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1 Scientific Background

The advent of Large Language Models (LLMs) has dramatically transformed the landscape of natu-
ral language processing (NLP), providing unprecedented abilities in understanding, generating, and
evaluating human-like text [40, 4, 25]. These models are now increasingly being employed not just
as tools for text generation but also as evaluators of models (a.k.a., judges) or annotators of data
in a variety of NLP tasks [10, 9]. This new utilization aims to leverage the special advantages of
AI models to improve data annotation processes (the process of giving labels to data instances) and
model evaluation, which are crucial for training and refining machine learning models.

Given the increasing use of LLMs in annotation and evaluation tasks, it is essential to rigorously
and thoroughly assess their performance in these roles. This research proposes a novel methodology
for evaluating LLMs as annotators, complemented by statistical tests that measure how closely LLM
outputs align with human annotations. Our goal is to determine to what extent LLMs can reliably
replace human annotators in various tasks, whether human annotators are not expected to be experts
or in tasks where nuanced understanding and expert judgment are crucial.

In this research, we will introduce a novel methodology for calculating the quality score of an
LLM as an annotator. Our approach is based on the hypothesis that an LLM should not significantly
alter the distribution of annotations compared to the extent to which a human annotator changes a
given distribution of annotations. Rather than measuring the agreement between LLM and an average
human label that is being calculated from a collection of human annotations, we evaluate the impact
of replacing each human annotator with an LLM. This provides a more reliable measure of the LLM’s
performance, as it mimics how the LLM would function as a substitute for a human annotator.

For this research, we assume that the evaluation process of a judge is analogous to that of an
annotator, even though the action of annotation typically involves producing a correct output for a
data instance, and a judgment action involves assigning scores or comparing given outputs, which is
a less laborious task.

Figure 1 illustrates an example comparison between a distribution of labels from a partial set
of human annotators (orange bars), an LLM (blue bars), and an extracted human annotator (green
bars) across three categories. Each subplot represents a different human annotator being extracted,
allowing us to observe how closely the LLM’s annotations align with the collective distribution of
human annotation compared to the extracted human annotator’s annotations. The extracted human
annotators (green bars) sometimes have distributions that differ more drastically from the remaining
human annotators compared to the LLM. In such cases, the LLM might be performing as well as
or better than the individual human annotator in representing the consensus. For example, when
Annotator 2 is extracted, the LLM’s distribution is closer to the rest of the annotators than Annotator
2’s distribution.

When an LLM can effectively act as an annotator, we expect that substituting a human annotator
with an LLM will lead to only minor differences in the labeling distributions. For example, we
anticipate that the level of disagreement between Annotator 3 and the partial set of annotators {1, 2, 4}
will closely resemble the level of disagreement between the LLM and the partial set of annotators
{1, 2, 4}. In the scenario depicted in Figure 1, we will perform the following comparisons (where ∆

denotes some measure of disagreement):

1. ∆(LLM, {1, 2, 3}) versus ∆(4, {1, 2, 3})

2. ∆(LLM, {1, 2, 4}) versus ∆(3, {1, 2, 4})
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Figure 1: An example comparison of label distributions across three categories for four different
annotators. Orange bars show the distribution of the remaining three human annotators, blue bars
represent the LLM’s annotation distribution, and green bars show the distribution from an extracted
human annotator. Each subplot highlights a different human annotator, illustrating how closely the
LLM aligns with the human consensus.

3. ∆(LLM, {1, 3, 4}) versus ∆(2, {1, 3, 4})

4. ∆(LLM, {2, 3, 4}) versus ∆(1, {2, 3, 4})

These comparisons allow us to quantify the discrepancy in disagreements and derive a score reflecting
the quality of the LLM as an annotator. If a significant difference is observed, then using the LLM as
an annotator or a judge may not be advisable, as its annotations do not align with ”good” annotations
(under the assumption that human annotations are generally desirable and of high quality).

1.1 Annotation Paradigms in NLP

Different annotation paradigms have been developed in NLP to address the challenges of data labeling,
particularly in tasks that require subjective judgments or involve complex linguistic phenomena. These
paradigms vary in their approaches to quality control, scalability, and the degree of human involvement.
An important aspect is the method used to aggregate annotations from multiple annotators, which
can significantly impact the final quality of the annotations.

Traditional Expert Annotation involves a small group of highly trained annotators who metic-
ulously label data according to predefined guidelines [2, 20]. This approach is typically used in tasks
that require deep linguistic knowledge, such as syntactic parsing or semantic role labeling. The pri-
mary advantage of expert annotation is the high quality and consistency of the labels, as experts
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are more likely to understand the nuances of the task and apply the guidelines accurately. However,
this paradigm is costly and time-consuming, limiting its scalability. Moreover, even experts are not
immune to biases and subjective interpretations, which can introduce variability into the annotations.

