
THEORETICAL COMPUTER
SCIENCE FOR IT SECURITY

LIBFEXDLMCSETCSITS01_E

LEARNING OBJECTIVES
On completion of this unit, you will be able to

• understand limitations of data structures, algorithms and computation in general
• use formal languages and automata to solve security problems
• use machine learning techniques in data analysis
• use logic and knowledge representation
• understand the principles of program analysis and verification

7

Complete rewrite. There should be half a page or a full page about the ENTIRE BOOK.

UNIT 1
ALGORITHMS AND DATA STRUCTURES

STUDY GOALS

On completion of this unit, you will be able to ...

– understand different data structures
– know what are algorithms and general types of them
– understand constitutive elements of graphs and trees
– understand algorithms for sorting and searching
– understand how to analyze algorithms

1. ALGORITHMS AND DATA STRUCTURES

Introduction/Case study
Computer science deals with the processing of information with the help of a digital com-
puter. A digital computer differs from an analog computer by the encoding of the proc-
essed information using discrete states. In contrast, an analog computer represents the
information to be processed by analog quantities (e.g. by voltages). Another key feature of
digital computers is their programmability. In addition to the incoming information, a digi-
tal computer also requires a program that determines how the information is processed.
In summary, their exists a relationship between the processed information and the pro-
gram.

Figure 1.1 shows an abstract model of a computer as Input-Process-Output (IPO). The data
is flowing from left to right. The input data is available in a chosen format (data structure).
This data is processed, dependent to a program that is written in a specific programming
language (e.g. Java).

That programming language is defined by a formal language. After finishing the process
step, the output is produced.

Figure 1: Figure 1.1: IPO Model

The topics of computer science are oriented to basic structures of an information-process-
ing system. Technical computer science deals with the functional structure of computers
(hardware). On the other hand, practical computer science concentrates on the develop-
ment of programs (software).

Therefore, general methods for program development are considered (software engineer-
ing), as well as special solutions for standard problems of information processing. Funda-
mental questions of computer science such as the classification of tasks with respect to
their degree of difficulty and the limits of information processing are dealt within the con-
text of theoretical computer science.

Outline

10

Wrong heading. Too long. One page max.

down style

vague. considered for what?

Cut

Section 1.1 defines terms like algorithm and introduces different data structures.

In section 1.2 are introduced directed and undirected graphs with their structures of repre-
sentation. Additionally, specific graphs called trees are introduced. Section 1.3 describes
different algorithms for sorting e.g. numbers and searching patterns in texts. Section 1.4
explains, how algorithms can be analyzed concerning time and space complexity and
defines different notations for that.

1.1 Algorithms, Programming Languages
and Data Structures
Algorithms and data structures are related in computer science. Data structures are man-
aging data using basic data types. Whereas, algorithms define the operations for process-
ing the managed data. For e.g. solving a problem both are “working” together. The ques-
tions are which data structures exist and how to decide which are appropriate for a given
problem? Afterwards, similar questions have to be answered for algorithm(s). The ques-
tions are which algorithms exist and which one is used for what data structure resp. (class
of) problem? An additional question is: which algorithm or data structure is the “best”?
Before answering that, criteria like time and space are required. Therefore, this question is
skipped for now (cf. section 3). Lets take a look at the term algorithm.

DEFINITION: ALGORITHM
An algorithm is a step-by-step procedure for solving a problem respectively a
class of problems in a finite number of steps. It takes a finite amount of initial
input(s), processes them unambiguously at each operation, before returning its
outputs within a finite amount of time. (Webster, 2021) and (Vault, 2021)

Some parts of this definition reveal that an algorithm is a kind of general recipe, consists
of steps/operations, is executed step-by-step, is solving a problem or class of problems
and returns within finite amount of time.

Thus, an algorithm defines an accurate and finite processing specification and realizes an
input to output relationship. Additionally, correctness and efficiency are important prop-
erties for algorithms. Another definition of the term algorithm is:

11

missing comma from heading

Bad APA7

Poor language quality...

?

Complete sentence before a colon.

Extremely poor academic language quality at the start of the book...

we don't reference sections like this

iterative
Iterative describes a
repeated process to

approximating solution.

DEFINITION: ALGORITHM
In mathematics and computer science, an algorithm is a finite sequence of well-
defined, computer-implementable instructions, typically to solve a class of
problems or to perform a computation. Algorithms are always unambiguous
and are used as specifications for performing calculations, data processing,
automated reasoning, and other tasks. (Wikipedia, 2021)

This definition explicitly adds tasks. Thus, an algorithm can also be referenced to a spe-
cific task like calculating the greatest common divisor of two natural numbers by eucli-
dean algorithm. Algorithm 1 shows an divisionbased implementation expressed in pseu-
docode. The input parameters for the algorithm in function euclid(a, b) are two natural
numbers a and b. In line 1, the remainder of the division a and b is calculated and assigned
to r. If r = 0 the loop (lines 2 to 6) is skipped and b is returned as greatest common divisor.
Otherwise, the loop is processed until this condition is fulfilled (line 2). In lines 3 and 4, b is
assigned to a and r to b. In line 5, the remainder of a divided by b is calculated and then
assigned to r. Finally, the algorithm returns the calculated greatest common divisor b (line
7).

Algorithm 1 Euclidean Algorithm - Iterative euclid(a, b)
Input: a, b {Two natural numbers a and b}
1: r ← a mod b
2: while r /= 0 do
3: a ← b
4: b ← r
5: r ← a mod b
6: end while
7: return b
Output: {Greatest common divisor of a and b}

An example for calculating the greatest common divisor is given by the function call
euclid(42,56). The iterative implementation is illustrated in table 1.1. The step-by-step
calculation terminates with greatest common divisor 14 for natural numbers 42 and 56 (cf.
table 1.1, bold number 14).

Table 1: Table 1.1: Iterative Calculation with Euclidean Algorithm

iteration r a b

0 42 (42 mod 56) 42 56

1 14 (56 mod 42) 56 42

2 0 (42 mod 14) 42 14

The algorithm 1 is an iterative implementation of euclidean algorithm.

12

Not an academic source! Do not cite Wikipedia!

recursive
Recursive means that a
function is called within
their own definition.

Whereas, algorithm 2 calculates the greatest common divisor in a recursive way. Lines 1
and 2 declare the “stop criterion” for the recursive function calls of euclid(a, b). Line 4
defines the recursive call of euclid(a, b) with parameters b as a and amodbas b. Iterative
and recursive algorithms are equivalent. This means here that both can be used to solve
the problem “greatest common divisor”. It is mentionable that recursion offers the possi-
bility to describe an infinite number of computations by a finite recursive algorithm with-
out using loops.

Algorithm 2 Euclidean Algorithm - Recursive euclid(a, b)
Input: a, b {Two natural numbers a and b}
1: if b = 0 then
2: return a
3: else
4: return euclid(b, a mod b)
5: end if
Output: {Greatest common divisor of a and b}

The mentioned example is also used for the recursive calculation of the greatest common
divisor of 42 and 56. This is depicted in table 1.2.

Table 2: Table 1.2: Recursive Calculation with Euclidean Algorithm

euclid(42,56) = euclid(56,42)

= euclid(42,14)

= euclid(14,0)

= 14

After the illustration by example, main questions for a given algorithm to solve a single
problem or class or problems are

• What is the intention of the algorithm? specification
• Does the algorithm really do what it is expected to do? verification
• How about the efficiency of the algorithm? algorithm analysis

The specification can be taken into account for formalizing the problem that the algorithm
solves. Therefore, specifications can be informal as text or formal (e.g. using mathemat-
ics). Formal specification are appropriate if correctness proofs are executed to verify the
satisfaction of the algorithm regarding the specification. Thus, evidence is provided that
the algorithm do what he is intended to do. The last question refers to the consumption of
time (how long will the algorithm run) and space (how much memory is used), the algo-
rithm requires. This depends also on the selected data structure the algorithm is proc-
essed on.

As mentioned, algorithms operate on data. This data can be structured or unstructured.
The focus is here on structured data. Therefore, data structures are required that are
appropriate for a given problem. A definition of the term data structure is

13

"he"

Arrays
An Array is an indexed col-

lection of arbitrary data.

linked list
Linked lists are a linear

sequence of nodes with a
reference from one node

to the next node.

DEFINITION: DATA STRUCTURE
A data structure is a systematic way of organizing and accessing data. (cf. (Good-
rich, Tamassia, & Goldwasser, 2014, p. 150))

In the beginning, fundamental data structures involving array and linked list are descri-
bed. Arrays sequentially store a collection of items. An array a e.g. of numbers is descri-
bed as i: 0 1 2 3 4a = 3, 5, 2, 17, 1
In general, arrays store values at different positions and an array has the size of n repre-
senting the number of stored entries. These entries can be accessed via the index i withi = 0, . . . ,n − 1. Thus, a value at index i is accessed by a i . In the example, the array has
five items, consequently, the size of the array is n = 5. Consequently, the range of the
index i = 0, . . . , 4 and a 0 = 3, a 1 = 5, . . . , a 4 = 1. Arrays store arbitrary values
like integers, characters, objects, and so on.

Additionally, two-dimensional arrays are introduced. These arrays are also called matri-
ces. Before an array, a is like a vector, whereas arrays a are like matrices. a i j depicts
the value at point of intersection of row index i and column index j. The size of the two-
dimensional array is calculated by multiplying the number of rows and columns. The fol-
lowing example shows a 3 × 5 array with natural numbers.i\j 0 1 2 3 40 3 5 2 17 11 9 45 276 7 42 7 15 65 11 8
The two-dimensional array stores the dimensions 3 · 5 = 15 entries/values.

Thus, values are a 0 0 = 3, a 0 1 = 5, a 0 2 = 2, . . . , a 2 4 = 8. For example,
the value in 3rd row (i = 2) and 2nd column (j = 1) is a 2 1 = 15.

Arrays are the right choice for storing data in a certain order. The drawbacks of arrays are
that the size of the array has to be defined at creation, and deleting or inserting data at
interior positions can be time-consuming because of shift operations. Therefore, the
linked list will be introduced.

The linked list is a collection of nodes storing data and simultaneously a reference to the
next node. The reference can also be “null” if it exists no successor node. Figure 1.2 illus-
trates a linked list using natural numbers.

14

Queues
Queues are data struc-
tures processing in FIFO
principle.

Figure 2: Figure 1.2: Linked List with Natural Numbers

The linked list starts with a reference to the head of the list, here the node with value 3.
This node has the value 3 and a reference to the next node with value 5. This node has a
reference to node with value 17 and this to the node with value 8. This node is the last
node of the linked list and so called tail. The tail refers to “null” meaning that no further
nodes are present.

As in arrays, linked lists can also store arbitrary data in the nodes. The benefit in linked list
is that the size has not be defined at creation. The list can grow or shrink at runtime. If a
new entry is added, this entry can be attached as node at the beginning or at the end. The
insertion at the start of the list means becoming the new head, whereas at the end means
becoming the new tail. In case of deletion, the references have to be changed. If the head
is deleted, the next node becomes the head. If the tail is deleted, the node before has to
reference to “null”. For deleting an intermediate node, the example in figure 1.2 is used.
Lets assume the node with value 5 is deleted. Thus, the reference from node with 5 to
node with 17 has to be shifted to node with 3. Ending in referring from node with 3 to node
with 17. Afterwards, the node with value 5 can be deleted.

More advanced data structures are queue, stack and heap. Graphs and trees are excluded
but are described in section 1.2. Queues can be used to implement memory structures
that aim to store data in a certain order until it is processed further. The stored data is read
out again in the same order in which it was stored. This is called FIFO (First-In-First-Out).

Figure 1.3 shows a queue with natural numbers.

Figure 3: Figure 1.3: Queue with Natural Numbers

New entries can be enqueued by inserting entries (from logically left). Following FIFO, the
first enqueued entry will be dequeued next (from logically right). In the example, a new
entry can be enqueued before the value 3.

15

stack
A stack is a linear list

implementing the LIFO
principle.

heap
A heap is an ordered

binary tree structure.

If an algorithm wants to processes the next element of a queue, the 76 is dequeued. Thus,
a queue is appropriate e.g. for a web server responding to requests. The requests will be
enqueued and one after another processed by dequeue the queue.

Figure 4: Figure 1.4: Representation of a Stack

Another data structure is a stack. On a stack, data is stored by simply stacking on top of
one another. This concept is used e.g. in microprocessors and determines the processing
sequence of instructions fed to the processor. Data is stored and read out again according
to the LIFO principle (Last-In-First-Out). This concept of data storage is frequently used in
automata theory. Another special feature of the stack is that it is also used in most micro-
processors with its special memory form, since this enables information to be managed
close to the hardware.

Figure 1.4 depicts a stack to explain the principle of operation. At this example, on the
stack are stored natural numbers. A new entry can be inserted via push to the top of the
stack, whereas pop releases the topmost entry (here 17) from the stack. Reading the entry
44 means that every single entry on the stack has to be released (pop) before.

Finally, the data structure heap is introduced. A heap is a data structure that usually
resembles a binary tree. Binary means that each node has not more than two successors.
Data elements can be placed in a hierarchical structure and read out accordingly. Basi-
cally, the heap follows two properties: the heap-order and the shape of the heap (binary
tree) itself, cf. (Goodrich et al., 2014, p. 370). The heap-order defines that “in a heap, for
every position p other than the root, the key stored at p is greater or equal to the key
stored at p’s parent” (Goodrich et al., 2014, p. 370). This is true for min-heaps. In max-
heaps the keys are ordered the other way around. Thus, in max-heaps the root has the
maximal key value. Figure 1.5 shows an example of a min-heap as binary tree.

16

programming languages
Programming languages
are based on their formal
language.

Figure 5: Figure 1.5: Binary Heap with key, value (min-heap)

The example, shows in each node a tuple (key, value) with the key as integer and a char-
acter representing the value (data). Further deep dive concerning the structure of trees is
given in section 1.2.

The section concludes with an overview regarding programming languages. Program-
ming languages differ between imperative and declarative paradigms. Imperative pro-
gramming use instructions that change the program/data. In contrast, declarative pro-
gramming describes what the program should achieve without instructions how to do
that. The focus in theoretical computer science is not on different programming languages
like Java, Python and so on. It focuses on formal languages to define the syntax and
semantics for specific programming languages. Therefore, it is not dependent to the men-
tioned paradigms.

1.2 Graphs and Trees
The description of real world problems or scenarios as graph gives the opportunity to deal
with many different challenges. Before some scenarios are described, the basic notations
are introduced. In general, graphs differ between directed and undirected graphs. A
directed graph is a tuple G = V , R,α, ω with

• V is an not empty set of vertices resp. nodes.
• R is a set of relations resp. directed edges with R ⊆ V × V .
• V ∩ R = ∅
• α:R V and ω:R V (α r : head (vertex), ω r : tail (vertex))
• g+ v = r ∈ R:α r = v is the number of outgoing directed edges of vertex v
• g− v = r ∈ R:ω r = v is the number of incoming directed edges of vertex v

17

Clunky. Cut this.

subgraph
A subgraph is a partial

graph of a graph.

incidence matrix
An incidence matrix rep-

resents a graph with verti-
ces as rows and edges as

columns.

Additionally, two vertices v,u are adjacent if a directed edge r ∈ R exists so that α r = u
and ω r = v or α r = v and ω r = u. A directed edge can also be written as tupler = u, v meaning that head is u and tail is v. Furthermore, a subgraph is defined asGs = V s, Rs, αs,ωs of graph G = V , R, α,ω if V s ⊆ V and Rs ⊆ R.

Figure 6: Figure 1.6: Directed Graph

Figure 1.6 shows a directed graph with vertices V = v1, v2, . . . , v6 and directed edgesR = r1, r2, . . . , r5 . The directed edge e.g. r3 has α r3 = v3 and ω r3 = v1. An example
of a subgraph is Gs = V s,Rs,αs, ωs with V s = v1, v2, v4 and Rs = r1, r5 . Note:
Based on the definition of a graph, even a single vertex without any directed edges, such
as v6, is also a subgraph.

For representing and storing graphs, suitable data structures are the incidence and the
adjacency matrix or adjacency list. Thereon, algorithms process for different tasks. The
incidence matrix I for fig. 1.6 has dimension V × R (here 6 × 5) consisting ofvi\rj r1 r2 r3 r4 r5v1 1 0 −1 0 1v2 −1 1 0 0 0v3 0 −1 1 1 0v4 0 0 0 0 −1v5 0 0 0 −1 0v6 0 0 0 0 0
The incidence matrix I contains an 1 at each intercept point of vi and rj if α rj = vi, an−1 if ω rj = vi and otherwise 0. Graphs with loops (α r = ω r) are not considered for
simplification. In a directed graph, the sum of the values in a specific column has to be 0.
This means that each directed edge has a head and tail referring vertices. As mentioned,

18

check for this and correct throughout the book

adjacency matrix
An adjacency matrix is a
symmetric matrix with
vertices as rows and col-
umns.

adjacency list
An adjacency list is a com-
bination of an array and
linked lists.

the size of an incidence matrix depends on the number of vertices (rows) and directed
edges (columns) V × R . If the graph is dense (many directed edges) this structure
grows for fixed number of vertices.

Whereas, the adjacency matrix A for a graph (cf. fig. 1.6) has dimension V × V (here6 × 6) consisting of vi\vj v1 v2 v3 v4 v5 v6v1 0 1 0 1 0 0v2 0 0 1 0 0 0v3 1 0 0 0 1 0v4 0 0 0 0 0 0v5 0 0 0 0 0 0v6 0 0 0 0 0 0
The adjacency matrix A contains at each intercept point aij the number of directed edges
with aij = r ∈ R:α r = vi ∧ ω r = vj . In other words, an entry aij in the matrix
shows the number of directed edges originating in vertex vi and ending in vertex vj. For
example, the entry 1 intercepting row v3 and column v1 represents the directed edger3 = v3, v1 in figure 1.6. As mentioned, the size of an adjacency matrix is V × V .
Thus, the matrix is independent of the number of directed edges. The adjacency matrix
does not grow in case of a dense graph, i.e. a graph containing many edges compared to
the number of vertices.

Another representation of a graph is an adjacency list. An adjacency list is composed of
an array adj vi of size V containing one entry for each vertex vi and a linked list for each
entry. The overall number of entries in the linked lists is R . The array entries are referen-
ces (pointers) to the corresponding linked list. Figure 1.7 illustrates the example graph for
fig. 1.6. In this example, the linked list for vertex v1 has two entries v2, v4 representing both
directly reachable vertices. Thus, only entries are stored in the linked list of vertex v if this
vertex has outgoing edges g− v > 0.

For example, the array elements for v4, v5, v6 have no linked list and thus waste no space.

19

undirected graphs
Undirected graphs consist

of vertices and edges but
edges have no head and

tail.

Figure 7: Figure 1.7: Adjacency List for Directed Graph

In summary, the data structures representing graphs are incidence and adjacency matrix
as well as adjacency lists. Table 1.3 summarizes the required space for the structures.
Notations for Θ and O will be introduced in section 3.

Table 3: Table 1.3: Summary of Representation Structures for Graphs

Structure Space (v,w) ∈ R?

Incidence Matrix Θ(∣V ∣ ⋅ ∣R∣) O(∣R∣)
Adjacency Matrix Θ(∣V ∣2) O(1)

Adjacency List Θ(∣V ∣ + ∣R∣) O(g+(v))

This table helps for finding the appropriate representation structure. The required space is
only one criterion. Further criteria have to be considered like the task (i.a. path finding, are
two vertices connected?) has to be considered.

After introducing directed graphs, undirected graphs are described. An undirected graph
is a tuple G = V ,E, γ withγ:E X:X ⊆ V with 1 ≤ X ≤ 2 .
Thus, γ e ∈ E gives the end vertices of edge e ∈ E. Additionally, undirected graphs have
no head and tail. The example of the directed graph is changed to an undirected graph.
This undirected graph is depicted in figure 1.8. In undirected graphs, following edges can
be processed in both directions. In directed graphs, the direction is restricted from head to
tail.

20

This is important for example at evaluation paths, if a vertex is reachable from another
one.

Figure 8: Figure 1.8: Undirected Graph

The structures representing graphs are shown to compare directed with undirected
graphs. The incidence matrix for undirected graph of figure 1.8 is described in the follow-
ing matrix. The size of the matrix is identical to directed graphs. The difference is that the
incoming edges (−1) for directed graphs are changed to 1. As mentioned, the direction for
edges in undirected graphs is not given.vi\ej e1 e2 e3 e4 e5v1 1 0 1 0 1v2 1 1 0 0 0v3 0 1 1 1 0v4 0 0 0 0 1v5 0 0 0 1 0v6 0 0 0 0 0
The adjacency matrix for undirected graphs using the example of figure 1.8 is shown
below. The matrix for undirected graphs is symmetric to the diagonal line from top left to
bottom right. Thus, for different tasks, only the upper or lower triangle has to be proc-
essed. The size of the matrix is also identical to directed graphs.

21

vi\vj v1 v2 v3 v4 v5 v6v1 0 1 1 1 0 0v2 1 0 1 0 0 0v3 1 1 0 0 1 0v4 1 0 0 0 0 0v5 0 0 1 0 0 0v6 0 0 0 0 0 0
Taking a look at the adjacency list adj vi , the size of the list grows for undirected graphs in
comparison to directed graphs. The adjacency list for the graph (cf. fig. 1.8) is depicted in
figure 1.9.

Figure 9: Figure 1.9: Adjacency List for Undirected Graph

Note that each edge e with γ e = v, w and v ≠ w is represented twice, once forw ∈ adj v and once for v ∈ adj w . For example, lets take a look at the edge e2 connecting
vertices v2, v3. This edge is located at adj v2 with entry v3in the corresponding linked list
as well as at adj v3 with entry v2 in the corresponding linked list. Thus, the needed space
for storing undirected graphs in an adjacency list is double compared to directed graphs.

The summary depicted in table 1.3 is also true for undirected graphs. The number of edges
is then E instead of R and g+ v has to be interpreted as g+ v = g− v . Thus, differing
between outgoing and incoming is not needed. The space in the adjacency list changes
from Θ V + R for directed graphs to Θ V + 2 E for undirected graphs.

22

weighted graph
A weighted graph has
numbers or text assigned
to the edges.

tree
A tree is a graph with spe-
cific properties.

Additionally, we define weights of edges using the mappings w:E ℝ for undirected
graphs, and w:R ℝ for directed graphs. The weight of an edge may represent informa-
tion such as bandwidth, distance, and so on. It is also possible to change the mapping to
represent text instead of numbers. For example, the text represents used protocols or
ports. This kind of graphs are called weighted graph.

