
SOFTWARE ENGINEERING
FOR DATA INTENSIVE
SCIENCES

LIBFOARPDLMDSSEDIS01

LEARNING OBJECTIVES
The course “Software Engineering for Data Intensive Sciences” gives a comprehensive
overview of software engineering basics for practitioners coming from data intensive sci-
ences, such as data science. In the first unit you will be introduced to two fundamental
approaches to project management, namely traditional and agile methodologies. Both
approaches can be found in companies today and come with their individual advantages
and drawbacks. Whatever approach you find yourself using at work, project management
is the basis of working productively in teams, and having a good understanding of best
practices goes a long way. The second unit is concerned with a modern approach to com-
bining software development and operations within a company, called DevOps. The
DevOps culture is fundamental to how big players like Google deploy and maintain their
services, and very popular among startups today. You will be introduced to the core build-
ing blocks of scalable software environments based on the DevOps philosophy. In unit
three you will learn the basics of software development best practices, starting with how
to test the software you write and how tests get automatically checked in a production
pipeline. You will also learn about version control for your software and the tool stack pro-
fessional developers use in practice. Unit four is about application programming interfa-
ces (API), that is, the various ways in which you can interact with software and services.
You will learn some of the most important principles of designing and building good inter-
faces on your own and build a small Python library based on them. The final unit introdu-
ces you to the differences between the workflow of data scientists and software engineers,
how their requirements and expectations differ, and how the work of data scientists safely
finds its way into scalable production environments.

7

Anonymous
Highlight
Not needed

Anonymous
Highlight

Anonymous
Highlight
course book

Anonymous
Highlight
-

Anonymous
Highlight
Feels awkward tacked onto the end like this.

Anonymous
Highlight
Not needed

Anonymous
Highlight
3

Anonymous
Highlight
New paragraph.

Anonymous
Highlight
New paragraph

Anonymous
Highlight
Could be better worded

Anonymous
Highlight
Awk.

Anonymous
Highlight
New para

UNIT 1
AGILE PROJECT MANAGEMENT

STUDY GOALS

On completion of this unit, you will have learned …

– the definition and types of traditional project management.
– what Agile project management is.
– what Kanban and Scrum methodologies are.
– which modern methodologies are used for project management.
– how to transition from traditional to Agile project management.

Anonymous
Highlight
Study goals need rephrasing using Bloom's taxonomy of verbs.

Waterfall model
This is a linear sequential
development methodol-
ogy in which each stage

or step happens after fin-
ishing the previous step

(for example, the testing
step coming after the

implementation step).

1. AGILE PROJECT MANAGEMENT

Introduction
The work of a department or team within a company can be divided into two groups:
ongoing operations and new projects. The former deals with day-to-day operations; for
example, in a software development department within an automobile manufacturer, the
main goal is to create software for the company. The tasks usually carried out by the oper-
ations department do not have a specific deadline and are used to solve problems and to
achieve similar and consistent results through repeatable procedures or activities. The lat-
ter department deals with projects, i.e., specific tasks characterized by a unique outcome
and a clear start and end time. Projects cannot be considered a long-term goal for a
department because they are usually temporary and their duration is relatively short.
However, projects bring innovation and help the company survive in the market. With the
advent of innovations, projects are becoming more and more important for companies,
which explains the parallel increase in the demand for project management skills. For
example, the software development team at an automobile manufacturer may receive a
sales and marketing project or create a project aimed at developing a navigation system in
cars to help the company compete in the market. To achieve such goals, a company needs
project management to carry out all projects inside a team, bring them successfully to
completion, and deliver high-quality outcomes. Project management consists of tools,
theories, techniques, knowledge, and skills that are used to lead teams, allocate resour-
ces, and manage the complexity of a project in order to achieve the prescribed goal with
certain success criteria while remaining within a specific time frame and under budget.
During the last few decades, different management organizations have tried to introduce
a standard that covers all aspects of project management. With the significant industrial
growth that started in the 1950s, companies began to systematically apply project man-
agement tools and techniques to the development phases of their projects (Kwak, 2005).
One of the main standards, which was intensively used until 2000 and is still used by many
companies today, is traditional project management (TPM) (Project Management Insti-
tute, 2017).

1.1 Traditional Project Management
TPM is a set of techniques and tools that can be applied to an activity or task aimed at
creating an end product, reaching a specific outcome, or offering a service. This standard
is based on the waterfall model presented in the figure below:

10

Anonymous
Highlight
This paragraph is too long and should be broken up into two or more shorter paragraphs.

Anonymous
Highlight
;

Figure 1: Waterfall Workflow

Source: Asadi (2020).

The main idea behind TPM is to realize projects in a predictable and linear way thanks to
the clear definition of the boundaries of each phase, so that the plan can be followed with-
out having to make many alterations (Project Management Institute, 2017). In today’s
world, some projects have a clear goal and will not have to undergo many changes during
their lifetime, which means that their target can be achieved through a linear and sequen-
tial cycle of events or phases. This type of project can be perfectly managed by TPM,
because this approach has a fixed lifecycle based on the following sequence.

11

Anonymous
Highlight
Different word, maybe "successfully carry out"

Anonymous
Highlight
life cycle

Figure 2: TPM Workflow

Source: Department of Veteran Affairs (2020).

When the idea is initiated, a new project or phase is created within the current project. The
management team begins to identify the resources required, determine the scope and
goals of the project, and to define how those goals can be achieved. Then, the develop-
ment team begins execution to carry out the tasks defined in the project plan, while man-
agement uses monitoring or control to track and review the progress and performance of
each phase. Once all related activities have been completed and the goal has been
reached, the manager formally closes the project or one of its phases. In TPM, the project
is usually divided into clearly defined stages, each with their own planned targets and out-
comes. Before moving from one stage to the next, the target of the previous stage must be
achieved, all related tasks must be carried out, and all decisions must be made. TPM puts
a special emphasis on linear phases, planning in advance, documentation, and on the pri-
oritization of the defined tasks. For the whole duration of the project, TPM will ensure that
it is following the predefined phases. When drafting a complete plan that will cover all
requirements and risks for each phase of the project, TPM usually assumes that the envi-
ronment and resources will remain the same throughout. It breaks down the outcome into
smaller tasks, which leads to an increased predictability for each task. Therefore, thanks
to a thorough prediction or estimation of the tasks required and the risks associated with
them, TPM is able to keep a project under control. Based on such a strategy, the target of

12

Anonymous
Highlight
Not needed

TPM is to increase the efficiency of the initial project plan in order to deliver the outcome
within the planned time frame, budget, and scope. The main advantages of the TPM
approach are the following:

• It is easy to understand and follow because it is a sequential and controllable process.
• It is cost-efficient because the fixed assumptions made by TPM lead to a reduction in

project costs.
• It is efficient because remote projects usually require less communication and a more

detailed plan, something TPM is particularly good for when carrying out such projects.
• It increases customer satisfaction or accountability by achieving the targets by the plan-

ned deadline.

However, this approach also presents the following disadvantages:

• Since it is based on prediction, its procedures can be considerably slowed and lead to
timing issues whenever the actual costs, effort, and resources for the project differ from
the initial estimation.

• There is less customer interaction compared with the other methods we will explore in
this unit, which can lead to a misunderstanding of the target or outcome of the project.

• It can deprive employees of their creativity because of its predefined and sequential
phases.

• It can cause a lack of coordination when each team member is busy with a task and only
thinking of their individual effort, talent, and outcome.

Several methods introduce a detailed definition of each step or phase in TPM, as well as
tools and techniques that can be used by project managers. Two well-known TPM meth-
ods which will be presented in this unit are PMBOK and PRINCE2.

PMBOK

PMBOK (project management body of knowledge) was originally introduced by the
Project Management Institute (PMI). Founded in 1969, the PMI is a non-profit organization
that provides support and sets the standards for project management across the world
(Project Management Institute, 2017). PMBOK was first published in 1983 as a set of
detailed guidelines and definitions of standard terminology frequently used in project
management (Project Management Institute, 2017). This resource can be used by manag-
ers to ensure that projects in different teams and organizations meet the high standards of
the PMI. The main assumption of PMBOK is that project managers need a standard that is
applicable to any kind of project in any industry and sector regardless of differences in cul-
ture. It is comprised of five initial processes and ten knowledge areas. These knowledge
areas are related, but not all of them can be applied to every single process. The five proc-
esses—initiating, planning, execution, monitoring, and closing—are based on TPM and are
common to almost all projects. Each process describes the tasks which need to be carried
out in order to manage any project. These are defined as required inputs (documents,
plans, designs, etc.), expected outputs (documents, plans, design, etc.), and tools or tech-
niques that can be used to convert inputs into an expected output. The output of a proc-

13

Anonymous
Highlight
Could be better phrased

Anonymous
Highlight

Anonymous
Highlight

Anonymous
Highlight

Anonymous
Highlight

Anonymous
Highlight
en-dash with space either side

Anonymous
Highlight

Anonymous
Highlight
Semi-colon for clarity to separate list items that already contain commas

Anonymous
Highlight

Anonymous
Highlight
10

ess will then constitute the input of the next process. Each process should cover a specific
need of the project, and the management team has to choose which process should be
used, by whom, how, and when.

PMBOK also includes lists of best practices, conventions, and techniques which comply
with industry standards and enable a team or an organization to manage projects in the
best possible way. With best practices in PMBOK, we refer to the general agreement that
the application of the knowledge, tools, and techniques in PMBOK can increase the
chance of success of different projects (Project Management Institute, 2017). The PMI tries
to regularly update the guidelines introduced in PMBOK to ensure they are always based
on the most up-to-date project management practices and considers the growing impor-
tance of innovations. The current, sixth edition of PMBOK was published in 2017 (Project
Management Institute, 2017). PMBOK identifies ten different areas of knowledge that
determine what processes must be carried out in order to achieve effective project man-
agement. These areas of knowledge are the following:

1. Integration, which defines and combines various processes inside the different project
management process groups

2. Scope, which determines the work required to successfully carry out a project
3. Schedule, which ensures that the project will be finished by the scheduled time
4. Cost, which involves controlling, estimating the costs, and funding the project to

ensure that it will be completed under the approved budget
5. Quality, which identifies the policies that help deliver a high-quality outcome
6. Resource, which involves organizing and leading the team members of the project

and managing the resources available
7. Communications, which involves creating, collecting, distributing, managing, and

monitoring the project information
8. Risk, which involves identifying, planning, analyzing, and controlling the risks associ-

ated with each stage of the project
9. Procurement, which identifies and purchases the external services and products that

are required to finish the project
10. Stakeholder, which involves analyzing and engaging the stockholders, people, or

organizations that can have an impact on the project

PMBOK is not a methodology, but rather a set of guidelines and knowledge that govern
the lifecycle of a project or program. Any industry or organization can create its own best
practices based on its scope by applying the processes illustrated in the PMBOK. However,
this method also presents a disadvantage, in that it has so many combinations of proc-
esses and knowledge areas that these can add unnecessary complexity to small-scale
projects; it is therefore important that they are always adapted to the scope and size of
each individual project.

PRINCE2

PRINCE2 (projects in controlled environments) is an approach introduced and released by
the UK government in 1990 to support project management both in IT and non-IT indus-
tries. Over time, it became a well-known standard and was also adopted by the European
Organization (Siegelaub, 2004). Unlike PMBOK, which is a set of guidelines or standards,

14

Anonymous
Highlight

Anonymous
Highlight

Anonymous
Highlight

Anonymous
Highlight

Anonymous
Highlight

Anonymous
Highlight

Anonymous
Highlight
Which one? There isn't an obvious organization that uses this name alone.

PRINCE2 is a generic project management framework developed as an industry-independ-
ent standard that focuses not only on the process but also on achieving a high-quality
product. This difference makes it a perspective and product-based project management
model. The inherent product focus of PRINCE2 reflects the reality and target of projects to
deliver business needs as an outcome of projects. PRINCE2 is a methodology in its own
right and its framework is based on seven principles, seven themes, and seven processes
that need to be applied by project management and must be tailored to the needs of each
individual project (Siegelaub, 2004). The seven principles of PRINCE2 are

1. continue business justification,
2. learn from experience,
3. define roles and responsibilities,
4. manage by stages,
5. manage by exception,
6. focus on products, and
7. tailor to suit the project environment.

Throughout the project lifecycle, PRINCE2 also identifies seven themes that need to be
continually addressed to identify the project’s tasks and activities:

1. Business case, which is based on the principle of continued business justification,
which provides knowledge about whether a project is worthwhile and achievable

2. Change, which provides knowledge about how to handle and manage changes that
arise during the project

3. Organization, which defines roles and responsibilities so that they can all be on record
4. Plans, which describes how the team can achieve their target to deliver a product

under budget and within the specified time frame
5. Progress, which is about tracking the project, allowing the team to check its status at

any time
6. Quality, which is related to the focus on products principle and helps to check the

quality of each phase
7. Risk, which identifies and controls risks associated with the project

To a certain extent, these themes correspond to the knowledge areas of PMBOK. PRINCE2
also identifies seven processes that should be implemented in order to reach a specific
objective. The seven processes are

1. starting a project,
2. initiating a project,
3. directing a project,
4. controlling a stage,
5. managing product delivery,
6. managing stage boundaries, and
7. closing a project.

The structure of PRINCE2 is presented below.

15

Anonymous
Highlight
the following:

Anonymous
Highlight
All first letters in numbered list should be caps.

Anonymous
Highlight
Periods at the end of each list item instead of commas.

Anonymous
Highlight

Anonymous
Highlight
the following:

Anonymous
Highlight

Anonymous
Highlight
No punctuation for this list

Anonymous
Highlight
Remove

Figure 3: PRINCE2 Structure

Source: Ranjan (2014).

Since different activities have been identified across the seven processes illustrated in
PRINCE2, it is necessary to determine who is responsible for each of them and when they
will be executed (Bentley, 2010). Once that has been decided, the clear definition of the
process in PRINCE2 makes project management an easy feat for people with less experi-
ence in this area, and it greatly improves the quality of the project outcome. However,
although PRINCE2 has a well-defined workflow, using such an approach does not guaran-
tee the success of projects that require more complex project management. Furthermore,
as it focuses on a wide range of different activities, it can also be the wrong approach for a
number of smaller projects.

1.2 Agile Project Management
Although during the last few years many efficient project management methodologies
have been introduced, there still is no one-size-fits-all method that can be adopted to
manage all projects and carry them out successfully. TPM is more effective for projects
with low levels of uncertainty; clear requirements with a low change rate; clear targets;
and less customer interaction. In the methodologies based on TPM, the main emphasis
lies on the initial planning and estimation of each project phase. During the TPM process,
it is not necessary to involve customers and end consumers because the main focus will
be on the effort to document every activity. For projects where TPM would not be the ideal
methodology, Agile can be a good alternative. This method originated from software

16

Anonymous
Highlight
Use commas here instead of semi-colons.

Anonymous
Highlight

Anonymous
Highlight

Agile
This type of project man-
agement is an iterative
approach to delivering a
project throughout the
iterative development
loop called a sprint.

development and was first introduced in the Agile Manifesto, a short document published
in 2001 which is comprised of four core values and twelve principles (Fowler & Highsmith,
2001). The four core values of Agile are

1. individuals and interactions over processes and tools. Communication and interac-
tion with customers and other parties is more important than standard processes and
tools. It is also important that all people involved in a project or team are working and
collaborating effectively.

2. working software over comprehensive documentation. The focus should be more on
delivering a working application than on writing comprehensive documentation. The
main point of a project is to create a product, not documents.

3. customer collaboration over contract negotiation. Collaborating with customers is
more important than signing a contract with them. A contract is important to start the
project, but customer requirements may change over time and may not be covered in
the initial contract.

4. responding to change over following a plan. Since responding to change is more
important than following the plan, flexibility should be an essential element of the
process in order to avoid freezing the scope of the project.

As mentioned above, the Agile Manifesto also includes the twelve principles of agile
project management (Fowler & Highsmith, 2001). These principles describe the flexible
approach Agile has towards changes and its focus on communication with the customers.
The Agile principles are explained below.

1. Customer satisfaction: This is achieved through early and continuous delivery of a val-
uable product. Customers will be happy to receive working software on a regular basis
rather than waiting for it to be released.

2. Change: New requirement changes are constantly received and implemented
throughout the development process.

3. Delivery: A working software or product should be delivered frequently, preferably on
a weekly rather than monthly basis.

4. Collaboration: There should be a close collaboration between the business stakehold-
ers and the developer team during the project lifetime. If the customer is aware and
part of the decision-making process, the latter will improve considerably.

5. Relation: The people involved in the project should be motivated, supported, and
trusted.

6. Communication: Once the developer teams have been formed, enabling face-to-face
communication and interactions becomes the key to the project’s success.

7. Measure of progress: The primary measure of progress is working or functional soft-
ware.

8. Promote: Agile processes promote sustainable development; the customers, develop-
ers, or stakeholders should be able to maintain the product.

9. Attention: Continued attention should be paid to technical excellence, detail, and
design.

10. Simplicity: The project should have a clear purpose and principles that can be under-
stood by everybody so that they can suggest possible changes.

17

Anonymous
Highlight
12

Anonymous
Highlight
, which is

Anonymous
Highlight
as follows:

Anonymous
Highlight

Anonymous
Highlight

Anonymous
Highlight

Anonymous
Highlight
:

Sprint
A Sprint is a short period

of time during which a
Scrum tries to get a cer-

tain amount of work
done.

11. Architecture: Great architectures, requirements, and designs come from self-organiz-
ing teams. When people are motivated, they take on more responsibility and they
become better decision-makers by communicating with others. This results in a high-
quality collaboration and a high-quality product.

12. Feedback: Regular feedback should be provided on how to become more effective;
self-improvement, advanced skills, tools, and process improvement help teams to
become more efficient.

Now that the values and principles of agile project management have been defined, we
can go on exploring this new methodology. Agile is an iterative project management
methodology that helps organizations deliver products or services quickly and easily to
their customers. Its structure corresponds to the different levels of an organization, e.g.,
staff, team, department (Highsmith, 2009). Depending on how the organization works, the
application of the Agile methodology to project development can improve team collabo-
ration and delivery performance. In fact, this method mainly relies on teamwork, commu-
nication, collaboration, time-boxing, and quick reaction to the changes that happen dur-
ing the lifecycle of a project. Agile puts a particular emphasis on the process of software or
project development and focuses especially on the quality of processes, software, or
projects. In order to make the Agile process deliverable and shorten the lifetime of
projects, the following characteristics of Agile need to be considered:

• Iterations. Agile focuses on a single requirement for the whole duration of a short cycle
constituted by fast verification, fast correction, and running (using multiple iterations).

• Modularity. During the development process, Agile breaks down a complete system into
smaller and more manageable components called modules.

• Time-boxing. When applying the Agile methodology, a team or a developer has a set
amount of time in iteration cycles of one to six weeks to complete a task for each mod-
ule.

• Parsimony. The Agile methodology entails removing all unnecessary activities in order
to control risks and reach the target.

• Adaptive. Agile project management adapts quickly to new risks or changes.
• Incremental. Agile project management requires a development of the product in incre-

ments, thereby allowing functional application building in small steps. At the end, all
increments will be integrated into the complete system or product.

• Convergent. Increment risks are convergent in the Agile process.
• Collaborative. The Agile approach is inherently communicative and collaborative.
• Customer-oriented. Customer satisfaction is the top priority in Agile, favoring people

over processes and technology.

The Agile methodology is based on an iterative process in which projects are broken down
into small parts or increments known as sprints. The Agile workflow consists of sprints
that follow the software development lifecycle, which includes an understanding of
requirements, design, development, testing, development, review, and deployment or
delivery. An example can be seen in the following figure:

18

Anonymous
Highlight
Awk.

Anonymous
Highlight

Anonymous
Highlight
There are too many different list formats in this unit. I would advise a colon after the first key term to make it similar to the list above.

Anonymous
Highlight
one-to-six

Anonymous
Highlight
Consistency with caps (I would go lower-case for all).

Anonymous
Highlight

User story
A user story is a simplified
descriptive document
used in Agile which
describes the type of cus-
tomer, requirements, and
why to create a function
for the customer.

Figure 4: Agile Workflow

Source: Asadi (2020).

Generally speaking, the Agile process means less time planning or prioritizing and more
time understanding customer requirements and delivering results. Since customer satis-
faction has the highest priority in Agile, customers are directly involved in each iteration
and are asked to review the delivered product at the end of each phase or Sprint. Because
of its inherent iteration, this method is more flexible and therefore adapts more easily to
changes that have to be implemented to satisfy customer requirements. All new require-
ments are usually considered in the next loop of the iteration. By breaking down the
project into small sections, the manager gains more control, which allows him to better
manage the risks associated with it and quickly resolve problems when they arise. In the
Agile methodology, there are also different roles that must be distributed among the team
members involved in Agile-based project development.

• User or customer: An Agile process always begins by considering customers and their
requirements.

• Product owner: This role gives voice to a customer or an internal stakeholder, so it
entails analyzing and summarizing ideas, gaining knowledge, and giving feedback on a
product. While working with the development team, a product owner divides customer
requirements into user stories and adds more details. These details should cover who
the user or customer is, what type of problem has been solved for them, why the new
solution is important to them, and what acceptance criteria apply to the solution. A
product owner is a team member responsible for defining the vision and working with
the development team to create an acceptable solution for it.

• Product or software development team: In the Agile methodology, a team uses its
advanced skills to complete a project and focus primarily on the delivery of functional
products. In order to do this, team members check in frequently—even daily—with each
other to see how far everyone has progressed and check who is responsible for specific
tasks.

19

Anonymous
Highlight

Anonymous
Highlight

Agile Advantages and Disadvantages

The main goal of project management is to get a result on time and under a certain
budget. Like any other method, Agile presents some advantages and disadvantages that
may affect a team’s ability to achieve the main goal in a positive or negative sense, so it is
particularly important that teams are aware of this when introducing Agile into their
organization. When considering the characteristics and principles in an Agile team, the
main advantages for the people and organizations involved in the project are the follow-
ing:

• Less detailed requirements will be needed for starting the project because further infor-
mation can be gained during the lifetime of the project (Sharma et al., 2012).

• Good face-to-face communication between developer teams and customers is the main
principle of Agile; it will also help to reduce risks associated with development (Sharma
et al., 2012).

• An early delivery of the product benefits customers (Masson et al., 2007).
• A product which is developed by an Agile-based development team will have a reduced

time-to-market compared to a product developed in a TPM-based development team
(Carilli, 2013).

• Agile reduces the costs of projects, which might be higher for projects developed with
the TPM approach (Carilli, 2013).

• Accepting changes and involving customers in each step and decision guarantees
higher product quality (Masson et al., 2007).

However, Agile is not a perfect model and it cannot automatically guarantee the success of
a project. When deciding which approach to adopt when developing a project, the follow-
ing disadvantages of Agile must also be considered:

• Agile has a less detailed initial planning, which can lead to a wrong estimation of efforts
and costs (Serrador & Pinto, 2015).

• Agile has less documentation, which can lead to less information for all present and
future developers or new developers (Sharma et al., 2012).

• An Agile-based project needs clear customer feedback and communication in order to
be improved. If customers are not representative and are not giving clear feedback, this
will slow down the development team considerably (Sharma et al., 2012).

• An Agile team must be formed by experienced developers; it has to be faster and require
less time in planning the project, resulting in higher costs (Taibi et al., 2017).

Despite the aforementioned disadvantages, Agile is a very successful methodology and it
has helped the IT industry to deliver high-quality products. Nowadays, several well-known
companies such as IBM, Microsoft, Apple, and Adobe are using Agile project management
to change and update their programs through the so-called Agile transformations (Carilli,
2013). These are major organizational changes that involve Agile working in small multi-
disciplinary teams that focus on delivering results quickly, experimentally, and iteratively
(Consultancy, 2020). For example, in 2012, Adobe switched to Agile in order to decrease
the amount of hours spent on managerial activities and they managed to save 80,000

20

Anonymous
Highlight
It would be better to put the citations that appear in this list in one set of parentheses before the colon that introduces the list. Feels messy currently.

Anonymous
Highlight
-

Anonymous
Highlight
Word choice

Anonymous
Highlight
Are these not the same thing?

Anonymous
Highlight
,

Anonymous
Highlight

Pull system
This technique is used to
start a new task when
there is a customer
request, which optimizes
costs and reduces waste
in production processes.

hours annually (Hearn, 2019). Over time, different Agile-based approaches have been
introduced, developed, tested, and released in different industries to allow for a quick
delivery of successful systems. Two very well-known approaches are Scrum and Kanban.

1.3 Kanban
The Kanban method is a visual system invented by Toyota to help organize the workflow in
project management. In Japanese, the name Kanban means “sign” or “board” (Sugimori
et al., 1977). Previously, most industries worked based on a push system, which means
production was not based on actual customer demand; rather, manufacturers delivered
their products according to estimates based on previous demand, without considering the
current state of the market or customer requests. Instead, Kanban is a pull system that is
part of the Agile movement. A pull system is based on actual customer requests and sends
a task to the production line only when there is the demand for a certain product. Kanban
has been adapted and applied to various industries, where it has helped to minimize activ-
ity without affecting productivity and to create more value for customers while keeping
costs low for the industries. This visual model focuses on tasks and shows what to do,
when, and how much. This method is based on three main parts: the Kanban board, cards,
and swim-lanes.

The original Kanban system is presented in the following figure:

Figure 5: Kanban Structure

Source: Waldner (1992).

According to this structure, a Kanban card is pulled from the red zone whenever there is a
consumption signal, and a task will be started simultaneously in the production line. After
production is complete, the product is delivered and the card is returned to the Kanban
table. The board that shows all the tasks and their progress is called a Kanban board. The
Kanban board has different columns showing the status of tasks, and the number of col-

21

umns changes based on the structure of the team and project. However, three main col-
umns corresponding to generated ideas, work in progress, and completed tasks are
always present on the board. These columns can be marked as “to do,” “in progress,” or
“done.” The card you use to view a task is called a Kanban card and it shows your team the
progress and status of a specific task. If you have different categories of tasks, you can use
Kanban swim-lanes to separate those categories horizontally on the board. An example of
the Kanban board is shown in the picture below:

Figure 6: Online Kanban Board

Source: Asadi (2020).

With the increase of technological progress and the growth of internet usage, many online
platforms also offer Kanban nowadays. However, despite the availability of online tools,
many companies still follow the traditional Kanban philosophy that advocates for the use
of physical boards to improve interaction (Collado, 2018). The Kanban board helps you
and your team to maintain transparency regarding the status of the work; it also allows
you to quickly identify bottlenecks and remove any obstacles and risks associated with
the project.

Principles and General Practices

To successfully develop the Kanban method, Toyota introduced four core principles and
six general practices that a team should consider when using Kanban (Sugimori et al.,
1977). The four principles are illustrated in the figure below:

22

Anonymous
Highlight
"Modelling" should be "Modeling"

Figure 7: Kanban Principles

Source: Asadi (2020).

These principles are essential to improve collaboration in the Kanban process and to
encourage respect within a team. As mentioned before, the Kanban method also includes
six practices that should be applied when starting a new Kanban cycle which are illus-
trated in the figure below:

Figure 8: Kanban Practices

Source: Asadi (2020).

As explained earlier, Kanban focuses on visualizing tasks by adding them to the Kanban
board. Each task should have a name and can also contain additional information such as:
categories, creation date, deadline, owner, or requirements. When adding a task on the
Kanban board, the team needs to limit the number of cards marked “in progress” to
increase productivity and focus. Each task will be executed during a sprint and, if it is not
possible to do so in the current increment, it can be moved to the next one. When a team

23

Anonymous
Highlight
, such as

first starts using Kanban, it will be difficult to set a perfect limit of tasks “in progress,” so it
is advisable to start with a low or manageable limit as it will achieve faster results. Over
time, the team can increase this limit if they feel comfortable trying to carry out all tasks
on the column marked “in progress.” If, during the current sprint, the team members feel
that there is time to work on another ticket, then they can pull a task and start executing it
without waiting for a new sprint. When moving tasks on the Kanban board, it is important
to manage the flow to recognize who is doing what and when. It is important to identify
this in order to successfully manage the work of the team. Kanban, in fact, is not about
micro-managing people and overloading them with tasks, but rather about providing a
transparent, healthy, and productive system that will allow a team to execute tasks faster.
For this reason, making policies explicit will help to move in this direction, as well as to
connect people and work. An interesting thing about Kanban is that team members can
give and receive feedback that will help the team be more agile. The team can have a short
daily stand-up meeting (about 15 minutes or less) held in front of the Kanban board to
provide updates and feedback. To improve the quality of the tasks or their outcome, a
review can be carried out by another team member to make sure that the outcome meets
the team’s standards and to provide feedback to the owner of the task.

Benefits of Kanban

Introducing Kanban in a team doesn’t actually require revolutionary changes because its
concepts, implementation, and procedures are easily understandable even for people
without a project management background. By using an Agile-based method like Kanban,
the team can get more work done and always be aware of all the tasks that are being exe-
cuted or are still waiting. Since all tasks can be viewed on the board, this constitutes an
information hub for the team and helps to obtain all information needed to execute a spe-
cific task. When moving a task to a column it is easy to see whether it is already over-
crowded, which will help the team to recognize the bottlenecks in the workflow. There-
fore, thanks to Kanban’s limited “work in progress” policy, the team will be more
responsive and productive, as well as satisfied with their workload. Using Kanban then
will certainly bring more flexibility, as changes—like adding a new task—can be made
directly on the board and will be prioritized and solved by the next team member availa-
ble. The quick response to changes makes your Agile team more productive and will
improve collaboration, since all team members will be able to support each other and will
have the capacity to execute each other’s tasks. The main benefits of Kanban can there-
fore be summarized as follows:

• Kanban is easy to understand and to implement.
• The team can receive information about tasks and their status quickly from a visual

Kanban board.
• All changes can be added as new tasks to the “to do” list on the Kanban board, which

will enable the team to adapt quickly to them.

Agile Kanban

Agile Kanban is a combination of the principles of the Agile project management method-
ology and Kanban. In this method, Kanban is used as a part of Agile to manage process
workflow and bring user stories to completion. Each user story or task in Agile corre-

24

Anonymous
Highlight
Consider new paragraph here.

Anonymous
Highlight
to

Anonymous
Highlight

Anonymous
Highlight

sponds to a card on the Kanban board and is moved from “to do,” through “in progress,”
and finally to “done” after careful consideration of all policies and after visualizing each
necessary step. The Agile team leader should set the limit for the tasks “in progress” based
on the team’s capacity to be more productive, focused, and flexible during the develop-
ment cycle. Tasks are prioritized based on customer requirements and changes are
accepted and considered in the workflow. The general focus is on delivering an outcome
and bring value to customers faster thanks to successful collaboration among team mem-
bers. Kanban can be used in any industry or project where the necessary tasks can be pre-
dicted and where a pull system is available. If this is the case, Kanban fits the organization
perfectly. For example, suppose you work on the data science team of an automotive com-
pany where you have all data ready and accessible from the start and the technical depart-
ment regularly asks your team questions on how to improve their product that need to be
answered based on the data sources. Each of these questions will constitute a task on the
Kanban board; once you have met all requirements and finished your current task, you
can pull a new one from the “to do” column of the Kanban board, thereby answering all
questions from the technical department one by one. Although Kanban can be the perfect
method for organizations based on a pull system, it might be wiser to choose a different
approach for organizations based on a push system dealing with more complex projects
and many stakeholders. For example, a retail company is a push-based system. When they
have a new product, they launch it based on previous customer demand for other prod-
ucts and then they use marketing to promote it.