Crowdsourcing has emerged as a popular alternative to traditional expert annotation, particularly
for tasks that require large volumes of labeled data [34, 6, 29]. In this paradigm, annotations are
collected from a large pool of non-expert annotators, often through platforms like Amazon Mechani-
cal Turk (https://www.mturk.com/) or Prolific (https://www.prolific.com/). Crowdsourcing offers
advantages in terms of speed and cost, enabling the rapid collection of diverse annotations. However,
the quality of the annotations can vary significantly, as non-experts may misinterpret the task or
lack the necessary background knowledge. To address these challenges, various methods are used to
aggregate annotations from multiple annotators:

• Majority Vote: The most straightforward method, majority voting, involves selecting the label
that the majority of annotators agree upon. This method is simple and effective for tasks with
clear-cut answers, but it may not capture the nuances of more subjective tasks.

• Average: For tasks where annotations are numerical or ordinal (such as rating scales), the aver-
age of the annotators’ scores can be used to obtain a vox populi label (wisdom of the crowd). This
helps smoothing out extreme values and providing a balanced view of the collective judgment.

• Weighted Average: In some cases, annotators are assigned different weights based on their
expertise, reliability, or consistency, giving more influence to higher-quality annotators.

• Complete Agreement: This method requires that all annotators agree on a label for it to
be accepted. While this ensures high confidence in the label, it can also lead to a significant
reduction in the amount of usable data, especially in tasks where disagreement is common.

Collaborative Annotation is a paradigm in which multiple human annotators work together, ei-
ther simultaneously or sequentially, to label a dataset. Collaborative annotation can improve the
reliability of annotations by incorporating diverse perspectives and reducing individual biases. Aggre-
gation methods in collaborative annotation often include:

• Consensus Through Discussion: Annotators discuss and debate difficult cases to reach a
final consensus label, ensuring that all perspectives are considered.

• Sequential Refinement: Annotations are refined over multiple rounds, with each annotator
reviewing and adjusting previous labels. The final label is determined by the last annotator
in the sequence or through a weighted voting system that considers the changes made by each
annotator.

Comparative Annotation is a method in which annotators are not asked to label an instance
directly but are instead asked to compare a set of different possible labels and decide which one is
better or more appropriate for a given instance. This paradigm is particularly useful in tasks where
choosing a single label might be challenging due to the subjective nature of the content or the task
complexity (tasks such as summarization). In comparative annotation, the final label is determined
based on the total rank of the given labels by the annotators. This approach can reduce the cognitive
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load on annotators, as comparing options is often easier than generating a label. However, this
paradigm requires the generation of possible labels in advance.

Machine-Assisted Annotation represents a hybrid approach, where initial labels are generated
by a machine learning model and then reviewed or refined by human annotators [33]. This paradigm
leverages the strengths of both machines and humans: the efficiency and consistency of automated la-
beling and the nuanced judgment of human annotators. Machine-assisted annotation can significantly
reduce the time and effort required for data labeling, particularly in tasks where the model can achieve
high accuracy. However, it also presents challenges, such as the potential for humans to over-rely on
the machine-generated labels, leading to confirmation bias. Ensuring that humans critically review
the labels rather than passively accept them is crucial to maintaining annotation quality. Aggregation
methods in machine-assisted annotation often involve:

• Model-Annotator Agreement: Labels are accepted if both the model and the annotator
agree. Discrepancies may be flagged for further review.

• Human-in-the-Loop Adjustment: In cases where the model’s suggestions are off-target,
human annotators can adjust the labels, and these adjustments can be used to further train and
refine the label-generating model, creating a feedback loop that improves performance over time.

Interactive Annotation involves a dynamic interaction between the annotator and the automatic
annotation system, where the system actively learns from the annotator’s inputs and adapts its sugges-
tions accordingly [31, 35]. This paradigm is particularly useful in tasks that are complex or ambiguous,
as it allows the system to iteratively refine its understanding based on real-time feedback. For exam-
ple, in active learning setups [38, 23], the system might query the annotator for the most uncertain
instances, thereby improving its performance on difficult cases. A key distinction between this ap-
proach and the earlier machine-assisted methodology is that in the former, the human annotator sets
the final labels, whereas in this scenario, the model establishes the labels with iterative improvements
from human feedback.

The choice of annotation paradigm and aggregation method depends on the specific requirements
of the NLP task, including the need for accuracy, the desired level of agreement between annotators,
the size of the data, and the available resources. Each method offers unique advantages and challenges,
and often, a combination of approaches is used to balance quality with efficiency. This research aims
to explore and evaluate a new annotation paradigm that emerged with the advent of LLMs, which is
LLM as a judge.

1.2 LLMs for Data Labeling

LLMs, such as GPT-4o by OpenAI [25], Claude 3.5 Sonnet by Anthropic (https://www.anthropic.com),
Llama 3 by Meta [39], and others, are built upon deep learning models, primarily leveraging Trans-
former architectures [40] that have demonstrated exceptional proficiency in capturing the nuances
of human language. Trained on vast corpora encompassing diverse textual data, these models can
perform a myriad of tasks, including but not limited to text generation, translation, summarization,
and question-answering [4].