Furthermore, a tree T is defined as a directed graph with properties

• the graph has one vertex v with g− v = 0 (root vertex)
• all vertices u, except root vertex, have g− u = 1
• the graph has no cycles (or loops)

The tree is a binary tree if each vertex v has g+ v ≤ 2. In case of an undirected graph, the
graph is a tree if exactly one path exists from each vertex v to each other vertex u. Trees of
undirected graphs have no defined root.

Figure 10: Figure 1.10: Trees of Directed and Undirected Graphs

Figure 1.10 depicts trees of directed and undirected graphs. At both graphs the light grey
edges (r3, e3) are not included. They are only visible to see the changes in the graphs
depicted in figures 1.6 and 1.8. On the left side is a tree of a directed graph. The defined
properties of trees in directed graphs are fulfilled by the root v1 with no incoming edges,
all other vertices u have one outgoing edge g− u = 1 and the graph has no cycles. Hint:
The tree is a binary tree because each vertex has less or equal two outgoing edges. On the
right side a tree of a undirected graph is illustrated. All paths are distinct from each vertex
to each other vertex.

23

A well-known example using graphs is Seven Bridges of Königsberg which originates from
Euler 1736. The river Pregel is crossed by seven bridges, and the question was whether it is
possible to arrange a walk so that each bridge is used exactly once (cf. figure 1.11). Of
course, one wants to be back at the starting point at the end.

Figure 11: Figure 1.11: Seven Bridges of Königsberg based on (Merian-Erben, 2019)

This problem can be modelled as a graph with parts (north, south, east and island) divided
by the river as vertices and the bridges as undirected edges (cf. figure 1.12). The edges are
undirected because it is not important in which direction bridges are passed. It can be pro-
ven that such an euler’s circle is not possible.

24

must cite primary source

Figure 12: Figure 1.12: Seven Bridges of Königsberg as Graph

Beside this many use cases of graph theory are in the field of IT security.

For example, an attacker wants to find out highly used systems in a company.

Thus, tools using graphs illustrate systems with vertices and these systems at the same
network are interconnected by edges. After analyzing the network traffic, attackers can
find the most frequently requested systems. If their goal is to affect the availability of such
systems whole business processes are interrupted.

Additionally, applications like BloodHound are used to visualize environments with Active
Directory involved. The collected data about the network is visualized by a graph data-
base. The application helps to identify attack paths regarding the Active Directory. This
includes access control lists, users, groups, trust relationships and unique AD objects (Pen-
TestPartners, 2021). Figure 1.13 visualizes collected network traffic and results in two pos-
sible paths to privilege escalation (red arrows).

25

Include references to the literature and EXAMPLES when making such cases.

Figure 13: Figure 1.13: Visualization with Bloodhound (Roberts, 2018)

Graphs are also used to display the distribution of malware (e.g. wormable ransomware).
This can be used for simulating different attacks in penetration tests. Results can be that
vulnerabilities can be closed by patches or the network has to be segmented. By the way,
if not the whole network is affected the graph is a subgraph of the network. Directed
graphs are used for example to visualize systems and network protocols. The graph has
protocols as “weights” (labels) on directed edges and vertices for systems.

Firewall rules restrict network traffic in protocol and direction. Thus, directed edges show
the traffic incoming and outgoing. Graph algorithms find anomalies if a new system is
attached, unknown protocols is used, two systems use new protocols and so on. A new
system in the network could be an attacker. A new protocol is an anomaly if for example
traffic is sent encrypted from a system to the internet.

The examples show that graphs are a powerful approach to simulate attacks from a pene-
tration test perspective as well as from an attacker perspective.

Let’s continue with the mentioned example of wormable malware. For example, one sys-
tem has not the current security patches installed. A successful attack of that system with
a wormable malware can result in many affected systems. A penetration test but also a
real attack results in enormous impact. The problem can be mapped to finding a spanning
tree with all infected systems. The root is the first infected system and afterwards other
systems are infected in the kill chain.

1.3 Sorting and Searching
In practice, it is necessary to sort numerical or alphanumerical elements.

26

Source information is not properly formatted for the tables/graphics.

sorting algorithms
A sorting algorithm orders
unsorted elements in
ascending or descending
order.

Sorting can be in ascending or descending order. For this purpose, some algorithms have
been developed which can perform this task efficiently. The following sorting algorithms
are selected examples with their possible implementation in pseudocode.

The first sorting algorithm is the naive selection sort algorithm. The algorithm iterates
over the unsorted array a and has the sorted array as output.

The selection sort is defined in algorithm 3.

Algorithm 3 Selection Sort
Input: Array a {Unsorted array of integers}
1: n ← sizeof(a)
2: for (i ← 0; i < n; i ← i + 1) do
3: minPos ← i
4: for (j ← i + 1; j < n; j ← j + 1) do
5: if a[j] < a[minPos] then
6: minPos ← j
7: end if
8: end for
9: swap(a[i], a[minPos])
10: end for
Output: Sorted Array a

The time complexity of the selection sort algorithm for worst-case, bestcase and average
performance is given by O n2 . An algorithm, which is used for the determination of a
minimum of n elements, must execute at least n − 1 comparisons in each case. Thus, this
algorithm is straight forward to implement, but it is inefficient compared to other sorting
algorithms.

Another sorting algorithm is sorting by insertion. Here, n elements to be sorted are consid-
ered in sequence and inserted into the respective already sorted subsequence (initially
empty) at the correct position. The insertion sort is defined in algorithm 4.

Algorithm 4 Insertion Sort
Input: Array a {Unsorted array of integers}
1: n ← sizeof(a)
2: for (i ← 1; i < n; i ← i + 1) do
3: for (j ← i; j > 0 ∧ a[j − 1] > a[j]; j ← j − 1) do
4: swap(a[j], a[j − 1])
5: end for
6: end for
Output: Sorted Array a

The insertion sort algorithm is similar to the selection sort algorithm. The time complexity
for insertion sort is O n2 in average and worst-case. In best-case the algorithm requiresO n comparisons. Thus, in best-case the number of comparisons grows linear instead of
growing polynomial.

27

divide and conquer
algorithm

A divide and conquer
algorithm recursively

breaks down a problem
into sub-problems until

these can be solved
directly.

Next sorting method is Bubble Sort. It is based on the idea of restricting swaps to only
adjacent elements during sorting. Bubble sort is defined in algorithm 5.

Algorithm 5 Bubble Sort
Input: Array a {Unsorted array with integers}
1: n ← sizeof(a)
2: repeat
3: swapped ← false
4: for (i ← 1; i < n; i ← i + 1) do
5: if a[i − 1] > a[i] then
6: swap(a[i − 1], a[i])
7: swapped ← true
8: end if
9: end for
10: until NOT swapped
Output: Sorted Array a

Bubble sort algorithm has time complexity in best-case with O n comparisons.

Similar to the insertion sort algorithm the worst-case and average is O n2 .

Quick sort is an divide and conquer algorithm that is recursively implemented. Quick
sort is defined in algorithm 6.

Algorithm 6 Quick Sort
Input: Unsorted array a, low (l) and high (h) indices referring to a
1: algorithm quicksort (a, l, h)
2: if l < h then
3: p ←partition(a, l, h)
4: quicksort(a, l, p − 1)
5: quicksort(a, p + 1, h)
6: end if
1: algorithm partition (a, l, h)
2: pivot ← a[h]
3: i ← l
4: for (j ← l; j ≤ h; j ← j + 1) do
5: if a[j] < pivot then
6: swap(a[i], a[j])
7: i ← i + 1
8: end if
9: end for
10: swap(a[i], a[h])
11: return i
Output: Sorted Array a

28

searching algorithms
Search algorithms find
elements in data struc-
tures.

The algorithm has lower time complexity because of the “smaller” inner loop. In worst-
case the time complexity is O n2 but for best-case and average case the time complexity
is O n · log n .

After introducing sorting algorithms different searching algorithms are described and
their time complexity is mentioned.

One way to perform a search, which also does not require any deeper knowledge or pre-
requisites regarding the quantity to be searched, is the sequential or linear search. In this
case, the available data is run through systematically from the beginning to the end and
the values are compared in each case with the value to be found. Algorithm 7 defines the
linear search.

Algorithm 7 Linear Search
Input: Search element s, Unsorted/sorted Array a
1: n ← sizeof(a)
2: for (i ← 0; i < n; i ← i + 1) do
3: if a[i] = s then
4: return i
5: end if
6: end for
7: return −1
Output: Index i of searched element s in array a or −1 if not in array

The linear search has time complexity of O n in worst-case, O n2 in average and O 1 in
best-case.

In contrast to the linear search, which works for any unsorted arrays, the binary search
requires a sorted array as starting point. It is based on a divide and conquer approach,
where the list to be searched is first split into two parts and then only the relevant part is
searched further. Algorithm 8 defines the binary search in pseudocode to search an ele-
ment s in array a with values sorted in ascending order.

Algorithm 8 Binary Search
Input: Search element s, ascending sorted Array a
1: n ← sizeof(a), left ← 0, right ← n − 1
2: while (left ≤ right) do
3: mid ← left + ((right − left)/2)
4: if a[mid] = s then
5: return mid
6: else
7: if a[mid] > s then
8: right ← mid − 1
9: else
10: left ← mid + 1
11: end if
12: end if

29

13: end while
14: return −1
Output: Index mid of searched element s in array a or −1 if not in array

The binary search has time complexity in best-case O 1 , and in worst-case and average
case O log2 n .

Beside search algorithms for numbers also string matching algorithms are present. String
matching generally tries to find a so-called “pattern” in a string or text. It extends the
search for a number or a letter in a character string to the search for text segments. For this
purpose, three well-known algorithms are briefly described.

The sequential string matching finds the occurrence of a pattern in the text by means of
the naive procedure. First the pattern is put on, beginning with the first character of the
text, before character by character from left to right a comparison takes place. In order to
resolve a correspondence between pattern and text. This is done sequentially for each
substring of length of the pattern until the pattern is found in the text or the end of the text
is reached. If no match results, this is referred to as a "mismatch".

The sequential search is described in algorithm 9.

Algorithm 9 Sequential String Matching
Input: Pattern p with characters p1, ..., pm, text t with t1, ..., tn
1: for (i ← 1; i ≤ n −m+ 1; i ← i + 1) do
2: found ← true
3: for (j ← 1; j ≤ m; j ← j + 1) do
4: if ti+j−1 ≠ pj then
5: found ← false
6: end if
7: end for
8: if found then
9: return start index i to end index i +m− 1
10: end if
11: end for
12: return −1
Output: Start and end indices of pattern in text or −1 if not in text

The sequential string matching algorithm shows that the pattern p must be appliedn − m + 1 -times to the original text t and is passed through completely in each case.
This leads accordingly to n − m + 1 · m comparisons.

Furthermore, the naive procedure is memoryless. This means that if necessary the same
text passage is compared several times, since the procedure does not remember which
characters of the text have already matched the pattern to be compared. The time com-
plexity of the algorithm is O n − m + 1 · m .

30

While the naive string matching procedure was still memoryless, this limitation is
improved by the Knuth-Morris-Pratt algorithm. Here, we first assume that a mismatch
between pattern and text occurs at j-th position.

In this case, previously considered characters j − 1 are matching. This knowledge repre-
sent a shift of the pattern not only one position to the right (as before in the naive
method), but as far as possible. The maximum possible shift is determined by taking
advantage of which characters have previously shown a match before the first mismatch
occurred. Algorithm 10 describes the Knuth-Morris-Pratt string matching algorithm.

The sequence of the Knuth-Morris-Pratt algorithm can be stated as follows:

1. Determination of an “end piece” with length l from the “initial piece” of the pattern
with length j − 1. The end piece is thereby also an initial piece of the pattern. Next
considered position next j is position l + 1.
Comparison with i-th character of the text.

2. If no mismatch occurs, the pattern is shifted one position to the right and positioni + 1 is compared with next j + 1 . In general, the function of next j can be descri-
bed as next j = 1 + length of the longest end piece of the first j − 1 characters, which
is also an initial piece of the pattern.

3. If a mismatch occurs, the determination of the length l′ of the longest end piece of the
initial piece with length next j − 1 (also initial piece of the pattern) and comparison
of i-th character of the text with l′ + 1 = next next j . If a mismatch occurs again,
this step is iteratively executed until a match is found again.

The Knuth-Morris-Pratt algorithm consists of two steps, the prefix analysis resulting in
maximal shift positions for the pattern (cf. next j) and the search itself (cf. algorithm 10).
The prefix analysis has the time complexity O m whereas the search has O n . The over-
all time complexity is so O m + n .

Algorithm 10 Knuth-Morris-Pratt Algorithm
Input: Pattern p with characters p1, ..., pm, text t with t1, ..., tn
1: i ← 1, j ← 1
2: repeat
3: if ti = pj OR j = 0 then
4: i ← i + 1
5: j ← j + 1
6: else
7: j ← next[j]
8: end if
9: until j > m OR i > n
10: if j > m then
11: return i −m
12: else
13: return −1
14: end if
Output: Index i −m of searched pattern in text or −1 if not in text

31

The Boyer-Moore algorithm no longer compares a reference text with an existing pattern
from left to right, but now from right to left. In this method, the character comparison
takes place starting with the last character of the pattern. If a mismatch occurs here, the
pattern is shifted to the right by as many characters as necessary until a match can be
found.

Algorithm 11 describes the method for Boyer-Moore.

Algorithm 11 Boyer-Moore Algorithm
Input: Pattern p with characters p1, ..., pm, text t with t1, ..., tn
1: i ← m− 1, j ← m− 1
2: repeat
3: if ti = pj then
4: if j = 0 then
5: return i
6: else
7: i ← i − 1
8: j ← j − 1
9: end if
10: else
11: i ← i +m−Min(j, 1 + last[[ti]])
12: j ← m− 1
13: end if
14: until i > n − 1
15: return −1
Output: Index i of searched pattern in text or −1 if not in text

The Boyer-Moore algorithm works most efficiently when it finds a character in the text that
does not occur in the search pattern. So the “bad character rule” kicks in. This is most
likely with a relatively small pattern and a large alphabet, which makes it particularly suit-
able for such a case. In this case, the algorithm operates with an average efficiency (time
complexity) of O nm . If the algorithm searches the first occurrence of the pattern in the
text the worst-case is O n + m . If all matches have to be found the worstcase is O n · m .
The preparation for Boyer-Moore is O m to calculate the shifting for a given mismatch
character.

1.4 Algorithm Analysis
Algorithm analysis deals with the correctness and efficiency of algorithms.

The correctness will be explained in another section. Thus, the question arises: what is
efficiency with regard to algorithms? Efficiency has two main aspects, the demand for
computing time and for storage space. In general, efficiency means the rate of growth of
for example the aspect computing time with increasing amount of input elements. This is
called time complexity. For example, in unit 1.3 the selection sort algorithm (cf. algorithm

32

Throughout the book, find a way to incorporate citations from 2020+ to direct students to where they can learn more.

3) requires n2 steps for n input elements. This leads to the general question: How to deter-
mine the number of steps? or How to estimate the time (complexity)? In this section, the
focus is on time complexity whereas space complexity is similar. A naive method for ana-
lyzing the required time of an algorithm is the use of experimental studies. A program will
be measured from start to termination. This elapsed time reflects the algorithm efficiency.
For the analysis, different input sizes (n) are used for the same data structure to get a
trend curve after a statistical analysis. The experiments should be independent and based
on randomly chosen inputs. Afterwards, the measured data points with the input size n
(abscissa) and the required run-time (ordinate) can be visualized in a plot (cf. (Goodrich et
al., 2014, p. 151)). The naive method (“measuring”) will vary from computer to computer.
The CPU of a computer is shared across different processes on that computer. Thus, the
analysis is dependent to other processes and the result of the experiment can vary
“immense” (cf. figure 1.14).

Figure 14: Figure 1.14: Visualization of a plot for two experiments (Goodrich et al., 2014,
p. 153)

The results from experimental studies are helpful to optimize productionquality code but
there are limitations to their use for algorithm analysis according to (Goodrich et al., 2014,
p. 153):

• Experiments of two algorithms are not directly comparable if not measured in the same
soft- and hardware.

• Experiments are limited to the set of test inputs. Thus, trend curve and other important
information for inputs not tested are not available.

• Experiments can only be performed on fully implemented algorithms.
They have to be analyzed in run-time which is not possible if not implemented.

The goal for an independent way of analyzing algorithms has to fulfill the following prop-
erties (cf. (Goodrich et al., 2014, p. 154)):

33

Primitive operations
Primitive operations are
instructions with a con-

stant run-time.

1. Evaluation of the efficiency of any two algorithms independent of soft- and hardware.
2. The analysis can be done in a high-level description of the algorithm.

The concrete implementation is not required.
3. Includes every possible input for the algorithm.

For this approach of analyzing algorithms, a couple of regulations have to be introduced.
Primitive operations are for example assigning a value to a variable, following an object
reference, an arithmetic operation, comparing two numbers, accessing an element in an
array, calling a method and return from a method (cf. (Goodrich et al., 2014, p. 154)). For
comparing algorithm run-times (time complexity), a function f n is introduced.

This function reflects the number of operations that are required for input size n.

An algorithm analysis applied to data structures and algorithms can result in different out-
puts for input size n. The constant function f n = c is independent of the input size n. It
will always be equal to the value c(e.g. c = 3, c = 42 or c = 47). The most fundamental
constant function is g n = 1, so that any constant function can be written asf n = c · g n . The constant function is used for the number of steps needed for perform-
ing a primitive operation. The logarithm function f n = log n in most cases in computer
science has base of 2 (i.a. binary trees, binary values). Another function is the linear func-
tion f n = n representing e.g. a single primitive operation for each of n elements. Then · log n function grows faster than the linear function but not so fast as the quadratic
function f n = n2. Two nested loops are an example for the quadratic function withn · n = n2 operations in the algorithm. The cubic function f n = n3 is present for exam-
ple using three nested loops. The class of functions for linear, quadratic and cubic func-
tions is the polynomial function. Polynomial functionsf n = a0 + a1n + a2n2 + a3n3 + . . . + aknk consist of coefficients a0, a1, . . . ak and
with ak ≠ 0 the degree of the polynomial is k. The exponential function f n = bn withb > 0 grows faster than aforementioned functions. The factorial function f n = n! grows
very fast and is the worst run-time until now.

In general, the functions f n are ascending ordered by their growth rate cc < log n < n < n · log n < n2 < n3 < . . . < bn < n!. The figure 1.15 shows different
functions for rate of growth in conjunction with the O-notation (e.g. O n).

34

Figure 15: Figure 1.15: Rate of Growth with data input n (Fufaev, 2020)

In algorithm analysis, the run-time of an algorithm grows proportionally to n is often ade-
quate to know (cf. (Goodrich et al., 2014, p. 164)).

Therefore, the asymptotic analysis is the right choice. The number of primitive operations
are represented by a constant factor in that analysis.

This leads to the O-notation for algorithm analysis that is not dependent to soft- and hard-
ware.

Let f n and g n be functions that map positive integers to positive real numbers. We
define f n = O g n if there exists a real constant c > 0 and integer constant n0 ≥ 1
such that f n ≤ c · g n , n ≥ n0
This definition is depicted in figure 1.16. With growing input size starting at n0, the func-
tion c · g n is above f n and therefore acts as an upper boundary for f n . The O-nota-
tion defines in the asymptotic sense for n ∞ that f n is less than or equal to another
function g n times a constant c when n ≥ n0. It is from a mathematical perspective incor-
rect but in computer science it is f n = O g n . The statement f n ∈ O g n implies
that f n denotes to a whole collection of functions g n .

35

Figure 16: Figure 1.16: Function f n is O g n since f n ≤ c · g n when n ≥ n0
(Goodrich et al., 2014, p. 164)

Let us take a look at an example: 32n + 2 ∈ O n ? The statement is true.

We can calculate that by using the definition for the O-notation:32n + 2 ≤? c1n + c2 with c1 ≥ 32, c2 ≥ 2
Another example is 3n ∈ 2\O n ?3n ≤? 2c1n + c2eln 3 · n ≤? eln 2 · c1n + c2ln 3 · n ≤ ln 2 · c1n + c2 with c1 ≥ ln 3ln 2
Hint: If an algorithm consists of different elements, the “most substantial” element is deci-
sive. For example 2n + 6n6 + log n ∈ O 2n because the most substantial respectively
fastest growing function is 2n (cf. figure 1.15).

The algorithm analysis can be performed by using the O-notation. The algorithm 12 is
used to explain the calculation for the time complexity.

Algorithm 12 Example Algorithm
1: for i = 0; i < 100; i ← i + 1 do
2: Primitive Operation
3: end for
4: for i = 0; i < n; i ← i + 1 do

36

5: Primitive Operation
6: end for
7: for i = 0; i < n; i ← 2i do
8: Primitive Operation
9: end for
10: for i = 0; i < n; i ← i + 1 do
11: for j = 0; j < n; j ← j + 1 do
12: Primitive Operation
13: end for
14: end for

The lines 1 to 3 represent a loop over a primitive operation O 1 that is executed 100
times. Thus, from line 1 to 3 the time complexity is exactly 100 that means O 1 . The loop
from lines 4 to 6 is executed n times, consequently O n . The loop from lines 7 to 9 is exe-
cuted log2 n -times because i growth exponential 1, 2, 4, 8, 16, 32, . . . 2n until the con-
dition i < n is violated. Thus, the loop is O log n (the base 2 is not important for O). The
lines 10 to 14 describe two nested loops. The outer loop is executed n-times O n and
the inner loop is also executed n-times O n . Thus, the nested loops together are O n2 .
Nested loops have to be multiplied for calculating the time complexity and successive
loops have to be added. Thus, the whole algorithm has exactly the time complexity of100 + n + log2 n + n2 that results in O n2 because of the polynomial function.

Beside the O-notation exists also the Ω- and Θ-notation. As mentioned before, O is refer-
ring to the upper boundary for time complexity of an algorithm. The Ω is the lower boun-
dary for time complexity of an algorithm.

This means that f n ∈ Ω g n when c · g n ≤ f n . The Θ-notation can be used if you
want to describe the exact boundary. This means that f n ∈ Θ g n whenf n ∈ O g n ∧ f n ∈ Ω g n . In most of the cases, the O-notation is used because it
expresses that the time complexity of an algorithm is not worse than denoted.

SUMMARY
In theoretical computer science, the important term algorithm is defined
and paradigms like iterative and recursive are described.

Furthermore the intention and efficiency is mentioned. Algorithms proc-
ess on data structures. Thus, data structures like arrays, linked lists,
queues, stacks and heaps are defined.

Furthermore, structures like directed and undirected graphs and special
graphs, trees, are described. Therefore, different representation formats
like incidence and adjacency matrices and the adjacency list is descri-
bed and evaluated.

37

Sorting and searching algorithms for numbers and texts are shown in
pseudocode and their efficiency is mentioned to compare and discuss
them.