1.4 Scrum
Scrum is a project management method first introduced in the Harvard Business Review
by Hirotaka Takeuchi and Ikujiro Nonaka. In their article, the authors use a rugby game as
a metaphor to describe the benefits of a structured and self-organized team and how to
make it innovative and productive (Takeuchi & Nonaka, 1986). Scrum is a term borrowed
from rugby and refers to the way in which a team forms a circle in order to gain possession
of the ball. An example of this can be seen in the following figure:

25

Anonymous
Highlight
bringing

Anonymous
Highlight
Difficult to read, consider two sentences.

Anonymous
Highlight
Consider new para here

Figure 9: Scrum in Rugby

Source: Baucherel (2019).

Agile Scrum is a method first introduced in software development by Schwaber and Baba-
tunde at the DuPont Research Station and the University of Delaware, where it was used
to lead a software development team and then applied to the Easel Software Develop-
ment Corporation (Sutherland, 2004). This method entails taking development teams
through iteration loops in order to achieve incremental and product results. It provides a
strategy that a team can follow to learn how a product works, leverage experience, gain
knowledge, and make adjustments based on the changes implemented in order to create
and deliver high-quality results. Furthermore, the team members can organize themselves
and improve the quality of work by communicating regularly with each other and with
other shareholders and by working together to solve problems as they arise. This model is
best suited for companies or teams whose product development processes can be divided
into two- to four-weeks-long iterations.

Agile Scrum Frameworks

To create a successful Agile Scrum framework, team members need to consider some orig-
inal principles (Takeuchi & Nonaka, 1986).

• Transparency: The work environment and culture should enable the team to share their
knowledge about the process and the obstacles associated with it in order to solve
problems as they arise.

• Inspection: In order to improve the quality of the final output and understand how the
process works, the team must have review tasks regularly and all team members should
be open to feedback.

26

Anonymous
Highlight
-

• Adaptation: The team should constantly check and remove the items that do not add
value to the project.

The different elements and roles that constitute a successful Scrum framework are shown
in the figure below:

Figure 10: Agile Scrum Framework

Source: Mitchell (2015).

Sprint in Agile Scrum

In Agile Scrum, the project and its scope can change, but the cost and time necessary to
reach the outcome remain unvaried. The project length is broken down into equal parts—
or sprints—based on the development effort and time required to bring them to comple-
tion. Similarly to the Agile sprint, in Agile Scrum, a sprint can become a project in itself at
the end of which a version of a product can be introduced to customers. The time needed
to complete a sprint should remain constant in order to improve the accuracy of the cost
estimate; ideally, a sprint should always be one or two weeks long. For example, with a
sprint duration of two weeks the costs for the people involved in the project will be
roughly half of a monthly salary.

Roles in Agile Scrum

In Agile Scrum there are various roles that team members can adopt based on their experi-
ence and that are essential for a successful Agile team (Sims & Johnson, 2012). These roles
include

• product owner, which is basically the same role as an Agile product owner. They are
responsible for managing the product backlog to reach the desired outcome and bene-
fit customers.

27

Anonymous
Highlight

Anonymous
Highlight

• Scrum master, who is responsible for ensuring that the team follows Agile values and
principles and ensures that the sprint goal will be achieved at the end of the sprint. The
Scrum master does not directly lead the team, but rather focuses on them, encourages
them, and ensures that they have all the requirements necessary to successfully exe-
cute the tasks. During the sprint, the Scrum master is the face of the team and works
closely with the product owner.

• developer, which is a perfect role for a team member passionate about product devel-
opment, who also possesses the skills needed to deliver a high-quality product quickly
and satisfy customers.

Artifacts as Essential Elements of Agile Scrum

Once the available roles in Agile Scrum have been defined, it is also important to note that
the Agile Scrum framework is based on some specific tools called artifacts (Jongerius et
al., 2013), specifically:

• product backlog, which is an ordered list of the requirements needed to make changes
to the project. The term used to define each item in the product backlog is user stories.
The maintenance of the product backlog is the responsibility of the product owner, who
also has to identify the business value of each item. Items in the product backlog are
options that the development team can choose from and work on in the next sprint,
however, there is no guarantee that all items in the product backlog will be delivered.

• sprint backlog:, which contains a list of items that the development team should work
on and helps identify the goal of the sprint. The element or user stories can also be div-
ided into smaller tasks, in which each user story is given an owner. The owner of the
user story can also be supported by another team member who can help them to exe-
cute a task in the user story. The development team should have a good estimate of
what items they can deliver at the end of the sprint because after a sprint has started, it
is not possible for the product owner to add an item to the sprint backlog.

• increment, which is a collection of product elements that can potentially represent a
reliable and functional output of the sprint. If completed, it is considered “done” and
ready to be delivered to the customer.

• "definition of done," which is a set of standards and rules agreed upon by the team that
are used to add items to the sprint backlog and get them done by the end of a sprint.

Events in Agile Scrum

During a great sprint cycle there are some major events that need to take place. These
events and their relationship to the Agile artifacts are illustrated in the figure below:

28

Anonymous
Highlight
remove colon

Anonymous
Highlight
;

Anonymous
Highlight

Anonymous
Highlight
curly

Anonymous
Highlight

Figure 11: Events in Agile Scrum

Source: Asadi (2020).

• Sprint planning: This is a meeting held at the beginning of each sprint to create a plan
and identify which tasks will be carried out in the sprint. This meeting normally lasts
more than one hour and allows the team to select items from the product backlog and
push them to the sprint backlog. Following this step, the product owner, with the agree-
ment of the team, identifies and suggests what items to choose. The development team
then set the acceptance criteria needed to reach the outcome and deliver the product.

• Sprint review: At the end of the sprint the entire team reviews all the tasks that have
been executed in the current sprint backlog. Stakeholders and customers that are
involved in the project can participate in this meeting in order to get an update on the
product, give feedback to the developer team, or make changes to the product. These
changes can then be added as a new item to the backlog for future sprints.

29

Anonymous
Highlight
There is no introduction to this list.

• Sprint retrospective: At the end of the sprint review, the development team and the
product owner can talk about the sprint, positive and negative elements of it, or about
which standards or increments need to be changed. This meeting will help to under-
stand the concerns of the developer team and to apply its feedback to the future sprints
in order to make them more productive.

Agile Scrum Benefits and Limitations

Agile Scrum is particularly beneficial for industries that have complex project processes,
that need to evaluate results, and that care about customers (Jongerius et al., 2013). Its
main contribution has been to the software development sector, where it proved to be
especially effective for small project development teams (max. 10 people). However, many
other industries such as financial services, engineering, and construction also use Agile
Scrum because this method is intended to provide adaptable and flexible project proc-
esses that may be subject to changes during the development process (Jongerius et al.,
2013). Although Agile Scrum succeeds in bringing commitment, courage, focus, and
respect to every organization that adopts it, it also presents some limitations. In fact, it is
not the ideal approach for teams that work remotely or part-time, teams that need special
skills to carry out their project or that have many stakeholders or external dependencies.
Having said that, it is then up to the team to decide whether they want to use Scrum or
not, since this method can always be optimized to suit the individual needs of each team,
which helps to overcome its limitations.

1.5 Other Modern Methodologies
For decades, traditional or Agile management models have created a basis to support and
help organizations to meet their project management needs. However, scaling these
methods beyond the individual team requires a good understanding of the company’s
resources, requirements, and skills in order to complete projects and achieve good results.
Since the main goal of project management is to complete high-quality projects within a
certain time frame and budget constraints, it might happen that one approach works bet-
ter than another. In order to make the right decision when it comes to choosing a project
management approach, teams need a good overview of the different methodologies avail-
able and of their advantages. A more detailed explanation of some professional project
management approaches is offered in following section.

Extreme Programming (XP)

This Agile-based model was developed by a software engineer at Chrysler while working
on a payroll project. It aims to improve the quality of a project by quickly adapting to
change (Rosenberg & Stephens, 2008). This model can especially bring great results and
create a collaborative environment in projects that undergo shifts in the requirements and
that need to receive continuous feedback. The XP model is based on four basic activities:
extensive coding, unit testing, listening to the customers, and release. Using these princi-

30

Anonymous
Highlight
remove

Anonymous
Highlight
remove

Anonymous
Highlight

Anonymous
Highlight
,

Anonymous
Highlight

Anonymous
Highlight
New para

Anonymous
Highlight
or

Anonymous
Highlight
Awk.

ples in an iteration loop during the project development process allows the developer
team to change the scope and do a rapid revision of the project. The iteration structure of
these principles is shown below:

Figure 12: Extreme Programming

Source: DonWells (2013).

As you can see, updates from customers are received during a short development cycle,
allowing the team to change the scope of the project based on the feedback they receive.
The success of this model is the main reason why it has been implemented in many soft-
ware development companies and industries (Newkirk & Martin, 2000).

Adaptive Project Framework (APF)

Traditional project management methods do not adapt to changes and customer feed-
back easily. In order to do that, an organization needs to adjust their project management
methodology across processes and phases with a solid project plan, something which is
impossible in TPM models. Nowadays, global change is inevitable and businesses need to
adapt their project management methodology to the project goals in order to remain suc-
cessful. Using APF is the perfect way to account for unknown factors and changes that

31

Anonymous
Highlight
word choice

may occur during a project phase; this method allows a team to document project func-
tions, sub-functions, requirements, and characteristics before determining the project
results. This means that the development team works following a communication cycle
rather than sprints. In each cycle, customers or stakeholders can make changes to the
project scope which will be considered by the developer and, if approved, implemented in
the new phase. Although this closer collaboration enables customers and stakeholders to
work closely with the team and determine the success of the project, it can also result in a
loss of focus on the development phase.

Six Sigma

In recent years, many companies have tried to improve the capacity of their business proc-
esses based on this method, which was developed by an engineer at Motorola to intro-
duce a data-driven methodology in project management (Mehrjerdi, 2011). The main phi-
losophy of this model is defined as measuring, analyzing, improving, and controlling
which processes are applied to the input to achieve a high-quality output. By controlling
the input, this model helps the organization to successfully deliver a project by using a
predictable process, thereby eliminating the root causes of failure during project develop-
ment. This leads to a reduction in the variation of the process and the achievement of con-
sistent results at a low cost. However, this method requires a successful structure, commit-
ment, and skills, from top management to the developer level; a lack of knowledge and
responsibility can have a huge impact on the method output. The only disadvantage is
that, since controlling is an essential part of this method, users may feel like they are
working in a micromanaged environment.

Scrumban

As Kanban grew, a new method called Scrumban was developed to help the Scrum-based
teams explore and reap the benefits of Kanban (Nikitina et al., 2012). The structure of this
model looks like Scrum, but the work culture is based on Kanban. In Scrumban, the team
uses a visual Kanban board and organizes a small iteration similar to a Scrum sprint,
which helps the team to adapt quickly to changes in the project. This model’s winning
combination of the agility of Scrum and the pull system of Kanban greatly improves proc-
esses and results. The process used in Agile Scrum also takes place in Scrumban in order
to help the team be more collaborative and be aware of the overall status of the project.
The Scrumban equivalent of sprint planning in Agile Scrum is to fill the available capacity
by adding cards to the Kanban board, thereby adding a “work in progress” visualization to
Scrum in order to improve the productivity of team members. This added benefit is what
makes this method particularly suited to an organization that needs to maintain an ongo-
ing project or that has a team that struggles with Scrum and needs more flexibility.

Scrum of Scrum

This is a scaled model of Scrum used to coordinate different business areas with multiple
product lines and to connect teams in order to deliver complex solutions. It is used in vari-
ous organizations and industries such as software development (Mundra et al., 2013). This
method brings together high-performing Scrum teams and allows them to work together
to achieve project goals, encourages respect and trust among team members, and enables

32

them to align themselves on project processes. For this purpose, the model suggests hav-
ing teams with a maximum of six members; a larger team size can make communication
and deployment particularly difficult, whereas dividing a large team into smaller ones
helps to create a well-defined structure and achieve better results. In the structure created
with this method, each small team is connected to a core activity called organization deliv-
ery through their product owner. Product owners are therefore responsible for communi-
cating and sharing demand and scope between the teams. The relationships between the
product owners of the different teams are managed by the chief product owner, who
guides them to the product vision (Mundra et al., 2013). Product owners will have daily
stand-up meetings to discuss their sprint goals, struggles, and improvements to other
projects that their team is responsible for.

Lean Management

Lean management is a growing topic in the field of project management because this
method can be applied to any business or production concept. Companies using this
model have experienced an increase in performance and positive value (Ballard & Howell,
2003). The model has three main rules:

• Create added value for customers.
• Eliminate waste or processes that add no value to the end product and do not benefit

the customers.
• Continuously improve the product and processes.

This method is not about managing the project development processes, but rather
respecting the client, improving the work process, and achieving the planned goals. It also
encourages team members to share responsibility and team leaders to share leadership.
Based on this method, companies have reduced processes and costs and increased their
success in achieving project goals (Ballard & Howell, 2003). In the digital world, lean soft-
ware development and lean start-up methods were developed based on lean manage-
ment principles. From a business perspective, lean management shortens the project
development cycle and helps determine the business’s value; it is based on the five princi-
ples shown in the figure below.

33

Anonymous
Highlight
1., 2., 3.

Figure 13: Principles of Lean Management

Source: Asadi (2020).

First, it is necessary to identify value by assessing customers’ needs. Customers’ value will
then be used to map the company value stream and create the workflow. To create a truly
winning workflow, it is necessary to have a pull system in which work is only pulled when
there is a demand for it. This helps to optimize resources in the organization: for example,
in a pizza restaurant, a pizza will only be made when there is a demand for it. To reach a
great outcome through a stable workflow, the team needs to improve it based on cus-
tomer demand. Lean management provides some useful guidelines for building a stable
team and helps to identify customer changes and quickly remove any obstacles.

1.6 Moving to Agile
The rapid growth of the technology sector and the market can sometimes lead to changes
in a company’s infrastructure and in the strategy used to adapt to market requests. For
some companies, it is not easy to change their traditional structure as well as their project
management strategy; for example, if a hardware or auto manufacturer wants to start a
software development department to create its own applications, the company might
encounter a challenge when switching from traditional project management to Agile. The
traditional method gives a company stability, a firm forecast plan, and cost estimates,
while the Agile method requires more flexibility and presents some risks associated with
its high change rate. However, if the company wants to stay competitive in the market,
they might need to switch to the Agile methodology and find a model that suits their
needs. A comparison between Agile and traditional project management is illustrated in
the table below:

34

Table 1: Comparison of Agile and Traditional Project Management Methods

Traditional project manage-
ment Agile project management

Requirements Clear requirements with low
change

Clear requirements with high
changes

Customer Not involved in the process Close collaboration

Documentation Formal documentation required Implicit knowledge

Scale of project Large-scale Small and medium

Organization structure Linear Iterative

Model preferences Adaptation to changes Anticipation of changes

Source: Asadi (2020).

If projects are falling behind schedule and the results are not up to the standards and
acceptance criteria of the team or customers, it is time to take a closer look at the compa-
ny’s project management approach to see if it might be the cause of such failure. In fact,
traditional project management methods can be unnecessarily complex and prove inef-
fective. Adapting to a newer and better framework like Agile could potentially successfully
transform the team. The best model for a new data analytics or science team could be one
that is a mix of different Agile approaches, like Scrumban. Using this kind of methodology
means that the team can start customizing changes right after receiving feedback from
customers. However, making changes can still take time because the team might need
more data or customers may need to find the right time to share their business knowl-
edge. This is different in the software development field, where implementing change is
relatively easy because the team can change an entire application and introduce new
methods or modules without customer input. Regardless of their individual needs, com-
panies should remember that the key to success is to adopt a model that will satisfy both
the team and the customers. A sudden move from traditional to agile project management
can be particularly tough for a team, especially for members who are not familiar with this
methodology and therefore need to learn a whole new project management approach.
The company will need to spend time and money to help the team adapt to the new
approach. Furthermore, the company will have to change some rules, events, and respon-
sibilities in order to bring in a new language and working culture. On the whole, the
smooth alignment of the company’s legacy project management method with an Agile
framework entails acquiring many new skills and having great patience, but despite the
effort, it’s definitely worth a try.

SUMMARY
This unit attempted to provide an overview of the many different project
management approaches used to develop high-quality products. We
began by illustrating the principles of traditional project management

35

Anonymous
Highlight
This paragraph is too long and should be split into at least two paras.

(TPM). This model is easy to understand, particularly suitable for
projects carried out locally or remotely, and increases customer satisfac-
tion by achieving the project’s goals. However, TPM is also linear and
presents some timing issues, it doesn’t accept customer changes, and it
robs team members of their creativity by forcing them to adhere to a
fixed plan. Afterward, we discussed the agile project management
framework and its roles, principles, and characteristics. The Agile
method has a short development phase and needs fewer details to start
a project, entails establishing effective communication between devel-
opers and customers, and makes development teams more productive.
Next, we explored the Kanban methodology, which uses Kanban boards
to help a team visualize tasks. Kanban has a simple workflow based on
accepting changes and customer requests, which saves the develop-
ment team a significant amount of time. We were also introduced to
Scrum, another important Agile-based model. Scrum is based on an iter-
ative development process called sprint, where all tasks are distributed
among three main roles: product owner, scrum master, and developer.
This model can help a team become more productive and implement
customer changes at the end of each sprint. We went on to describe the
philosophy, advantages, and disadvantages of methods such as extreme
programming, adaptive project framework, Six Sigma, Scrumban,
Scrum of Scrum, and lean management. Finally, we assessed the advan-
tages of switching to Agile-based methods, among which are improved
cooperation, great benefits for small and medium-sized projects, and
increased customer satisfaction thanks to the ability to consider cus-
tomer change during the iterative development phase.

36

Anonymous
Highlight
New para

Anonymous
Highlight

Anonymous
Highlight

Anonymous
Highlight

UNIT 2
DEVOPS

STUDY GOALS

On completion of this unit, you will have learned …

– the concept of DevOps and modern lifecycle management.
– the difference between DevOps and traditional lifecycle management.
– what the goals of DevOps are.
– what the impact of DevOps is on teams and development structure.
– how to build a DevOps infrastructure.
– how to build scalable environments.

2. DEVOPS

Introduction
Digital business models, processes, and smart services are largely based on IT and soft-
ware. Given the agility of today’s world, requirements and conditions change very fre-
quently and at a very short notice. In this context, the close cooperation and integration of
software development and IT operations with business is becoming an increasingly impor-
tant competitive factor.

The term DevOps is composed of development (Dev), representing software developers,
and operations (Ops), which represents IT operations. The combination of both should
enable process improvement in the areas of software development and system adminis-
tration. Supporters of this corporate culture value collaboration, willingness to experi-
ment, and willingness to learn. More precisely, the aim is to achieve more effective and
efficient cooperation between three different departments: development, operations, and
quality assurance. These departments pursue the goal of a rapid implementation of sta-
ble, high-quality software, starting with the concept and ending with the customer or user
(Amazon, n.d.-a). DevOps is not a tool, software, or technology; it is neither a methodology
nor a process. DevOps is understood as a corporate culture with certain principles that a
company strives to adopt and follow in the long term.

Before diving deeper into the topic of DevOps, it would be helpful to take a look at the
concept of application lifecycle management, which is closely related to the concept of
DevOps. The term application lifecycle management (ALM) is used to describe lifecycle
management from the creation of an idea, through its implementation, to the solution.
Through an iterative cycle, a continuous improvement in employee interaction, roles,
processes, and information is achieved. ALM consists of different disciplines that were
often separated in the context of previously used development processes such as project
management, requirements management, software development, testing, quality assur-
ance, deployment, and maintenance. ALM supports the realization of DevOps by integrat-
ing all these disciplines, making the collaboration of teams in the organization much more
efficient (Chappell, 2008). Generally speaking, there are two main approaches to the ALM:
traditional and DevOps. The main differences between traditional and DevOps lifecycle
management will be explored in the following sections.

2.1 Traditional Lifecycle Management
In traditional lifecycle management, the roles within an organization operate separately
from each other (Shaikh, 2017). Developers have a mindset where change is at the very
core of their activities. In order to respond to demanding changes, a company needs
developers, who are usually encouraged to innovate and create as much change as possi-
ble. Operations, however, do not like change. The company relies on operations to keep

38

things running smoothly and deliver the services that generate money. Operations is justi-
fiably against any kind of change because it can undermine the stability and reliability of
the company.

Developers

Developers write software and debug applications. After deploying the application in the
production environment, developers are generally interested in its performance and
gather feedback from users to make changes and updates to improve the software. The
goal of a developer is to continuously create new features and modify existing ones in
order to improve them. In other words, the main task of a developer is to implement
change in the environment on a regular basis. The role of a traditional developer can be
measured by the ability to bring about change. The value of the developer to the organiza-
tion is typically a reflection of the developer’s initiative and ability to generate new appli-
cations and innovative features that help users to be more productive.

Operations

The main goal of IT operations or IT administrators is to ensure that everything works opti-
mally. Operations ensure the availability and functionality of hardware and software. Mon-
itoring data traffic, troubleshooting systems and databases, and maintaining infrastruc-
ture as smoothly as possible are the central tasks an IT administrator deals with. The role
of a traditional operations specialist can be defined by the ability to provide a stable and
optimized infrastructure. That means, in essence, implementing as little change as possi-
ble to ensure that the infrastructure will remain stable and efficient for the benefit of its
users.

Confrontation

Essentially, both developers and operations share one common goal: to make and keep
the organization as productive as possible. Despite this fact, it is evident that their roles
are at odds with each other and their cooperation is a paradox by definition, because the
development and operations teams have different objectives. The development team is
trying to build and upgrade software as fast as possible, while the operations team is
doing what it can to prevent environmental changes from happening. For this reason,
DevOps practices are designed to eliminate the back and forth between these two teams
and solve the paradox by introducing new communication standards and promoting a
closer collaboration, smoother integration, and the automation of low value processes.

Lifecycle Management with DevOps

Modern lifecycle management can support approaches to agile development by integrat-
ing all disciplines, making the collaboration of teams in the organization much more effi-
cient. To this end, the introduction of DevOps enables the continuous delivery of software
and updates with frequent releases—sometimes several a day—while completely new
releases are only made every few months or once a year. Lifecycle management with
DevOps also provides the framework for software development and makes continuous
management of the software even easier. Its practices consist of a concise, ready-made

39

Continuous integration
(CI)

This term refers to the
practice of merging all

developers’ working cop-
ies to a shared mainline

several times a day.
Continuous delivery

(CD)
This is an approach in
which teams produce

software in short cycles,
ensuring that the soft-
ware can be reliably

released at any time.

plan and of the requirements that turn an idea into an application. When developing soft-
ware using DevOps principles, the entire lifecycle of the application must be contem-
plated. Maintenance and future updates must be considered, as well as when the applica-
tion should be taken out of service and replaced. By combining these factors, DevOps
lifecycle management accelerates deployment, improves workflow visibility, delivers
higher quality products, and increases developer satisfaction (Golden, 2014). Through the
consistent implementation of application lifecycle management by means of continuous
integration (CI) and continuous delivery (CD), shortcomings in the creation chain of a
solution are detected very early on (the concepts of CI and CD will be discussed in more
detail in the following section). Through automated quality assurance and distribution of
the respective product artifacts, the quality as well as the sustainability of the solution is
kept high. Under the term DevOps, development and operations are combined at the
same time, which brings great benefits and improvement to an organization.

2.2 Bringing Development and
Operations Together
Development and operations should work better together—the magic word is DevOps,
which allows agile working methods to reach the company’s everyday life. Nowadays,
applications are increasingly developed in an agile manner (AOE, n.d.). Still, it often takes
several days or weeks before these applications are put into production by the internal
quality and operational processes because deployment is delayed not only by the tools
used, but also by the processes behind them. The automation of important IT processes
increases effectiveness and efficiency. However, the higher transparency and feedback
possibilities achieved in this way often reveal new weaknesses. Yet, all this must not nec-
essarily be at the expense of quality. DevOps is the next major step to bring operations
and development closer together and respond more quickly to changes. It is also a larger
step towards a cultural change in software development and an important building block
on the path to the cloud. With DevOps, beyond continuous integration and delivery,
organizations gain greater visibility and feedback across the entire software development
process as all results and steps are consistently automated and versioned. First of all, it is
very helpful to see how far down the DevOps road the organization has come. We will
explain this with the help of three simple questions. They do not give a full status assess-
ment, but they can provide a clue as to where the organization stands:

1. Do developers have real-time access to troubleshooting information?
2. Does the production environment use the tools and methods which are provided or in

use by the development team?
3. Do the developers and infrastructure team members work together in a partnership

culture?

If the answer to these questions is “no,” there is still no DevOps culture in the organization.
If the answer to one or two questions is “yes,” you’ve started changing to a DevOps organi-
zation.

40

Adopting DevOps

When adopting the DevOps concept, there are a few things you should remember. DevOps
is more about culture and procedures than it is about organization, as you can see from its
description so far. In any organization, culture is a difficult thing to change, but as with the
successful adoption of an agile mindset, to truly excel in a DevOps implementation, you
need to focus on the soft skills. It can be difficult to break down the barriers between two
historically divided organizational regions (i.e., development and operations), but if you
do it, you will be rewarded with higher-quality apps and happier users (Fazliu, 2018).
There are some tools and techniques that will help incorporate procedures in such a way
that they become an integral part of your everyday work. Tools may be used to enforce
best practices, for example, the exchange of troubleshooting data between development
and operations. You can do this by incorporating more software tools to see how the sys-
tem performs not only in your development environment, but also in quality assurance
and production. There are software tools that detect bugs, record timeouts, test device
parameters, and so on during the code execution. The saved logs can be viewed using
monitoring tools during operation. This helps you easily catch any code issues, which in
turn enables you to repair bugs faster. The feedback loop is also smoother and you can be
more flexible and receptive to market demands and modifications.

The Business Side Involvement

If the gap between development and operations has historically been large, the gap
between the business side and development has been even wider (Rossberg & Olausson,
2014). For some reason, it is not easy for these two sections of a company to agree on a
common approach when it comes to the requirements which have to be defined for appli-
cations and projects. The effect of such disagreements is that the project progress over
time can be disastrous, and many stakeholders and end users have ended up feeling like
they have not received the system they were looking for. Of course, complaining about a
situation is easy, but it is important that we try to find a solution for it. One of the most
effective means of change for decreasing the gap between business and development is to
use agile processes. Although DevOps has no directly applicable solution to fill this gap,
the fact that DevOps is in itself an agile approach helps the business and development
sides come closer together.

Communication

When building a cooperative DevOps environment, the problems for a company usually
start with different ways of thinking in the departments, so effective communication
would be very helpful in solving such problems. For this very reason, communication
between development and operations must also be improved. On a cultural level, it is
based on mutual respect and, on a communication level, on shorter distances from each
other (the most effective communication is face-to-face, like two people sharing a white-
board). Of course, IT operations must be able to formulate operational requirements.
However, in order for these requirements to be met with understanding by the developers,
having a respectful exchange about them is useful. Unsurprisingly, one of the basic
requirements is to have a common language.

41

DevOps Pipeline

One of the most important prerequisites of creating a common language for better com-
munication is the existence of a base concept which is accepted and understood by all
stakeholders, especially development, operations, and quality assurance teams. This base
concept can be defined as the automation of the transition from programming to opera-
tion, which has been expanded in many steps previously. This path from programming to
operation is an important basis for DevOps and it is also referred to as the value stream or
DevOps pipeline. The DevOps pipeline is the connection between developers and opera-
tions; in other words, it can bring development and operations closer together (Thedev,
2019). The following figure illustrates the DevOps pipeline.

Figure 14: DevOps Pipeline

Source: Kobdani (2020).

Each step of the DevOps pipeline is concisely described as follows:

Plan

Before the developers start coding, the beginning stage requires a thorough plan of the
whole workflow. Product managers and project managers play an important role in this
process. It is their responsibility to generate a production plan that will lead the whole
team through the process. After collecting input and relevant information from users and
stakeholders, the job is divided into a list of tasks. By segmenting the project into smaller,
manageable parts, teams can produce results more quickly, fix problems as they occur,
and respond to unexpected changes more easily. In the DevOps setting, teams work on
sprints—a shorter period of time (usually two weeks) during which individual team mem-
bers work on their assigned tasks.

Develop

In this stage, developers are beginning to code. Depending on the programming lan-
guages, developers install the needed IDEs (integrated development environment), edi-
tors, and other tools on their local machines to achieve full efficiency. In certain cases,
developers need to adopt the coding styles and guidelines to maintain a clear coding pat-
tern. This makes it easier for any member of the team to read and understand the code.
Once developers are ready to push their code into the shared source code repository, they
send a pull request. Team members will then manually check the newly submitted code
and merge it with the master version.

42

Acceptance testing
These are tests conducted
to determine whether the
requirements of a specifi-
cation or contract are
met.

Build

The build phase is important because it helps developers to identify code errors before
they go through the pipeline and cause a bigger problem. In a typical case, the pull
request initiates an automated process that compiles the code into a build, a deployable
package, or an executable. Bear in mind that certain programming languages do not need
to be compiled. For example, applications written in Java need to be compiled to run,
while applications written in Python do not. If there is a code problem, the build will fail
and the developer will be informed of the issue. If this occurs, the original pull request will
also fail. Developers replicate this step every time they send to the shared repository to
ensure that only the error-free code continues down the pipeline.

Test

If the build is successful, it moves to the stage of testing. There, developers run manual
and automated tests to further verify the quality of the code. In most cases, the customer
acceptance test is carried out; people communicate with the app as an end-user to
decide whether the code needs additional changes before it is submitted to production. At
the same time, automated tests could run security scanning against the application,
search for infrastructure modifications and compliance with best practice hardening, test
the application’s performance, or run load testing. It is up to the company to decide what
is important to the application and whether to carry out the tests at this stage, but this
stage can be considered a test bed that allows you to plug in new tests without interrupt-
ing developer flow or affecting the production environment.

Release

In a DevOps pipeline, the release stage is a milestone, the moment at which a build is
ready to be deployed in the production environment. By this stage, a series of manual and
automated tests have passed any code change, and the operations team can be assured
that breaking problems are unlikely. They can choose to automatically deploy any build
that reaches this stage of the pipeline, depending on the DevOps maturity of an organiza-
tion. In order to turn off a new functionality, developers can use feature flags so that cli-
ents cannot see them until they are ready for action. Alternatively, as builds are released
into production, a company may want to maintain control over them. They may choose to
have a daily release schedule or, until a milestone is reached, just release new features. At
the release stage, you can introduce a manual approval mechanism that only enables
those individuals within an organization to approve a release into development. The tool-
ing lets you configure this, how you want to go about things is up to you.

Deploy

The program is ready to be moved to production when the compilation enters the deploy-
ment point. If the code only requires minor modifications, an automated deployment
method is used. If the framework has undergone a major redesign, however, the build is
first deployed to a production-like setting to monitor how the recently added code will
work. When releasing critical updates, it is often popular to adopt a blue-green deploy-
ment strategy. A blue-green deployment means having two similar development envi-

43

Blue-green deployment
This is a method for

installing changes to a
web, app, or database

server by alternating pro-
duction and staging serv-

ers.

ronments where the latest application is hosted by one environment while the modified
version is hosted by the other. Developers should easily forward all requests to the rele-
vant servers to release the modifications to the end-user. Developers may also easily
return to the previous development environment without creating service disruptions if
there are issues.