In the context of data annotation, LLMs can be prompted to generate labels for given data instances
or to select the most appropriate label from a set of options. For example, as demonstrated by
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Ravid and Dror [27], an LLM was used to annotate data on public opinions on the justification
of punishments expressed on Twitter regarding four homicide cases. The LLM was provided with
definitions of punishment theories (retribution, utilitarianism, expressiveness, and restoration) and
was asked to annotate tweets with the most appropriate approach expressed in that tweet. This
annotation approach differs from the traditional human annotation procedure, where individuals read
and manually label each instance following detailed annotation guidelines, or from machine-augmented
annotation approaches where models are trained for a specific task of annotation. In Ravid and Dror
[27], the LLM’s annotations were validated for accuracy by expert graduate law students.

LLMs offer numerous advantages when they are utilized as annotators:

1. Scalability and Speed: Traditional annotation processes, especially for large-scale datasets,
require substantial human resources and time. Depending on the complexity of the task, anno-
tation can be a time-consuming and labor-intensive endeavor. LLMs, on the other hand, can
process and annotate vast amounts of data in a fraction of the time.

2. Cost Efficiency: LLMs offer a significant cost reduction compared to human annotators. While
human annotation requires continuous labor and coordination, LLMs only require computational
resources, which are increasingly cost-effective as cloud computing and AI infrastructure become
more accessible. This makes LLMs particularly useful for large-scale projects where the budget
for human annotators may be prohibitive.

3. Consistency Unlike humans, whose judgments may vary due to fatigue, bias, or differing inter-
pretations of guidelines, LLMs provide consistent annotations, adhering strictly to their training
and the prompts provided.

Despite their advantages, the use of LLMs as annotators is not without challenges:

1. Bias and Fairness: LLMs inherit biases present in their training data. These biases can
manifest in every text the LLM generates, including in annotations. Studies have highlighted
instances where LLMs exhibit gender, racial, or cultural biases [43, 32, 28].

2. Interpretability: Understanding the rationale behind an LLM’s annotation can be challenging.
Unlike human annotators, who can explain their reasoning, LLMs operate as black boxes, making
it difficult to trace the source of a particular annotation decision, and even if the LLM is prompted
to explain its decisions, it is not clear whether this explanation is the true reason for generating
a certain label [30, 5].

3. Accuracy: While LLMs excel in many tasks, their accuracy in complex or nuanced annota-
tion tasks may not match that of human experts, especially in domains requiring specialized
knowledge [27].

The utilization of LLMs as annotators in NLP signifies a major stride towards automating and scal-
ing the data labeling process. While offering notable advantages in speed, consistency, and scalability,
challenges related to bias, interpretability, and accuracy persist. A balanced approach, integrating
LLM capabilities with human expertise and ethical considerations, is essential to harness the full
potential of this emerging trend, yet it should be accompanied by a methodology for evaluating the
abilities of LLMs in these roles.
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1.3 Evaluation of LLM as A Judge

Evaluating the potential of LLMs as reliable judges or annotators, replacing or completing human
effort, has embarked in recent studies that followed the proposal and demonstration of LLMs being
used as judges [10, 44]. Chiang and Lee [9] investigated the feasibility of LLMs as alternatives to
human evaluations. Their work demonstrated that LLMs could reliably substitute humans in certain
evaluative tasks, albeit with some limitations, particularly in complex, subjective contexts.

In a related vein, Dong et al. [15] explored the concept of personalized LLM judges. Their research
suggested that LLMs could be fine-tuned to reflect individual preferences or judgments, offering a
personalized evaluation framework that could enhance user-specific tasks. Building on this, Verga
et al. [41] proposed an approach of using a panel of diverse LLM models to evaluate outputs, shifting
the paradigm from a single authoritative judge to a jury of models.

The question of bias in LLM evaluations has been a prominent concern in recent literature. Jung
et al. [22] focused on ensuring provable guarantees for human agreement when using LLMs as judges.
Their work introduced mechanisms to align LLM outputs with human consensus, aiming to mitigate
judgment discrepancies due to model biases. Similarly, Chen et al. [8] conducted an analysis on
judgment biases in LLMs, comparing human and LLM decision-making processes. They emphasized
the need for bias-mitigation strategies to improve fairness and reliability in automated judgments.

The intersection of LLMs and human-centered design was explored by Pan et al. [26]. They
provided recommendations for designing LLMs as judges in a way that enhances user trust and inter-
pretability, focusing on the need for transparency in decision-making processes.

Chen et al. [7] extended the evaluation of LLMs into multimodal tasks, assessing how LLMs
perform as judges when handling both text and visual data. Finally, Thakur et al. [37] investigated the
vulnerabilities in LLM judgments, particularly focusing on alignment issues between LLM-generated
outputs and expected human decisions. Their study highlights the risks of over-reliance on LLMs as
judges, especially in sensitive or high-stakes tasks.