Algorithm analysis introduces two possibilities to analyse the perform-
ance in time and space of algorithms. Measuring the elapsed execution
time of an algorithm is dependent to soft- and hardware whereas the
analysis using e.g. the O-notation is independent and an important for
computer science.

38

UNIT 2
FORMAL LANGUAGES AND AUTOMATA
THEORY

STUDY GOALS

On completion of this unit, you will be able to ...

– understand differences between formal languages
– understand the interdependence between formal languages and automata
– know constitutive elements of formal languages
– understand difference between syntax and semantics

alphabet
An alphabet is a finite set

of symbols.

formal language
A formal language con-

sists of words that are
build using the alphabet.

2. FORMAL LANGUAGES AND AUTOMATA
THEORY

Introduction/Case study
Formal languages in conjunction with automata are the basis for computer systems. A
computer system can process data and information based on formal languages. Automata
are mathematical representations of computers to i.a. indicate if a formal language
expression (e.g. computer program) is syntactically correct or not. Thus, an automaton
that is suitable for a formal language has the possibility to decide if a word or “longer text”
is part of a formal language or not. An human can easily decide if the addition of two num-
bers is syntactically correct. 3+4 is syntactically correct whereas 3+cat is not. We will learn
how a computer or more precisely formal languages and automata can be used for that.
Outline
Section 2.1 introduces the concept of languages and grammars to generate language
expressions. Additionally, the Chomsky hierarchy to classify formal grammars are intro-
duced. In section 2.2 are introduced regular languages and related finite state machines.
Section 2.3 describes context-free languages and pushdown automata. Section 2.4
explains context-sensitive languages and turing machines.

2.1 Languages and Grammars
In general, formal languages are used to analyse, classify and construct words based on an
alphabet Σ. The alphabet is the set of symbols that can be used for a word ω. In conclu-
sion, a word is defined as ω ∈ Σ* with meta-symbol ∗ means 0 to many symbols can be
used. The set Σ* is called Kleene closure and summarizes all finite sequences of symbols
including the empty word ε. Thus, each subset L ⊆ Σ* is a formal language using alpha-
bet Σ.

The following language expressions are constructed by expanding the example for addi-
tion with the alphabet Σ = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, + , = .

1. 3+4=7
2. 3+4=10
3. 4+t=7
4. 4+3+3=2
5. 7=3=4

The listed examples (1., 2., 4., 5.) are part of the formal language because the used sym-
bols are included in the alphabet. Thus, only example (3.) is not part of the formal lan-
guage because symbol t is not included in the alphabet. At this moment, the decision of
word ω is part of the formal language L is only relying on the alphabet without further

40

must be of a consistent length and tone with each other. consider asking guiding questions to the students and working in specific real-life examples to hook their interest.

cut all such signposting

1 Italic text indicates variables/nonterminals whereas “normal” text indicates terminals. The meta-symbol “∣”
is used for alternatives.

2 The meta-symbol + means 1 to many.

grammar
A grammar consists of
variables, terminal sym-
bols, production rules
and a start variable.

rules. From a human perspective, only example (1.) is correct depending on syntax and
semantics but that is only based on experience from school. So let us dive into that in
more detail.

The generation of formal language expressions resp. words can be based on structured
production rules. These rules are summarized by a grammar G for generating words of a
formal language L G . Let us reuse the addition example with the following production
rules12:

Table 1

equation addition = result

addition number+ number

result number+

number 0 ∣ 1 ∣ 2 ∣ 3 ∣ 4 ∣ 5 ∣ 6 ∣ 7 ∣ 8 ∣ 9
Using this grammar for the example, only examples (1., 2.) are part of the formal language.
Examples (4., 5.) are violating the production rules and example (3.) has still a symbol that
is not included in the alphabet.

Additionally, it is important that the semantics are excluded so far. Only the syntax can be
checked using the production rules and grammar. Thus, grammar G = V , Σ,P , S is
defined as

• V is the finite set of variables/nonterminal symbols,
• Σ is the finite set of the terminal alphabet,
• P is the finite set of the production rules with each production rule is based on l r

with l ∈ V ∪ Σ + and r ∈ V ∪ Σ *,
• S is the start variable with S ∈ V .

The meta-symbol + is similar to the * but means 1 to many instead of 0 to many. In refer-
ence to the addition example, the grammar G is based on

• V = equation, addition, result, number ,
• Σ = = , + , 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ,

• P : equation addition = resultaddition number + numberresult number+number 0 ∣ 1 ∣ 2 ∣ 3 ∣ 4 ∣ 5 ∣ 6 ∣ 7 ∣ 8 ∣ 9
• S = equation.

41

we don't use footnotes except for law books!

In conjunction with formal languages, i.a. the following questions arise: Is word ω ∈ Σ*
part of formal language L with ω ∈ L? Are formal language expressions part of the formal
language? For answering these questions, an analytical way for checking the syntax is
required. The production rules P enable a structured way (e.g. via syntax tree) to proof if a
word is part of the formal language L G . This is based on the derivation relation ().
Additionally, * is the reflexive-transitive closure of the derivation relation. This means a
word ω is part of a formal language L G if L G = ω ∈ Σ* ∣ S * ω . Thus, it has to be
possible to derive the word ω from the start variable S.

Let us derive the addition example (3+4=7) with that knowledge, starting with start varia-
ble S = equation:

Table 2

equation addition = result

number + number = result

3 + number = result

3 + 4 = result

3 + 4 = number+

3 + 4 = 7

It is proven that “3+4=7” is syntactically correct and thus part of formal language L G
which can be briefly written equation * 3 + 4 = 7. Let us try the derivation with exam-
ple (4+3+3=2):

Table 3

equation addition = result

number + number = result

4 + number = result

4 + 3 = result

There is no possible derivation based on the production rules of grammar G to end in
“4+3+3=2”. Thus, the expression is not part of the formal language L G and in this con-
text syntactically incorrect. Keep in mind that each derivation can be translated into a syn-
tax tree with the start variable as root, the inner nodes as nonterminals/variables and the
terminals as leafs. The syntactical analysis, independent of using syntax trees or the deri-
vation relation, can be done also in other sequencing. As shown in both examples, a left
derivation is used but it is also possible to do a right derivation or mixed approach.

The following example describes the example (3+4=7) again but now with right derivation:

42

tables need titles!

Chomsky hierarchy
Chomsky hierarchy cate-
gorizes the set of formal
languages based on their
grammars into four
classes.

Table 4

equation addition = result

addition = number+

addition = 7

number + number = 7

number + 4 = 7

3 + 4 = 7

The derivation from start variable to the word is a proof if the word is part of the formal
language. It is also possible to process from bottom (terminals, e.g. 3+4=7) to the top (start
variable, e.g. equation).

Formal grammars are powerful for generating languages. They can be used to generate
languages from “easy” til “complex” ones. The most important factor are the production
rules of the grammar. The scientist Noam Chomsky defines therefore four different classes
that form the Chomsky hierarchy.

• Regular grammars (type-3-grammars) are context-free and their right side of the pro-
duction rules consists of the empty word ε or a terminal followed by a nonterminal.
Thus, the production rules are l r with l ∈ V and r ∈ ε ∪ ΣV .

• Context-free grammars (type-2-grammars) are characterized by the left side of the pro-
duction rule that has only one variable. Thus, the production rules are l r with l ∈ V .

• Context-sensitive grammars (type-1-grammars) are grammars with the property of pro-
duction rules that l r with r ≥ l . Thus, a production rule can only extend the
derived output

• Unrestricted grammars (type-0-grammars) include all formal grammars.
Each grammar is per definition always also a type-0-grammar.
Thus, the production rules are characterized by the initial definition l r withl ∈ V ∪ Σ + and r ∈ V ∪ Σ *.

In conclusion, a type-n-grammar (Gn) generates a type-n-language (Ln Gn).

Thus, between the corresponding languages exist the inclusion relationL0 ⊃ L1 ⊃ L2 ⊃ L3. This means that it exists in each class of the languages a language L
so that L is in Ln but not in Ln + 1.

Some abstract examples for the different classes of L1,L2 and L3 are

• L3 = ab n ∣ n ∈ ℕ+ is a type-3-language.
• L2 = anbn ∣ n ∈ ℕ+ is a type-2-language but no type-3-language.
• L1 = anbncn ∣ n ∈ ℕ+ is a type-1-language but no type-2-language.

43

colon

cite primary sources throughout the book to give an impression of authority and help the students out

3 Additionally, a nonterminal symbol followed by a terminal symbol is possible and is called a left-linear lan-
guage.

syntax tree
A syntax tree illustrates
the derivation from the

start variable to the word
consisting of terminals.

In the next units, we will go into more detail with these examples and why they are falling
into the mentioned language classes.

2.2 Regular Languages and Finite State
Machines
The regular languages (type-3-languages) are the “smallest” class referring to the Chom-
sky hierarchy. Many data formats are regular and also search patterns are based on regular
expressions. As mentioned, regular languages based on regular grammars are using pro-
duction rules that have one nonterminal on the left side and the right side consists of the
empty word ε, a terminal symbol or a terminal symbol followed by a nonterminal symbol
which is called right-linear language3. This is defined by l r with l ∈ V andr ∈ ε ∪ ΣV .

Let us take a deeper look at the regular language L3 = ab n ∣ n ∈ ℕ+ .

A corresponding regular grammar G3 = S,B, C , a, b , P , S has the production rulesP
Table 5

S aB
V bC
C ε aB

Thus, the regular language L3 G3 = ab, abab, ababab, . . . is generated by this gram-
mar G3. The derivation using the production rules results in a syntax tree that forms a
linear chain if a word of this language is generated (cf. fig. 2.1). This kind of grammar is
also called right-linear grammar because it “grows” to the right side by substituting a non-
terminal with a terminal or combination of terminal and nonterminal. Let us take a look at
the generation of the word “abab” using the grammar G3.

The corresponding syntax tree for this sequence of derivations with the production rules is
depicted in figure 2.1. The left side depicts the syntax

S ⇒ aB ⇒ abC ⇒ abaB ⇒ ababC ⇒ abab

Table 6

S aB

44

abC
abaB
ababC
abab

tree with the epsilon-rule and the right side without that rule. The epsilonrule C ε can
be eliminated by expanding the production rules with B bC b. The elimination of epsi-
lon-rules is possible by allowing rules with the right side only consists of a terminal. Thus,
in our example the syntax tree ends in the generation process without an additional step.

Figure 17: Figure 2.1: Syntax Tree for Generating “abab”

We have based our decision referring to the syntactical correctness of a word ω on “man-
ually elaborate” the production rules. Finite state machines are a way to formally conceive
and systematically analyse regular languages. A finite state machine can be used as
acceptor. It can process a language expression/word ω resulting in a decision between
word is part of a language or not. The set of all possible words that are decided by the
automaton A as correct forms the accepted language L A . In general, finite state
machines differ between deterministic (DFA) and non-deterministic finite state machines
(NFA). A deterministic finite state machine (DFA)A = S,Σ, δ, E, s0 is defined as

• S is the finite set of states,
• Σ is the finite set of the input alphabet,
• δ is the transition function with δ:S × Σ S,
• E is the set of final states with E ⊆ S,
• s0 is the start state with s0 ∈ S.

45

Let us dive into a concrete example for a deterministic finite state machine to understand
the formal definition and introduce a way to design a DFA as a directed graph. The input is
accepted from the DFA if the integer is divisible by 3 without a remainder in the following
example.

S = s0, s1, s2 ,
Σ = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ,
δ s0, x = s0with x ∈ 0, 3, 6, 9s1with x ∈ 1, 4, 7s2with x ∈ 2, 5, 8 ,
δ s1, x = s1with x ∈ 0, 3, 6, 9s2with x ∈ 1, 4, 7s0with x ∈ 2, 5, 8 ,
δ s2, x = s2with x ∈ 0, 3, 6, 9s0with x ∈ 1, 4, 7s1with x ∈ 2, 5, 8 ,
E = s0 .

As mentioned, this DFA can also be drawn as a directed graph depicted in figure 2.2. The
start state is marked with an arrow without beginning in a state (cf. node/state s0). The end
state is marked with a double circle (cf. node/state s0, in the example same as start state).
A word ω is accepted by an automaton A if the automaton ends after the processing in
the/an end state. This is identical to word ω is part of the language L A .

46

deterministic
Deterministic means that
each subsequent state is
uniquely determined by
the read input character.

Figure 18: Figure 2.2: Deterministic Finite State Machine for the Division by 3 without
Remainder

In the following, the more formal as well as the graph-based approach will be addressed.
For example, the integer 147 is used as input/word ω for the DFA. The word ω can be struc-
tured like ω = λ0λ1 . . . λn. Thus, using the definition of DFA, it isL A = λ0λ1 . . . λn ∈ Σ* δ . . . δ δ s0,λ0 ,λ1 , . . . , λn ∈ E
This means that in each state transition a part of the word is “processed” and leads to the
subsequent state. The DFA is deterministic so that not more than one path from start
state to an intermediate or end state is possible for a given input. Referring the example,
the start state is s0and the first part of the word ω is 1 λ0 = 1. Thus, the processing results
in a transition to state s1 following the arrow in the graph-based DFA s0, 147 A s1, 47 .
The same can be described by the formal approach s1 = δ s0, 1 . In state s1, the partial
input λ1 = 4 is processed and so a transition to state s2 is made, s1, 47 A s2, 7 . The
remaining λ2 = 7 is processed by the transition to s0 following the arrow s2, 7 A s0.
Thus, 147 is divisible by 3 without a remainder (ending in end state s0). This means also
that the word ω = 147 is part of the formal language L A .

Summarized, an accepted formal language L A is characterized byL A = ω ∈ Σ* for a se ∈ E: s0,ω A* se
In contrast to the deterministic finite state machine (DFA), the non-deterministic finite
state machine (NFA) A = S, Σ, δ,E, s0 is defined as

• S is the finite set of states,
• Σ is the finite set of the input alphabet,
• δ is the transition function with δ:S × Σ S,

47

4 The meta-symbol →A is here interchangeable for simplification with →.

• E is the set of final states with E ⊆ S,
• s0 is the start state with s0 ∈ S.

The definitions for DFA and NFA differ in the transition function δ. The δ:S × Σ S in DFA
maps to one element of the set of states S whereas δ:S × Σ 2S in NFA maps to the
power set 2S. This means in the NFA is more than one subsequent state possible. Keep in
mind that with that power set also δ s,λ = ∅ is feasible. Thus, the NFA stops with proc-
essing independent if more partial input is available. The word ωwill not be accepted by
the automaton independently if it is currently in an end state or not.

The following example describes a NFA that accepts binary input having a 0 at the third
from last. Figure 2.3 depicts a NFA accepting such an input.

Same as the DFA, the NFA processes character by character starting in the start state s0. Let
us take a look at the possible sequences of processing input ω = 000. There are four
paths4 possible

1. s0 s0 s0 s0
2. s0 s0 s0 s1
3. s0 s0 s1 s2
4. s0 s1 s2 s3
A word ω will be accepted by the automaton if at least one sequence ends in a final state. It
seems that the automaton can guess such a successful sequence by choosing a path at
each decision point to end in a final state.

In the example, the fourth path ends in a final state (s3) so that the word is accepted.

48

Figure 19: Figure 2.3: Non-deterministic Finite State Machine Having a 0 at Third from
Last

Some languages can be much easier described by a NFA instead of a DFA.

An example is depicted in the DFA and NFA automaton for having a 0 at third from last, cf.
figure 2.5.

The question is if the set of accepted languages of NFAs is greater than DFAs or vice versa.
Rabin and Scott had specified that for each NFA exist a DFA (and the other way around)
that accepts the same formal language. Thus, NFA and DFA are equally powerful in sense
of accepting the same formal language. This is called the clause of Rabin and Scott with
L(DFA) = L(NFA). Additionally, each DFA can be transformed to a NFA and vice versa.

Let us focus on the formal grammar, the translation to the corresponding DFA as well as
transforming from NFA to DFA. For the grammar to DFA translation, we use the abstract

example L3 = ab n ∣ n ∈ ℕ+ which is a type-3-language. The corresponding grammarG3 = S, B,C , a, b ,P , S has the production rules P
The result of the translation of this grammar to a DFA can be depicted in figure 2.4. The
translation from a formal grammar follows the systematic steps

Table 7

S aB
B bC
C ε aB

49

1. the states of the automaton are the nonterminals from the grammar.
2. the input alphabet of the automaton is identical to terminal alphabet of the grammar.
3. the start state of the automaton equals the start variable of the grammar.
4. the final states of the automaton are equal to the production rules with ε.
5. for each production rule like B bC (nonterminal terminal followed by nontermi-

nal), an arrow starting in left-side nonterminal (here B) to nonterminal at the right-
side (here C) with the terminal (here b) will be drawn.

Figure 20: Figure 2.4: Translation from Grammar to Deterministic Finite State Machine

for L3 = ab n ∣ n ∈ ℕ+

Both presented automata are equivalent, cf. figure 2.4. Just for clarification reasons, the
automaton directly following the steps from grammar to DFA is translated in a form that is
more familiar. This refers to the substitution of nonterminals from the grammar to more
popular states of the automaton. Hint: The other format (letting nonterminals as states)

is of course also valid. The vice versa translation from automaton to the grammar is ana-
log to the presented way.

After the translation of a grammar of a regular language, we learn about the transforma-
tion of a NFA to DFA. Therefore, we use the aforementioned example having a 0 at third
from last, cf. fig. 2.3. The result of the transformation of this NFA to a DFA can be depicted
in figure 2.5. The transformation follows the (shortened) systematic steps

1. the input alphabet of the NFA is identical to DFA.
2. start with the set of start state(s) of the NFA as start state of the DFA.
3. follow each outgoing arrows with assigned input terminal(s) and cluster the possible

particular subsets as new states in DFA. Hint: the overall number of states in the DFA
can be 2S of the NFA states in maximum, cf. definition of NFA.

4. mark each clustered subset state in DFA including a final state of the NFA as final state
of the DFA.

50

Let us develop the transformation of the NFA (cf. fig. 2.5 left automaton) to the DFA (cf. fig.
2.5 right automaton) step by step.

The start state of the NFA s0 is also start state of the DFA s0. This start state (NFA) has for
input terminal 0 arrows ending in s0 and s1. Thus, the resulting subset consists of s0, s1 as
new state in the DFA for input 0.

Secondly, we take care of input terminal 1 for the pinned start state of the NFA. The arrow
ends ins0. Thus, the resulting subset consists ofs0. This state is already in the DFA so that
we draw a self-reference to s0 for input 1.

In the next step, state s0, s1 (DFA) is considered. Firstly, state s0of the NFA is pinned. For
input 0, the arrows end in s0 and s1. Secondly, state s1 of NFA is considered for input 0. The
arrow ends in s2. Thus, the resulting subset for input 0 consists of s0,s1, s2 as new state in
the DFA. Now, the analog consideration has to be done for input 1. Firstly, state s0 of the
NFA is considered for input 1, the arrow ends in s0. Secondly, state s1 of NFA is considered
for input 1. The arrow ends in s2. Thus, the resulting subset for input 1 consists of s0, s2 as
new state in the DFA.

This procedure (checking for input 0 and 1) has to be conducted for each (new) states in
the DFA analogously.

Finally, all states in the DFA which have included final states of the NFA (here s3) are
marked as final states of the DFA.

Figure 21: Figure 2.5: Non-deterministic and Deterministic Finite State Machine for
Having a 0 at Third from Last

In summary, NFA can be less complex in their representation and easier to design com-
pared to a DFA. DFA is more efficient than NFA because the path for an input is unique. NFA
has to choose a possible path because of more than one possible alternative. Additionally,

51

each terminal symbol can be forgotten after processing using a DFA. In a DFA, the autom-
aton immediately results in “syntactically incorrect” if an input terminal can not be proc-
essed - no outgoing arrow with appropriate terminal in current state. NFA has to check
each possible path to do so.

2.3 Context-free Languages and
Pushdown Automata
In comparison to regular languages, context-free languages (type-2-languages) are an
extension. The production rules of a context-free grammar are defined as l r with l ∈ V
and r ∈ Σ ∪ V *. For the left side one nonterminal is allowed, the same as in grammars
for regular languages. The right side consists of an arbitrary sequence of terminal and
nonterminal symbols.

This is in contrast to regular grammars that are more restrictive for the right side (cf.r ∈ ε ∪ ΣV).

Let us take a deeper look at the context-free language L2 = anbn ∣ n ∈ ℕ+ . A corre-
sponding context-free grammar G2 = S , a, b , P , S has the production rules P
Table 8

S aSb ab

Thus, the context-free language L2 G2 = ab, aabb, aaabbb, . . . is generated by this
grammar G2. The derivation using the production rules results in a syntax tree with a
“pumped” middle part if a word of this language is generated (cf. fig. 2.6). For a deep dive
into the formal proof if a language is regular or context-free the Pumping-Lemma can be
used. For the course, the Pumping-Lemma is out of scope. Let us take a look at the genera-
tion of the word “aaabbb” using this grammar G2.

Table 9

S aSb

aaSbb

aabbb

Firstly, the nonterminal start symbol Sis derived to aSb with two terminals and a nonter-
minal in between. In the next step, this S in the middle is derived to aaSbb by substituting
the S again with aSb. The last derivation substitutes the S with ab ending in the word
aaabbb. Thus, the word is part of the context-free language L2 G2 .

52

Chomsky Normal Form
(CNF)
The Chomsky Normal
Form consists of produc-
tion rules with terminals
or two nonterminals on
the right side.

Figure 22: Figure 2.6: Syntax Tree for Generating “aaabbb”

The production rules of context-free grammars can be simplified by using the Chomsky
Normal Form (CNF) . The “normal” context-free grammars and CNF are equivalent. A
grammar G = V , Σ, P ,S is in CNF if all production rules are like S ε, A σ orS ε,A σ with A ∈ V , B,C ∈ V ∖ S and σ ∈ Σ. Thus, the transition of a context-
free grammar to CNF can be done by the following steps:

1. Elimination of ε-rules: All production rules A εare eliminated by adapting all rules
that are involved in a derivation to ε. Thus, the empty word will be removed from the
language L G :ε ∉ L G .

2. Elimination of chain rules: Each production rule A B with A, B ∈ V is a chain rule
and does not contribute to the production of terminals. Thus, these rules are analo-
gously eliminated similar to step 1 by substituting the right side.

3. Separation of terminals: Each terminal σ that occurs in combination with nontermi-
nals is substituted by a new nonterminal V σ and a rule is added as V σ σ to the set
of production rules.

4. Elimination of multi-elemental nonterminal chains: All production rules likeA B1B2 . . . Bn are changed toA An − 1Bn, An − 1 An − 2Bn − 1, . . . ,A2 B1B2. After this substitution, all
multi-elemental chains are changed and the CNF is constructed.

