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a After completing this unit you will have learned ...

about Bayes’ theorem and its applications.

the foundations of Bayesian inference.

how to build Bayesian networks.

the underlying principles of Markov Chain Monte Carlo (MCMC).
how to use MCMC in Bayesian probabilistic inference.
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1. STATISTICAL INFERENCE
Introduction/Casestudy

Statistical inference allows us to make predictions about a system we want to study.-hra™
_nufishetl, we assume that this system can be described by random variables that follow a
specific probability density function. For example, if we want to analyze the shopping
behavior of customers in a supermarket, we can, in general, assume that the demand fol-
lows a Poisson process and can be described using a negative binomial distribution. Once
we have estimated the parameters of this distribution, for example, by comparing the dis-
tribution to the observed data in a fit, we can then infer the most probable or the expected
demand for future sales.

In classical statistical inference we typically follow the frequentists’ school of thought
where we interpret the data as realizations of repeatable experiments./)

This implies that we assume that the data are random, or more precisely, the data are the

concrete realizations of the random variable (such as, e.g. “demand”). The parameter(s) of
the probability distribution that describes the random variable, however, are fixed, even if
we do not know their value. This means, in particular, that the parameters of the probabil-
ity distribution are not random variables.

In Bayesian inference, on the other hand, we take a different viewpoint: Here, we assume
that the data are fixed—they are what we observe and they do not necessarily have to
originate from repeatable experiments. In some cases, for example, if we consider the roll-
ing of dice, the experiment is—in principle—repeatable, if we are able to control the envi-
ronment in which we perform the experiment sufficiently well. In other cases, the data are
the result of single events. For example, today’s weather is only observable today—we nei-
ther have access to multiple other earths with the same configuration, nor can we go back
in time to observe how a hypothetical “today” might have unfolded. With the data fixed,
the parameters (6) that describe the system we want to study are now random variables.
Even before we look at the recorded data, we will, in most cases, know something about
the system under study. This knowledge is encoded in the prior f(f) and may come, for
example, from empirical studies performed earlier, expert knowledge, etc. Using Bayes’s
theorem as the core ingredient of Bayesian statistical inference, we want to determine the
posterior distribution f(6]z), that describes the probability distribution of the quantify of
interest, depending on the parameters 6, given the observation of the data (z). The prior
distribution f(#) and the posterior distribution f(6|x) can either be discrete or continu-
ous. The parameters 6 themselves will, in general, be continuous in any case.

Once we have calculated the posterior distribution, we can use this to make inferences
about the system under study. For example, we can calculate the expected value of the
quantity we are interested in. Coming back to the example of the supermarket, we use all
the recorded sales data we have collected in the past, choose a suitable prior to calculate
the posterior distribution that describes the probability density function for the future
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sales in the supermarket. Using this distribution, we can, for example, calculate the
expected value (or any other quantile) to estimate how many items need to be ordered to
be able to fulfill the future demand.

1.1 Bayesian Inference

In most cases, we do not know that some event A will happen with certainty.

Instead, we use the probability P(A) with 0 < P(A) < 1 to express the notion that the
event will occur with some probability where P(A) = 0 means that we are absolutely cer-
tain that the event will never occur and P(A) = 1 means that we are absolutely certain
that the event will occur.

If we have two events, A and B, then they can be mutually exglusive, i.e.,
P(AvV B) = P(A) + P(B), which means that the probability that event A or@ event B
occurs is given by the individual probabilities that each event occurs on its own. We can
also calculate the probability that both events happen at the same time (for independent
events): P(A A B) = P(A) - P(B).

It is common for “A” to be replaced by a comma, i.e., P(A A B) = P(A, B).
Quite often, it is difficult to directly determine the total probability of an event. In some
cases, it might be possible (or easier) to determine the probability that some event A

occurs at the same time as event B. If the events B; are mutually exclusive and cover all
possibilities, we can “partition” the event A:

P(A) = ZP(A, B)) (1.1)

The above equation is also known as the “total law of probabilities.”
The conditional probability P(A| B) (read: probability of A, given B) means that B has
already occurred and we know the values of any associated parameters. If A and B are

independent, then P(A|B) = P(A).
Using the conditional probability, we can express the probability that both event A and B
occuras P(A, B) = P(A| B)P(B), and the total law of probabilities becomes

P(A) = ZP(A, B;)P(B)) (1.2)

Note that P(A|B) #+ P(B|A). Instead, P(A|B)P(B) = P(B|A)P(A), which leads to
Bayes’ theorem (Bayes, 1763):
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P(B|A)P(A)

P(A|B) = 22

(1.3)

In many cases, P(B) is difficult to obtain, and we use the total law of probabilities to parti-
tion over the events A

P(B|4j)P(4))

i P(B[4;)P(4) (1.4)

P(4;|B) =

An important application of Bayes’ theorem is hypothesis testing, i.e., if we want to deter-
mine whether the data we observe can support a given hypothesis. In this case, we set
A = H (where H denotes the hypothesis we want to test) and B = D (where D repre-
sents our data). Bayes’ theorem then becomes

P(H| D) = Z2IPH

and the elements of the theorem have the following meanings:

« P(H)—Prior. This is what we know about the system before we look at any data.
« P(D)—Evidence. This is the distribution of the data, fixed for a given data-set. Hence, it
a acts as a normalization.

« P(D| H)—Likelihood. This is the conditional probability of observing the data given the
hypothesis, i.e., how likely is it to observe the data we have for a given hypothesis. This
probability is maximal if we choose the correct hypothesis.

« P(H|D)—Posterior. This is what we really want to know. Given the data we observe,
what is the (conditional) probability that the hypothesis we investigate is correct? Let’s
illustrate this with an example focused on medical diagnosis.

@Cf‘l EXAMPLE: MEDICAL TEST
Suppose a person is not in a risk group for contracting a specific disease. A test
exists for this disease and, if a person has the disease, the test will return a posi-
tive result with 99.9 percent probability.

The test will only be positive in 0.5 percent of cases, even if a patient does not
have the disease.

Suppose we consider a disease with very severe consequences and the test is
positive. Should the person worry?

As a first step, we translate the given probabilities into the language of statistics
using conditional probabilities. We use the following notation: + means the test
is positive, — means the test is negative, D means the patient (truly) has the dis-
ease; =D means the patient does not have the disease. Keeping in mind that all

[

probabilities need to be normalized to one, we obtain
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P(+|D) =0.999 P(—|D)=0.001
P(+]-D)=0.0 P(—|-D)=0.995

Using Bayes’ theorem, we can calculate the posterior we want to know, i.e., if
the test is positive, what is the probability that the patient has the disease?

P(+|D)P(D)
P(D| +) = P(+[D)P(D) + P(+[-D)P(-D)

If we examine this equation, we note the following: it is difficult to determine the
denominator P( + ) describing the probability that the test will be positive.
However, we can use the total law of probabilities to express this for the cases
P(D) and P(-D).

We now find that we are missing a crucial piece of information: the value of the
prior P(D) that describes the occurrence of the disease in the population of

interest. We have to get these details externally.

Knowing the accuracy of the test is not sufficient to determine whether or or not
the patient has the disease.

We stated initially that the patient does not belong to a risk group.

In our example, we may refer to a database that lists how many cases there are,
in a given population, among those not in a risk group. Suppose we find that the
probability is P(D) = 0.0001, i.e., the probability of contracting the disease is
very low if a patient does not belong to a risk group.

f we now put all numbers into Bayes’ theorem, we obtain P(D| +) = 0.02,

i.e., even if the test is positive, the probability that the person has the disease is
only 2 percent.

dosterior Distribution

We have considered the case where we can group events-into separate and discrete
classes (e.g., a test is positive or negative, or a patient h $pecific disease). However,
in most cases, we want to analyze a more complex system where we observe a continuum
of values. In order to make any predictions about a system, we need a model that depends
on one or more parameters 6. The “frequentist” approach to statistics assumes that while
we may not know the value of the parameter(s) 6 that describe the system we want to ana-
lyze, its value is fixed. In the Bayesian view however, we treat the parameter(s) 6 as a ran-
dom variable that follow a prior distribution f(0). We then observe the data with specific
values. If X is the variable describing the data and z is the observed value, we can write
thisas X = z, i.e., in the concrete realization, we observe the value z of the random varia-
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ble X. For simplicity, we continue the case of just one variable, even though the same
arguments hold for a vector of variables with corresponding observations:

W —
X = (X17X27X37 ) =T = (551,55271'2, ) a

As was true concerning the several event categories, we are interested in the posterior dis-

%
tribution f(6|x) (or, more generally, f(@ ?)) This means when we assume a specific

prior distribution f(6), the distribution describes the probability of observing a value 6 for
our model, conditional on the observation of the data .

Following Eqgn. (1.3), we can use Bayes’ theorem and express the posterior distribution for
a continuous parameter 6 as:

119\x)::i915¥ﬁa (1.5)

As before, the quantity f(z|60) = L(0) is the likelihood function that describes the condi-
tional probability of observing the data for a given choice of the parameter(s) 6. The func-
tion f(0) is the prior that includes all our knowledge about 6 before we analyze the data.
The evidence f(z) in the denominator is the normalization and describes the probability
of observing the data.

We have seen earlier for the case of discrete events that it is often easier to express the
evidence as a sum of events using the total law of probabilities and expanded the denomi-
nator accordingly in Egn. (1.4). In the case of the continuous parameter ¢, we can follow
the same approach. However, the sum is now replaced by an integral over 6. Therefore,
the posterior distribution is given by

£(612) = TGt (L6)

Here, we have used

f f(x0)f(0)do = f f(z,0)do = f(x) (1.7)

for the denominator. Hence, we can say that the posterior distribution is given by the mul-
tiplication of the likelihood with the prior distribution, followed by normalization (Held,
2008, p. 140).

1.1.2. The Role of the Prior

We have already seen in the example above that the prior P(A) for the discrete case, or
f(0) in the continuous case, plays a vital role in Bayesian inference. Recalling the example
of a medical diagnosis above, we saw that we can only answer the of question whether
the patient has the disease if we also know the prior: in this case, the prevalence of the
disease in the non-risk population.
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However, the question remains: generally speaking, from where can we obtain the prior?
In some cases, we may have external or domain knowledge about the system we want to
analyze. For example, when rolling dice, we may assume that that each die is fair. Hence,
the (prior) probability that each side faces up is 1/6. In other cases, we may have historic
data, census information or any other form of recorded statistics that, as in the medical
example, allows us to determine the prior probability.

We have, however, seen that we will need to evaluate integrals of the form likelihood
times prior both in the normalization of the posterior distribution (the evidence), as well
as when we use the posterior distribution for inference. If possible, we would like to take a
pragmatic approach and choose a prior distribution that makes the evaluation of these
integrals easier. We cannot influence the parametrization of the likelihood much because
this is defined by the system from which we obtain the data. We can, however, choose the
form the prior takes and choose, for example, a parametrization such that the posterior
calculated from the integral over the likelihood times the prior belongs to the same family
of distributions as the prior. This has the advantage that the posterior distribution can
expressed in a closed form and instead of using a numerical approximation, we can esti-
mate the parameters of this posterior distribution and work with the analytic expression.
We call these choices of priors conjugate priors.

@ CONJUGATE PRIOR

A class of priors is called a conjugate prior with respect to a given likelihood
function, if the a posteriori distribution is of the same family of probability distri-
butions as the prior.

The theory of conjugate priors was first developed in (Raiffa & Schlaifer, 1961). It is impor-
tant to keep in mind that, ultimately, choosing a conjugate prior is a convenience - if we
can describe our prior knowledge in terms of a conjugate prior, then we can make the fur-
ther handling of the Bayes’ formula easier. In other cases, however, it may not be possible
to make such a convenient choice.

The most important conjugate priors are given below (Held, 2008, p. 148):

Likelihood Conjugate prior Prior hyper-parameter
Binomial, Bernoulli Beta «, B

Negative Binomial Beta a, B

Poisson Gamma «, B

Exponential Gamma a, B

Normal (o2 known) Normal 11, 02

Normal (x known) Inverse Gamma a, B
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Depending on the problem at hand, a specific choice of prior may be helpful.

For example, we can interpret A/B tests as a sequence of Bernoulli trials where the results
fall in either category A We can then choose a Beta prior, where we can interpret the
hyper-parameters as o ~#~successes and § — 1 failures in the observed data. As a special
case, the choice of @ = 8 = 1 results in a flat or uniform beta distribution. As we add more
data, we can interpret that we start from a uniform prior where we do not assume any
knowledge about the outcome and then use a = 1 + number of successes and 5 =1 +
number of failures (or choice of A and B) to refine our prior.

This raises the question of whether it is generally advisable to start with a uniform prior.
Naively, this seems like an obvious choice: if we do not know anything a priori about the
parameters of our model, it seems conservative or cautious to use a uniform prior to indi-
cate that we do not know what their values should be.

Unfortunately, this is not the case. Many real-world datasets follow Benford’s law (New-
comb, 1881; Benford, 1938), which states that the first digit of a number follows a skewed
distribution given by Eqn. (1.8). This mean@t numbers start more frequently with a one
than a two, three or any other digit—and the same holds for the other digits. Hence, only
few numbers start with a nine. In other words, in nature the logarithms of the numbers is
uniformly distributed—not the numbers themselves.

P(d) =logo(1 + ) (1.8)

Instead, we want the prior we choose to contain as little information as possible. Apart
from Benford’s law, the uniform distribution is not ideal for this. Consider, for example, the
case that we start with a uniform distribution and then choose another set of parameters
or coordinates to re-parametrize the distribution. Since we only change the way we
express the parameters (but not what they represent), we expect that this has no conse-
quence on the prior. Let ¢ = h(#) be the transformation where the function h transforms

the original parameters 6 to a new parametrization ¢. If the function h is bijective, we have
a 1:1 correspondence between ¢ and 6. The distribution of ¢ is then given by Eqn. (1.9)
(Held, 2008, p. 151). However, unless the transformation 4 is linear, the resulting distribu-

tion f(¢) is not constant, even if we start with a uniform distribution for 6. Hence, a simple
change in the way we express the parametrization transforms the uniform distribution

into a different shape. This means that trying to use the uniform distribution to express
that we do not know much about the parameters is not helpful.

f(6) = f(h%@)‘d”ij‘”] (19)

Instead, we look for a non-informative prior such as the Jeffrey prior (Jeffreys, 1946), see
also (Liu & Abeyratne, 2019, App. 4) or (Gelman & Rubin, 1992, p. 52ff). This is defined as

£(8) < I(0) (1.10)
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where J(0) is the expected Fisher information of 6. The Fisher information measures the
amount of information about the parameters 6 and is given by the negative of the second
derivative of the log-likelihood function:

1(9) = — LLoelld) (1.11)

The first derivative of the log-likelihood function is also called the “score function” S():

_ dLogL(9)
S(0) == (1.12)
The Fisher information can then be written as
2
. d“LogL(0) ds(9)
100) = — S = - (1.13)
The expected Fisher information is then the expectation value of I(6), i.e.,
J(0) = E[1(0)] (1.14)

Under the assumption that we can change the order of differentiation and integration
(regularization assumption), we can show that (Held, 2008, p. 66):

E[S(0]) =0 (1.15)

Var[S(0)] = E[S(0)*] = J(0) (1.16)

Using the transformation rule in Eqn. (1.9), we can show that the Jeffrey prior has the
same form before and after the transformation:

[:é THE JEFFREY PRIOR IS INVARIANT UNDER BIJECTIVE
TRANSFORMATIONS
Show that the Jeffrey prior is invariant under bijective transformations.

We define the Jeffrey prior for the parameter 6 as f(&) o y/J(#)) according to

Eqgn. (1.10). Then, we use the rule for the transformation of probability distribu-
tionsin Eqn. (1.9):
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£(8) x f(n7(9)) d’fl;(@]

x £(6) dhd;(o)’ with  f(6) = f(h"'(9))
7(0) dhd;W with  f(6) o< y/T(6)

o EEl

=VJ(9)

Hence, if we express the prior f(#) according to Jeffrey’s rule and then transform
0 — ¢, the resulting prior using the transformed variable also follows Jeffrey’s
rule (Held, 2008, p. 152).

This allows us to construct a prior that does not depend on the parametrization chosen for
the distribution of the parameter(s) 6 that describes our model of the system we wish to
analyze.

1.1.3. Bayesian Prediction

Once we have determined the posterior distribution, we need to derive quantities that we
can use, for example, as a concrete prediction: The full posterior distribution includes all
knowledge we have of the system we want to study, including the expected volatility or
uncertainty. However, in many practical scenarios, we need a point estimate. In principle,
we can use any quantile of the distribution, however, the following point estimators are
most commonly used:

+ The expectation value is given by

E[f|z] = f 0f(0|x)do (1.17)
« The mode is the maximum of the a posteriori distribution
Mod(0|z) = argmaxyf(0|x) (1.18)

« The median is the quantile that cuts the posterior distribution in half, i.e., 50 percent of
the distribution are on the left of this quantile, 50 percent on the right:

4.5 00
f f@|x)dd =0.5 and f f@|x)dd =0.5 (1.19)

—00 4.5
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The best choice of the point estimator depends on the problem at hand.

As usual, the mode is quite sensitive to the exact shape of the estimated posterior distri-
bution, and small fluctuations may have a big impact. The expectation value may be influ-
enced by long tails of the a posteriori distribution, whereas the median is generally more
stable.

Additionally, we can construct credible intervals, i.e., regions that contain the variable 0|z
with probability 1 — «. These intervals are defined by an lower and an upper bound.

by,

fOlx)dd =1 — (1.20)
by

The easiest way to set the boundaries is to use the «/2 and 1 — «/2 quantiles of the pos-
terior distribution.

Note that the credible interval is similar to (but not the same as) the confidence interval
used in frequentist statistics. Remember that in frequentist statistics, the parameter(s) 6
are unknown and fixed, whereas in Bayesian inference, the parameter(s) 6 are random var-
iables. In the frequentist’s view we say that if we repeat an experiment many times, the
unknown parameter § will be contained in the confidence intervalin 100 - (1 — o)) % of the
cases. For example, a 95 percent confidence interval means that if we repeat the experi-
ment very often, the (fixed) parameter # would be in that interval in 95 percent of cases.
We cannot make a claim that the parameter 6 is contained within the confidence interval
with probability 1 — «a, because this is a Bayesian interpretation and not defined within
the frequentist’s interpretation.

In the Bayesian credible interval on-#fé-ethertand, we have access to the posterior distri-
bution directly and can hence assert that the parameter will be in the region bounded by
by and b, with 95 percent probability.

Note, however, that the Bayesian credible intervals contain additional information via the
prior distribution, whereas the confidence intervals are constructed from data alone.

1.2 Bayesian Networks

So far, we have encountered systems where we need maybe one or two pieces of informa-
tion to infer the probability of an event (e.g., if a patient contracts a disease despite not
belonging to a risk group and their test for that disease is positive). In many situations, we
need to take a large number of variables into account, meaning that the probability
depends on a set of variables P(X;, X,, ..., X,,). Even if each variable is binary and can be
expressed by zero or one (or true or false), we would need to store 2n — 1 elements. Apart
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from practical considerations of handling these values, it is also very difficult to calculate
such a joint probability that depends on many variables. To simplify this joint probability,
we look for ways to split it into smaller components that we can more easily treat.

In the case of two variables X; and X, we can express the joint probability P(X;, X,) as
P(X, X5) = P(X3| X;)P(X;). We can generalize this with regard to more variables and
obtain the chain rule for probability:

P(X}, Xy, ..., X,) = HP(Xj\Xl, X (1.21)
J

S

[‘C:l EXAMPLE OF CHAIN RULE OF PROBABILITY
For the case of four variables, we can express the joint probability
P(X1, X9, X3, X, as

P(leX27X37X4):P<X4|X37X27Xl)P(X?nXQaXl)
:P<X4|X37X27Xl)P(X3‘X27X1)P<X23X1)
=P(Xy| X3, Xo, X1) P(X5] Xy, X1) P(X5| X;) P(X1)

This by itself does not help us much, as we simply expressed the joint probability as a
(long) product of conditional probabilities. However, when we build a model, we know
more about the characteristics of the system we wish to describe.

Some variables may be independent, which means that we have P(X;| X,) = P(X;) for
the conditional probability. This expresses that the probability of observing X is inde-
pendent of X5. We can call this unconditional or absolute independence of the two varia-
bles. In contrast, two variables can also be conditionally independent on a third variable.
We will cover conditional independence formally a bit later. For now, we say that the two
variables X; and X, are conditionally independent given X3 if
P(X;| X5, X3) = P(X;|X3) and P(Xy| X}, X3) = P(Xy| X3). This means that if we

know the value of X3, the variables X; and X, become independent.

Hence, if we know more about the structure of the system we wish to model, we can con-
siderably simplify the (conditional) probabilities from the chain rule. For example, if we
knew that X; became conditionally independent of all other variables based on knowing
the value of X5, we can write

P<X1’X2a aXn) = P(XIIXQ)P<X27 Xn)

instead of
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P(X}, Xg, ..., X)) = P(X1] Xp) P(Xy, .. X,)

Using our expert or domain knowledge, we can make the relations between variables
explicit. Suppose we have three variables, A, B, and C, and we know that both A and C
depend on B, but A does not depend on C.

Hence, we can say

« Ais conditionally dependent on B: P(A| B).
« Cis conditionally dependent on B: P(C'| B).
« Ais conditionally independent from C given B: P(A|C, B) = P(A|B).
« Cis conditionally independent from A given B: P(C'| A, B) = P(C|B).

Therefore, we can express the joint probability as

P(A,B,C)=P(A|B,C)P(C|B)P(B) chain rule
=P(A|B)P(C|B)P(B) cond. independence

We can visualize these relations as shown in figure below; this is a simple Bayesian net-
work. Bayesian networks are graphical representations of the statistical relations between
variables and were introduced by Pearl in the 1980s (Pearl, 1985; Pearl & Russel, 2003;
Pearl, 2014a). Technically, a Bayesian network is represented as a directed acyclic graph.
For now, we say that the nodes (shown as boxes) represent variables that are connected
by “edges” (shown as arrows), indicating the relationship between variables.

Figure 1: A Simple Bayesian Network

In this graph, Bis the top node and is called the “parent” of both A and C.

Parent variables are often denoted with as PA, i.e., the parent of variable X; for some
index jis PA;. Aformal definition is given in (Pearl, 2009, p. 14).

Note that we do not require the connections to represent causal relationships: although
using our domain knowledge we find that many of these relationships have a causal
meaning, we can express non-causal structures in Bayesian networks. They are meant as a
method to simplify working with the joint probability, regardless of whether a causal rela-
tionship exists between variables.
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So far, we have used the Bayesian networks to represent the relationship between varia-
bles. In order to infer the values of variables or determine the probability of outcomes, we
need to add the concrete values for all (conditional) dependencies. These tabulated val-
ues are called conditional probability tables (CPT), which summarize the values we
observe in the data. In the simplest case, all variables are binary and can be represented in
terms of “true” or “false”. figure below shows a simple example that has been adapted
from (Murphy, 2001). In this example, we want to express the probability that the grass is
wet, which is related to either a sprinkler or rain. In this network, the sky condition is the
parent of all nodes. It can be cloudy (or not) each with a probability of 50 percent. The
variables “sprinkler” and “rain” are then children of “cloudy.” Their values depend on the
value of “cloudy.” Hence, each value of the variable (e.g. “sprinkler = true” or “sprinkler =
false”) depends on the value of the parent, (i.e., “cloudy = true” or “cloudy=false”). The
same applies for the variable “rain.” The final variable “wet grass” can again take the value
“true” or “false”—but now this value depends on the value of both its parents “sprinkler”
and “rain.” Hence, the conditional probability table for “wet grass” needs to capture all
combinations where each variable is either “true” or “false.” Note that the numbers in the
CPT for the wet grass example are fictional values. In the case of a real system, we would
carefully measure all conditional probabilities that enter the modeling of the system. A
more detailed example is shown in figure below, which shows the “Asia network” (Laurit-
zen & Spiegelhalter, 1988).