In all of these studies, these researchers aim to establish a consensus-based benchmark, they assume
that the aggregated human judgment is the correct label and compare the LLM generated label to
that one. In this research, we claim that this assumption is flawed because it ignores the nuances and
potential biases in individual human judgments, which can lead to an inaccurate assessment of the
true quality or expertise of the LLM. In this study, we devise an alternative approach for comparing
human annotations with LLM annotations that evaluates the LLM’s capability to replace each human
annotator separately, and then combine these assessments to draw a conclusion about the LLM’s
overall ability to function as a judge or annotator.

2 Research Objectives and Expected Significance

The overarching goal of this research is to develop a valid and robust evaluation framework that
quantifies the capability of LLMs to serve as annotators or judges. The aim is to determine whether
LLMs can reliably replace human annotators by preserving the distribution of annotations in complex
datasets and tasks. We will focus on three main research objectives:

RO1 Develop a Protocol for Evaluating the Distribution of Annotations When Replac-
ing Human Annotators with LLMs: For this objective, we will design and implement a
systematic protocol for comparing the distribution of annotations produced by LLMs with those
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generated by human annotators. The protocol will focus on understanding how the inclusion
of an LLM alters the distribution of labels in various tasks. Rather than relying solely on tra-
ditional measures of agreement (e.g., accuracy or inter-annotator agreement), this protocol will
examine how well LLMs maintain the overall structure and balance of the label distribution
when substituting human annotators. We aim to ensure that LLMs not only match human
judgments but also reflect the diversity and complexity inherent in human annotation processes.

RO2 Implement and Develop Statistical Tests to Compare LLM Annotations to Human
Annotators Across Various NLP Tasks: This objective involves the development and val-
idation of robust statistical methods to measure the alignment between LLM annotations and
human annotations. We will design tests that go beyond simple accuracy or majority voting ap-
proaches, leveraging advanced metrics to capture more nuanced comparisons between outputs.
These tests will account for both individual instance-level agreement and aggregate distribution-
level agreement, allowing us to quantify how closely LLMs emulate human decision-making.

RO3 Rank LLMs and Human Annotators: We will create a ranking system to assess both LLMs
and human annotators based on how well their annotations align with the collective judgments
of other human annotators. This ranking system will provide a more granular understanding of
LLM performance, enabling us to determine whether LLMs can surpass human-level performance
in certain tasks and will constitute a benchmark for choosing an LLM for these applications.

2.1 Expected Significance

This research has the potential to fundamentally transform the evaluation of NLP models. Intro-
ducing innovative evaluation frameworks of LLMs in the roles of judges and annotators will provide
more accurate assessments of labeled datasets, annotator quality, and model performance, leading to
NLP models that better align with human reasoning and judgment. The research also addresses a
critical gap in current industry practices, where many companies release LLMs without standardized
evaluation procedures. In some cases, companies bypass detailed evaluation by opting for informal
releases or preprints on platforms like arXiv or blogs. This lack of standardization poses significant
risks, as it can lead to the deployment of AI products that have not been thoroughly vetted for safety,
fairness, or generalizability.

A key innovation of this work is the development of a standardized protocol for dataset collection
and model evaluation, ensuring that AI products are reliable, safe, and ethically sound. This research
goes beyond determining which model is state-of-the-art; it seeks to verify that models operate safely
and without bias, exceeding expectations in positive ways rather than introducing harmful outcomes.
By setting higher standards for evaluation, this research will contribute to the creation of better
and safer AI products that align with human values with greater fidelity and fairness. The insights
gained will also clarify the role of LLMs as reliable substitute or complementary to human annotators,
advancing the field of NLP in both technical and ethical dimensions.

3 Detailed Description of the Proposed Research

We aim to rigorously evaluate the effectiveness of LLMs as annotators, i.e., labeling data instances,
and judges, i.e., evaluating outputs of models, by comparing their performance to that of human
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annotators and judges. We will focus on quantifying how closely LLMs align with human annotators
and whether they can replace or complement humans in NLP tasks.

3.1 Methodology

Our approach compares the label distribution generated by human annotators with the distribution
produced when an LLM replaces a human annotator. Instead of directly substituting a human anno-
tator with an LLM, we evaluate the LLM’s output against the collective distribution of the remaining
human annotators. We evaluate the LLM’s alignment with this partial set of human annotators and
compare it to the alignment of the excluded human annotator with the same group. Both LLM and
human annotators are ranked based on these alignment scores, allowing us to determine whether the
LLM matches or exceeds human performance. We argue that a good LLM judge can effectively emu-
late the actions and decisions of a human annotator, thereby making it a suitable replacement in the
annotation process.