The described steps are applied to the context-free grammar G = S, A,B ,,a, b , P , S generating aibjak ∣ n ∈ ℕ+, j, k ∈ ℕ with P
Table 10

S AB ∣ ABA
A aA ∣a

53

5 →∗ ε means that it is possible by using production rules to end in ε.

B Bb ε
The sequence for the transformation of this context-free grammar to the CNF is depicted
in table 2.1.

Table 4: Table 2.1: Successive Generation of the Chomsky Normal Form

Start Step 1 Step 2 Step 3 Step 4S AB S AB S AB S AB S ABS ABA S A S aA S VaA S VaAA aA S ABA S a S a S aA a S AA S ABA S ABA S S2AB Bb A aA S AA S AA S2 ABB ε A a A aA A VaA S AAB Bb A a A a A VaAB b B Bb B BVb A aB b B b B BVbVa a B bVb b Va aVb b

In step 1, the possible production rules ending in εare considered. Obviously, B ε is
such a rule. Next production rules like A ∗ ε, starting in an arbitrary nonterminal and
ending in ε are considered5. Thus, the nonterminals for ending in ε are only B. From the
rules A aA ∣a, it exists no path to ε because for each specific rule immediately a termi-
nal is produced (here a). The rules S AB ∣ ABA have involved Awhich has no possibil-
ity to produce ε. Thus, these rules can also be skipped. In summary, the rule B b is
added because the B can be derived to ε in ruleB Bb. Analogously, S A andS AA are added.

In step 2, all production rules from step 1 are considered consisting of one nonterminal on
the left as well as right side. The rules S aA and S a substitute the chain rule S A.
No more such chain rules are present so step 2 is finished.

54

binary tree
A binary tree is a tree that
has at most two succes-
sors.

In step 3, the considered rules with a nonterminal and terminal from step 2 are S aA,A aA and B Bb. The aA is substituted with V aA and Bb with BV b. Additionally, the
rules V a a and V b b are added.

In step 4, rules from step 3 with multi-elemental nonterminals (more than two nontermi-
nals) are considered. The rule S ABA is substituted with S S2A, and S2 AB is
added to the production rules. Thus, the Chomsky Normal Form is constructed after step
4.

Figure 2.7 depicts on the left side a syntax tree for the above-mentioned grammar (not in
CNF). The syntax tree consists of three arrows/successors starting in S for the production
rule S ABA. The syntax tree can generally have arbitrary successors starting from a
nonterminal.

In contrast, the grammar in CNF depicts a syntax tree as binary tree on the right side of
this figure. Each grammar in CNF results in such a binary tree. Considering the production
rules, each nonterminal (left side of the rule) is substituted with a terminal or two nonter-
minals. Thus, there is a connection between the depth of the resulting binary syntax tree
and the amount of leaves. The amount of leaves is 2ℎ with ℎ being the depth of the tree if
the binary tree is complete. Thus, in general, a binary tree has 2ℎ leaves at maximum.

Figure 23: Figure 2.7: Syntax Tree of Context-free Grammar in Chomsky Normal Form for
“aabbaa”

The CNF allows a statement about the required derivation steps from the start variable to
a given word. The production rules in a CNF are defined as either A a or A AB.
Thus, for the word “aabbba” 11 steps are required. For simplification, S AABBBA
requires 5 steps (e.g. S AA AAB AABB AABBB AABBBA). After-
wards, each nonterminal is directly derived to a terminal (6 steps) using rules like A a.

Most programming languages can be described using a context-free language.

55

The formal specification of the syntax can be defined with Backus- Naur Form (BNF). The
syntax of the BNF and already known production rules differ in using the derivation meta-
symbol : : = instead of . The extended BNF includes angular and curved brackets for
fragments like A: : = a1 a2 a3 and A: : = a1 a2 a3. The angular brackets means that a2 is
optional whereas the curved brackets means that a2 can be arbitrarily repeated. The BNF
is another form for describing context-free languages but not have less or greater expres-
siveness.

Finite state machines are a way to formally conceive and systematically analyse regular
languages. For context-free languages, the pushdown automaton (PDA) is the used
approach. It is an extension of finite state machines, with the addition of a stack to allow
for more complex pattern matching. PDAs are a type of automaton that use a stack to rec-
ognize context-free languages. They work by reading symbols from an input string and
pushing and popping symbols onto a stack to keep track of the context of the input. PDAs
can recognize context-free languages by using the stack to keep track of nested structures,
such as matching parentheses or nested loops.

The connection between context-free languages and PDAs is significant because many
programming languages can be described by context-free grammars. As a result, PDAs are
a fundamental tool for understanding and analyzing the behavior of many different types
of languages and systems.

A pushdown automaton (PDA) A = S, Σ,Γ , δ, s0 is defined as

• S is the finite set of states,
• Σ is the finite set of the input alphabet with ε ∉ Σ,
• Γ is the finite set of the stack alphabet with ⊥ as initial stack symbol,
• δ is the transition function with δ:S × Σ ∪ ε × Γ 2S × Γ* with δ s, ω, γ < ∞

for all s,ω, γ,
• s0is the start state with s0 ∈ S.

The transition function takes as input the current state, the current input symbol, and the
top symbol of the stack, and outputs the next state, the symbol to be pushed onto the
stack, and whether to pop a symbol off the stack. The PDA accepts the input string if it
ends up in an accepting state when it has processed the entire input string.

Let us take a look at the context-free language L2 = anbn ∣ n ∈ ℕ+ using a PDA. The
production rules P of the context-free grammar are S aSb ∣ ab. Here is an example of
how a PDA would process these production rules for the concrete word “aabb”.

First, we need to define the PDA based on the grammar:S = s0, s1 , Σ = a, b ,Γ = A, ⊥ and the transition function δ is defined as follows:δ s0, a, ⊥ =1 s0, A ⊥ ,δ s0, a,A =2 s0, AA ,

56

δ s0, b,A =3 s1, εδ s1, b,A =4 s1, ε ,δ s1, ε, ⊥ =5 s1, ε .

Now, let’s see how the PDA processes the input string "aabb":

1. The PDA starts in state s0 with the initial stack symbol ⊥ on the stack.
2. The PDA reads the first symbol a from the input string, has ⊥ on the stack and pushesAonto the stack and remains in s0. The stack now contains A ⊥ (transition =1).
3. The PDA reads the second symbol a from the input string, has A ⊥ on the stack and

pushes A onto the stack and remains in s0. The stack now contains AA ⊥ (transition=2).
4. The PDA reads the third symbol b from the input string and pops A from the stack,

transitioning to state s1 with A remaining on the stack (transition =3). The stack now
contains A ⊥.

5. The PDA reads the fourth symbol b from the input string and pops A
from the stack, remaining in state s1 with ⊥ on the stack (transition = 4).

6. The PDA reads ε from the input string and pops ⊥ from the stack, remaining in state s1
with ε on the stack (transition =5).

Since the PDA has reached the end and the stack contains only the empty symbol ε, the
input string “aabb” is accepted by the PDA and recognized as a valid sentence in the con-
text-free language generated by the grammar.

2.4 Context-sensitive Languages and
Turing Machines
Context-sensitive grammars are an extension to context-free grammars. In contrast to con-
text-free grammars, the left side of the production rule can consist of an arbitrary combi-
nation of terminals and nonterminals. Thus, it is possible to ensure the term “context” is
given. The substitution of a nonterminal can be bound to nature of its surroundings. The
contextsensitive grammars have one restriction concerning the length of the left and right
side of the production rules. It has to be ensured l ≤ r for each production rule l r.
Thus, each derivation step can not shorten the resulting derivation.

The context-sensitive language (type-1-language) L1 = anbncn ∣ n ∈ ℕ+ can be gener-
ated by such a grammar. The context-sensitive grammar of that language can be proc-
essed by the following steps:

57

1. The nonterminals A,B and C are introduced beside the start variable S. These non-
terminals are representatives for the terminals a,b and c. Additionally, the production
rules require a rule to arbitrarily generate a,b and c with the mentioned nonterminalsA, B and C. It has to be ensured that a,b and c are generated in equal number (cf.
production rules S abc and S SABC).

2. The production rules generate the required number of A, B and C but they are unor-
dered. The right order is reached by adding the next six production rules.

3. Finally, nonterminals have to be substituted with terminals. This substitution can only
be conducted if the nonterminals are in the right order. In context-sensitive gram-
mars, terminals can occur also at the left side so that this is ensured. These produc-
tion rules are the remaining three of the grammar.

Thus, the context-sensitive language L1 G1 = anbncn ∣ n ∈ ℕ+ is generated by the cor-
responding grammar G1 = S, A, B,C , a, b, c , P , S with the production rules P
S → SABC S → abc CA → AC CB → BC BA → AB cA → Ac cB → Bc bA → Ab aA → aa bB → bb cC → cc

Table 11

S SABCS abcCA ACCB BCBA AB
cA Ac

cB Bc

bA Ab

aA aa

bB bb

cC cc

Let us take a look at the generation of the word “aaabbbccc” using the grammar G1.

Table 12

S SABC abAABBcCCSABCABC aAbABBcCC

abcABCABC aAAbBBcCC
abcABACBC aaAbBBcCC

58

abcAABCBC aaabBBcCC
abcAABBCC aaabbBcCC
abAABBCC aaabbbcCC
abAAcBBCC aaabbbccC
abAABcBCC aaabbbccc

The Turing machine is a way to formally conceive and systematically analyse context-sen-
sitive languages. A Turing machine is a mathematical abstraction of a computer. The
Turing machine consists of

• Tape: A linear, one-dimensional storage medium consisting of an infinite sequence of
cells. Each cell can contain a symbol from a finite alphabet, which may include blank
symbols.

• Read/Write Head: A mechanism that can read the symbol on the current cell of the tape,
write a new symbol to the cell, or move the tape one cell to the left or right.

• Control Unit: A finite state machine that determines what action the read/write head
should take based on the current state and the symbol on the tape. The control unit has
access to a set of states, a transition function that maps the current state and symbol to
a new state and action, and a set of accepting states.

• States: A finite set of states that the Turing machine can be in at any given time. The
control unit starts in an initial state and transitions between states according to the
transition function.

• Transition Function: A function that maps the current state and symbol to a new state, a
new symbol to be written to the tape, and a direction for the read/write head to move.
The transition function is used by the control unit to determine the next action of the
Turing machine.

• Accepting States: A subset of the states that are designated as accepting states. If the
Turing machine enters an accepting state, it halts and accepts the input string. If it
enters a non-accepting state, it halts and rejects the input string.

• Input: An input string that is written on the tape before the computation begins. The
input is read by the Turing machine as it moves the read/write head along the tape.

The tape is infinite in both directions, but only a finite portion of the tape is ever used dur-
ing the computation. The read/write head always starts at the leftmost cell of the tape,
and the control unit starts in an initial state.

At each step of the computation, the control unit reads the symbol on the current cell of
the tape and decides what action to take next based on the current state and the symbol.
The action can be one of three types: write a new symbol to the current cell, move the
read/write head one cell to the left or right, or transition to a new state.

The set of states and the transition function determine the behavior of the Turing
machine. A Turing machine is said to accept a string if it halts in an accepting state when
the input string is written on the tape. Otherwise, it rejects the string.

59

One of the most important properties of Turing machines is their universality.

That is, any algorithm that can be implemented on a computer can be implemented on a
Turing machine. This property makes Turing machines a fundamental concept in theoreti-
cal computer science and the basis for the study of computability and complexity theory.

For completeness, the remaining type-0-language L0 G0 consists of an unrestricted
grammar G0 = V , Σ,P , S with the production rules P . P is the finite set of the produc-

tion rules that are based on l r with l ∈ V ∪ Σ + and r ∈ V ∪ Σ *. This means that
the left and right side of production rules can consist of an arbitrary sequence of terminals
and nonterminals.

Unrestricted languages, also known as recursive enumerable languages, are a class of for-
mal languages that can be recognized by a type of automaton known as a Turing machine.
One of the defining properties of Turing machines is their ability to simulate any other
computing device, which allows them to recognize a wide range of languages, including
unrestricted languages.

SUMMARY
Formal languages and automata theory deals with the study of formal
languages, which are sets of sequences of symbols that have some pre-
determined properties, and automata, which are abstract machines that
process these sequences of symbols. This field has applications in many
areas of computer science, such as compiler design, programming lan-
guages, natural language processing, and artificial intelligence.

Formal languages are studied through the use of formal grammars,
which are rules that describe the structure of the language. These gram-
mars are classified into different types, such as regular, contextfree, con-
text-sensitive, and unrestricted/recursively enumerable.

Each type of grammar corresponds to a class of languages with different
properties and complexities.

In conjunction, automata theory deals with the study of abstract
machines, which can be used to recognize and manipulate sequences of
symbols according to a set of rules. These machines include determinis-
tic and non-deterministic finite state machines, pushdown automata,
and Turing machines, each with different computational capabilities
and complexity classes.

60

The combination of formal languages and automata theory provides a
foundation for the study of the fundamental properties and limitations
of computation. The field is also important in the development of algo-
rithms and programming languages, and in the design and analysis of
computer systems.

61

UNIT 3
COMPUTABILITY, DECIDABILITY AND
COMPLEXITY

STUDY GOALS

On completion of this unit, you will be able to ...

– understand the different complexity classes
– know and understand decidable and non-decidable problems
– know different decision problems
– understand quantum mechanics and the impact for IT-Security

3. COMPUTABILITY, DECIDABILITY AND
COMPLEXITY

Introduction/Case study
Computability, decidability and decision problems, complexity theory, and quantum com-
puting are all important topics in theoretical computer science that deal with the limits of
computation and the complexity of solving computational problems.

Computability is concerned with understanding what can and cannot be computed, and
how efficiently it can be computed. It explores the concept of algorithmic solvability and
the limits of computation.

Decidability and decision problems are related to the concept of computability, but focus
on whether or not a given problem can be solved algorithmically. Decision problems ask if
a problem has a yes or no answer, and if it can be computed algorithmically.

Complexity theory studies the efficiency of algorithms and the amount of resources, such
as time and memory, required to solve computational problems. It classifies problems
based on their computational complexity and studies the trade-offs between time and
space resources.

Quantum computing is a relatively new area of research that studies the use of quantum
mechanics to perform computations. It has the potential to revolutionize computing by
enabling the solution of problems that are intractable for classical computers.

Outline
Section 3.1 defines computability, Halting problem and unsolvable problems and the
Church-Turing thesis. In section 3.2 are decision problems and their computational com-
plexity as well as applications of decision problems in computer science. Section 3.3
describes the big-O notation, complexity classes, including P, NP, and NP-complete and
the relationship between complexity classes. Section 3.4 explains quantum qubits, quan-
tum algorithms, such as Shor’s algorithm for factoring large integers and Grover’s algo-
rithm for searching an unsorted database as well as quantum complexity classes, such as
BQP.

3.1 Computability
Computability is a concept in theoretical computer science that refers to the ability to
solve a problem algorithmically using a computational machine.

A problem is said to be computable if there exists an algorithm that can solve it in a finite
number of steps, given a set of input data.

64

computability
Computability is the abil-
ity of a problem to be
solved by an algorithm
within a finite amount of
time.

halting problem
The halting problem is
the problem of determin-
ing whether a given pro-
gram will terminate or run
forever.

The concept of computability was first formalized by the mathematician Alan Turing in
the 1930s. He introduced the notion of a Turing machine (cf. section 2.4), which is a theo-
retical model of a computing device that can manipulate symbols on an infinitely long
tape according to a set of rules.

Turing showed that any problem that can be solved algorithmically can be solved by a
Turing machine, and conversely, any problem that cannot be solved by a Turing machine
is not computable.

In addition to Turing machines, there are other formal models of computation, such as
lambda calculus and recursive functions. All of these models are equivalent in terms of
their computational power, meaning that any problem that can be solved by one model
can be solved by another. These two formal models will not be part of that course.

The concept of computability has important implications for the limits of computation. It
is known that there exist problems that are not computable, such as the halting problem,
which asks whether a given program will halt when run on a specific input. Turing’s proof
of the undecidability of the halting problem showed that there are problems that are
beyond the reach of any algorithmic solution.

Computability theory is a fundamental area of study in computer science, and has appli-
cations in many areas, such as algorithm design, artificial intelligence, and cryptography.
The concept of computability also plays a central role in the development of programming
languages, compilers, and other software tools.

Halting problem and similar problems

The halting problem is a famous example of an undecidable problem in computer sci-
ence. The problem asks whether a given computer program will eventually halt (i.e. stop
running) when executed on a particular input. Despite its simple formulation, the halting
problem is provably undecidable, meaning that there is no known algorithmic solution
that can always answer the question correctly for all possible inputs.

The proof of the undecidability of the halting problem was first given by Alan Turing in
1936. He showed that there exists no algorithm that can determine, given a program and
its input, whether the program will halt or run indefinitely. This result has important impli-
cations for the limits of computation, as it shows that there are problems that cannot be
solved algorithmically.

The halting problem is just one example of an undecidable problem in computer science.
Other examples include the problem of determining whether a given Diophantine equa-
tion (a polynomial equation with integer coefficients) has a solution or the problem of
finding a Hamiltonian cycle in a graph (a cycle that visits every vertex exactly once). These
problems are undecidable in the sense that there is no algorithm that can always provide
a correct solution for all possible inputs.

Despite being unsolvable in the general case, some specific instances of these problems
can be solved using heuristics or approximation algorithms.

65

CITE

title case

For example, the Traveling Salesman Problem (TSP), which asks for the shortest possible
route that visits a given set of cities exactly once, is NPhard (will be introduced in section
3.3) and therefore is unlikely to have a general algorithmic solution. However, there are
many approximation algorithms that can provide near-optimal solutions in practice.

Undecidable problems are a fundamental concept in theoretical computer science, and
have important implications for the development of algorithms and software systems. By
understanding the limits of computation, researchers can design more efficient algo-
rithms and develop new approaches to solving difficult problems.

The Church-Turing thesis

The Church-Turing thesis is a central concept that relates to the idea of computability. The
thesis states that any problem that can be solved algorithmically can be solved by a Turing
machine.

The thesis is named after the mathematician Alonzo Church and the computer scientist
Alan Turing, both of whom independently developed formal models of computation in the
1930s.

DEFINITION: CHURCH-TURING THESIS
The Church-Turing thesis states that any problem that can be solved algorithmi-
cally can be solved by a Turing machine. (Church, 1936)

The Church-Turing thesis is not a formal mathematical theorem, but rather a conjecture
based on a set of observations and empirical evidence. The thesis is supported by the fact
that all known models of computation, such as Turing machines, lambda calculus, and
recursive functions, are equivalent in terms of their computational power. This means that
any problem that can be solved by one model can be solved by another.

The Church-Turing thesis has important implications for the limits of computation.

It implies that there are problems that are beyond the reach of any algorithmic solution,
such as the halting problem. It also suggests that there are problems that are computable,
but not efficiently solvable, such as certain problems in the complexity class NP (cf. sec-
tion 3.3).

While the Church-Turing thesis has not been proven rigorously, it is widely accepted as a
fundamental principle in computer science. It serves as a guiding principle for the devel-
opment of algorithms and computational models, and has helped shape the field of theo-
retical computer science.

66

One example of a computable function is the factorial function, which takes a non-nega-
tive integer n as input and returns the product of all positive integers up to and including
n. This function can be computed using a simple iterative algorithm, where we multiply
each integer from 1 to n together.

Another example of a computable function is the greatest common divisor (GCD) function,
which takes two positive integers as input and returns their largest common divisor. This
function can be computed using the Euclidean algorithm, which repeatedly subtracts the
smaller number from the larger number until one of them becomes zero, at which point
the other number is the GCD.

On the other hand, an example of a non-computable function is the halting function,
which takes a computer program and its input as input, and returns 1 if the program halts
on the input, and 0 otherwise. As mentioned earlier, the halting problem is provably unde-
cidable, meaning that there is no algorithm or Turing machine that can compute this func-
tion for all possible inputs.

Another example of a non-computable function is the busy beaver function, which takes a
positive integer n as input and returns the maximum number of steps that a Turing
machine with n states can run before halting.

The busy beaver function grows faster than any computable function, meaning that there
is no algorithm or Turing machine that can compute this function for all possible inputs.

In summary, computable functions are those that can be computed using algorithms or
Turing machines, while non-computable functions are those that cannot. While many nat-
ural functions are computable, there are also many interesting and important non-com-
putable functions in computer science and mathematics.

3.2 Decidability and Decision Problems
Decidability refers to the ability of a problem or language to be solved or recognized by an
algorithm, within a finite amount of time and using a finite amount of resources. A prob-
lem or language is said to be decidable if there exists an algorithm that can correctly
determine whether any given input e.g. belongs to the language or satisfies the problem.

Decidability is closely related to the concept of computability, which refers to the ability of
a function or problem to be solved by an algorithm or computation. In particular, all
decidable problems and languages are computable, but not all computable problems and
languages are decidable.

An example of a decidable problem that is computable is the problem of determining
whether a given natural number is prime. There exists an algorithm, called the Sieve of
Eratosthenes, that can determine whether a given natural number is prime or not, and the
algorithm terminates in a finite amount of time for any input. An example of a computable
problem that is not decidable is the halting problem, which is the problem of determining
whether a given program, when executed on a particular input, will eventually terminate

67

digression box

or run forever. Although there are algorithms that can partially solve the halting problem
for certain cases, there is no algorithm that can solve the halting problem for all possible
programs and inputs, making the problem undecidable.

Decidability is important in computer science because it provides a way to determine the
limits of what can and cannot be computed. For example, if a problem is undecidable, it
means that there is no algorithm that can solve it for all possible inputs, which has signifi-
cant implications for computer programs and software systems that may encounter such
problems in practice.

To be more accurate, the difference between decidability and computability lies in the
level of certainty and efficiency of the algorithms used to solve or recognize problems or
languages.

Decidability refers to the ability of a problem or language to be solved or recognized with
100% certainty by a specific algorithm within a finite amount of time and resources. This
means that for any instance of a decidable problem or language, the algorithm will always
give a correct answer, either “yes” or “no”.

Computability, on the other hand, refers to the broader concept of the ability of a function
or problem to be solved by an algorithm or computation in general, without necessarily
guaranteeing 100% correctness or efficiency.

A computable problem or language can be solved or recognized by an algorithm, but the
algorithm may not always give a correct answer or may require an impractically large
amount of time and resources.

All decidable problems and languages are computable because they can be solved or rec-
ognized by algorithms, but not all computable problems and languages are decidable
because some may not have algorithms that can guarantee 100% correctness or effi-
ciency.

Decidability is also relevant to many other fields of study, including mathematics, logic,
and philosophy. In mathematics, the concept of decidability is closely related to the idea
of a proof, as a problem is decidable if and only if there exists a proof that can be verified
in a finite amount of time.