Figure 2: Bayes Network for Wet Grass, adapted from (Murphy, 2001)

Fo 08 02
T 0.2 0.8

I O ) )
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0.001 0.99

Wet grass
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Figure 3: Asia Network, adapted from (Lauritzen & Spiegelhalter, 1988)

Visit Asia

Lung cancer Bronchitis

TBC or cancer

X-ray result Dyspnea

This is used to determine the probability of the quantity of interest. On its own, each part
of this Bayesian network contains the conditional probabilities of visiting Asia. Say that in
99 percent of the cases, a person has not visited Asia. Then, following all conditional prob-
abilities, we can determine the probability that a person has an abnormal X-ray result or
suffers from dyspnea. We can also turn this around and determine how likely it is that a
person with dyspnea also smokes. Since the arrows do not represent causal relationships,
we can move across the graph to investigate the conditional probabilities as they change
depending on the values of other variables. For example, if we know that a person has
dyspnea, we can set the value of this variable to 100% and then use the conditional
dependencies to observe the change in all other variables.

This allows us to use Bayesian networks to reason under uncertainties.

As we model all dependencies in conditional probability tables, we can determine the
effect of a given or imagined observation. Using the example of the wet grass, we can also
ask whether it is more likely that the grass is wet because the sprinkler has been switched
on or because it has been raining. Hence, we want to determine the conditional probabili-
ties P(R=T|W =T), i.e., what is the probability that it has been raining, given that we
see that the grass is wet, as well as the P(S =T |W = T) for the sprinkler. Using the
chain rule, the conditional probability for the sprinkler having gone off is given by

P(S=T,W=T) (1.22)

P(S=TIW =T) = =g

meaning that the conditional probability is the joint probability divided by a normaliza-
tion factor expressing that we observe the grass to be wet (P(W = T)). To calculate this
quantity, we need to sum over all possible values (or integrate in case of continuous varia-
bles) of the joint probability.
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Marginal distribution
The marginal distribution
is obtained by integrating

over all variables except
the one that we are inter-
ested in.
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This process is called marginalization, i.e., we wish to obtain the marginal distribution. In
wet grass example, we need to sum over all possible values (i.e., “true” and “false”) of all
variables except the one describing the wet grass. This variable is set to one, as we
observe the grass to be wet.

We use the notation where capital letters (C, S, R) refer to the variables and small letters

(¢, s, r) indicate the values of the variables, in our case “true” and “false.” We need to com-
pute the expression:

PW=T)= ZZZP(C: c,S=s,R=r,W=T) (1.23)
c s T

To allow use of the conditional probability tables in the Bayesian network, we need to first
use the chain rule to expand the joint probability into conditional probabilities:

P(C,S,R,W)=P(C)-P(S|C)-P(R|C,S)- PW|C,S,R) (1.24)
From our model representing the graph, we know that the sprinkler S and rain R are con-
ditionally independent, given the clouds C, Hence we can simplify P(R|C, S) = P(R|O).
We also know that the value of C'is no longer necessary once we know the state of S and

R, meaning that we can write P(W|C, S, R) = P(W S, R). Now, the expansion for the
joint probability becomes

P(C,S,R,W)=P(C)-P(S|C)-P(R|C)- P(W|S,R) (1.25)

which are the values we have in our conditional probability tables. Hence the equation for
P(W = T) becomes

PW =T)

ZZZZP(CZC,SZS,RZT,WZT)
c s T

= sumCZZP(C) -P(S|C)- P(R|C)-P(W =T|S,R)

and we can calculate this explicitly:
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P(W =T)
=P(C=F)-P(S=F|C=F)-P(R=F|C=F)-P(W=T|S

=F,R=F)+
P(C=F)-P(S=F|C=F)-P(R=T|C=F)-PW=T|S=F,
R=T)+
P(C=F)-P(S=T|C=F)-P(R=F|C=F)-PW=T|S=T,
R=F)+
P(C=F)-P(S=T|C=F)-P(R=T|C=F)-P(W=T|S=T,
R=T)+
P(C=T)-P(S=F|C=T)-P(R=F|C=T)-PW=T|S=F,
R=F)+
P(C=T)-P(S=F|C=T)-P(R=T|C=T) - P(W=T|S=F,
R=T)+

P(C=T) - P(S=T|C=T)-P(R=F|C=T)-P(W=T|S=T,
R=F)+
P(C=T)-P(S=T|C=T)-P(R=T|C=T)-PW=T|S=T,
R=T)

=0.5-0.5-0.8-0.0+

0.5-0.5-0.2-0.9+

0.5-0.5-0.8-0.9+

0.5-0.5-0.2-0.99 +

0.5-0.9-0.2-0.0+

0.5-0.9-0.8-0.9+

0.5-0.1-0.2-0.9+

0.5-0.1-0.8-0.99 +

=0 + 0.045 + 0.18 + 0.0495 +

0 + 0.324 + 0.009 + 0.0396

|

o
=)
=
\]
=

If we then want to calculate the probability that the sprinkler was on (S = T) after we
observe the wet grass (W = T), we need to calculate P(S = T|W = T) as given in Eqn.
(1.22). Hence, we need to calculate the joint probability P(S =T, W = T) in the same
way as we have obtained the normalization constant above. This time, we only need to
sum over d and r, since we set W=T and S=1T:
PS=T,W=T)=>.>,P(C=¢,S=T,R=r,W =T) and, following the same
approach as above, we obtain P(S =T,W =T) = 0.2781. Therefore, the probability
P(S=T|W =T)=0.2781/0.6471 = 0. 430.

In a more complex graph (like the one concerning the Asia network), we can then explore
the effect of setting various variables to different values and observe how the other varia-
bles change. This allows us to calculate the probability of the effect we wish to investigate
given all the other variables.

Remember that we do not make any assumptions about causal relationships at this point,
although the conditional probabilities will often reflect a causal structure.

PREVIEW-PDF, erzeugt: 2024-06-18T14:30:01.73+02:00

25



Conjugate priors

The conjugate prior is
from the same family of
distributions as the poste-
rior.
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1.3 Probabilistic Modelling

When discussing Bayesian modeling earlier, we saw in Eqn. (1.6) that we need to estimate
the posterior distribution f(8]z) to make inferences about the system we are interested
in, where the posterior is given by

f(9|$>=ff(;|w

For any concrete prediction, we need to choose a suitable point estimator.

We specify this estimator using a loss function (sometimes also called cost function)
C(a, ) that specifies the loss (or cost) if we estimate 6 using a.

Then the Bayes estimator of § with respect to this cost function is given by:
E[C(a,0)|z] = fC(a,ﬁ)f(QI@d@
In the simplest case, we use the expectation value of the posterior distribution:

E[GIJ;]:f 0f(0]x)do

As discussed earlier, in some cases we can choose a suitable prior distribution such that
the posterior distribution is known - this leads us to the concept of conjugate priors.

However, this only works in select cases and, in general, we need to calculate the integral.
Unfortunately, this can only be done analytically for a limited number of functions or
when the integrand can be transformed such that an analytical solution is known. In many
cases, the integral has to be evaluated numerically. This can be done using random num-
bers, which is why this method is also called “Monte-Carlo integration,” where “Monte-
Carlo” refers to the famous casinos in Monte-Carlo, a hint to the random numbers used in
the process.

First, we investigate the one-dimensional case where we have to evaluate integrals of the

form
b
1= f flx)dx

which can be brought to the standardized form

I:j;l f(z)dx
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using a suitable variable transformation. The simplest approach is then to interpret the
integral as the constant function 1 and determine the expectation value

1
I= fo 1. f(z)dz = E[f(z)]

We then choose random numbers and we evaluate the function f(z) at these specific val-
ues. Then, we approximate the expectation value with the sample mean:

I =E[f(z)] ~ ,izf(:u,f) (1.26)

The more random numbers we use in this procedure, the more accurate the estimate will
be. Unfortunately, in many cases obtaining a sample from the function f(z) may be diffi-
cult to obtain. For example, we may not be able to sample the function directly because
we do not know the complete parametrization of f(x) or it may be difficult to do so. When
evaluating the sum in Eqn. (1.26) above, we implicitly assumed that we choose the values
x; at which we evaluate the function, from a uniform distribution. However, if the function
f(x) varies rapidly or is concentrated in a small region, this is not very efficient, since a
large number of samples do not contribute much to the final result. It would be better to
choose our sampling points such that more samples are drawn from a region where f(x)
is concentrated in. This challenge is amplified in higher dimensions. In these cases we can
evaluate the integral using a technique called importance sampling.

The intuition behind this approach is to find a suitable function g(z) from which we can
sample. The function g(z) should be defined on the same interval as f(z) and mimic f(z)
as closely as possible while being easier to evaluate.

Then, we can use

and, again approximating the expectation value with the sample mean, we obtain

(1.27)

I fly)
I~ Z g(z;)
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where the random numbers are chosen according to g(x). Since g(x) mimics the shape of
f(x), the distribution of random numbers we use to sample f(x) more closely follows the
regions where f(z) changes rapidly (as compared to choosing the random numbers, e.g.,
according to a uniform distribution). This allows us to evaluate f(x) more accurately with
a lower number of random numbers.

The crude approach becomes more challenging in higher dimensions. This can be illus-
trated using a two-dimensional example where we have to integrate a function in the tri-
angle given by, say, the points (0, 0), (1,0), (1,1):

I_fol f;xf(x,y)dydx

Following the one-dimensional approach, we might be tempted to evaluate the integral
using random numbers obtained using the approach outlined below:

+ Generate a random number z; from a uniform distribution in (0, 1).
« Generate a random number y; from a uniform distribution in ((0, z;)).

However, as we can see in figure below, this approach does not work: the random num-
bers are not distributed evenly, although we have implicitly assumed this in the simple
approach in order to generate the random numbers above. In particular, the numbers
towards the origin (0,0) are much denser than in the region towards 2 = 1. This can lead
to severe biases in the evaluation of the integral. This issue becomes even more problem-
atic in higher dimensions, and we have to use other methods to approximate the posterior
distribution.
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Figure 4: Random Numbers in the Triangle (0, 0), (1, 0), (1, 1)
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The main challenge here is that we do not generally fully know the details of the posterior
distribution. Hence, we lack the means to generate statistically independent samples from
this distribution. In particular, recall that the posterior distribution is given by

f(Q\x):ff(;t\M

The denominator is called the “evidence” (P(D)), essentially the normalization given the
observed data. We need to solve at least this integral to be able to work with the posterior
distribution. Hence, we need to estimate the properties of the posterior distribution with-
out knowing everything about it. We need to know how to calculate the likelihood. A pop-
ular way of achieving this is called “Markov Chain Monte Carlo (MCMC) sampling” where
we use random numbers (“Monte Carlo”) in a special way (“Markov Chain”) to draw ran-
dom numbers according to the posterior distribution we are interested in. In other words,
we use a special process (the Markov chains) to approximate the Monte Carlo integration
we have discussed so far. To develop an intuition as to how Markov Chain Monte Carlo
sampling works, we need to understand some crucial properties of Markov Chains.

Markov Chains are named after A.A. Markov, see e.g. (Hayes, 2013) for a historic account.
Markov Chains are used to describe systems with a specific number of states. A simple
example shown in figure below shows a system with three states.
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Memoryless

Memoryless means that
the next state only
depends on the current
state but not all the states
that precedes it.
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Figure 5: A Simple Markov Chain.

Each state is connected to another state and even to itself via an arrow that represents the
probability that the state will go from state s; to the next state s; , | according to a specific
probability.

For example, we can say that states A, B, C represent the weather, e.g. cloudy, rainy, or
sunny. Or they might represent student life: studying, sleeping, eating, or others. Let’s take
the example of the weather: If we model tomorrow’s weather observing today’s weather,
we can say that each change in weather occurs with a specific probability. For example,
we may find that, if it’s sunny today, there’s a 60 percent probability that it will be sunny
tomorrow as well, a 25 percent probability that it’s cloudy tomorrow, and a 15 percent
probability that it will rain. As we go from day to day, we can predict tomorrow’s weather
by judging today’s weather. To express this in more general terms, we traverse the Markov
Chain and move from state s; to state s;, ;. Such a sequence might be:
A,B,B,A,C,A,C,B,B, A A, ...

The crucial property of Markov Chains is that they are memoryless. In the weather exam-
ple, this means that we can make a prediction about tomorrow’s weather without know-
ing the weather of all days preceding today. Once we are in a particular state (say, A), we
can calculate the probability that we will observe any other state without knowing how we
got into the current one. If we traverse the Markov Chain long enough, we will eventually
reach the equilibrium or stationary state where we can predict which state we are going to
be in with a given probability, regardless of the initial state. In the example of the three
states, we find that, in the equilibrium case, we are in state A with p4, in state B with pg

and C with pg. For example, imagine the following matrix that determines the transition
from any state to the next:

| A B C
Al0.8 0.1 0.1
P(Si“‘si):B 0.2 0.7 0.1 (1.28)

C10.150.250.6
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Hence, we go from A — A with 80%, from A — B with 10% probability, etc. Note that
each row adds up to one, as we need to end up in one of the states A, Bor C.

The equilibrium state of this Markov Chain with the transition probabilities given by Eqn.
(1.28) is A=0.475, B=10.325, C =0.2. Figure below shows how the Markov Chain
converges towards this equilibrium state, initially starting from state B. Since the Markov
Chain is memoryless, the equilibrium state does not depend on which state we start from.

Figure 6: Equilibrium State of a Simple Markov Chain with Three States.
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The general idea behind Markov Chain Monte Carlo is that we construct a chain that has
the desired distribution (in our case, the posterior distribution), as its stationary or equili-
brium point. Once we reach the equilibrium point we can then use the Markov Chain to
sample from the distribution, i.e., to generate random numbers according to the shape of
the posterior distribution. As we have seen above, the starting point does not matter, as
we will reach the equilibrium point after the method has been applied for sufficient time.
The challenge is then to find a set of states s = (sy, 59, ...s,,) that has the distribution we
are interested in as its stationary distribution, i.e., s = Ps, where s is the vector of states
and P is the transition probability matrix.

One way to do this is the Metropolis-Hastings algorithm (Metropolis, Rosenbluth, Rose-
nbluth, Teller, & Teller, 1953; Hastings, 1970). Intuitively, the algorithm works as follows:
Suppose we want to sample from some distribution p(x) = p(z) /C, where p(z)is a distri-
bution that is proportional to the distribution p(z) we are interested in. In our case, p(z) is
the posterior distribution f(#|x) and p is proportional to this. We then start with an arbi-
trary state s,. In case of continuous distributions, this is a point (z;) chosen randomly.
Then, we repeat the following two steps:
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1. Generate a new point y (or state s,) for some Markov transition matrix Q(y|z)
2. Accept the point z; . ; = y with probability

o, B Qly
afylz} = m”’{l’ pl@) Q<y|x>}

Otherwise, keep the old point,i.e.z; | | = 4

The function a(y|x) is called the acceptance probability and intuitively describes if the
proposed new state is in a region were the desired target distribution is not vanishingly
small. Then, once the algorithm converges, we can sample from the distribution p(z) (in
our case, the posterior distribution).

However, the above outline requires some further discussion.

First, how do we judge whether the algorithm has converged? Indeed, this is difficult to
establish and, generally, needs to be assessed on a case-bycase basis. Typically, we run
the algorithm for a given “warm-up” period, during which the resulting values are not
recorded to get to the region where the states of the Markov Chain built by the algorithm
are more representative of the distribution we want to sample from. This is discussed fur-
therin (Gelman, 2014, chap. 11.4).

The other question concerns which distribution we should choose for Q? The choice of
this proposal distribution has a big impact on how long we need until we reach the equili-
brium or stationary point. The exact choice also depends on the problem at hand. For the
Metropolis (not the Metropolis-Hastings) algorithm, a symmetric distribution is chosen for
which Q(y|z) = Q(z]y). In this case, the acceptance criterion is simpler and becomes

— i M}
alylz) = mm{l, () (1.29)
Empirically, a Gaussian or Normal distribution is often chosen with mean u =z, i.e.,
Q~N (z,0?). The variance 02 is then a parameter that has to be tuned during the warm-
up period of the algorithm. This leads to a random walk where proposed points z; , {
around the previous point z; are more likely.

In the acceptance criterion above, we have thus far referred to a general distribution p(z)
from which we would like to sample and a distribution ~p(z) that we use for accepting a
new point where p(x) o< p(z). In our case of Bayesian inference, we want to sample from
the posterior distribution f(#|z). Therefore, we need to construct a distribution that is
proportional to this. Remembering Bayes’ theorem (Eqn. (1.6)), we know that the poste-
rior is proportional to the likelihood times the prior. Hence, we can express the ratio of
posteriors as
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where 0* represents the proposed new values of the posterior distribution f(8]z) (given

the observed data ) and 6 the current values. Hence, by using Bayes’ theorem we can
express the ratio of posteriors we are interested in as the ratio of the likelihoods times the
priors—and both quantities are known or described in our model. In particular, we notice
that the denominator in Bayes’ theorem representing the evidence (or normalization)
drops out. This is good as we cannot in general compute it.

The Metropolis and Metropolis-Hastings algorithms are conventionally relatively easy to
understand. However, in many real-world scenarios, they are not powerful enough. One of
the problems is that the Metropolis- Hastings algorithm is a bit too random and, for exam-
ple, has a high reject (or low acceptance) rate. This, in turn, means that a lot of computa-
tions are wasted. Other MCMC sampling techniques have to be used such as Gibbs sam-
pling (Geman & Geman, 1984) or the more performant No-UTurn- Sampler (NUTS)
(Hoffman & Gelman, 2014) using a slightly different approach called “Hamiltonian Monte
Carlo” (Duane, Kennedy, Pendleton, & Roweth, 1987; Betancourt, 2017).

Further details on Markov Chains and MCMC can also be found in, for example, (Gelman,
2014; Van Ravenzwaaij, Cassey, & Brown, 2018).

E(f]_)\ EXAMPLE: LINEAR REGRESSION
Let us now illustrate probabilistic modeling using linear regression as an exam-
ple and generate some simple toy data according to the following model for n
data points:

1. Generate n z-values according to a standard Normal (or Gaussian) distribu-
tion.

2. Foreach z-value, compute the corresponding y-value as
y; = m - x; + b+ ¢; where m is the slope of a linear model, b the intercept
and ¢; a noise term that is distributed according to a standard Normal distri-
bution.

Form =2.0,b = 1.0, the following dataset is obtained if we generate n = 200
samples:
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In a standard linear regression approach, we would use the data and determine
the model parameters, for example, via least-squared optimization.

The following plot shows the result of such a fit, together with the data and the
model we used to generate the toy data. The optimization returned the values
m = 2.100 and b = 1.046, which is reasonably close to the values we used to
generate the dataset with.

PREVIEW-PDF, erzeugt: 2024-06-18T14:30:01.73+02:00



We now use a Bayesian or probabilistic approach to describe the data, again
using a simple linear model. We start by saying that our independent variable X
with values z is a random variable that has a linear relationship with the inde-
pendent variable Y with values y. The variables X and Y are connected with
some Gaussian noise.

This can be expressed in the language of statistic as
Y~N(8- X +b,0?) (1.30)
meaning that we use a linear model with Gaussian noise.

Since we are now focusing on Bayesian probabilistic modeling, we need to
assign a prior to all our parameters that need to be determined in our fit. In the
case of our simple linear model, we need priors for the slope and intercept of the
linear model, as well as the variance of the noise term. If we have any domain-
specific knowledge, we can choose the priors accordingly. In this simple exam-
ple, we choose a wide Gaussian distribution centered around zero as prior for
the intercept and the slope. The conjugate prior for the variance would be an
inverse gamma distribution. However, it is recommended to use a half-Cauchy
distribution as prior for o (Gelman, 2006; Polson & Scott, 2012).

Using a probabilistic modeling framework such as PyMC, we can use for example
the NUTS algorithm to construct a Monte Carlo Markov Chain for this model.
First, we check that the has chain converged by determining the R metric. This
number should be smaller than 1.01 (Gelman & Rubin, 1992; Vehtari, Gelman,
Simpson, Carpenter, & Biirkner, 2019).

In contrast to the “standard” linear regression, we now have a full posterior dis-
tribution for the model parameters “intercept” and “slope” (beta) as shown
below. Note that the shape of the posterior distributions is quite similar to (but
not exactly the same as) a Gaussian distribution. The mean values for the inter-
cept (1.0) and slope (2.1) are very close to the true model values we have used to
generate the data with and in this case identical to the ones we have obtained
using the standard linear regression approach.

Intercept Beta

94% HPD 94% HPD

0.9 1.0 11 1.2 19 2.0 21 2.2 23
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We can also show the Bayesian credible intervals for these parameters.

Intercept ———————

Beta —O——

1.0 12 14 1.6 1.8 2.0 22

Using the different values from the posterior distributions for the model param-
eters, we can then draw a representation of all possible models compatible with
the data as shown below. Each option is drawn as a light grey line, and the inten-
sity of the black area indicates the most probable model parameters. Addition-
ally, the models for one standard deviation are drawn in orange, and the true
model has been used to generate the data with in red.
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Truth

Since we have the full posterior information available, we can not only deter-
mine the credible intervals for the model parameters and their posterior distri-
bution but calculate the posterior distribution for each value y of the dependent
variable Y at each point x of the independent variable X. For example, at the
point x=0.2, the standard linear regression would yield
y=2.1-0.241.046 = 1.466 (indicated by the red dashed line), whereas we
obtain the posterior distribution for y at z = 0. 2. The posterior distribution is
again quite similar to a Gaussian distribution, and its mean agrees with the
result from the ordinary least squares approach.
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@ﬂ]’; SUMMARY

Statistical inference allows us to make statements about systems or
their future behavior. One key aspect is that the inferred outcomes are
expressed as probabilities. Bayes’ theorem is at the core of the Bayesian
approach to inference that aims to calculate the posterior probability of
a given outcome, taking both the observed data as well as any prior
information into account. This prior needs to be carefully chosen and a
minimally informative prior should be taken if only very limited informa-
tion is available. From a practical point of view, in many cases, conjugate
priors allow us to calculate the posterior much easier.

In statistical inference, we are often concerned with the analysis of few a
quantities. In many situations, however, we need to investigate larger
systems described by many variables. Bayesian networks allow to
model the dependencies of large systems and derive the predicted out-
come based on a large set of input values.
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Finally, in probabilistic modeling, we take into account that our model
variables themselves are random variables, and we can use Bayesian
approaches, in particular a prior, to derive the most likely outcome. The
key challenge of probabilistic modeling is that we need to determine the
posterior distribution without being privy to all details. This can be done
using Markov Chain Monte Carlo methods, and popular algorithms
include the Metropolis and Metropolis- Hastings algorithm
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UNIT 2
INTRODUCTION TO CAUSALITY

STUDY GOALS

On completion of this unit, you will have learned ...

- what a directed acyclic graph (DAG) is.
- what the elements of DAGs are.

- how expected associations between variables change if we condition on variables con-
necting them.