Notations and Definitions For a dataset of n instances {x1, . . . , xn}, we denote the annotations
of m human annotators as hj(xi), where j = 1, . . . ,m is the index of the human annotator and
i = 1, . . . , n is the index of the data instance. The annotations of the LLM will be denoted as
f(xi). In addition, we denote by [−j] the set of indices from 1 to m without the jth index, i.e.,
[−j] = {1, . . . , j − 1, j + 1, . . . ,m}. The set of indices of the instances annotated by the human
annotator j is denoted by Ij . Similarly, Hi is the set of indices of human annotators that annotated
instance xi. For example, if we have 3 instances in our data and 4 human annotators, and each human
annotator annotated two instances, then I2 = {2, 3} means that the second annotator annotated
instances 2 and 3, and H1 = {1, 3, 4} means that the first instance was annotated by the first, third,
and fourth annotators.

To calculate the quality score of LLM as a judge, we start by examining the removal of each human
annotator, j, in turn, and compute a score that measures the alignment between the annotations of
the [−j] human annotators and the annotation of the LLM for instance xi. We use S(f, xi, j) to denote
the alignment scoring metric between the LLM annotation, f(xi), and the annotations of the human
annotators of h(xi), excluding annotator j. For example, S could be RMSE (root mean squared error)
in regression tasks (continuous numerical labels) or ACC (accuracy) in classification tasks (categorical
or rank labels). In generation tasks (e.g., machine translation), S can be computed using a relevant
evaluation metric that typically measures the similarity between the LLM-generated output and the
human-generated output, such as BERTScore [42]. In this case, we denote the evaluation metric by
sim and S by SIM. For convenience, higher values of S indicate a better alignment between an LLM
and the human annotator; thus, we use negative RMSE. Below, we formally define the mentioned
variants of S:

−RMSE(f, xi, j) = −

√√√√ 1

|Hi| − 1

∑
k∈Hi[−j]

(f(xi)− hk(xi))2

ACC(f, xi, j) =
1

|Hi| − 1

∑
k∈Hi[−j]

1f(xi)=hk(xi)

SIM(f, xi, j) =
1

|Hi| − 1

∑
k∈Hi[−j]

sim(f(xi), hk(xi))
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Note that −RMSE(hj , xi, j), ACC(hj , xi, j) and SIM(hj , xi, j) represent score differences between anno-
tator j and all the other annotators. Consequently, we are interested in comparing S(f, xi, j) to
S(hj , xi, j).

After calculating the similarity score per instance, we want to aggregate the scores over the entire
dataset. In this research, we plan to focus on two aggregation methods defined as follows:

Average Score We can calculate the average score over all examples, i.e.,

µfj = S(f, j) :=
1

|Ij |
∑
i∈Ij

S(f, xi, j) µhj
= S(hj , j) :=

1

|Ij |
∑
i∈Ij

S(hj , xi, j)

The average is the most common method for estimating the mean value of a parameter. It is an
unbiased estimator for the mean and, as such, does not give any special meaning or weight to any of
the test instances. It is suitable for cases where we do not expect an imbalance of the labels given to
the test instances by the annotators.

Statistical Test for Average For each human annotator, j, we can perform a one-sided t-test to
compare the average performance of the human annotator j and the LLM over the entire dataset [17].
I.e., we would like to test the following hypothesis testing problem1:

H0j : µfj ≤ µhj
versus H1j : µfj > µhj

Notice that in our case, we want to prove that the LLM judge does not diverge much from
the decisions of all human annotators; therefore, we aim to observe a low p-value in every test to
prove that the similarity between the LLM and the set of [−j] human annotators is greater than the
similarity between the jth human annotator and the rest of the human annotators. The output of
these comparisons will be m p-values (one for each human annotator) which we will use in the next
step to calculate the final quality score and determine whether the LLM is comparable or even superior
to human judges.

Score Distribution A more general way to aggregate the scores is to take the entire empirical score
distribution defined as

P̂fj (t) =
1

|Ij |
∑
i∈Ij

1S(f,xi,j)≤t P̂hj
(t) =

1

|Ij |
∑
i∈Ij

1S(hj ,xi,j)≤t

Considering the entire score distribution rather than just the average enables us to account for
variance, skewness, and other measures of shape and dispersion, highlighting the robustness of LLMs
as annotators and not just the average tendency.

Statistical Test for Distribution To compare score distributions, we propose using the statistical
test proposed by Dror et al. [18] to test the hypothesis that there is a relation of almost stochastic
dominance (ASD) between the two score distributions. As in the case of the average score, we wish to
prove that the LLM score distribution almost stochastically dominates the score distribution generated

1A t-test is appropriate only if the number of test instances is large enough to match the normality assumption, i.e.,
n > 30.
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by the jth human annotator to prove that the LLM agrees more with the rest of the human annotators.
The hypothesis testing problem that we examine for each human annotator j is2:

H0j : P̂fj ⪯ P̂hj
versus H1j : P̂fj ≻ P̂hj

Final Quality Score The final step in calculating the quality score of the LLM as a judge is to
measure how many human judges it had “won” in the hypothesis testing problems, i.e., how many
null hypotheses we were able to reject. It is problematic to simply count the number of p-values for
which we were able to reject the null hypothesis (p−val < 0.05), since there is an accumulative type-I
error when performing multiple hypothesis testing, especially when the hypotheses are dependent.