In logic and philosophy, decidability is often used to analyze the limits of knowledge and
reasoning, and to investigate the nature of truth and certainty.

Decision problems and their computational complexity

Decision problems are a type of computational problem that can be answered with either
a “yes” or “no” answer. In other words, they involve deciding whether a given input satis-
fies a certain property or meets a certain criterion. Decision problems can be categorized
based on their computational complexity, which is a measure of the amount of computa-
tional resources needed to solve them.

68

this page does not look like something from a textbook. improve paragraph structure.

CITE

you must direct students to the literature

word problem
The word problem is
about determining
whether a given word is
generated by a formal
language.

One way to measure computational complexity is to consider the running time of an algo-
rithm that solves the problem. This is often expressed as a function of the input size, typi-
cally denoted by n. For example, an algorithm with running time O(n) means that the time
required to solve the problem is proportional to the size of the input.

Decision problems can be classified based on their computational complexity into three
categories:

• Decidable Problems: Decidable problems are those for which there exists an algorithm
that can correctly decide whether a given input satisfies the given property in a finite
amount of time. This means that the running time of the algorithm is bounded by some
function of the input size.

• Undecidable Problems: Undecidable problems are those for which no algorithm can
correctly decide whether a given input satisfies the given property in a finite amount of
time. This means that there is no algorithm that can solve the problem for all possible
inputs.

• Semi-decidable Problems: Semi-decidable problems are those for which there exists an
algorithm that can correctly decide whether a given input satisfies the given property,
but may not halt on all inputs that do not satisfy the property. This means that the run-
ning time of the algorithm is not necessarily bounded by a function of the input size,
and may not halt for some inputs that do not satisfy the property.

In general, decidable problems are considered to be the most tractable, while undecidable
problems are considered to be the most difficult. Semidecidable problems lie somewhere
in between. Many important decision problems in computer science and mathematics
have been shown to be undecidable, including the halting problem for Turing machines
and the problem of determining whether a given Diophantine equation has a solution.

Decidable and undecidable problems for different types of formal languages

The word problem is decidable for regular, context-free, and context-sensitive grammars
because these grammars have effective algorithms for parsing words and recognizing the
language generated by the grammar.

For regular grammars, a finite state automaton can be constructed that recognizes the lan-
guage generated by the grammar. The word problem for regular grammars can be solved
by simulating the automaton on the input and determining whether the automaton
accepts the word.

For context-free grammars, a pushdown automaton can be constructed that recognizes
the language generated by the grammar. The word problem for context-free grammars can
be solved by simulating the pushdown automaton on the input and determining whether
the automaton accepts the word (see also CYK algorithm and LR parsing).

For context-sensitive grammars, linear-bounded automata can be constructed that recog-
nize the language generated by the grammar. The word problem for context-sensitive
grammars can be solved by simulating the linearbounded automaton on the input and

69

emptiness problem
The emptiness problem is

about determining
whether a formal lan-

guage contains any
words.

finiteness problem
The finiteness problem is

about determining
whether a formal lan-

guage is finite or infinite.

equivalence problem
The equivalence problem

is about determining if
two grammars generate

the same language.

determining whether the automaton accepts the word. A linear-bounded automaton (LBA)
is a type of Turing machine that has a tape with a length proportional to the length of the
input, making it a more restricted model of computation than a general Turing machine.

In all of these cases, the word problem is decidable because there exists an algorithm that
terminates and correctly answers whether a given word belongs to the language gener-
ated by the grammar.

Theemptiness problem is decidable for regular and context-free grammars because effec-
tive algorithms exist for both of these grammar types that can recognize whether the lan-
guage generated by the grammar is empty.

For regular grammars, a finite state automaton can be constructed that recognizes the lan-
guage generated by the grammar. The emptiness problem for regular grammars can be
solved by checking if the automaton accepts any word.

For context-free grammars, a pushdown automaton can be constructed that recognizes
the language generated by the grammar. The emptiness problem for context-free gram-
mars can be solved by checking if the automaton accepts the empty word.

However, the emptiness problem is undecidable for context-sensitive and unrestricted
grammars. This is because these grammars are more powerful than regular and context-
free grammars, and thus, there is no general algorithm that can decide whether their lan-
guages are empty or not.

For context-sensitive grammars and unrestricted grammars, the problem reduces to the
halting problem, which is known to be undecidable. This means that there is no algorithm
that can determine whether a given word is generated by a context-sensitive or unre-
stricted grammar.

The finiteness problem is decidable for regular and context-free grammars because it is
possible to construct a finite automaton or pushdown automaton that can recognize a
finite language, respectively. However, the finiteness problem is undecidable for context-
sensitive and unrestricted grammars because these grammars can generate languages
that are recursively enumerable but not decidable, which means that a Turing machine
cannot determine whether the language generated by the grammar is finite or infinite.

The equivalence problem is decidable for regular grammars using finite automata, but it
is undecidable for context-free, context-sensitive, and unrestricted grammars. This is
because these grammars have more powerful generating capabilities than regular gram-
mars, and a Turing machine cannot determine whether two such grammars generate the
same language.

The table 3.1 summarizes the decidable and undecidable problems for different types of
formal languages:

70

Table 5: Table 3.1: Decision Problems and their Decidability for Different Types of
Grammars

Problem Question Type of Grammar

regular contextfree context-sensi-
tive

type 0

Word w ∈ L ? decidable decidable decidable undecidable

Emptiness L = ∅? decidable decidable undecidable undecidable

Finiteness L < ∞ ? decidable decidable undecidable undecidable

Equivalence L1 = L2 ? decidable undecidable undecidable undecidable

Applications of decision problems in computer science

Decision problems have many important applications in computer science. They are used
in i.a. programming language theory, database systems, artificial intelligence, and com-
puter security. Here are some examples:

• Type Checking: Type checking is the process of verifying that a program satisfies certain
type rules. Type checking is an example of a decidable problem, as there are algorithms
that can decide whether a given program satisfies certain type rules.

• Database Query Optimization: Database query optimization involves finding the most
efficient way to execute a given database query.
This problem is an example of a semi-decidable problem, as there are algorithms that
can find a good query plan, but there may not be an algorithm that can guarantee find-
ing the best query plan.

• Automated Theorem Proving: Automated theorem proving involves finding proofs of
mathematical theorems using computer algorithms.
This problem is an example of a semi-decidable problem, as there are algorithms that
can find proofs of some theorems, but there may not be an algorithm that can find
proofs of all theorems.

• Compiler Optimization: Compiler optimization involves finding ways to optimize the
performance of compiled code. This problem is an example of a semi-decidable prob-
lem, as there are algorithms that can find some optimizations, but there may not be an
algorithm that can find the best possible optimizations.

• Program Analysis: Program analysis involves analyzing the behavior of computer pro-
grams to find errors, security vulnerabilities, or performance bottlenecks. Many pro-
gram analysis problems are examples of decidable or semi-decidable problems, includ-
ing data flow analysis, and pointer analysis.

In summary, decision problems have many important applications in computer science,
and understanding their computational complexity is essential for developing efficient
algorithms and software systems.

71

weird formatting

complexity classes
Complexity classes cate-

gorize problems based on
their computational diffi-
culty and the resources

3.3 Complexity Theory
In complexity theory, time complexity and space complexity are measures of the amount
of resources required by an algorithm to solve a problem.

Time complexity measures the number of steps or operations required by an algorithm to
solve a problem, as a function of the input size. This function is usually denoted by a big-O
notation, where O f n denotes that the number of steps required by the algorithm is
bounded by a constant multiple of a function f n for sufficiently large input sizes. For
example, an algorithm with time complexity O n2 would require at most c · n2 steps to
solve a problem of size n, where c is a constant (cf. section 1.4).

Space complexity measures the amount of memory or storage required by an algorithm to
solve a problem, also as a function of the input size. This function is usually denoted by a
big-O notation, where O g n denotes that the amount of memory required by the algo-
rithm is bounded by a constant multiple of a function g n for sufficiently large input sizes.
For example, an algorithm with space complexity O n would require at most c · n units of
memory to solve a problem of size n, wher ec is a constant.

Time and space complexity are important factors in algorithm analysis and design, as they
help determine the efficiency and scalability of an algorithm.

Therefore, complexity classes are used to classify problems according to the amount of
resources (such as time and space) required to solve them (cf. fig. 3.1).

Figure 24: Figure 3.1: Relations between Complexity Classes (cf. (Monteiro, 2019))

There are several different complexity classes including:

72

required to solve them.1. P (Polynomial time): A problem is in the complexity class P if it can be solved in poly-
nomial time, which means that the time complexity of the algorithm for solving the
problem is a polynomial function of the size of the input. In other words, the class of
decision problems that can be solved by a deterministic Turing machine in polyno-
mial time. Problems in P are considered to be efficiently solvable. Examples of prob-
lems in P include sorting and searching.

2. NP (Non-deterministic polynomial time): A problem is in the complexity class NP if it
can be verified in polynomial time, but not necessarily solved in polynomial time.
That is, there exists a polynomialtime algorithm that can verify the solution to the
problem, but there may not be a polynomial-time algorithm that can find the solu-
tion.
In other words, the class of decision problems that can be solved by a nondeterminis-
tic Turing machine in polynomial time. Examples of problems in NP include the satisfi-
ability problem.

3. NP-hard (Non-deterministic polynomial time hard): A problem is NP-hard if it is at
least as hard as the hardest problem in NP. In other words, if there exists a polyno-
mial-time algorithm that can solve any NP-hard problem, then it can also solve all
problems in NP. An example of an NP-hard problem is the Boolean satisfiability prob-
lem and the traveling salesman problem.

4. NP-complete (Non-deterministic polynomial time complete): A problem is NP-com-
plete if it is both NP-hard and in NP. In other words, it is the hardest problem in NP.
Examples of NP-complete problems include the Boolean satisfiability problem and
the traveling salesman problem.

The relationship between these complexity classes is a central question in complexity
theory. It is not currently known whether P equals NP, which would imply that all NP prob-
lems are also in P and can be solved in polynomial time. The Clay Mathematics Institute
has offered a $1 million prize for the solution to this problem, known as the P versus NP
problem.

The relationship between NP classes can be visualized as a Venn diagram, with NP being
the set of problems that can be verified in polynomial time, NP-hard being the set of prob-
lems that are at least as hard as the hardest problems in NP, and NP-complete being the
set of problems that are both in NP and NP-hard. All NP-complete problems are in NP-
hard, but not all NP-hard problems are in NP-complete. It is an open question whether NP-
complete problems can be solved in polynomial time or not, and the answer to this ques-
tion is one of the most important open problems in computer science.

Additionally, in complexity theory, PSPACE and EXPSPACE are two classes of decision
problems that involve the amount of memory used during computation. PSPACE, which
stands for Polynomial Space, is the class of decision problems that can be solved by a
deterministic Turing machine using a polynomial amount of memory. On the other hand,
EXPSPACE, which stands for Exponential Space, is the class of decision problems that can
be solved by a deterministic Turing machine using an exponential amount of memory.
This means that the size of the memory required to solve problems in EXPSPACE grows
exponentially with the size of the input. In summary, PSPACE includes all problems that
can be solved with polynomial memory, while EXPSPACE includes all problems that can

73

cite something? when was this? is it still open?

be solved with exponential memory. PSPACE is a subset of EXPSPACE, since any problem
that can be solved using polynomial memory can also be solved using exponential mem-
ory, but the reverse is not true.

For completeness, PTIME (polynomial time) and EXPTIME (exponential time) are complex-
ity classes that describe the time complexity of algorithms.

The class PTIME includes all decision problems that can be solved by a deterministic
Turing machine in polynomial time, i.e., in a number of steps that is polynomial in the size
of the input. This class includes many practical algorithms for a wide range of problem
domains. In contrast, the class EXPTIME includes all decision problems that can be solved
by a deterministic Turing machine in exponential time, i.e., in a number of steps that is
exponential in the size of the input. This class includes many problems that are intractable
in practice, as the running time of algorithms that solve them grows too quickly as the
input size increases. In general, PTIME algorithms are considered to be efficient, while
EXPTIME algorithms are considered to be inefficient for most practical purposes.

In summary, the relations between the complexity classes can be described in sets (cf. fig.
3.1):

• P is a subset of NP (P ⊂ NP).
• NP-hard is a superset of NP (NP-hard ⊃ NP).
• NP-complete is the intersection of NP and NP-hard (NP-complete = NP ∩ NP-hard).
• PSPACE is a superset of NP (PSPACE ⊃ NP).
• EXPSPACE is a superset of PSPACE (EXPSPACE ⊃ PSPACE).

Complexity theory has a wide range of applications in computer science, including algo-
rithm design and analysis. The insights and techniques provided by complexity theory can
help identify and address bottlenecks in algorithms, leading to more efficient and effec-
tive solutions. For example, knowing the complexity class of a problem can guide the
design of algorithms to solve that problem. If a problem is known to be in P, then it is pos-
sible to design an algorithm that solves the problem in polynomial time. On the other
hand, if a problem is NP-hard, then it is unlikely that there exists a polynomial-time algo-
rithm for that problem, and so other approaches must be considered, such as heuristics or
approximation algorithms.

Complexity theory can also be used to analyze the performance of algorithms.

For example, it can be used to determine the worst-case and average-case time complex-
ity of an algorithm, and to analyze the space complexity of an algorithm. This information
can be used to guide algorithm selection and optimization. Overall, complexity theory
provides valuable insights and tools for algorithm design and analysis, helping to improve
the efficiency and effectiveness of computational systems in a wide range of applications.

74

address the structure...

qubits
A qubit is a unit of quan-
tum information that can
exist in a superposition of
two states.

superposition
Superposition is the abil-
ity of a qubit to exist in
multiple states simultane-
ously.

3.4 Quantum Computing
Quantum computing is a field of computer science and physics that explores the use of
quantum mechanics to process and store information.

While classical computers use bits that can only be in a state of 0 or 1, quantum computers
use quantum bits, or qubits, which can exist in a superposition of 0 and 1 states, meaning
they can exist in both states simultaneously. Qubits are typically represented using a vec-
tor in a twodimensional complex vector space, known as the Bloch sphere. The state of a
qubit can be visualized as a point on the surface of the Bloch sphere, with the north and
south poles representing the two classical states 0 and 1. This allows quantum computers
to perform certain tasks much faster than classical computers, and opens up the possibil-
ity of solving problems that are currently intractable.

Figure 25: Figure 3.2: Bloch Sphere as Geometrical Representation of a Qubit (cf.(Smite-
Meister, 2022))

The superposition of qubits refers to the fact that a qubit can exist in a linear combination
of its possible states, with each state having a complex coefficient (cf. fig. 3.2). Specifically,
given a qubit in the quantum state ∣ ψ , it can be represented as:ψ = α 0 + β 1
where α and β are complex numbers such that α 2 + β 2 = 1, and 0 and ∣ 1 represent
the two possible standard basis states of the qubit. The coefficients α and β are known as
probability amplitudes, and their squared magnitudes give the probabilities of measuring
the qubit in the corresponding state. The superposition of qubits allows for quantum par-
allelism and the ability to perform multiple calculations simultaneously, leading to the
potential for exponential speedup in certain quantum algorithms.

75

Shor’s algorithm
Shor’s algorithm is a

quantum algorithm for
factoring large integers

efficiently.

Grover’s algorithm
Grover’s algorithm is a

quantum algorithm that
provides quadratic

speedup for searching an
unsorted database.

In other words, when a qubit is measured, it collapses to one of its possible states with a
probability determined by the squared magnitude of its probability amplitude. For exam-
ple, if α = 0 . 6 and β = 0 . 8, the probability of measuring the qubit in the state 0 isα 2 = 0 . 36, and the probability of measuring it in the state 1 is β 2 = 0 . 64.

Besides qubits, quantum gates are the building blocks of quantum computing.

Quantum gates are the equivalent of classical logic gates in a quantum computer. They
are the basic building blocks of quantum circuits, which are analogous to classical circuits.
Quantum gates operate on qubits and can perform operations such as superposition,
entanglement, and phase shift. Overall, quantum gates and qubits are the fundamental
building blocks of quantum computing, allowing for the development of quantum algo-
rithms that can solve certain problems faster than classical algorithms.

Quantum algorithms are a set of instructions designed to be executed on a quantum com-
puter to solve specific problems. Two of the most famous quantum algorithms are Shor’s
algorithm and Grover’s algorithm.

Shor’s algorithm is a quantum algorithm that can be used to factorize large integers,
which means it can be used to find the prime factors of a composite integer. This is consid-
ered to be a difficult problem for classical computers. In more detail, the algorithm con-
sists of two main steps: first, the quantum Fourier transform is applied to the input num-
ber, and then a period-finding algorithm is used to determine the period of a modular
function. The period can then be used to find the prime factors of the original number. The
algorithm is named after its inventor, mathematician Peter Shor, and was first published in
1994. The algorithm relies on the properties of quantum computing to perform a large
number of calculations simultaneously, leading to an exponential speedup over classical
algorithms.

Shor’s algorithm is important because it is exponentially faster than the best-known clas-
sical algorithms for integer factorization. This has significant implications for cryptogra-
phy, as many public key encryption schemes rely on the difficulty of factoring large com-
posite numbers. With the development of quantum computers capable of running Shor’s
algorithm, these encryption schemes would become vulnerable to attacks.

Grover’s algorithm is a quantum algorithm that can be used to search an unsorted data-
base. The algorithm uses the concept of quantum parallelism to search through all possi-
ble solutions simultaneously, leading to a quadratic speedup over classical algorithms.
This algorithm has important implications for data search and optimization problems.

Both Shor’s and Grover’s algorithms illustrate the potential power of quantum computing
in solving problems that are difficult or impossible for classical computers to solve effi-
ciently. However, building a practical quantum computer with enough qubits and stability
to run these algorithms at scale remains a significant challenge.

76

Figure 26: Figure 3.3: Complexity Classes including BQP (cf. (Padilha, 2014))

In quantum computing, there are several complexity classes that describe the power of
quantum computers compared to classical computers. One of the most important quan-
tum complexity classes is BQP (bounded-error quantum polynomial time). BQP is the set
of decision problems that can be solved by a quantum computer in polynomial time with
a bounded probability of error. More formally, a decision problem is in BQP if there exists a
quantum algorithm that solves the problem with an error probability of at most 1/3 for all
instances, and runs in polynomial time with respect to the input size. BQP is an important
complexity class because it contains several problems that are believed to be hard for
classical computers, such as factoring large integers and finding discrete logarithms.
Shor’s algorithm is a well-known example of a quantum algorithm that runs in BQP.

However, it is not yet clear whether BQP contains NP, it is contained in NP, or whether both
classes have an intersection (cf. fig. 3.3). If BQP is contained in NP, then some problems
that can be solved efficiently on a quantum computer could also be solved efficiently on a
classical computer.

On the other hand, if BQP contains NP, then some problems that are believed to be intract-
able on a classical computer could be solved efficiently on a quantum computer. This is
still an open question in the field of quantum computing.

Quantum computing has the potential to revolutionize several fields due to its ability to
solve problems that classical computers cannot. Some of the promising applications of
quantum computing are:

• Cryptography: Quantum computers can break some of the currently used public-key
cryptography systems, such as RSA and elliptic curve cryptography. On the other hand,
post-quantum cryptography (also called quantum-resistant cryptography) provides a
secure way of communication, for example, through quantum key distribution proto-
cols, post-quantum public-key encryption and digital signature algorithms.

• Optimization: Many real-world problems, such as resource allocation, scheduling, and
route optimization, can be formulated as optimization problems. Quantum computers
can solve some of these optimization problems much faster than classical computers,
for example, through the use of quantum annealing algorithms.

77

academic quality can be improved in areas such as this by addressing sources

• Simulation: Quantum computers can simulate the behavior of quantum systems, which
is difficult or impossible to do on classical computers.
This has applications in areas such as material science, drug discovery, and climate
modeling.

• Machine learning: Quantum computers can potentially improve machine learning algo-
rithms by enabling faster training and inference on large datasets.

• Financial modeling: Quantum computers can be used for financial modeling, such as
portfolio optimization and risk management, by enabling faster and more accurate sim-
ulations of complex financial systems.

Overall, quantum computing has the potential to impact several fields by providing solu-
tions to currently unsolvable problems or enabling faster and more efficient solutions to
existing problems.

SUMMARY
Computability, decidability, and decision problems are fundamental
concepts in theoretical computer science. These concepts deal with the
notion of whether a problem can be solved by an algorithm or not, and
whether it can be solved efficiently. The study of complexity theory
explores the relationships between different types of computational
problems and the resources required to solve them. It also defines com-
plexity classes like P, NP, NP-hard, and NP-complete, which help to cate-
gorize problems based on their computational difficulty.

Quantum computing is a rapidly developing field that seeks to exploit
quantum mechanics to solve certain computational problems more effi-
ciently than classical computers. Quantum computers use qubits, which
can exist in a superposition of states, to perform parallel computations.
They also use quantum gates to manipulate qubits, allowing for more
complex operations to be performed.

78

UNIT 4
LOGIC

STUDY GOALS

On completion of this unit, you will be able to ...

– understand the syntax and semantics of propositional and predicate logic
– apply equivalence and normal forms
– apply the translation between natural language and propositional resp. predicate logic
– apply resolution and tableau calculus

4. LOGIC

Introduction/Case study
The topics propositional logic, predicate logic, resolution calculus, and tableau calculus
are fundamental topics in mathematical logic and computer science that form the basis of
automated reasoning and theorem proving.

Propositional logic (also known as sentential logic) deals with the study of logical proposi-
tions and their connectives. It is a branch of symbolic logic that studies logical relation-
ships between propositions, which are statements that can be either true or false.

Predicate logic extends propositional logic (also known as first-order logic) to include
quantifiers and predicates. It is an extension of propositional logic that allows for the use
of quantifiers and variables to describe more complex logical relationships.

The resolution calculus is a method for automated theorem proving in logic that uses a
form of proof by contradiction, where a negation of the statement to be proved is
assumed and then used to derive a contradiction.

Tableau calculus, also known as tableaux, is a method for reasoning in logic that involves
constructing a tree-like structure of possible interpretations of a logical statement, and
then attempting to find a closed branch that satisfies the statement.

Propositional and predicate logic, as well as resolution calculus and tableau calculus, can
be applied in hardware design. These fields are used to design and verify digital circuits,
including CPUs, memory controllers, and other digital components. They are also used in
the verification of software and hardware systems to ensure their correctness and reliabil-
ity. The tools and techniques used in these areas can help improve the efficiency and
effectiveness of hardware design and verification.

Outline
Section 4.1 defines the syntax and semantics, logical equivalence, normal forms and
applications for propositional logic. In section 4.2 are syntax and semantics, quantifiers
and predicate transformations, logical equivalence, normal forms as well as application of
predeicate logic. Section 4.3 describes the resolution calculus for propositional and predi-
cate logic.