Operate

Now the latest version is live and is being used by clients. The operations team is now
working hard, ensuring that everything runs smoothly. The environment automatically
scales according to the number of active users, depending on the hosting servers and
services. The company has also provided the clients with the possibility to use the serv-
ices, as well as with tools to help collect their feedback to shape the product’s future
growth. No one knows what they want better than the clients, and customers make up the
best testing team in the world, giving the application far more hours to test than the
DevOps pipeline will ever do.

Monitor

The DevOps pipeline final stage is to monitor the running system. This builds on the cus-
tomer feedback generated by data collection and analytics. We can also take some time
for introspection and monitor the DevOps pipeline itself, possibly monitoring bottlenecks
in the pipeline that cause confusion or affect the development and operations team pro-
ductivity. All of this data is then fed back to the product manager and the production team
in order to close the process loop. It would be convenient to assume that this is where the
loop begins again, but the fact is that it is a continuous phase. There is no beginning or
end, only a product’s continuous progression over its lifetime, which only stops when indi-
viduals no longer need it.

DevOps Best Practices

An organization needs to pursue proper implementation plans to make the most of
DevOps. We have already discussed what DevOps is, why we need it, and which steps the
DevOps pipeline consists of. Now we can take a look at some of the best practices for
DevOps (Patel, 2020).

Configuration management

Configuration management is an essential component of the DevOps process. It is the
automation of all infrastructure entities and systems (e.g., servers, databases and other
storage systems, operating systems, networking, applications, and software) that are used
to install, administer, and maintain. For example, if we have an application that uses a
database, the information about how to connect to the database can be kept in a configu-
ration management system and be served wherever needed. Configuration management
has some benefits, such as simplifying the setup of new environments, reducing the possi-
bility of production configuration, and saving a lot of time for software creation instead of
wasting time and resources using the infrastructure as code practice described below to
initiate new services from scratch.

44

Release management

Release management in DevOps is about planning, scheduling, and managing the process
of production and distribution of applications. From the start to the end of the process, all
developers and IT operations cooperate, allowing for fewer, shorter feedback cycles and
quicker updates. DevOps teams share responsibility for the services they provide, own
their code, and assume on-call duties. Incidents are detected and handled more quickly,
both during the release period and after, with software developers and IT specialists active
during the entire delivery lifecycle and on request.

Continuous integration (CI)

In modern application development, several developers work on different features of the
same app. The simultaneous merging of all source code branches in one day (also known
as “Merge Day”) can be a huge amount of work and time. The reason for this is that appli-
cation changes made by developers working separately can conflict with each other when
performed simultaneously. This problem can be aggravated if each developer defines his
own local integrated development environment (IDE) instead of creating a common cloud-
based IDE as a team. With continuous integration (CI), developers can merge their code
changes into a common “branch” or “trunk” of the application much more frequently,
sometimes even daily. Once a developer’s changes are merged, they are validated in auto-
mated app builds and different levels of automation testing (typically unit and integration
testing). This ensures that functionality has not been compromised. All classes and func-
tions up to the various modules of the app must be tested. If the automated test detects
conflicts between current and new code, CI can help resolve them more quickly and fre-
quently (Patel, 2020).

Continuous delivery

After automating builds and unit and integration testing for the continuous integration,
continuous delivery can automatically release the validated code to a repository. There-
fore, to ensure an efficient continuous delivery process, the CI must already be integrated
into the development pipeline. The goal of continuous delivery is a code base that can be
made available in a production environment at any time. With continuous delivery, every
phase—from merging code changes to delivering production-ready builds—includes auto-
mated testing and code releases. At the end of this process, the operations team can
quickly and easily deploy an app into production (Patel, 2020).

Continuous deployment (CD)

Continuous deployment can be seen as an extension of continuous delivery, in which pro-
duction-ready builds are automatically released to a code repository. Continuous deploy-
ment also automates the release of an app into the production phase. Because the pro-
duction phase in the pipeline is not preceded by a manual gate, automated testing in
continuous deployment must always be well thought out. In practice, continuous deploy-
ment means that a developer’s app changes can go live within minutes of their creation,
provided that they passed the automated test (Patel, 2020). This makes continuous inte-
gration of user feedback much easier. All interrelated CI/CD practices make an application

45

implementation less risky because changes are released in parts rather than all at once.
However, the upfront investment is considerable, since automatic tests must be written
for the various test and release phases in the CI/CD pipeline. The DevOps CI/CD diagram
shown below presents a simple comparison of continuous integration, delivery, and
deployment.

Figure 15: DevOps CI/CD

Source: Kobdani (2020).

Infrastructure as code

Infrastructure as code is the activity of defining all software runtime environment and net-
working settings and parameters that can be stored and modified on request in simple
textual format in the code repository (Null, n.d.). These text files are called manifests and
are automatically provisioned and configured by infrastructure software to build servers,
testing, staging, and development environments. Most significantly, all of these opera-
tions can be tracked via the code repository, which means the elimination of the decades-
old issue of “works fine on my computer,” where the code that worked in testing does not
work in production. Infrastructure as code guarantees continuity as all environments are
automatically provisioned and configured with less chance for human error, which signifi-
cantly speeds up software development and infrastructure operations and simplifies
them.

Test automation

Automated testing of each codebase allows developers to run more tests, improves the
pace of testing, and saves time spent on manual quality assurance. This process allows for
early identification of bugs, bug-fixing, and increases the overall quality of apps. Several
tools available for test automation—such as Selenium, Appium, or Junit—can also be com-
bined with DevOps tools (Verona, 2016).

Continuous monitoring

Continuous monitoring suggests using multiple tools, dashboards, and notifications to
track all systems and infrastructure, including real-time insights of various software-
impacting metrics such as system performance, number of tests, success and failure rates,

46

Silos
This is a management
system that creates a
structure in which teams
concentrate on their own
goals instead of working
towards organizational
objectives.

implementation status, error logs, as well as all graphical, tabular, and comprehensive
report format information. Several tools such as Prometheus, Grafana, Nagios, Appdy-
namics, NewRelic, Splunk, and Logstash are available on the market to build a monitoring
DevOps tool set (Elastic, n.d.).

Site Reliability Engineering

Site reliability engineering (SRE) and DevOps are two trending disciplines with quite a bit
of overlap. Some have even named SRE a competing set of practices to DevOps in the past
(Vargo & Fong-Jones, 2018). SRE incorporates the fields of software engineering and oper-
ations. They spend about half their time on development and half on operations. The SRE
function allows for communication and sharing of information between development and
operations, similar to the concept of DevOps but with unique additional goals (Wikipedia,
2020b).

2.3 Impact on Team and Development
Structure
One of the main objectives of a DevOps organization is the smooth cooperation between
the development and operations teams. In order for these teams to work together to
develop, test, and deploy applications faster, DevOps was built to eliminate silos (DevOps,
2015). However, DevOps is much more than just a theory or a catchy abbreviation, as the
system components go much deeper than that.

If we want to answer the question of what the ideal team structure for DevOps is, we have
to consider a few things. The only way to ensure that the existing structure also works for
DevOps is that Dev and Ops work together so that business goals can be met or exceeded.
This, of course, looks differently for each individual business, which helps in the analysis
of different models. You can find a better fit for the unique needs of the team by looking at
the pros and cons of each model. When it comes to team structure, various factors play a
role.

• Existing silos: Are there individually operating teams?
• Leadership: Who leads teams and what is their background in the industry? Do develop-

ment and operations have the same priorities, or are they motivated by their leaders’
individual experience?

• IT operations: Have activities been completely integrated with the company’s priorities,
or are they just seen as setting up servers and assisting the development team with
their agenda?

• Knowledge gaps: Is the company equipped with the expertise and skills necessary to
move towards a DevOps organization?

• Architecture: Do the architectural design principles fulfill the requirements needed to
create DevOps teams?

47

Team Size

Amazon has attracted a lot of attention in the DevOps world by introducing the idea of the
two-pizza team: The most powerful team is small enough that two pizzas could feed the
whole team (Buchanan, 2019). The use of smaller team structures encourages the design
of loosely coupled architectures and microservices that high-performance DevOps organi-
zations prefer. However, reorganizing the organization’s teams into smaller ones can be
overwhelming, since changing team size is much easier said than done. One way to get
started is to create a portfolio-based organization. The portfolio-based teams will consist
of developers, operations, testers, conventional project managers, etc. Teams can be func-
tional or role-aligned but should have the same approach aimed at improving the ability
of the company to rapidly deliver value to its customers. This means that a company could
have a vice president or technology director who designs a portfolio-based structure for
the organization. Once the structure has been designed, the vice president manages a
number of smaller, company-aligned DevOps teams headed by team managers.

Leadership

Suppose the instability in the company is very high and the improvement in communica-
tion needed to strengthen the DevOps structure is a significant one. The main challenge is
to determine how the company can overcome the situation. The way leaders approach
leadership can help to address the difficulties posed by the cultural change associated
with DevOps implementation. Organizational changes are relatively hard to implement: A
company-wide investment needs to take place and several departments may have to
agree on a way to proceed. Change is not easy for any organization, but it is especially
hard for those that do not interact well in the first place. Some of the largest failure predic-
tors are

• change resistance,
• low change readiness, and
• weak employee commitment.

Transformational leadership is a leadership style in which leaders promote, empower, and
motivate workers to make changes that help the organization grow and shape its potential
success (Wikipedia, 2020a). This kind of leadership can be very successful depending on
how team members respond to DevOps changes.

Right Mix

The first thing to do to create DevOps teams should be to determine skill gaps. This begins
by determining which combination of roles and skills a company’s employees would need
to achieve the goals of the teams. In this sense, consider which members of the team
occupy current positions, how many more people can be recruited, and which skills new
employees need in order to fill the gaps. It is not only key technical skills or tasks that have
to be filled which should be explored, but also the kinds of additional interpersonal skills
and personalities which the leader thinks could help the workforce be more diverse.

48

Microservices Architecture

There are a number of ways to develop apps. For example, instead of implementing the
project as a whole (i.e., monolithic application), it may make sense to distribute the task
and put together small packages (microservices). Not only does the concept have a lot to
do with the development of applications, it also plays a crucial role in the planning of agile
project management and operations. However, the distributed architecture of microservi-
ces means that developers must also deal with the execution of applications in order to
prevent errors in the linkage and synchronization of individual services. This is where
DevOps can be really helpful. Both microservices and DevOps are two important trends
that have emerged in the company; both are activities intended to provide the organiza-
tion with greater resilience and operational performance. It would be fair enough to say
that DevOps excellence is a key component of microservice excellence. The idea of micro-
services has emerged from a collection of popular DevOps ideas generated by a number of
successful companies. In many cases, these companies began with monolithic applica-
tions, which quickly developed into decomposed services and communicated with other
services through the RESTful APIs and other communication protocols. The following dia-
gram compares the monolithic and microservices architecture (Anji, 2020).

Figure 16: Monolithic vs. Microservices Architecture

Source: Kobdani (2020).

In fact, IT departments may use microservice architectures to better respond to the
requirements of business units and to deploy applications in a shorter timeframe. Close
integration between production and IT operations, i.e., the implementation of the DevOps
model, is very important here. A further benefit of the microservice approach is that
smaller teams can also build and validate individual services and produce releases
quickly, which also simplifies the implementation of DevOps. Microservices and DevOps
complement each other in this way. In combination with the containers, the duo facilitates

49

Backing service
Any service that the app
consumes over the net-

work as part of its opera-
tional activities is called a

backing service.

Port
In computer networking,

a port is a communication
endpoint. It enables

applications to communi-
cate with each other over

the Internet.
Process model

This model is a sequence
of phases and tasks that
constitute the entire life

of the system.
Graceful shutdown

This is the ability of an
operating system to per-

form the task of safely
shutting down processes
and closing connections

when the running system
is switched off by a signal.

the deployment of a more scalable and productive infrastructure, provides applications
that allow optimum use of infrastructure, and develops processes for designing and
implementing these applications rapidly and at high quality.

12-Factor App

The 12-Factor app is a methodology or set of principles for the creation of scalable and
resilient enterprise applications (Wiggins, 2017). It defines general principles and recom-
mendations for the development of robust applications. The 12-factor app principles have
become very common as they can be used for building microservices. The 12-Factor app is
technology agnostic and fully compatible with microservices with a focus on DevOps.

The 12-Factor app follows the principles outlined below.

1. Codebase: Develop using a single codebase, completely tracked by a version control
system; you should only have one repository for an individual application to make
CI/CD pipelines simpler.

2. Dependencies: Declare and separate the dependencies explicitly; a configuration
management system such as Chef (Chef, n.d.) or Ansible (Red Hat Ansible, n.d.-a) can
be used to add system-level dependencies.

3. Config: Store configuration in the environment; in this way, building a CI/CD pipeline
will be an easier and more flexible process.

4. Backing services: Treat backing services as attached resources. By following this prin-
ciple, it is possible to swap the resource providers dynamically without impact on the
system that increase the robustness of the CI/CD pipeline.

5. Build, release, and run: Strictly separate build and run phases; you can use CI/CD tools
to automate the builds and deployment process.

6. Processes: Run the app as one or more stateless processes. By following these, the
app will be highly scalable without any impact on the system. This decreases the pos-
sible conflicts that may happen between Dev and Ops when scaling is needed.

7. Port binding: Export services by port binding. This is more about creating a stand-
alone application rather than deploying it to some external application server. The
less dependent the CI/CD pipeline is on an external application server, the more
robust it is.

8. Concurrency: Scale out using a process model; this is to encourage horizontal instead
of vertical scaling.

9. Disposability: Maximize robustness with fast startup and graceful shutdown. By
increasing the robustness of the system, you also increase the robustness of the CI/CD
pipeline.

10. Dev/prod parity: Keep development, staging, and production as similar as possible.
This reduces the risks of creating bugs in a specific environment that decrease the
inconsistencies and conflicts may occur in the stages between development and pro-
duction.

50

Container
A container is a standard
unit of software that
packages code and all its
dependencies so the
application can run
quickly and reliably from
one computing environ-
ment to another.
Version control system
Version control is a sys-
tem that records changes
to a file or set of files over
time so that you can
recall specific versions
later.

11. Logs: Treat logs as streams of events. Logs are the key to troubleshooting in the pro-
duction environment because they provide insight into the actions of the running pro-
gram and are a communication tool between Dev and Ops.

12. Admin process: Run admin activities as inclusive processes. This increases the modu-
larity of needed processes, which increase the modularity of the CI/CD pipeline com-
ponents.

2.4 Building a DevOps Infrastructure
This section discusses how we can build a DevOps infrastructure. Although it would not be
possible to discuss it comprehensively in just one section, this should at least give you
some ideas to start with. As discussed before, DevOps is more of a culture that aims to
promote cooperation and communication between the development and operations
teams. The introduction of a CI/CD pipeline is often recommended for the technical imple-
mentation of the DevOps approach. The different steps in a CI/CD pipeline represent dif-
ferent subgroups of tasks which are divided into pipeline phases. These steps are gener-
ally similar to what we have in the DevOps pipeline, but depending on the technologies
we select and use, they can differ from that. With an increasing number of CI/CD tools
available on the market, it can be difficult for teams to decide what the right tools are.
However, there are a few which have now been on the market for many years and that are
used much more than others. If we want to select a specific one to discuss here, Jenkins
would probably be the best choice.

CI/CD with Jenkins

Jenkins is a leading open source automation server which provides hundreds of plugins to
support the build, deployment, and automation of any project. It is written in Java and it
runs in a web container; it also supports a wide range of different version control systems
and has plugins for different technologies and deployment scenarios (Jenkins, n.d.-a).
One of the most well-known combinations for building a robust infrastructure containing
a CI/CD toolchain is Git, Jenkins, Docker, and Kubernetes.

Git is a free open-source version control system. It keeps track of projects and files as
they change over time with the aid of various contributors (Git, n.d.). Docker is used to iso-
late applications using container virtualization. Containers are ideal for the independent
deployment and execution of your microservice apps because they allow multiple parts of
an app to run independently in microservices on the same hardware. At the same time,
the individual components and lifecycles can be controlled much better (Docker, n.d.-a).
Docker simplifies the deployment of applications because containers containing all neces-
sary packages can be easily transported and installed as files. Kubernetes—also called k8s
—is an open source platform that allows you to automate and orchestrate the operation of
Linux containers (Kubernetes, n.d.). The following diagram shows the setup which is possi-
ble with Git, Jenkins, Docker, and Kubernetes.

51

Figure 17: CI/CD with Git, Jenkins, Docker, and Kubernetes

Source: Kobdani (2020).

Using the CI/CD setup shown above, the following automated steps are performed:

1. Code changes are committed to Git (Git, n.d.) or any other compatible version control
system.

2. Each code change committed to GitHub automatically triggers a build in Jenkins. For
example, Jenkins uses Maven (Apache Maven Project, n.d.; Jenkins, n.d.-b) to compile
the Java code of your project, runs unit tests, and performs additional checks like
code coverage, code quality, etc.

3. Once the code has been compiled successfully and all checks have been carried out,
Jenkins creates a new Docker image and inserts (push) it to the Docker registry.

4. Jenkins will notify Kubernetes of the new image available for deployment.
5. Kubernetes takes (pull) the new Docker image from the Docker registry and deploys it.

To have a better understanding of what happens when using the above setting, we should
take a closer look at Docker technology.

Docker

With Docker, we can package our application and the associated dependencies (runtime
frameworks, libraries, etc.) into an image and run it on any machine. In simple terms, an
image includes the elements needed to run an application. The basic requirement is that a
Docker engine is installed on that machine. Docker will read the image and construct a

52

container that runs on all platforms, whether on a phone, laptop, or cloud. The reasons for
Docker’s popularity are numerous (Tozzi, 2017). One reason is that Docker extends existing
Linux container functionalities (for example, Docker provides versioning of images and
containers). Additionally, Docker images can be quite easy to describe, build, and trans-
port between systems and they are quite useful to manage very sensitive resources com-
pared to its alternative solution, virtual machines. Virtual machines and containers vary in
many ways, but the key difference is that containers offer a way to virtualize an operating
system such that several workloads can run on a single instance of the operating system.
With virtual machines, several operating system instances are run on virtualized hardware.
Docker is open source, available for Windows, Linux, and Mac OS, and has a very wide
community of tutorials and excellent documentation.

These are basic Docker-specific terms you should know (Docker, n.d.-b).

• Dockerfile: A text file that contains commands to create an image
• Image: A Docker image contains elements such as code, config files, environment varia-

bles, libraries, and run time that are required to run an application as a container.
• Container: A standardized unit that can be built on the fly to deploy a particular applica-

tion or environment
• Docker registry: A service that contains Docker images and repositories
• Docker daemon: A server which is a type of long-running program called daemon proc-

ess. A daemon (also known as background process) is a Linux or UNIX program running
in the background.

• Docker REST API: Interfaces that programs can use to speak to the daemon and give it
instructions

• Docker client: It provides a command line interface (CLI) that lets you create, run, and
stop the containers on the Docker engine. The primary objective of the Docker client is
to provide a way to pull images from the registry and to have them run on the Docker
host.

• Docker engine: A client-server application comprised of the Docker daemon, the Docker
REST API, and the Docker client. It forms the interface between the resources of the host
and the running containers; Docker containers can run on any system on which the
Docker engine is installed.

• Docker network: Docker includes support for networking containers through the use of
network drivers.

• Docker volume: The preferred mechanism for persisting data generated by and used by
Docker containers.

The following diagram illustrates the main components of the Docker system.

53

Figure 18: Docker Components

Source: Kobdani (2020).

The container is launched by running an image (containers are made out of images). An
image is an executable package that includes all you need to run an application, namely

• the code,
• a runtime,
• libraries,
• environment variables, and
• configuration files.

The following diagram illustrates the concept of Docker images and containers and how
they are related to each other.

Figure 19: Docker Image vs. Container

Source: Kobdani (2020).

54

The following Dockerfile is a simple example for building an image using a Python script.

Code
FROM python:3
ADD my-script.py /
CMD ["python", "./my-script.py"]

In the Dockerfile above:

• FROM indicates the image you need as the base of your Python script image. The argu-
ment python:3 indicates the name and tag of the base image (the tag is specified after
“:”). Here, the name of the base image is python and its tag is 3.

• ADD adds the script to the image.
• CMD tells Docker to execute a command when the image is loaded.

To build an image based on the Dockerfile above (notice that the name “Dockerfile” is
required), we may use the following command in the directory where the Dockerfile exists;
that is what the “.” at the end of the command does (notice that we also need to place the
application my-script.py in the current directory):

Code
$ docker build -t my-image .

After building the image, we may now run a container with the following command:

Code
$ docker run my-image

In the command above, my-image is the name of the image which we built before and
which still exists in the local Docker repository. One interesting option of the docker run
command is the -it flag (combination of -i and -t flags), which can be used to go inside
a container. To enter a container by attaching a new shell process to it, use the following:

Code
$ docker run -it my-image bash

The diagram below illustrates a Docker container’s lifecycle and the related commands.

55

Figure 20: Docker Lifecycle Overview

Source: Kobdani (2020).

Docker Hub is a location where the Docker images can be stored in order to be publicly
accessed and used by developers to quickly produce fresh and composite applications.
Thanks to the push and pull commands, we can write and read the images to and from the
Docker Hub (Docker, n.d.-c).

Ansible

Although in the setup mentioned above Jenkins can be used directly to trigger a deploy-
ment, it is not the best solution. Since Jenkins is more of a continuous integration tool,
using it for configuration management and continuous deployment presents some limita-
tions. An alternative solution would be to use another tool besides Jenkins for configura-
tion management and continuous deployment, for example Ansible or Chef. Ansible is one
of the methods that are preferably used to automate operations that would otherwise
have to be done manually with a considerable time investment and without adequate
quality control (Red Hat Ansible, n.d.-b). The following diagram shows a CI/CD setup that
uses Ansible for continuous deployment.

56

Figure 21: CI/CD with Git, Jenkins, Ansible, Docker, and Kubernetes

Source: Kobdani (2020).

Ansible is a software for the central management and administration of distributed serv-
ers. The community version of Ansible itself is license-free as OpenSource software within
the Linux administration. In addition to the community edition of Ansible, there are other
editions available from the manufacturer (e.g., Redhat), which are subject to license and
provide, for example, a dashboard or workflows. Ansible—along with Puppet and Chef—is
one of the most well-known software products with which distributed systems can be
administered. Compared to Puppet and Chef, however, Ansible presents several advan-
tages (Arora, 2020):

• Ansible does not need a central component; one computer is sufficient to access the
servers that have to be managed via SSH (or secure shell, a network protocol for
encrypted connections).

• The training effort for Ansible is significantly lower than for Chef or Puppet.
• For Ansible there are many ready scripts (playbooks), which can be downloaded mostly

for free (for example, from GitHub).

In order for Ansible to function properly, we need the following components:

• Workstation/server: When using Ansible for daily work, it is recommended to install it
on a computer or server where Linux is installed. This can be the workstation of the
Linux administrator or another computer from which the servers that have to be man-
aged can be easily reached.

57

• Network: In order for Ansible to access the servers to be managed from the administra-
tion installation, they must be accessible via a network. It does not matter whether the
devices can be reached via the Internet, the LAN, or a VPN.

• SSH keys: The communication between Ansible and the remote hosts is mainly done via
SSH. To allow Ansible on the central host to access the remote servers without a pass-
word, there must be an SSH connection using a certificate (how to set this up is
explained below).

Ansible playbooks generally use Yaml and are particularly well-suited for the deployment
of complex applications because they allow for the easy management of configuration
and provide a multi-machine deployment framework that can be repeated and used mul-
tiple times. For example, the following Playbook describes the installation of NGINX:

Code
- hosts: local
 tasks:
 - name: Install Nginx
 apt: pkg=nginx state=installed update_cache=true

Terraform

Ansible, Puppet, or Chef are configuration management tools built to install and manage
software on existing servers. They cannot be used for provisioning, where the building,
changing, and versioning of infrastructure is the main focus. Terraform is a well-known
provisioning software, meaning it is built to provision the servers themselves, as well as
the rest of the infrastructure, such as load balancers, databases, etc. (Terraform, n.d.). The
emphasis on configuration management or provisioning means that for some types of
tasks, this software would be a better match (Brikman, 2016). More and more companies
today are using cloud solutions to implement work environments or even complete IT
structures (Rimol, 2019). Infrastructure as a service is in many cases the simplest and least
expensive way to create the basis for planned projects. In addition, cloud solutions make
it possible to react quickly to current requirements. While the underlying components
(such as servers, firewalls, or load balancers) in the provider’s data center are static, they
can be changed dynamically in the virtualized cloud environment, thereby giving custom-
ers the option of increasing or reducing resources as needed at any time. To ensure this
flexibility, the providers provide APIs that allow the leased infrastructure environment to
be scaled at any time with the appropriate software—freedoms that are attractive but also
involve a high level of administrative effort. Terraform is the ideal solution to minimize this
effort in the long term.

2.5 Building Scalable Environments
Scalability is one of the key objectives in a modern infrastructure because an organization
that can scale consistently is one with a great potential for growth. Scalability means that
a company can configure its systems to grow during high demand and to scale down when
demand falls. Some activities typical of DevOps make this approach the right choice in

58

Cloud native
An approach that ensures
that applications are
designed and developed
for the cloud computing
architecture.

order to achieve the optimal degree of scalability. These activities include communication
opportunities, faster performance orientation, increased opportunities for creativity, and
a faster release of apps. When you are operating at scale, container orchestration is an
essential requirement. Container orchestration automates the provisioning, management,
scaling, and networking of containers. Companies that need to deploy and manage hun-
dreds or thousands of containers and hosts can benefit particularly from container orches-
tration (Red Hat Ansible, n.d.-c). You can use container orchestration in any environment
where you use containers. Using container orchestration, you can deploy an application in
different environments without special customization. With microservices in containers,
you can orchestrate your services, such as storage, networking, and security, more easily
(VMware, n.d.).

Container orchestration allows you to automate and manage the following tasks:

• Provisioning and deployment
• Configuration and planning
• Resource allocation
• Container availability
• Scaling or removing containers to evenly distribute workloads across your infrastruc-

ture
• Load balancing and traffic routing
• Monitoring of the container status
• Configuring applications based on the container in which they will run
• Securing interactions between containers

Container orchestration tools provide a framework for managing containers and microser-
vice architectures on a large scale. There are many container orchestration tools that can
be used for container lifecycle management. Some popular options are Kubernetes,
Docker Swarm, and Apache Mesos (Apache Mesos, n.d.).

Kubernetes

Kubernetes is an open source tool for the orchestration of containers, originally developed
and designed by Google. With a Kubernetes orchestration, you can develop application
services that span multiple containers, plan and scale containers across clusters, and
monitor their health over time (Kubernetes, n.d.). Kubernetes eliminates many of the
manual processes associated with the deployment and scaling of containerized applica-
tions. You can have cluster groups of hosts (either physical or virtual machines) running
containers because Kubernetes provides the right platform to manage these clusters
easily and efficiently. More generally, with Kubernetes you can implement an infrastruc-
ture in your production environments that is completely container-based and reliable.
Kubernetes clusters can include hosts in public, private, or hybrid clouds. For this pur-
pose, Kubernetes is the perfect framework for hosting cloud-based applications that
require rapid scaling. Kubernetes also facilitates the portability of workloads and load bal-
ancing by allowing applications to transfer without re-developing them. The following dia-
gram illustrates a Kubernetes cluster:

59

Figure 22: Kubernetes Cluster

Source: Kobdani (2020).

A Kubernetes cluster consists of two types of resources:

• The master, i.e., the coordinator of the cluster
• Nodes, i.e., the workers that run applications

The master is responsible for the administration of the cluster. The master coordinates all
activities in your cluster, such as scheduling applications, managing the desired status of
applications, scaling applications, and rolling out new updates. A node is a VM or a physi-
cal computer that serves as a working machine in a Kubernetes cluster. Each node has a
“kubelet,” an agent to manage the node and communicate with the Kubernetes master.
The node should also have tools to handle container operations, such as Docker. A Kuber-
netes cluster that handles production traffic should consist of at least three nodes. If you
deploy applications on Kubernetes, instruct the master to start the application containers.
The master plans to run the containers on the nodes of the cluster. The nodes communi-
cate with the master via the Kubernetes API that the master provides. End users can also
use the Kubernetes API to interact with the cluster directly. Pods are the smallest comput-
ing units you can build and manage in Kubernetes. A pod (as in a pea pod or a pod of
whales) is a group of one or more containers, with shared storage and network resources,
and a specification on how to operate the containers (Kubernetes, 2020). The contents of
the pod are often co-located and co-scheduled. A pod models an application-specific
“logic host,” which includes one or more application containers that are relatively tightly
coupled. In non-cloud environments, programs running on the same physical or virtual
machine are similar to cloud applications running on the same logical host. A pod always
runs on a “node.” The node may have several pods, and the Kubernetes master automati-
cally manages to schedule pods across the nodes in the cluster. The automated schedul-
ing of the master is done by considering the resources required for each node. The follow-
ing diagram illustrates how pods are running on nodes.

60

Figure 23: Kubernetes Pods

Source: Kobdani (2020).

Docker Swarm

The concept of the Docker Swarm is similar to Kubernetes in that they are both used
within a cluster to deploy and manage containers. Both Kubernetes and Docker Swarm are
designed to coordinate node clusters on a scale in a production environment. Swarm is a
software developed by the Docker developers, which combines any number of Docker
hosts into a cluster and enables centralized cluster management and container orchestra-
tion. Until Docker version 1.11, Swarm had to be implemented as a separate tool, while
newer versions of the container platform support a native Swarm mode. The Cluster Man-
ager is thus available to every Docker user with installation of the Docker engine (Docker,
n.d.-d). Docker Swarm is based on a master-slave architecture. Each Docker cluster (the
swarm) consists of at least one manager node and any number of worker nodes. While the
Swarm manager is responsible for managing the cluster and delegating tasks, the Swarm
workers take over the execution of work units (tasks). Container applications are distrib-
uted as services to any number of Docker accounts. In Docker Swarm terminology, the
term “service” describes an abstract structure used to define tasks that are to be executed
in the cluster. Each service consists of a set of individual tasks, each of which is processed
in a separate container on one of the nodes in the cluster. When you create a service, you
determine which container image it is based on and which commands run in the con-
tainer. Docker Swarm supports two modes in which Swarm services are defined: repli-
cated and global services.

61

Replicated services

A replicated service is a task that runs in a user-defined number of replicates. Each replica
is an instance of the Docker container defined in the service. Replicated services can be
scaled as users create additional replicas. For example, a web server, such as NGINX, can
be scaled to 2, 4, or 100 instances with a single command line, as needed.

Global services

When a service is running in global mode, each available node in the cluster starts a task
for the corresponding service. When a new node is added to the cluster, the Swarm man-
ager immediately assigns a global service task to it. For example, global services are useful
for monitoring or logging applications. A central application of Docker Swarm is load bal-
ancing. In Swarm mode, Docker has built-in load balancing capabilities. For example, if
you run a NGINX web server with 4 instances, Docker will intelligently distribute incoming
requests to the available web server instances.

Kubernetes vs. Docker Swarm

Kubernetes supports higher demands with more complexity, while Docker Swarm pro-
vides a simple solution that is easy if you are just getting started. Docker Swarm has
become very popular with developers who prefer fast deployments and simplicity. At the
same time, Kubernetes is used in production environments by numerous high-profile
internet companies operating common services (Mangat, 2019). Both Kubernetes and
Docker Swarm will run many of the same services, but some specifics can require slightly
different approaches. By comparing them, you can make a decision in order to choose the
right tool for your container orchestration.