- how to determine whether to expect an association between two variables.
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2, INTRODUCTION TO CAUSALITY

Introduction/Case study

Perhaps one of the most important questions regarding the study of causality and causal
effects is why one should study it at all. In particular, spectacular progress in the area of
machine learning and artificial intelligence has made applications possible that were
unthinkable even a few decades ago. Computers and Al systems play the complex game of
Go better than humans (Silver et al., 2016) and can detect skin cancer with a level of accu-
racy on par with human experts (Esteva et al., 2017). However, these systems cannot
answer questions as to why something is happening. In many situations, understanding
the underlying causal structure may not be necessary. We can improve clinical care signifi-
cantly if we can quickly and reliably identify skin cancer and use an Al-based system as a
diagnostic tool. Similarly, operational procedures (such as replenishing goods at a super-
market) depend on many different factors that influence customer demand. However, we
do not have to understand the causal reasoning of individual customers-—rather, we only
need to describe the overall effect, i.e., the resulting expected demand of all customers on
a given day in a particular store. Additionally, many of these cases where Al based solu-
tions are deployed successfully are within the remit of “narrow Al,” i.e., a particular, singu-
lar task that the system focuses on. This often implies that causal structures can be
explained in terms of domain knowledge, and that many of the correlations the machine
learning model relies on are closely related to causal relationships, as they are taken from
a very specific application domain.

On the other hand, many questions cannot be properly addressed and answered by this
approach. For example, while we may use an Al system as a diagnostic tool, said system
cannot answer certain questions, such as whether a given medication really is the cause of
the improvement seen during treatment. In particular, there may be many biases present
in the data that originate, for example, from common causes between variables.

Correlations between variables found in the data may be spurious and only present in the
data because the process of acquiring the data was flawed: had we obtained the data cor-
rectly, some variables would have been independent. But as the process of collecting the
data was flawed, a later statistical or machine learning model may pick up on these spuri-
ous correlations and generate misleading results. Furthermore, some data may be impos-
sible to obtain, for example, due to prohibitive costs or because the means of obtaining
the data would be unethical. In many of these cases, careful, causal studies can help to
gain deeper insights, allowing us to look at which part of the story the data are not telling.

2.1 Correlation versus Causation

We humans are intimately aware of the concepts of both causality and correlation and
apply them in our daily lives. Unfortunately, however, our intuition is often wrong. While
our behaviour is understandable from an evolutionary perspective, the conclusions and
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actions we draw from them are often wrong and we are prone to a wide range of cognitive
biases. For example, in his research, psychologist D. Kahnemann has found that our mind
can be divided into two cognitive systems through which we experience the world: “sys-
tem 1” and “system 2”. System 1 acts subconsciously and constantly evaluates our world,
trying to make sense of it. Only when this is no longer sufficient is system 2 engaged. Sys-
tem 2 is associated with abstract cognitive processes, problem solving, and deliberate
thought. Interestingly, system 1 always constructs a causal story based on what we experi-
ence (Kahneman, 2012, p. 75). For example, after hearing the following sentence “After
spending a day exploring beautiful sights in the crowded streets of New York, Jane discov-
ered that her wallet was missing” (Kahneman, 2012, p. 76), a study found that people
associated the word “pickpocket” more strongly with the story than “sights,” even though
the sentence makes no mention of “pickpocket” or “thief”. However, because the sentence
is set in New York, we “jump to the conclusion.” That is, our system 1 builds a probable
and believable causal story that the wallet was stolen rather than lost.

Further studies show that we already have an impression of causality from birth (Kahne-
man, 2012, p.76), even though most of our everyday causal reasoning happens subcon-
sciously.

When looking at a graph such as figure below, we immediately notice that the two curves
follow the same pattern. Even (or especially) when we do not look at the description or
details of the graph, we notice that the behaviors are the same and our system 1 intui-
tively assumes that there is a causal connection between the graphs. Looking at the graph
more closely, we see that the two curves show the number of sociology doctorates in the
United States compared to the number of non-commercial space launches (Office, 2011,
Foundation, 2018). The curves show an obvious relationship-—but in thinking more about
it (engaging system 2), we cannot possibly find a reason why the number of doctorates
awarded in the field of sociology in the United States should be related to worldwide, non-
commercial space launches. Admittedly, the graph employs some bad data visualization
techniques (such as two scales for the y-axes), and the range of y values is also tuned to
make the graph more convincing visually. However, the behavior is real and observable—
we say that the two quantities “number of US sociology doctorates” and “worldwide, non-
commercial space launches” are correlated.
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Covariance

The covariance measures
how the variables “co-
vary,” i.e., how one varia-
ble changes when the
other changes.

Figure 7: US Sociology Doctorates versus Worldwide, Non-Commercial Space Launches
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The Pearson correlation coefficient is defined as
_ cov(z,y)
Pry= oo (2.1)

where o, is the standard deviation of variable z (and correspondingly for ) and cov(x, )
is the covariance of the variables x and y defined by

cov(e, ) = B{(@ — mo)(y— ) 22)

where E[ - | denotes the expectation value and ., is the mean of variable x (and corre-
spondingly for y). The correlation coefficient is normalized using the standard deviations
and has a range between —1 < p, , < 1. A value of ‘pzy‘ = 1 means that the variables
are related 100%, p,, , = 0 means that they are unrelated. Positive values indicate that the
two variables change in the same direction, e.g., if x increases, y increases as well. Nega-
tive values indicate that « and y change in opposite directions. Note that the Pearson cor-
relation coefficient only captures linear correlation between variables, as illustrated by fig-
ure below.
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Figure 8: Correlation Coefficient

Coming back to the example of sociology doctorates and space launches, we can say that
the variables are highly correlated—but we cannot conceive of a reason why there should
be a causal relationship between them: correlation does not imply causation. What do we
mean by this? Implicitly, we assume that because two variables are correlated and co-vary
in a defined way, there is also an underlying cause for this. This is, indeed, one of the main
assumptions of statistical modelling, machine learning models or artificial intelligence
applications: the model determines the best combination of the input variables or fea-
tures to derive a prediction for the future behavior of the variable or target of interest.
Spectacular successes of such systems (such as the detection of skin cancer with human-
level precision (Esteva et al., 2017)) prove that relying on correlations to predict the out-
come of a variable works very well. This opens the question as to whether the study of
causation is merely a “luxury” or irrelevant in practice. The answer is, of course, no. Study-
ing the causal structure allows us to address questions we cannot answer by looking at
the data alone. In other words, the data only contain part of the story.

Why, then, do machine learning or Al models work so well if they do not include causal
relationships? The answer lies in the data we give these systems. Using our expert know!l-
edge, we feed a curated set of data and features to the machine learning model or Al sys-
tem. From these data, it learns about the relationship we are interested in. However, we
already know that such a relationship can be extracted from the data and is relevant to the
problem at hand. However, if we just pass all data to a self-learning system, we will quickly
discover that the resulting predictions will be sub-optimal (or even wrong). Imagine we
were modeling the number of space launches and, following the often repeated mantra
“it’s all in the data” or “the data speak for themselves”, we would include the number of
doctorates in sociology as a further feature or variable. The subsequent modelling stage
will pick up on the correlation and, given that this relationship holds over a long period,
might even improve the model. Since there is no causal relationship between the number
of doctorates and the number of space launches, our prediction model will lead to incor-
rect results as we have trained it to include the spurious correlation should the observed
correlation no longer hold.
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Correlations between variables can also be very misleading. Pearl et al.

(Pearl, Glymour, & Jewell, 2016, p. 3) discuss the example of the variables “cholesterol”
and “exercise” From our general knowledge, we know that exercise is beneficial to our
health and it is better for cholesterol levels to be low. However, when we plot a (fictitious)
dataset containing these two variables, we find that cholesterol and exercise are strongly
positively correlated (see figure below, part a).
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Figure 9: Correlation Depending on “Hidden” Variables
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Randomized controlled

trials

In a RCT, subjects are ran-
domly assigned to the
treatment or control
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group.

Performing a linear regression (part b) with the functional form y = ma + b results in a
slope of approximately 1. From this, we (or a machine learning or Al model) would learn,
that an active lifestyle with lots of exercise is associated with high cholesterol levels. In
other words, exercise would be bad for our health as it increases cholesterol levels. How-
ever, we also know that exercise is good for our health. We cannot answer this conundrum
from these data alone. To understand the data, we need to look deeper, and, in this case,
it turns out that age plays an important role. If we segregate the data by age (part c), we
find the expected (negative) relationship between cholesterol level and the amount of
exercise. The “age” variable is a common cause for both cholesterol and exercise: older
people tend to have higher cholesterol levels regardless of their level of exercise. If we had
given the “age” variable to a sophisticated machine learning algorithm in conjunction with
“cholesterol” and “exercise,” it might have learned this relationship. However, we would
have had to understand the story behind the data in order to know to include this variable
in the first place. Also, simply adding all variables at hand into such an algorithm just
increases the chance that such misleading correlations are learned, as the machine learn-
ing algorithm cannot learn the causal relationship from the data. It “just” exploits the
observed correlations optimally. However, it should be noted (as we will learn later) that
segregating variables by a third variable (in this example, by age) does not always result in
the correct answer. We need to understand the causal story behind the data to decide
whether segregating will give us a useful answer or make things worse.

But what if (for some reason) the correlation between, for example, the number of doctor-
ates and space launches was not spurious? What if it actually held? Testing and evaluating
such a question is the main focus of causal models. The data cannot answer these ques-
tions. We can observe a correlation, but, without further knowledge, we cannot decide
whether it is spurious nor real. Admittedly, we would likely not investigate the relation-
ships between these two variables in practice. However, the same underlying question is
very relevant to many cases. As an example, in the 1950s, many studies focused on the
relationship between smoking cigarettes and lung cancer (Mendes, 2014). Prior to the
1900s, lung cancer was very rare, even accounting for the difficulty in diagnosis then. As
smoking cigarettes became more popular and widespread, the number of lung cancer
cases started to rise sharply, from 54 cases in 1900, to 4,345 by 1963. Lung cancer became
one of the most common types of smoking and lung cancer rose at the same time, it is not
the same as proving that smoking is indeed the cause of the increase in lung cancer.
Tobacco companies have a strong interest in not establishing a causal relationship, as this
would likely result in public policies limiting or banning smoking (as it has been done in
many countries much later).

From the 1950s onwards, many studies were performed that proved a causal relationship
between smoking and lung cancer. However, this topic also highlights some issues with
experimental studies: many studies are performed as randomized controlled trials (RCT).
Since each individual in such a study is assigned to the treatment or control group ran-
domly, there is no cause that could influence whether that individual would receive the
medicine. In a medical study, we can then determine if the medicine works by observing
the outcome in the two studies. However, what if administering a medicine (or withhold-
ing it) were unethical? What if we forced participants to take a substance we suspect is
lethal? In the case of the tobacco studies, the researchers used volunteers. This might
solve the ethical dilemma, as the participants do smoke voluntarily. Even though they
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were made aware of the risk, however, relying on volunteers might introduce a bias, since
only a specific type of person might volunteer. Again, we need to understand more of the
causal story behind the data to understand possible complications.

Thus far, we have pointed out that causal relationships play an important role when
understanding the relationships between variables and their values.

[‘@' CAUSAL RELATIONSHIP
“Avariable X is a cause of a variable Y if Y in any way relies on X for its value.”

a (Pearl et al., 2016, p. 5)
i Akt

Pearl et al. use the example of listening to illustrate the definition: “X is a cause of Y if Y
listens to X and decides its value in response to what it hears.” (Pearl et al., 2016, p. 5)

2.2 Granger Causality

Granger causality (Granger, 1969) is a concept of causality that is exclusively related to the

analysis of time series data, and hence quite different to the discussion of causality in the  Time series

remainder of this text. See, for example, Eichler (2012) for more information on this topic. ~ Time series data are data
. . . . that follow a distinct tem-

It was developed in the context of economics and therefore caution should be exercised poral order.

when Granger (or G-) causality is used for other time series data. In this context, causality

is defined temporally: a preceding event can cause a later one, but a later event cannot

cause an earlier one.

If we have two (or more) time series, we can intuitively understand Gcausality in the fol-
lowing way: a specific feature of one time series causes feature in the other time series at a
later time, i.e., at a given lag. This is illustrated in figure below (BiObserver, 2014), where
the big spikes in the time series X occur in time series Y at a later time.
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The lag determines the
time shift between the
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time series.

Figure 10: Granger Causality (BiObserver (Wikipedia) CC BY-SA 3.0)

This means that one time series (X) contains some information that can be used to
explain the behavior of the other time-series (Y). Hence, including X in the forecast of Y’
leads to better predictions than when X is not used.

A bit more formally, we can look at two time series X; and X5, where we use the sub-
scripts to indicate that we could extend the argument to more time series up to some
index X,,. We can then write the system of time series equations for an auto-regressive
model for the two time series as:

P q
X, (1) = Zall’in(t—i) + Zam)@(t ) +et) (2.3)
1=1 i=1
p q
Xy(t) = Z gy ; Xq(t—i) + Z Q99 Xo(t —1i) + () (2.4)
1=1 i=1

where coefficients o determine the strength with which each lag i contributes to the time
series, and the order of the auto-regressive model is given by p,p’,q,¢’. The numbers
€(t), e5(t) are residual uncertainties. As we can see, the two time series depend on each
other. For example, if a5 ; # 0, then X (¢) depends on X,(t), and vice versa for ag; ; # 0.
We say that the time series are connected via G(ranger)-causality if we can establish that
a9, ; # 0 with some level of significance.
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Note that this implies that both time series X; and X, can be connected by Granger cau-
sality: X can be the cause of some feature in X5, and, at the same time, X5 can be the
cause of some other feature in X;. As mentioned before, we can extend this to n different
time series X, ..., X,, that can all, to some varying degree, be connected by Granger cau-
sality with each other. The dependencies can also be expressed as directed acyclic graph-
ics (Chen & Hsiao, 2010) which allows to connect Granger causality to the concepts devel-
oped in the rest of this textbook.

In the considerations above, the lag at which a feature in one time series causes the fea-
ture in the other time series was always fixed. This means that when the feature in the
time series occurs that causes the effect in the other time series, the effect would appear
there with a fixed delay. In many systems, this delay is not fixed, but may be variable,
which can be included in an extended definition of Granger causality (Amornbunchornve;j,
Zheleva, & Berger-Wolf, 2019) When looking at the temporal order of events, it is important
to avoid the “post hoc ergo propter hoc” (Latin for “after this, and, therefore, because of
this”) fallacy. Events can occur after one another, even though they are not causally
related. For example, the rooster crows at sunrise but does not cause the sun to rise.
Examples of this from the medical field are given in (Grouse, 2016).

2.3 Directed Acyclic Graphs (DAG)

Causal relationships can be expressed in a number of ways. A very powerful method is
centered on a graphical representation called “directed acyclic graphs” (or DAGs), and we
will follow the notation in (Pearl et al., 2016).

Figure 11: Basic Graphs

a) Undirected graph b) Directed graph
@ @ @ o »@® N
X Y Z X Y Z
c) Cyclic graph d) Acyclic graph

X X
Y z Y VA

Figure above shows the basic setup of simple graphs. In this example, the nodes are label-
led X, Y, Z. The edges connecting the nodes are either undirected (see part a) or directed
(part b). In the latter case, we use little arrows to indicate the direction. Hence, directed
edges come out of one node and go into another. The node from which the arrow emerges
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is called the “parent,” and the node into which the arrow enters is called the “child.” The
relationship between grandparents and grandchildren is defined accordingly. Occasion-
ally, we may use undirected edges as shown in part a) of figure above to indicate that two
variables are associated with each other and are therefore correlated, but we do not know
which variable is the parent and which is the child. However, the point of causal diagrams
is we will typically draw causal graphs for all alternatives and then find ways to experi-
mentally test which is the correct graph.

A path between any two nodes is called a directed path, if we can follow the arrows
emerging through the parent, going through all children and grandchildren until we arrive
at the destination node.

If any two nodes are on a directed path, the first node is called the ancestor, and all subse-
qguent nodes on the directed path are the descendants of this node.

In a cyclic graph (part c), we can return to the origin node following a directed path. This
means that, starting at one node, we can follow the direction of the arrows and come back
to the node we started from. In an acyclic graph (part d), no such directed path exists, and
we can move from ancestors to descendants—but not back.

It is important to note-(and<emember) that information can “flow” along any edge
(directed or undirected) and, in case of a directed edge, even against the direction of the
arrow. Although it may appear counterintuitive or confusing at the beginning, an arrow
does not indicate that information only flows in the direction of the arrow.

Causal graphs are mainly constructed from, and are extensions of, part b and d of figure
above. In these graphs, the arrow indicates a causal relationship: the ancestor can cau-
sally influence the descendants (in the direction of the arrow, but not the other way
round). As an example, we can imagine a barometer. If it rains, the needle will point to a
low value: rain — barometer value. The underlying physical explanation is that the barom-
eter measures the air pressure, and during bad weather, the air pressure is low. For the
point of illustrating the causal relationship, we can imagine that the variable “barometer
value” listens to “rain” (as proxy for atmospheric pressure). However, even though we can
manually force the needle of the barometer to any value, the weather will not change.
Causal graphs are typically read either left to right or top to bottom. This is not a strict rule,
but we generally try to arrange the graph such that the ancestors are either toward the left
(or top) of the graph and the descendants towards the right (or bottom).

part d of figure above also illustrates that we have generally two types of effects:

a direct effect and an indirect effect. The variable X causally affects the variable Z directly
—this is called the direct effect. In addition, X also affects Y, and Y in turn affects Z.
Hence, even in the case where there is no direct effect from X to Z, X can still affect Z via
Y —this is called the indirect effect. An important path of building causal models is to add
all the ways the variables can influence each other and in which way they are (causally)
connected.

PREVIEW-PDF, erzeugt: 2024-06-18T14:30:01.73+02:00



Variables can also have more than one cause. For example, in part d of figure above, the
variable X is a common cause of both Y and Z and (causally) influences both. X, Y, and
Z are associated with each other.

By this we mean that these variables are related to each other but either we do not know
their relationship yet, or we do not make such a statement.

More formally, we can say that two variables are associated when observing one changes
the probability of observing the other. This implies that the variables are correlated but we
do not want to make a causal statement: The association can be due to a causal connec-
tion between the variables which also makes them correlated. This association can also
originate from, for example, a spurious correlation because we have not (yet) taken all
causal dependencies into account. By saying that a set of variables are associated we
want to express that we know that they are related to each other in the sense that observ-
ing one changes the probability of observing the other(s), but we do not want to make a
further statement as to why the variables behave this way.

In the above example, neither Z nor Y can be a cause for the behaviour of X. Expressing
this using the earlier definition of causality, the variables Y and Z listen to the value of X
to define their values—but X does not listen to either Y or Z. Nodes that are not con-
nected via an edge are not associated with each other, hence we neither have a causal
relationship nor can we observe a correlation between them—they are independent.

As an example, consider figure below, part a.

Figure 12: Common Cause

a) b)
X—Y VA Y VA
Smoking Yellow Lung Smoking Yellow Lung
fingers cancer fingers cancer

Smoking (variable X) is both a cause to yellow fingers (Y) and lung cancer (Z). Note that
there is no arrow from Y (yellow fingers) to Z (lung cancer). Having yellow fingers does
not cause lung cancer. Note that we did not use any data to construct the causal graph.
Instead, we constructed the causal graph from the expert knowledge we may have in this
area. However, if we were to look into a (large) dataset, we would observe the following:
the variables Y (yellow fingers) and Z (cancer) are associated, i.e., the proportion of indi-
viduals that are affected by lung cancer is different for those with and without yellow fin-
gers. Hence, we observe an expected correlation between yellow fingers and cases of lung
cancer. However, this correlation is not due to the fact that yellow fingers are a cause of
lung cancer, but that both yellow fingers and lung cancer share a common cause: smok-
ing. Hence, two variables can be associated even though there is no direct connection (an
edge) between them in the causal graph. This constellation can lead to a bias in the analy-
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A binary variable can only
take two values, such as
“true” or “false.”
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sis and illustrates that the information flows both in the direction of the arrows and
against it: Informally, we can say that yellow fingers and lung cancer are associated
because the information about lung cancer flows backwards via the common cause into
the variable describing yellow fingers. We call the variable X (smoking) a confounder of
variable Y and Z.

So far, we have only considered all values of the variables. We now look at the relationship
between Y (yellow fingers) and Z (lung cancer) in different slices of the common cause X
(smoking). In this case, X is a binary variable, and we consider both options, smokers
and non-smokers, and look at the association between Y and Z for each value of X. This
is called conditioning, and we indicate that we condition on a variable by adding a little
box around it in the causal graph, as shown in part b of figure above. We then look at the
data and check the association between yellow fingers and cases of lung cancer, for exam-
ple across all individuals who never smoked. Since yellow fingers were associated with
smoking and we are now looking at people who have never smoked, learning that an indi-
vidual has yellow fingers does not change their chances of developing lung cancer. In the
same way, if we look at all individuals who smoke and the rate of lung cancer, we find that
this rate doesn’t change regardless of whether or not the individual has yellow fingers.
Hence, in each stratum of the common cause X, the association between the variables Y
and Z is removed—even though it is present if we don’t condition on X, but look at the
complete or marginal distribution. This also holds if X is not a binary variable and can
take any range of values.

EC:/II CONFOUNDER
We expect an association between two variables, even if the variables are not
causally connected when sharing a common cause. This confounding effect is
blocked if we control for the common cause (the confounder).

Similarly, causal graphs can contain structures with common effects. As an example, con-
sider the causal graph in figure below, part a.
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Figure 13: Common Effects

a) b)
X Y————Z X Y
Genetic  Environmental Cancer Genetic  Environmental  Cancer
factor factor factor factor
c)
X Y »Z »S]
Genetic  Environmental  Cancer Surgery
factor factor

With a simple picture, we can imagine that developing cancer is due to a genetic factor
and an environmental factor. For simplicity, we assume that these factors are binary, i.e.,
either you have a genetic disposition to develop cancer (or not); or you are either exposed
to some environmental factor (or not).

There are arrows from both the genetic and the environmental factor to cancer, but there
is no arrow from the genetic factor to the environmental factor. Your genetic code cannot
causally influence the environment, for example, air pollution. Again, we have drawn this
causal diagram using expert knowledge and did not rely on data. If we were to look at a
large data set, we would find that X and Y are indeed independent. If two variables have
a common effect, they are still independent from each other if they are not causally con-
nected. For example, a given fraction of the population has a genetic factor that raises the
chances of developing cancer.

This factor does not vary depending on where the people live. Likewise, being exposed to
some environmental factor does not alter your genetic predisposition.

However, this situation changes if we now look at specific values of Z, i.e., individuals who
have developed cancer. As before, we indicate that we look at specific values or condition
on the variable by adding a square box around the variable, as shown in part b of figure
above. Let’s say we look at all individuals with cancer, i.e., Z = 1. We then look at the val-
ues of X and Y. We now find that X and Y are indeed associated, whereas they were not
when we looked at all values of Z. We can understand it this way: If a person has cancer
(Z = 1) and does not have a genetic prevalence (X = 0), it is more likely that this individ-
ual was exposed to the environmental factor (Y = 1). This is not due to any causal connec-
tion between the two factors. Rather, since the the person has cancer, it must have been
caused by something - and it wasn’t the genetic factor. This makes the environmental fac-
tor more likely, and X and Y therefore become correlated. This is called the selection bias,
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a systematic bias that arises due to the selection of our data set. Note that this applies not
only to the common effect, but also happens if we condition on any descendants of this
variable, as shown in part c of figure above. In this case, surgery is a treatment for cancer.
Since we do not perform the surgery randomly, S can act as a proxy for Z and hence
causes the same bias as if we had conditioned on Z directly.

[*G)\' SELECTION BIAS
We expect an association between variables that are not associated or other-
wise causally connected if we condition on a common effect.

The above discussion highlights that causal graphs representing causal models are closely
related to statistical models. For example, if we draw an edge between two nodes, we
expect a correlation and a causal relationship.

If no such edge is present, we understand that the nodes are independent from each
other.

In some causal models, it is important to account for any exogenous causes that influence
the variables. We denote these with U (for unknown), indicating that the observable and
measurable variables (such as X, Y or Z) are influenced by external effects that we cannot
access or measure directly.

A simple example is shown in figure below. In more complicated settings, unobserved
causes may influence more than one variable or lie on a directed path.