Section 4.4 explains the tableau calculus for propositional and predicate logic.

80

4.1 Propositional Logic
Propositional logic, also known as propositional calculus or sentential logic, is a branch of
mathematical logic that studies propositions, which are statements that can be either true
or false. Propositional logic is concerned with the manipulation of these propositions
using logical operations to determine the truth value of compound propositions. It is
widely used in computer science, artificial intelligence, and automated reasoning systems
to model and reason about complex systems. In propositional logic, propositions are rep-
resented by symbols, and logical operators such as negation, conjunction, disjunction,
implication, and equivalence are used to form complex propositions from simpler ones.
The validity of a propositional logic formula can be determined using various techniques
such as truth tables, logical equivalences, and deductive reasoning.

The syntax of propositional logic consists of three main components: propositional varia-
bles, logical connectives, and parentheses. Propositional variables are placeholders for
propositions, usually denoted by letters such as P , Q, and R. Logical connectives are
symbols that connect propositions together, such as in binding order negation (¬), con-
junction (∧), disjunction (∨), implication (), and equivalence (). Parentheses are also
used to group propositions and ensure the correct order of evaluation. Using these com-
ponents, propositional logic allows us to construct compound propositions from simpler
propositions, and to reason about their truth values based on the truth values of their con-
stituent parts.

A technique to determine the validity of propositional logic statements is via truth tables.
Before we can deal with combined statements, the basic propositional operators have to
be introduced by truth tables with the truth value T (true) and F (false):

BASIC PROPOSITIONAL OPERATORS
Conjunction (AND)

Table 13

P Q P ∧ Q
T T T

T F F

F T F

F F F

81

Disjunction (OR)

Table 14

P Q P ∨ Q
T T T

T F T

F T T

F F F

Negation (NOT)

Table 15

P ¬ P
T F

F T

Exclusive Or (XOR)

Table 16

P Q P ⊕ Q
T T F

T F T

F T T

82

formatting?

P Q P ⊕ Q
F F F

Implication (IF...THEN)

Table 17

P Q P ⇒ Q
T T T

T F F

F T T

F F T

Equivalence (IF AND ONLY IF)

Table 18

P Q P ⇔ Q
T T T

T F F

F T F

F F T

83

Here are some examples of combined statements in propositional logic translated from
natural language:

• “If it is raining, then I will stay indoors and watch a movie.” Symbolic notation: P ⇒ (Q∧ R) Meaning: If P is true (it is raining), then Q and R are true (I will stay indoors and
watch a movie).

• “Either I will go for a run, or I will go to the gym.” Symbolic notation: S ∨ TMeaning:
Either S is true (I will go for a run), or T is true (I will go to the gym).

• “If the store is open, and I have enough money, then I will buy a new shirt.” Symbolic
notation: P ∧ Q ⇒ R Meaning: If both P and Q are true (the store is open and I have
enough money), then R is true (I will buy a new shirt).

• “It is not the case that I will go swimming and stay outside all day.” Symbolic notation: ¬
(S ∧ U) Meaning: S and U cannot both be true (I will go swimming and stay outside all
day).

Let us consider the truth table for the first combined statement using the basic truth
tables P ⇒ (Q ∧ R):

Table 19

P Q R Q ∧ R P ⇒ (Q ∧ R)

T T T T T

T T F F F

T F T F F

T F F F F

F T T T T

F T F F T

F F T F T

F F F F T

The statement “If it is raining, then I will stay indoors and watch a movie” is an implica-
tion. It means that the occurrence of the antecedent (in this case, “it is raining”) will lead
to the occurrence of the consequent (in this case, “I will stay indoors and watch a movie”).
If the antecedent is false (it is not raining), then the implication is automatically true
regardless of the truth value of the consequent. The implication is only false if the antece-
dent is true and the consequent is false (i.e. if it is raining but the person does not stay
indoors and watch a movie).

Logical equivalence and inference rules are essential concepts in propositional logic that
help to establish the validity of arguments.

84

formatting

6 Q ∧ ¬Q can be transformed to False by rule Always False.

Logical equivalence
Logical equivalence is the
relationship between two
statements that have the
same truth values under
all possible interpreta-
tions.

Logical equivalence refers to the idea that two statements have the same truth value,
meaning they are either both true or both false, under all possible circumstances. In other
words, they are equivalent. The symbol used to denote logical equivalence is ≡. For exam-
ple, the statements (P ∧ Q) ≡ (Q ∧ P) and (P ∨ Q) ≡ (Q ∨ P) are logically equivalent
since they have the same truth value under all possible combinations of truth values for P
and Q. Another example of logical equivalence is the distributive law, which states that (P∧ Q) ∨ R is logically equivalent to (P ∨ R) ∧ (Q ∨ R).

Additionally, there are transformation rules that can be used to convert complex logical
expressions into simpler forms or to prove the equivalence of different logical expressions.
Important transformation rules are:

• Double Negation: ¬¬P is equivalent to P
• Always True: (P ∨ ¬P) is a tautology, since it is always true that either P is true or P is

false. It can be reduced to “True”.
• Always False: (P ∧¬P) is a contradiction, since it is never true that both P is true and P is

false. It can be reduced to “False”.
• Identity: An expression that is equivalent to another expression, regardless of the truth

values of its variables. For example, (P ∨ Q) ∧ ¬Q is equivalent to P ∧ ¬Q. It can be
transformed with (P ∨ Q) ∧ ¬Q ≡ (P ∧ ¬Q) ∨ (Q ∧ ¬Q) ≡ P ∧ ¬Q6.

• De Morgan’s Laws:
– not(P and Q) is equivalent to (not P) or (not Q): ¬(P ∧Q) ≡ ¬P ∨ ¬Q
– not(P or Q) is equivalent to (not P) and (not Q): ¬(P ∨ Q) ≡ ¬P ∧ ¬Q

• Implication elimination: This rule states that the expression P ⇒ Q is equivalent to ¬P∨ Q. This means that we can replace any implication in a logical expression with an
equivalent disjunction.

• Equivalence elimination: This rule states that the equivalence symbol (⇔) can be
replaced by a combination of implication (⇒) and reverse implication (⇐) symbols.
This rule states that the expression P⇔Q is equivalent to P ⇒ Q ∧ Q ⇒ P . Thus, the
expression using the implication elimination is equivalent to (¬P∨Q) ∧ (¬Q∨ P).

By applying these rules (and others), we can transform complex logical expressions into
simpler forms, such as conjunctive normal form (CNF) or disjunctive normal form (DNF),
which can be easier to work with when using decision procedures.

Inference rules, on the other hand, are a set of rules that allow us to derive new valid state-
ments from existing ones. These rules provide a systematic and rigorous way to establish
the validity of arguments. There are many inference rules in logic, including modus
ponens, modus tollens, hypothetical syllogism, disjunctive syllogism, and constructive
dilemma.

INFERENCE RULES
Modus Ponens (MP) says if P implies Q and P is true, then we can infer that Q is
true. Symbolically, (P ∧ (P ⇒ Q)) ⇒ Q.

85

tautologies
A tautology is a statement

that is always true,
regardless of the truth

values of its propositional
variables.

Modus Tollens (MT) says if P implies Q and Q is false, then we can infer that P is
false. Symbolically, (¬Q ∧ (P ⇒ Q)) ⇒ ¬P .

Hypothetical Syllogism (HS) says if P implies Q and Q implies R, then we can
infer that P implies R. Symbolically, ((P ⇒ Q) ∧ (Q ⇒ R)) ⇒ (P ⇒ R).

Disjunctive Syllogism (DS) says if P or Q is true, but not both, and P is false, then
we can infer that Q is true. Symbolically, ((P ∨ Q) ∧ ¬P) ⇒ Q.

Constructive Dilemma (CD) says if P implies Q and R implies S, and P or R is
true, then we can infer that Q or S is true. Symbolically, (((P ⇒ Q) ∧ (R ⇒ S)) ∧
(P ∨ R)) ⇒ (Q ∨ S).

These inference rules are used in logical reasoning to establish the validity of arguments
and to derive new statements from existing ones. They are a fundamental part of proposi-
tional logic and predicate logic. The inference rules are truth-functional tautologies. A
proof of the inference rules is to show that they are tautologies. This can be shown by
truth tables. The following truth table demonstrates the proof of the tautology of Modus
Ponens. The other inference rules can be proven analogously.

Table 20

P Q P ⇒ Q P ∧ (P ⇒ Q)
(P ∧ (P ⇒ Q)) ⇒Q

T T T T T

T F F F T

F T T F T

F F T F T

In general, there are three types of a proposition or statement. Tautology, contradiction,
and contingency are terms used to describe the truth value of a proposition or statement.

A tautology is a proposition that is always true, regardless of the truth values of its individ-
ual components. For example, the statement “Either it will rain tomorrow or it will not rain
tomorrow” is a tautology because it is true no matter what the weather is like.

A contradiction is a proposition that is always false, regardless of the truth values of its
individual components. For example, the statement “It is raining and it is not raining” is a
contradiction because it cannot be both raining and not raining at the same time in the
same place.

A contingency is a proposition that is neither a tautology nor a contradiction.

86

don't need italics anywhere

clauses
A clause is a disjunction
(logical OR) of literals,
where a literal is either a
propositional variable or
its negation.

Disjunctive Normal
Form
Disjunctive Normal Form
is a way of writing logical
statements as a disjunc-
tion (OR) of conjunctions
(ANDs) of literals.

It is a statement whose truth value depends on the truth values of its individual compo-
nents. For example, the statement “It will rain tomorrow” is a contingency because it is
true or false depending on whether or not it actually rains tomorrow.

Important concepts are normal forms that are standard representations of a formula that
makes it easier to analyze and reason about. There are several normal forms, including the
conjunctive normal form (CNF) and disjunctive normal form (DNF). In CNF, a formula is
expressed as a conjunction (i.e. AND) of clauses , where each clause is a disjunction (i.e.
OR) of literals (i.e. either a propositional variable or its negation). For example, the CNF of
the formula (P ⇒ Q) ∧ ¬R would be (¬P ∨ Q) ∧ ¬R.

Let’s consider the propositional statement: “If it is sunny or if it is cloudy, then I will go for
a walk if it is not too cold”: (P ∨ Q) ⇒ (R ∧ ¬S). To derive its conjunctive normal form
(CNF), we can follow these steps:P ∨ Q R ∧ ¬S ≡ ¬ P ∨ Q ∨ R ∧ ¬S Impl . elim . ≡ ¬P ∧ ¬Q ∨ R ∧ ¬S De Morgan ≡ ¬P ∨R ∧ ¬P ∨ ¬S ∧ ¬Q ∨R ∧ ¬Q ∨ ¬S Distribution ≡ R ∨ ¬P ∧ ¬S ∨ ¬P ∧ R ∨ ¬Q ∧ ¬S ∨ ¬Q Commutation ≡ R ∨ ¬P ∧ R ∨ ¬Q ∧ ¬S ∨ ¬P ∧ ¬S ∨ ¬Q Associativity
After the step Distribution, the statement is almost in CNF. The steps Commutation and
Associativity are used to explain them and to reach the CNF.

In Disjunctive Normal Form , a formula is expressed as a disjunction of conjunctions of
literals. For example, the DNF of the formula (P ⇒ Q) ∧ ¬R would be (¬P ∧ ¬R) ∨ (Q ∧ ¬R): P Q ∧ ¬R ≡ ¬P ∨ Q ∧ ¬R Implication elimination ≡ ¬P ∧ ¬R ∨ Q ∧ ¬R Distribution
Converting a formula to CNF or DNF can be useful for simplifying and analyzing it, and also
for automated reasoning using decision procedures.

Overall, normal forms and decision procedures are important tools in logic, providing
ways to simplify and analyze complex logical statements.

The truth table of a propositional statement can be used to derive its corresponding con-
junctive normal form (CNF) or disjunctive normal form (DNF), and vice versa. The CNF and
DNF can also be used to determine the truth value of the propositional statement for any
assignment of truth values to its constituent variables. The literals are A,B,C and F repre-
sents the propositional statement:

87

Table 21

A B C F

F F F F

F F T F

F T F T

F T T F

T F F T

T F T T

T T F T

T T T T

To convert the truth table into CNF, we first identify the rows where the output F is False,
and then create a clause for each of those rows, where each literal in the clause is negated
if its corresponding input is True, and not negated if the input is False.

From this truth table, we see that the output F is False for the first, second and fourth
rows. Therefore, we create three clauses for these rows and combine them to get the CNF:

To obtain the DNF, we take the rows where the output F is True, and form a disjunction
that correspond to those rows, where each literal in the clause is negated if its correspond-
ing input is False, and not negated if the input is True.A ∨B ∨ C ∧ A ∨B ∨ ¬C ∧ A ∨ ¬B ∨ ¬C
From the truth table, we see that the output F is True for the third, fifth, sixth, seventh and
eighth rows. Therefore, we connect them with AND for these rows and combine them to
get the DNF: ¬A ∧ B ∧ ¬C ∨ A ∧ ¬B ∧ ¬C ∨ A ∧ ¬B ∧ C ∨ A ∧ B ∧ ¬C ∨ A ∧ B ∧ C
In propositional logic, the reduction of a DNF or CNF involves the simplification of logical
expressions by combining terms that are redundant or logically equivalent, thereby reduc-
ing the number of terms. This process is useful for optimizing logical circuits and reducing
the complexity of logical expressions. The resulting expression is equivalent to the original
expression but has fewer terms, making it easier to analyze and understand. The reduc-
tion will not be considered here.

88

Propositional logic has numerous applications in computer science, including:

• Formal verification: Propositional logic is used to verify the correctness of hardware and
software systems. By modeling the system as a set of logical statements and using
deduction rules to infer new statements, one can determine if the system satisfies cer-
tain properties, such as security and liveness.

• Artificial intelligence: Propositional logic is used as a building block in many artificial
intelligence systems. It provides a way to represent knowledge and reasoning in a for-
mal, precise manner.

• Computer programming: Propositional logic is used in the design and analysis of com-
puter algorithms. It can be used to reason about the complexity of an algorithm, to
prove that it is correct, and to optimize its performance.

• Database systems: Propositional logic is used to express queries in database systems.
By translating a query into a logical statement, one can use logical inference to deter-
mine if the query is true or false.

• Automated theorem proving: Propositional logic is used in automated theorem proving
systems, which attempt to automatically prove mathematical theorems. By modeling a
theorem as a logical statement, an automated system can use logical inference rules to
determine if the theorem is true or false.

Overall, propositional logic provides a powerful tool for reasoning about complex systems
in computer science, enabling the design, analysis, and verification of a wide range of sys-
tems and algorithms.

4.2 Predicate Logic
Predicate logic is an extension of propositional logic that allows for more complex state-
ments to be represented and reasoned about. Predicate logic is required in reference to
propositional logic because propositional logic is limited to analyzing simple statements
that are either true or false, while predicate logic allows for more complex analysis of
statements involving quantifiers and variables, making it more expressive and powerful
for reasoning about the real world. In other words, predicate logic provides a richer lan-
guage and more advanced tools for logical reasoning and inference than propositional
logic. In predicate logic, propositions are represented using predicates, which are func-
tions that take one or more arguments and evaluate them to be either true or false.

The syntax of predicate logic includes variables, constants, predicates, logical connectives,
and quantifiers. Variables represent elements of a domain of discourse, while constants
represent specific elements of that domain.

Predicates take variables or constants as arguments and evaluate to true or false depend-
ing on the values of those arguments. Logical connectives, such as conjunction, disjunc-
tion, and negation, allow for complex propositions to be formed. Quantifiers, such as uni-
versal and existential quantifiers, allow for statements to be made about all or some
elements in the domain of discourse.

89

universal quantifier
The universal quantifier

expresses that a state-
ment is true for all ele-

ments in the domain of
discourse.

The semantics of predicate logic involves defining the truth value of statements in terms
of the truth value of their atomic parts. The truth value of a statement involving a predi-
cate is determined by evaluating the predicate for the values of its arguments. Universal
quantifiers assert that a statement is true for all elements in the domain of discourse,
while existential quantifiers assert that there exists at least one element in the domain of
discourse for which the statement is true.

Predicate logic is a powerful tool for representing and reasoning about complex state-
ments in many areas of mathematics and computer science, including artificial intelli-
gence, database theory, and automated theorem proving. However, the increased com-
plexity of predicate logic compared to propositional logic makes it more difficult to reason
about and more computationally expensive to automate.

In a nutshell, predicate logic syntax and semantics are:

• Syntax
– Predicate symbols: P x ,Q x, y ,R y, z
– Function symbols: f x , g x, y ,ℎ z
– Variables: x, y, z
– Quantifiers: ∀ (for all), ∃ (there exists)
– Logical operators: ¬(not), ∧(and), ∨(or), (implies), (if and only if)

• Semantics
– A domain of discourse: a set of objects that the variables can take values from
– Interpretation functions: a mapping of predicate symbols and function symbols to
relations and functions on the domain, respectively
– Truth values: a statement in predicate logic is true or false depending on the interpre-
tation of the symbols and functions and the values of the variables in the domain.

For example, the statement in natural language “All dogs bark.” is in predicate logic∀x Dog x Bark x
In this example, Dog x and Bark x are predicates that refer to the properties of an
object x. The universal quantifier ∀x expresses that the statement holds for all possible
values of x in a given domain of discourse, which in this case is the set of all dogs. The
arrow indicates that if an object is a dog, then it must bark. Thus, the predicate logic
statement captures the meaning of the natural language sentence.

In predicate logic, quantifiers and variables play a crucial role in forming propositions that
involve quantification over a set of objects or individuals.

The two main quantifiers used in predicate logic are the universal quantifier and the exis-
tential quantifier.

90

existential quantifier
The existential quantifier
expresses that there
exists at least one
instance of a variable for
which a predicate is true.

The universal quantifier, denoted by ∀, is used to express that a statement is true for all
elements in a given set. For example in mathematics, the statement ∀x ∈ ℕ, x > 0 reads
as “for all x in the set of natural numbers, x is greater than 0”.

On the other hand, the existential quantifier , denoted by ∃, is used to express that a
statement is true for at least one element in a given set. For example, the statement∃x ∈ ℕ, x2 = 4 reads as “there exists an x in the set of natural numbers such that x
squared is equal to 4”.

Variables are used to denote the elements or individuals being quantified.

They can represent any element or individual from the domain of discourse.

For example, in the statement ∀x ∈ ℕ, x > 0, the variable x represents any natural num-
ber, and in the statement ∃x ∈ ℕ,x2 = 4, the variable x represents the specific natural
number whose square is equal to 4.

Thus, quantifiers and variables provide a powerful tool for expressing complex proposi-
tions in predicate logic. They allow us to make generalizations over sets of objects and
reason about the existence of specific elements within those sets.

Logical equivalence, as in propositional logic, is an important concept in predicate logic as
it allows us to simplify and manipulate complex logical expressions. Inference rules, such
as modus ponens and modus tollens, also apply to predicate logic, allowing us to derive
new logical statements from existing ones.

The inference rule Modus ponens allows us to infer the truth of a conclusion from the truth
of two premises that have a specific form. The form of the premises is as follows:

• Premise 1: ∀x P x Q x
• Premise 2: P a , where a is a specific object in the domain of discourse

From these premises, we can infer that Q a must also be true. This can be written as:Conclusion: Q a
The key to understanding why this rule is valid lies in the meaning of the universal quanti-
fier. When we say that ∀x P x Q x is true, we mean that every object in the domain
of discourse that satisfies P x also satisfies Q x . So when we have the additional prem-
ise P a , we know that a satisfies P x . And since we know that ∀x P x Q x , we
can conclude that a must also satisfy Q x , and therefore Q a must be true.

Overall, modus ponens is a powerful tool for reasoning in predicate logic, allowing us to
make valid inferences based on the relationship between predicates in our domain of dis-
course.

91

In predicate logic, we can express statements such as “all cats are animals” or “some dogs
are friendly” using quantifiers. For example, the statement “all cats are animals” can be
expressed as ∀x Cat x Animal x , where Cat x represents the property of x
being a cat, and Animal x represents the property of x being an animal. On the other
hand, the statement “some dogs are friendly” can be expressed as∃x Dog x ∧ Friendly x , where Dog x represents the property of x being a dog, andFriendly x represents the property of x being friendly.

Predicate logic can be used to translate the natural language. Some examples including
quantifiers, variables and constants are:

• “Every dog has a tail.”: ∀x Dog x HasTail x
• “There exists a student who has passed all exams.”:∃x Student x ∧ ∀y Exam y Passed x, y
• “No person is immortal.”: ∀x Person x ¬Immortal x
• “Some apples are green.”: ∃x Apple x ∧ Green x
• “There is a car that can drive faster than 200 km/h.”:∃ ∃x Car x ∧ CanDriveFasterTℎan x, 200
• “Everyone has a favorite color.”: ∀x∃y Person x HasFavCol x, y
Logical validity in predicate logic is defined in terms of truth tables. For example, the
statement “For all real numbers x, if x > 0, then x2 > 0”:∀x x > 0 x2 > 0
can be proven by truth tables. For this statement in predicate logic, we can create a truth
table to check its validity as follows: First, we need to determine the domain of discourse,
or the range of values that the variable can take. Let’s say that the domain of xis 1, 2, 3 .
Next, we need to determine all possible truth values for the variable. In this case, we have:

Table 22

x x > 0 x2 > 0 x > 0 x2 > 0
1 T T T

2 T T T

3 T T T

In each row of the truth table, we evaluate the truth values of the atomic formulas, and
then the truth value of the entire compound formula. We can see that in each row, the
compound formula is true, which means that it is a tautology and is valid in the chosen
domain of discourse.

Predicate logic formulas can be transformed into different normal forms to facilitate rea-
soning and computation. The two most commonly used normal forms for predicate logic
formulas are the Prenex normal form and the Skolem normal form.

92

Prenex Normal Form
Prenex Normal Form is a
way to rewrite a formula
by moving all quantifiers
to the front of the for-
mula.

Skolem Normal Form
Skolem Normal Form is a
transformation of formula
to eliminate existential
quantifiers.

The Prenex Normal Form (PNF) is a way of expressing a formula in which all of its quanti-
fiers are moved to the front of the formula. For example, the formula∀x∃y P x, y ∧Q y ∃x∀yR x, y can be transformed into the PNF as∀x∃y∃z∀w P x, y ∧Q y R z, w . PNF is useful for simplifying reasoning by
sometimes reducing the number of quantifiers that need to be considered.