SUMMARY
In this unit, we learned about DevOps, we saw the difficulties faced by
development and operations teams in a traditional environment and
how DevOps can help in such a scenario. The important aspects of the
DevOps culture, including the DevOps pipeline, configuration manage-
ment, release management, continuous integration and continuous
delivery, infrastructure as code, test automation, and continuous moni-
toring have also been explored in this unit. We have covered the impact
of DevOps on team and development structure by discussing team sizes,
leadership, microservices architecture, and the 12-factor app principles.
This unit also offered a very short introduction to how we can build a
DevOps infrastructure and scale it up, as well as to two CI/CD pipelines
containing Git, Jenkins, Ansible, Docker, and Kubernetes.

62

UNIT 3
SOFTWARE DEVELOPMENT

STUDY GOALS

On completion of this unit, you will have learned …

– different testing paradigms in the software development lifecycle.
– different approaches to testing while developing, such as test-driven development

(TDD) and behavior-driven development (BDD).
– the terms continuous integration (CI), continuous delivery (CD), continuous testing

(CTe), and continuous training (CT).
– how to apply the CI/CD approach to improve machine learning systems.
– how to track changes in a software development project using tools.
– what integrated development tools (IDEs) are and some example of development

tools.

3. SOFTWARE DEVELOPMENT

Introduction
After finishing with the development of a machine learning (ML) solution, the project team
does not deploy the software immediately to the production environment to serve cus-
tomers. There is another step between the development and deployment: testing. The
testing procedure is a cross-functional and continuous activity in which the whole team is
involved. In an ideal case, the testing team will collaborate with the developers and users
to develop and improve the automated testing at the very beginning phases of the soft-
ware project. These automated tests will be developed by the testing team before devel-
opment of the modules by the development team. If the developed modules pass the rele-
vant tests, it demonstrates the successful implementation of the required functionalities
in the software. The process of identifying and prioritizing the project’s risks and designing
measures to mitigate those risks is called testing strategy. A well-designed testing strategy
ensures working software functionality (meaning fewer bugs and lower support costs),
and defines a framework for development practices. Different testing types from the per-
spective of different stakeholders of a project will be discussed at the beginning of the
unit, after which we will discuss how to test and develop in parallel. The scenario for a
machine learning solution project as a non-deterministic system is more complex and
requires a revision of the conventional testing methods. At this point, we will also learn
how to automate the development pipeline. We will then discuss automated develop-
ment, in which it is even more crucial to keep track of changes.

3.1 Testing Paradigms and Monitoring
To deliver a high-quality software solution, Brian Marick introduced several test scenarios
shown in the figure below (known as Marick’s quadrant), which the project team should
implement and perform before releasing the software solution (Humble & Farley, 2015).
These tests are categorized into two dimensions:

1. Tests that support development (help the developers to build the software with confi-
dence) and tests that critique the product (help to discover insufficiencies and defi-
ciencies in the software programs)

2. Tests that are business-facing (developed from the perspective of a business person)
and tests that are development-facing (developed from the perspective of a devel-
oper)

In the following, we will discuss these four scenarios in more detail.

64

Test harness
In software quality assur-
ance, this is a collection
of software and test data
that is used for auto-
mated testing of a soft-
ware under different envi-
ronmental conditions as
well as monitoring its
behavior and outputs.

Figure 24: Marick’s Test Quadrant

Source: Alvarid (2020), based on Humble & Farley (2015).

Quadrant 1 (Q1)

Among the technology-facing tests that support the development team there are unit
tests, integration tests, and system tests. These tests are normally written by the develop-
ment team. In a unit test, a unit of the software will be tested in an isolated environment
without interaction with the other components (units) of the system, i.e., to perform a unit
test, interactions with other units of the system will be simulated (to provide the required
inputs). This isolation results in the fast execution of unit testing. However, due to this iso-
lation, unit testing cannot ensure the functionality of the unit as it interacts with other
software components. Therefore, we need another suite of tests, namely integration tests.
In an integration test, a wide range of functionalities embedded in different units of the
software product will be tested. In such a test, not only the units’ functionalities but also
the interactions and the interfaces between the units will be tested. Through integration
testing, it is ensured that each independent unit of the software solution works seamlessly
with the services it depends on. An integration test of the system under test (SUT) could be
executed against the real external systems it depends on or against a test harness as a
part of the software product. System testing is the testing of the software product as a
whole to assess its compatibility with the client’s requirements specified in the software
requirement specification (SRS) document. In integration testing, we perform a func-
tional test on a collection of the units and their interaction; in system testing, we test the
system as a whole. System testing follows integration testing. Before deploying a software
solution into the production environment, a deployment test is crucial. Such a test will
check if, for example, the software solution is installed and configured correctly and is able
to communicate with the required services.

65

Functional test
The requirements that

specify what a software
system must or must not

do are called functional
requirements. Non-func-

tional requirements spec-
ify “how” the system

should do things.

Test engineer
In a software project, the
person or team responsi-

ble for defining, execut-
ing, and reporting the test

procedure during the
software development

lifecycle is called the test
engineer (or team).

Quadrant 2 (Q2)

Tests that support the development team on the business-facing side are commonly
known as functional acceptance tests. An acceptance test ensures the operation of some
pre-defined criteria such as functionality, capacity, usability, and security. An acceptance
test that concerns a functionality criterion is called a functional acceptance test. When
such a test is passed, the development team and users can be sure that the functionality
of the developed unit is implemented correctly. End-to-end testing (E2E testing), when the
developers test if the whole software product from beginning to end behaves as expected,
is also an example of this category (Q2). In writing this test, the system’s dependencies are
defined, and the test ensures that all pieces of the software solution work together accord-
ing to the specifications. The main goal of E2E testing is to test the software product from
the viewpoint of the user by simulating real user scenarios (Katalon, 2020). In system test-
ing, only the specific software system is tested; in E2E testing, the specific software system
is tested together with the connected external systems.

Quadrant 3 (Q3)

Business-facing tests that critique the project are mostly manual tests that verify if the
software product delivers the expected values to the customer. It checks not only the spec-
ifications but also whether the specifications are defined correctly. Some examples of
tests in this category are showcases, exploratory testing, and usability testing. At the end
of each iteration, the development team performs showcases to demonstrate the new
functionalities to users. This demonstration of functionality during the development
phase prevents any misunderstanding or specification problem. Another example of test-
ing, exploratory testing, is defined by J. Bach (2003) as manual testing where “the test
engineer actively controls the design of the tests as those tests are performed and uses
information gained while testing to design new and better tests” (p. 2). Exploratory testing
results in new sets of automated testing. Finally, usability testing is performed to test how
the users could easily accomplish the defined goals using the developed software.

Quadrant 4 (Q4)

Technology-facing tests that critique the project verify the nonfunctional criteria of the
software system like capacity, availability, and security. Nonfunctional acceptance testing
is designed for this purpose. This type of testing could also be fully automated, but it is
performed less frequently than functional acceptance testing and usually at the end of the
development pipeline. After getting familiar with different types of software testing, now
the question is how to design an automated testing suite. An effective automated testing
strategy could be divided into three levels, structured by the so-called test automation
pyramid as shown in the figure below (Cohn, 2009). In this model, the unit test forms the
base of this test automation pyramid. The next level is integration testing, and at the top
of the pyramid is the end-to-end testing (E2E). The testing pyramid is the original repre-
sentation of this approach and it could be extended to contain more automated test meth-
ods (mostly from the Q1 and Q2 regions in Marick’s test quadrant).

66

Non-determinism
This is a concept from
theoretical computer sci-
ence in which algorithms
or machines cannot only
perform exactly one cal-
culation for a certain
input (deterministic).
There are instead several
possibilities for the transi-
tion to the next state for
the same input.
TensorFlow
This is an end-to-end
open-source platform for
machine learning that
includes a comprehen-
sive, flexible ecosystem of
tools, libraries, and com-
munity resources. It lets
researchers push the
state-of-the-art in ML and
developers easily build
and deploy ML -powered
applications (Tensorflow,
n.d.).

Figure 25: Test Automation Pyramid

Source: Alvarid (2020), based on Humble & Farley (2015).

Machine Learning Models Testing

Unlike traditional software products, machine learning (ML) models are non-determinis-
tic, but there are several possibilities for the transition to the next state for the same input.
As in such a software solution, the responses of the system are adapted to what the sys-
tem has learned in previous transactions. Therefore, in machine learning solutions, the
tester should test data, code, and the learning program, as well as the frameworks (e.g.,
TensorFlow) that support the ML development. In addition, developing test oracles is
time- and labor-consuming, as domain-specific knowledge is required (Zhang et al., 2020).
An oracle is a mechanism used in software testing and software engineering to determine
whether a test was successful (Kaner, 2004). It is used by comparing the output of a system
under test, given as input to a specific test case, with the result that the product should
provide (determined by the oracle).

The components involved in a machine learning model building are represented in the fig-
ure below (Zhang et al., 2020). To test an ML software solution, testers should test all these
components, as well as their interactions.

67

Figure 26: Components Involved in the ML Model Building

Source: Alvarid (2020), based on Zhang et al. (2020).

Testing data

In testing data components of an ML model, test engineers should check issues such as
whether the data are sufficient for the training; if the data fairly represent future data;
whether data contain a lot of noises (such as biased data); and if there is a skew between
the training and test data (Zhang et al., 2020). Although it is mostly the task of the ML
developer to design the right test cases, there are some general hints (Heck, 2020).

• Data type and schema: ML engineers always check the format, type, and schema of data
to ensure data quality and integrity. This test helps the ML engineers to ensure that data
are clean from malformatted inputs (Kim et al., 2018).

• Implicit constraints: ML engineers often examine certain constraints, like assertions in
software testing. Such constraints are not regarding single data points, but rather how
the subgroups of data relate to other subgroups (Kim et al., 2018). For example, the
number of downloaded software licenses from a specific region should be equal to the
number of purchased licenses.

• Testing platforms: There are some ML testing frameworks from companies like Google’s
TFX (Breck et al., 2019) and Apple Overton (Ré et al., 2019). For instance, Google pro-
vides a data validation system that lets developers define a data schema to check data
properties and to generate synthetic data to test the model (Breck et al., 2019).

Testing the learning program

A learning program (ML model) is composed of the algorithm and the code to implement
and to configure it. A trained ML model should be tested according to metrics such as cor-
rectness, fairness, and interpretability (Zhang et al., 2020). Correctness includes accuracy,
precision, and recall. To explain the difference between precision and recall, consider an
ML algorithm that classified 100 tumors as malignant (the positive class) or benign (the

68

Concept drift
If the data being used to
generate predictions dif-
fers from data used to
train the model, the pat-
terns the model uses to
make predictions no lon-
ger apply and this is
called concept drift.

Agile model
In this approach, specifi-
cations, requirements,
and code change dynami-
cally through collabora-
tion between cross-func-
tional teams.

negative class): true positives (TPs), false positives (FPs), false negatives (FNs), and true
negatives (TNs) (Google, 2020b). Precision is defined as the proportion of actually correct
positive identifications (TP/(TP+FP)). A recall is the proportion of the actual positive cases
that have been identified correctly by our algorithm (TP/(TP+FN)). A fair ML model makes
fair predictions across various demographic groups (Dwork, 2012). IBM has developed a
tool for ML fairness called AI Fairness 360 (IBM, n.d.-a). This tool assists the ML developer
to examine, report, and mitigate discrimination and bias in ML models throughout the AI
application lifecycle. Finally, an ML model is assumed as an interpretable model when an
observer/user can understand the cause of the decision produced by it. There are some
tools for checking interpretability such as the Machine Learning Interpretability module
from H2O (H2O, n.d.).

ML Model Monitoring

The ML system should be monitored to detect any unexpected behavior due to changes in
the input data. Monitoring is essential for models that automatically digest new data in a
real-time fashion during the training, therefore, it is always required that these models
also predict in real-time. Four classes of monitoring ML systems could be defined as fol-
lows (Gade, 2019):

1. Feature monitoring, to guarantee that model features are stable over time, data invar-
iants are stable, to have a continuous overview of statistics

2. Model operations monitoring, to detect staleness, regressions in serving latency,
throughput, RAM usage, etc.

3. Model performance monitoring, to detect regressions in prediction quality
4. Model bias monitoring, for detection of unknown bias

Amazon SageMaker Model Monitor is an example of an ML monitoring tool that allows
developers to detect and remediate concept drift (Amazon, n.d.-b). SageMaker Model
Monitor automatically detects concept drift in deployed ML models and provides detailed
alerts that help identify the source of the problem.

3.2 Approaches to Development and
Testing
In software engineering, a software development methodology (also known as lifecycle)
applies to the software development project and breaks it into separate phases or stages.
Each phase includes activities with the purpose of more efficient planning and manage-
ment of the project. The waterfall model is one of the traditional methodologies, while the
agile models, like Kanban and Scrum, are the more modern approaches (Lumen, 2020). In
this section, we briefly discuss three software development techniques that support agile
development methodologies by enhancing the testing practice and assisting automated
testing:

• Test-driven development (TDD)

69

Refactoring
In the software develop-
ment lifecycle, the proc-
ess of cleaning and sim-
plifying the design of an

existing code, without
changing its behavior and

functionality, is called
refactoring.

• Behavior-driven development (BDD)
• Acceptance test-driven development (ATDD)

Test-Driven Development (TDD)

Test-driven development is a testing methodology performed from a developer’s perspec-
tive. In this method, a quality assurance engineer begins designing and writing test cases
for every functionality of the software product. This technique tries to answer a simple
question—is the code valid? The main purpose of this technique is to revise or write fresh
code only when the test fails, resulting in less duplication of test scripts. This technique is
most common in agile development. In a TDD approach, automated test scripts are writ-
ten before functional pieces of code. The TDD lifecycle can be split into the following steps
(Beck, 2014):

1. Write the test. This test should define (or improve) some specific functionality. For this
reason, the test developer should be familiar with the product’s requirements. This is
what differentiates TDD from traditional development approaches, i.e., first writing
the test and then the code.

2. Run the test and verify that it fails, as the functionality has not been written yet.
3. Write the code for the functionality that should pass the written test. In this step, the

developer should write the simplest code that will make the test work.
4. Test the new code with the written test. It should pass the test.
5. Refactor to remove duplicate code and clean up the code during the TDD process. In

this step, all naming conventions should also be checked and corrected.

The aforementioned steps are illustrated in the following flowchart:

70

Figure 27: TDD Lifecycle

Source: Alvarid (2020).

In summary, the TDD follows the pattern of

1. write a failing test,
2. make the test pass,
3. refactor, and
4. continue in this loop (Freeman & Pryce, 2012).

71

Figure 28: TDD Cycle

Source: Alvarid (2020).

Behavior-Driven Development (BDD)

By using test-driven development (TDD) in projects in different environments, some con-
fusion and misunderstanding may arise; programmers may not know where to start; what
to test and what not to test; how much to test in one go; what to call their tests; and how
to understand why a test fails (North, 2020). One approach to reduce such confusions is
behavior-driven development (BDD), which is an agile software development practice
introduced by Dan North (2006). BDD aims to provide a shared understanding of how an
application should behave by discovering new features based on concrete examples.
Those key examples are formulated using the natural language in a “given/when/then”
structure.

• Given: Some initial context (the givens)
• When: An event occurs
• Then: Some outcome is ensured

An implementation of the “given/when/then” approach could resemble the following.

• Given: The user has entered valid login credentials.
• When: A user clicks on the login button.
• Then: The successful validation message is displayed.

Using such simple plain language (English here) helps all stakeholders (developers and cli-
ents) of the project to understand the feature behavior of a functionality. Gherkin is a
domain-specific language for describing examples with “given/when/then” in plain text
files, called feature files. Feature files describe how a system should interact with the user.
A simple example of a feature file using Gherkin looks like

72

Code
Feature: Calculator

Scenario: “+” should add to current total
Given the current total is “5”
When I enter “7”
Then the current total should be “12”

The scenario in the example above describes a step in a “given-when-then” structure
(Specflow, n.d.).

Acceptance Test-Driven Development (ATDD)

In the acceptance test-driven development (ATDD) method, a single test is developed from
the perspective of the client with the focus on accurate functionality. Indeed, ATDD and
BDD are very similar and the main difference is in their focus: ATDD focuses on the func-
tionality and BDD focuses more on behavior. In this development method, different
project stakeholders with different perspectives are involved in writing acceptance tests
before implementing the relevant functionality. These acceptance tests will reflect the
user’s perspective. The key differences between TDD, BDD, and ATDD are explained in the
following table (Unadkat, 2020).

Table 2: TDD vs. BDD vs. ATDD

TDD BDD ATDD

Definition Is a development
approach to implement
a feature

Is a development
approach based on the
system behavior

Is a development
approach for capturing
the requirements (simi-
lar to BDD) by writing
acceptance tests before
implementing the rele-
vant functionality

Main Focus Unit tests Understanding require-
ments based on system
behavior

Writing acceptance tests

Participants Developers Developers, customers,
quality assurance engi-
neers

Developers, customers,
quality assurance engi-
neers

Language Similar to the main code Plain English Plain English

Source: Alvarid (2020), based on Unadkat (2020).

We conclude this section with a brief discussion about pair programming, which is an agile
software development technique in which two programmers work at one working station.
In pair programming, one of the programmers, known as the driver, will write the code
and the other developer, called the navigator, controls the code and concentrates on the
plan of action. It has been found that for a development-time cost of about 15 percent,
pair programming enhances design quality, technical skills, and team communications

73

while also reducing defects and staffing risk (Cockburn & Williams, 2001). Pair program-
ming was first introduced as a part of the extreme programming software development
method (Beck, 1999). Extreme programming is a set of software techniques that focuses
on exchanging information, clarity, response, determination, and consideration. The goal
of extreme programming is to have a piece of firm programming knowledge (Unadkat,
2020).

3.3 Continuous Integration and
Continuous Delivery
In this section, we focus on procedures for implementation and automation of continuous
integration (CI), continuous delivery (CD), and continuous training (CT) of ML models. To
achieve this goal, the MLOps principles should be applied to the ML project. MLOps is a
machine learning development approach that aims to link ML system development (ML)
and ML system operation (Ops). Applying MLOps requires a focus on automation and mon-
itoring at all phases of ML system design, including integration, testing, release, deploy-
ment, and infrastructure management (Google, 2020b). We start this section with an intro-
duction to continuous integration, continuous delivery, and continuous testing.

Continuous Integration (CI)

Continuous integration (CI) is a development philosophy in which developers commit
their code to a version control repository periodically (normally teams have a minimal
standard of committing code at least daily). The motive behind CI is to have a more
straightforward method to recognize errors and other software quality problems on a
smaller piece of code rather than larger chunks of code developed over a long period of
time. Continuous integration was first introduced by Kent (Beck, 1999). As with other
extreme programming practices, the intention behind continuous integration was that, if
regular integration of the codebase is good, why not do it all the time? Before implement-
ing CI into the software project, the following components are required (Humble & Farley,
2015).

• Version control: All elements in the software project should be checked into a version
control repository like Git (Git, n.d.). This includes the source code, test scripts, data-
base scripts, build and deployment scripts, configuration files, etc.

• An automated build: The build of the program should be able to run in an automated
way via the command line. It can start with a command-line script to command the IDE
(integrated development environment) to build the software. However, it could also be
a complex combination of multistage build scripts that call one another.

• Agreement of the team: Continuous integration is teamwork (not a tool) and therefore it
requires commitment and discipline from the members of the development team. Only
by the adoption of the required disciplines in the team can continuous integration
result in an improvement in product quality.

74

Code coverage
This specifies how a
developed software was
successfully exercised
during a test by utilizing
metrics like function cov-
erage or line coverage.

There are several CI tools such as GoCD (GoCD, n.d.), CruiseControl (CruiseControl, n.d.),
and Jenkins (Jenkins, n.d.-a). After installing the CI tool, one can start the CI process by
configuring the tool. The configuration will specify the location of the source control repo-
sitory, the required scripts to run to compile the software, and the automated commit
tests.

Continuous Testing (CTe)

As we discussed in the first section of this unit, automated testing assists the test engi-
neers to write and run different types of the test during the software development lifecy-
cle. The testing types range from a unit test to the system and regression test for the entire
software (Sakolick, 2020). Regression testing is a type of testing in which you re-run the
functional and non-functional tests on an already tested software product to check if the
(modified) software passes the test after applying some new modifications (Basu, 2015).
Regression tests follow other automated tests, such as performance tests, API tests, and
security tests. All these tests are required to trigger through a command line or other auto-
mation tools. After automating the testing procedure, continuous testing (CTe) indicates
that the automated test is already integrated into the CI/CD pipeline. In this case, some of
the tests (like the unit and functionality tests) should have been integrated into the CI part
(when CI identifies the issues before or during the integration process). Tests that need
complete delivery conditions, such as performance and security tests, should usually be
integrated into the CD. These tests are executed after the build process (Sakolick, 2020).

Continuous Delivery (CD)

Continuous delivery (CD) is a software engineering method in which project teams contin-
ually deliver valuable software in short cycles and guarantee that the software can be reli-
ably delivered at any time (Chen, 2015). CD empowers companies to rapidly, efficiently,
and reliably deliver service improvements to the market. During the development process,
each development team uses one or more development and testing environments to
stage the application modifications for testing. This process can be automated using the
CI/CD tools such as Jenkins (Jenkins, n.d.-c), CircleCI (CircleCI, n.d.), Travis CI (Travis CI,
n.d.).

A typical CD pipeline has the following steps (Chen, 2015).

1. Code commit: The code commit step provides quick initial feedback to developers on
the code they have already checked in. When a developer checks her or his code into
the CI/CD tool, this step triggers automatically and executes the source code and the
unit tests. In the case of an error, the pipeline halts and informs the developers about
the problem. The developer resolves the issues and checks in the code. After re-run-
ning the code and in the case of an error-free execution, the pipeline moves forward
to the next step.

2. Build: The build step performs the unit tests again to produce a code coverage report.
In this step, the integration tests and various code analyses are executed, and artifacts
are generated as output. These artifacts are uploaded into the repository that man-
ages them for deployment or delivery. All the following pipeline steps will run using
these artifacts.

75

3. Acceptance test: This step essentially ensures that the software satisfies all defined
user requirements. The pipeline generates the acceptance test environment in this
step (a production-like environment in which the software is deployed). This includes
provisioning and configuring the servers, deploying the software to the servers, and
configuring the software. If the software passes the acceptance tests in this environ-
ment, the pipeline proceeds to the next step.

4. Performance test: In this step, the pipeline evaluates how the code modifications will
influence the software’s performance. The pipeline provides a suite of performance
tests, and reports the results.

5. Production: The final step is deployment into the production environment.

All the aforementioned steps can be automated by utilizing CI/CD tools like Jenkins. In this
case, developers could use Jenkins to describe a pipeline in a Jenkinsfile that contains
different stages. The Jenkinsfile also includes environment variables, certifications, and
other parameters (Jenkins, n.d.-c).

Figure 29: Continuous Delivery (CD) Pipeline

Source: Alvarid (2020).

Continuous Training (CT)

Continuous training (CT) is achieved when the ML pipeline is automated. To automate the
ML pipeline by feeding new data into the model in production, one needs to implement
the following steps into the ML pipeline (Google, 2020b).

• Automated data validation: This step is performed before training the model to check
whether the model should be trained or the pipeline execution should be stopped.

• Automated model validation: This step is performed using the new data right after the
model training. This step is required to validate the model before going into production.

• Pipeline triggers: The pipeline could be triggered to digest new data by on-demand
(manual) execution of the pipeline; on a schedule (daily, weekly, etc.); upon the availa-
bility of new data; a degradation in model performance; or a significant change in the
data distribution.

• Metadata management: After each execution of the pipeline, some metadata—such as
pipeline and component versions, the start and end time and date of the execution, the
executor, or the configured parameters passed to the pipeline—should be stored in the
metadata store of the pipeline.

A schematic representation of an automated ML pipeline for continuous training (CT) is
shown in Google Cloud, found in Appendix 1 (Google, 2020b).

76

Here is the list of the ML pipeline characteristics for continuous training (Google, 2020b).

• Rapid experiment: The transition in pipeline experiment steps (data validation, data
preparation, model training, model evaluation, and model validation) should be orch-
estrated to result in a rapid iteration of experiments.

• CT of the model in production: The ML model should be trained automatically in pro-
duction using fresh data.

• Experimental-operational symmetry: A key aspect of an automated pipeline is to use
the same pipeline from the development or experiment environment in the preproduc-
tion and production environment.

• Modularized code pipeline components: The components of the ML pipelines need to
be reusable, composable, and potentially shareable across ML pipelines. Therefore, the
source code for components must be modularized.

Figure 30: Orchestrated Experiment

Source: Alvarid (2020).

MLOps and ML Pipeline for CI/CD

An ML system is also a software system, therefore similar procedures apply for ensuring
that ML systems can be built and operated reliably at scale. However, ML systems are dis-
tinguished from conventional software systems in a number of ways (Google, 2020b). For
example, an ML project team needs data scientists with experience in explorative data
analysis, model development, and experiments, but that doesn’t necessarily mean that
they have software development skills. The development process is different as well, as
ML system development is experimental. This means a developer should try different
algorithms, modeling techniques, and parameters to discover the best solution for the
problem. In addition to the conventional tests—such as unit and integration tests—data
validation and quality evaluation of the trained models should also be tested. The deploy-
ment of the ML systems can also differ in that it sometimes needs a multi-step pipeline
which adds complexity to the deployment process. Finally, due to the evolving and
dynamic nature of ML systems, there are more possibilities for model degradation than
conventional software systems.

Due to the above characteristics of the ML systems, there are some differences in CI and
CD with respect to the conventional software systems (Google, 2020b):

• In addition to testing and validating code and modules, CI in ML systems is also con-
cerned with testing and validating data, data schemas, and models.

77

• In addition to a single software or a service, CD in ML systems is about a system (an ML
training pipeline) that should automatically deploy other services (like model predic-
tion service).

• CT (cntinuous training) is a new property that is unique to ML systems. CT is mainly con-
cerned with automatically retraining and serving the models.

Considering the above differences, a CI/CD automation of an ML system could have the
following six steps, which are also illustrated in the next figure (Google, 2020b).

1. Development and experiment: By examining different ML algorithms and new ML
models, the development team finds the most appropriate source code for the ML
pipeline which is pushed into the source repository as the output of this step.

2. Pipeline continuous integration: The source code from step 1 will be executed and
tested. The output of this step is several pipeline components—such as packages, exe-
cutables, and artifacts—to be used in later steps.

3. Pipeline continuous delivery: The artifacts generated in step 2 (CI) are deployed to the
target environment. The output of this step is a deployed pipeline which includes the
new ML model.

4. Automated triggering: The pipeline is automatically executed in the production envi-
ronment in response to a trigger or based on a schedule. The output of this step is a
trained model pushed into the model registry.

5. Model continuous delivery: The trained model is used as a prediction model to service
the customers. The output of this step is the prediction service.

6. Monitoring: The statistics regarding the model performance based on the live data will
be collected. The output of this step is a report and also likely a trigger to execute the
pipeline for step 1.

Figure 31: CI/CD for an ML Model

Source: Alvarid (2020).

78

3.4 Version Control
During the software development lifecycle, the development team must keep a historical
track of every single change in applications, such as source code, project documents, or
build script (especially in the case of a large software project with many developers and
multiple teams). The response to this essential requirement has already been developed
over decades: the version control system (VCS). A VCS also enables different developers
and teams within a project to work together in parallel on separate parts of an application
while keeping a system of records (Humble & Farley, 2015). Using a VCS, it is possible to
revert selected files to a previous (saved) state or even revert the entire project to a previ-
ous state. The first version control system was developed by Marc J. Rochkind at Bell Labs
in 1972 and was called the SCCS (Source Code Control System) (Rochkind, 1975). SCCS has
been followed by many open-source version control systems like RCS (Tichy, 1982), CVS
(Price, 2005), Apache Subversion (Free Software Directory, n.d.), and Git (Git, n.d.), as well
as many commercial solutions like Perforce (Perforce, n.d.), StarTeam (StarTeam, n.d.),
IBM Rational ClearCase (IBM, n.d.-b), Mercurial (Mercurial, n.d.), and Microsoft Teams
Foundation System (MS Teams, n.d.). In this section, we will discuss one of the open-
source VCS solutions. Because SCCS and RCS solutions are not very common these days,
we won’t discuss them here; instead, we will focus on one of the most popular VCSs: Git.
Before discussing Git in more detail, we will have a brief look at different possible VCS cat-
egories. The first is local VCS. This is the simplest type of a VCS system which probably
every developer has used at least once in the very early days of practicing coding. It is
based on copying modified files into a new directory labeled with a date (perhaps a time-
stamped directory, if they’re clever). Although it is the simplest approach for a single
developer, it is also massively prone to errors like losing track of directories and overwrit-
ing files. To overcome this problem, one can develop a very simple local version database
that keeps track of the changes.

Figure 32: Local Version Control System

Source: Alvarid (2020), based on Git (2020).

79

Single point of failure
Any non-redundant part

of a system, the dysfunc-
tion of which causes the

entire system to fail, is
called a SPOF, or single

point of failure (AVI Net-
works, n.d.).

The second is the centralized version control system (CVCS). If more than one developer or
development working station is engaged in a project, another VCS solution should be used
for this case, as shown the next figure. In a CVCS, the information regarding the file
changes are stored on a central server and shared with the clients (workstations). Among
the available products in this category, one can mention Subversion (Free Software Direc-
tory, n.d.), Perforce (Perforce, n.d.), and CSV (Price, 2005). This system has some benefits,
e.g., every team member can see (as far as authorized) what other team members are
doing and admins can control the roles. But there are some drawbacks such as a single
point of failure, like a central server (if the server fails, workstations lose track of
changes).

Figure 33: Centralized Version Control System

Source: Alvarid (2020), based on Git (2020).

Lastly, the ultimate solution to resolve the issues associated with the local and centralized
VCSs is using a distributed version control system (DVCS), such as Git (Git, n.d.) or Mercu-
rial (Mercurial, n.d.). In a DVCS, developers do not check out the latest version of the file,
but they also fully mirror the repository. Therefore, the single point of failure problem is
resolved because, in a DVCS, any single user’s repository can be copied back to the central
server to restore lost data.

80

Branch
A branch is a copy of the
main repository of a ver-
sion control system.

Figure 34: Distributed Version Control System

Source: Alvarid (2020), based on Git (2020).

Git

Git project history is entangled with the Linux Kernel project, an open-source software
project. In 2005 the Linux Kernel team decided to stop BitKeeper (a distributed VCS known
as DVCS) as the version control system and develop its own VCS, a decision that led to the
birth of the Git project (BitKeeper, n.d.). Git is a VCS that is simple but fast with strong sup-
port for non-linear development. It features thousands of parallel branches, fully distrib-
uted, and capable of managing large projects. Unlike most VCSs that store modification
information as a list of file-based changes (i.e., storing a set of files and the related
changes), Git stores a snapshot of every state of the project right after a user commits (sav-

81

Checkout
Checking out a branch
updates the files in the

working directory to
match the version started
in that branch, and it tells
Git to record all new com-

mits on that branch
(Atlassian Bitbucket,

n.d.).

ing changes into the local repository). To be more efficient, if a file has not been changed,
there is just a link to the previous state of the file in the new snapshot. In this regard, we
could consider Git as a mini file system (Git, n.d.).

Figure 35: Git Snapshot Approach to Version Control

Source: Alvarid (2020), based on Git (2020).

One advantage of Git is checksum. For every change, a checksum is computed before it is
stored, and it is impossible to modify anything without Git knowing about the modifica-
tion. This feature prevents users from losing information in transit. To implement the
checksum feature, Git uses SHA-1 hash, a 40-character string composed of the hexadeci-
mal characters (Git, n.d.). This hash is calculated based on the file content or directory
structure in Git.