Figure 14: Graph with Unobserved Causes

Furthermore, we have assumed so far that all variables measured so far can be measured
fully and correctly, i.e., there is no measurement error.
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In many real situations, this will not be possible, and we need to account for the fact that
the variable we observe or we can measure is not the one causally connected to other vari-
ables. This is illustrated in figure below: we are interested in variableZ, or, more precisely,
the effect of X and Y on Z. However, in this case, our measurement of Z is impaired by
some measurement error, and we therefore only have access to the variable Z*, which is
influenced both by the “true” behaviour of the underlying variable Z and the uncertainty
of the measurement process U .

Figure 15: Variables with Measurement Errors

U,: Measurement error

Z": Mismeasured variable

When constructing DAGs to represent causal models, it is paramount to remember that
these graphs are built to express testable models—not represent the most realistic way
any number of variables might be influenced by any number of effects. We can always find
(un-) observable effects that are influenced by further (un-) observable effects, etc. The
point is to build a simple model of the causal relationship we wish to explore in our
research question. As such, the DAG is a simplification. That being said, it must not be too
simple. In particular, we need to be careful to include all common causes of all nodes we
add to the graph, as these can lead to biases.

2.4 Elements of Causal Graphs

In the following section, we want to investigate the basic building blocks of causal graphs
in more detail. In particular, we will look at how three variables or nodes (say A, B and C)
can be connected by arrows or directed edges in directed acyclic graphs (DAGs). In particu-
lar, we look at mediators (chains of variables), forks (confounders), and colliders. Each
type of connection describes a different way that the variables can affect each other.

2.4.1. Fork or Confounder
The fork is a frequently encountered constellation in a causal graph. This is illustrated in

figure below, which shows the same constellation in three different ways. In each case, the
arrows exit variable B and enter variables A and C.
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Mediator

The mediator transmits
the effect from cause to
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outcome.

Figure 16: Fork or Confounder

A
B A C
B
@« ® @
A B C C

Variable B in the fork is often called a “confounder.” We have already previously encoun-
tered this situation when we analyzed the relationship between smoking, yellow fingers
and cancer. In that case, smoking (B) was a common cause between yellow fingers (A),
and cancer (C), and we found that A and C were associated even though there was no
causal connection between them. This can be illustrated by a further example (Pearl &
Mackenzie, 2018, p. 114): we want to investigate the reading ability of school children. If
we look into the data, we find an association between shoe size and reading ability. While
the correlation found in the data is observable, we cannot imagine why shoe size should
be related to the ability to read. However, there is a common cause to both shoe size and
the reading ability: age. On average, older children will have larger shoes and can read bet-
ter. The corresponding causal graph is: Shoe size <— Age — reading ability. Here, age
is a common cause to both shoe size and reading ability. This is why variable B in the fork
(age in this example) is called a confounder: it introduces a spurious association between
variables that are otherwise unrelated. Controlling for B, i.e., looking at the values of A
and C in separate regions of B, removes this association: If we look at, e.g., only children
of a specific age, the ability to read is no longer associated with the shoe size.

For further information also see Pearl and Mackenzie (2018, p. 114) Pearl et al. (2016,
p. 35ff).

2.4.2. Chain or Mediator
The chain connects the three variables (A, B and C) with directed edges via arrows:
A — B— C,i.e., Aisthe parent of B, Bis the parent of C, and A is the grandparent and

ancestor of C, as shown in part a of figure below. The variable B in the middle is also
called the “mediator.”
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Figure 17: Mediator

a) b)
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We can understand this construct using the example of a fire alarm (Pearl & Mackenzie,
2018, p. 113). Although we call them fire alarms, most detectors work by detecting the
presence of smoke and not, for example, heat. The corresponding DAG is Fire — Smoke —
Alarm. Hence, the For example, we could have a fire that produces no smoke (or so little
that the detector would not recognize it). In this case, the alarm would not be triggered
even if there was a fire. This means that mediator B (smoke) “screens off” the value of the
original cause A (fire): once we know the value of B, knowing the value of A will not add
any additional information.

Generally, we do not need to build causal graphs this way. For example, if we are inter-
ested in establishing whether smoking causes lung cancer, we could just use A for smok-
ing and C for lung cancer. We do not need to know the exact mechanism causing this to
happen. Or, if we want to know if some medicine (A) is the cause for the improvement in
the outcome (C) of the treatment, we do not need to know the underlying mechanism to
establish that the medicine works. Note that this is not the same as understanding why
the medicine works—here, we just want to establish the fact that the medicine is indeed
the cause of the improvement seen in the patient receiving the treatment (as opposed to
some other factor).

However, there are some cases in which we want to use a chain or put a mediator in
explicitly. For example, imagine that we know that a medicine works and at least part of it
works in a specific way. Then, we can draw the DAG shown in part b of figure above: We
know medicine A has an effect on outcome C of the treatment. We then use mediator (B)
to separate the effect the medicine has via a specific mechanism from the general effect.

An important question is whether or not we should control for mediators, i.e., look at spe-

cific values and add a little box around the mediator in the causal graph to illustrate that
we fix its value. In most settings, we do not want to control for the mediator in the chain as
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A proxy is a variable that
is used to measure a vari-
able that is not directly
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accessible.

fixing B would “screen off” the value of A, and we would not be able to learn about the
causal relationship. For example, if we controlled for smoke in fire alarms and only look at
cases B = 0 (no smoke), the alarm would never go off, regardless of whether we would
also observe a fire. Hence, when we have made the mistake of controlling for the media-
tor, we might conclude that fire has no causal effect on fire alarms. In practical situations,
the mediator is often replaced by a proxy, as illustrated in part c of figure above. For
example, we might take the affiliation to a religious group as a proxy for religious belief or
the membership to a political party as a proxy for political views. In each case, we cannot
directly measure the causal variable (B), but we can acquire data that is closely related to
it. Typically, proxies are not perfect representations of the variable itself. However, control-
ling for the proxies can have the same effect as controlling for the mediator itself.

However, there are some scenarios where we want to control for mediators.
Suppose we want to establish the causal effect of variable A on C. However, as a compli-
cation, both have a common but unknown or immeasurable cause (U), as shown in part a

of figure below.

Figure 18: Controlling for Mediators

a) b)
/\ @ , A »C
U > A »C
U

Hence, U is a confounder for the effect of A on C. Unfortunately, since U is immeasurable,
we cannot control for it by fixing its value. However, if we can measure a variable (M) that
mediates the effect of U on A, we can control for the mediator M instead of the con-
founder U, thereby determining the causal relationships.

The same holds if M is not a mediator for the effect of U on A, but for U on C.

It is important to note that mediators and confounders share the same independence con-
dition: the causal graphs are given by A «— B — C for the fork or confounder and by
A — B — C for the mediator or chain. In both cases, conditioning on B, i.e., fixing the
value of B makes the variables A and C independent. Hence, we cannot, for example, use
data alone to determine which causal structure is correct. Instead, we need to use our
expert knowledge and may need to expand the causal graph to determine which is cor-
rect.

For further details, see (Pearl & Mackenzie, 2018, p. 113) (Pearl et al., 2016, p. 35ff).
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2.4.3. Collider
Figure below shows three examples of how a collider could be used in a causal graph.

Figure 19: Collider

A
B A C
C
® >@< ]
A C B B

This construct is used when a variable has multiple causes. In our examples, arrows from
both A and B enter C, meaning that A and B are causes of C. We had already encoun-
tered colliders when we discussed common effects earlier in the example of cancer that
can develop from either a genetic or an environmental factor. This example also high-
lighted one of the most important aspects of working with colliders: when conditioning on
a collider, two variables that are otherwise unrelated become associated.

A further example illustrates this using three aspects of Hollywood actors: Talent —
Celebrity «+— Beauty (Elwert & Winship, 2014). Both talent and beauty contribute to the
success of actors. However, in the general population, these factors are unrelated, which
means that if we look at a sample of talented individuals, the distribution of the variable
“beauty” is not different from the sample where we set “talent = 0.” However, if we condi-
tion on the collider by setting “celebrity = 1,” we find that talent and beauty become asso-
ciated, even though there is no causal connection between them. This is because we know
that a given actor is a celebrity, and if this is not due to talent, beauty must play a stronger
role. Therefore, talent and beauty become negatively correlated.

Another way to see how colliders work is to use three variables (X, Y, Z) that are con-
nected via the simple equation Z = X + Y’; the variables X and Y are independent from
each other.(Pearl et al., 2016, p. 41). If we know the value of X, say x = 3, we would not
know anything about Y, since X and Y are unrelated. However, if we also knew the value
of Z, e.g., z = 10, then, knowing X, we are able to infer Y. Hence, X and Y become asso-
ciated if we know Z.

Note that if we condition on a descendant of a collider, this has the same effect as condi-
tioning on the collider itself, i.e., the two variables with arrows pointing into the collider

and further on into the descendant become associated when being conditioned on.

For further details, see Pearl and Mackenzie (2018, p. 115) and Pearl et al. (2016, p. 40ff)
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2.4.4. Paths

We have so far discussed the basic building blocks from which we construct causal graphs.
In particular, the variables are also known as nodes in the graph and may be known or
measurable or unknown or not measurable.

These nodes are connected via arrows and elements such as chains (or mediators), forks,
or colliders express how the variables are related to each other. Once we build a causal

Paths  graph, the nodes become connected by paths.
A pathis made of a
sequence of connections

(or edges) between the a

nodes.
@C:/Il PATH
A path in a causal graph is any route between any two nodes in the graph con-
nected by arrows. Some paths follow the direction of arrows, whereas other
paths do not.

It is important to remember that the paths are made from the arrows, but valid paths can
go in the direction of the arrows or against the direction of the arrows. This may be a bit
confusing at first, as we intuitively assume that a path follows the direction of the arrows
—but this is not the case.

Figure 20: Paths in a Collider

a) b) AtoC

B A C
c) Bto C d) AviaCtoB

/ % g %
o o——o ® @serzas @
B A C B A C

In figure above, we can explore how to determine the paths by using the example of a sim-
ple collider where A and B are common causes of C. Part a of the figure shows the col-
lider, and this simple graph has three paths:
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1. From Ato C'inthe direction of the arrow (part b)
From B to C'in the direction of the arrow (part c)

3. From A to Cin the direction of the arrow and then from C to B against the direction
of the arrow (part d)

A path can be either blocked or open, and to determine whether a path is open or not, we
need to look at the behavior of the elements on the path.

We have already seen examples of this when we looked at the association between varia-
bles. When we looked at the collider in terms of common causes, we saw that, for exam-
ple, the variables “talent” and “beauty” become associated when we know that an actor is
a celebrity, even though “talent” and “beauty” are unrelated amongst the general popula-
tion. We can also say that the path between “talent” and “beauty” is blocked by the col-
lider but becomes open when conditioning on the collider (Pearl et al., 2016, p. 46).

Eg‘l PATH RULE FOR COLLIDERS
A collider blocks a path and, hence, the association between variables along the
path they lie on. Conditioning on a collider opens the path, and the variables
become associated. This also holds for conditioning on descendants of colliders.

The opposite is true for chains and forks. In the case of forks, we have already seen this in
the example where smoking is a common cause of both yellow fingers and lung cancer.
Even though yellow fingers are not a cause of lung cancer, the two are associated because
they share a common cause (smoking). In this situation, the central element of the fork is
also called “confounder.” We then saw that we can remove this spurious association by
conditioning on the confounder in the fork. We can express this in the following rule that
holds for all non-colliders (Pearl et al., 2016, p. 46).

[‘@' PATH RULE FOR NON-COLLIDERS
A path through a non-collider (fork or chain) is open, meaning variables on a
path connecting any two nodes are expected to be associated.

Conditioning on the non-collider (e.g., on a confounder or mediator) blocks the

path and the association is removed. This also holds for descendants of non-col-
liders.

Note that colliders are path specific. If multiple paths go through a node, that node may
be a collider for some of the paths but not others.
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Figure 21: Paths in a fork
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2.5 D-Separation

Causal graphs, or DAGs, are a model of how we think a number of variables do or do not
depend on each other. If we think that a variable (X) has a causal influence on another
variable (Y’), we draw an arrow from X to Y . This also means that we expect to observe
an association or correlation between these variables in the data. If there is no causal
influence of X on Y, we do not draw an arrow. However, as we have already seen, this
does not generally mean that that we do not expect to observe an association between X
and Y in the data. In several examples, we have already seen that X and Y may be associ-
ated due to the structure of the graph. Depending on the arrangement of colliders, chains
and forks, as well as whether we condition on some of these elements (or not), we expect
to observe or remove an association between variables. Paths allow us to traverse the
graph and determine the relationship between any two variables, even if they are far apart
in the graph.

As we have discussed before, a causal graph is a tool that helps us understand a concrete
research question or a specific relationship. It is not intended as a “world-model” that
explains everything that may be connected to some variable we come across in any given
question. As we pointed out earlier, we can always find possible causes of causes of
causes and so on. Attempting to build such an inclusive diagram quickly leads us down
the proverbial rabbit hole. Instead, we focus on a specific question such as “Does smoking
cause cancer?” or “Is medicine X a cure for disease Y?” or “Does the vaccine work?” We
only need to include the variables that are relevant to the question at hand. In most cases,
we do not even include mediators in chains unless we are interested in their specific prop-
erties.

However, we do need to make sure that we include all relevant variables, all common

causes to each variable, as well as unobservable variables that influence one or more vari-
ables in the graph.
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One of the most important applications of the resulting graph is determining whether we
are prone to any bias in the analysis by measuring certain variables in the data, i.e., which
data we take and which variables we condition on. Remember that conditioning on varia-
bles can introduce an expected association or remove them, depending on how the varia-
ble is connected to other variables in the graph. We have previously discussed that we can
analyze the path between any two variables or nodes in or against the direction of the
arrows connecting them to determine whether we expect an association.

Unfortunately, variables can be connected by multiple paths in a complex graph, and
along each path, there will be any number of colliders, forks, or even chains. To be able to
analyze a graph, we need a criterion that determines whether we expect an association
between two variables in the data and if there is a way to remove unwanted associations
that lead to biases or if handling a specific variable introduces a new bias. This criterion is
called “d - separation” (where d stands for “directional”) (Pearl et al., 2016, p. 46). This
means that variables (nodes in the graph) X and Y are d-separated when either there is
no path between them (i.e., no arrow along the path) or if all paths between them are
blocked. If even one path is not blocked, the variables are d-connected, and we can expect
an association in the data. Pearl uses the example of pipes (Pearl et al., 2016, p. 46) that
represent the paths. If all pipes are blocked, water cannot be exchanged between the
nodes. If at least one pipe is open, water can flow.

As with pipes, paths only need to be blocked in one place.

As we have discussed before, the following nodes can block a path (Pearl et al., 2016,
p. 46):

+ acollider that is not conditioned on (or any of its descendants)
« achain or afork that is conditioned on

More formally, we can define d-separation as the following.

Eé DEFINITION OF D-SEPARATION
Let p be a path between nodes. Then p is blocked by a set of nodes Z if and only
if (Pearl et al., 2016, p. 46): 1. The path p contains a chain of nodes A— B— C
or afork A«— B— (' such that the middle node Bisin Z, i.e. that B is condi-
tioned on; 2. The path p contains a collider A— B <— C such that the collision
node B (or any of its descendants) is not in Z, i.e., that neither B, nor any of its
descendants, is conditioned on.

Set Z is said to d-separate X from Y if and only if Z blocks every path from a
nodein X to anodein Y (Pearl, 2009, p. 17).

As an example, consider the causal graph in figure below (Pearl et al., 2016, p. 47).
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Figure 22: A Complex Causal Graph

v
U

Here, we want to determine whether the nodes Z and Y are dseparated or if they can be
d-separated. First, we note that there is a fork involving the node T, i.e. T'is a common
cause to both Z and Y, and, hence, a confounder for these nodes. If not conditioning on
T, the path Z+— T — Y is open and Z and Y are d-connected. There is another path
between ZandY: Z— W <+— X —> Y . This path is blocked because W is a collider and,
following the above rules, blocks the path. However, if we condition on W, the path is
open again according to the rules. The nodes are d-connected, because there is at least
one path connecting the nodes, and we therefore expect an association. The same applies
if we condition on U, because U is a descendant of the collider TV.

Because X is a fork just like T, we can block the path again if we need to condition on
either W or U. We can summarize this as follows:

+ If we leave the graph as it is, then Z and Y are d-connected, because of the fork at 7.

« If we condition on T, then Z and Y are d-separated, because both the conditioned fork
and W, a collider, block the path.

« If we condition on either W or U, then Z and Y are d-connected, irrespective of
whether we conditionon 7.

« If we condition on T, then W and/or U, as well as X, and the nodes Z and Y are d-
separated again, because X is the central element of the fork W +— X — Y .

This example illustrates that analyzing causal graphs becomes quite complex even with a
small number of variables. In particular, we need to pay close attention to the elements
along a path connecting two nodes to determine whether any two nodes are d-connected
or d-separated, i.e., if we can expect to find an association between the variables in the
data. We also have to be careful which variables we condition on when analyzing the data.

Conditioning on the wrong variable, for example on a collider, will open a previously
blocked path and we can expect a spurious correlation. Qn th&€ other hand; we need to
condition on confounders to block the path. The causal graph allows us to determine
whether or not it is possible to block all paths and remove the expected association. This
is important because any spurious association can lead to a bias in our analysis in general.
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If two variables are d-separated without conditioning on any nodes along the path con-
necting them, these variables are unconditionally or marginally independent. If the varia-
bles become d-separated after some element along the path has been conditioned on, the
variables are said to be conditionally independent, given a set of variables that has been
conditioned on.

2.6 Conditional Independence

We have previously seen that we expect variables to be associated (or not) depending on
how they are related to each other in a causal graph. We have also found that conditioning
on variables can make them become dependent and we expect to find a correlation
between them in the data - or, conversely, that conditioning on variables makes them
independent.

Here, we want to give a more formal and thorough definition of the terms “independence”
and “conditional independence.” Two variables are independent if observing one does not
influence the other.

For example, while having a cough increases the likelihood that you may be ill (where we
make an observation that someone has a cough), noting that there are five books on your
table has no impact on the probability.

Formally, we can express the independence for two events A and B as
P(A|B) = P(A) (2.5)

This means that observing the value of the variable B does not give us any further infor-
mation on the likelihood that event A occurs. If the above relation does not hold, then A
and B are dependent. Dependence and independence are symmetric: if A is independent
or dependent of B, then Bis independent or dependent of A.

We can define dependence and independence for the variables X and Y in the same way
as we defined it above for events A and B. Here we say that the variables are independent
if for every value x of variable X and every value y of variable Y’

PX=z|Y=9y) =PX=x2) (2.6)
and, correspondingly, P(Y = y| X = x) = P(Y = y), as, again, dependence and inde-

pendence are symmetric. Variables are dependent if the above equation does not hold for
at least one combination of pairs of values for the variables X and Y.

In addition to this absolute independence, two events (A and B) can be independent
depending on a third variable (C). In this case, A and B are independent given C'if

P(A|B,C)=P(A|C) (2.7)
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only if”

This means that in the presence of event C (or, if we condition on C), A and B become
independent, i.e., the distribution P(A| B, C) is independent of B. We can understand this
intuitively by looking at the example of fire detectors (Pearl et al., 2016, p. 10): The event
“detector is on” is dependent on “there is a fire.” However, these detectors do detect the
presence of smoke and not fire itself. If we now fix the value of the event C to “there is
smoke” (i.e. condition on C and only look at events where there is smoke), we find that
the detector is always on, regardless of whether there is a fire nearby.

We can express this condition for variables as well where we adopt a more formal
approach.

E@ CONDITIONAL INDEPENDENCE
Let X, Y, and Z be variables and P( - ) a probability distribution over some vari-

ables. Then, X and Y are conditionally independent given Z if (Pearl, 2009,
p.11):

P(x|y,z) = P(x|z) whenever P(yAz) >0
Vre X,yeY and z€ Z.

We can express this in more detail: if for any combination where the variable X takes the
value z, Y takes the value y and Z takes the value z and we have P(Y =y A Z = z) > 0,
then P(X =z|Y =y A Z = 2) = P(X = 2| Z = ). Informally, when we know that the
value of Z is z and the probability distribution is greater than zero, P(Y =y A Z = z) > 0,
all information is already contained in Z. We do not learn anything else about X if we also
know the value of Y',. In this case, knowing the value of Z is enough. We can say “z screens
off X from Y (Pearl, 2009, p. 11).

The symbol | | is often used to indicate conditional independence (Dawid, 1979). Using
this symbol, we can write Eqn. (2.8) as:

(XL LY|Z) iff P(z|y,2) = P(x|z). (2.9)

Note that instead of using the symbol A for “and,” a comma is often used as an abbrevia-
tion. Hence, the following notations are equivalent P(AandB) = P(A A B) = P(A, B).

Eﬁ; SUMMARY
In this unit, we have discussed how causal graphs can be used to analyze
the relationship between variables. In particular, we have found that
correlation or association between variables may be counterintuitive
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and relying on correlations alone may lead to wrong results, as these
correlations may be spurious. We have used directed acyclic graphs to
represent causal relationships and we have learned how we can analyze
such a graph to determine whether or not to expect an association
between variables in the data. These graphs are built from nodes that
are connected with arrows, with each node representing a variable. Spe-
cial configurations of arrows and nodes such as chain, fork or collider
determine the properties of the causal graph. The d-separation criterion
allows us to determine whether we can expect an association between
any two nodes or if we can remove a spurious association by condition-
ing on a variable along the path. Granger causality is a concept related
to time series where one time series improves the prediction of another,
for example, a specific feature causes the occurrence of a specific behav-
ior at a later time in another time series.

HERE YOU CAN FIND THE VIDEOS FOR THIS UNIT.

Source: http://www.kaltura.com/tiny/odpjs

Alternative text:
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UNIT 3

STUDY GOALS

On completion of this unit, you will have learned ...

the difference between observations and interventions.

what confounders are and how to take them into account in causal analysis.

what counterfactuals are and how to use them to explore the “world that would have
been.”

what a randomized controlled trial is and why they work.

when we cannot perform a randomized controlled trial.
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3. INTERVENTIONS

Introduction/Case study

When we perform statistical studies and causal analyses, we are typically not content with
describing the issue at hand. Instead, we want to take action in some way. For example,
when developing a new medical drug, we want to establish how patients respond once
they receive it. This is called an intervention, that is, actively do something and exploit a
causal relationship, e.g., between administering the medicine and the health of the
patient.

Everyone has probably heard the famous sentence: “correlation does not imply causa-
tion.” To that effect, a correlation between variables does not necessarily indicate that
using these variables to describe or predict a given effect is a valid and useful approach.
On the contrary, we have previously discussed how spurious correlations can be created
by conditioning on some variables or failing to condition on others, and, without access to
the causal graph, it is very difficult to establish the causal effect of one variable on
another.

In some scenarios, we can establish a causal effect using randomized controlled trials
where all factors apart from one are either static or vary randomly. By influencing this one
factor, we can establish a causal relationship.

For example, when testing a new drug, we can choose a group of patients at random who
get the drug and a control group that does not.

If we then determine the outcome of the study, we can infer that the new drug works or it
does not. However, in many cases, we cannot perform such randomized controlled trials.
Under certain circumstances, performing the study may be unethical. For example, it
would be unethical to force a large group of randomly selected individuals to heavily
smoke over a long period of time simply to determine whether they would be more likely
to develop and die of lung cancer than those who do not smoke. In other cases, it may be
not be practical to perform a randomly controlled trial on a large scale, or it may not be
possible to control external efforts such as the weather.