The Skolem Normal Form (SNF) is a way of expressing a formula in which all of its existen-
tial quantifiers are eliminated by introducing new Skolem functions or Skolem constants.
Skolem functions are functions that map an element in the domain of discourse to
another element in the domain of discourse. Skolem constants are individual constants
that represent some fixed element in the domain of discourse. Skolem Normal Form is
useful for proving the satisfiability of a formula, as it eliminates existential quantifiers
which make the formula hard to evaluate.

An example is ∀x∃y P x, y ∀zQ z, y is equivalently transformed to∀x P x, f x ∀zQ z, f x where f is a Skolem function that maps each value of x
to a corresponding value of y that satisfies the statement.

There are also decision procedures for predicate logic formulas. A decision procedure is an
algorithmic method to determine whether a formula is valid, satisfiable, or unsatisfiable.
One example of a decision procedure for predicate logic formulas is the resolution calcu-
lus. It is a method of proof used in predicate logic that involves converting a formula into
clausal form and using the resolution rule to derive new clauses until a contradiction is
found or it is shown that the formula is satisfiable.

Another example of a decision procedure for predicate logic formulas is tableau calculus.
It is a systematic procedure for constructing a decision tree that determines the truth
value of a formula. It recursively applies inference rules to a formula until a contradiction
is found, indicating that the formula is unsatisfiable, or until a complete decision tree is
constructed, indicating that the formula is satisfiable.

Predicate logic has a wide range of applications in computer science, including automated
theorem proving, natural language processing, database systems, and artificial intelli-
gence. In automated theorem proving, predicate logic is used to prove mathematical the-
orems automatically by applying logical inference rules. This is particularly useful in for-
mal verification of hardware and software systems. In natural language processing,
predicate logic is used to represent the meaning of sentences in a formal and structured
way, allowing computers to understand and manipulate natural language text. This can be
used for tasks such as text classification, information retrieval, and machine translation. In
database systems, predicate logic is used as the basis for query languages such as SQL.
This allows users to specify complex queries over large databases in a concise and precise
way.

In artificial intelligence, predicate logic is used to represent knowledge and reasoning,
allowing AI systems to reason about the world in a structured and logical way. This is par-
ticularly useful in domains such as expert systems, automated planning, and robotics.
Overall, predicate logic is a powerful and versatile tool for representing knowledge and
reasoning in a wide range of computer science applications.

93

resolution calculus
The resolution calculus is
a proof technique used to

show that a statement is
satisfiable by assuming

its negation and deriving
a contradiction.

4.3 Resolution Calculus
The resolution calculus is a method in mathematical logic and automated theorem prov-
ing used for deriving logical consequences from a set of clauses or formulas, using the res-
olution rule as the main inference rule.

It is a proof calculus that operates on formulas in propositional or firstorder predicate
logic, and can be used to prove the validity or satisfiability of a logical formula. The resolu-
tion calculus is a class of automated deduction methods that operate by attempting to
find a refutation proof, which means that they aim to prove that a statement is false by
deriving a contradiction. The resolution calculus is widely used in automated theorem
proving, and has been applied to various areas of computer science, including verification,
planning, and natural language processing.

The Resolution principle is a rule of inference used in the resolution calculus, which is a
proof procedure for propositional and predicate logic. The principle is used to construct a
refutation, which is a proof that a given statement is false.

Before using the resolution calculus for propositional logic, the logical statements must be
converted to (1) negated CNF (conjunctive normal form), the CNF will be (2) transformed
to the clausal form, and (3) the empty clause will be derived by building resolvents in the
resolution process. Additionally, the statements should be organized into a set of clauses,
each of which is a disjunction of literals. Once we have met these requirements, we can
apply the resolution principle to derive new clauses until we either reach a contradiction
or can no longer derive any new clauses.

Before applying the resolution calculus to propositional logic, the given formulas must be
transformed into Conjunctive Normal Form (CNF) by applying the following steps (1):

1. Negate the entire expression (want to prove with a refutation proof)
2. Eliminate all equivalences and implications in the formula.
3. Move negations inwards using De Morgan’s laws and double negation elimination.
4. Distribute disjunctions over conjunctions using the distributive law.
5. Eliminate any remaining double negations.

For example, we consider the formula:A ∨ B ∧ C ∨ ¬A ∧ ¬B ∨ ¬A ∧ B ∧ ¬C
First, we negate the formula:¬ A ∨ B ∧ C ∨ ¬A ∧ ¬B ∨ ¬A ∧ B ∧ ¬C
Next, we would eliminate the equivalences and implications but there are none. Thus, we
move the negations inward using De Morgan’s laws and eliminate double negations:

94

¬ A ∨ B ∧ C ∨ ¬A ∧ ¬B ∨ ¬A ∧ B ∧ ¬C≡ ¬A ∧ ¬B ∨ ¬C ∧ A ∨B ∧ A ∨ ¬B ∨ C
The next steps (distribute the disjunction over the conjunction, and eliminate any remain-
ing double negations) can be skipped. Thus, we have the formula in CNF, and have to
transform it into the clausal form (2). The clausal form is a representation of a logical for-
mula in the form of a set of disjunctive clauses, where each clause is a disjunction of liter-
als, i.e., either a variable or its negation. It is a standard form that is often used in auto-
mated theorem proving and logic programming. The clausal form for the example isCF = ¬A, ¬B, ¬C , A,B , A, ¬B, C
We can now apply the resolution calculus to derive new formulas and check for satisfiabil-
ity or validity (3). The resolution principle works by taking two clauses (disjunctions of lit-
erals) that share a complementary literal, meaning one clause has a literal and its nega-
tion appears in the other clause. The complementary literals are then resolved or
eliminated by taking the disjunction of the remaining literals in each clause. This results in
a new clause that is more general than the original clauses, as it contains all the literals
that were not complementary.

This process is repeated until either a contradiction is obtained or no more new clauses
can be generated. If a contradiction is obtained, then the negated statement is refuted,
since it is impossible for all the premises to be true and the negation of the conclusion to
be true at the same time.

Thus, it is proven that the original statement (before the negation of the entire expression)
is satisfiable and in some cases also a tautology.

Let’s prove if the original formula is satisfiable. We use the resolution calculus in conjunc-
tion with the clausal form to find a contradiction.

Table 6

¬A, ¬B, ¬C , A, B , A, ¬B,C (initial: clausal from)B (5: clauses 1 and 3)¬B, C (6: clauses 1 and 4)¬C (7: clauses 2 and 5)C (8: clauses 5 and 6)◻ (empty clause: clauses 7 and 8)

95

The calculus has the characteristic of maintaining the satisfiability of a statement, which
means that the new set of clauses is satisfiable if and only if the original one is satisfiable.
Therefore, if the rule is repeatedly applied and produces an empty clause, which repre-
sents a contradiction and is unsatisfiable, this is evidence to determine that the original
set of clauses is also unsatisfiable.

The concepts of tautology and unsatisfiability are closely interconnected in logic. A for-
mula is said to be a tautology if it is true under all possible truth assignments to its varia-
bles. On the other hand, a formula is said to be unsatisfiable if it is false under all possible
truth assignments to its variables. In between these two areas lies satisfiability without a
formula is being a tautology or unsatisfiability.

It turns out that a formula is a tautology if and only if its negation is unsatisfiable.

This can be seen by considering the truth table of the negation of the formula: if the nega-
tion is false under all possible truth assignments, then the original formula must be true
under all possible truth assignments, and thus a tautology. Conversely, if the negation is
true under no possible truth assignment, then the original formula must be false under all
possible truth assignments, and thus a contradiction.

Similarly, in the resolution calculus, if we can derive the empty clause from a set of
clauses, then we know that the set of clauses is unsatisfiable.

This is because the empty clause represents a contradiction, and if we can derive a contra-
diction from a set of clauses, then the set of clauses must be unsatisfiable. Therefore, we
can say that the resolution calculus is a proof system for unsatisfiability, and by extension,
for tautologies through the connection between tautology and unsatisfiability.

The resolution calculus can also be applied to predicate logic, but the process is more
complex than for propositional logic. In predicate logic, we have variables that represent
objects and predicates that represent relationships between those objects. To apply the
resolution calculus to predicate logic, we first need to convert the formula into prenex nor-
mal form, where all the quantifiers (for all and there exists) are moved to the front of the
formula. After this conversion, we can apply the same resolution rules as in propositional
logic. However, we also need to introduce Skolem functions to eliminate existential quan-
tifiers.

The resolution calculus can be a powerful tool for proving the validity or invalidity of for-
mulas in predicate logic. However, the process of converting the formula into prenex nor-
mal form and introducing Skolem functions can be time-consuming and may require
some creativity. Additionally, unlike in propositional logic, not all formulas in predicate
logic have a finite resolution proof, which means that the process of proving validity or
invalidity may not terminate in some cases.

Additionally, the resolution calculus has refutation completeness. It means that the reso-
lution calculus is guaranteed to find a refutation if one exists, and this property makes it a
powerful tool for automated theorem proving in artificial intelligence and computer sci-

96

Tableau calculus
Tableau calculus is a
proof technique in math-
ematical logic that uses a
tree structure to system-
atically check the validity
of a formula or set of for-
mulas.

closed tableau
A closed tableau is a com-
pleted tableau where all
branches are closed, indi-
cating that the formula is
unsatisfiable.

ence. However, the resolution calculus is not complete for all forms of logic, such as modal
logic or intuitionistic logic, and it can also suffer from the problem of combinatorial explo-
sion when dealing with large sets of clauses.

4.4 Tableau Calculus
Tableau calculus, also known as tableau method or tree method, is a

formal proof system used in logic to determine the validity of a formula or argument. It
was introduced by the German philosopher and logician Georg Cantor in the late 19th cen-
tury, and has since been further developed and refined by other logicians.

The tableau calculus involves the construction of a tree-like structure called a tableau or
proof tree, where each node represents a set of formulas and each branch represents a
step in the proof. The rules of the calculus are applied to each node to determine whether
the formulas in the set are valid, contradictory, or undetermined. The calculus uses a sys-
tematic and algorithmic approach to exhaustively explore all possible ways to construct
the proof tree.

One of the main advantages of the tableau calculus is its ease of use and ability to handle
a wide variety of logical systems, including propositional logic, first-order predicate logic,
modal logic, and many others. It also provides a clear and intuitive way to understand the
structure of a proof, making it useful for both teaching and research.

However, one limitation of the tableau calculus is that it can be computationally expen-
sive for complex formulas or systems, especially when dealing with large sets of formulas
or infinite domains. Additionally, the calculus can sometimes generate proof trees that are
difficult to interpret or visualize, making it challenging to extract meaningful information
from the proof.

Overall, the tableau calculus is a powerful and versatile tool in logic that offers a system-
atic and algorithmic approach to determine the validity of a formula or argument. Its sim-
plicity and generality make it a popular choice for both theoretical and practical applica-
tions in logic and computer science.

The syntax of the tableau calculus involves the construction of a tree-like structure called
a tableau, which consists of a set of nodes connected by edges. Each node represents a
formula, and the edges represent the logical relationships between these formulas. The
tableau starts with a single node containing the negation of the formula being analyzed,
and the goal is to construct a closed tableau in which every branch contains a contradic-
tion.

97

don't define something in the text AND use a side note

open branch
An open branch in

tableau calculus is a
branch where no contra-

diction can be derived.

Thus, the original formula is a tautology. If at least one branch is open then the original
formula is satisfiable and the truth values can be derived from the open branch(es). If all
branches are open then the original formula is unsatisfiable and thus a contradiction. The
construction of the tableau has to derive every combined statement to its (atomic) literals
or negated literals.

Figure 27: Figure 4.1: α and β Expansion Rules of the Tableau Calculus (adapted from
(Hoffmann, 2009))

In a tableau, a branch is considered closed if it contains a pair of complementary literals,
i.e., a literal and its negation. This means that both the literal and its negation cannot be
simultaneously true, making the branch unsatisfiable. On the other hand, if a branch does
not contain any complementary literals then it is considered an open branch.

The semantics of the tableau calculus is based on the idea of satisfiability.

A formula is said to be satisfiable if there exists an interpretation of its variables that
makes it true. The tableau calculus aims to show that a formula is unsatisfiable by con-
structing a closed tableau in which every branch contains a contradiction. If such a
tableau can be constructed, then the formula is unsatisfiable, and its negation is a valid
formula.

In tableau calculus, the alpha (α-rules) and beta (β-rules) expansion rules are used to sys-
tematically construct and evaluate a proof tree for a given formula. Apply the alpha rules
first to any (sub-)formulas, such as double negation, conjunction, negative disjunction,
and negative implication.

Then apply the beta rules such as disjunction, negative conjunction, implication, and
equivalence (cf. fig. 4.1). The reason why the alpha rules are applied before the beta rules
in the tableau calculus for propositional logic is that it ends in a reduced tableau (less

98

closed branch
A closed branch is a
branch in a tableau where
a contradiction is derived.

branches) compared to the other way around. By using these alpha and beta rules, the
tableau calculus can systematically evaluate the satisfiability of a given formula and con-
struct a proof tree if one exists.

Figure 28: Figure 4.2: Tableau Calculus for A B C A B A C
(adapted from (Hoffmann, 2009))

For example, the formula A B C A B A C is analyzed by
tableau calculus. Firstly, the formula is negated to¬ A B C A B A C and the tree-structure of the tableau is
created using the α and β expansion rules (cf. fig. 4.2). Let’s consider the most left branch
from the negated formula (always start node) to ¬A.

It is a closed branch because it contains a pair of complementary literals A and ¬A. We
follow this procedure for all other branches from left to right. The next branch contains
also a pair of complementary literals A and ¬A and the following contains B and ¬B.
Finally, the most right branch contains C and ¬C. This means that all branches are closed
and thus the whole tableau is closed. The result is that the negated formula is a contradic-
tion and the original a tautology.

The method for predicate logic is similar to that of propositional logic, but with some
important differences. In predicate logic, instead of propositions, we have predicates,
functions, and quantifiers. To accommodate these new features, the tableau calculus
includes additional rules for handling existential and universal quantifiers. The main idea
is to create a tree-like structure, where each node represents a formula or a subformula.
Tableau calculus for predicate logic is not part of this course book.

99

Soundness and completeness are important properties of any proof system, including
tableau calculus. Soundness means that if a formula is provable in the calculus, then it
must be valid. Completeness, on the other hand, means that if a formula is valid, then it
must be provable in the calculus. In the context of tableau calculus for propositional logic,
it can be shown that the calculus is both sound and complete. This means that every prov-
able formula is valid, and every valid formula is provable using the calculus.

One of the main applications of tableau calculus is in automated theorem proving, where
it can be used to decide whether a given formula is valid or satisfiable. It is also used in
formal verification, where it can be used to verify the correctness of digital circuits, soft-
ware programs, and other systems.

Tableau calculus is also used in natural language processing, where it can be used to parse
and understand complex sentences. Additionally, it has applications in philosophy, where
it can be used to analyze the logical structure of arguments and to evaluate the validity of
philosophical claims.

SUMMARY
Propositional logic is a branch of mathematical logic that deals with
propositions, their logical relationships, and their validity.

Propositional logic involves a set of rules for constructing complex prop-
ositions from simpler ones and for determining the truth of those propo-
sitions.

Predicate logic extends propositional logic by introducing variables and
quantifiers, allowing for the expression of complex relationships
between objects and properties.

The resolution calculus is a proof technique that can be used for propo-
sitional and predicate logic. It is used to show that a statement is satisfi-
able by assuming its negation and deriving a contradiction.

It can be used to prove if a statement is a contradiction or tautology.

The tableau calculus is another proof technique that can be used for
propositional and predicate logic. The tableau calculus involves con-
structing a tree-like structure of formulas and applying a set of rules to
determine if the formulas are satisfiable or not.

100

UNIT 5
ALGORITHM AND PROGRAM VERIFICATION

STUDY GOALS

On completion of this unit, you will be able to ...

– understand the importance of program analysis in ensuring program correctness and
reliability

– know the fundamental principles of static and dynamic program analysis
– understand the different types of semantics in programming languages, including alge-

braic, operational, and denotational semantics
– understand the concept of abstract interpretation and its role in program verification

5. ALGORITHM AND PROGRAM
VERIFICATION

Introduction/Case study
Algorithm and program verification are crucial areas in computer science that deal with
ensuring that software systems are correct and perform as intended. Verification techni-
ques are employed to check the correctness of algorithms and programs, and to ensure
that they meet specific requirements and (formal) specifications. There are several
approaches to algorithm and program verification, including program analysis, algebraic,
operational and denotational semantics, and abstract interpretation. Each of these tech-
niques provides unique ways to analyze and verify programs and algorithms, with varying
levels of precision and efficiency. In this context, the learning objectives are to understand
the fundamental concepts, principles, and techniques in each of these areas, and to
develop skills in applying them to practical problems in algorithm and program verifica-
tion.
Outline
Algorithm and program verification covers program analysis (section 5.1), algebraic
semantics, operational semantics, denotational semantics (section 5.2), and abstract
interpretation (section 5.3). Program analysis involves examining the behavior of a pro-
gram, typically for the purposes of detecting errors, improving performance, or optimizing
code. Algebraic semantics is a mathematical framework for analyzing and understanding
the behavior of programs, which involves representing programs as mathematical struc-
tures and defining their behavior in terms of algebraic properties.

Operational semantics is a framework for describing the behavior of programs in terms of
operational steps or transitions, which can be used to prove the correctness of programs
or reason about their behavior. Denotational semantics involves describing the meaning
of programs in terms of mathematical objects or structures, such as functions or sets, and
provides a way to reason about the behavior of programs in a precise and formal way.
Finally, abstract interpretation is a technique for analyzing the behavior of programs by
approximating their behavior using a simplified or abstract model, which can help to
detect errors or improve performance.

Overall, these topics are all related to the goal of making programming more reliable,
secure, and efficient by providing formal methods for reasoning about programs. Each
topic brings a different set of techniques and tools to the table, and understanding them
can help programmers write better code and create more robust software systems.

102

program analysis
Program analysis is the
process of analyzing com-
puter programs to deter-
mine their correctness,
security, performance,
behavior, and other prop-
erties.

5.1 Program Analysis
Program analysis is a vital process for ensuring the correctness and reliability of software
systems. It involves examining the code of a program to identify potential issues and bugs,
as well as to ensure that the program behaves as expected. In the modern world, where
software plays an essential role in almost every aspect of our lives, program analysis has
become more important than ever before. It helps us detect errors before they cause sig-
nificant damage, ensures compliance with regulations, and enhances the overall perform-
ance of software systems. This article will delve into the various techniques and
approaches used in program analysis and their importance in ensuring the quality of soft-
ware.

There are several types of program analysis, which are used to extract information about
the behavior of programs.

• Static Analysis: This type of analysis involves examining the source code of a program
without actually executing it. It is often used to detect errors, security vulnerabilities,
and other types of issues before the program is even compiled or run.

• Dynamic Analysis: This type of analysis involves executing a program with specific
inputs and observing its behavior. It is often used to find errors, performance bottle-
necks, and other issues that can only be detected at runtime.

• Symbolic Execution: This is a form of static analysis that involves executing a program
with symbolic inputs instead of concrete ones.
It is often used to automatically generate test cases and to find path conditions that
may lead to errors.

• Model Checking: This is a type of formal verification that involves checking whether a
model of a system meets a set of desired properties.
It is often used to verify hardware designs and protocols.

• Data Flow Analysis: This is a type of static analysis that involves tracking the flow of data
through a program. It is often used to detect security vulnerabilities and to optimize
code.

Static analysis involves examining the source code or intermediate representation of a
program to detect potential errors or defects. The main goal of static analysis is to identify
possible issues that could arise during runtime and to ensure the correctness, reliability,
and security of a program.

Static analysis can be performed at different levels of abstraction, including syntax, con-
trol flow, data flow, and program semantics. It relies on various techniques such as
abstract interpretation, type checking, constraint solving, model checking, and theorem
proving. These techniques can be automated to analyze large and complex software sys-
tems, and they can also be customized to meet specific requirements. One of the main
advantages of static analysis is that it can detect issues early in the development process,
before the code is executed, which can save time and resources.

It can also be used to enforce coding standards, improve code quality, and optimize pro-
gram performance.

103

The following examples are introducing static analysis on simple programs.

int main() {
 int x = 1;
 x = x + 2;
 return x;}

Here, the static analysis would perform constant propagation to determine that the value
of x at the end of the program is 3, and would also detect that there are no undefined
behavior or null pointer dereferences.

public class MyClass {
 private int x;

 public void setX(int value) {
 x = value; }

 public int getX() {
 return x; }
}

Here, the static analysis would perform data flow analysis to determine that the getX
method always returns the value of x, and that the setX method always sets the value of x.

def foo(x):
 if x > 0:
 return x + 1
 else:
 return x - 1

Here, the static analysis would perform control flow analysis to determine that the func-
tion returns either x+1 or x-1 depending on whether x is greater than 0 or not, and that
there are no undefined variables or function calls.

On the other hand, dynamic analysis refers to the analysis of a program while it is execut-
ing. This method of analysis is used to evaluate the behavior of a program in different sit-
uations and identify potential issues.

Dynamic analysis is performed using a variety of techniques, such as code instrumenta-
tion, debuggers, and profilers.

One example of dynamic analysis is runtime debugging. This involves running a program
in a debugger, which allows the programmer to pause the program’s execution at any
point, examine the current state of the program, and step through the code one instruc-
tion at a time. By observing the program’s behavior in real-time, the programmer can
identify bugs and issues that may not be apparent from a static analysis of the code.
Another example of dynamic analysis is profiling. Profiling involves collecting data on a

104

program verification
Program verification is
the process of ensuring
that a computer program
satisfies its specification
and behaves correctly for
all possible inputs.

Hoare logic
Hoare logic is a formal
system for reasoning
about the correctness of
computer programs, by
specifying preand post-
conditions of program
fragments and using
inference rules to derive
the validity of these con-
ditions.

program’s execution, such as how much time is spent on each function call, how often cer-
tain code paths are executed, and how much memory is used. This data can be used to
identify performance bottlenecks, memory leaks, and other issues that may impact the
program’s performance. For instance, suppose a developer wants to optimize the perform-
ance of a website.

They could use a profiler to collect data on the website’s execution and identify which
parts of the code are causing slowdowns. By analyzing the profiling data, they could then
make changes to the code to improve its performance, such as optimizing frequently exe-
cuted functions or reducing the amount of memory used by the program.

The program verification is the process of formally proving that a program meets its
intended behavior and specification. It involves rigorous analysis of the code to ensure
that it satisfies certain properties or constraints.

The goal of program verification is to increase the reliability and safety of software by
detecting and eliminating errors before the program is executed. There are several techni-
ques used in program verification, including formal methods, testing, and model check-
ing. Formal methods use mathematical logic to prove the correctness of a program, while
testing involves running the program with different inputs to identify bugs and errors.
Model checking involves verifying a finite state machine model of the program to check
whether it satisfies certain properties.

