDN rules. In this framework, an intent is modeled as an object that includes network resources, constraints, criteria, and instructions. This intent object is then compiled into a FlowRule object, which installs SDN rules onto the appropriate network devices. The ONOS framework offers flexibility for users to express their intents either through a command-line interface (CLI) or via a REST API, enabling a seamless translation from high-level intent to enforceable SDN rules. While these systems have made strides in simplifying policy definition and enforcement, they still require network operators to familiarize themselves with these specific tools.
[image: A diagram of software defined networking

Description automatically generated]

Figure 3: Software Defined Networking

 In [7], the authors introduced an entropy-based network anomaly detector, A Node. This paper considered parameterized versions of entropy, such as Rènyi entropy, identifying anomalies by comparing the parameterized entropy during a given window to the maximum and minimum values calculated during the training phase. Similarly, [8] explored generalized entropy measures, this time employing a one-class Support Vector Machine (SVM) for classification. However, both works [7,8] only considered single-letter entropy measures, which focus on the diversity within a specific window rather than accounting for longer-term context or multi-letter measures. A comprehensive survey of Entropy-based Network Intrusion Detection Systems (E-NIDS) is presented in [9], where most systems also use single-letter entropy measures, either computing entropies or divergence measures for fixed-length distributions. These systems primarily operate in a windowed or single-letter manner, without continuous, long-term memory tracking, as can be achieved with LZ-parsing, the approach we use in this paper. In [10], the authors proposed representing a stochastic process using the d-truncated Karhunen–Loève expansion, which captures memory in the data more effectively than single-letter measures. This method relies on estimating the covariance matrix of the data, and anomalies are detected when the d-dimensional vector, assumed to be normally distributed, falls outside a predefined ellipsoid. Additionally, a non-parametric model was introduced, which estimates a local entropy measure for this representation. As with other entropy-based methods, the local entropy depends on an estimated distribution. In contrast, our approach eliminates the need for a "plug-in" method where probabilistic measures are first estimated before use. Instead, we take a different path, avoiding the assumption that such probabilistic measures exist at all. For cases where the ordering of data is crucial in distinguishing between normal and anomalous events, permutation entropy has been found useful, as demonstrated in climate data [11]. However, in many computer security applications, anomalies may consist of similar event sequences, with only slight variations in timing, which limits the effectiveness of ordering-based detection methods. Anomaly detection is also closely related to change-point detection [12], especially when the parameters following a change are unknown. However, much of the literature in this area focuses on independent and identically distributed (i.i.d.) sources and assumes a specific point in time when the change occurs, analyzing the trade-offs between false alarms and detection delays.
[image: A diagram of a mathematical equation

Description automatically generated with medium confidence][image:]
Figure 4: A statistical Model for sequence “aabdbbacbbda” (right), and Classification Model based on the LZ78 universal compression algorithm (left)

2. Research objectives and expected significance.
 Our objectives can be classified into forth main research directions.
2.1 [bookmark: _Hlk118212880]Develop Universal System to Managing Network Policies in a SDN Network
Introduction
 The emergence of Software-Defined Networks (SDN) has given users the ability to control and monitor networks in a more fine-grained and dynamic manner. SDN enables the deployment of network services through a variety of custom applications. One of the key distinctions between SDN and traditional networks is the separation of the control plane and the data plane. This separation allows researchers to develop customized SDN applications that can modify forwarding tables of switches and routers or gather network statistics. As a result, SDN applications can exert significant control over the network, potentially managing the entire system when granted full permissions. Network administrators are responsible for ensuring that networks run smoothly and reliably, while also managing policy exceptions. Some network policy documents stipulate that exceptions to route or send certain types of traffic require administrative approval. However, this approval process can introduce delays, which contradicts one of SDN's primary advantages—its ability to configure and adjust networks in real-time. Given the differing operational mechanisms between SDN and traditional networks, one of the major challenges in a hybrid network environment is how to maintain unified control over the entire network. This challenge involves leveraging the capabilities of the SDN controller while ensuring seamless integration with legacy systems and maintaining consistent policy enforcement across both types of networks.
2.2 Proposed system
 We propose a new approach in which the SDN controller will have partial control over legacy network switches, allowing the SDN controller to manage the entire network in a unified manner. This setup will enable the creation of SDN services that are accessible to all network users, even if they are connected to non-SDN-capable switches. The SDN controller will utilize protocols such as OpenFlow to manage network devices, but since legacy routers may not support these protocols, a different strategy is required. While SDN separates the control plane from the data plane to allow more flexible control through various applications, this flexibility is limited on legacy routers due to their lack of OpenFlow support. However, many legacy switches do support policy-based routing, which allows network administrators to define custom routing policies that can override the default routes generated by traditional protocols like OSPF. To enable communication between the SDN controller and legacy switches, two main strategies can be employed. First, the Simple Network Management Protocol (SNMP) can be used to discover the network topology, identifying how legacy switches are connected to SDN-capable devices. Second, SDN applications can be developed to SSH into the command line interface (CLI) of legacy switches and implement policy-based routing on demand. This ensures that the SDN controller can exert control over legacy devices, achieving automated, unified control of the entire network. As a result, SDN network services will be available to all users, regardless of their location or the type of switch they are connected to, ensuring seamless network management across both SDN and legacy infrastructure.
[image: A diagram of a computer network