In this unit, we want to understand the difference between observing and intervening or
“seeing versus doing.” Central to this are interventions, i.e., the answer to the question
“what happens if | do...” and counterfactuals, which describe an alternative reality: “if |
had done X instead of Y, what would have happened?”
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3.1 Seeingversus Doing

A core aspect of working with causal models is the understanding of how the system
described would behave if we changed it, either by actually performing the change or by
theorizing about what would have happened if we had done so.

This difference between observations and interventions (or “seeing versus doing”) can be
illustrated by the firing squad example (Pearl & Mackenzie, 2018, p. 39ff) illustrated in fig-

ure below.

Figure 23: Causal Diagram for the Firing Squad Example.

Court order (CO)

'

Captain (C)

Death (D)

In this example, a prisoner is to be executed by firing squad. The squad is divided into two
teams, A and B. The execution must be ordered by the courts (court order CO in the dia-
gram), the order is passed to the leader of the squad (Captain C) who gives teams A and B
the order to fire. As soon as the order is given, both A and B obey the order and fire, which
results in the death D of the prisoner. Each of the variables (CO, C, A, B, D) is binary and
can be represented by “true” (1) or “false” (0). Using the graph in figure entitled as "Causal
Diagram for the Firing Squad Example", we can dissect what has happened. For example, if
we observe that the prisoner is dead (D = 1), we can conclude that both team A (i.e.,
A =1) and team B (i.e., B = 1) have fired, following an order given by the captain (i.e.,
C = 1), which will only occur if the court order was issued (i.e., CO = 1). Hence, we know
that if the prisoner is dead, a corresponding court order was issued, because this is the
only constellation in which the prisoner can end up dead. Suppose we observe that team
A fired. What could we conclude about team B? Because of the causal structure, team A
would only fire if the court order was issued, which, in turn, means that the captain would
had to have given both teams the order to shoot. Hence, observing that team A shoots
implies that team also B shoots, since both teams obey the order from the captain. Note
that this reasoning holds even though A is not a cause of B, i.e., there is no arrow pointing
from Ato B.
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We also observe that we cannot reconstruct this causal graph from observational data
alone. If we are to record the variables, we only have two types of events: all variables are
true or all variables are false. Hence, all variables are perfectly correlated, even though we
know from our expert knowledge that A and B are only associated because they have a
common cause (the captain’s order) and don’t share a causal relationship otherwise. We
can find many analogous examples to illustrate that observational data alone do not
explain our world. For example, without interventions, we would abstain from seeking
medical expertise, as visiting a physician is strongly associated with being ill. We under-
stand that someone going to a physician is correlated with being ill. However, that obser-
vation is not what makes them ill. On the contrary, that person goes to the physician to
seek a (medical) intervention. Likewise, raw observation alone would suggest that fire-
fighters might be related to fires erupting, as we only see them in times of emergency.
From such observations, one could erroneously come to the conclusion that we should
disband all fire brigades. However, we know that this is nonsensical, as the firefighters are
only there to intervene.

We can now investigate what would happen in the firing squad scenario if we were to
intervene. Imagine that team A always fires, regardless of whether the captain issues an
order or not. This is not compatible with the causal graph we have discussed so far.
Instead, we need to change the causal graph, as seen in part a of figure below.

Figure 24: Interventions in the Firing Squad Example.

a) b)
Court order (CO) Court order (CO) = True
Captain (C) Captain (C) = True
A =True A = False B = True
Death (D) Death (D) =?

Since we intervene (i.e., set A = 1, regardless of any order the captain may have given),
we force variable A to take a specific value and erase any arrows pointing to A. We do this
because there is then no other cause that can influence the value of A and we force the
variable to take a specific value. As we can see from the modified causal graph, the pris-
oner will always die. Furthermore, we also conclude that team B likely didn’t shoot
because B is still waiting for the command from the captain, who, in turn, needs a court
order. Since team A always shoots, it’s less likely that a court order was given.

PREVIEW-PDF, erzeugt: 2024-06-18T14:30:01.73+02:00



Finally, we can investigate the counterfactual situation to the original situation from fig-
ure entitled as "Causal Diagram from the Firing Squad Example". Suppose the court order
was issued, the captain gave the firing order, team B complied, but team A decided not to
fire (despite the order). Would the prisoner be dead? This is called the counterfactual to
the original situation, as we are taking a fictitious situation into consideration: Normally,
team A would obey the order and fire—but what would happen if it did not? In this case,
we remove the arrow from C' into A to indicate that A does not obey the order (C = 1)
andset A = 0.

Unfortunately, even though team A changes its course, the prisoner will still die, as team
B willstill carry out the order.

We can illustrate the concept of counterfactuals with another example: Suppose a patient
follows a treatment and takes a specific medicine. We then observe a specific outcome, for
example, the patient gets better. Then, we can investigate the counterfactual. What would
have happened had the patient never taken the medicine? By definition, we cannot
observe the actual outcome of the counterfactual scenario, as the patient has already
taken the medicine and we have observed the corresponding outcome. To consider a
counterfactual is to establish a fictitious world where we can go back in time, make sure
that the patient does not take the medicine, and, crucially, change nothing else. If the
patient does not get better in this hypothetical world, we would conclude that the medi-
cine had a causal effect on the patient’s real-world outcome.

Using these examples, we can also understand the difference between intervening on a
variable and conditioning on them.

@é DIFFERENCE BETWEEN INTERVENTION AND CONDITIONING
The difference between intervening on a variable and conditioning on it is as fol-
lows (Pearl, 2009, p. 54): Intervening on a variable means that we fix the value of
the variable and erase the arrows leading into the corresponding node in the
graph. Hence, we change the system (and the graph). If we condition on a varia-
ble, however, we restrict the variable to a subset of values, but we change nei-
ther the real system nor the causal graph representing it.

It is important to note that interventions refer to individuals, whereas conditioning gener-
ally refers to populations. In particular, when we condition a variable X to the value x, we

observe the value y of variable Y with probability P(Y = y| X = z). This means that
P(Y = y| X = ) describes the distribution of the variable Y for the case that X = z, i.e.,
for the subset of individuals in which the value of the variable X happens to be z. On the
other hand, if we intervene, we force each individual in the population to take the value
X = z (Pearl et al., 2016, p. 55). To make this distinction explicit, we introduce the follow-
ing notation:
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[‘@' DO-OPERATOR
When we intervene on a variable (as opposed to conditioning on them), we

express this as do(X = x) (Pearl et al., 2016, p. 55).

Hence, P(Y = y| X = ) is the probability that Y = y conditional on finding X = z,
whereas P(Y = y|do(X = x)) is the probability that Y = y if we force X = z through our
intervention (Pearl et al., 2016, p. 55).

In the discussion above, we have implicitly assumed that the intervention is binary, as in
the example of the firing squad. There, we considered the case where team A would fire
irrespective of whether the captain (C) would issue the order. However, in general, inter-
ventions will follow a dynamic policy (Pearl et al., 2016, p. 70 ff). In these cases, the value
of the variable X that we intervene on is specified by another variable or set of variables in
a specific way. For example, we can imagine that the value = of variable X is given by
x = g(z), where g(z) is some functional form that depends on another variable Z with
value z. We can write this as P(Y = y|do(X = g(z2)).

As a concrete example, consider a physician treating a patient. The dose of the medicine
the patient receives depends on the value of certain measured parameters such as blood
pressure. If a patient’s blood pressure is too high, they will be asked to take the medicine
and the dose of that medicine depends on how high the blood pressure is. In this scenario,
we say that the action (i.e., force X = z for all individuals) is conditional on the value of
variable Z.

3.2 Confounders and Counterfactuals

We encountered both confounders and counterfactuals when we investigated how to
build causal graphs and how to distinguish the concepts between observation and inter-
vention, i.e., seeing versus doing.

3.2.1. Confounders

Earlier, we saw that confounders generally rise when there is a common cause of multiple
effects. For example, we have seen that both yellow fingers and lung cancer are caused by
smoking. Looking at data, we expect to find an association or correlation between yellow
fingers and lung cancer, even though yellow fingers are not a cause of lung cancer. In this
example, smoking is a confounder. If we didn’t include it in our analysis, we would include
the variables “yellow fingers” and “lung cancer,” as they are correlated.

However, the correlation is spurious. If we condition on smoking, e.g., only look at people

who do not smoke, the correlation disappears; having yellow fingers does not alter your
chance to contract lung cancer if you do not smoke. This also applies to variables that are
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continuous and not binary. Pearl explains this with another example (Pearl & Mackenzie,
2018, p. 138): Imagine we test a new medicine and split the participants of the study into
two groups, one that receives the drug and one that does not. However, it turns out that,
on average, the participants in the group receiving the medicine is younger than those in
the control group. Hence, the age of the participants becomes a confounder; we cannot
directly translate the results from the study, as the two groups may behave differently due
to the age of the participants. However, we can control for age and compare the two
groups by stratifying by age, meaning that we form subgroups according to age within
each group. We can then take the weighted average over all age groups, taking the relative
population in the group into account, and then compare the group that receives the medi-
cine to the control group.

While controlling for age is the right thing to do in the above scenario, it raises an impor-
tant question: Which variables should we control for? Naively, the safest bet seems to be
to control for everything. We could control for any variable imaginable, including age, gen-
der, weight, height, etc. However, it is likely that we would only complicate the situation;
we have already seen that conditioning on colliders introduces a (spurious) association
between variables. Controlling for variables in the central element of a collider will make
the results worse than if we leave the variables alone. Causal diagrams allow us to deter-
mine which variables we need to control for and which must not be controlled for.

Historically, there have been several ways to define confounding and confounders. One
definition is: “A confounder is any variable that is correlated with both X and Y (Pearl &
Mackenzie, 2018, p. 152).

Another definition is given by Hernberg(Hernberg, 1996, p. 316): “Formally one can com-
pare the crude relative risk and the relative risk resulting after adjustment for the potential
confounder. A difference indicates confounding, and in that case one should use the
adjusted risk estimate.

If there is no or a negligible difference, confounding is not an issue and the crude estimate
is to be preferred. Personal judgment comes into play when what is “negligible” is
decided. Some authors show both estimates and leave the decision to the reader.” Infor-
mally, Hernberg suggests comparing the results when controlling and not controlling for a
variable. If the difference between them is small, that variable is not a confounder and we
can use the result when not controlling for that variable. As Hernberg points out, this
approach leaves much to the interpretation of the author or the reader: which variables
do we consider for controlling? Even in the best cases, we cannot look at all conceivable
variables. Furthermore, what does “negligible” mean? The above discussion highlights
that this definition of confounding is unlikely to result in a stringent approach.

Another approach to define confounding is the “classic epidemiological definition of con-
founding” that consists of three parts (Morabia, 2010)(Pearl & Mackenzie, 2018, p. 152): A
confounder of X (treatment, e.g., medicine being administered) and Y (outcome, e.g.,
patient gets better) is a variable Z:
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If variables are not
directly measurable, we
can often use proxies that
are measurable and
closely related to the vari-
able in question.
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1. thatis associated with X in the population at large.
2. thatis associated with Y among people who have not been exposed to treatment X.
3. thatshould not be on a causal path between X and Y.

The third part of the definition is a relatively recent addition. Furthermore,

we should note that both the first and the second part of the definition do not require any
causal links. The definition is based entirely on statistical concepts, and Z is assumed only
to be correlated to X and Y but is not required to have any causal connection. However,
consider the following constellation:

X—Z—Y

In this case, Z fulfills the “classical” definition above, i.e., the first two points. However, Z
is not a confounder. Rather, it is a mediator, as it lies on a causal path between X and Y.
Now consider the case where Z is a descendant of M in the chain X — M — Y, which
we can illustrate as

X— M-—Y

1
Z

In this case, Z is associated with X and Y and fulfills the first two requirements of the
epidemiological definition (as before). However, now Z is a descendant of the mediator M
and does not lie on a causal path between X and Y . Hence, the third requirement of the
definition is also fulfilled, and yet, controlling for Z would be a disaster; since Z is a
descendant of M and M is a mediator in the chain X — M — Y, Z acts as a proxy of
M, and controlling for Z has the same effect as controlling for M, at least to some degree.
As we have discussed before, proxies are generally not perfect substitutes for the variable,
but controlling for them has (almost) the same effect as controlling for the “real” variable.
For example, we might take the membership to a religious community as a proxy for reli-
gious beliefs or the membership in a political party as a proxy for political orientation.

Using the do-operator, we can define confounding more formally:

[‘@' CONFOUNDING
Confounding is whenever P(Y| X) # P(Y |do(X)) (Pearl & Mackenzie, 2018,
p. 151) (Pearl, 2009, p. 184).

Here, P(Y'| X) is the conditional probability that we observe some value of Y = y given
that we have observed X = z. The quantity P(Y |do(X)) describes the probability of
observing Y = y if we perform a (hypothetical) intervention that forces X = x. Whenever
observing the variables taking a specific set of values for X and Y and forcing X = z and
observing the response of Y leads to a different result, we know that there is a confounder
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that we haven’t yet accounted for. Coming back to the example of how smoking is a com-
mon cause and confounder of both yellow fingers and cancer, we can observe the ratio of
people with yellow fingers who develop cancer at some point in their life. However, if we
paint everyone’s finger yellow, that does not alter the chance of getting cancer. Therefore,
there must be something that causes both cancer and yellow fingers, and we need to look
for a confounder and avoid confounding.

We now investigate how we can calculate the causal effect in the presence of a confounder
(Pearl et al., 2016, p. 55ff). Suppose X represents the treatment in a medical study, for
example, getting the drug (X = 1) or not (X = 0). We then want to estimate if the new
medicine has an effect, ie., if the difference
P(Y =1|do(X =1)) — P(Y = 1|do(X = 0)) is not zero when Y = 1 represents that the
patients get better. This is also called the “average causal effect” (ACE). In this simple
example, we only look at whether we administer the new drug at all. However, generally
speaking, we could also investigate different doses and grades of improvement seen in the
patients. Hence, X and Y may have several different values or be continuous. If there is no
confounding, we can simply perform the trial and compare the results. However, we sus-
pect that there is a third variable involved that may confound the results. For example, we
may suspect that the gender of the patients plays a role. We can then introduce a con-
founder (Z) representing the gender and obtain the graph in part a of figure below.

Figure 25: Graphs for Adjustment Formula

a) Before do-operator b) After do-operator
VA VA

Z is a common cause to X and Y and is, therefore, a confounder—just like in the smoking
example concerning yellow fingers and cancer. However, in our current example there is
also a direct causal effect of X on Y, as we, of course, hope that the new medicine does
indeed have a causal influence on the recovery of the patients. In order to proceed, we
need to compute the probability P(Y = y|do(X = z)), i.e., the probability that we
observe Y = y when we force X = z. Forcing X = z, i.e., applying the do-operator modi-
fies the causal graph, as shown in part b of in figure entitled as "Graphs for Adjustment
Formula": Since we force the value of X, there cannot be any causal connection from the
confounder Z to X. Any influence is severed, since we now control the value of X our-
selves. Consequently, we remove the arrow from Z to X. In terms of probabilities, the con-
ditional probability of the modified graph in part b of the figure is then the same as when
applying the do-Operator: P(Y = y|do(X = z)) = P,,(Y = y| X = z). A key observation
is that Z is not influenced by our intervention as symbolized by the do-Operator. While we
have removed the arrow from Z to X, the values of Z remain the same. In the medical
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example, whether we make the patients take the medicine (X = 1) or not (X = 0) does
not change their gender (Z). Hence, if we have a ratio of 50% to 50% male/female at the
start, we will have the same ratio after applying the do-operator. Or, in the language of sta-
tistics, the marginal distribution of P(z) remains invariant. Furthermore, the probability
P(Y=y|Z=z, X=x) remains the same as we do not change the arrows from X into Y or from
Z into Y . Informally, the probability remains unchanged, because the outcome in Y will
not change even if we observe X = z or force (do(X = z)). Hence, we observe the invari-
ance conditions in the modified graph following the intervention using the do-operator:

P.(Z=2=P(Z=2) (3.1)
P (Y=ylZ=2X=2)=PY=y|Z=2X=21) (3.2)

We also note that X and Z are d-separated in the modified graph, as there is no connec-
tion between the variables. We have removed the arrow from Z to X, and Y is a collider
on path X via Y to Z, blocking the path unless conditioned on (which we don’t do). This
implies that

Pm(Z = Z|X = x) = Pm<Z = Z) = P(Z = Z) (3.3)

In the first part of this equation, we make use of the fact that Z is independent of X and,
in the second, that the intervention via the do-operator does not change the marginal dis-
tribution of Z. We can then compute the effect of the intervention:

P(Y:y’d()(X:x)):Pm<Y:y‘X:x) (3.4)
:ZPm(Y:gAX:x,Z:z)Pm(Z:z|X:m) (3.5)
z
= ZPm(Y =yl X=u2,Z=2)P,(Z=2) (3.6)
z

In this derivation, Eqn. (3.4) follows immediately from the above definition of applying the
do-operator: This is how we arrived at the modified graph. In order to arrive at Eqn. (3.5),
we make use of the total law of probabilities (Pearl et al., 2016, p. 13):

P(A)=P(A|By)P(By) + P(A| By) P(By) + -+ P(A| B, P(By)

n

=) Plals)ps)

i=1
where the sum runs over all values that index i can take, i.e., all possible “sub-events” B;

that may contribute to A. The reason why we describe the probability for A like this is
because it is often easier to describe the conditional probabilities of individual events and
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the probability that these occur than the total probability that A will occur. In our case,
the variable Z can take two values: male and female. We then exploit the fact that X and
Z are independent (d-separated) to arrive at Eqn. (3.6). Using the invariance conditions in
Eqgn. (3.1), we can express the effect of the intervention using the do-operator.

Eg‘l ADJUSTMENT FORMULA

P(Y =y|ldo(X =z)) = ZP(Y: y| X=2,Z=2)P(Z=2)

z

(Pearl et al., 2016, p. 57)

This adjustment formula describes what we mean by “controlling for Z”: We compute the
association between the X (called the “treatment”) and Y (the “outcome”) for each possi-
ble value of the confounder Z and then take the average. It is important to note that this
can be determined from the data as the right hand side of the adjustment formula only
uses observational values. It is also important to note that, in this case, Z is always a
parent of the treatment X and an observable confounder. This means that Z is a “real”
variable we can measure and that the arrows emerging from Z point into X. The parent is
often denoted pa (for parent) instead of Z in the adjustment formula, i.e.,
P(Y =y|X =2, PA = 2)P(PA = z) (Pearl etal., 2016, p. 59).

We can re-write the adjustment formula using the rule of product composition for DAGs
(Pearl, 2009, p. 29): In acyclic graphs, the joint distribution of the variable is given by the  Acyclic

product of the conditional probabilities from the parents to the children in the nodes: In an acyclic graph, no
path between nodes

points back to a starting
node.

Play, @y, 3,) = | [Pl PA) (3.7)
7

where PA; are the parents of the nodes z;.

In our graph, variable Z is the parent of X and Y. If we multiply and divide the summand
of the adjustment formula by P(X = x| Z = z) (which doesn’t change anything as it is
equivalent to  multiplying by one), then the numerator becomes
PY=y|lX=u2,Z=2)P(X=2|Z=2P(Z==z), which is the joint distribution
P(X =2,Y =y, Z = z). The new adjustment formula is (Pearl et al., 2016, p. 59):

Ply|do(a)) = Z”f,;f;’;?;f; 2 (3.8)

z

where we remember that Z is a parent of X. The quantity P(X = x| Z = z) is also called
the “propensity score.”
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3.2.2. Counterfactuals

As we have seen earlier, counterfactuals explore the world that would have been. The
interventions discussed above relate to a population or a group such as in the following
scenario: what is the causal effect if we force all members of the medical study to take the
medicine versus prohibit them from taking it? Conversely, counterfactuals predominantly
apply to individuals.

For example, “Jon has taken the red pill and was cured of the disease—what would have
happened had Jon taken the blue pill?” This is a purely hypothetical question, as Jon has
already taken the red pill and we have observed the outcome. We cannot travel back in
time and let Jon take the blue pill. We could, however, try to find someone similar to Jon
and have that person take the blue pill. However, this ultimately only approximates an
answer concerning Jon, as the two individuals are not identical.

The above discussion illustrates that the methods we have discussed so far are not suffi-
cient and that we cannot express the counterfactuals with the do-operator. Instead, we
need a new notation. Using the above example, we let X denote the treatment: Jon takes
the medicine (X = 1) or does not (X = 0). Y denotes the outcome: Jon gets better
(Y =1) or does not (Y = 0). In the counterfactual world, we want to solve the following
question: Given that we know that Jon took the medicine (X = 1) and got better (Y = 1),
what is the probability that Jon’s condition would have worsened (Y = 0) had he not
taken the medicine (X = 0)? To express this, we use the following notation:

PYx_o=0|X=1Y=1)=7 (3.9)

This notation highlights the difference between two different “worlds”: We know the out-
come of the “actual” world (X = 1) but would like to know the probability in a different
world, one where X = 0. This difference is a critical aspect of counterfactuals (Pearl &
Mackenzie, 2018, p. 287): If we didn’t have hindsight into what has actually happened in
the “real world,” there would be no difference between
P(Yy_g=0) and P(Y =0]|do(X =0)).

How do we then work with counterfactuals and determine the value we are interested in?
Following Pearl (Pearl et al., 2016, p. 93 ff), we assume that we have some causal model M
in which two variables, X and Y/, are connected:

V(u) =Yy (u) (3.10)

where Mz is a modified model in which we have replaced X with X = z, i.e, the counter-
factual value we are interested in. Then, the counterfactual Y, (u) we want to compute is
the solution to the modified model with the value set to the value X = z. So far, we have
only considered graphical representations where the causal graph represents a statistical
model. In order to work with counterfacutals, the original model M and the modified
model Mz need to be a set of equations, also known as structural causal equations.
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These can also be used to study the effect of interventions with the do-operator. However,
the critical distinction is that we focus on individuals when considering counterfactuals,
not populations.

We follow a simple example focused on students studying for a course (Pearl et al., 2016,
p. 94 ff). The students are offered the chance to join a remedial program. This is the varia-
ble we can control, the “treatment” (X) where the value of X signifies the amount of extra
tutoring time in the program. The students also do homework (H), and both the extra
tutoring and the amount of homework a student does are causally connected to their per-
formance during exams. Participating in the program can both help in the final score
directly and when doing homework, which, in turn, helps improve exam performance. In
our example, to avoid any selection bias, students are assigned to the program randomly.
The resulting causal graph is shown in part a of figure below. The example makes a num-
ber of assumptions:

« All variables are standardized, i.e., they follow a Gaussian distribution with mean 0 and
standard deviation 1. This means that if, e.g., the exam score is positive, the student
scored better than average in the exam.

+ The simple model assumes linear relationships between all variables.

This implies we do not consider non-linear, higher order, or threshold effects.

« We assume that each variable is influenced at most by one unmeasured exogenous vari-
able. These variables can have some influence on the variable in the graph, but we
assume that these exogenous variables only influence one variable directly (and not
two or more) and that there is no cross talk between these exogenous variables. In this
simple linear model, these variables (U) represent the variation between students, i.e.,
some students will perform better than others, for example, due to talent.

Figure 26: Example for Counterfactual Reasoning

a) Model b) Counterfactual for a student
Encourage- Home- Exam Encourage- Home- Exam
ment work score ment work score
X H Y X H=2 Y

>
>

c=04

Then, the causal graph can be “translated,” so to speak, into the following set of linear
equations:

X =Uy (3.12)
H=aX+Ug (3.12)
Y = bX +cH + Uy (3.13)
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UUin: 0 VZ,] S X, H,Y (314)
This means that

« students are assigned randomly to the “treatment” X, meaning there is no arrow into X
from external causes apart from the exogenous variable Uy that summarizes all
unmeasured external influences.

Hence, X only depends on Uy, as seen in Egn. (3.11).

+ the amount of homework a student does only “listens” to X, meaning there is an
unknown coefficient a connecting the two and the exogenous variable Uy, as seen in
Eqgn. (3.12).