There are three different states that a file in Git can have.

1. Modified: The file has been changed but the user has not committed the changes to
the database. A file in this state is marked as modified.

2. Staged: A modified file has been marked by the user to go to the next commit snap-
shot. A file in this state is marked as staged.

3. Committed: The data have been saved on the local database safely. A file in this state
is marked as committed.

Based on these three states, a Git project is composed of three main sections or stages.
The first is the working directory, which is a single checkout of a version of the project.
The files in this directory are pulled (incorporates changes from a remote repository into
the current branch) from the Git repository. The second is the staging area. This is a file in
the Git directory which contains information about the changes which are going to be
committed in the next commit. Thirdly and finally, we have the Git directory. This is the
most important part of Git that stores the metadata and object database of the project.
When the user clones the repository from another workstation, it is the Git directory that is
being copied. This process can be seen in the next figure. Regarding these sections of a Git
project, a simple Git workflow has the following steps (Git, n.d.).

82

1. The user modifies the file in their working directory tracked by Git.
2. Then the user stages the part of the changes that should be committed in the next

commit in the staging area.
3. The final step is to commit. This takes a snapshot of the files from the staging area and

stores the snapshot in the Git directory.

Figure 36: Sections in a Git Project

Source: Git (2020).

Below, you can see a practical example of a Git Workflow (Dudler, n.d.).

1. Create a new repository in the project directory.

Code
git init

2. Create a working copy of a local repository by running the command.

Code
git clone /path/to/repository

3. The local repository consists of three “trees”:
a) Working Directory contains the actual files.
b) Index is the staging area.
c) HEAD points to the last committed version.

83

Figure 37: Git Local Repository Trees

Source: Alvarid (2020).

4. Propose changes (add it to the Index).

Code

git add <filename>

5. Commit these changes into the Head.

Code
> git commit -m "Commit message"

6. Send changes to the remote repository.

Code
git push origin master

7. Create a new branch called “branch_1”.

Code
git checkout -b branch _1

8. Switch back to the master (main) branch.

Code
Git checkout master

9. Push the branch to the remote repository.

84

Code
Git push origin <branch>

10. Update the local repository to the newest commit.

Code
Git pull

GitHub

GitHub is a cloud-based developer platform based on Git (GitHub, n.d.-a). The fundamen-
tal difference between Git and GitHub is that Git is an open-source tool where the develop-
ers can manage their source code locally, while GitHub is a cloud-based platform where
developers can share their projects with a community, have access to developer tools and
review each other’s code, among other things. Like Git, at the core of a GitHub project is a
project repository. A project repository contains all components that a project needs: files,
folders, spreadsheets, data sets, etc. It normally also contains a README file, which con-
tains information about the project. By default, the repository has one branch, called
master. Branching is an approach to work on different versions of the repository at one
time. The branches are used to test the changes in the source files before committing
them to master. When a developer is working on a branch of the master, if there are
some changes in the master, the developer of the branch could pull in the changes from
the master.

Figure 38: Branching in GitHub

Source: Alvarid (2020), based on Git (2020).

3.5 Development Tools
Programming tools or software development tools are computer programs that support
software developers and the development team to realize software projects. These tools
are utilized to create and modify the source code of programs with text editors; get help in
their program flow from special graphical user interface editors; translate their source
code into an executable machine language with compilers or assemblers; test and debug

85

Shell
In computer science, a

shell is a software by
which a user interacts

with an operating system
or program.

developed solutions with test tools or debuggers; and store and manage programs and
program documents with version control systems. In this section, we will review some of
the most common development tools.

Command-Line Interface

The first, most straightforward, and most common development tool is the command-line
interface (CLI). The command-line interface is a part of a computer program that receives a
line of text as input from the user and interprets it (using the command line interpreter) in
the context of a given operating system or programming language (Kumar, 2016). Operat-
ing systems and programming languages implement the command-line interface into a
shell to access the operating system or write code. Examples of such CLI are Unix shell
(Bourne, 1978), PowerShell (Bright, 2016), Z Shell (Z Shell, n.d.), and Python Shell (Python
Shell, 2020).

A command in an operating system CLI could have components such as

Code
prompt command parameter_1, …, parameter_n

Here, the prompt provides the context for the user (and usually ends with one of the $, %,
#, :, > or – characters). The command is provided by the user to execute a special task, and
parameters are the optional parameters provided by the client to control or limit the
command. Although the CLI is the most straightforward way to communicate with an oper-
ating system or writing code, it is not the most suitable solution in some cases, especially
for beginners, for in-line editing and for debugging. However, there are some integrated
tools in each CLI which can make life easier for developers. There are many examples such
as Vim text editor for Unix and Apple OS CLIs (Vim, n.d.); Wget, for retrieving files using
HTTP, HTTPS, FTP, and FTPS via the web (Free Software Foundation, n.d.-a); and Gzip, a
data compression program (Free Software Foundation, n.d.-b).

Integrated Development Environment (IDE)

An integrated development environment (IDE) is a single program or platform that com-
prises several developments that facilitate software development procedure. Examples of
IDEs are Microsoft Visual Studio, Eclipse, NetBeans, and PyCharm. Typical functionalities
of a modern IDE include

• intelligent code completion. This is a convenient method to access functions’ descrip-
tions and their parameter lists to speed up software development. In this method, after
typing the name of a function in the IDE, a short description of the function together
with a list of the input parameters of the function will appear. An example of such func-
tionality is IntelliSense, which is a combination of code editing features including code
completion, parameter info, quick info, and member lists (Visual Studio, n.d.).

• source code editor. The developer can use the IDE to write and edit the source code.
Some features such as intelligent code completion, will facilitate the edition process.

86

• build automation. IDE can automate the build process, including compiling the source
code, packaging the compiled filed into a compressed format, and producing installers.

• debugger. An IDE debugger lets you change the value of the variables at run-time, see
the value of the variables also at run-time, break execution at any point in the code, etc.

• Syntax highlight. An IDE for the supported programming languages highlights the test
with different colors and fonts as shown the following figure.

Figure 39: IDE Syntax Highlighting

Source: Alvarid (2020).

In the following, we will review one of the most common open-source IDEs: Eclipse
(Eclipse, n.d.). Eclipse started as proprietary technology, led by IBM, and in 2001 the
Eclipse open-source project was announced by the initial Eclipse Consortium (Eclipse,
n.d.). It provides tools for coding, building, running, and debugging applications and was
originally designed for Java. Eclipse now supports many other languages such as C, C++,
Python, PHP, and Ruby (University of Maryland, 2018). The components of the Eclipse IDE
are shown below.

87

Figure 40: Eclipse IDE Components

Source: Alvarid (2020), based on Hood (2018).

• Menu bars: full drop-down menus plus quick access to common functions
• Perspective switcher: to switch between various perspectives
• Package explorer pane: where our projects/files are listed
• Editor pane: the place to edit the source code
• Miscellaneous pane: several components are listed here such as a console and a list of

compiler problems
• Task list pane: a list of “tasks” to complete
• Outline pane: a hierarchical view of a source file

Jupyter Notebook

Jupyter Notebook is a web-based interactive programming application that is used for
developing, documenting, and executing code, as well as communicating the results
(Jupyter Team, n.d.). Jupyter Notebook is mostly used by data scientists to run Python
codes, but it supports about 40 different programming languages. In general, it can be
used for data cleaning and transformation, numerical simulation, statistical modeling,
data visualization, machine learning, and much more. Jupyter Notebook combines two
functionalities. Firstly, it includes a web application (or a browser-based tool) for interac-
tive management of documents that combines descriptive text, mathematics, computa-
tions, and their media output, such as diagrams or 3D-visualisations. The web application
makes it possible to edit the text in a browser with automatic syntax highlighting; execute

88

JSON files
These are pure text files
that are only intended to
exchange data between
different applications.

the code from the browser; represent the result of computations in PNG, SVG, HTML, and
other rich media representations; and include mathematical notations using LaTeX. Sec-
ondly, it includes notebook documents which are a representation of all content visible in
the web application. These include inputs and outputs of the calculations, descriptive
text, mathematics, images, and media representations of objects, as well as the source
code. Such documents are stored in a JSON file with the .ipynb extension. Storing as a
JSON file facilitates the version control of the code. In addition, any .ipynb file which is
available on a public URL can be shared easily (Jupyter Team, n.d.).

Using Jupyter Notebook

1. One can start a notebook server from the command line using the following com-
mand (Jupyter Team, n.d.):

Code
>jupyter notebook

2. The landing page of the Jupyter Notebook web application (by default, http://
127.0.0.1:8888), which is called the dashboard, includes the available notebooks in
the notebook directory.

Figure 41: Jupyter Notebook Landing Page

Source: Alvarid (2020).

3. The user can then create new notebooks from the dashboard under new/notebook.
The new notebook (a .ipynb file) is shown in the next image.

89

Figure 42: A Jupyter Notebook (.jpynb File)

Source: Alvarid (2020).

4. After this, the user can start to write code inside the notebook.

Figure 43: Using Jupyter Notebook to Run a Simple Python Code

Source: Alvarid (2020).

5. Users can document the code in plain text using the markdown language. It also sup-
ports text markup (italics, bold, form lists, etc.) as shown in the following figure.

90

Figure 44: Using Markdown to Document the Code in Plain Text in a Jupyter
Notebook

Source: Alvarid (2020).

6. One can also use Jupyter Notebook to plot in-line, as shown below.

Figure 45: In-line Visualization in Jupyter Notebook

Source: Alvarid (2020).

SUMMARY
In this unit, we discussed different approaches to software development
with an emphasis on testing. We began by discussing different test sce-
narios such as unit, integration, system, functional, and non-functional
tests (categorized by Marick’s quadrant). Then we discussed how to test

91

a machine learning system as a non-deterministic model, as well as how
both data and learning programs from ML models should be tested.
Three approaches to test in parallel to developing were introduced: test-
driven development (TDD), behavior-driven development (BDD), and
acceptance test-driven development (ATDD). After this, we learned how
to automate the pipeline of project development using continuous inte-
gration (CI), continuous delivery (CD), continuous testing (CTe), and con-
tinuous training (CT) in the case of machine learning pipelines. For the
CI/CD in a machine learning pipeline, we learned that there are six steps:
development and experiment, pipeline CI, pipeline CD, continuous train-
ing, continuous delivery, and monitoring. We were then introduced to
the principles of version control systems for the software projects and
explained two common solutions: Git and GitHub. Finally, we learned
about the development tools such as command-line interfaces (CLI) and
integrated development environments (IDE).

92

UNIT 4
API

STUDY GOALS

On completion of this unit, you will have learned …

– the various ways of interacting with software and services.
– the most important principles to know when designing and building interfaces.
– how to distinguish good from bad interface design.
– how to build a Python library with good design in mind.

Anonymous
Highlight
This unit title would look much better if it were written out in full.

4. API

Introduction
In an increasingly digitalized and interconnected world, a large part of the world popula-
tion has access to smart devices and uses them for an ever-growing range of use cases.
That means that even technically inexperienced or inapt users cannot help but use com-
plex software on a regular basis. To make this work, the ways in which you interact with
your computer must be well-designed and easy to grasp. Not only that, the interface
you’re using to interact with any piece of software must be stable and reliable, so that the
services you’re enjoying don’t surprise you or suddenly stop working. Take Amazon’s retail
business as an example. Chances are you’ve seen an e-commerce platform like Amazon,
browsed for products, selected a few of them and put them in your cart. The website you
intuitively interact with is just the user interface to a massively complex software and
hardware backend powered by tens of thousands of machines scattered around the globe
and operated and maintained by an army of engineers who built that platform in the last
two decades. Since it’s so common today to use services and check apps, it’s also easy to
forget about the typical discrepancy between the way you interact with software and the
rest of it. Your interaction with apps can be seen as the figurative tip of the iceberg of soft-
ware complexity, and while some websites might be overwhelming, or simply poorly
designed, you can rest assured that the interface you’re using is as much about what you
need to know as it is about all the things you mustn’t be exposed to. However, the story
doesn’t end at the level of clicking through user interfaces. All software engineers and data
scientists interact with computers every day, and while their interaction looks distinctively
different from that of your average browser user, they nevertheless still have to rely on
contracts to interoperate with their programs and tools: These contracts are called appli-
cation programming interfaces (APIs). The term API is increasingly known by non-profes-
sional tech enthusiasts, and, to stick with the example of Amazon: Exposing their inter-
nally developed tech stack through APIs in Amazon Web Services (AWS) has become a
business line of the same order of magnitude as their retail endeavor. While not every click
on a website is an API call, every business-relevant action a user carries out corresponds
to one. In fact, one can take an API-centric view of modern, digitized business interactions,
in which not only API developers, but also apps and devices, as well as your customers
and strategic partners, all interact through APIs.

94

Anonymous
Highlight
Another difficult introduction to read because of the length of the paragraph.

Figure 46: API-Centric View

Source: Pumperla (2020).

This unit is devoted to giving you an overview of common API paradigms, that is, the mul-
titude of ways to interact with computers in a productive way. The focus for this unit is
very much on a specific group of users, namely engineers and scientists, power users like
you. Apart from being aware of what you’re using and how you’re using it, as an experi-
enced professional it is crucial to develop a mindset of evaluating interfaces critically. In
the end, a lot of the code you produce on the job will be an API for someone else to con-
sume, so it’s worthwhile to develop the skillset for building great interfaces yourself. Being
on the producing or consuming end of an API is just two sides of the same medal. There-
fore, we’re going to build out a few examples of APIs in Python to demonstrate what good
interface design looks like in practice, while also showing you counterexamples to learn
from. As Martin Fowler puts it: “[a]ny fool can write code that a computer can understand.
Good programmers write code that humans can understand” (Fowler & Beck, 1999, p. 15).

4.1 Interacting with Software and
Services
Modern computers have an incredibly high level of complexity. Even if you consider your-
self an expert, the only reason you’re capable of being productive in your interaction with
your machine is that you rely on the existence of many layers of abstractions that smartly
hide what’s going on under the hood. For instance, if you’re doing a data analysis in
Python, you want to focus on your specific use case and not how your code translates into
zeros and ones, or how exactly your CPU is utilized by your operating system to run this
analysis. Ultimately you have to trust that your code, a tiny fraction of all programming
capabilities, does what you intend it to do. In other words, you’re constantly using applica-
tion programming interfaces (APIs) to shed complexity and be productive. As alluded to in
the introduction, an API is an interface that allows the interaction between one or several
parties and a software component. To be more precise, it is key that an API

• defines the requests or calls you can make with it,

95

• clearly states the data formats it expects as input and what formats it produces, and
• communicates which conventions it follows and what the intended behavior of each

request is.

To give you a first, concrete example of a class of API calls, consider Python’s functionality
to import libraries. It is centered around a single keyword: import. There are three essen-
tial calls you can do with import, namely, importing Python modules, importing function-
ality from a module, and aliasing. Throughout this unit we’re using Python 3.7 or later for
our examples. Here’s an example:

Code
import time # import the time module
from time import ctime # import the “current time”
import time as t # refer to time module as t

To use import, you always have to follow it up with a valid Python package name, i.e.,
either a built-in package or a third-party package installed in your Python environment. An
import statement does not return anything if successful (we say it is silent), but fails with
an error message if the imported library does not exist. For instance, if you type import
testfailure into a Python session, you will see the following error message:

Code
ModuleNotFoundError: No module named ' testfailure '

In terms of intended behavior, unsurprisingly, the role of import is to import and make
Python functionality accessible to users in their current session or script execution. For
example, the above import statements would allow a user to query the current system
time with ctime(), which is returned to the user as a Python string. Before we dive into
more aspects of APIs and examples of types relevant for your work and studies, let’s have
a look at the evolution of the term API and what it means today.

Historical Evolution of APIs

The term API has undergone an interesting evolution since its inception. From today’s per-
spective, programmers have arguably been building APIs ever since the first programs
have been written. Originally, “API” was only used for user-facing applications, but quickly
expanded from there. The term itself was formally published in the 60s (Cotton & Great-
orex, 1968), but it took some time before the concept was popularized. Cotton and Great-
orex (1968) proposed a consistent application interface written in Fortran, intended to
make the graphical application they were concerned with easier to use by making it run
on any kind of hardware. Hardware independence is crucial to distribute your software
across many different machines, something that is obvious to modern application design-
ers but was difficult to achieve in the early days of computing. In 1974, the term API was
expanded to database management systems, but the application interface was strictly
separated from other ways of interacting with your database, such as querying (Date,
2019). This turned out to be too strict, and later generations realized that by expanding
your definition of an application interface, you could unify all sorts of interactions. Build-

96

ing rich, integrated interfaces thus became the norm throughout all fields of computing
and not only in database design (Berg et al., 1981). By the 90s, it was universally accepted
that the term API would be more broadly used to cover all kinds of programming and
defined as “a set of services available to a programmer for performing certain tasks”
(Malamud, 1990, p. 294). With the inception of the internet, web APIs became a new exten-
sion of the term “network-based Application Programming Interfaces” (Fielding, 2000).
Web APIs are so common today that people use “API,” historically a somewhat restrictive
term, to refer to web API and their communication protocols. Most of the time it is under-
stood in the even narrower sense of JSON or XML-based web APIs. Throughout this chap-
ter we take a more holistic view on application programming interfaces, of which web APIs
are just a part. The quick adoption of the internet and increased interconnectivity of users
throughout the world led to an explosion of web APIs which shows no sign of slowing
down. But their beginnings were modest. Early pioneers of commercial use of web APIs
include dominant forces from the dot-com era, including Salesforce, Ebay, and Amazon.
For instance, in 2002 Amazon launched its Web Services (AWS), which allowed developers
to embed content from Amazon into their own websites. AWS has vastly evolved since
then and Amazon’s cloud offering is almost on an equal footing with its retail business.
The next wave of web APIs, starting around 2004, brought us social media integrations
with tech giants such as Facebook, Twitter, or Flickr. Twitter published its developer API in
2006 to give engineers access to all kinds of data from the platform. In the same year,
Facebook launched its API to let developers access friend information, photos, posts, etc.,
which had a high impact on attracting advertising companies and helped Facebook
become a global player in the social media industry (Lane, 2019). In yet another wave,
companies began to move their infrastructure and services to the cloud, pioneered by
Amazon in 2006 with a new batch of services, led by Amazon Simple Storage Service (S3)
and Amazon Elastic Cloud Compute (EC2), both of which are still elemental to AWS’s suc-
cess story. While S3 made cloud storage accessible with a simple pay-as-you-go approach,
EC2 gave developers access to compute resources in the cloud, spinning up their own
machines and hosting their services there. It’s interesting to acknowledge the fact that the
success of AWS is partially credited to Amazon’s API-oriented culture (API Evangelist,
2012). Internally, to this day, all Amazon teams have to expose their functionality as serv-
ices for other teams to use. While this philosophy might have incurred some overhead in
the short-term, as building APIs is expensive, the genius move of exposing the company’s
infrastructure as a service to the public would not have been possible without it. With the
release of the iPhone, the internet has become more mobile and so did the next genera-
tion of APIs. To briefly mention a last notable shift in the tech landscape that had an
impact on APIs, with the emergence of the Internet of Things (IoT), more and more devices
are now connected to the internet and eligible for API consumption. Examples include
Amazon’s Alexa (2014), which allows API access for each notable feature, such as voice
interaction, alarm setting, or providing weather information. Fitbit (2017) produces fit-
ness-metric-tracking wearables powered by APIs. In a historical context, nothing speaks
more for the importance of APIs and the commercial interests they represent in this mod-
ern era than the infamous case of tech giants Oracle and Google fighting over copyright
issues of 37 Java APIs in 2017 (Tsidulko, 2020). To conclude, today’s APIs and their usage
are ubiquitous and found in many areas relevant to you:

• APIs are behind practically all web applications.
• They power mobile and desktop applications.

97

Anonymous
Highlight
This is a particularly egregious paragraph that just goes on way too long.

Anonymous
Highlight
Are there any other, more recent examples?

• APIs underlie all network communication between the devices and applications on the
internet.

• They are a cornerstone of the Internet of Things (IoT), connecting smart devices such as
automobiles, fridges, or vacuum cleaners.

Specifications and Contracts

Every piece of software has a provider, the company or group of people who authored it,
built it, and currently maintain it, and consumers, who utilize the software to cater to their
needs. Consumers can either be humans or other machines using the software. Regardless
of the actual roles, an API can be seen as a specification or contract between providers
and consumers. As with any other contract, the parties involved must first come to an
agreement regarding what the contract is about and then write it down. In software, the
provider can dictate what an interface looks like to a certain degree but must make sure
not to lose its customer base, for instance by sticking to bad design. By the time an API,
which is viewed as a contract, is agreed upon, it is binding for all parties. Companies pro-
viding software-as-a-service (SaaS) usually have service level agreements (SLAs) that
include API stability. In particular, a company can’t change the structure of its API calls
over night. This perspective implies certain problems when it comes to the maintenance
and extendibility of APIs. Not unlike software packages or operating systems, APIs come
with versions attached to them. For instance, the developer platform GitHub has a devel-
oper API, the URL of which reads

Code
https://developer.github.com/v3/

Note the v3 suffix in the URL: This is the current stable version of GitHub’s API, but histori-
cally it is the third major version of their API. The first two have been deprecated and
removed years ago. The benefits of API versioning are manifold:

• Within one version you guarantee that every single API call has a stable interface. The
consumers of the API building downstream applications can rely on it to not stop work-
ing without fair warning.

• A new functionality can be added to an API version if it is independent of old requests.
In software releases this would correspond to minor releases or patches. Although bug
fixes are part of keeping an API alive, this type of API extensibility can be very conven-
ient within a release.

• New API versions are reserved for fundamental changes. We speak of breaking changes
if code that consumes an API in an older version stops working with the new one. API
developers should try to get interfaces right first-shot, but of course that’s not always
possible. It is still important to think about user-facing API design decisions carefully, as
they are more difficult to fix than internal processes. Versioning APIs allows providers to
roll out several versions of their API at the same time and gives consumers a fair warn-
ing of how long the old version will still be alive and how to migrate gracefully to the
latest. Giving users time to react to changes and adapt is a massive benefit as opposed
to making abrupt changes over night.

• Communicating deprecation warnings for older API versions while still maintaining
them is an added burden on providers, but it is much more convenient for consumers.

98

Deprecation
An API can declare some
of its calls as deprecated,
which means that this
part of the API is either
modified or removed.
Deprecation warnings
give developers the
chance to transition to
parts of the API with long-
term support.

• Old API versions can be deprecated when they become buggy, highly inefficient, or
encourage bad coding practices. Individual calls can be removed entirely in a new ver-
sion if they’re not needed anymore.

Documentation

A topic that deserves special attention in the context of API contracts is documentation.
While often seen as an unwanted but necessary evil on the part of application developers
who want to focus on their code, documentation is crucial to enforce a common under-
standing of an API. In fact, no matter how simple you think an interface is, in the end a
human will have to operate it (if only to instruct a machine to use it) and there’s always a
chance for miscommunication. Some go as far as to say that the documentation is the API
and the code just its implementation. From a software planning perspective this is not an
unusual thought. Before the advent of the Agile Manifesto, it was customary in all engi-
neering fields to write explicit, extremely detailed specifications (or specs) that had to be
adhered to before any of the coding or building could begin. A spec—for an API or another
product—can be seen as the result of a potentially long negotiation process that in project
management is often described as requirements engineering. From a pragmatic point of
view documentation is not to be underestimated. In an API variant of Murphy’s Law, you
could say that any API call that can be misunderstood will be misused, so it’s worth being
as clear and precise as you can when building and documenting interfaces.

Security, Governance, and Release Policies

APIs allow companies to integrate with technology outside of their corporation, which
introduces dependency. Likewise, when a company offers access to an API, it suddenly
must deal with external dependents. Both sides of this coin do not only imply governance
issues, but also potential security risks. On the governance side, if your business relies on
the availability of an API and that API slows down, it will slow down your business, too. So,
the performance monitoring of that external API becomes an integral part of your internal
business processes. On top of that, if an integration suddenly stops working, you must fig-
ure out quickly whether it’s due to a change on your side or from the external provider.
That means that your internal development cycle must consider the external API develop-
ment cycle that you rely on. It is not uncommon for larger companies to have a dedicated
API manager who plans and manages all (external) API-related topics within a company,
such as making sure the integrations comply with organizational or governmental stand-
ards. On the flip side, if you’re exposing an API to the public, chances are that this API
accesses production data of your company, which can potentially be compromised. For
instance, as a health care data provider in most countries, you must keep your data anony-
mized at all costs. The security risks for companies with sensitive data can be very high, so
investing in sufficient security standards and setting proper access rights for your APIs is
crucial. On a high level, there are three main policies which APIs can be released under
(Boyd, 2014).

• Private: Your API is only used internally.
• Partner: You expose your API only to a specific group of users, namely, specific business

partners.

99

Published vs. public
interfaces

Only if you publish an API,
as in you expose it pub-

licly on the internet, does
it truly become public in

the sense discussed in
this unit, with all benefits

and drawbacks.

POSIX
The portable operating

system interface, or
POSIX, is a set of stand-

ards specified by the IEEE
Computer Society. POSIX

defines an API on the
operating system level,

including pipelines, proc-
esses, shells, and utilities,

among many others.

• Public: Your API is publicly available. In typed programming languages you often
encounter the keyword “public” for a class or function, which means that this part of
the respective library is available to all programmers working with that library. How-
ever, this kind of “public” functionality can still be part of a private API inside a com-
pany. Note that “public” is not the same as free or available to everyone, it just means
that if you’re granted access and pay for it, you can use it (see Fowler, 2002).

One of the advantages of versioned APIs we discussed was interface stability within one
release of an API. A common practice among API designers to grant them some flexibility
is to mark their calls as unstable. Google’s Java library Guava marks unstable components
with a @Beta annotation, indicating that you can’t rely on it, as it might change soon or
vanish altogether.

API Types

Now that you’ve seen some examples, learned about the history of APIs, and understood
some of the key aspects of what makes and breaks an API, let’s have a look at various lev-
els and types of APIs. You will notice that we’re working “inside-out” from the lower-level
components of a computer to higher-level application design. This onion-like layering of
API abstractions is what makes it possible for you to work efficiently with a computer.
Writing a script like the one you’re reading right now was done on a text processing system
without thinking for a second about the hardware that’s running it.

Operating systems

Simply put, an operating system (OS) is software that manages and orchestrates hardware
components and software resources. It also provides common system-level services for
computer programs run by its users. The POSIX standard originated from work by Richard
Stallman in the 1980s to unify different UNIX operating systems under one umbrella and is
the foundation of the Linux operating system (Stallman, 2011). POSIX specifies a set of
APIs that POSIX-compliant operating systems have to implement, so that compiled pro-
grams based on these APIs can run on any other system running POSIX. Some POSIX
aspects you probably interact with daily when using a Linux system are its standard for
files and directories, pipes, and specifications for input and output (I/O Port Interface and
Control). Operating systems are very complex pieces of software, and there is a lot more to
say about them, in particular about the topic of APIs, but that’s beyond the scope of this
script. Other examples of notable APIs that work close to the operating system level and
are relevant for data-intensive sciences include

• OpenGL (Open Graphics Library), a cross-language and cross-platform API for hard-
ware-accelerated rendering of 2D and 3D vector graphics, which is extensively used in
video game development, computer-aided design (CAD), and virtual reality applica-
tions. First released in 1992, the API standard is now maintained by non-profit consor-
tium Khronos Group.

• OpenCL (Open Computing Language), a framework and API for writing applications
independently from specific platforms and for leveraging various hardware compo-
nents such as central processing units (CPUs), graphical processing units (GPUs), and
field-programmable gate arrays (FPGAs). OpenCL provides C/C++-based programming

100

Shell
A shell is a command-line
interpreter which has
access to the API of your
operating system. While it
refers to graphical interfa-
ces as well, the term shell
is mostly used to refer to
command-line interfaces
(CLIs). The naming con-
vention comes from the
fact that shells represent
the outer layer of an OS.

languages to users and comes with API calls for parallel processing on devices. Like
OpenGL, OpenCL is maintained by the Khronos Group consortium. There are OpenCL-
compliant implementations for hardware of all major hardware providers, except for
Apple, who deprecated OpenCL support in favor of another standard.

• CUDA (compute unified device architecture), an API for parallel computing on GPUs
developed by Nvidia for its own hardware. CUDA works for instance with C/C++ or For-
tran, and while not trivial to program, it is considerably more convenient when com-
pared to OpenGL. Efficient and fast implementations of matrix operations, such as
Matrix multiplications and higher-dimensional equivalents thereof have been one of the
core drivers behind recent successes in the field of deep learning.

Command line interfaces

If you’re regularly using UNIX systems such as Linux or MacOS, but also if you’re a Win-
dows power user, you will likely execute a fair share of your programs in a command line
shell or just shell. Tools run on the shell are referred to as command-line interfaces (CLIs)
and are a special type of API leveraging OS resources. CLIs are simple yet powerful text-
based systems that read instructions line-by-line. Among the many CLI tools available on
various operating systems, two tools deserve special attention for Python programmers,
namely, python itself and the package manager pip. While you can start an interactive
Python session by just typing python into a shell on a system that has Python installed,
you can also use it to start Python programs or execute strings interpreted as Python code
directly from the shell. Here’s an example of printing the number 42 as output to your
shell using the python CLI:

Code
python -c "print(42)"

The -c flag allows you to pass any string that can be read by the Python interpreter.
Another example of using python as a CLI API is to query the version installed on the sys-
tem with python –V. To install packages for Python the standard way is to leverage the
Python Package Index (PyPI) via the CLI tool pip (although there are other tools, like the
old easy_install, the fashionable poetry, or the batteries-included conda). To install
the popular pandas library for data analysis you can use

Code
pip install pandas

Updating pip itself, which is just a Python package on PyPI, works by invoking

Code
pip install --upgrade pip

101

As an aside, note that in the context of web APIs you often hear developers talk about hav-
ing an API and a CLI for a given service. In that case, “API” usually refers to some sort of
web interface or access through a programming language, while the “CLI” is the part of the
API that is accessed through a shell.

Programming languages

We have just seen how Python can be used as a CLI tool to execute commands in a shell,
but of course it is a full-blown programming language, and one that should be universally
praised for its elegant design and high usability. We’re not going to talk about any Python
language specifics here, but note that the full set of data types, variables, and built-in
functionality and classes of the Python language is in fact an API for users to interact with.
A lesser-known fact to beginners is that the Python API has many different implementa-
tions. When you say you’re programming Python, chances are that you’re referring to CPy-
thon, a ubiquitous, free, and open-source implementation of the Python API based on the
C programming language. However, there are alternatives available, such as Jython (writ-
ten in Java), PyPy (written in RPython), and IronPython (written in C#). The take-away here
is that while working with any given programming language it’s easy to forget that they’re
all implementations of a design specification, written in another programming language.
Python is a very expressive language, but in the end it’s just an API for lower-level code.
You can use this knowledge to your advantage too, since working with CPython allows you
to write extensions of Python written in C, which might just be faster than plain Python.
Popular libraries such as numpy, a Python package for manipulating n-dimensional arrays
efficiently, is by and large written as a C-extension to Python.