Description automatically generated][image:]
[image:]Figure 5: Traditional Network (left), Network with SDN Deployed (right), Extend the SDN Functionality to Legacy Routers/Switches (below)

בחלק זה)ניהול מדיניות רשת ברשתות (SDN לא מוסבר בדיוק מה החוקרים הולכים לעשות כדי לשפר את המנגנונים הקיימים, ולאילו אספקטים של המנגנונים הללו החוקרים מתכוונים להתייחס.

2.3 [bookmark: _Hlk153452805]Develop Universal System to Extract Network Policies from Documents using NLP Model
החלק של הNLP- לא מבוסס דיו, ומבוסס על טכנולוגיה של לפני מספר שנים (זיהוי entities named) ולא על הכלים הקיימים היום אשר טובים משמעותית יותר (מודלי שפה גדולים). מעבר לכך, ההצעה מנוסחת באופן מופשט למדי. לוועדה כלל לא ברור איך החוקרים מתכוונים לבצע את המשימה מעבר לשימוש ב- entities named. ספציפית, כל התיאור של רכיב ה-NLP נמצא בפסקה " The entity extraction module ". בחלק 2.3 . הפסקה מאוד לא מפורטת, ולא ברור לוועדה איך המערכת תחלץ מידע זה. החלק השני של חלק 2.3 policy analyzing module מאוד לא מפורט ולא ברור איך הוא הולך לעבוד.
2.3.1 Introduction
 Network policies are typically outlined in documents such as Acceptable Use Policies, written in human-readable language, and made accessible online for users to understand what is permitted when using network resources. However, misunderstandings or lack of awareness of these policies can result in unwanted traffic on the network. Network administrators are responsible for enforcing these policies by translating high-level statements into low-level configurations that control the network’s behavior. Historically, this translation process has been done manually, a task that can be both tedious and error prone. The gap between high-level policy statements and the detailed configurations needed for enforcement can lead to misinterpretation of policy intent, as well as human errors in configuring network devices—particularly in complex environments.
 Despite advances in Artificial Intelligence (AI), which simplify this translation process, network administrators are still needed to convert policy documents into actionable formats. Even in Intent-Based Networking Systems, which generate configurations based on specified intents, administrators must manually translate policy statements into clear, actionable goals. Errors during this translation phase are often due to ambiguities or missing information in policy statements. Ambiguous terms or incomplete details can lead to confusion, increasing the likelihood of incorrect policy enforcement. Policymakers, who draft these policies, often lack the technical expertise of network administrators, and may not fully understand the complexities involved in enforcing various network policies. This can result in policies that use unclear language, further complicating the enforcement process. For example, ambiguous terms or conflicting policies can confuse administrators, potentially leading to partial or incorrect implementation of the intended rules.
 Network administrators prefer clear, precise policies that can be directly translated into low-level configurations. When ambiguity arises, administrators often need to provide feedback to policymakers to clarify intent or highlight potential enforcement challenges, such as conflicting policies. Without clear communication between policymakers and network administrators, the risk of mis implementation increases. To address these challenges, we propose a system that allows policymakers and network administrators to collaborate in improving the quality of network policy documents. This system will take a policy document as input and, from the perspective of network administrators, identify ambiguities or missing elements that could hinder correct enforcement. By simulating the thought process of administrators, the system will highlight areas of concern, allowing policymakers to refine the language of the document to ensure clarity while maintaining the high-level descriptions.
For example, consider the policy statement:
“It is inappropriate to run insecure protocols in the residence halls.”
 When network administrators encounter this statement, several questions may arise:
What action should be taken against insecure traffic? The term "inappropriate" is vague—should the traffic be blocked?
What exactly qualifies as "insecure protocols"? Administrators may have ideas but need clarity on whether all insecure protocols are included.
What IP range or network details correspond to "residence halls"?
Such questions reflect both the concerns administrators may have when enforcing the policy and the ambiguities within the policy itself. With these insights, policymakers can revise the policy to maintain its high-level intent while making it more actionable and understandable for network administrators.
2.4 Proposed system
 Network administrators prioritize understanding what network traffic needs to be addressed and the actions to take regarding that traffic. Extracting relevant information from network policy statements and mapping it to a well-structured format is crucial for ensuring that administrators can effectively enforce policies. Ultimately, these network policies must be translated into low-level configurations on network devices. For instance, consider the following access control rule on a Cisco device that uses an Access Control List (ACL) to block FTP traffic:
router# access-list 101 deny tcp any any eq ftp [13]
In this rule, the access list named 101 denies traffic from any source to any destination with a destination port equal to the FTP port (port 21). The basic format of this rule includes an action (in this case, deny) and additional fields that match the network traffic. The 5-Tuple, which consists of the source IP address, source port, destination IP address, destination port, and transport layer protocol, is commonly used for this purpose. Recent advancements in Software-Defined Networking (SDN) allow for an enriched set of packet header fields for matching and diverse actions that can be taken. For example, OpenFlow supports more than 40 flow matching fields [14], enabling devices to manage various types of network traffic effectively. Based on the rule format into which a network policy will be translated, we outline five key questions that network administrators may ask when enforcing a policy:
1. What is the description of the network traffic in the policy?
2. What action should be taken on the matching flow?
3. Which locations within the network resources should be prioritized?
4. What is the direction of the network traffic?
5. Is network state information required for the match?
These questions form the basis of the tags that the proposed system will utilize to train the Natural Language Processing (NLP) model aimed at retrieving valuable information from network policies. The tags are categorized with example values, focusing on key information essential for successful enforcement. These include:
1. Description of the network traffic
2. Action to be taken on observed traffic
3. Location of the network to focus on
4. Direction of the traffic
5. Network state information, if known
Illustrating Diversity in Policy Statements
To illustrate the variety of policy expressions that convey the same intent, consider the following group of statements regarding port scanning:
· "Port scanning is not allowed on the network."
· "Students should not scan the network with port scanners."
· "Applications such as port scanners are prohibited on the network."
All these policies target the traffic generated by port scanning behaviors but use different terminology. To account for this diversity, we will categorize example tags and values, marking them as either "clear" or "unclear" to indicate whether they are ambiguous.
2.5 System Architecture
The proposed new system will leverage recent advances in Natural Language Processing (NLP) to analyze the quality of network policies written in natural language. The main components of this system include the Entity Extraction Module and the Policy Analyzing Module. Upon receiving network policy documents as input from network administrators, the system will generate a quality report for all policies within the input file. This report will indicate whether the policies are well-written or not, based on the detection of ambiguous or missing terms within each group. The architecture of the proposed new system is illustrated in Figure 6:
[image:]Figure 6: Proposed System Architecture

· Entity Extraction Module: This module, located in the upper section of Figure 6, is a critical sub-task within the field of Natural Language Processing (NLP). Its primary purpose is to extract valuable information from any given text and map the extracted data to predefined "tags." This enables the system to recognize specific terms in the text and categorize them accordingly.
· Policy Analyzing Module: After the entity extraction module has completed its task, the extracted entities and their associated tags will be passed to the policy analyzing module, depicted in the lower section of Figure 6. This module will then generate a quality report for the input network policy document, assessing the clarity and effectiveness of the policies.
2.6 Example for Ambiguity in Traffic Description
In the traffic that network administrators need to deal with can usually be described clearly with low-level packet header information (say the 5-tuple). However, the "description" in the network policy often contains high-level terms that cause ambiguities. There are a significant number of network policies that are intended to describe network protocols but do not mention specific protocol names. This causes ambiguities since network administrators may need to guess which protocols the policy refers to and whether they are exactly the ones network policy writers are talking about. For example, consider the following two network policies:
[bookmark: _Hlk153542429][bookmark: _Hlk153542401]"Superseded or insecure protocols and cipher suites should not be used unless there is an approved exception in place" [15]
We can notice that the first policy focuses on the protocols and cipher suites that are "Superseded or insecure". Network administrators may have questions about which protocols and cipher suites are considered "Superseded or insecure". Thus, the proposed system output for this policy about insecure protocols and cipher suites need to be:
[image:]Figure 7: Output for a Policy about Insecure Protocols