+ the exam score is causally influenced both by the participation in the program and by
the amount of homework, as well as an exogenous variable Uy, as seen in Egn. (3.13). In
the linear model, these connections are represented by the coefficients b and c.

» all exogenous variables are uncorrelated and do not influence each other, as seen in
Eqgn. (3.14).

Before we can use the model, we need to determine the unknown coefficients (a, b, ).
These can be measured using population data where we look at a large number of stu-
dents and determine the numerical values. In the example, we assume that a = 0.5,
b=0.7,and ¢ = 0.4 (Pearl et al., 2016, p. 95). With these values, we can now look at indi-
vidual students. Suppose we measure for a particular student: X =0.5, H =1, and
observe that this student scored better than the average student (Y = 1.5). This is the
“real world,” i.e, the one where we can measure both the treatment and the outcome.
Using the equations above, we can use all values to determine the exogenous variables to
be Ux=0.5, U4 =0.75, and Uy =0.75. As we have said above, these variables
describe the “unique properties” of the student itself, i.e., their variation when measured
against all other students.

We can then ask the counterfactual question: what would have happened had the student
spent more time on homework instead of the time they have spent so far? What would
have happened if H = 2 instead of H = 1, everything else being equal? To answer this
question, we need to modify the model as shown in part b of in figure entitled as "Example
for Counterfactual Reasoning". We remove the arrow from X to H, as the participation in
the study program no longer has an influence on the amount of homework the student
does. Instead, we set H = 2, since this is what we want to know. According to Eqn. (3.10),
the value of the counterfactual is given by the solution to the modified model, i.e., the one
in part b of figure entitled as "Example for Counterfactual Reasoning". We are interested in
the counterfactual solution for the hypothetical “outcome” Y _ », i.e., the performance
in the exam had the student studied signifianctly more than before, all else being remain-
ing the same. Using the numerical values b=0.7,¢c=0.4, Uy =0.75,and X =0.5
(the student still participates in the remedial program for the same time as before—the
only thing we change is the amount of homework) and H = 2, we obtain Yy _5=1.9,
i.e., the performance of the student is now almost 2 standard deviations above the aver-
age,up fromY = 1.5in the “real world.”

The same approach can then be followed for non-deterministic models.
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However, in this case, we cannot uniquely identify the exogenous variables.
We need to assign a suitable probability distribution for each.

A related concept to the approach analyzing counterfactuals described above is that of
“potential outcomes.” This was developed by Rubin (Rubin, 1974). The framework uses
the same notation to denote the counterfactuals: Yy _ ,(u) or Y (u) is the counterfactual
outcome for some “unit” (or individual) u if the value of the “treatment” we can control
had been X = x. In fact, Pearl has taken the notation from the potential outcome model
and used it for his analysis of counterfactuals (Pearl, 2009, p. 243). The main difference
between Rubin’s potential outcome framework and Pearl’s counterfactual framework is
that Pearl’s framework is based on causal graphs that are connected to a structural model.
The dependencies of the variables can be derived from the graph and causal model. In
Rubin’s framework, however, there is no underlying causal graph or structural model.
Instead, the questions about counterfactuals are formulated algebraically. This leads to
three assumptions that have to be accepted to work in that framework (Pearl & Mackenzie,
2018, p. 280)(Pearl, 2009, p. 100):

+ The effect of a treatment on an individual is independent of what treatment (if any) the
other individuals get. This assumption is generally fulfilled unless the treatment is a
scarce resource in emergency situations. This assumption is called the stable unit treat-
ment value assumption (SUTVA).

+ The treatment is assumed to be “consistent,” meaning that if you receive the treatment
(e.g., take medicine), the effect remains the same regardless of whether you took partin
the study. For example, you might take an aspirin against your headache. The headache
would go away if you took the aspirin, as part of the study or in everyday situations.

« The variables must meet the requirement for conditional independence
Y(z) L 1 X|Z (“conditional ignorability”).

The last assumption specifying the “conditional ignorablity” is the most difficult to under-
stand. It can be interpreted in the following way: “The way an individual with attributes Z
would react to treatment X = x is independent of the treatment actually received by that
individual” (Pearl, 2009, p. 100). This means that if we control for any confounders in Z,
those individuals that have one potential outcome Yy = y are as likely assigned to either
the treatment group (i.e. they receive the treatment X = x) or the control group (that
does not receive the treatment), as individuals that have a different potential outcome
Y x = y’: The value of the potential outcome does not influence whether an individual
would end up receiving the treatment. This is similar to the concept of “exchangeability”
by Greenland and Robins (Greenland & Robins, 1986). This means that we randomly assign
the participants to two groups: group A and group B.

Since the participants are assigned randomly, the two groups are homogeneous and have
the same characteristics. Otherwise, we could not establish a causal effect from the obser-
vation of the outcome of the two groups, e.g., if one group in a medical study was healthy
and the other not. We then make a choice, e.g., group A receives the treatment and group
B doesn’t and we observe the outcome. However, we could also have made the choice
that group B receives the treatment and A doesn’t. Hence, the groups are exchangeable.
The challenge with the concept of “ignorability” is that it is difficult to confirm that it is
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Placebo

In medicine, a placebo is
a substance that looks
like medicine but has no
effect.

Double-blind

In a double-blind study,
neither the patient nor
doctor know if the patient
receives the actual medi-
cine or a placebo.
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fulfilled. In the structural approach followed by Pearl, confounders are defined in the con-
text of a causal graph with an associated model. Using this model, we can determine all
confounders and determine the relationship between all variables. Admittedly, our model
may be incomplete or wrong. Regardless we do have all (technical) means to develop and
test such a model. The potential outcome framework by Rubin is not based on causal
graphs. It is, therefore difficult to determine whether the assumptions, in particular the
ignorability requirement, are fulfilled.

3.3 Causal Inference versus Randomized
Controlled Trials

Thus far, we have encountered the difference between seeing and doing, where we com-
pared observations and interventions, explored the “world that would have been” with
counterfactuals, and removed confounding by adjusting for a specific set of variables for
which we we have learned to be careful to distinguish between the variables that we
should control for and those we do not. This should give us all the tools we need to esti-
mate the causal effects. However, when looking at the literature, the randomized control-
led trial (RCT) is seen as the gold standard of establishing causal effects. For example, if a
new medicine is to be approved, it first needs to be tested in a clinical trial. The RCT was
popularized by R. A. Fisher (Box, 1978, chap. 6), who used the example of a field that is to
be treated with one of two possible options for fertilizers. To find out which fertilizer is bet-
ter, Fisher discusses an experimental approach. The farmer could use fertilizer A on one
half of the field and B on the other. However, this would be subject to confounders, as the
two halves may be different. The top half may have a different drainage than the bottom
half, or the left half a different texture or intrinsic fertility than the right. Swapping the
halves in the next year would introduce weather as a confounder.

Initially, Fisher then devised an elaborate grid called “Latin square” to cover all combina-
tions of fertilizer, soil type, plants, etc. Yet, however elaborate such a testing scheme is
devised, one can always think of one more confounder that needs to be included. In the
end, Fisher realized that only random assignment would solve this problem; the experi-
ment needs to be repeated many times to account for natural (statistical) variations, and
the type of fertilizer is assigned randomly. This is the random controlled trial because we
are assigning the “treatment” randomly within a controlled study. In a clinical setting, we
would take all the test subjects and randomly assign them into group A and group B. We
then decide (randomly) whether group A receives the medicine we want to test and B the
placebo (or the other way round). In this case, the random aspect defines in which group
each individual is placed. There is no mechanism other than a random number influencing
how the decision of which participants receive the medicine is made. To avoid any lurking
bias, the trial is typically performed double-blind. The crucial aspect is that this randomi-
zation erases all arrows pointing from potential confounders into the variable (X) describ-
ing the treatment. Because the treatment is assigned randomly, there is no possibility that
this assignment can be influenced by any other variable. Hence, even if there are con-
founders present, they are removed. This is why randomized controlled trials work and
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allow us to establish the causal effect. We can, of course, only observe the actual outcome
in the groups of the trial, e.g. “received treatment” (Y x _ ;) and “has not received treat-
ment”(Y x _ (), i.e., the treatment and the control group.

Randomization ensures that the means of the outcomes in the study will converge to the
means if we could observe all potential outcomes. The causal effect observed in the trial
will hence converge to the “true” causal effect E[Yx _; — Yx _ o] that we could deter-
mine if we could calculate all counterfactuals. This is because the randomization implies
that there is no intrinsic bias when assigning the individuals to a group. This also explains
why the treatment and control group need to be “sufficiently” large.

If the groups are too small, the statistical fluctuation of the observed effect may be too
large compared to the causal effect we wish to establish. The smaller the effect, the larger
the two groups need to be to get an accurate estimate of E[Yy _ ; — Yy _ o|. This differ-
ence is also called the average treatment effect (ATE).

Remember that the causal effect is defined at the level of individuals. What we are really
interested in is the causal effect on an individual. In such a scenario we observe the out-
comes when the same individual has received the treatment (Y x _ 1) or not (Y x _ (). This
can, of course, not be observed in practice, since we cannot both give and not give the
treatment to the same person. Hence, one of the outcomes is a counterfactual describing
what would have happened. What we can observe is the average treatment effect ATE=
E[Yx _,— Yy _ ) of those assigned to receive the treatment (or not) at the group level.
This is because the expectation value is a linear operator and, hence,
E[X +Y] = E[X] + E[Y]. In our case, this means that the average of the difference is
equal to the difference of the averages, and, hence, we can write ATE =
E[Yx 1] — E[Yx |- In a random controlled trial, we assign individuals randomly to
the treatment and control group and, by observing the average in each group, we can esti-
mate the average treatment effect.

Related to the ATE are the Average Treatment effect on the Treated (ATT) and Average
Treatment effect on the Control (ATC). These refer to the average causal effect when look-
ing only at the group that has received the treatment (ATT) or the control group (ATC).
Note that both ATT and ATC contain an unobservable counterfactual, as we cannot meas-
ure the outcome of individuals in the treatment (or control) group that have not received
(or have received) the treatment. In the case of a randomized controlled trial, ATE is the
same as ATT, since we assume that both the group receiving the treatment and the control
group have the same properties.

Whether we see an RCT as a gold standard is probably more a question of preference and
of the social dynamics within a given research community.

The more important question is whether they are necessary given all we know about how
to deal with confounders. The answer is: no, not really.

If we know all relevant confounders and measure them, we can adjust for them (Pearl &

Mackenzie, 2018, p. 149). However, the randomization in the RCT ensures that the “treat-
ment” is assigned randomly. This means that all arrows from any confounders pointing
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into the treatment variable are severed, not just the ones we think of. If we do not perform
a randomized controlled trial, we have to convince ourselves (and others!) that we have
indeed considered and adjusted for all confounders. By design, an RCT does this for us
automatically. Moreover, some confounders may be difficult to determine.

However, when we want to perform a random controlled trial, we have to make sure pre-
requisites and assumptions are fulfilled. The group of people participating in the trial
needs to be representative of the population we want to analyze. For example, if we want
to study the effect of extra tutoring on university students, looking at kindergarten chil-
dren will not be helpful. We also have to look at how we obtain the participants of the
study should the study involve individual persons. In most cases, we cannot grab people
at random off the street and add them to the trial.

Typically, we need to work with volunteers. However, the act of volunteering may also
introduce a bias. Some terminally ill patients may opt to participate in a study because
they have nothing to lose. Their health is also severely compromised, which may skew
their response to treatment.

In some studies, financial compensation is offered for those who volunteer, which again
may introduce a bias regarding the people who are attracted by this, etc.

If the study runs for a prolonged length of time, we also need to make sure that the partici-
pants do not drop out of the study while the study is being conducted. For example, if we
want to test the effectiveness of a new medicine targeting high blood pressure or choles-
terol, the study will likely run for weeks or months. If the patients do not report regularly,
the resulting data may be biased, particularly, if the patients do not drop out randomly.
This is called “loss of follow-up.” Typically, all aspects of the trial are defined before it is
started. This includes, for example, the length of the trial, the actual treatment, and how it
is administered. For example, it may be decided that a procedure is performed as the
treatment or a medicine is administered in specific doses.

Ideally, one should then acquire the data in the study but not perform the full analysis
until all data are recorded. This is done to avoid a potential bias that arises if an intermedi-
ate result we obtain while recording the data and analyzing the data while the study is per-
formed, may show a large statistical fluctuation which in turn may mean that such an
intermediate result may not be representative of the final result. However, that may lead
to a conundrum, especially in medical studies: would it be ethical to withhold a treatment
from the control group if the group receiving the treatment has already shown significant
improvement at a preliminary analysis? Therefore, in many cases, data are analyzed at
fixed intervals and a decision is made to continue or conclude the study. In a case of signif-
icant positive results, studies may then indeed be ended early and the treatment offered
to all participants, e.g. Auvert et al. (2005); Gray et al. (2007); Bailey et al. (2007).

While RCTs do indeed offer practical benefits, performing one may not always be possible.
For example, interventions may not be possible, or it may be unethical to force the partici-
pants to receive a treatment that we want to prove is harmful. In these cases, using causal
analysis on observational data is the only way we can establish the causal structure and
the causal effects of the aspect we are interested in.
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One of the most critical aspects when understanding causal effects is the
distinction between observations and interventions, i.e., “seeing versus
doing.” In observations, we see what happens in a given circumstance.

However, in most cases, we want to determine the effects of an interven-
tion. For example, does this new medicine have any effect? What would
happen if we did this or that? When we try to measure causal effects, we
need to be sure that we take all relevant confounders into account. Con-
founders are variables that are, for example, a common cause for treat-
ment and outcome and they can lead to wrong results if we do not
account for them. Note that we are using here the terms “treatment”
and “outcome.” This is because causal inference has been used for a
long time in epidemiology, therefore these terms tend to be used even if
we are not considering medical or epidemiological examples. A treat-
ment is understood to be an intervention we perform and the outcome
is what we observe.

Counterfactuals are a powerful way to interrogate causal relationships.

They address the following question: “What would have been had | done
Xx?” Counterfactuals are always hypothetical questions, as we have
already performed an intervention and observed the result.

In many disciplines, randomized controlled trials are considered the
gold standard for measuring causal effects. These trials work because
the randomization procedure severs the effect of possible confounders.

However, there are a number of circumstances in which such a trial can-
not be performed, such as forcing people to smoke to determine

whether smoking is harmful.
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STUDY GOALS

After completing this unit, you will have learned ...

- what front-door and back-door paths are.
- how front-door and back-door criteria are defined.
- thethree rules of do-calculus and how to apply them.
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4., DO-CALCULUS

Introduction/Case study

We have previously encountered interventions (e.g., confounders) and elements that we
can use to express the behavior of variables in directed acyclic graphs (DAG). Taking con-
founders into account, that is, to “adjust” for them (in causal analysis terms), is one of the
most important aspects of establishing a causal effect from data. To do so, we first need to
identify which variables act as confounders and then determine how these can be taken
into account.

Thus far, we have primarily built an intuitive understanding of confounders and how to
adjust for them. In this unit, we want to formalize the approach.

Additionally, establishing the relevant rules allows us to analyze more complex graphs
than the ones we have seen in the earlier examples.

We have also encountered the do-operator already, which we use to express interventions
such as do(X = 1), where we force the value of the variable Xto take the value of 1. For
example, let’s imagine that X = 1 refers to administering a certain medicine we want to
test to a group of people and X = 0 to withholding it. Or, we could refer to different values
of X describing a specific dose we wish to administer (or something else). In this unit, we
will give a more detailed description of do-calculus that allows us to use the do-operator
to establish causal effects. The main idea is that we need to transform expressions that
contain the do-operator into others that can be estimated from observational data—only
then are we able to use data outside a randomized controlled trial to infer causal effects.

4.1 Front- and Back-door Criterion
4.1.1. Back-Door and Front-Door Paths

We have previously seen how variables can be associated, even if there is no apparent
(causal) relationship between them (e.g., yellow fingers and lung cancer being related
even though yellow fingers are not causally connected to lung cancer). This means that if
we painted fingers yellow, i.e., do(yellow finger), we would not affect the risk of getting
cancer. However, both are associated in the data, since smoking is a common cause of
either of them. In this case, smoking is a confounder, as shown in part a of figure below.
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Figure 27: Common Cause

a) b)
e —0
X Y z X Y Z
Smoking Yellow Lung Smoking Yellow Lung
fingers cancer fingers cancer

We then saw that we can remove this spurious association by conditioning on the con-
founder, i.e., by looking at the values of the variables “yellow fingers” and “lung cancer”
for smokers and non-smokers separately. This is shown in part b of figure above, where
the box around X indicates that we adjust for the confounder, i.e., look at specific val-
ues.As illustrated by this example, variables can be associated if there is a path between
them. For example, in figure above we have the following paths: X to Y (in the direction of
the arrow); X to Z (in the direction of the arrow); and Z via X (against the direction of the
arrow) to Y (in the direction of the arrow).

We can formalize the different characterisations of the paths in the following way:

E@ FRONT- AND BACK-DOOR PATH

« A front-door path is a causal path in the direction of the arrow between any
two nodes X and Y in the graph.

+ Aback-door path is any path between any two nodes X and Y that starts with
an arrow pointing into X, i.e., against the causal direction (Pearl & Mackenzie,
2018, p. 158).

The front-door (or causal) paths represent the causal relationships we want to explore or
we know are true. Informally, these are the “real” associations or correlations between
variables that have a “deeper meaning.” By this, we mean that they can explain what we
observe, for example, that smoking is a cause of lung cancer. If we look at the population
of smokers and nonsmokers, we will find that the population of smokers is more prone to
lung cancer than the non-smokers and that smoking is the cause of lung cancer.

The back-door paths, on the other hand, are those that introduce spurious correlations or
associations between variables in the data. In the example of smoking, we have a spurious
correlation between “yellow fingers” and “lung cancer.” We can start a back-door path
between these variables by starting at Y with an arrow pointing into Y from X and then
go to Z or, conversely, by starting with an arrow pointing into Z from X and then going to
Y. Note that, according to the definition a back-door paths with an arrow pointing into
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Against the arrow

A path against the direc-
tion of the arrow is an
back-door path.
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one of the variables, it is not required that we go against the direction of the arrow along
the entire path. In our example, we start with the first step against the direction of the
arrow (hence making it a back-door path) and then move in the direction of the arrow for
either variable X or Y.

In order to avoid spurious correlations, we need to treat the variables we have (or we can
add) so that they block the path according to their properties.

This can be done using the following rules (Pearl et al., 2016, p. 46):

S

Pé PATH BLOCKING RULES

« A path can be blocked when conditioning on a fork or chain.
« Ablocked path is opened when conditioning on a collider.

The confounder discussed above is represented by a fork in the DAG.

Hence, conditioning on the variable “smoking” blocks the back-door path, meaning we
can establish the causal effect of smoking on lung cancer (or yellow fingers). Note that the
same holds true if we condition on descendants of these elements. For example, we may
open a blocked path if we condition on a descendant (or child) of a collider. We need to be
careful when analyzing more complex graphs that we do not accidentally open paths we
need to block by conditioning on children further down in the graph.

We can illustrate this at the slightly more complicated DAG shown in figure below. Note
that we have already encountered this DAG earlier (Pearl et al., 2016, p. 48). In this exam-
ple, we want to figure out if there are any spurious connections between Z and Y and if
we can remove them— in other words, if there are any open back-door paths that we can
close.

There are two paths with arrows pointing into Y . The first one is from Y to T' (against the
arrow), and then from 7" to Z (in the direction of the arrow). The node T is both a fork and
a confounder because it is a common cause to both Z and Y . Assuming we can measure
T, we can block this path by conditioning on T'. Then, there is another path starting at Y’
going against the direction of the arrow (thus making it a back-door path again) to X from
X to W (in the direction of the arrow) and from W to Z (against the direction of the
arrow). Therefore, we have two back-door paths connecting Y and Z. However, that path
is blocked because W is a collider and colliders block the path unless conditioned on. We
therefore only need to condition on T' to remove the spurious association of Z and Y. In
this case, Z and Y are also said to be d-separated since there are no open back-door
paths.
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Figure 28: A Complex Causal Graph

v
U

However, if we were to condition on W or on U (as a descendant of 1), we would open
the blocked path and Z and Y would become d-connected and associated again, even if
the path via T were still blocked by conditioning on T'. This might happen for two reasons:
for example, we might make a mistake, which can easily happen if the graphs become
more complicated.

Alternatively, we may want to measure the causal effect depending on .

For example, we might want to know what the causal effect is for specific values of W. In
this case, we need to condition on T to look at specific values. Another reason might be
that we have no choice: in order to block some other back-door path crossing through that
node, we need to condition on it. Remember that the function of a node is path specific: A
node may be a collider on one path but a fork or chain in another. If we are forced to block
that other path because the node is, for example, a fork there, we need to condition on it—
even if that opens the path on which that node acts as a collider. We then need another
way of closing the path again. In the example in figure above, we can also condition on X,
which is a fork on the path between Z and Y. In this case, the path is blocked again.

Hence, we can d-separate Z and Y by either conditioning on T" alone, T, W, and X, or T,
U (because U is a descendant of W and X). We could also condition on 7" and X. How-
ever, the path through X is already blocked because of the collider in W, so we do not
have to do this. Note that it would not do any harm.

4.1.2. Back-Door Criterion

We can now formalize our treatment and give a precise definition that describes the possi-
bility of closing back-door paths. This is known as the “back-door criterion” (Pearl, 1993).

Let G be a given causal diagram with a set of variables (V') measured from observational
data. We wish to establish the causal effect of the Both variables X and Y are part of the
set of variables V, i.e., measured from data. Using the backdoor criterion we want to
determine whether there is a subset of variables (Z) from V , i.e., Z CV that we can use to
block all back-door paths, thus allowing us to estimate the causal effect from the observa-
tional data.
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S

E@ BACK-DOOR CRITERION
A set of variables (Z) satisfies the back-door criterion relative to an ordered pair
of variables (X, XJ-) in a DAG (G) if

+ nonodein Zis adescendant of X.
* Z blocks every path between X; and X ; that contains an arrow into X;.

(Pearl, 2009, p. 79)

Although this definition sounds quite intimidating, it really means the same thing as our
evaluation of the back-door paths in the example above—it is just more formal and appli-
cable to any DAG G. Informally, we can summarize this as (Pearl et al., 2016, p. 61):

+ We block all back-door paths, for example, by conditioning on forks or chains.
Directed paths + We make sure that the directed paths in the direction of the arrows we wish to investi-
Directed paths in the gate are still open.
direction of th .
allsfza'ﬁ:doucafszrsgﬁs « We make sure that we don’t accidentally open another back-door path that leads to
spurious correlations in the data by controlling (or not) on the wrong element in the

graph.

If the back-door criterion is fulfilled, we can estimate the causal effect of intervention (X),
i.e., do(X = x) on outcome Y using the back-door adjustment formula:

S

Eé BACK-DOOR ADJUSTMENT
P(Y =yldo(X =1)) = ZP(Y =yl X=2,Z=2)P(Z ==z
2z

(Pearl et al., 2016, p. 61)

A proof can be found in (Pearl, 2009, p. 80). Note that this is very similar to the adjustment
formula we encountered earlier. The previous adjustment formula was specifically aimed
at confounders that are direct parents of the intervention. The above back-door adjust-
ment formula is more general and contains this case automatically.
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4.1.3. Front-Door Criterion

The back-door criterion allows us to identify backdoor paths that lead to spurious associa-
tions in the data and identify confounders we need to control for. The back-door adjust-
ment formula then allows us to estimate the causal effect from observational data.
Unfortunately, in some cases, this approach will not work.

An example is shown in part a of figure below. The situation is similar to what we have
already encountered: the variable U is a common cause to X and Y and is, hence, a con-

founder on a back-door path from Y to X.