In this study, we recommend using a method that controls the false discovery rate (FDR), which
is the expected proportion of false positives (incorrect rejections of null hypotheses) among all the
hypotheses that were rejected in the multiple hypothesis testing scenario. Specifically, FDR is used
to control the proportion of false discoveries among the significant results to balance the trade-off
between identifying true effects and limiting incorrect conclusions.

In our case, we recommend the Benjamini-Yekutieli (BY) procedure [3] to control the FDR be-
cause our null hypotheses are dependent (we measure agreement on the same dataset using partially
overlapping sets of annotators). The BY procedure is designed to handle complex dependency struc-
tures between hypotheses and adjusts the significance thresholds accordingly. By incorporating these
adjustments, the BY procedure provides a more accurate control over the FDR, ensuring that our
evaluation of the LLM’s performance as a judge is not unduly influenced by the interdependence of
hypotheses. This approach allows for a more reliable assessment of how many human judges can
be replaced by the LLM, effectively mitigating the risk of overestimating its performance due to the
accumulated type-I error.

The final quality score that we propose is the percentage of null hypotheses that were
rejected, based on the findings produced by the BY procedure mentioned above. This score will
reflect the proportion of cases for which the LLM was as aligned with human annotators or even
better aligned with human annotators than actual human annotators. Essentially, it indicates how
effectively the LLM aligns with human judgment standards, showcasing its capability to replicate or
exceed human-level decision-making accuracy in the context evaluated.

3.2 Preliminary Results

As an example, we annotated the dataset of CEBaB [1] using six large language models (LLMs),
namely Gemini-Flesh, Gemini-Pro [36], Llama-31 [39], GPT-4o, GPT-4o-Mini [25], and Mistral-v03
[21], and compared their performance to examine if they can replace the ten human annotators that
originally annotated the dataset. The CEBaB dataset contains 711 restaurant reviews and star ranking
(1-5 stars). For our calculations, we used the negative RMSE measure to calculate the difference in
star ratings between the human annotations and the annotation given by the LLM. To give the star
rank, the LLM was prompted with the following prompt: “You will be provided with a restaurant
review. Your task is to analyze the review and determine the sentiment for the following four aspects:
food, service, ambiance, and noise, as well as the number of stars (1-5). The sentiment for each aspect
can only be: ’Positive’, ’Negative’, or ’unknown’. The number of stars must be 1, 2, 3, 4, or 5.”

2For clarity, the statistical test is presented in terms of stochastic dominance rather than ASD. However, the actual
statistical test coded for implementation is ASD. Further information is available in Dror et al. [18].
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LLM p-values Win Rate Wins according to BY

Gemini-Flesh [0.99, 0.61, 0.77, 0.00, 0.64, 1.09e-37,
0.26, 0.99, 0.96, 0.34] 0.1 [’w40’]

Gemini-Pro [0.67, 0.06, 0.42, 0.00, 0.988, 2.54e-37,
0.01, 0.89, 0.55, 0.01] 0.2 [’w162’, ’w40’]

GPT-4o [0.53, 0.00, 0.04, 1.67e-05, 0.92, 1.27e-38,
1.77e-05, 0.09, 0.14, 0.00] 0.5 [’w168’, ’w197’, ’w198’, ’w162’, ’w40’]

Llama-31 [0.74, 0.21, 0.25, 0.00, 0.95, 1.58e-35,
0.25, 0.75, 0.84, 0.29] 0.2 [’w162’, ’w40’]

GPT-4o-Mini [0.23, 0.00, 0.02, 8.54e-05, 0.93, 4.86e-40,
7.40e-05, 0.40, 0.25, 0.02] 0.4 [’w197’, ’w162’, ’w198’, ’w40’]

Mistral-v03 [0.96, 0.61, 0.80, 0.01, 0.80, 3.56e-38,
0.04, 0.96, 0.99, 0.53] 0.1 [’w40’]

Table 1: Results of LLM as a Judge on CEBaB Dataset.

Table 1 shows the results of our experiment with CEBaB. It can be observed that the winning
rates of the LLMs are relatively low, leading to the conclusion that most of them are not suitable to
function as annotators instead of humans. GPT-4o, on the other hand, was able to win half of the
human annotators, from which we can conclude that it may be a good substitution for this task.

Figure 2 presents the distribution of RMSE scores and the different LLMs. The figure presents
a mixed result where, in some cases, the LLMs demonstrate a smaller divergence from the human
annotators, and in some cases, the human annotators get a higher score, i.e., agree less with the
annotations of the rest. This plot is consistent with the outcome we calculated using the p-values and
the win rates shown in Table 1.

Figure 2: A comparison of the RMSE scores of the LLMs and the RMSE scores of human annotators.

3.2.1 Expert Annotations

In developing the aforementioned quality score, a key consideration was to ensure that the opinion of
every human annotator is valued, even if they disagree with each other. This means that in order to get
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a high quality score, the LLM should practically sample annotations from the human label distribution.
Our approach assesses the likelihood that the annotations produced by the LLM originate from the
label distribution generated by human annotators.