3. Develop Universal System to Discover Anomaly in Network Policies
3.1 Introduction
We suggest a new novel anomaly detection technique, which does not require any a priori information of network policies, nor the network policy violations, and yet efficiently learns the normal behavior and generates a statistical model. The technique is based on the Lempel Ziv algorithm, which is an optimal universal compression algorithm. In fact, when applied to stationary and ergodic sources over finite alphabets, its compression ratio converges to the entropy rate, and from the model it implicitly generates one can derive asymptotically optimal probability assignment. Using the induced assignment, we rigorously define the statistical model which represents the normal behavior, and offer a mechanism to test new, unknown sequences, using this model.
3.2 Proposed system
The two-phase system includes these steps:
Building Data Set
Data Processing
Data Collecting
Learning Phase

Run a test for specific stream

Data Processing
Sniff stream of data
Testing Phase

[bookmark: _Hlk153553478]3.2.1 Data Collecting
The output of the previous section proposed system (extract network policies using NLP model) will be the input of the current system. Thus, the aim of this stage is to collect all terms that appears (as outputs) like "telnet is clear", "ftp is clear", "P2P is clear", "policy is well written!", … etc.
3.2.2 Data Processing – Quantization
It is important to mention that the above procedure (data collecting) may result in a sequence over a large alphabet. For example, time may be given with very high precision. Such a high alphabet size may significantly increase the complexity. Hence, to reduce the range of values, quantization should be performed. For k quantization levels, a set of k centroids {c1, c2, c3,…,ck} is used. The learning algorithm we use (LZ-based) requires finite alphabet input.
	Sample
	telnet is clear
	ftp is clear
	P2P is clear
	policy is well written!

	Symbol
	a
	b
	c
	d

3.2.3 Lempel – Ziv Algorithm
The LZ78 algorithm is a dictionary-based compression method. For a given sequence of data symbols, a dictionary of phrases parsed from that sequence is constructed based on the incremental parsing process as follows. At the beginning the dictionary is empty. Then, during each step of the algorithm, the smallest prefix of consecutive data symbols not yet seen, i.e., which does not exist in the dictionary, is parsed and added to the dictionary. By that, each phrase is a unique phrase in the dictionary, that may extend a previously seen phrase by one symbol. For example, the sequence aabdbbacbbda is parsed as a|ab|d|b|ba|c|bb|da|. A common representation of the dictionary is a rooted tree, where each phrase in the dictionary is represented as a path from the root to an internal node in the tree according to the set of symbols the phrase consists of. Leaf-nodes are added as suffix for each phrase in the tree. A statistical model can then be defined for a given data sequence during the construction of a phrase-tree [16]. At the beginning, an initial tree is constructed including only a root node and k leaf-nodes as its children, where k is the size of the alphabet. Then, for each new phrase parsed from a sequence, the tree is traversed, starting from the root, following the set of symbols the phrase consists of, and ending at the appropriate leaf-node. Once a leaf-node is reached, the tree is extended at this point by adding all the symbols from the alphabet as immediate children's nodes to that leaf, making it an internal node. In order to define a statistical model, each node in the tree, except for the root node, maintains a counter, where each leaf-node’s counter is set to 1 and each internal node’s counter is equal to the sum of its immediate children’s counters. For a probability assignment, as all leaf-node's counters are set to 1, thus they are assumed uniformly distributed with a probability 1/i, where i is the total number of leaf-nodes. Each internal node’s probability is defined as the sum of its immediate children’s probabilities, which also equals the ratio between its counter and current i. The probability of an edge is defined by dividing the node's probabilities. The probability of a phrase Pi D is calculated by multiplying the probabilities of the edges along the path defined by the symbols of Pi. For example, the next figure demonstrates the resulting statistical model for the sequence “aabdbbacbbda".
[image:]Figure 8: A statistical Model for sequence “aabdbbacbbda”. Each node in the tree is represented by the 3-tuple (symbol, counter, probability). The probabilities of edges connected directly to the root are equal to the appropriate root-children’s counter divided by the total number of leaf-nodes, i, at each step of the algorithm.