Programming libraries and frameworks

Stepping out another layer, the libraries and frameworks you’re using in practice—for
instance libraries for data analyses or visualization—are themselves extensions of the pro-
gramming languages they’re written in. We mentioned numpy in the last paragraph, which
is an API for n-dimensional arrays expressed in Python. The key point is that you don’t
have to think or reason about how numpy does what it does; you only need to understand
the interface it is providing you with on a conceptual level. In other words, the interface is
separated from the implementation details. This crucial principle underpinning all APIs is
something we’ll investigate more closely in the next section. For now, let’s start with a sim-
ple example: Let’s say I want to create a 3-by-3 matrix in Python, add this matrix to itself,
and then print the result. numpy allows you to do that as follows:

Code
import numpy as np
x = np.ones((3, 3))
print(x + x)

This returns the expected result

102

Code
[[2. 2. 2.]
[2. 2. 2.]
[2. 2. 2.]]

The only thing you need to know is that the numpy API has a ones function call that cre-
ates matrices containing only the number 1 in all entries, of the specified shape (here 3 by
3), and that you can add matrices by using the “+” operator, which Python allows you to
override. Crucially, you do not need to know how numpy stores matrices, or how it carries
out matrix addition or any other operation. This decreases cognitive load and lets you
focus on the use case you care about by only learning the API, not the implementation.
Highly specialized libraries or frameworks can sometimes be characterized as domain-
specific languages (DSL) when they act as a de-facto standard and complete toolset for a
concrete domain. Numpy is a DSL for n-dimensional arrays in Python, while pandas would
be an example of a DSL for data frames in Python. Becoming an expert in any data-inten-
sive science usually involves having the essential libraries for your domain under your
belt.

Databases

Another important application domain that we already briefly touched in the historical
timeline of APIs is that of databases. Database management systems are complex soft-
ware components that users must interact with, and each such system has languages, or
APIs, that do precisely that. Modern databases created in the last one or two decades devi-
ate from the traditional way of doing things, but relational databases all share the com-
mon trade that they’re based on tables with precisely defined column names and types.
On top of that, relational databases all come equipped with a common query language
called structured query language (SQL). There are variants and dialects of SQL, but funda-
mentally it is an API used to interact with relational databases: It is used to create, alter
and delete tables, insert entries or modify them, retrieve and filter data, and so on. The
internal structure of (relational) databases is fascinatingly complex and a lot of optimiza-
tions carefully hidden from the user go into modern database design. In fact, there are a
lot of different ways to implement a relational database, including many different data
structures and algorithms for data storage and retrieval to choose from, but to the user
this is all a black box. All data access happens exclusively through the domain-specific lan-
guage SQL.

Remote procedure calls

So far, we’ve only explicitly discussed APIs that relate to work on a single process on a sin-
gle computer. However, it’s normal to have several processes running on a computer at
practically all times. What’s more is that these processes have to communicate quite
often: For instance, if you’re running a text processing tool to take notes and host a meet-
ing with a conferencing software at the same time, your operating system is smart enough
to copy a note from the former into the chat of the latter. That’s a form of inter-process
communication (IPC). Going one step further, your colleague who sits at another com-
puter entirely can read your note in his instance of the same conferencing tool running as
a process on his computer. Letting computers “talk” to each other like this is a compli-

103

REST
The concept of represen-

tational state transfer
(REST) was introduced in
a PhD thesis in 2000 and

specifies a set of architec-
tural constraints for web
applications, like client-

server architecture or
statelessness of services,
which helped web appli-
cation developers to find

a common communica-
tional ground to build the
massive, distributed net-
work that is the internet.

cated topic that usually involves complicated communication protocols. An essential part
of communication between several computers is networking, i.e., the way the computers
are connected with each other, for instance over the internet. One specific IPC paradigm
between different machines, originating from the field of distributed computing, is called
remote procedure call (RPC), which is a request-response protocol. It means there are two
parties involved: a client and a server, connected to each other via some network. The cli-
ent sends a request to the server to let it execute a program with parameters as specified.
The server runs this program accordingly and returns the result to the caller, the client.
The tricky part is that the program itself must be transferred over the network from client
to server and the result must also be transferred from server to client. The complication
stems from the fact that all in-memory objects of the client that are necessary for the func-
tion call have to be persisted first, sent over the network, and then read into memory
again by the server. Many RPC systems use an interface description language (IDC) to
describe a contract, which can then be used to generate code for both client and server. A
prominent and widely adopted RPC system is Google’s gRPC, which uses Google’s Protocol
Buffer format as IDC and the web-wide standard hypertext transfer protocol (HTTP) for
network transport. HTTP is one of the core protocols on which the World Wide Web heavily
relies and powers most modern web APIs.

Web interfaces

When you look at how rich and diverse modern web and mobile applications can be, it
might strike you as surprising that almost all communication is backed by web protocols
like HTTP. This protocol was officially introduced in 1997. HTTP/2 has existed since 2015,
and its successor HTTP/3 is already supported by some browsers (Berners-Lee, 1996). The
modern web is based on a set of constraints or principles called representational state
transfer (REST), and applications that utilize this set of principles are often referred to as
RESTful applications or services. APIs for RESTful applications are referred to as REST APIs,
and often HTTP is used for communication in such interfaces. The evolution of the HTTP
protocol as an API is interesting in its own right, but we’re going to focus solely on the
semantics of HTTP and how you interact with it in practice. At its core, HTTP works with
universal resource identifiers (URI), with which you can uniquely identify resources on the
web, and operations or methods that tell HTTP what to do with the resource exactly. The
basic process is that the client asks for an HTTP method to be executed, which the respec-
tive server corresponding to the URI does, after which the server then returns the result of
the request to the client. The prototypical example is to type an address like google.com
into your browser and hit enter. In this situation your browser is the client sending a GET
request to Google’s servers, who respond with the HTML code for the landing page of Goo-
gle, which in turn can be rendered by your browser. The full list of basic HTTP methods
goes as follows:

• GET requests to get a specified resource and it is only used for data retrieval. A GET
request has no other side effects, on the server or otherwise.

• HEAD is identical to GET, with the exception that you don’t receive any response body.
For instance, when GET would give you the HTML code for a website, the corresponding
HEAD request would only contain the meta information of the request (like information

104

HTTPS
An extension of HTTP,
HTTPS uses a crypto-
graphic protocol-like
transport layer security
(TLS) or its predecessor
secure socket layer (SSL)
to secure the connection
between clients and serv-
ers and to prevent fraudu-
lent behavior on the inter-
net.

about the server), but no actual content. A minimal web application must specify at
least HEAD and GET methods to qualify as such, all the other following methods are
optional.

• POST differs from a GET request in that it comes with a request body that is posted to
and accepted by the server and used to run the request before returning to the client.
An example would be posting to a message forum, in which case the text of your post is
contained in the request body.

• PUT is somewhat related to POST in that it also sends content through the request
body. However, it is semantically different because you require the server to store the
body, i.e., put the sent resource there.

• DELETE, unsurprisingly, deletes a previously stored resource, which you might have
PUT there.

• PATCH modifies a previously stored resource, if only partially.
• OPTIONS returns to the client the HTTP methods supported by the server.
• TRACE is essentially there for debugging purposes and echoes incoming requests back

to the client for it to check whether the original request has been modified or amended
by the server.

• CONNECT is method in which the client asks the server to be connected with another
machine or through another protocol. In this situation the server acts as a proxy. This
method is often used to set up a secure client-server connection through securely
encrypted methods like HTTPS.

Graphical user interfaces

Lastly, graphical user interfaces (GUI) can also serve as a form of API. The operating system
you’re using likely comes with a graphical interface and provides you with a graphical rep-
resentation of the folder structure on your computer, a desktop, a mouse cursor, and other
amenities. In the early days of computing all you had was a CLI, and in the very beginning
not even that. Today GUIs are the default for most commercial applications running on
desktop computers or smartphones. One particularly relevant application class of GUIs in
the context of data-intensive sciences is that of integrated development environments
(IDE), which give programmers a complete support system for their development efforts.
Tools like PyCharm or Rodeo are popular choices for Python programmers and data scien-
tists who want to be productive in their daily work. Such IDEs offer tooling for code com-
pletion, navigating complex projects, finding specific source code parts, debugging your
code, or profiling the run-time performance of your programs. In a sense, IDEs provide you
with an API for all things directly related to your programming tasks, and it is difficult to
imagine such powerful tools without the graphical interface.

4.2 API Design Principles
You’ve now seen the many forms in which APIs can come and what they look like. It’s time
to investigate how to build APIs in practice and get a feeling for good and bad designs by
understanding some core principles of API design. Simply put, when writing anything, and
especially code, you want to be understood. To start out, let us have a look at two con-
crete examples of machine learning software workflows. The first one is an example using

105

Ray, an up-and-coming distributed computing framework for Python that supports a vari-
ety of algorithms for a machine learning paradigm called reinforcement learning. You
install this Python library with pip install ‘ray[rllib]’ and to check if the installa-
tion worked you could run

Code
import ray
ray.init()

in a Python session. That should result in no errors, so we should be able to run a first
example by typing the following line in your shell:

Code
rllib train --run=PPO --env=CartPole-v0

When you do so, you will notice that this program does not run correctly; it gets inter-
rupted by an error message embedded in an output that’s simply too long to put here in
its entirety. After sifting through about 80 lines of code you eventually find a clue:

Code
ImportError: Could not import tensorflow

The reason is that this Ray example relies on Google’s TensorFlow library, which you’d
have to install first. The problem with this example is not that Ray didn’t install Tensor-
Flow, which in fact it shouldn’t. It’s that we verified our installation, but Ray didn’t com-
plain; it happily accepted our setup and started running the example. What’s more, the
error message is too difficult to read and novices have a hard time extracting information
from such long messages. The last reason why this example is problematic is that the error
message occurred too late in the program flow. The error occurs after Ray has set up its
distributed computing framework, which is why you find the relevant error message about
TensorFlow only after about 50 lines of program output. Now, the reason we’re discussing
this example at great length is that it’s an example of bad API design. Imagine you run a
complicated machine learning experiment with hundreds of lines of code. You start the
experiment in the evening to see the results in the morning, only to notice that you forgot
to install TensorFlow and the program crashed right away. That can mean a huge dip in
productivity and it all comes down to a questionable design choice in error handling. In
contrast, let’s see how a different machine learning framework handles the exact same sit-
uation. This time we’re looking at Keras, a popular library for deep neural networks. As
before with Ray, it’s not necessary for you to know anything about machine learning,
we’re just concerned with API design in this section. After installing Keras with pip
install keras, you can validate the installation by typing

Code
import keras

106

into an interactive Python session. What you’ll see right away is the following error mes-
sage:

Code
ImportError: Keras requires TensorFlow 2.2 or higher. Install TensorFlow
via `pip install tensorflow`

Note how Keras not only tells you immediately that something went wrong, it also tells
you what exactly it requires and suggests a concrete action to solve the problem in
human-readable form without searching through a massive wall of text output. This type
of error handling demonstrates excellent API design and goes to show that well-written
APIs can save you a lot of problems down the road. A good API improves developer experi-
ence and enhances productivity. Keras has been hailed for its API design since its incep-
tion in 2015 and in recent years understands itself less as a concrete library and more as
an API specification that you can implement and follow (Sadrach, 2020). Since the release
of TensorFlow 2.0, previously a standalone library, Keras is now an officially supported API
of TensorFlow (Chollet, 2017). We’ll get back to Keras in this section to illustrate a few
more points about good design.

The Zen of Python

One of the reasons the Python programming language is recognized as elegant and easy
to start with is that it has been built with a design philosophy in mind that has been eter-
nalized in the so called “Zen of Python.” The Zen is a list of flexible principles, not to be
confused with a rule set, which you can read using any Python version by typing import
this into a Python session. We’ll go through these principles in detail, as they make some
good points about API design and its difficulties. On a side note, this philosophy has been
lovingly mocked by Daniel Greenfield with an Anti-Zen library called that, which shows
you anti-patterns to avoid. An aggregated view on the Zen of Python reads as follows:

• Beautiful is better than ugly. Python wants you to prefer beautiful solutions over ugly
ones, which can be highly subjective. Working with intuitive concepts that click has
merits for your users.

• Explicit is better than implicit. Hiding information from your users might require them
to know about your implicit rules, so be as explicit as possible.

• Simple is better than complex, complex is better than complicated. The Python equiva-
lent of Occam’s razor tells you to shed complexity whenever possible. If you have to
incur complexity, at least make sure not to complicate things.

• Flat is better than nested, sparse is better than dense. Prefer data structures and con-
cepts that aren’t too entangled and nested. For instance, a flat Python dictionary with
properties is usually preferred to a nested one. Also, don’t cram too many things into
one line of code in order to avoid too much density.

• Readability counts. Needless to say, code that’s easier to follow is more fun to read and
easier to maintain long-term.

107

• Special cases aren't special enough to break the rules, although practicality beats
purity. This is a very interesting part of the Zen, since it shows you on a meta level that
you have to take these principles with a grain of salt. While you should not usually let
special cases ruin your overall design, that is exactly what might be necessary some-
times (representing an exception to the rule).

• Errors should never pass silently, unless explicitly silenced. When errors occur fast and
quickly, the user never has to guess what the reason for a program failure might be.
Doing so might make your program flow more complicated but it is a good design
choice. In rare cases, when it’s safe to do so, error messages can be silenced.

• In the face of ambiguity, refuse the temptation to guess. In other words, try to avoid
ambiguity by being as explicit and clear as possible.

• There should be one—and preferably only one—obvious way to do it, although that way
may not be obvious at first unless you’re Dutch: This reference on the Dutch creator of
Python Guido Van Rossum is probably the most controversial of all the principles on
this list. Python programmers refer to this way of doing things as “pythonic.” Often
there’s no doubt about a pythonic solution and the community largely agrees on certain
patterns, but sometimes it’s just not clear if one approach is actually better than
another. Still, the point is to strive for code that’s so obvious to use that you can’t go
wrong.

• Now is better than never, although never is often better than right now. When designing
things, don’t delay your process and find a solution now, even if it is sub-optimal. You
can iterate and improve on it later. However, if hard-pressed, don’t go down a road that
makes things too difficult to fix later on.

• If the implementation is hard to explain, it’s a bad idea; if the implementation is easy to
explain, it may be a good idea. This slightly pessimistic view on programming yet again
alludes to beauty and understandability. Not everything that’s easy to explain is good,
but if you can’t explain it, it’s certainly bad.

• Namespaces are one honking great idea—let’s do more of those! Python makes ample
use of namespaces to modularize and structure its code. Let’s say you implement a zoo
with plenty of animals in Python. Using proper name-spacing, your Elephant class
might be imported as from zoo.animals.mammals import Elephant, instead of
from zoo import Elephant, as the latter might clutter your namespace with too
many concepts.

Separating Interfaces and Implementations

A common principle in interface design is to separate interfaces and their implementa-
tions. Strictly speaking, by the definition we’ve given and the properties discussed, an API
is simply an interface, and the whole point is that its users don’t have to care about imple-
mentation details. In practice, however, it’s good to be reminded of this principle some-
times. Interface separation can be broadly understood within the principle of separation
of concerns. Strongly typed languages like Java or Scala usually have a dedicated class for
interfaces, which enforce this practice. In Java, an “interface” can’t have a concrete imple-
mentation, as it is prohibited by design. If you want to work with functionality as laid out
in the interface, you have to provide an implementation of the interface by writing a sub-
class for it. On a more fundamental level, the two programming languages Java and Scala,
which are syntactically quite different, compile to compatible byte code on the Java vir-
tual machine (JVM). In particular, you can import Java classes into your Scala code and

108

Separation of concerns
In software engineering, a
common principle is to
separate concerns, which
means that you build
your software in such a
way that each part or
module is solely responsi-
ble for certain aspects
and concerns should
never be divided by two
or more such modules.

build software on top of it. In Python, there is no such concept as an interface in the basic
language, and a strict separation of interfaces and concrete implementations are consid-
ered an anti-pattern (or un-pythonic). However, that does not completely invalidate the
principle just presented. In Python, you still want to carefully think about the objects your
users will interact with, the public API of your code, and the rest of the code, the imple-
mentation. If you view the public-facing API as a “surface area” which most of your users
will interact with, for larger projects this is really just the tip of the iceberg, which makes
good interface design even more important.

Abstractions

When building APIs, an important aspect is to find the right abstractions, i.e., the right
concepts that go well with what you intend to build. Abstractions should feel natural and
make it easy for your users to interact with them. As famous computer scientist Edsger
Dijkstra puts it, “[b]eing abstract is something profoundly different from being vague...
The purpose of abstraction is not to be vague, but to create a new semantic level in which
one can be absolutely precise” (Misa & Phillip, 2010, p. 1). To give you one example, the
Keras library gets away with very few high-level concepts. To illustrate the elegance of Ker-
as’ approach you need to know that deep neural networks, which Keras is built for, are
machine learning models built from layers of relatively simple compute instructions. The
simplest models are sequential in nature, which means that the layers involved follow one
after another. The simplest layer in a neural network is probably a densely connected
layer, meaning that all neurons (a term borrowed from neuroscience used to refer to how
the brain works) in one layer are connected to that of the next. Even if you’ve never heard
about deep neural networks before, now that you’re equipped with this knowledge, you
can read the following Keras model specification:

Code
import keras
from keras import layers
model = keras.Sequential()
model.add(layers.Dense(2, activation="relu"))
model.add(layers.Dense(3, activation="relu"))
model.add(layers.Dense(4))

In other words, to construct a sequential network with Keras, you sequentially add as
many layers as you would like to. The specifics of this model are irrelevant here, just note
that it almost reads like plain English and works with precisely the same high-level
abstraction we just explained: models and layers. You might say that this is an obvious
thing to do, but far from it: Before Keras, none of the deep learning frameworks adopted a
similarly simple and intuitive style of programming, which means the discipline of deep
learning was much less accessible to practitioners. In 2020, the landscape has changed for
the better, but the impact of well-written APIs such as Keras on the hype of deep learning
and machine learning in general is not to be underestimated. It is famously said that all
abstractions are leaky (Spolsky, 2002), meaning that no matter how well you think
through an abstraction in software engineering, there will be cases at which you will have
to look “under the covers” or break the rules for special cases. This reflects the fact that
the world can be messy, and abstractions are just an attempt at grouping things into cate-

109

gories, a process which can fail for several reasons. While that statement is true, it is also
often irrelevant in practice to the extent that good abstractions go a long way, while poor
choices might make you fail badly. Another way to reason about abstractions, especially
when it comes to leakiness, is that you might require different levels of abstraction. Some-
times you’re doing just fine with the highest level of abstractions, but sometimes you have
to go a few levels deeper to adjust code to your use case.

Error Handling

We’ve already seen good and bad error handling in an earlier comparison of the Ray and
Keras Python libraries, but it’s worth generalizing and summarizing a few points here that
are important to keep in mind:

• When throwing an error, fail as early and quickly as possible. You do this for maximum
transparency and to prevent more serious errors down the line, which might be more
difficult to understand and fix.

• Your error messages should be human-readable and clear. They should not only give
the user a local error message that is hard to interpret, but they should also give the
context in which the error occurred and what the user can do to fix it.

• Provide users with messages at different levels, for instance, provide useful warnings
about a deprecated function that might be removed from the next release.

Convention and Configuration

According to computer scientist Phil Karlton, “There are only two hard things in Computer
Science: cache invalidation and naming things” (Fowler, 2009, p. 1). While this is a bit
tongue-in-cheek, there’s a lot of truth to that statement. When it comes to API design,
there’s mostly just one part of the quote that is relevant: naming things. Finding good
naming conventions is surprisingly hard and some languages, like Java, have a cultural
tendency to have very long class names. Take
AbstractTransactionalDataSourceSpringContextTests from the Spring frame-
work, for example. That is a great example in the sense that it should be avoided, and
likely points to either a conceptual lack of clarity in your abstraction or the fact that your
class simply does too much (and hence violates the separation of concerns principle). Giv-
ing clear and precise names to your classes and functions should be something you
always keep in mind when designing software. Apart from naming things, other types of
conventions are important, too. For instance, in Python you can have default arguments in
your function signatures. You should always make good use of them, whenever you have a
sensible default to put there. Most of your users won’t be power users and don’t care for
every single parameter that you can tweak. Having said that, it’s better to have a lot of
parameters in your function parameters that your users can configure, than it is to let
them modify them through code. To give a concrete Python example, let’s say we have a
simple class encapsulating a bucket, which has a size and can potentially be filled with
something. Here’s a Python class for that:

110

Code
class Bucket:
def __init__(self, size=10):
 self.size = size

def update_size(self, size):
 self.size = size

The default bucket size is 10 (the meaning or unit of this number is unimportant here), so
users can create a bucket using this convention with

Code
bucket = Bucket()

They can also configure the bucket size upon initialization using

Code
bucket = Bucket(size=20)

And finally, users could also first create a bucket and then modify its size through code (a
questionable operation altogether):

Code
bucket = Bucket()
bucket.set_size(20)

A good rule of thumb to follow is “convention over configuration over code.” Provide as
many good default values as possible and make them easily configurable.

User Experience

A lot of the principles discussed in this section come down to applying common sense rea-
soning to the domain of software engineering. Ultimately that’s because building good
APIs, or designing things in general, is all about empathizing with your users and respect-
ing the cognitive factors that come into play when building things for humans. In other
words, user experience, also called developer experience when applied specifically to the
relationship of engineers to your code, is important. The cognitive dimensions framework
(Clarke, 2004) lists a total of 12 points in relation to how software engineers work with APIs
and what they expect from them.

• Abstraction level: What’s the maximum and the minimum number of abstractions found
in your API, and what comes in-between? What level should your users work with pri-
marily?

• Learning style: What are the requirements for learning the API? Does it have a steep
learning curve? What’s the target group of developers, and what’s their background?

111

• Working framework: What’s the cognitive load or conceptual chunk needed to under-
stand this API and work with it effectively?

• Work-step unit: How much work is required by the user in each step? Is the API particu-
larly dense in that regard?

• Progressive evaluation: Can you build up code parts progressively and get feedback on
your progress? Or do you need, in extreme cases, to bring all pieces together to see if an
idea works?

• Premature commitment: If I go down one path, how many other non-trivial follow-up
decisions do I have to keep in mind as a consequence of this decision?

• Penetrability: How well can you explore the API on your own? Is it well documented and
can you understand and compose its components intuitively?

• API elaboration: How tailored to your needs is the API? Are there possibilities to flexibly
configure it, or do you have to modify it heavily to suit your needs?

• API viscosity: Is it easy to modify or extend the API for a different use case? Does it speak
the language of the developer community it targets?

• Consistency: If you’ve seen one part of the API, can you reason about the workings of a
different yet related part of it? In other words, is the API consistent in its choice of build-
ing blocks?

• Role expressiveness: Do the abstractions picked by the API match your cognitive model
of the components as they relate to the program flow overall?

• Domain correspondence: All APIs are written within a context, for a specific domain.
How well does the API at hand express the models present in that domain?

Documentation

Lastly, good documentation is crucial for any successful API with a large user base. Make it
a habit to

• document your code.
• document your interfaces, input parameters, and return values.
• document the intended use of your API.

4.3 Building a Python Library
Having looked at various API paradigms and design principles, it’s now time to build a con-
crete Python library to apply what you’ve learned. The focus of this library is not so much
about the implementation details of the library as it is about its API. In fact, the code we’re
writing behind the API will be relatively complicated in order to show you how good API
design can hide it. To offer a concrete example, let’s say you run a company specializing in
analyzing large corpuses of text documents, and you sit on a proprietary algorithm that
can do large-scale analyses faster than everyone else. Of course, you want to bring that
algorithm in the form of a service to your users, to provide value and make money. The
first step for you is to write a Python library that properly encapsulates your algorithm and
makes it accessible for users, without sharing your secret algorithm. To restrict things
even further, we only do one thing: count all occurrences of words across several docu-
ments.

112

An Algorithm to Summarize Documents

Let’s start with the implementation of the core algorithm first. This is a toy version of a
programming paradigm called MapReduce, which is a milestone in distributed computing
and one of the many impressive contributions to large-scale computing by Google (Dean &
Ghemawat, 2004). Many commercially successful big data technologies like Hadoop are
based on this programming model. It is roughly based on three steps:

1. Take a set of documents and transform or “map” the elements you’re interested in (for
instance, the words of the document) according to a function you provide. This step
returns key-value pairs, in which the keys are the document elements you care about
and the value is an entity you want to compute. In our use case we’re interested in
counting words, so each word x in a document would result in the key-value pair (x,
1), where the “1” signifies that we counted the word once.

2. Collect and group all the output pairs from the last step. Let’s say the word x
appeared four times throughout the documents. The grouping step would then result
in the value x: [1, 1, 1, 1].

3. The last step is to aggregate or “reduce” the elements from the last stage. In our case,
we just want to sum all values for a total count. In the example of the word x, we
would therefore get the result x: 4.

As you might guess, the paradigm MapReduce gets its name from stages 1 and 3, but the
second one is important as well. While the three steps may look simple, their power lies in
the fact that they can be massively parallelized across hundreds of machines. Let’s pro-
vide a naïve implementation of this algorithm for our use case, word counting, in Python.
We start with implementations of the three phases. First, we define a map function that
returns (word, 1) as key-value pair for each word in the text:

Code
def map_function(text):
 for word in text.lower().split():
 yield word, 1

Then, we apply the map function to all elements in our data set data (a list of text data):

Code
def apply_map(data):
 map_results = []
 for element in data:
 for map_result in map_function(element):
 map_results.append(map_result)
 return map_results

To group the key-value pairs produced by the map step by their key, we do the following:

113

Code
def group_function(map_results):
 group_results = dict()
 for key, value in map_results:
 if key not in group_results:
 group_results[key] = []
 group_results[key].append(value)
 return group_results

Finally, we define a reduce function that sums up the counts of words:

Code
def reduce_function(key, values):
 total = 0
 for count in values:
 total += count
 return key, total

As with the map function, we also need to apply the reduce function to all key-value pairs
from the group phase:

Code
def apply_reduce(group_results):
 reduce_results = dict()
 for key, values in group_results.items():
 _, count = reduce_function(key, values)
 reduce_results[key] = count
 return reduce_results

To see how this all works, let’s create a test data set to run this program:

Code
text_1 = "Lorem ipsum dolor sit amet, consetetur et sadipscing elitr."
text_1b = "Lorem ipsum dolor sit amet, consetetur et sadipscing elitr."
text_2 = "At vero lorem et accusam et justo duo ipsum et ea rebum."
text_2b = "At vero lorem et accusam et justo duo ipsum et ea rebum. At vero lorem et
accusam et justo duo ipsum et ea rebum."
data_set = [text_1, text_1b, text_2, text_2b]

When we now apply all three MapReduce stages sequentially, we get the following output:

Code
map_results = apply_map(data_set) # 1. stage
print(map_results) # Output: [('lorem', 1), ('ipsum', 1), ('dolor', 1), ...]
group_results = group_function(map_results) # 2. stage
print(group_results) # Output: {'lorem': [1, 1, 1, 1, 1], 'ipsum':

114

[1, 1, 1, 1, 1], 'dolor': [1, 1] ...}
reduce_results = apply_reduce(group_results) # 3. stage
print(reduce_results) # Output: {'lorem': 5, 'ipsum': 5, 'dolor': 2 ...}

Now that we’ve checked that our code works as intended, let’s take a step back. We’ve
implemented a toy version of a powerful, commercially successful algorithm and applied
it to a concrete use case. However, we do not have an API for this algorithm yet. The last
thing we want to do is share our intellectual property, so we need to carefully hide all
implementation details and provide users with a simple interface to analyze their docu-
ments. How can we do that? First, we have to clarify the specifications of the API by under-
standing what our users might want from us. Let’s say we create a minimum viable prod-
uct (MVP) by constructing the following Python functionality that we can share with users:

Code
def count_words_naive(corpus):
 map_results = apply_map(data_set)
 group_results = group_function(map_results)
 reduce_results = apply_reduce(group_results)
 return reduce_results

Of course, to protect our IP, users will only have access to count_words_naive, not its
implementation. After an initial round of interviews with potential customers we get the
following feedback which we can use to refine our approach:

• Many users didn’t understand how to use this function. The input argument corpus is
not documented and it’s not clear how to use it.

• Some users figured out that our API takes a list of Python strings, representing the text
documents to analyze, but had the problem that the function sometimes throws
obscure errors, and they didn’t know why.

• Users who got the result sometimes wanted something slightly different: They were
interested in words with a minimum number of occurrences in the corpus (otherwise
the output is too large).

• Some users were not proficient enough in Python and just wanted to provide a list of
files, instead of loading documents into Python themselves first.

To incorporate this feedback, we first design a new backend function to filter words whose
count is too low, which looks as follows:

Code

def filter_function(results, min_occurrences=4):
 return {k: v for k, v in results.items() \
 if v >= min_occurrences}

115

With this filter function, we can now create a much-improved interface by taking several
design principles from earlier into account, namely, proper and intuitive error handling,
good documentation, using good conventions and configurations, and even making use of
Python’s type checking module typing for input parameters and return types:

Code

from typing import List, Optional, Dict
import warnings

def count_words(corpus: List[str], filter: Optional[int] = None) -> Dict[str, int]:
 """Count all words in a corpus of documents.
 :param corpus: A list of strings, where each string
 contains the text of a document.
 :param filter: int or None. If None, don't filter
 the result. Else return words
 with at least 'filter' occurrences
 in the corpus.
 :return: A dictionary of words and their respective
 counts, filtered by count as specified.
 """
 assert type(corpus) is list, "The corpus to analyse needs to be list of strings"
 map_results = apply_map(corpus)
 group_results = group_function(map_results)
 reduce_results = apply_reduce(group_results)
 if filter is None:
 return reduce_results
 else:
 assert type(filter) is int, f"The 'filter' argument needs to be a Python int,
 you specified: '{filter}' which is of type {type(filter)}"
 return filter_function(reduce_results, min_occurrences=filter)

Note that, while this might look like much more than we had in our naïve definition, most
of the additional lines of code go into type checking, documentation, and catching errors.
That is a good sign and mature interfaces tend to look this way. To address the need for an
API call that works with files instead of in-memory strings, we can define a new interface
that calls the above count_words function internally. Reusing function calls instead of
creating separate code bases is another good design choice.

Code
def count_words_from_files(files, skip_corrupted_files=False, filter=None):
 """Count all words in a corpus of documents provided as files
 :param files: A list of file names (str) on your local file system. The files contain
 the text you want to count words for.
 :param skip_corrupted_files: boolean. If True, ignore all files that can't be read,
 otherwise abort.
 ...

116

 """
 corpus = []
 for file_name in files:
 with open(file_name, 'r') as f:
 try:
 text = f.read()
 corpus.append(text)
 except:
 msg = f"The file {file_name} cannot be read. Remove it from the corpus."
 if skip_corrupted_files:
 warnings.warn(msg)
 else:
 raise ValueError(msg)
 return count_words(corpus, filter) # reuse function

There is a lot to be unpacked in this piece of code. First, the arguments of
count_words_from_files are different from count_words in many ways. The “files”
parameter still takes a list of Python strings, but the meaning is different now. As the docu-
mentation explains, “files” is now a list of paths on your local system to files that should
be analyzed. The “filter” parameter is the same as before, but we have a new parameter:
skip_corrupted_files. This parameter accounts for the fact that not every file on your
system can be opened and contains text data. skip_corrupted_files is false by
default, which means that the program will stop immediately when it finds a file that can’t
be read. This is a smart default, as it’s more secure than just skipping such an event, but
users might want to turn this feature off at their own risk. Hence, we expose this parame-
ter to allow users to configure it as they need. As for the code itself, the flow is straightfor-
ward. We iterate over all files and try to read them, and if we succeed, we pass the result
into the count_words function defined before.