Figure 29: Front-Door Criterion

a) b)
U u
» > >
X Y X VA Y

To block the path, we would need to condition on U—this is the approach we have taken
so far. In these situations, we have assumed that we have data regarding this variable so
we can condition on it. In the example of yellow fingers and lung cancer above, we would
condition on “smoking” and look at the association between yellow fingers and lung can-
cer separately for smokers and non-smokers (or heavy and light smokers or smokers who
smoke one, two, three, etc. cigarettes per day).

However, what happens if we do not have data on U, i.e., U is unobserved? In this case, we
cannot close the back-door path and remove the spurious association. An example is the
causal connection between smoking and cancer. In this example, X is smoking and Y is
cancer. We want to establish the causal relationship and establish whether smoking
indeed causes cancer. At the time, there was a major discussion, and the tobacco industry
argued that the association between cancer and smoking is explained by a supposed
“smoking gene,” see, e.g., (Spirtes, 2000, p. 239ff).

In this argument, the gene takes the role of the unobserved variable (U), as we cannot
measure the gene directly (at least, we could not at the time).

Later, it was discovered that there truly is a gene related to smoking (Lassi et al., 2016).
However, the act of smoking still causes cancer.

Hence, in our example, U is unobservable, which means we cannot block the back-door

path. For a long time, the tobacco industry argued successfully that the causal influence
could not be proven.
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Non-collider
A non-collider is either a
fork or a chain.
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Nevertheless, the causal effect of X on Y can be established under some circumstances. If
we can identify a mediator that transports the causal effect from X to Y, we can deter-
mine the causal effect, even in the presence of unobservable confounders. This is shown
in part b of figure entitled as "Front-Door Criterion". In this case, Z is a mechanism of the
causal effect. In the example of smoking, Z is the tar deposits in the lung. Hence the
causal chain is as follows: smoking leads (X) to tar deposits in the lung (Z) that cause can-
cer (Y).

We still cannot block the back-door path because U is still unmeasured, but we can exploit
the new variable (Z) as mediator (Pearl et al., 2016, p.

68). The causal effect from X to Z can be identified immediately, as there is no back-door
path from X to Z. Hence,

P(Z=z|ldoX=2x))=PZ=z2X=u) (4.1)

which means that the observation is the same as the intervention. We can also identify the
causal effect of Z on Y. There is a back-door path from Z to X (against the arrow, making
it a back-door path), from X to U, and from U to Y . However, X is a non-collider on this
path and according to the rules, we can block it by conditioning on X. We can do this
because X is observable and we have data for this variable—indeed, this is the variable we
wanted to analyze in the first place. Using the adjustment formula, we can then write

P(Y:y\do(zzz)):ZP(Y:y\Z:z,X:x)P(X:x) (4.2)

xT

We now need to combine both effects, since we are interested in P(Y = y|do(X = z2)),
i.e., the result of the outcome when we perform an intervention on X. The idea is as fol-
lows: we do not intervene on Z directly as this mechanism. In the example of smoking, we
do not add tar deposits into the lung ourselves. This is what happens due to the properties
of the system we want to analyze. Hence, if the system “chooses” to assign the value zto
Z, the probability of observing Y is P(Y = y|do(Z = z2)).

However, since we perform the intervention do(X = z), the probability of this is

P(Z = z|do(X = x)). Taking all possible values of the mediator Z into account, we can
combine the parts:

P(Y =y|ldo(X =2)) = ZP(Y =vyldo(Z = 2))P(Z = z|do(X = x)) (4.3)

z

We can then use the expressions 4.1 and 4.2 to transform the right-hand side into do-free
expressions that can be estimated from observational data:
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P(Y =y|ldo(X ==z)) =

ZZP(Y:y\Z: 5 X=2)P(X=2)P(Z=z2|X=1)

This is known as the “front-door” criterion and adjustment, which we can define more for-
mally in the following way (Pearl, 1995):

N

E@ FRONT-DOOR CRITERION
A set of variables (Z) satisfies the front-door criterion for an ordered pair of vari-
ables (X, Y) if the following conditions are met (Pearl et al., 2016, p. 69):

« Zintercepts all directed paths from X to Y .
« Thereis no unblocked back-door path from X to Z.
+ All back-door paths from Z to Y are blocked by X

Essentially, Z is a mediator on all possible paths from X to Y, and we can establish the
causal effects from X to Z and from Zto Y.

If the front-door criterion is fulfilled, we can establish the causal effect from observational
data via the front-door adjustment formula.

N

E@ FRONT-DOOR ADJUSTMENT

Plldole) = D 1) )Pl P

z z’

(Pearl et al., 2016, p. 69)

Note that, in general, we do not want to introduce a mediator, as we are typically inter-
ested in the total causal effect of an intervention, not just the one that is related to a spe-
cific mechanism expressed by the mediator.
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Furthermore, if the mediator we choose is not the right mechanism to transport the causal
effect, our conclusions will also be wrong. This is illustrated by the following example
(Pearl & Mackenzie, 2018, p. 302ff): In the early days of long distance travels on the seas,
scurvy was a dangerous disease for the sailors. It was observed that consuming citrus
fruits eliminated the risk of falling ill to this disease. Soon after, all ships carried a supply of
citrus fruit. It was therefore unexpected that, about a century after this problem was
thought to be solved, expeditions to the polar regions were again plagued by scurvy. It
was thought—but not proven—that citrus fruit prevented scurvy by virtue of their acidity,
i.e., acidity was the mechanism by which the disease was prevented: citrus fruit — acid-
ity — scurvy. However, a detailed analysis showed that it was vitamin C (and not any
acid) that prevented scurvy. Therefore, the correct causal path is citrus fruit — vitamin C
—>scurvy.

4.2 The Three Rules of Do-Calculus

We have seen previously how the do-operator can be used to formalize interventions and
derive the causal effect. The general idea behind using the do-operator is that we want to
extract the causal relationships between the intervention or treatment and the outcome
using observational data.

In the front-door and back-door adjustment formula, we have seen how we can make use
of the special structure of these constructs to transform the expressions that contain the
do-operator into those that do not. This is because we cannot observe probability distribu-
tions that contain the do-operator, but only those without, as these relate to observational
data we can record.

The do-calculus (Pearl, 1995) provides three rules that are sufficient to transform to
expressions that contain the do-operator into those that do not. However, this requires
that that the causal effect is “identifiable”. We call a causal effect identifiable if we have a
causal graph G and we can use a finite number of transformations according to the rule of
do-calculus that translate the expressions containing the do-operator into those that do
not.

The latter can be determined from observational data (Pearl, 2009, p. 86).

Before we focus on the rules of do-calculus, we need to introduce further notation that
relates to the various operations we can perform on a causal graph G, specifically, the
removal of arrows emerging from or pointing into some node. We place a line over the var-
iable, if we delete any arrows that point into some node. For example, if we start with the
full causal graph G as shown in part a of figure entitled as "Graphs demonstrating various
applications of the Do-Calculus Rules", part b shows the graph if we remove the arrow
between X and Z. Since the arrow we have removed points into Z, the new graph after
this operation is called Gz. Similarly, we use a line under the variable if we remove an
arrow that emerges from the corresponding node. Since the arrow we removed emerges
from node X, the same example (part b of figure below) can also be denoted as G.
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Figure 30: Graphs Demonstrating Various Applications of the Do-Calculus Rules
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We also remember the definition of conditional independence we have encountered ear-
lier: we let X, Y, Z be variables and P( - ) a probability distribution.

The (sets of) variables X and Z are conditionally independent given Z if (Pearl, 2009,
p. 11):

P(x|y,z) = P(x|z) whenever P(y,z) >0 (4.5)

which can be expressed using the notation (X L LY |Z). Informally, this means that
once we know that Z has a specific value, learning the value of Y does not provide any
further information about X.

PREVIEW-PDF, erzeugt: 2024-06-18T14:30:01.73+02:00

101



102

[‘@' THE THREE RULES OF DO-CALCULUS
Let G be a directed acyclic graph that is associated with a causal model. For any
disjoint subsets of variables X, Y, Z, and I, the following rules apply:

« Rule 1 (insertion / deletion of observations):

P(yldo(z), z,w) = P(y|do(z),w) if (Y L LZ|X, W)GX (4.6)

+ Rule 2 (exchange of action and observation):

P(yldo(z),do(z),w) = P(y|do(z), z,w) if

(Y L 121X, W)gg, (4.1
« Rule 3 (insertion / deletion of actions):
P(y|do(x),do(z),w) = P(y|do(z),w) if
(4.8)

(Y L LZU{JV)GXW

where Z(W) is a set of nodes Z that are not ancestors of any nodes W in G x.

(Pearl, 2009, p. 85)

The proofs for the rules of do-calculus can be found in (Pearl, 1995). The rules are a bit
terse, so we will examine them in more detail. For more information, see (Pearl & Macken-
Zie, 2018, p. 234).

Rule 1 allows us to add or remove observations from our data. If we have observed some
variable Z that is irrelevant (possible conditional on some other variables 1) to the out-
come Y we are interested in, then the probability distribution of Y will not change regard-
less of the value of Z— and the conditional probability for Y is the same with or without
Z. That means the node for W blocks all paths from Z to Y . As an example, we can con-
sider the fire alarm again. Since they do not detect fire directly, but via the presence of
smoke, smoke is the mediator in the chain Fire — Smoke — Alarm. Once we know that
there is smoke, we know the alarm will go off—whether or not there is a fire.

Rule 2 expresses that do(X) is the same as see(X) once we have controlled for all possible
confounders. Informally, once we have removed all spurious correlations and closed all
back-door paths, the remaining association we see in the data is the causal effect.

Rule 3 means that if there is no causal path with only forward directing arrows from a vari-
able Z to the outcome Y we are interested in, we can remove the do-operation entirely. In
other words, if we want to do(Z) but it does not affect the outcome Y, the probability dis-
tribution of Y will not change, i.e., we will not cause an effect.
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Following these rules repeatedly and in an appropriate order, we can express our interven-
tions (symbolized by the do-operator) into expressions that can be estimated from obser-
vational data—if such a sequence exists, i.e., if the graph is identifiable. The good news is
that these rules are complete and mathematically proven (Pearl, 1995). The bad news is
that, while we can use the rules to verify that the sequence used to eliminate the do-oper-
ator is correct, it does not help us find the correct sequence, although algorithms exist for
this purpose (Bareinboim & Pearl, 2012; Tian & Pearl, 2002; Shpitser & Pearl, 2006).

To show how the rules work explicitly, we return to the example of smoking we have
solved earlier with the front-door criterion (Pearl & Mackenzie, 2018, p. 236): we wanted to
determine whether smoking caused cancer in the presence of an unmeasured variable,
the “smoking gene.” The corresponding graph is shown in figure below where X corre-
sponds to smoking, Y to cancer, and U to the unmeasured confounder (the smoking
gene).

Figure 31: Example for Do-Calculus: Smoking

U

». >
» »

Because U is not measured, we cannot condition on it and hence we cannot block the
back-door path, implying that we cannot use the back-door criterion and adjustment for-
mula. However, as we have discussed earlier, if we include a new measurable variable (7)
(tar deposits) on the causal path from X (smoking) to Y (cancer), we can nevertheless
establish the causal effect via the front-door criterion by conditioning on Z in the chain X
— Z—Y.

Before we start with the example, we remind ourselves of the following relationship for
the probability of an event (A):

P(A) = ZP(A[BZ»)P(Bi) (4.9)
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This means that the (total) probability of observing event A can be split into a sum of
many conditional probabilities for events B;, multiplying the conditional probability of
observing A given that we observe B; (P(A| B;)) with the probability that B; occurs, etc.
This way, we can decompose the total probability of A into its dependencies of other
events B; that may be easier to obtain.

Let’s now return to the example of smoking. We want to establish that smoking causes
cancer, i.e., P(Y |do(X)). How would the probability of developing cancer change if we
made the intervention do(X), i.e., “make” people smoke. We do not want to do this in a
random controlled trial—it would be unethical to force people to smoke and look who
develops cancer with time.

First, we introduce the mediator (Z) using Eqn. (4.9):

P(Y|do(X)) = ¥z P(Y |do(X), 2) P(Z | do(X))

=

We now apply the second rule, which allows us to exchange intervention and observation
if all back-door paths are closed. We remember that there is no back-door path between X
(smoking) and Z (tar deposits), hence “seeing” is the same as “doing,” and we can replace
Z with do(Z):

.= >.7P(Y|do(X),do(Z))P(Z|do(X)) Rule 2

There is a back-door path from Y (cancer) to Z (tar deposits) via the unobserved variable
(smoking gene), but X (smoking) is a non-collider, and we can block the path by control-
ling for X. Hence, we can apply the second rule again and replace do(X) with X in the
second part of the sum:

o =>7P(Y|do(X),do(Z))P(Z| X) Rule 2

Since we have introduced the tar deposits as mediator Z, there is no longer a causal path
from X (smoking) to cancer (Y ) once we intervene and “force” the tar deposits (do(Z)).
Informally, we could say that, once we force tar deposits into the lung of the test subjects,
it no longer matters whether or not they also smoke. Hence, using the third rule we are
allowed to remove do(X) from the equation:
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v =3 7P(Y|do(Z))P(Z| X) Rule 3

.

We now use Eqn. (4.9) again to account for all possible cases of smoking we control for,
e.g., smokers and non-smokers or different amounts of tobacco consumed per day.

= x' 7 P(Y]do(Z), X')P(X'|do(2))P(Z Eqn. (4.9)
RY

Now we can use the second rule again, keeping in mind that the back-door path between
Z (tar deposits) and Y (cancer) is blocked as we control for X (smoking). Hence, “seeing”
is the same as “doing”

= x N7 P(Y|Z,X')P(X|do(Z))P(Z| X) Rule 2

.

In the final step, we use third rule to replace P(X’|do(Z)) with P(X”). There is no causal
influence from Z (tar deposits) to X (smoking), hence we arrive at:

= xS 7P(Y|Z,X')P(X')P(Z| X) Rule 3

.

Putting it all together, we arrive at the front-door adjustment formula

P(Y|do(X)) =Y. x> ,P(Y|Z,X')P(X')P(Z| X) (4.10)

where we have successfully replaced all expressions containing the do-operator into those
without. These can then be estimated using the observational data.
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As we can see, once we know the correct sequence of steps and rules to apply in each
case, we can convince ourselves that the transformations are sound and follow the rules
of do-calculus. However, as with most mathematical proofs, it will be quite hard to come
up with the right sequence of steps.

@ﬂi SUMMARY
The front-door and back-door criterion formalize the way we determine
whether we can establish the causal effect of some variable X on an out-
come Y. Tracing the back-door paths, we can determine if there are any
spurious correlations between variables expected in the data and if we
can block the paths to estimate the causal effects.

The back-door adjustment formula allows us to determine the causal
effect from observational variables if the back-door paths can be closed.
In some situations, the causal effect can be established via the front-
door path even if the back-door paths cannot be closed due to unob-
served confounders. In this case the front-door adjustment formula can
be used.

The do-calculus formally expresses the mathematical operations that
are required to transform expressions that contain the do-operator into
those expressions that do not. However, in terms of the associated
graph G we require that G is identifiable, i.e., if the causal effect can be
established from observational data. The three rules of do-calculus are

complete in the sense that they are sufficient to do this transformation if
it is possible; however, the correct sequence and order of the operations
is often difficult to ascertain.
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UNIT 5

STUDY GOALS

Upon completion of this unit, you will have learned ...

why we should be careful to avoid fallacies when analyzing data.

what the mediation fallacy is.

how to identify the collider bias.

what the causal explanation behind the most common fallacies is.

how the imputation of missing values taken from a data-driven and a causal approach
can lead to very different results.




Intervention

An intervention is also
commonly known as a
treatment (in analogy to
medical RCTs).
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5. FALLACIES

Introduction/Case study

Understanding complex systems is challenging and establishing causal relationships even
more so. Exploiting correlations in the data can lead to very powerful prediction models
that allow us to classify events or forecast future behavior. Indeed, the aim of machine and
deep learning approaches is to exploit such correlations in the data to make accurate pre-
dictions. Howeder, as we have diseussed-sofar, correlations can be spurious, and variables
can become associated because either we not not taken confounders into account or
failed to block relevant back-door paths—assuming that we have already determined that
there might be additional confounders or that we have created a causal graph for the task
we wish to model.

In the following section, we want to highlight a few specific paradoxes, biases, and falla-
cies to highlight potential traps we wish to avoid when understanding complex systems.
We also include a discussion about the imputation of missing data. This is a staple in stat-
istical analyses, but common approaches used there typically do not take causal implica-
tions into account, potentially leading to different or even wrong conclusions compared to
a causal model.

5.1 Mediation Fallacy

As we have seen earlier, mediators allow us to specifically express the way an effect comes
about.

In general, we are mainly interested in the effect of an intervention (X) on an outcome or
effectY,i.e., X — Y . Mostly, we do not want to include an mediator (M) in the chain X
— M — Y, as we are typically interested in the total effect of X on Y, for example, to
see if smoking causes cancer.

However, in some cases, we may want to include a mediator, for example, if we cannot
close the back-door paths because potential confounders are unobserved. In some situa-
tions, we may use the mediator to enable use of the front-door criterion. As we have seen
in the smoking example, we could establish the causal effect via smoking — tar deposits
— cancer.

If we include a mechanism that mediates the effect, we need to be sure that it is the right
mechanism. This can be illustrated through the history of scurvy (Lewis, n.d.; Ceglowski,
2010) (Pearl & Mackenzie, 2018, p. 302ff): This disease was a major issue for early sailors on
long distance trips across the Atlantic Ocean. It was found that a diet of citrus fruits pre-
vented the disease. However, the way citrus fruit had a positive effect was never firmly
established, and scientists assumed it was due to their acidity, i.e., citrus fruit — acidity
— scurvy. However, a polar expedition undertaken much later was also compromised
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due to participants contracting scurvy, causing much consternation. It was only later that
the mechanism was discovered that prevented scurvy: vitamin C. Hence, the correct
causal path is citrus fruit — vitamin C — scurvy. Adding a specific but wrong mediator
leads to wrong conclusions.

There is, however, another reason to include a mediator in a causal chain:

we add a mediator if we are interested in the specific mechanism of an intervention. For
example, let’s say that we are testing a new medicine (X) and we want to establish its
effect on the outcome of the patients (Y) based a specific way the medicine interacts with
our bodies. In general, we can then split the effect of the intervention or treatment X on
outcome Y into two parts, as shown in part a of figure below:

Figure 32: Controlled Direct Effect

a) b)

One path from X to Y is between the nodes directly, i.e., X — Y, and the other one
comes via the mediator M, i.e., X — M — Y. In this picture, we could establish the part
of the effect X — Y by conditioning on M. However, this does not work in more complex
graphs, for example, if there is a common cause of the mediator (M) and the outcome
(Y), i.e., a confounder W. In this case, conditioning on M will block the path X — M —
Y and open the spurious path via the confounder: X — M «+— W — Y. Hence, if we do
not condition on M, we cannot distinguish between the paths, including the mediator (or
not). If we do condition on M, we condition on the collider along the path, including W,
and introduce a new spurious association.

There is no way to deal with this situation in classical statistics. However, the do-operator
allows us to define a new concept of holding a variable constant without conditioning on
it. Informally, we can say that we can obtain the “direct effect of X on Y when we ‘wiggle’
X without allowing M to change” (Pearl & Mackenzie, 2018, p. 317).

[‘@' mEeDiaTOR FALLACY ()
The mediator fallacy occurs when conditioning on a mediator instead of holding
the mediator constant. (Pearl & Mackenzie, 2018, p. 315)
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The fallacy reveals that we intend to remove the influence of a mediator in establishing an
effect from X to Y, but, by conditioning on it (rather than holding it constant), we intro-
duce spurious associations between variables and confounders in the data.

Instead, we need to look at the controlled direct effect (CDE), where we intervene on the
mediator M and force assign it to a specific value m and then compare the outcome
where we intervene on the treatment X = z or X = 2/,

[‘@' CONTROLLED DIRECT EFFECT
CDE = P(Y = y|do(X = z),do(M =m)) — P(Y = y|do(X = z), do(M
=m))

(Pearl et al., 2016, p. 77)

Note that the controlled direct effect depends on the value of the mediator M. For exam-
ple, if all variables are binary and can take either 0 or 1 as its values, we can define
CDE(0) for the case where M = 0

CDE(0) = P(Y = 1|do(X =1),do(M = 0)) — P(Y = 1|do(X = 0),

5.1
do(M = 0)) 5

and, correspondingly, CDE(1) for M = 1
CDE(1) = P(Y = 1|do(X = 1),do(M = 1)) — P(Y = 1|do(X = 0), (5.2)

do(M =1))

The expression for the CDE contains two do-operators. In order to estimate the controlled
direct effect from observational data, these need to be removed. This can be done accord-
ing to the rules of do-calculus. Taking part b of figure above as an example, we can do this
by the steps listed below (Pearl et al., 2016, p. 77): There is no back-door path between X
andY.

7«

Hence, since we control for X by comparing X = xz and X = z’, “seeing” is the same as
“doing” (following the second rule of do-calculus). Therefore, we can remove the do-oper-
ator and the CDE becomes:

P(Y =y|X =x,do(M =m)) — P(Y =y| X = a',do(M = m)) (5.3)

Next, we need to remove the do-operator on the mediator (M). Looking at the causal
graph, there are two back-door paths from M to Y, one through the treatment X and one
via the additional confounder W. The first path is already blocked, as we condition on X.
The second path can be blocked if we condition on the confounder (W) (provided it is
observable) according to the back-door adjustment formula. This results in the following:
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z:[P(Y =yl X=2,M=mW=w)—PY =y|X=2',M=m,W =w)|P(W =w) (5.4)

w

and the resulting expression is free of do-operators.

Generally speaking, we can estimate the CDE of X on Y via M from observational data,
i.e., the CDE is “identifiable” if the following conditions hold (Pearl et al., 2016, p. 77):

+ There is a set S of variables that block all back-door paths from mediator M to out-
comeY.

+ There is a set S5 of variables that block all back-door paths from treatment X to out-
come Y after deleting all arrows into mediator M.

We can also define the natural direct effect (NDE) using counterfactuals.

S

ch'l NATURAL DIRECT EFFECT (NDE)
NDE = P(Y 3 -y = y|do(X = 2)) = P(Yy =y = y|do(X = "))

(Pearl & Mackenzie, 2018, p. 318)

In the example in (Pearl & Mackenzie, 2018, p. 318), the authors use discrete binary varia-
bles, i.e. the variable Y takes only the value Y = 1 and the variable X takes the values
X =0and X = 1. Informally, we can interpret the NDE as the expected change in Y when
we change X =z to X = 2’ and keep the the mediators constant at the values they
would have had under do(X) (Pearl, 2009, p. 131). Additionally, we can define the Natural
Indirect Effect (NIE) as the value when we hold X constant and set the mediator to the
counterfactual value it would have had if we had changed X from z to z”:

@é NATURAL INDIRECT EFFECT (NIE)
NIE = P(Yyy = a1y = y|do(X = )| = PV _ 3= y|do(X = o))

(Pearl & Mackenzie, 2018, p. 318)

Note that there are now two counterfactuals in the definition of the natural indirect effect,
M = Myand M = M, whereas X only has the value X = z (which is set to X = 0 in the
example shown in (Pearl & Mackenzie, 2018, p. 318)), To explain the difference between
the controlled direct effect and the natural direct effect, we follow the example of the Ber-
keley admission paradox (Pearl & Mackenzie, 2018, p. 309ff) (Bickel, Hammel, & O’Connell,
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1975; Fairley, 1977): In 1973, Eugene Hammel looked at the graduate admission rates at
Berkeley and noticed that, across the university, 35 percent of all female applicants and 44
percent of all male applicants were accepted.