However, when expert annotations are provided, the LLM should get a high quality score if it
specifically emulates that expert’s input because we have higher confidence that these labels are indeed
gold labels. An example scenario of when we should make an adjustment to the LLM quality score
is when an expert has annotated a subset of examples, and we need to annotate additional examples,
we face a decision: Should we use an LLM for these new annotations, or should we recruit a human
annotator (not an expert)? In such a scenario, the instance RMSE will be calculated only with regard
to the expert annotations and not with other labels. The corrections to the formulas and calculations
are as follows:

Single Instance Score

−RMSE(f, xi, exp) = −|f(xi)− hexp(xi))|

ACC(f, xi, exp) = 1f(xi)=hexp(xi)

Aggregation The methods for aggregating the scores across the entire datasets remain unchanged.
We have the option to either compute the average score across all examples or take the whole score
distribution into account when determining our quality score.

Quality Score of LLM as an Expert Given that we are dealing with just a single hypothesis
testing scenario, the final score will be defined as the p-value associated with that particular test,
or alternatively, the minimal-ϵ value calculated in the ASD statistical test. Using the p-value or
the minimal-ϵ value can effectively convey the statistical significance of our decision to use LLMs as
annotators instead of humans. Although in this case, a lower score is better. This approach ensures
that the quality score accurately reflects the expert’s standards.

While it may be challenging to definitively prove that an LLM is as proficient as a human expert,
the suggested approach allows for demonstrating that the LLM outperforms a non-expert human
annotator. To enhance the validity of conclusions, we propose including multiple human annotators in
the evaluation. By comparing the performance of human annotators versus experts and LLMs versus
experts, we can increase the number of hypothesis tests, thereby providing a more comprehensive
assessment. Additionally, using multiple expert annotators in this methodology would offer the optimal
validation, ensuring that the LLM is not just comparable to a single expert but can generalize its
performance across different expert standards.

A Note on a Single Annotator While it is true that the calculations for the expert scenario
also apply when there is only one annotator, not an expert, we advise against using these formulas
in such cases. This is because checking if the LLM can overfit a single annotator who might not be
a good annotator is not ideal. Our recommendation in cases where we only have a single human
annotator is to recruit more human annotators to label a small portion of the dataset. This approach
allows the LLM to be evaluated based on different perspectives on what the gold label should be, and
the quality score will accurately reflect the LLMs’ capability to assign labels in a manner similar to
human annotators.
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3.3 Expected Results and Pitfalls

The outcomes from this research are expected to significantly enhance our understanding of the ca-
pabilities and limitations of LLMs when they are used as annotators or judges in NLP tasks. By
conducting the outlined experiments, we aim to achieve the following:

1. A Comparison of Evaluation Approaches: We will compare the average-based evaluation
method with the distribution-based approach to determine which is more statistically powerful.

2. A Demonstration of LLM Abilities: Through demonstration experiments with various
annotated datasets, we will assess how often the LLM performs better than the human annotator.
We anticipate that the LLM will outperform human annotators in a significant number of cases,
providing evidence of the potential of LLMs to serve as reliable annotators. Additionally, we
will quantify the percentage of human annotators that are ”defeated” by the LLM and assess
how closely this aligns with IAA (inter-annotator agreement) values and FDR values, offering
insights into the robustness of LLMs across different datasets.

3. LLM Performance Ranking: By comparing the FDR values of different LLMs, we will
establish a ranking system that accurately reflects the relative performance of these models in
annotator roles. This will be compared against traditional accuracy-based rankings, such as those
derived from majority vote comparisons. We expect to find that our rankings offer a more robust
and reliable measure of LLM performance. This will be validated by comparing our conclusions
to existing evaluations, such as those from Chatbot Arena [11] or similar benchmarks.

Despite the potential advantages of using LLMs as annotators and judges, several challenges and
risks could impact the success of this research:

1. Generalization Across Domains: LLMs are highly flexible and can perform well on a variety
of tasks, but their performance may vary depending on the specific domain of the annotation
task. There is a risk that the model may excel in certain types of annotation tasks (e.g., sentiment
analysis or summarization) but fail to generalize to more specialized or nuanced domains. This
potential limitation will be addressed by evaluating LLM performance across a diverse range of
tasks and domains, as well as through fine-tuning or retraining models for domain-specific use
cases when necessary.

2. Inconsistent Performance Across Models: Different LLMs may perform inconsistently
when compared to human annotators. Variability in performance across models such as GPT-4,
Gemini, or Llama could complicate the evaluation and ranking processes. To mitigate this, the
research will include multiple LLM models in the evaluation framework and account for differ-
ences in model architecture and training data. Performance metrics will be carefully designed
to accommodate model-specific characteristics.