SUMMARY
In this unit you’ve learned the fundamentals of application program-
ming interfaces (APIs), their design, and their implementation to get you
started with data-intensive science projects on that subject. All program-
ming examples in this unit were given in Python, as it is easy to proto-
type with and currently the most relevant language when it comes to
data science and related fields. The first section exposed you to the
basic terminology of APIs and how various levels of abstraction, from
operating systems and hardware access to modern web interfaces, come
into play when working productively with a computer. These layers of
APIs span a wide class of important entry points for application develop-
ment and include database access, programming languages, and the
use of your preferred toolchain in data-intensive fields. You now under-
stand APIs as specifications between the API designer and user, a bind-
ing contract that parties must adhere to. The focus of this section was on
the usage of libraries and frameworks, as well as the most important

117

building blocks of RESTful web applications. Next, we had a closer look
at what it means to actively build APIs, by introducing key design princi-
ples, dos and don’ts. You’ve learned about the importance of separation
of concerns, good error handling, sufficient documentation, finding
good abstractions that aren’t too leaky, and using conventions and con-
figurations to help users navigate your APIs in practice. The following
section gave you a concrete use case of a small Python library built to
share with your users. We built out a relatively complex underlying algo-
rithm to count words in documents and focused on building a minimal
user-facing API to expose it. You’ve seen how to effectively hide func-
tionality that’s not necessary for your users to know, document your
code unambiguously, use type hints to improve validation of input and
output arguments, and handle errors properly in order to catch unin-
tended behavior early on. To conclude, you can now identify strengths
and weaknesses of APIs when you’re working with them, build them
effectively, and set up your own libraries and REST interfaces in Python.

118

UNIT 5
FROM MODEL TO PRODUCTION

STUDY GOALS

On completion of this unit, you will have learned …

– the details of the process of developing a machine learning model, and how it differs
from the standard process of software development.

– the lifecycle of a model once it reaches production, including updating, monitoring,
health checks, performance, and scaling.

– the specifics of deploying a model and keeping it deployed.
– the purpose of MLOps and DataOps.
– how end-to-end cloud services offer complete solutions to all the issues above, specifi-

cally covering AWS SageMaker.

Anonymous
Highlight
life cycle

Machine learning model
This is a file that has been

trained to recognize cer-
tain types of patterns.

5. FROM MODEL TO PRODUCTION

Introduction
A machine learning solution provides predictions based on a set of input data in a non-
deterministic way. Its development is an iterative and explorative process. We begin by
identifying and clarifying a case where machine learning can bring value to an organiza-
tion. We then proceed to collect and explore the available data, generate a hypothesis on
the nature of the data, the problem, and the solution, that we then explore and test both
visually and programmatically in machine learning models. Once we have a solution can-
didate, we proceed to integrate it in the existing infrastructure, or develop software to take
advantage of it. We will explore how the machine learning development process has simi-
larities and differences with the traditional software development process. Bringing a
machine learning solution to production presents specific challenges due to its non-deter-
ministic nature, the nature of the teams developing it, and its intrinsic dependence on the
data used to train it, as well as the data it is used on. We will explore the specific chal-
lenges of version control, testing, and monitoring due to the nature of the machine learn-
ing solution. Later, we will begin to see how some tools offer support for several of the
challenges of production machine learning, introducing the model of MLOps, and how
continuous integration (CI) and continuous delivery (CD) models of DevOps can be applied
and extended to machine learning solutions, with the addition of continuous training (CT).
We will speak in more depth on the existing solutions with MLFlow, Kubeflow, and Michel-
angelo. We will then explore how existing cloud providers offer solutions to the challenges
we are facing, going into more specific detail in the case of Amazon SageMaker.

5.1 Model Development Lifecycle
In this unit we are concentrating on the challenges of bringing a model to production, so it
is useful to start from an overview of the lifecycle of model development. Machine learn-
ing involves creating a model trained on certain training data which can afterward process
additional data to make predictions. In this context, a machine learning model, or a stat-
istical model, can be considered a black box that, given a set of inputs, returns some out-
puts. The basic idea is that the model allows us to map a set of inputs to a desired output.
For example, we want to train a computer to classify an image as a cat or a dog. In this
example, we give the model input images and labels telling the model whether the image
is a cat or a dog. The black box then learns an association between inputs and labels, so
that it can hopefully predict the right answer (cat or dog) for previously unseen images.

To develop a model that brings value to an organization, the basic steps are

1. understanding the problem,
2. finding good assumptions and hypotheses,
3. collecting the available data,
4. exploring it to see if the assumptions and hypothesis seem realistic,

120

Anonymous
Highlight
which

Anonymous
Highlight

Anonymous
Highlight

Anonymous
Highlight
as follows:

Anonymous
Highlight
Caps for numbered lists.

Anonymous
Highlight
No punctuation

Anonymous
Highlight
the data

5. experimenting with possible models and data processing steps to solve our problem,
6. training a model, and finally
7. deploying it on a development pipeline to make sure it behaves as expected.

Let’s delve deeper, and please note that all steps are connected to each other and can’t be
seen in isolation. As an example, while cleaning the data, we also analyze them a bit, and
after exploring, we sometimes need to go back and change our cleaning process, because
it removed too much information together with the noise, or because it didn’t remove
enough.

Problem Understanding and Hypotheses

First, it is essential to understand the problem you’re dealing with. In the best of cases we
are given a very narrowly defined project scope. However, requirements are often vague,
like “improving turnover,” “reducing churn,” or “identifying customers that won’t pay.”
Finding the right answers to what is actually needed to succeed with your project is called
requirement engineering. Various project management techniques need to be carefully
applied to achieve this. The process of understanding and defining the problem can
involve long interviews with matter experts, design thinking, and exploratory modeling.
We often have to go back and forth checking and correcting our initial hypotheses and
assumptions. The field of data science is still comparatively new and many companies
struggle to adopt a data-driven mindset, meaning their stakeholders have a hard time set-
ting up data science projects for success. For this reason, it is important to have a clear
idea of what we want to solve and have clear performance indicators. This can be done by
establishing well-defined, specific problems that can be answered. Rather than simply
“identifying problematic customers,” a goal such as “we want to reduce the number of
customers not paying after 2 weeks by at least 20 percent” is much more concrete. As
another example, even something that sounds more specific, such as “identifying the
vehicles entering a building” could be improved upon to set the goal of “at least 95% of
the vehicles entering a building are correctly identified.” Some problems can be very hard
to define, as in the case of machine translation: How do we score translations from best to
worst? The answer to that is highly subjective, and while we somehow know, as humans,
when a translation is really bad, it is difficult to evaluate good ones. Should they be very
close to the original, should they keep the essence and take liberties, or something in the
middle? Once we have defined the problem, we can start making hypotheses about what
could solve it, what we could need to accomplish it, what assumptions we need to check,
what correlations to have for mapping inputs to outputs, and begin researching different
possibilities to accomplish that.

Data Collection, Cleaning, and Wrangling

Once we understand the problem and have a hypothesis for how to tackle it, we have to
collect the data to work with. In some cases, collecting data can be as simple as getting
access to a database with all the data tagged in the way we need. In other cases, it is much
more complicated and can often involve a process of ETL (extract, transform, load). In
some other cases, we can realize the organization does not have the data we need, but
they can be accessed from a public source. There are several open data repositories, with

121

Anonymous
Highlight
remove

ETL (extract, transform,
load)

This is a type of data inte-
gration that refers to the

three steps used to blend
data from multiple sour-

ces.

Data scraping
This is a technique in

which a computer pro-
gram extracts data from
human-readable output

coming from another pro-
gram.

Exploratory data
analysis (EDA)

This is an approach to
analyzing data sets to
summarize their main

characteristics, often with
visual methods.

more being added every day. The problems with open data are that, since they are open,
they generally won’t offer much of a competitive advantage and, above all, they rarely
meet our exact needs.

Another possibility is collecting the data ourselves. This is generally more time and
resource intensive, but it allows us to obtain exactly what we need to solve the problem,
or at least the best we can get. Examples include

• collecting movement data from passengers,
• taking photos from the camera we plan to ship with a product,
• equipping sensors on devices to monitor their behavior, or
• getting humans to tag pieces of existing data for supervised learning.

How to properly collect the data we need is both an art and science in itself, often overlap-
ping with experiment planning. Another, often simpler possibility is to do data scraping,
i.e., retrieving data from pages on the web or from sources not aimed at being directly
consumed by computers, and transforming the data into computer-useable formats. It can
involve getting data from websites, PDFs, or scanned documents. Scraping is time inten-
sive, since it requires the creation of specific software for each individual source, and brit-
tle since it is very tightly coupled to the source. Even a small change in the source will
break the process and require it to be adapted. Additionally, scraped data can present
legal problems that need to be evaluated if the data was not originally collected for the
intended purpose (Import.io, 2017). Any sort of data (scraped, collected, or accessed from
a database or datastore) will need cleaning and re-formatting for the intended purpose.
This is another extensive topic, known as data wrangling or data munging. Data wrangling,
or munging, is the process of transforming and mapping data from one data format into
another to make the data more appropriate and valuable for our purpose. It involves
transformations typically applied to distinct entities (fields, rows, columns, data values,
etc.) within a data set, and could include actions such as extractions, parsing, joining,
standardizing, augmenting, cleansing, consolidating, and filtering to create desired out-
puts (Wikipedia, 2020c).

Exploratory data analysis

Once we have access to data, we can start working with them to get an idea of what they
can tell us. This step is generally called exploratory data analysis (EDA), and it refers to
the process of performing initial investigations on data to discover patterns, spot anoma-
lies, test hypothesis, and check assumptions, using summary statistics and graphical rep-
resentations.

Standard tools for EDA help us to summarize the type and number of (distinct) values,
type of data points, and median and mean of the data; create visualizations for an intui-
tive idea of what the data look like; and see what patterns can be extracted. Since humans
are very visual, it is much easier for us to see patterns on an image than in thousands, or
millions, of lines of data. EDA is an exploratory process; a data scientist will explore differ-
ent possibilities, and delve deeper when something looks interesting. It is an intuitive
process that requires experience, so we can only give a simple example of it. We will per-
form a bit of exploration of the iris dataset, a small dataset containing three classes of 50

122

Anonymous
Highlight
-

Anonymous
Highlight
-

Anonymous
Highlight
were

Anonymous
Highlight
Not needed

instances each, where each class refers to a type of iris plant and is often used for demon-
stration purposes (Fisher, 1936). Typical first steps in EDA are checking the look of the data
by inspecting the first few rows, which we do with pandas in Python (Pandas, n.d.). Note
that we downloaded the iris dataset first in CSV format and stored it locally as a file called
iris.data.csv. This is what the data look like in tabular form:

Code
import pandas as pd
iris_df = pd.read_csv('iris.data.csv')
iris_df.head() # first 5 rows

Table 3: First Lines of a Dataset with .head()

Out[15]:

Sepal-
LengthCm SepalWidthCm

Petal-
LengthCm

Petal-
WidthCm Species

0 5.1 3.5 1.4 0.2 Iris-setosa

1 4.9 3.0 1.4 0.2 Iris-setosa

2 4.7 3.2 1.3 0.2 Iris-setosa

3 4.6 3.1 1.5 0.2 Iris-setosa

4 5.0 3.6 1.4 0.2 Iris-setosa

Source: Pedori (2020).

We see the dataset has four numeric values, and one text label called “Species.” We can
compute summary statistics for the numeric values as follows:

123

Feature selection
This consists of selecting
a subset of relevant fea-

tures to be used in the
model.

Dimensionality
reduction

This is the transformation
of data from a high-

dimensional space into a
low-dimensional space

while still keeping some
meaningful properties of

the original data.

Figure 47: Summary Statistics of a Dataset With .describe()

Source: Pedori (2020).

We can confirm we have a total of 150 values and get an idea of the average and distribu-
tion of values.

Experimentation and Feature and Model Selection

Once we have the data loaded in a useable way and we have an idea of what the data can
tell us, we can start experimenting with models. We will test several different models,
starting from simple models like linear or logistic regression, to more complex, like neural
networks and XGBoost, depending on the use case. In the experimentation cycle, we will
start with a few models and initially test them to get an idea of how they perform. Part of
the process is selecting possible features. The data we have can contain meaningless
noise, and some information could be extracted given our knowledge of the target
domain. For example, if our data are about traffic, the day of the week is an important fac-
tor, but if our dataset contains only the day of the month, we will have to calculate the day
and add it to the features. On the other hand, training a model incurs the curse of dimen-
sionality. The more dimensions we have, the harder it is for a model to converge, so we
sometimes want to perform dimensionality reduction. At this point we also usually begin
considering possible models. The main type of machine learning problems are super-
vised, unsupervised, and reinforcement learning.

• Supervised learning maps input data to known output data. Example: categorizing
images as cats and dogs, or predicting the stock market.

124

Anonymous
Highlight
:

Ensemble models
These use multiple mod-
els to obtain better pre-
dictive performance than
could be obtained from
any of the constituent
models alone.
Train, test, and
validation datasets
The test dataset is used
for the initial fitting of the
model, the validation
dataset to evaluate the
performance of the model
at different steps, and the
test dataset is used for a
final unbiased evaluation
of the performance.
Hyperparameter
This is a parameter whose
value is used to control
the learning process.

• Unsupervised learning explores patterns in your data. Example: clustering documents
by topics by looking at similarities in those documents, without specifying the topics
beforehand.

• Reinforcement learning studies how agents interact with their environment by reward-
ing favorable situations and punishing bad ones. Example: learning to play a video or
board game.

Choosing the right machine learning model for our task isn’t easy. There are many
machine learning models, and several Python software packages offer access to some, or
many, of them. We tend to differentiate between traditional machine learning algorithms,
mostly based on statistical methods, and deep learning algorithms, based on neural net-
works. In many cases, we get even better results with ensemble models that aggregate
the results from several models to improve accuracy. It is sometimes the case that a first
layer of machine learning is done by deep neural networks, and their results are then
aggregated by simpler traditional methods. Once we have selected what model to try, we
divide our data into train, test, and validation datasets, often with techniques like k-fold
to maximize the amount of data we can use to train and validate.

Hyperparameter Tuning

Every machine learning model has a set of parameters that are automatically adjusted
during the learning process, and which we don’t manually tweak. However, there are
other, model-specific parameters called hyperparameters that can be chosen by the
users of an algorithm. For example, in the case of deep neural networks you can specify
the depth of a network. The way in which you select your features that will be fed into the
model can also be seen as a hyperparameter of your machine learning experiment. Decid-
ing on which hyperparameters to use is not easy, as the training process usually takes a lot
of time, so you can’t compute all possible combinations. Luckily, there are algorithms and
libraries that help you with hyperparameter tuning. Using such a tool, the result will be
hyperparameters optimized for the current dataset and application.

Training

We can now start training different models to compare their performance. We will usually
train several models on the dataset for different choices of features. If our dataset is very
large and training takes a lot of time, it is often useful to use only a subset of the dataset
initially. Once you’re confident in your choices (preprocessing, model, and feature selec-
tion), you can train your model again on the full data set. Depending on the amount of
data and the use case, this can take quite a while, and lots of resources. To give an extreme
example, GPT-3, by OpenAI, has 175 billion parameters and would require 355 years and
$4,600,000 to train on current hardware (Brown et al., 2020). Our cases will not be as
extreme, but we still have to do a complete training on the models we think are good can-
didates. This of course does not apply for models that can train in less than a few hours. At
the end of the process, we have our trained models, and we can check their performance
using the test dataset.

125

Anonymous
Highlight
Perhaps this information could be updated to reflect the latest GPT version?

Initial Deployment and Integration

Once the model is ready, we need to make it available somehow. The easiest and most
common way is to wrap it in a REST interface and deploy it as a microservice in a con-
tainer. Once this is done, we can do some basic tests of usability, connect it to other serv-
ices, and set it up in a development pipeline to make sure it behaves as expected.

Figure 48: Model Development and Production Lifecycle (1)

Source: Pedori (2020).

Differences to Software Engineering

Let’s compare the traditional software engineering lifecycle to the machine learning lifecy-
cle. In both cases it is necessary to understand the problem to be able to solve it correctly.
However, in the traditional software world, the problem is often better defined, at least at
the level of pure implementation. Engineers use quite common building blocks, and can
iterate and check their assumptions. In traditional software engineering we talk less about
hypotheses and more about requirements. It is easier to implement techniques for
requirements-based testing as the results are less “fuzzy.” The code is supposed to be
deterministic, unlike machine learning models, even if some interactions can add com-
plexity.

126

Anonymous
Highlight
Is this intended?

Software 2.0
This uses machine learn-
ing, specifically neural
networks, to create a fun-
damental shift in how
software is written.
Artifacts
An artifact is the output
created by the training
process.

5.2 Model Production Lifecycle
Once our models are ready for production, the production requirements have many simi-
larities to the production lifecycle of traditional software, as well as some specific differen-
ces. As with all code, it should be integrated in a continuous development and deploy-
ment pipeline, allowing for quick turnarounds and frequent shipping of reliable, secure,
and available software. Using machine learning models to solve problems has been called
Software 2.0 (Karpathy, 2017). The complete ML system contains: the code to create the
model, the trained model itself and other possible artifacts, and the data used to create
the model. This code must be integrated in the pipeline described above. To bring and
keep models in production, we then have to take care of versioning the code and storing
and deploying all of the code. Additionally, we take care of the endpoints using our mod-
els, persist our predictions, log the results, and monitor health, performance, and what
happens when our models are used on new or unseen data.

Figure 49: Model Development and Production Lifecyle (I!)

Source: Pedori (2020).

Models in Production

When models reach production, in addition to all the usual challenges of production soft-
ware, they encounter some specific ones due to the fact that they are based on software.
We can think about some of the services most of us use practically every day.

Online search engines are, at their core, a machine learning system. Given a query, in the
form of a text string, its goal is to return links to the web pages that will most likely match
the intent of the user. The results have to be accurate, fast, and up to date, and the system
needs to be always available. It is constantly updated on new data collected from the web,
and it is adapted to the preferences of the user. Some movie streaming websites contain a
recommendation system that aggregates what other users watched, combined with the
history of a specific user, to try to propose what the user could want to watch next. Its goal
is to keep the user engaged (some could think it performs too well, as many of us can
attest after too many hours of watching a series). It needs to be constantly available, serv-
ing huge amounts of data, and constantly adapting to the changing preferences of the

127

Anonymous
Highlight
Is this intended?

Git
GitHub is a popular plat-
form based on Git, host-

ing many open-source
projects.

Version control system
This keeps track of

changes, including what
was changed when and
by whom, and can com-
pare different versions.

Metadata
This tells us about the

nature of a certain col-
umn (or feature) in our

dataset.

users. Different challenges are encountered by digital financial and payment services.
They need to constantly monitor transactions to flag inappropriate and fraudulent ones,
with very little delay and high accuracy; rejecting good transactions annoys users, while
accepting bad ones is costly. These systems need to have several failsafe mechanisms and
be constantly monitored for performance and delays.

Version Control

Version control is the management of changes to documents, computer programs, and
other collections of information. The reason we need versioning is to track changes, be
able to revert to previous working solutions, and be able to coordinate updates. We are
already familiar with Git for version control, and many tools aimed at the machine learn-
ing process either use it or are based on it. We usually identify the changes via numbers or
letters, called revisions or revision numbers. An initial version of a set of files or code could
be “revision 1.” After a change is made, we will have “revision 2,” and so on. Using ver-
sions, and a version control system, allows us to keep track of changes (specifically what
was changed when and by whom), compare different versions, and synchronize changes
between different parts of an application.

Versioning Code

When considering the code purely as a “programming language,” there are two different
kinds of code in the case of an ML system: implementation code and modeling code. The
implementation code could be glue code, the code used to access APIs, or system integra-
tion code which connects the ML system to the other applications. Modeling code is used
for model development. In some cases, the code can be written in several different lan-
guages. This code needs to be versioned for releases, and the releases tested. Additionally,
code has dependencies that need to be updated, and it will interact with other pieces of
code. So far, this is exactly what happens in any normal software development process,
where the concept of infrastructure as code (IaC) has been developed to solve the problem
of environment drift in the release pipeline. However, as we have noticed, the ML system is
not only the code to generate the model and the code to wrap it and connect it to other
services: It includes the data used to generate the models, and the models themselves,
which all need versioning.

Versioning Data

The data used to train the model can change. The metadata (format, names, order, and
number of columns) can change, values can be dropped or added, precision for some val-
ues can change, or the statistical characteristics compared to the new data can change too
much compared to the data used to originally create the model. To be able to generate the
same model over and over again, a requirement for reliable deployment, we need to make
sure we are using the same data that we used when we shipped. This means versioning
the data. As noted, the data includes both the data and the metadata. The main issue with
the data is size: The data used to train a model can span to a few megabytes, or even sev-
eral petabytes in some cases. Storing a few megabytes in a normal version control system
isn’t a problem; however, storing gigabytes (or more) is. This has given rise to several sys-
tems to store larger files, from the open source add-ons to Git (like Git Large File Storage

128

(LFS) (GitHub, n.d.-c) and Data Version Control (DVC) (DVC, n.d.)), to several closed source
solutions. The two main issues of versioning the data are storage requirements for poten-
tially huge amount of data, and the task of keeping the metadata matched with the
requirements of the model.

Versioning Models

The models, and other artifacts generated during the model development, also need ver-
sioning, so that we can match them with the algorithms used to generate them, the code
that supports them and that uses them, and the data used to train them. The storage
requirements of models are not as problematic as the ones for the data, even if models
can still require hundreds of megabytes, posing a challenge for normal version control sys-
tems. Git has a maximum file size limit of 100mb, but we have already mentioned Git LFS
as a workaround for that (GitHub, n.d.-c).

Reproducible Model Training

It should be possible to rebuild the model on demand starting from a specific version of
the data and the code used to generate the model, using the specific version we desire.
However, since this takes time and resources, we want to store the version of the model
together with the rest. Versioning ensures that we can always reproduce the same results
at different points in time and on different machines, starting from the same version of
data and code.

Deployment

Once developed and trained, the model needs to be deployed for it to be of any use to the
organization. We have two main possibilities.

• Embedded model: The model as an artifact (the actual file) is built and packaged
together with the application using it. From now on, it is considered a part of the appli-
cation resources, the same way a background image for a website would be.

• Model deployed as a service: The model is wrapped in a service that can be deployed
independently of the consuming applications. This allows for decoupling, but can
increase latency, and the applications need to run some sort of remote invocation.

In both cases, the models need to be stored and once built, delivered to the appropriate
infrastructure. Deploying as a service adds some complexity, but we can think of the serv-
ice as an application: In such a case, the model artifact is stored and deployed embedded
with the serving application. The main considerations for deployments are practically
identical to the ones in traditional CI/CD pipelines for software development, including
integration tests and system tests. Still, model deployment can present different complex
scenarios.

129

Anonymous
Highlight
;

Anonymous
Highlight

Anonymous
Highlight

Anonymous
Highlight

A/B test
This test consists of a

randomized experiment
with two variants, A and

B.

Multiple models

We can sometimes have more than one model for the same task, or several models work-
ing together for the same task. We can choose to deploy the models as separate services,
or accessing multiple models with a single API call. The first possibility offers more flexibil-
ity, but the consuming applications then need to be extended, while the second scenario
allows us to change the number and type of models without rewriting the rest of the appli-
cation.

Shadow models

In some critical scenarios, it can be desirable to have several versions of the same model
in production side by side. This allows us to make sure that the new models, that we
expect to perform better than the old ones, actually do. To ascertain it, we gather data on
the shadow model behavior before moving it to active production, a procedure similar to
testing, but on live data: This way, we can make sure the behavior of the new models is as
expected before going live.

Competing models

In a more complex scenario, we can keep multiple versions of the same model in produc-
tion to find out which one is best, like an A/B test. This adds complexity in the form of
infrastructure and routing to make sure that the traffic reaches the right models, and to
make sure we have enough data to make decisions on what model to keep.

Online learning models

The models we discussed so far are developed, trained, and deployed. Online models get
updated constantly and can continuously improve their performance with new data,
learning while in production. This presents extra complexity: the models aren’t static arti-
facts, they won’t yield the same results. We need to make sure the model performance
doesn’t degrade, that the data used for training is acceptable, and we need versioning of
updated models and production data to be able to revert to a version with good perform-
ance in case something goes wrong. It is a quite advanced scenario, rarely used outside of
very specialized applications, usually in very big organizations. To support more complex
deployment scenarios, it is advisable to use elastic infrastructure that can scale on
demand. This involves using cloud providers which will be covered in a later section.

Testing and Quality

In software engineering, testing allows us to increase our confidence that our system
behaves correctly, and allows us to be warned when something breaks. Testing in an ML
environment has a bigger scope than in traditional software engineering, since it covers
data and training, in addition to the integration with other components.

130

Anonymous
Highlight
T

Anonymous
Highlight
and

Anonymous
Highlight
are

• Data: We can add tests to validate input data against the expected schema, or to vali-
date our assumptions about valid values. We want to be sure the data being fed to the
model corresponds to the kind of data the model was trained for. This is even more
important if we expect the model to be constantly updated on new live data.

• Component integration: We want to make sure the different components of a system
work well together, behave as expected, and communicate with each other using the
expected protocols and contracts. We also want to make sure that the behavior of the
components in production is the same as the ones in development, i.e., validating with
the same datasets should get us the same results. This is not as obvious as it seems, and
any mismatch should be investigated.

• Model quality: The performance of an ML model is non-deterministic, but we can collect
and monitor the relevant metrics to evaluate the model’s performance. We will delve
into this more, but in general we want to make sure that the relevant metrics stay within
an acceptable range, above all in case of retraining.

• Bias and fairness: We want to make sure that the model behaves in a way that is aligned
with the goal of the organization. This is out of scope from the present topic, though.

Monitoring and Observability

Once the model is live, we need to understand how it performs in production, and close
the feedback loop to the development process. This is the moment we can gain reliable
data on what we have developed so far. The main tools are the standard tools for produc-
tion software monitoring, with a specific application to the machine learning process. Pro-
duction software uses tools for log aggregation and metric collection, to capture the data
from a live production system: KPI, software reliability, performance, debugging informa-
tion in the case of faults, and other indicators that something unexpected is happening. In
general, we want to be notified when something goes wrong or when something strange
happens to allow us to investigate. In a machine learning system in production, we want
to specifically keep track of

• model inputs. These are the data that is being sent to the models, to allow us to keep
track of the model-serving skew.

• model outputs. Seeing what predictions, recommendations, results are the models giv-
ing to these inputs, to understand how the model is behaving on real data. This can
include the decisions taken based on the outputs, since in some cases we want to
define exceptions where our system will overrule the outputs of the model in some spe-
cific cases.

• model interpretability outputs. These metrics allow further investigation to understand
how the models are making predictions to identify potential overfit or bias not found
during training. As an example, Amazon introduced a machine learning tool to screen
the resumes of applicants, that seemed to work quite well, until they realized it was
strongly biased against women, since in the training dataset, very few women were
hired. Amazon has since stopped using the tool (Dastin, 2018).

• user action and rewards. We want to keep track of what the users do once they receive
the outputs. Do they buy what was presented to them, do they watch the movie, do
they pay on time when given credit? This is very important to understand if we are
actually solving the right problem.

131

Anonymous
Highlight
Was this already defined?

Anonymous
Highlight

Anonymous
Highlight
There are too many different list types in quick succession below. I would go with the colon here to keep it in line with others below.

Humans in the loop
(HITL)

This is a model that
requires human interac-

tion, as opposed to a
closed-loop model that is

without human interac-
tion.

Model drift
This is the degradation of

the performance of the
model due to either

change in the nature of
the current input data or

changes in the training
data.

• model fairness. As noted above, we want to keep track of the behavior of models
regarding race, gender, age, etc. We want to know if the model is behaving in a way that
is not aligned to our values.

• model computational performance. As for all software systems, the reaction time can
be critical. For some user interaction, a result delay of a few seconds is the same as no
result at all. We want to keep track of how long models take to react, the CPU, and
memory load in case we need to scale.

Collecting, monitoring, and observing data is even more important in the case of multiple
models deployed in production. To assess a shadow model, we can perform A/B tests or
run multiple experiments. The collected data is essential to close the data feedback loop:
Using more real-world data or adding humans in the loop (HITL) to analyze the new data
resulting from production usage, we can create new datasets to generate new, and hope-
fully improved, models. It allows us to learn to adapt our models based on their behavior
on real production data, allowing for continuous improvement.

Model Drift

Data can change over time, making the performance of our models degrade if they do not
change with the data. We call this problem model drift (Brownlee, 2019).

We can identify two basic kinds of model drift:

• Concept drift: happens when the statistical properties of the desired output itself
change. As an example, the predicted spending of customers won’t be accurate if there
are promotions not included in the model (Wikipedia, 2020d).

• Data drift: occurs when the statistical properties of the input change, compared to the
data used for training. A simple example with seasons: a model of beverage sales
trained in the summer will not work without changes in the winter.

The change in data can take different forms, and we can conceptually model it as

• gradual change over time. Some trend affects the data, for example people moving to
cities from the countryside.

• recurring or cyclical change. Seasons and days of the week are a typical example, as are
holiday season, end of quarter, etc.

• sudden or abrupt change. Think of the impact of the Covid-19 pandemic on flights and
the economy in general, or of the introduction of the iPhone on the sales of other kind
of smartphones.

To address model drift, we can consider severalaspects (Zliobaite, 2010).

• Future assumption: Assumptions about the future data sources, in what way they can
differ from what we have, and how to both acquire data and integrate it in the system

• Change type: Identifying possible change patterns, what changes we can predict, and
how we plan to adapt to them. Seasonality is the easiest to think about, underlying
trends due to unknown causes the hardest.

132

Anonymous
Highlight

Anonymous
Highlight
remove colon

Anonymous
Highlight

Anonymous
Highlight
Awk.

Seasonality
This is the presence of
variations that occur at
specific regular intervals
less than a year, such as
weekly, monthly, or quar-
terly.

• Learner adaptivity: Choosing how to adapt the models based on the change type and
the future assumption

• Model selection: A criterion to choose a particular parametrization of the selected
learner at different time steps

Possibilities of action and reaction to model drift include

• doing nothing: We assume that the data does not change and keep a static model. At
times, doing nothing performs better than doing something.

• periodically re-training: We can periodically update your static model with more recent
historical data. We can update the model every month with new data, then use the new
model as a static model. In some cases, we can use only a small sample of new data, or
a sliding window.

• weighing data: Some algorithms allow us to weigh the importance of input data, so that
we can give more weight to more recent data.

• detecting and choosing a model: In some cases, it is possible to design systems that
detect changes and choose a specific, different model to make predictions. This can be
appropriate in systems designed to properly react to sudden changes without human
intervention. Consider the case of a trading algorithm that needs to react to a crisis
without being rewritten.

• data preparation: In cases of time series problems, the data are already expected to
change over time, and can be partially prepared to remove the systematic changes over
time, if those changes can be modelled. Technically, systematic change is not really a
model drift, since we can plan for it in advance, but some changes are not systematic, a
challenge in using models in the financial and other industries.

When Things Go Wrong

Now that we have outlined the steps to be considered when bringing a model to produc-
tion and the potential challenges, let’s review the reason behind all of these steps: We are
trying to minimize problems, and make it easy to recover when things go wrong. In pro-
duction, something will always go wrong, sooner or later, and we need to both minimize
the effects and be able to recover. What can happen, and how can the elements outlined
above help? Well, if we stay in production long enough, we will have to retrain the model
because of model drift, new challenges, changing business requirements, new data, or
other unforeseen events. We need versioning for this, and we need to make sure that the
version includes the data used to train the models. Due to outages, or malicious attacks,
part of the infrastructure can get lost, but we still need to be able to regenerate the models
and we need to make sure the retrained model behaves as we expect. To know when to
implement the measures we just learned about, we need monitoring, and also to know
when we need more resources because the performance is too low. After updating a
model, we need to be able to know if the new model behaves as expected (monitoring)
and to be able to quickly roll back to a previous version in case it doesn’t (versioning). In
the case of online learning (a constantly updated and retrained model), we need to make
sure that the performance does not degrade, and we need to be able to roll back to a
known working version in case it happens: again, monitoring, versioning, reproducibility.