3.2.4 Threshold based detection (Neyman-Pearson style)
In universal anomaly detection, the goal is then to identify whether a new data instance y belongs to the normal class (e.g., network policy according to instructions), or, alternatively, is anomalous (or policy violation). Since, in most applications, the anomalous instances are violations one wishes to identify, we refer to a correct identification of an anomalous y as detection (or violation), and for an incorrect identification of normal data (or network policy according to instructions) as false alarm. The optimal decision rule in terms of maximizing the detection probability given a fixed false alarm probability (in the Neyman-Pearson sense) is to compare p(y) to a threshold and decide that y is normal if p(y) is above the threshold and anomalous otherwise [17]. The threshold is determined according to the required false alarm probability.
[image:] [image:] [image:]Figure 9: Demonstration of Threshold Based Detection (Neyman-Pearson style) technique, which includes these steps: (1) Set a threshold, (2) Calculate probability for false alarm, (3) Calculate probability for miss detection, (4) Calculate a single point in the ROC Curve, and (5) Change threshold value.

[bookmark: _Hlk153626599][bookmark: _Hlk153626608]3.2.5) Demonstration of normal and anomalous
Follow the stream downwards the tree until the tested string is found (or unfound), calculate the error probability for the string: “aba” (normal) and "abbb" (anomalous).
[image:] [image:]
Figure 10: Demonstration of normal and anomalous

4. Integrate Universal System to Check Ambiguity in Network Policies
The last mission is to integrate the three subsystems into one integrated system that will improve policy enforcement in a communication network and will find anomalies through natural language processing, at this way:
Output 1 - policy violation

Input (Network, Policies documents)
Universal System to Check Ambiguity in Network Policies

Output 2 - Non violations policy

Universal System to Discover Anomaly in Network Policies
Universal System to Managing Network Policies in a SDN Network
Universal System to Extract Network Policies from Documents using NLP Model

Figure 11: Demonstration of the integrated proposed Universal System

The expected results of the system will be:
Violation of network policies was found:
· Security protocol is missing.
· Location is missing.
· Insecure protocols aren't clear.
· …

No violation of network policies was found.