3. Computational and Resource Constraints: Evaluating large-scale LLMs across multiple
datasets and tasks requires significant computational resources. There is a risk of running into
resource limitations, which could slow down or restrict the scope of experiments. This will
be mitigated by optimizing the computational pipeline and using efficient model evaluation
techniques, while ensuring access to adequate computing infrastructure.

Addressing these pitfalls requires a careful balance of methodological rigor, domain-specific consid-
erations, and computational efficiency to ensure the reliability and validity of the research outcomes.
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4 Resources

4.1 Data

We define a few guiding principles to follow when collecting, generating, and annotating data. In
our research, the guiding principles for data collection and annotation revolve around capturing the
diversity and subjectivity of human judgment in complex tasks. The datasets we select will showcase
a broad array of annotation formats, including binary labels, multi-class categories, Likert scales,
structured labels, and free-form generated text, to cover a wide spectrum of subjective and objective
data types. By exploring datasets with varying levels of difficulty and ambiguity, we aim to understand
how different tasks affect the distribution of human annotations.

A key aspect of our approach is ensuring that the datasets reflect the natural ambiguity in some
tasks. For example, translation tasks often involve multiple correct translations due to the lack of
direct word-for-word equivalence between languages or the introduction of grammatical genders when
translating from a genderless language. Similarly, in summarization tasks, the quality of an annotation
is often debated, as criteria for what makes a “good” summary can vary significantly across individuals.
In these ambiguous and subjective tasks, we actively seek datasets where the diversity in annotations
reflects the complexity of the task, making it possible to explore how personal interpretation and task
ambiguity contribute to varied outcomes. For comparison and control, we will also include datasets
for clearly objective tasks, such as named entity recognition or part-of-speech tagging, where there is
typically only one correct label per instance.

To ensure the robustness and validity of the research, all datasets will be annotated by multiple
human annotators. When working with existing datasets, we will prioritize those that include mul-
tiple annotations per data instance and clearly indicate the annotator ID, allowing us to trace how
individual annotators contribute to the diversity of labels and how consistent annotators are with
their own perspective. In cases where we must create our annotations, we will rely on crowdsourcing
platforms such as Amazon Mechanical Turk or Prolific to recruit annotators. Each data instance will
be annotated by several annotators, providing a rich pool of annotations that reflects a wide range of
viewpoints.

4.2 LLMs

In this research, we will utilize several state-of-the-art LLMs to evaluate their effectiveness as anno-
tators and judges. The choice of LLMs will be based on specific criteria designed to capture a broad
range of capabilities and performance across different domains and tasks. The selection of LLMs for
this research will be based on the following criteria:

1. Task Versatility: The chosen LLMs must demonstrate the ability to handle a wide variety of
tasks, including but not limited to text classification, summarization, translation, and sentiment
analysis. This ensures that the models are robust across different types of NLP tasks and
domains.

2. Performance in Multimodal Tasks: Since some of the datasets involve both text and other data
types (such as images), the LLMs must be capable of handling multimodal inputs. Models like
Gemini Pro, which support multimodal learning, will be especially important for tasks requiring
more than just text processing.
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3. Open-Source and Flexibility for Fine-Tuning: Open-source models like Llama 3 allow for flexi-
bility in terms of customization and fine-tuning, making them valuable for domain-specific tasks
where additional training may be required. Open-source models will also allow for greater trans-
parency and adaptability in the research process.

4. Computational Efficiency: While model performance is critical, it must be balanced with the
practical consideration of computational resources. We will prioritize models that are efficient
to run without sacrificing performance, ensuring that the research can be conducted within the
available computational limits.

4.3 Expertise and Relevant Work of PI

Dr. Rotem Dror has established herself as a leading researcher in the field of NLP with a particular
focus on evaluation methodologies, statistical analysis, and the replicability of research. Her extensive
research portfolio showcases a deep understanding of the complexities involved in evaluating NLP
models and systems.

Her contributions include significant advances in statistical methodologies for evaluating NLP
models, such as the development of robust testing frameworks that ensure reliable model evaluations
across datasets [16]. Her work has set new benchmarks in the field by addressing limitations in widely-
used models and introducing innovative solutions, notably in the comparison of deep neural models
and the evaluation of text generation models like summarization and translation [18, 14].

Dr. Dror’s research on evaluating NLP models has been groundbreaking, particularly her statistical
analysis of summarization and translation evaluation metrics, which has led to more accurate and
fair model comparisons [12, 13]. Additionally, she has contributed to understanding the robustness
of LLMs to prompt paraphrasing, which directly influences the current research direction aimed at
further uncovering the capabilities of these models [24].

Throughout her career, Dr. Dror has consistently pushed the boundaries of NLP evaluation,
ensuring that the methods she develops are statistically rigorous and practically applicable [17, 19].
Her work has had a lasting impact on the field, and her expertise in statistical evaluation, bias
assessment, and model robustness will be crucial to achieving the objectives of the proposed research.
Dr. Dror is dedicated to advancing NLP through meticulous research and by making all findings, code,
data, and results publicly available, fostering transparency and collaboration within the community.
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