133

5.3 MLOps and DataOps
As we have seen in the previous section, putting and keeping a machine learning system,
including the model, in production presents several challenges and is a natural counter-
part in the domain of data science to the DevOps of traditional software development.
DevOps is commonly used in the development and operation of large-scale software sys-
tems, providing benefits such as shorter development cycles, increased speed of deploy-
ment, and dependable releases. The two main concepts used to achieve this are continu-
ous integration (CI) and continuous delivery (CD). A machine learning system is a software
system, meaning we can adapt these techniques using the following criteria.

Team Skills

Data scientists are part of the team and are not always experienced engineers, so their
code often needs some work to reach production quality.

Development

Machine learning is experimental and non-deterministic. It is necessary to experiment
with different features, algorithms, configurations, datasets, and problem definitions to
find out what works as quickly as possible. It is challenging to keep track of what did or
did not work and simultaneously maintaining reproducibility and code reusability.

Testing

As noted above, testing an ML system includes elements not present in other software sys-
tems. In addition to typical unit and integration tests, you need data validation, trained
model quality evaluation, and model validation.

Deployment

Machine learning systems can require deployment in a multi-step pipeline to automati-
cally retrain and deploy models, adding complexity and the necessity to automate steps
that before deployment are manually performed by data scientists.

Production

The performance of machine learning systems can be affected by the quality of coding
and changes in data profiles. Models can decay in more ways than other software systems,
and it is necessary to keep track of this with statistics and monitoring, sending notifica-
tions or automatically rolling back to known working versions.

As such, machine learning and other software systems are similar in the requirements for
continuous integration of source control, unit testing, integration testing, and continuous
delivery of the software module or the package. However, they differ in a few areas. CI is
no longer only about testing and validating code and components, but also testing and
validating data, data schemas, and models. At the same time, CD is no longer about a sin-

134

gle software package or a service, but a system (an ML training pipeline) that should auto-
matically deploy another service (model prediction service). We can also add the property
of continuous training (CT). CT is a new property, unique to ML systems, that’s concerned
with automatically retraining and serving the models (Google, 2020a). These different and
added requirements are leading the creation of two additional practices for data intensive
operations: DataOps and MLOps. DataOps (a compound of “data (analytics)” and “opera-
tions”) is the practice of using automated, process-oriented methodologies in data teams
to improve the quality and reduce the cycle time of data analytics, covering the entire data
lifecycle from data preparation to reporting. Toph Whitmore, principal analyst at Blue Hill
Research, defined it as follows (Vorhies, 2017):

1. Measure progress and performance at every step of the data flow.
2. Define rules about what the data and metadata are.
3. Have humans in the feedback loop to make sure assumptions hold.
4. Automate as many stages as possible.
5. Identify bottlenecks.
6. Include governance compliance in the process, including data control, data owner-

ship, transparency, and tracking.
7. Design for growth and extensibility, accommodating for increasing volume and variety

of data.

MLOps (a compound of “machine learning” and “operations”) is a practice for collabora-
tion and communication between data scientists and operations professionals to help
manage the production machine learning lifecycle described in the previous section, cov-
ering

• deployment and automation,
• reproducibility of models and predictions,
• diagnostics,
• governance and regulatory compliance,
• scalability,
• collaboration,
• business uses, and
• monitoring and management.

Other names and proposed concepts are AIOps, ModelOps, and DLOps, which are respec-
tively responsible for using AI to automate IT operations, automating ML models, and
MLOps specifically for deep learning. They can all be considered subcategories of MLOps.
Given the recent explosion of interest in and usage of machine learning systems, several
tools have been developed to support MLOps, including Airflow, Luigi, Argo, Kubeflow,
MLFlow, Michelangelo, and many others. They partly overlap in features, partly solve dif-
ferent problems in different ways, and partly impose a way of solving problems that can
either match well with the workflow of our organization or present some mismatch. We
will cover in depth MLflow for model tracking, Kubeflow for machine learning pipelines,
and Michelangelo for the complete machine learning end-to-end process. These solutions
integrate into the existing infrastructure of the organization, in some cases with only small
changes and in others, with adaptations to the implicit model of the tools.

135

Airflow
Apache Airflow is an

open-source workflow
management platform.

Model Tracking With MLFlow

MLFlow allows the automation of model development and tracking so that the optimal
model can be selected (MLflow, n.d.). We can log parameters, attributes, and performance
metrics, using them to identify the models that fit particular criteria. Its main feature is
that it enables you to keep track of your ML experiments, amongst others, by logging
parameters, results, models, and data for each trial. MLflow is designed to be agnostic
regarding machine learning libraries, algorithms, deployment tools, or languages. It is
aimed to be easily added to an existing machine learning code, sharing code inside the
organization using any machine learning library, allowing others to run it. While mostly
aimed at the model selection part of the lifecycle, it can support the complete machine
learning lifecycle when used with other tools like Airflow. The design philosophy of
MLflow has a modular and API-based design, with functionality divided into four parts:
tracking, projects, models, and registry. MLflow tracking is a centralized place for obtain-
ing the details of the model, a sort of meta-store. The client applications communicate
with the tracking server via the HTTP protocol, with APIs in Python, REST, R, and Java. The
tracking server captures details for the model and uses backend stores to log

• logging parameters,
• code versions,
• metrics,
• artifacts (model and data files),
• start and end time of the run, and
• tags and notes.

MLflow project

MLflow project is organized and packaged code to support the reproducibility of a model.
It uses a YAML file, named MLProject, that describes the requirements of the machine
learning project.

A simple example of an MLProject

Code
name: sklearn-demo
conda_env: conda.yaml
entry_points:
 model_run:
 parameters:
 max_depth: int
 max_leaf_nodes: {type: int, default: 32}
 model_name: {type: string, default: "tree-classification"}
 run_origin: {type: string, default: "default" }
 command: "python model_run.py -r {max_depth} {max_leaf_nodes} {model_name}"

In this example, we are defining a decision tree by

136

Anaconda
It is a distribution of the
Python and R program-
ming languages for scien-
tific computing.

1. setting the name to sklearn-demo.
2. declaring we’ll use the Anaconda environment conda.yaml.
3. defining some parameters: max_depth, required, the maximum depth of the tree, as

an integer; max_leaf_nodes, an integer with 32 as default value, the maximum num-
ber of leaf nodes of the tree; model_name, a string with the name of the model;
run_origin, where we want to start.

4. the command that will be run, the Python interpreter on the model_run.py file.

MLflow models

MLflow models define a format for packaging machine learning models that can be used
in a variety of downstream tools, like a REST API or Apache Spark. The format allows sav-
ing the model using different “flavors” that correspond to different tools. “Flavors” are a
key concept for MLFlow, a convention to allow deployment tools to understand the mod-
els, making it possible to work with any ML library without having to integrate the tools in
the library itself. They allow us to

• utilize the same memory format for different systems,
• avoid the overhead of cross-system communication (serialization and deserialization),

and
• provide common shareable functionalities.

MLFlow has built-in flavors for many popular machine learning algorithms and libraries,
such as H2O, Keras, MLeap, PyTorch, Scikit-Learn, MLlib, Tensorflow, ONNX (Open Neural
Network Exchange), MXNET gluon, XGBoost, and LightGBM. Additionally, it offers the pos-
sibility to create custom flavors using Python (MLflow, n.d.).

Model registry

The model registry is aimed at solving the problem of machine learning model manage-
ment, allowing management of the full lifecycle of the machine learning model providing,
using the following concepts.

• Model: A model is created from an experiment or run that logged via specific MLflow
logging methods. After being logged, the model can then be registered with the model
registry.

• Registered model: It is then registered in the model registry with a unique name, con-
tainer versions, associated transitional stages, model lineage, and other metadata.

• Model version: Registered models can have one or many versions. When added, a model
starts at version 1, with every new model registered to the same model incrementing
the version number.

• Model stage: Every distinct model version can be assigned to one stage, like staging,
production or archived, or something custom. Models can be transitioned to different
stages.

• Annotations and descriptions: It is possible to annotate the whole model, and each ver-
sion, including the description and any relevant information.

MLFlow can be simply be installed as such:

137

Anonymous
Highlight
follows

Foo
Foobar, foo, bar, and simi-

lar are used as place-
holder names in com-

puter programming.

“Hello, World!”
This is a very simple pro-
gram often used to illus-

trate the basic syntax of a
programming language.

Code
pip install mlflow

A simple pipeline would look like this:

Code
from mlflow import log_metric, log_param, log_artifact

if __name__ == "__main__":
 # Log a parameter (key-value pair)
 log_param("param1", 5)

 # Log a metric
 log_metric("foo", 1)
 log_metric("foo", 2)
 log_metric("foo", 3)

 # Log an artifact (output file)
 with open("output.txt", "w") as f:
 f.write("Hello world!")
 log_artifact("output.txt")

The code above

• logs a parameter param1 with value 5;
• logs metrics called foo with values 1, 2, and 3;
• opens an existing file (an artifact), output.txt, to write to it; and
• logs the artifact for the run with log_artifact. This is what we mostly care about,

keeping track of the changes for every time the job runs.

This is clearly a useless example, hence the “Hello, World!”, to just give an idea of how to
programmatically annotate the steps of the process in a Python script (GitHub, n.d.-b).

Pipeline Management With Kubeflow

Kubeflow was started by Google as an open-source platform for running TensorFlow. It is a
machine learning platform that manages deployments of ML workflows on Kubernetes
and is a scalable and portable solution (Kubeflow. n.d.-a). It is aimed at data scientists
building and experimenting with data pipelines, and for deploying machine learning sys-
tems to different environments in order to carry out testing, development, and produc-
tion-level service. It is a multi-cloud, multi-architecture framework that runs entire ML
pipelines, and offers specific tools for all the steps we covered in the model creation pipe-
line, as well as the deployment pipeline.

138

Anonymous
Highlight
Could be better phrased.

Figure 50: Model Development and Production With Kubeflow

Source: Kubeflow, (n.d.-b).

As you can see from the diagram, Kubeflow integrates in commonly used tools (PyTorch,
scikit-learn, Jupyter Notebooks, TensorBoard, etc.) and adds some components specific to
KubeFlow. One component is the services for spawning and managing Jupyter Notebooks,
interactive data science, and experimenting with ML workflows. It permits the sharing of
notebooks across the organization and the creation of notebooks in pods or containers in
the cluster, instead of locally. Kubeflow integrates admin controls to allow for standard
notebook images and to set up role-based access control (RBAC), as well as secrets and
credentials to manage which teams and individuals can access the notebooks. Kubeflow
Pipelines offers a platform for building, deploying, and managing multi-step ML workflows
based on Docker containers. In Kubeflow, a pipeline is a description of an ML workflow,
including all components and how they combine. It includes the definition of inputs and

139

outputs of each component. Every component of a pipeline is a Docker image with self-
containing code that performs one step of the pipeline. A component can be responsible
for data preprocessing, data transformation, model training, and so on (MLflow, n.d.).

The pipelines are described with Python code. What follows is a toy pipeline for a function
adding two numbers. Please note that the Python SDK for Kubeflow is kfp. We define a
simple function add, we add it to a component, we then create a pipeline called
calc_pipeline (using the @dsl.pipeline decorator), set the arguments we will pass to
the pipeline (hence to the function), and finally create a run for the pipeline with the fol-
lowing code:

Code
kfp.Client().create_run_from_pipeline_func().

Code

import kfp
import kfp.components as comp
import kfp.dsl as dsl
we define a very simple function, adding 2 numbers
def add(a: float, b: float) -> float:
 '''Calculates sum of two arguments'''
 return a + b
add_op = comp.func_to_container_op(add)

@dsl.pipeline(
 name='Calculation pipeline',
 description='A toy pipeline that performs arithmetic calculations.'
)
def calc_pipeline(
 a='a',
 b='7',
):
 result_task = add_op(a, 4) #Returns a dsl.ContainerOp class instance.

#Specify pipeline argument values
arguments = { 'a': '7', 'b': '8'}
#Submit a pipeline run
kfp.Client().create_run_from_pipeline_func(calc_pipeline, arguments=arguments)

Kubeflow offers several components that you can use to build your ML training, hyper-
parameter tuning, and serving workloads across multiple platforms. As we can see, it
offers solutions to many of the issues we discussed in the previous section.

140

Technical debt
It reflects the implied cost
of additional rework
caused by choosing an
easy and limited solution
as opposed to a more sus-
tainable approach that
would take longer to
implement.
Spark
Apache Spark is an open-
source distributed gen-
eral-purpose cluster-com-
puting framework.

Hadoop
Apache Hadoop is a col-
lection of open-source
software utilities that
facilitates using a network
of many computers to
solve problems, involving
massive amounts of data
and computation.

Service-level agreement
(SLA)
This is a commitment
between a service pro-
vider and a client.

End-to-End Machine Learning Lifecycle With Michelangelo

Michelangelo (Hermann & Del Balso, 2017) was built in 2015 by Uber to tackle what they
named “hidden technical debt in machine learning systems” (Sculley et al., 2015). It was
built to solve the problem of custom one-off systems tightly coupled with machine learn-
ing models, an approach that did not scale well, as we have previously seen. Michelangelo
relies on transactional and logged data and supports offline (batch) and online (stream-
ing) predictions. We use offline predictions to run the model on a whole dataset at once,
getting all results in batch when done, and we use online predictions to respond to quer-
ies as they come. Offline predictions are based on containerized Spark jobs for batch pre-
dictions, while online predictions are served in a prediction cluster, allowing for a load bal-
ancer to distribute the load to several machines. Load balancing is the process of
distributing a set of tasks over a set of resources, with the aim of making their overall proc-
essing more efficient. Every experiment stores metadata relevant to model management
(e.g., run-time statistics of the trainer, model configuration, lineage, distribution and rela-
tive importance of features, model evaluation metrics, standard evaluation charts, learned
parameter values, and summary statistics). With Michelangelo it is possible to deploy mul-
tiple models in the same serving container, allowing to transition from old to new model
versions and side-by-side A/B testing of models. Michelangelo supports both online and
offline models. The data preparation pipelines push data into the feature store tables and
training data repositories. They use Apache Kafka (an open-source stream processing soft-
ware) and connect to a Hadoop File System data lake. The data preparation uses either
Apache Spark or SQL. The model training happens in batch, using one of the many sup-
ported models: decision trees, linear and logistic models, unsupervised models (k-means),
time series models, and deep neural networks. A model configuration specifies the model
type, hyperparameters, and data source reference, and computes resource requirements.
It is then run on a cluster. After the model is trained, performance metrics are saved into a
model evaluation report and the original configuration, the learned parameters, and the
evaluation report are saved back to our model repository for analysis and deployment.
Hyperparameter search is supported for all model types. For every trained model, a ver-
sioned object is stored in the model repository in Cassandra (a distributed, wide column
store, NoSQL database management system) for evaluation. Reports can be visualized in a
dashboard, with standard accuracy metrics and feature reports. Models can then be
deployed in several ways: offline; in a container then run in a Spark job to generate batch
predictions; as an online prediction service cluster; or embedded as a library embedded in
another service. Once models are deployed and loaded by the serving container, they are
used to make predictions based on feature data loaded from a data pipeline or directly
from a client service. Multiple models can be deployed to a given container, and monitor-
ing of metrics and performance is logged. The platform uses Spark’s machine learning
pipeline serialization with an additional interface for online serving that adds a single-
example (online) scoring method, lightweight and capable of handling service-level
agreements (SLA), necessary in critical cases such as for fraud detection and prevention.

Concluding Remarks

We have covered the challenges of bringing machine learning to production from the
point of view of MLOps. The tools we have explored have different strengths and different
approaches. MLFlow, for example, is tightly integrated with Spark (it is developed by the

141

Anonymous
Highlight
This is another monstrous and barely readable paragraph.

Anonymous
Highlight
Awk.

Anonymous
Highlight
Commas can be used here.

Anonymous
Highlight

Anonymous
Highlight

Cloud infrastructure
Cloud computing is the

on-demand availability of
computer system resour-
ces, especially data stor-

age and computing
power, without direct

active management by
the user.

Remote procedure call
(RPC)

This is when a computer
program causes a proce-

dure to execute in a differ-
ent computer in a net-

work.

same company). It is mainly a model management library, with limited options for deploy-
ment, which needs to happen using Airflow. Kubeflow is a more integrated solution, build
on Kubernetes and integrating several open-source building blocks. It requires separate
configuration of many of the elements needed. Lastly, Michelangelo is an example of an
end-to-end solution, integrating most of the components with structured access to the
ones that are not integrated. As such, it imposes some choices on us, removing some flexi-
bility and adding complexity to the system. Each of these systems requires the organiza-
tion to set up the necessary resources, both hardware and software, and requires an expe-
rienced support team.

5.4 Cloud-Based Solutions
We have already discussed some of the challenges posed by bringing machine learning to
production, the emergence of MLOps, and tools that solve some, most, or all of these chal-
lenges. These tools assume the use of an already existing infrastructure in the organiza-
tion, and in some cases permit the use of hybrid solutions, accessing cloud infrastructure
for some tasks. Building and maintaining an own infrastructure presents some problems
and costs. Among others, it requires in-house knowledge, utilizes internal resources, and
requires maintenance of the infrastructure on the hardware and software levels, as well as
scalability. Some organizations do not want to incur those costs, and the emergence of
machine leaning cloud services addresses this need. Using machine learning cloud serv-
ices, it is possible to build, monitor, and deploy working models, and use them for predic-
tions and insight, all with a relatively small team.

Machine Learning as a Service (MLaaS)

Machine learning as a service (MLaaS) is an umbrella definition of various cloud-based
platforms that cover most infrastructure issues we considered for MLOps: data pre-proc-
essing, model training, model evaluation, deployment, and monitoring. The output can
then be bridged to the internal IT infrastructure through REST APIs and other forms of
internal communication like RPC and other protocols. In 2020, the leading cloud MLaaS
providers are Amazon Machine Learning services, Azure Machine Learning, Google Cloud
AI, and IBM Watson (IBM, n.d.-c), all aiming to allow for faster model training and deploy-
ment (AltexSoft, 2019).

Amazon Machine Learning services are available on two levels: predictive analytics with
Amazon ML, and the SageMaker tool mostly aimed at data scientists (Amazon, n.d.-b).
Amazon Machine Learning for predictive analytics is a mostly automated solution, aimed
at deadline-sensitive operations. It can load data from multiple sources, for example,
Amazon RDS, Amazon Redshift, and CSV files. Data preprocessing operations are per-
formed automatically. Amazon ML tries to identify which fields are categorical and which
are numerical, and it doesn’t ask a user to choose the methods of further data preprocess-
ing such as dimensionality reduction. However, the prediction capacities of Amazon ML
are limited to binary classification, multiclass classification, and regression. It does not
support unsupervised learning methods, and a user must select a target variable to label it
in a training set. Since it is aimed at non-data scientists, a user isn’t required to know any

142

Anonymous
Highlight
This should be updated to 2024 (or "the mid-2020s"). And changes should also be reflected here if things have moved on.

Data lake
A data lake is a system or
repository of data stored
in its natural (raw) format,
usually object blobs or
files.

machine learning methods; instead, they are chosen automatically from the provided
data. It provides a fully automated, yet limited, solution. For more advanced usage, more
flexibility and complexity, there’s SageMaker. Amazon SageMaker is a machine learning
environment aimed at providing tools for quick model building and deployment, integrat-
ing Jupyter for data exploration and analysis without server management hassle (Ama-
zon, n.d.-b).

Machine Learning With Amazon SageMaker

To explore how cloud solutions can provide all the tools to build an end-to-end pipeline
for machine learning, we will now concentrate on Amazon SageMaker. The offerings from
other providers tend to be similar in their capabilities, with differences in the specifics.
Amazon SageMaker is a fully managed service that provides all the tools to build, train,
and deploy machine learning models. SageMaker allows us to execute all the steps of the
machine learning pipeline (Amazon, n.d.-c). Let’s quickly review them: understanding the
problem, collecting and preparing the data, performing exploratory data analysis, experi-
menting with features and models, training and selecting the final model, keep versions,
deploy the model, monitor performance, and integrate with other systems.

Prerequisites

Based on Amazon AWS, using SageMaker requires having or setting up an AWS account,
then creating an IAM administrator user and group (Amazon, n.d.-d). AWS is very powerful
and not always intuitive, and it can take some time to find out how to do things properly.
Bigger organizations will have dedicated processes and teams for this. But if we are setting
it up ourselves, we need to make sure to have an IAM user with administrative rights. Man-
aging AWS services is a topic that could fill whole books, so it is highly recommended to
get at least a bit familiar with it (Amazon, n.d.-e).

Problem understanding

At the moment, no automated system can really help us with problem understanding.
That would be an application for a quite advanced AI. SageMaker offers some automatic
tools, like SageMaker Autopilot, but they are limited to few domains: autopilot, regression,
binary classification, and multiclass classification.

Data collection, cleaning and wrangling

A step we have not considered so far, which is essential when dealing with data in an
organization, is where the data come from and where they are stored. As a fully managed
solution based on the many services present in AWS, SageMaker offers or integrates func-
tionalities for data storage: this step involves setting up a data lake. Generally, we can
access data from several sources, but in the AWS environment, most of the time the raw
data will be initially stored to an S3 bucket. Amazon Simple Storage Service (S3) provides
object storage through a web service interface. We can also save preprocessing code on S3
and point SageMaker to it. In SageMaker, the data is preprocessed in a Jupyter notebook,
in a notebook instance. We use notebooks to fetch the dataset, explore it, and prepare it
for model training. To start, we need to launch a notebook instance in SageMaker.

143

Jupyter
This is an open-source

web application that
allows you to create and

share documents that
contain live code, equa-

tions, visualizations, and
narrative text.

Figure 51: SageMaker Administrative Console

Source: Pedori (2020).

We can then select name, type of instance, and other settings. In AWS, it is always neces-
sary to create an IAM role. In our specific case, it is necessary to grant some level of access
to the notebook.

Figure 52: Granting Access to IAM Roles

Source: Pedori (2020).

Once set up, we can access the notebook instance and open Jupyter. From the notebook,
we can perform all the data preprocessing steps, using AWS Glue for executing a SparkML
feature pre-processing and post-processing job. AWS Glue is a serverless data preparation
service enabling us to extract, clean, enrich, normalize, and load data, and allowing for
ETL operations in a graphical interface. SparkML is a high-level API that helps users create
and tune practical machine learning pipelines from the Apache Spark project. We can set
up several steps for data preprocessing, programmatically or manually. The standard
Python client for AWS services is called boto (boto, 2020). The following code, job creation
omitted, shows how to run a job using AWS from a notebook:

144

Code
import time
import boto3

glue = boto3.client('glue')

Run the job in AWS Glue
job_name='preprocessing-cars'
response = glue.start_job_run(JobName=job_name)
job_run_id = response['JobRunId']
print('{}\n'.format(response))

Check on the job status every 30 seconds
job_run_status = glue.get_job_run(JobName=job_name,RunId=job_run_id)
['JobRun']['JobRunState']
while job_run_status not in ('FAILED', 'SUCCEEDED', 'STOPPED'):
 job_run_status = glue.get_job_run(JobName=job_name,RunId=job_run_id)
 ['JobRun']['JobRunState']
 print (job_run_status)
 time.sleep(30)

Exploratory data analysis (EDA)

Using a normal Jupyter notebook, the EDA steps are the same as would be performed on a
local machine or on-premise resources, using the same Python code. This step does not
need any adaptation; the only difference is that the notebook you work with is hosted on
AWS by SageMaker.

Experimentation, training, and versioning

Where the tools provided by SageMaker begin to shine is when we start experimenting
with models, features, and hyperparameters. We run everything as a training job, either
from the UI or from the Python SDK. SageMaker includes several built-in models that we
can apply to a problem (Amazon, n.d.-f). They cover supervised learning, unsupervised
learning, textual analysis, and image processing. The complete list of currently available
algorithms in 2020 is BlazingText algorithm, DeepAR forecasting algorithm, factorization
machine, image classification algorithm, IP insights, k-means algorithm, k-nearest neigh-
bors (k-NN) algorithm, latent dirichlet allocation (LDA) algorithm, linear learner, neural
topic model (NTM) algorithm, Object2Vec algorithm, object detection algorithm, principal
component analysis, random cut forest (RCF), semantic segmentation algorithm, Sage-
Maker sequence to sequence (seq2seq), and XGBoost (eXtreme gradient boosting). It is
also possible to use your own algorithm, packaging it in a Docker container, by either
extending a prebuilt Docker image or adapting/creating your own. For feature selection
and hyperparameter tuning, SageMaker is well integrated with SparkML, using it for most
tasks. One of the most important contributions of SageMaker is “Experiments,” letting you
organize, track, compare, and evaluate your machine learning experiments. SageMaker
experiments introduce the concept of trial and experiment. A trial is a collection of train-
ing steps involved in a single training job, including preprocessing, training, and evalua-

145

tion, enriched with metadata. An experiment is a collection of trials, a group of related
training jobs. In SageMaker experiments we create experiments, populate them with trials,
and run analytics across trials and experiments. It is available both from the UI and
through a Python SDK containing logging and analytics APIs. Additionally, experiments
are integrated in Sagemaker autopilot, so that when we perform an autopilot job, an
experiment is automatically created with trials for the different combinations of compo-
nents, hyperparameters, and artifacts. Both in training jobs and autopilot, we just have to
add an extra parameter to the Python code in the SDK to define the experiment. The end
result is a collection of experiments, updated in real time, that we can compare and evalu-
ate, visually and programmatically, to choose the best model so far. Please note that while
experiments permit us to keep a version of our models, we need to take care of data and
code versioning ourselves. SageMaker notebooks support Git, and we can develop or inte-
grate data versioning systems in our workflow. We can repeat the same process for the
final training; since we can use the Python SDK, we can automate it programmatically.
SageMaker supports additional model validation, with offline or live data, for A/B testing.

Deployment

Once the selected model is trained, we can deploy it on SageMaker in two different ways.
We can set up a persistent endpoint to get one prediction at a time, using SageMaker host-
ing services, or we can get predictions for an entire dataset, using SageMaker batch trans-
form. To use the hosting services, we need to create an HTTPS endpoint and pass it to
SageMaker. This will allow it to be used for predictions. Note that these endpoints scoped
on individual AWS accounts are not public. It is possible to use AWS Lambda and the Ama-
zon API Gateway to allow public access, if desired (Amazon, n.d.-g).

Monitoring

Where the AWS environment really shines is in deployment, production, and monitoring
support. SageMaker offers a model monitor tool to check the quality of the models in real
time, while the Amazon CloudWatch model monitor enables us to set up an automated
alert triggering system when there are deviations in the model quality, such as data drift
and anomalies. Amazon CloudWatch Logs collect log files and notify when the quality of
the model hits certain specified thresholds. AWS CloudTrail stores the log files to an Ama-
zon S3 bucket (Amazon, n.d.-h). It is possible to detect model deviations and other poten-
tial problems early and proactively, countering the problem of model drift. SageMaker
also offers functionalities to test multiple models or model versions behind the same end-
point using production variants. It is possible to test them by specifying traffic distribu-
tion, invoking specific variants, and running A/B tests. We can then evaluate the model
performance, and increase the traffic reaching the best model. If necessary, we can also
trigger retraining of the models, using the same capabilities for the initial training and
selection.

Concluding Remarks

As we have seen in the example of Amazon SageMaker, cloud providers of machine learn-
ing as a service allow us to perform the complete model development and production
pipeline, in some cases as we would use them on premises resources, in other cases, sup-

146

Vendor lock-in
It makes a customer
dependent on a vendor
for products and services,
unable to use another
vendor without substan-
tial switching costs.

porting us with several solved problems. Cloud providers are aimed at scalable produc-
tion environments, so they offer out-of-the-box functionality like monitoring and scalabil-
ity. They allow us to start small, with a small team and few resources, and grow as needed.
There are tradeoffs: Even if the cloud providers are often based on open-source software
(Jupyter, SparkML, Python, PyTorch, Docker, Kubernetes, Git, to name a few), the provid-
ers either modify it, or package it quite tightly with closed-source solutions. While this is
not a problem per se, it impacts portability. As an example (in case we want to move our
infrastructure away from SageMaker), if we have used built-in algorithms to train a model
(the most straightforward solution), we would then have to reimplement the solution, or
rewrite some of the code. Cloud providers also present an additional cost. The manage-
ment of the infrastructure comes with an additional price tag, for example, a SageMaker
EC2 instance on AWS is 40% more expensive than a bare bone AWS EC2 instance. This
tradeoff is generally worth it in small organizations that do not already have IT support
and the necessary resources, but if the latter are present, the cost would just be overhead.
Finally, our solutions end up being developed with a specific architecture in mind, adapt-
ing to the assumptions and tools of the provider. This can be for the best, in case we are
not experienced enough, since the architectures of the cloud providers are based on best
practices, but it comes at the cost of flexibility. This all contributes to vendor lock-in. Our
machine learning solution ends up linked to a provider, with potentially high costs to
change (which increase as the complexity of our machine learning system increases). In
general, as an organization grows, it gets to a point where it makes sense to take care of its
own infrastructure. Doing this too early imposes unnecessary costs, while doing it too late
presents both costs and risks. To summarize, the benefits of machine learning cloud solu-
tions are

• scalable production environments,
• integrated monitoring,
• implicit best practices, and
• that it solves several of the problems for us.

Alternately, the issues of machine learning cloud solutions can be

• vendor lock-in and portability issues,
• increased costs, and
• closed source solution.

SUMMARY
This unit introduced the characteristics of the development process of a
machine learning model: exploratory, iterative, and non-deterministic.
We explored some challenges related to data quality and exploration,
and to the development, testing, and deployment of machine learning
models. We then approached the many challenges in bringing and keep-
ing a machine learning system in production—some similar to the ones
encountered in the traditional software development process, some
slightly different, and some intrinsic to the non-deterministic and data-

147

driven nature of machine learning. We explored how versioning and test-
ing is different in the field of machine learning, and how to adapt to
potential issues. This unit introduced the concept of MLOps, the practice
of collaboration between data scientists and other members of the pro-
duction team, and several modern tools offering solutions to some of
the challenges. We finally reviewed machine learning cloud solutions
offering end-to-end approaches, as well as their strengths and their
weaknesses.

148

	Table of Contents
	Introduction
	Signposts Throughout the Course Book
	Learning Objectives

	Agile Project Management
	Traditional Project Management
	Agile Project Management
	Kanban
	Scrum
	Other Modern Methodologies
	Moving to Agile

	DevOps
	Traditional Lifecycle Management
	Bringing Development and Operations Together
	Impact on Team and Development Structure
	Building a DevOps Infrastructure
	Building Scalable Environments

	Software Development
	Testing Paradigms and Monitoring
	Approaches to Development and Testing
	Continuous Integration and Continuous Delivery
	Version Control
	Development Tools

	API
	Interacting with Software and Services
	API Design Principles
	Building a Python Library

	From Model to Production
	Model Development Lifecycle
	Model Production Lifecycle
	MLOps and DataOps
	Cloud-Based Solutions

	Backmatter
	List of References
	List of Tables and Figures