He wanted to avoid any gender discrimination and, since graduate admissions (unlike
undergraduates) were handled independently by each department, he looked at the val-
ues per department. However, once he did that, he found that women were consistently
favoured over men, which seems paradoxical: How could overall admission indicate that
men were favoured across the university but not when looking at each department that
makes the decision? Looking at possible graphs, we start with part (a) of figure above,
where X is the gender of the applicant, Y the admission to the graduate program, and M

the department. There are two paths from the gender to the outcome, one via the media-
tor (department) and one direct connection. As we have seen before, if this is indeed the

(gorrect causal graph, conditioning on M gives the correct results. However, this changes if
t

here is an additional confounder that influences both the mediator and the outcome. In
this case, conditioning on M means conditioning on a collider, which introduces a spuri-

ous association.

If we were to look at the controlled direct effect (CDE), we would use the do-operator both
on X and the mediator M, i.e., we would intervene on the gender and on the department.

However, if we truly did that, we would be forcing applicants to apply, say, to the physics
department (do(M)) when they otherwise never would have. This would look very strange
to the committee looking at these applications. Imagine an undergraduate student with a
degree in, say, musical history applying to the physics department—they would most cer-
tainly not be admitted, as they lack the relevant previous studies. Instead, we look at the
natural direct effect, where we let the students apply to the department they would have
applied to anyway and then intervene on the gender. This is what is meant when we use

the counterfactual notation P(YM =My = y‘do(X = x)). We look at the outcome, e.g.,
admission (Y = 1), when the students choose the department (M = M) and then inter-
vene to make them report for the purposes of this scenario, as one of two potential
options—“biologically male” or “biologically female” as their sex (do(X =1) or
do(X = 0)).

If the mediators are unconfounded, the natural direct and indirect effect can be estimated
via the following adjustment formulae:
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E@ MEDIATION FORMULA FOR UNCONFOUNDED MEDIATORS

NDE =Y PY=ylX=2,M=mW=w)—P
w
(Y =y|X=2z',M=m)] (5.5)

x P(M=m|X =2") (5.6)

NIE =% [PIM=m|X=2)—PM=m|X=2a")|P
w
(Y = y|X =2/, M =m) 57)

(Pearl, 2009, p. 132) (Pearl, 2012)

These adjustment formulae do not contain any counterfactuals or do-operators and can
be estimated by looking at observational data.

5.2 Collider Bias

Collider bias occurs when we condition on a collider as shown in figure below: Collider
A collider is a node with

. . . two or more arrows point-
Figure 33: Collider Bias ing into it.

A > B » [C]

Both A and B are a common cause to C, and C'is a collider, as arrows from both A and B
point into C. The conditioning is indicated by a box drawn around C. We have already
encountered an example of collider bias using the example of Hollywood actors (Elwert &
Winship, 2014), where we used the graph: talent — celebrity «— beauty. We can repre-
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sent this using figure above when A is “talent,” B is “beauty,” we remove the arrow from A
to B, and C'is celebrity. For the general population, talent and beauty are unrelated. How-
ever, if we condition on C' and only look at those who are celebrities in Hollywood, we find
that the variables “talent” and “beauty” become associated. Intuitively, this can be
explained in the following way: We know that the person is a celebrity. If their success is
not due to talent, this makes it more likely that it is due to their beauty. Conditioning on a
collider opens a previously closed back-door path between variables, which means they
may become associated in the data. Note that this can also happen if we condition on
descendants of variables that enter a collider, as shown in figure below (Pearl & Macken-
zie, 2018, p. 160):

Figure 34: Collider Bias with Descendants

/. :

X Y

In this graph, U is a confounder of treatment X and outcome Y. If we want to establish the
causal effect, we need to condition on the confounder. However, if U is unobservable, we
cannot close the back-door path, meaning we cannot disentangle the causal effect. Since
conditioning on a descendant of U would also close the back-door path (at least partially),
we might be tempted to condition on A as a descendant of U, if A is observable. However,
there is also an arrow pointing from X — A. Since arrows point into A both from U and
X, Ais a collider and conditioning on it would introduce a new collider bias and spurious
correlation, even if it (partially) closes the back-door path of the confounder U.

Collider bias also occurs in the type of diagram shown in figure below which is called “M-
bias” due to the shape of the graph (Pearl & Mackenzie, 2018, p. 161).

Figure 35: M Bias
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The variables X and Y are connected via a back-door path: X +— A — B+—(C —Y.
However, the path is already blocked by the collider B. Regardless, one might be tempted
to call B a confounder because it is associated both with the treatment X (via A) and the
outcome Y (via C). Additionally, it is not on a causal path from X to Y nor is it a descend-
ant of an element of a causal path, because the graph does not have a causal path. There-
fore, all three conditions of the test for confounders often used in statistics are fulfilled.
Yet, it would be disastrous to condition on B, as this would unblock the path (because B is
a collider). If A or C are observable, we can condition on either of them to close the path
again should we accidentally or deliberately condition on B.

Collider bias can also be a source of selection bias. Selection bias is an umbrella term for
biases that originate from the procedure by which we include individuals into an analysis
(Hernan & Robins, 2020, p. 99). For example, a medicine (A) has a direct effect on the
recovery of the individual (C) but the effect may also be mediated by a specific mecha-
nism (B). If we only accept those into the study who have fully recovered from the illness,
i.e., if we conditioned e.g., C = 1, we would unblock the collider and introduce a spurious
correlation between A and B. We can avoid this by considering all individuals, regardless
of whether they have recovered or not.

Another example of collider bias is the “birth weight paradox” (Pearl & Mackenzie, 2018,
p. 183), (Hernandez-Diaz, Schisterman, & Hernan, 2006; VanderWeele, 2014). The data
show that infants born in the United States whose parents (in particular, mothers) smoke
are at a greater risk of lower birth weight and even death as compared to infants where
the parents do not smoke. However, among infants with lower birth weights, the mortality
rate is lower for those whose parents smoke as compared to those who do not. This
sounds very paradoxical and counter to what we now know about smoking: If the parent
smokes, their children have a better chance of survival compared to those of a non-
smoker—if the infants have a low birth weight. However, if we draw the causal diagram
shown in figure below, we understand that the apparent paradox is due to conditioning on
a collider:

Figure 36: Birth-Weight Paradox

Smoking

Birth weight » Child mortality

Birth defects

the parents’ smoking both affects an infant’s birth weight and increases their chance of
death. Birth defects can also influence both the weight at birth and the mortality rate;
additionally, the birth weight can also causally influence the mortality. Because smoking
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can influence the birth weight and birth defects can also influence the weight, the variable
“birth weight” becomes a collider. When conditioned on in the analysis, this introduces a
spurious association.

5.3 Simpson’s and Berkson’s Paradoxes

When studying complex systems, we often encounter seemingly paradoxical behavior of
variables that are associated with each other. Many of these examples are typical for a
specific constellation in which we misinterpret the data and do not take the full (causal)
story behind the often confusing behavior of the variables into account.

These paradoxes are often associated with a famous scientist who is associated with pro-
moting or solving them in published works. In the following section, we will focus on well-
known examples that illustrate how imperative it is that we analyze the data carefully and,
specifically, think about the casual data-generating process.

5.3.1. Simpson’s Paradox

Simpson’s paradox is attributed to Edward Simpson, the statistician who popularized it.
Essentially, the paradox describes a behavior seen in the data where a specific correlation
between variables is observed when looking at the population from which the data are
taken as a whole—but the correlation is reversed in every sub-population. This effect had
already been observed by Pearson in 1899 (Aldrich, 1995) and later by others (Blyth, 1972;
Cohen & Nagel, 1934).

We have already come across such an example earlier when we looked at the correlation
between exercise and cholesterol, as shown in part a and b of figure below.
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Figure 37: Simpson’s Paradox
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The two variables are strongly correlated, as indicated by the regression line. Yet, it is con-
trary to our general understanding that exercise is beneficial for us. We would expect that
exercise, if it has any effect at all, helps to lower cholesterol, as it is generally beneficial to
our health and high cholesterol levels are associated with health issues. Surely, exercising
should not make it worse; however, this is what the correlation seems to suggest. How-
ever, once we look at the relation in different age groups, as shown in part c of the figure,
the correlation is reversed. Instead, within each age group, we find the expected negative
correlation between exercise and age.

The example given by Simpson who popularized the paradox is concerned with a new
medicine that is administered to patients(Simpson, 1951). Note that the following exam-
ple uses language written at a time that does not reflect today’s standards concerning
gender and sex. For its inclusion in this course book, we have kept the language as close
as to the original as possible. Looking at all patients, fewer patients recovered who took
the drug than those who did not. However, looking at the number of men, more men tak-
ing the drug recovered than those who did not, and the same holds for women. Hence, it
seems that the drug helps men and women, but not if we do not know the gender. This is
of course counter to any intuition we might have. To illustrate the example, we can use the
following numbers (Pearl et al., 2016, p. 2):

Medicine No medicine
Men 81/87 recovered (93%) 234/270 recovered (87%)
Women 192/263 recovered (74%) 55/80 recovered (69%)
All patients 273/350 recovered (78%) 289/350 recovered (83%)

In this example, a total of 700 patients were enrolled in the study, 350 of which taking the
medicine and 350 not. The first row seems to show that the medicine helps men: 93% of
the men recover after taking the drug and 87% recovered who do not take it. The same is
true for women: 74% recovered after taking the medicine compared to 69% who recov-
ered without taking it. However, if we look at the data for all patients regardless of gender,
only 78% recover if they take the medicine as opposed to 83% if they do not. This is, of
course, paradoxical. If the medicine helps men and women, then, issues concerning gen-
der or sex aside, it must help anyone.

We can write this as three statements:
+ The medicine helps men and women.
« The medicine makes conditions worse for people.

+ The medicine changes the gender of the patients.

Since the medicine most likely does not change the gender of the patients, one of the two
other statements must be wrong.
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The situation becomes a bit clearer if we draw a causal graph for the situation: We assert
that the drug does not change the gender, but the gender may have an influence on the
way the drug works. In fact, looking at the table above, we notice that the recovery rates
are different for men and women. This also implies that we need an arrow from gender to
recovery.

We also say that the medicine will have an effect on the recovery; hence we need an arrow
from medicine to recovery. This is shown in figure below.

Figure 38: DAG for Simpson’s Paradox (Confounder)

Gender

>
>

Medicine Recovery

Now we can understand why the data seem to behave paradoxically: In this example,
“gender” is a confounder, and we need to adjust for it to determine the causal effect and
block the back-door path between taking the medicine and recovery. In the case of exer-
cise and cholesterol, age is the confounder, and, if we control for age, we find that exercise
is, indeed, good for our health.

However, we can also use the same numerical data in a different causal story (but with the
column labels switched) (Pearl et al., 2016, p. 4):

No medicine Medicine
Low BP 81/87 recovered (93%) 234/270 recovered (87%)
High BP 192/263 recovered (74%) 55/80 recovered (69%)
All patients 273/350 recovered (78%) 289/350 recovered (83%)

Now we assume we know that the medicine works by lowering the blood pressure—but it
has a toxic side-effect. Now we see that the drug itself works. In the group that does not
take the medicine, 87 patients have low blood pressure after taking the placebo, 263 have
high blood pressure.

Among those who take the medicine, 270 have low blood pressure and 80 continue having
high blood pressure. Hence, the drug does what it should: it “moves” the patients from
high to low blood pressure. We also notice that the overall recovery rate of those who take
the drug is better than those who do not: 83% compared to 78%. However, when we look
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at the patients with low and high blood pressure, the correlation is reversed—but now
blood pressure is a mediator rather than a confounder as in the case of gender earlier. We
know the medicine is designed to work by lowering blood pressure, and we measure the
blood pressure after the medicine has been taken. Hence, stratifying on the post-treat-
ment blood-pressure disables one of the causal paths in which the medicine works, thus
revealing the toxic side-effects. In this case, we should not condition on blood pressure, as
it is the mediator of the effect (a chain in the DAG) and not a confounder (a fork in the
DAG). Since we should not condition on “blood pressure,” we look at the last line for all
patients, which shows a higher recovery rate for those taking the medicine and would sug-
gest one should take it.

Figure 39: DAG for Simpson’s Paradox (Mediator) story

Blood pressure

».
>

Medicine Recovery

For further discussions about Simpson’s paradox refer to (Pearl, 2014b).
5.3.2. Berkson’s Paradox

Berkson, after whom this paradox is named, noticed an odd behavior of variables in obser-
vational studies conducted in hospitals (Berkson, 1946): Even if the occurrence of one dis-
ease is not related to the other in the general population, the two are correlated if we look
amongst the patients in hospitals. The effect was studied over a long period of time and
evidence collected, e.g., (Roberts, Spitzer, Delmore, & Sackett, 1978; Sackett, 1979)—how-
ever it was not clear why this correlation would come into existence.

To understand this bias, imagine we have only two diseases: disease 1 and disease 2. We
can imagine two scenarios: In one scenario, having just one disease can be sufficiently
severe as to require someone to be hospitalized.

In the other scenario, neither disease alone would require hospitalization.

Having both diseases, however, requires hospitalization. To illustrate how the paradox
comes about, we draw the causal diagram shown in figure below:

PREVIEW-PDF, erzeugt: 2024-06-18T14:30:01.73+02:00



Figure 40: Berkson’s Paradox

Disease 1 Disease 2

Hospitalization

Disease 1 can cause hospitalization, hence we draw an arrow from “disease 1” to “hospi-
talization” and the same reasoning applies to disease 2. Disease 1 does not cause disease
2, and vice versa. Hence, there are no arrows between them. Looking at the causal graph,
we can immediately explain why Berkson and others found a (spurious) correlation
among hospitalized patients: By looking only at patients in the hospital, we condition on
hospitalization (“hospitalization = true”). Because hospitalization is a collider, we open a
previously blocked back-door path between “disease 1” and “disease 2.” This can be also
interpreted as a selection bias. Only those patients who made it into the study who were
hospitalized; no individuals were randomly selected from the general population.

As mentioned above, we could interpret this collider or selection bias in two scenarios. In
one scenario, either disease can be sufficiently severe to require admittance to hospital.
This scenario is very similar to the example of celebrities encountered earlier: If the
patient was not admitted due to disease 1, it is more likely they are admitted due to dis-
ease 2. In this case the correlation is negative. In the other scenario, hospitalization is
required only if both diseases are contracted. In this scenario the correlation is positive: if
a diagnosis confirms one disease, it is very likely the other is also present.

Further discussion is also found in (Pearl & Mackenzie, 2018, p. 197 ff.).

5.4 Imputing Missing Values: Causal
versus Data-Driven View

Imputing missing values is a task that occurs frequently in the work of data scientists, sta-
tisticians, and all those who analyze data frequently.

Imputing missing data sees us determining a data point missing from the data we do have.

This mostly this happens in structured data, which can be represented as a table. For  structured data

example, a row in such a table may represent an observed event, and the columns would ~ Structured data follow a
d h iabl hat d ibe th defined structure called a

correspond to the variables we can measure that describe the event. In some cases, 0ne o «chema” and can be rep-

more of these variable values may be missing, and we need to account for this in our anal-  resented by a database

ysis. Naively, we might be tempted to just remove this observation with missing data. table.
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However, this could introduce a bias if the data are not missing due to a random glitch.
There are a number of ways we can impute (or calculate) approximations to what we think
the missing value should be—or at least determine a value that does no harm. For exam-
ple, we can replace the missing value with the average value of all other values of the vari-
able we observe in our data. We could also interpret the variable as a random variable and
use all observed values to create an approximation of the underling probability distribu-
tion that governs the behavior of the variable. If the true distribution is known, we could
fit its parameters from the observed data. Otherwise, we can create a non-parametric par-
ametrization from the observed data to create an approximate probability distribution.
This distribution can then be used to generate the missing value in a number of ways. For
example, we can use the mean, mode, median, or any other quantile as an estimate—or
we can draw a random number according to the probability distribution.

The latter approach has the benefit that it is not static, i.e., if several values are missing we
use a different imputed one each time instead of the same value. These approaches are
purely statistical, meaning we exploit no knowledge of the data generating process we
might have. Instead, we only use the observed values only to infer the missing one.

Another option would be to find a matching pair of variables: Compare this event with the
others, find the one that is closest to the one with the missing value for all other variables,
and then use the matching event to fill the missing value. Note that, by doing this, we
apply a type of conditioning because we require the value in the data to take certain val-
ues. We could also create a regression model to determine the values.

However, none of these approaches take the data generating process into account and
include the causal story behind the data. Using the examples concerning salaries (Pearl &
Mackenzie, 2018, p. 273 ff.) we will illustrate how the answers may be quite different if we
follow a purely statistical or a causal approach to impute missing values.

The example uses the following table: Fictitious data for potential outcomes example

aFictitious data for potential outcomes example

Employee (u) Ex(u) Ed(u) So(u) 57 (u) So(u)
A 6 0 81,000 ? ?

B 9 1 ? 92,500 ?

C 9 2 ? ? 97,000
D 8 1 ? 91,000 ?

E 12 1 ? 100,000 ?

F 13 0 97,000 ? ?
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Here, Ex(u) represents the number of years of experience in a given job and Ed(u) the level
of education where, for simplicity, it is assumed that only three levels exits: Ed=0: High
school diploma; Ed=1 (undergraduate degree) and Ed=2 (graduate degree). S(u) repre-
sents the salary of the employee.

Note that this example is more advanced than the one discussed above concerning miss-
ing values, because here, we want to impute counterfactual missing data. Each individual
employee has their own salary based on experience, as well as on their level of education.
In this example, we want to know which salary an individual employee would have if they
had a different level of education. Still, the same considerations apply. We could try to find
matching entries for different employees and infer the counterfactual salary this way.
Given sufficient data in all columns, we could also take any other statistical approach. For
example, if we had a few hundred thousand employees, we could approximate the proba-
bility distribution of the salaries. We could also use a simple linear regression model for
the salary: S = 65,000 + 2,500 - Ex + 5000 - Ed (Pearl & Mackenzie, 2018, p. 274) in
which each employee has a base salary of 65,000 that is then increased depending on
experience (Ex) and the level of education (Ed).

However, as mentioned above, no statistical method takes the causal story or data gener-
ating process into account. They cannot, as statistical methods work with the data only. In
a causal model, we would first think about the dependencies of the variables, i.e., which
arrow points from one place to another. We can safely assume that both experience and
the level of education have an impact on salary. For example, more years of experience
and/or a higher level of education will, generally, lead to a higher salary. Therefore, we
draw an arrow from education to salary and another from experience to salary. However,
experience is also related to education.

Generally, we have two options: either an arrow from experience to education or from
education to experience. It is more plausible that education is the cause of experience, i.e.,
that we draw the arrow from education to experience rather than the other way around.
We could say that the level of education we have determines the years of experience we
may have gained in our profession, whereas the number of years of experience will, gener-
ally, not affect our level of education. The resulting causal diagram is shown in figure
below.

Figure 41: Causal DAG for the Salary Example
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tions.

In this diagram, the years of experience are a mediator in the chain: education — experi-
ence — salary. However, if experience were a cause of education, experience would
become a confounder, as the direction of the arrow would be reversed. This is important
because we have to adjust for a confounder to avoid bias. However, we do not adjust for
the mediator.

As we have done when discussing counterfactuals, we can translate the causal graph in a
structural causal model (SCM) to calculate the counterfactual missing values. In such a
model, the variable we want to model is a function of the related causal variables. In our
case, the salary S'is causally influenced both by experience and the level of education, i.e.,
S = f(Ed, Ex,U,), where U, models any unobserved variations affecting the salary for a
specific individual. In the simplest case, this can expressed as a linear model. In this exam-
ple, we obtain (Pearl & Mackenzie, 2018, p. 277):
S = 5,000+ 2,500 - Ex + 5000 - Ed + Usg.

Although the equations looks the same as the previous one (apart from the factor Ug), the
interpretation is very different. Previously, we chose to regress S on Ed and Fz—but this
had no connection to the real world. In particular, we did not assume a causal relationship
between them. We could have chosen any other combination of the three variables. In
contrast, our formula S = f(Ed, Ex,U,) now expressed our belief or knowledge that the
salary (S) is causally connected to Ed and Ex. We cannot write a structural causal equa-
tion for, say, Ed = f(S, Ex,U), because our causal model represented by the graph says
that such a model does not exist. However, our model requires us to write another equa-
tion for experience: Ex = f(Fd,Up,), because we have added an arrow from “education”
to “experience” The resulting equation is (Pearl & Mackenzie, 2018, p. 277)
Ex =10—4- Ed + Ug,. Note that although we expect the salary and experience to be
highly correlated in the data, the variable S does not occur in the above equation.

If we then want to know the counterfactual imputed missing value, we can follow the
same approach we have taken when discussing counterfactuals.

Suppose we want to know the salary for employee A at varying levels of education. At
present, employee A only has a high school diploma and six years of experience. How
would it look if they had an undergraduate or graduate degree? In a first step, we use the
structural equations to determine the unknown factors U, and Up, for this specific
employee and we find Ug(A) = 1,000 and Ug,(A) = —4 (Pearl & Mackenzie, 2018,
p. 278). Now we assume that employee had an undergraduate degree, i.e., we set the vari-
able Ed = 1, or, in the language of causality do(Ed = 1), and make the relevant change to
the causal DAG by removing all variables pointing into Fd (in this example, however, there
is no arrow to remove).

First, we evaluate the new level of experience for employee A using the second equation
we obtained from the model Expy _ 1(A) = 10 — 4 - 1 — 4, where we use the subscript to
indicate that we calculate the counterfactual (i.e., hypothetical) for the case that we
do(Ed = 1), even though this is a hypothetical case. This means that employee A would
only have two years of experience if they had an undergraduate degree. This can then be
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used in the structural equation for the salary
Spa—1(A) = 65,0004 2,500 - 2 + 5,000 - 1 4 1,000 = 76,000. This is the salary
employee would have if they had an undergraduate degree.

However, if we wused the regression model discussed earlier, i.e,
S = 65,000 + 2,500 - Ex + 5000 - Ed, we would get

S — 65,000 + 2,500 - 6 + 5000 - 1 = 85, 000.

This is because we just changed the level of education and left everything else, in particu-
lar the years of experience, the same. Hence, in this example, we can get two answers for
the imputed missing values, one from a purely data-driven approach leading to a salary of
85,000 and one taking the causal structure into account leading to 76,000. In the causal
model, we also need to take into account the changed values of the variables we do not
impute. In this example, we are looking at the years of experience the employee would
have had if they had a different level of education, as well as the factors U that are unique
to this individual. These factors are not considered in the regression model and, hence,
the regression and the causal approach arrive at very different answers. This example uses
a simple linear structural causal model, but the equations for Fx = f(Ed,Ug,) and
S = f(Ed, Ex,U,) may be more complex. This is especially true in more complex graphs
with more than three variables.

==

:‘ﬁ\ SUMMARY
When we analyze data, we are often prone to make mistakes and fall into
traps that we can only avoid by building a deeper understanding of the
data and the data-generating process behind it. In several cases, the
behavior of the data is seemingly paradoxical, for example, when the
correlation between variables is observed to be one way across the
entire sample but goes the other way in the subsamples.

Many of these paradoxes can be understood by analyzing the causal
structure of the data-generating process. This allows us to identify why
the data behave this way and how to avoid the paradoxical situation.
Many of these phenomena are associated with the names of scientists
whose relevant works analyzed the issue such as Simpson’s or Berkson’s
paradox. When imputing missing values, we can take a purely data-
driven approach or a causal approach. Using a concrete example, we
can see how both approaches result in plausible answers, even though
the results obtained by one approach can be very different to those cal-
culated in the other.
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HERE YOU CAN FIND THE VIDEOS FOR THIS UNIT.
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Source: http://www.kaltura.com/tiny/iw9g6

Alternative text:
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