References
1) P. Shi, Y. Song, Z. Fei and J. Griffioen, "Checking Network Security Policy Violations via Natural Language Questions," 2021 International Conference on Computer Communications and Networks (ICCCN), Athens, Greece, 2021, pp. 1-9, doi: 10.1109/ICCCN52240.2021.9522325.
2) Rivera, Z. Fei and J. Griffioen, "POLANCO: Enforcing Natural Language Network Policies", Proceedings of the 29th International Conference on Computer Communications and Networks (ICCCN), 2020.
3) D. Farrar, J. Huffman Hayes, G. Adkins, J. Griffioen and C. Bumgardner, "NetSecOps and Policy Checking An Application of Traceability Techniques", In Proceedings of Grand Challenges of Traceability 2017, 2017.
4) Arthur Selle Jacobs, Ricardo Jos_e P_tscher, Ronaldo Alves Ferreira, and Lisandro Zambenedetti Granville. Re_ning Network Intents for Self-Driving Networks. In Proceedings of the Afternoon Workshop on Self-Driving Networks, pages 15{21), 2018.
5) Dialogow, Create Conversational Experiences Across Devices and Platforms. https://cloud.google.com/dialogflow.
6) Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to Sequence Learning with Neural Networks. In Advances in neural information processing systems, pages 3104{3112}, 2014.
7) Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-Myung Kang, Aditya Akella, Sujata Banerjee, Charles Clark, Yadi Ma, Puneet Sharma, and Ying Zhang. PGA: Using Graphs to Express and Automatically Reconcile Network Policies. ACM SIGCOMM Computer Communication Review, 45(4):29{42}, 2015.
8) Anubhavnidhi Abhashkumar, Joon-Myung Kang, Sujata Banerjee, Aditya Akella, Ying Zhang, and WenfeiWu. Supporting Diverse Dynamic Intent-Based Policies using Janus. In Proceedings of the 13th International Conference on emerging Networking Experiments and Technologies, pages 296{309}, 2017.
9) ONOS Intent Framework. https://wiki.onosproject.org/display/ONOS/Intent+Framework.
10) Berezin´ski, P.; Jasiul, B.; Szpyrka, M. An entropy-based network anomaly detection method. Entropy 2015, 17, 2367–2408.
11) Santiago-Paz, J.; Torres-Roman, D.; Figueroa-Ypiña, A.; Argaez-Xool, J. Using generalized entropies and OC-SVM with Mahalanobis kernel for detection and classification of anomalies in network traffic. Entropy 2015, 17, 6239–6257.
12) Santiago-Paz, J.; Torres-Roman, D. On entropy in network traffic anomaly detection. 2nd International Electronic Conference on Entropy and its Applications, 2015.
13) Martos, G.; Hernández, N.; Muñoz, A.; Moguerza, J. Entropy measures for stochastic processes with applications in functional anomaly detection. Entropy 2018, 20, 33.
14) Garland, 577 J.; Jones, T.; Neuder, M.; Morris, V.; White, J.; Bradley, E. Anomaly detection in paleoclimate records using permutation entropy. Entropy 2018, 20, 931.
15) Cao, Y.; Xie, L.; Xie, Y.; Xu, H. Sequential change-point detection via online convex optimization. Entropy 2018, 20, 108.
16) Cisco ACL Overview and Guidelines. https://www.cisco.com/c/en/us/td/docs/iosxml/ios/sec data acl/con_guration/15-mt/sec-data-acl-15-mt-book/sec-acl-ovgdl.html.
17) OpenFlow 1.5 Specification. https://opennetworking.org/wp-content/uploads/2014/10/openow-switch-v1.5.1.pdf.
18) UNIVERSITY OF ABERDEEN CRYPTOGRAPHIC POLICY. https://www.abdn.ac.uk/sta_net/documents/policy-zone-information-policies/ Cryptographic % 20Policy .pdf.
19) Feder, M.; Merhav, N.; Gutman, M. Universal prediction of individual sequences. Information Theory, IEEE Transactions on 1992, 38, 1258–1270.
20) Neyman, J.; Pearson, E.S. On the problem of the most efficient tests of statistical hypotheses; Springer Series “Breakthroughs in Statistics", 1992.
image5.png
H
D

A il
i

Root
, 1
6 10 4 n
) u
) (M‘) (a2 12 b 2 012 bl 613 D)
1
el Bl eh md b ed el ed sl el el B b el @

image6.png
Training Data Processing L278 Universal Statistical Model
N s Prediction -
Sequences Quantization - Q{8 Wiz
55(515a050) Algorithm
Centroids (e
Sequence Binary
Testing Data Processing: Prabability Classification —
mu?"fi | Quantization - Q(T,) [?] Assignment (SPA) Decision Making
o T = PT| M) BT)=T,

image7.png
Firewalls

Middleboxes

Legacy Switch Legacy Switch

image8.png
/ \ Edge Router
| Inlerny _&rimmus

Middleboxes

image9.png
Firewalls

Middleboxes

image10.png
Netw
Administrator Network
Policy

Document

Network

Policy Witers oy Quaity
Report

Entity Extraction

Module

Collected
Policies

Annotated
policies

Extracted
Information

v

Policy Analyzing

Module

Procedure

image11.emf

image12.emf

image13.png
Error distribution for normal data

false positivd

image14.png
Error distribution for fake data

£
B

Probebilty.

image15.png
True Postive

0|

08

07|

0|

05

04

03|

X:=,Pﬂu=:pnugmg i

Detecation

o)A

0" 01 02 03 04 05 06 07 08 05 1
False Positive

image16.png
Root

Test for “aba”:
P(xw1="aba” | xi="ab"”)=2/3
P(xi+1=“aba”) =2/5

image17.png
Root.

Test for “abbb”:
P(xt+1= “abbb”) = Prot_found x

image1.emf

image2.png
toxt

(b) Prediction

feature

> extractor

toxt

machine
learning
algorithm

—>[(I—

features

classifier
—>[IIITT—> “foge

features

'

T

[S—

image3.png
Very intuitive platform, 1l definitely recommend it
The chat support s excellent, really fast in their replies

and very helpful.

Usabiity | Positive Customer Support

image4.png
Software Defined Networking (SDN)

1 { Applications 4 t

Control Plane [SDN Controller

SDN Datapath

Data Plane [Switches I

Pool of Application Servers