Program verification is important in safety-critical applications such as avionics, medical
devices, and transportation systems. It is also used in security-critical applications such as
cryptographic protocols and secure communication systems. By ensuring that a program
is free of bugs and errors, program verification can help to prevent disasters and save
lives.

Hoare logic, also known as Floyd-Hoare logic, is a formal system for reasoning about the
correctness of computer programs. It was developed by Tony Hoare and Robert Floyd in
the late 1960s as a way to formally verify the correctness of computer programs, specifi-
cally for imperative programs. The logic is based on a set of axioms and inference rules
that allow us to make statements about the behavior of programs. Hoare logic is widely
used in program verification and has been instrumental in the development of tools for
automatic program verification.

Hoare logic is a formalism based on predicate logic that enables mathematical statements
about programs to be formulated and proved. Alternatively interpreted, these rules
describe the semantics of the programming language and its constructs. This form of
semantics description is referred to as axiomatic semantics. Since this language is Turing-
complete, the concepts can at least in principle be transferred to all other programming
languages.

105

The basic building block of Hoare logic is the Hoare triple of the form P S Q : If the con-
dition P holds and the program S is executed, then the condition Q holds subsequently.
So, P describes a precondition and Q a post-condition of the program S. Logical rules are
formulated based on this. A rule AB means that we can derive that B also holds from A. For
the empty program skip, the following rule obviously applies to any condition P :

P skip P
The meaning of an assignment x:=E is described by the rule

P E/x x:=E P
where P E/x describes the condition P when every free occurrence of x has been
replaced by E. For example, if we execute the command x:=y+1 and want to ensure thatx has the value 5 afterwards, we must ensure that y + 1 has the value 5 beforehand, i.e.,y + 1 = 5 x:=y+1 x = 5 .

As in this example, in practical applications, we usually assume which property should be
fulfilled in the end and derive the property required at the beginning from it.

For the composition of instructions, the corresponding rule requires two assumptions,
unlike the two previous rules: P S1 Q Q S2 RP S1;S2 R
To be able to apply these and the other rules, occasionally we need to adjust a pre-condi-
tion or post-condition as follows:P1 P2 P2 S Q1 Q1 Q2P1 S Q2
The meaning of an IF statement is described by the following rule: {B ∧ P}S{Q} {¬B ∧ P}T{Q}
{P}if B then S else T endif{Q} B ∧ P S Q ¬B ∧ P T QP if B then S else T endif Q
For giving only the general idea of Hoare logic, we skip, the remaining rules. It is here more
important to know for what it is used and what is the purpose and general procedure.

Finally, there are various tools for program analysis that are used to verify the correctness
of software, detect bugs and vulnerabilities, optimize performance, and more. Some com-
mon examples of program analysis tools include: • Static analyzers: These are tools that
analyze the source code of a program without actually executing it. They can detect poten-
tial issues such as buffer overflows, null pointer dereferences, and race conditions by
examining the program’s control flow and data flow.

106

• Dynamic analyzers: Unlike static analyzers, these tools execute the program and
observe its behavior at runtime. They can detect issues such as memory leaks, resource
leaks, and incorrect locking by monitoring the program’s memory usage, input/output
behavior, and more.

• Profilers: These tools measure the performance of a program by monitoring its execu-
tion time, memory usage, and other metrics. They can help identify bottlenecks and
hotspots in the code that can be optimized for better performance.

• Model checkers: These tools verify that a program meets a set of formal specifications
or requirements. They can detect issues such as deadlocks, livelocks, and violation of
safety properties.

• Fuzzers: These tools generate random or mutated inputs to a program to test its robust-
ness and resilience against unexpected inputs.

• Decompilers: These tools can generate high-level code from compiled binaries or
machine code, allowing developers to analyze and understand the behavior of third-
party libraries or legacy code.

Overall, program analysis tools can be an essential part of the software development proc-
ess, helping to ensure the correctness, performance, and security of software.

5.2 Algebraic, Operational and
Denotational Semantics
Syntax and semantics are two essential building blocks for describing programming lan-
guages. Syntax deals with which character strings are valid sentences (programs) of the
language. Syntax includes vocabulary (words) and grammar. Semantics describes what
the meaning of a valid sentence (program) should be. For programming languages, this
means: What is the behavior of the program when executed? Syntax also defines the struc-
ture of a sentence, usually a syntax tree, and explains how to get from a character string to
the syntax tree. A semantics describes how to give meaning to this syntactic structure, i.e.:
What is the meaning of each construct? How to derive the overall meaning from the indi-
vidual parts? The syntax and semantics of many programming languages are standardized
(C, C++, Java, etc.). For defining the syntax, formal techniques are routinely used in prac-
tice: context-free grammars. However, most of these standards describe the behavior of
language constructs and their interactions only in natural language, mostly in English,
often only using concrete examples. For extensive programming languages, it is almost
impossible to define all possible combinations unambiguously and still guarantee consis-
tency in this way. Therefore, there are formal, i.e. mathematical, description techniques
for semantics, which are the topic here.

In simple words, “the semantics of a programming language describes the relationship
between the syntax and the model of computation.” The formal semantics of a program-
ming language is the handbook for the engineer who has to understand not only how to
use the language but how it works.

107

Algebraic semantics
Algebraic semantics is a

formal method for defin-
ing the meaning of pro-

gramming language con-
structs using algebraic

equations.

Operational semantics
Operational semantics

defines the meaning of a
program by specifying
how its execution pro-

ceeds on a machine.

It provides a rigorous specification of how the programs are executed, which reveals the
ambiguities and subtleties hidden behind the language used in the programming man-
uals, but which usually appear in practice.

Semantics is concerned with the interpretation or understanding of programs and how to
predict the outcome of program execution. The semantics of a programming language
describes the relationship between the syntax and the model of computation. Semantics
can be thought of as a function that maps syntactical constructs to the computational
model (syntax computational model).

There are several widely used techniques (algebraic, operational and denotational) for the
description of the semantics of programming languages.

The key purpose of algebraic, operational, and denotational semantics is to provide a
mathematical framework for understanding the meaning of computer programs. A
semantic description in prose, like in most language standards, may be easier, but it can-
not prevent ambiguities, misunderstandings, or contradictions. In contrast, there are
advantages to mathematical descriptions of semantics. Let’s take a look at the different
approaches using the example program z := x; x := y; y := z.

Algebraic semantics is concerned with representing the meaning of a program in terms of
algebraic equations. It is a formal method that defines the meaning of programming lan-
guage constructs using mathematical equations or axioms. It involves the use of algebraic
structures such as sets, functions, and equations to describe the behavior of programming
language constructs. The idea is to break down the program into smaller components and
then define equations that describe how those components relate to one another. For
example, the meaning of a program might be defined in terms of the meanings of its indi-
vidual statements, with equations that describe how those statements combine to pro-
duce the overall behavior of the program.

Operational semantics, on the other hand, is concerned with defining the meaning of a
program in terms of its execution on a computer. It involves the use of operational rules or
transition rules that describe the behavior of a program step-by-step. The idea is to define
a set of rules that describe how the program behaves as it runs. For example, a rule might
be defined that describes how a particular statement modifies the state of the program.
Operational semantics can be used to specify the dynamic behavior of programming lan-
guages and can help in analyzing and verifying the correctness of programs.

Operational semantics describes the semantics of z := x; x := y; y := z by defining how
the program should be executed: A sequence of two statements separated by ‘;’ executes
the individual statements one after the other. An assignment of the formV ariable: = Expression first evaluates the expression to a value and then assigns that
value to the variable. For a state x 5, y 7, z 0 , which assigns the values 5, 7, and
0 to variables x, y, and z, the following evaluation sequence results:

108

Denotational semantics
Denotational semantics is
a formal approach to
defining the meaning of
programming language
constructs in terms of
mathematical objects and
functions.

 z: = x; x: = y; y: = z, x 5, y 7, z 0x: = y; y: = z, x 5, y 7, z 5y: = z, x 7, y 7, z 5x 7, y 5, z 5
Denotational semantics takes a more abstract approach to defining the meaning of a
program. It is a formal method that defines the meaning of programming language con-
structs in terms of mathematical objects or functions. It involves the use of mathematical
functions called denotations that map programs to mathematical objects, such as sets or
functions. It is concerned with defining the meaning of a program in terms of its effect on
mathematical objects or structures. For example, the meaning of a program might be
defined in terms of the function it computes, or in terms of a set of mathematical relations
that hold between the program’s input and output. Denotational semantics can be used to
specify the semantics of programming languages, and can help in analyzing the behavior
and correctness of programs.

Denotational semantics only concerns itself with the effect of execution, not the individual
computational steps. Accordingly, the semantics of such a program is a function that
maps an initial state to a final state. For a sequence, the function is obtained by compos-
ing (performing in sequence) the functions of the two statements. The meaning of an
assignment is the function that changes the passed state so that the variable is assigned
the value of the expression. This results for z : = x; x : = y; y : = z in:D\lsemz: = x; x: = y; y: = z\rsem σ = D\lsemy: = z\rsem ∘ D\lsemx: = y\rsem ∘ D\lsemz: = x\rsem σ= D\lsemy: = z\rsem D\lsemx: = y\rsem D\lsemz: = x\rsem σ= D\lsemy: = z\rsem D\lsemx: = y\rsem σ z σ x= D\lsemy: = z\rsem σ z σ x , x σ z σ x y= D\lsemy: = z\rsem σ z σ x , x σ y= σ z σ x , x σ y , y σ z σ x , y σ y z= σ x σ y , y σ x , z σ x
This yields again for σ = x 5, y 7, z 0 :D\lsemz: = x; x: = y; y: = z\rsem σ = x 7, y 5, z 5
The main difference between these three approaches is the level of abstraction at which
they operate. Algebraic semantics is concerned with the details of the program’s structure,
while operational semantics focuses on the program’s execution. Denotational semantics
takes a more abstract view, defining the program’s meaning in terms of mathematical
objects or structures. Despite these differences, all three approaches share the goal of pro-
viding a rigorous mathematical framework for understanding the meaning of computer
programs. In summary, the difference between these three approaches lies in the meth-
ods used to describe the meaning of programming language constructs. Algebraic seman-
tics uses mathematical equations or axioms, operational semantics uses operational
rules, and denotational semantics uses mathematical functions called denotations.

109

abstract domains
An abstract domain is a

mathematical abstraction
used in abstract interpre-

tation to represent a set
of concrete program

states.

5.3 Abstract Interpretation
Abstract interpretation is a technique for formally verifying and analyzing the behavior of
computer programs. Its main goal is to establish the correctness of programs by systemat-
ically over-approximating their possible behaviors. It achieves this by modeling program
executions as mathematical abstractions that capture the essential features of the pro-
gram’s behavior, while ignoring details that are irrelevant to its correctness.

Abstract interpretation is particularly useful in cases where formal verification of programs
directly at the level of source code is infeasible or impractical, due to the complexity of the
program, the limited resources available, or the lack of a precise specification. In such
cases, it provides a systematic and scalable approach to program analysis that can be
used to detect errors, find bugs, and ensure program correctness.

The key advantage of abstract interpretation is that it can analyze programs at a high level
of abstraction, without having to deal with the lowlevel details of the program implemen-
tation. This makes it possible to analyze large and complex programs more efficiently than
other techniques, such as model checking or theorem proving. It also makes it possible to
analyze programs that are written in languages that are difficult to formalize or that do not
have precise semantics.

In summary, abstract interpretation is a powerful technique for verifying and analyzing the
behavior of programs. Its main goals are to ensure program correctness and to provide
insights into the program’s behavior.

It is particularly useful in cases where formal verification is infeasible or impractical, and
provides a systematic and scalable approach to program analysis.

One of the key components of abstract interpretation is the use of abstract domains. An
abstract domain is a set of abstract values that can be used to approximate the possible
values that a variable can take during the execution of a program. The choice of an appro-
priate abstract domain depends on the properties of the program being analyzed and the
type of analysis being performed.

One example of an abstract domain is the interval domain, which represents sets of inte-
gers as closed intervals, and can be used to analyze properties of integer variables in a
program. Here is an example code snippet that could be analyzed using the interval
domain:

int x = 5;
int y = 7;
if (x < y) {
 x = y + 1;
}
return x;

110

abstract operators
Abstract operators are
mathematical functions
that operate on abstract
values.

Using the interval domain, we can represent the values of x and y as intervals and track
how they change throughout the program. For example, after the first two lines, we might
represent the values as x ∈ 5, 5 , y ∈ 7, 7 .

After the conditional statement, we might represent them as x ∈ 8, + ∞ , y ∈ 7, 7 .
This tells us that x has been updated to be greater than y by at least one, and y has not
changed. Let’s take a look at the approach of abstract semantics after choosing the
abstract domain of integers. Before, the abstract interpretation framework is introduced.

The abstract interpretation framework provides a systematic way of designing and imple-
menting abstract domains for different program analysis tasks. It consists of four main
components:

• Abstract Domain: This is the set of abstract values and operations that can be used to
reason about the behavior of a program. An abstract domain is defined by a set of
abstract operators that are used to perform computations on the abstract values.

• Abstraction Function: This function maps concrete program states to abstract states in
the chosen abstract domain. The abstraction function defines the level of abstraction at
which the program is being analyzed.

• Galois Connection: This is a mathematical concept that defines the relationship
between the concrete domain and the abstract domain.
It provides a way of comparing the precision of two abstract domains.

• Widening Operator: This operator is used to accelerate the convergence of the abstract
interpretation process. It is used to merge the abstract values obtained during different
iterations of the analysis to obtain a more precise result.

The use of abstract domains and the abstract interpretation framework allows us to rea-
son about complex programs and properties that are difficult to verify using traditional
testing methods.

To apply abstract semantics to the above code snippet, we need to first choose an abstract
domain to work with. Let’s choose the interval domain, where each variable is represented
by a range of possible values. Now let’s consider an abstract input where x is in the inter-
val x ∈ 2, 6 and y is in the interval y ∈ 7, 10 . This means that the concrete values of x
and y could be any values in the given ranges.

Next, we apply the abstract interpretation rules to obtain an abstract output. In this case,
we can see that x is less than y according to the abstract input, since 2, 6 is less than7, 10 . Therefore, we can abstractly execute the if statement and set x to the intervalx ∈ 8, 11 (y + 1) since the condition is true. If the condition were false, we would set x
to the interval x ∈ 2, 6 (its original value).

So the abstract output for this code snippet, given the input described above, is that x is in
the interval x ∈ 8, 11 .

A more general description of the abstract semantics of the above code snippet: Firstly, we
define the abstract domain and abstract operations that approximate the concrete behav-
ior of the code:

111

• set the intervals of x and y in the abstract domain.
• x := y + 1: set the interval of x to be ly + 1, uy + 1 , where ly, uy is the interval of y.
• if if(x<y){s1}else{s2}: if the interval of x is less than the interval of y, then compute the

abstract semantics of s1 (here: x=y+1;;); otherwise, compute the abstract semantics of
s2 (here: skip).

• The abstract output is x ∈ ly + 1,uy + 1 when if is true, otherwise x ∈ lx, ux (its origi-
nal value).

Using this abstract domain and operations, we can compute the abstract semantics of the
code as follows:

• Let x = 5 and y = 7 be the inputs.
• Set the intervals of x to be x ∈ 2, 6 and y to be y ∈ 7, 10 .
• Check if x < y: the abstract semantics of this comparison are true for all possible

inputs.
• After abstractly executing the if statement (s1), the interval x ∈ 8, 11 because of y + 1.
• The abstract output is x ∈ 8, 11 .

Therefore, the abstract semantics of the code for the given input is x ∈ 8, 11 .

The abstract output obtained from abstract interpretation can be used to reason about
the behavior of the function in a more general and efficient way than concrete interpreta-
tion. By analyzing the abstract output, we can determine if the function is free from certain
types of errors such as buffer overflow, null pointer dereference, etc. It also helps in identi-
fying unreachable code, redundant code, and dead code. Additionally, it can help to opti-
mize the code by eliminating unnecessary computations or data.

Abstract interpretation can also provide valuable insights into the performance character-
istics of the function, such as upper bounds on running time and memory usage. There-
fore, the abstract output can be used to improve the quality and reliability of the software,
reduce the cost of testing and debugging, and enhance the overall performance of the pro-
gram.

Transferred to the example, the abstract output can be used to reason about the behavior
of the code snippet as follows. Since the abstract output tells us that the return value is x
(8), and we can conclude that the function always returns a value that is one more than y
(7). Thus, we can say that the function computes the y+1.

In abstract interpretation, soundness and completeness are two important properties that
determine the effectiveness and correctness of the analysis.

Soundness means that the analysis never produces a false positive, i.e., it never reports a
property that does not actually hold in the program. In other words, the analysis conserva-
tively approximates the behavior of the program, ensuring that all reported properties are
true. If an analysis is sound, then any error found by the analysis is a true error in the pro-
gram.

112

Completeness, on the other hand, means that the analysis never produces a false nega-
tive, i.e., it never misses a property that actually holds in the program. In other words, the
analysis is able to accurately capture all possible program behaviors, ensuring that all true
properties are reported.

If an analysis is complete, then it is guaranteed to find every error in the program.

Ideally, we want an abstract interpretation to be both sound and complete.

However, in practice, achieving both properties at the same time can be difficult, as there
is often a trade-off between precision and efficiency. A more precise analysis may be less
efficient and may take longer to run, while a less precise analysis may be faster but may
produce more false positives or false negatives.

Therefore, in practice, we often need to choose between soundness and completeness,
depending on the specific requirements and constraints of the analysis. For example, for
safety-critical systems, it is often more important to prioritize soundness and ensure that
all reported properties are true, even if this means sacrificing some completeness. On the
other hand, for other types of systems, completeness may be more important, and it may
be acceptable to have some false positives if it means finding all true properties.

SUMMARY
Program Analysis deals with techniques for analyzing programs to check
for correctness, identify potential bugs or vulnerabilities, and optimize
performance. The goal is to provide automated tools and methods that
can help programmers verify that their code works as intended and
meets certain requirements.

Algebraic, Operational and Denotational Semantics are three different
approaches to defining the meaning of programming languages.

Algebraic semantics uses mathematical structures such as algebraic
equations to define the behavior of a language. Operational semantics
focuses on the step-by-step execution of a program and defines its
meaning in terms of the states it transitions through.

Denotational semantics defines the meaning of a program in terms of its
effect on abstract mathematical objects.

113

improve natural language flow throughout the book

Abstract Interpretation is a formal method for analyzing programs that
aims to approximate their behavior without necessarily executing them.
The goal is to reason about the behavior of programs in a way that is
both sound (i.e., guarantees that the analysis is correct) and efficient
(i.e., scales well to large programs).

114

UNIT 6
ARTIFICIAL INTELLIGENCE AND MACHINE
LEARNING

STUDY GOALS

On completion of this unit, you will be able to ...

– understand the concepts of machine learning
– understand the difference between supervised and unsupervised learning
– apply linear and non-linear as well as logistic regression
– understand the structure and concepts of artificial neural networks

6. ARTIFICIAL INTELLIGENCE AND MACHINE
LEARNING

Introduction/Case study
Machine Learning (ML) grew out of Artificial Intelligence and accomplishes new capabili-
ties for computers. An important field is using ML in applications that can not be program-
med by hand (e.g. autonomous driving, handwriting recognition, natural language proc-
essing and computer vision).

Also self-customized programs, e.g. Amazon and Netflix product recommendations, are
application scenarios of ML.

ML is used in several fields of daily live. An example is the automatic recognition of identi-
ties at airports. The passport is not needed anymore and also the identity is not checked
by humans. Face recognition using a camera in conjunction with ML fulfills this task. In
other scenarios are used large data from e.g. medical records, engineering and web traffic.

Thus, an important question is “What is Machine Learning?”. Tom Mitchell defines ML as:

DEFINITION: MACHINE LEARNING
A computer program is said to learn from experience ℰ with respect to some taskT and some performance measure P, if its performance on T , as measured byP, improves with experience ℰ. (Mitchell, 1997)

Let’s take a look at a concrete scenario from IT Security. Think about your E-Mail program
that monitors which mails you mark or not mark as SPAM, and based on that learns to
filter SPAM. In this example, the classification of mails (SPAM or not) is task T, the moni-
toring of labelling mails as SPAM or not is experience ℰ and the amount of correctly classi-
fied mails is performance P.

An additional example in the area of IT Security is the classification of malware or no mal-
ware. Malware is spread over computers, network devices and distributed via different
types of networks. The detection and prevention of malware is difficult in all mentioned
areas. Nowadays, the classification by hand with around 300.000 new variants per day is
almost impossible. In conjunction with the steadily increasing number of attacks and the
mentioned variants of malware (polymorphism) approaches like signature-based antivi-
rus programs can not find unknown/new variants.

116

cite something

ML provides behavior-based approaches to identify also new variants. An introduction and
the development of this example is described in the next section. Before the deep dive
into the topic, an overview of the sections is given.

Outline
Section 6.1 gives an overview about the difference between supervised and unsupervised
learning. The terms regression and classification are also explained. Section 6.2 introdu-
ces linear and non-linear regression with one and multiple variables. Terms and topics like
gradient descent, parameters, hypothesis and cost function are part of that section. In sec-
tion 6.3, the topic classification respectively logistic regression is focused. Additionally,
how to deal with two classes versus multiple classes. Unit 6 concludes with addressing
neural networks (cf. section 6.4). Non-linear hypothesis are described and solutions using
neural networks are explained.

6.1 Supervised vs. Unsupervised Learning
Supervised learning can be summarized as “right answers are given”. This means that for
given data is already known what the correct output should look like. Thus, a relation
exists between the input and the output. Furthermore, supervised learning problems are
distinguished between regression and classification. Regression deals with predicting
results in a continuous output. Thus, input variables are mapped to a continuous function.

Classification instead deals with predicting results in a discrete output.

Here input variables are mapped to discrete categories.

117

regression
Regression predicts con-

tinuous valued outputs
and has the goal to fit

data points.

Figure 29: Figure 6.1: Regression - House Price Prediction ((Lawall, 2021) based on
ANDREW)

The difference between regression and classification will be illustrated by examples for
predicting house prices and malicious mails. A simplified scenario for regression describes
the connection between the size of houses and the house prices. Figure 6.1 illustrates col-
lected data for different sizes and resulting prices. The abscissa represents the house sizes
in square feet and the ordinate the house prices in thousand euro. Thus, a single data
point (x) displays a house price for a given house size. The price as function of size is a
continuous output. Thus, the problem belongs to regression.

For the prediction of continuous valued outputs (here price), a regression Regression
function has to be found. This function allows the prediction of prices from arbitrary sizes.
The linear regression function is not nicely fitting the data rather the non‐linear regression
function. Linear means a straight line and non-linear “curvy” lines. In general, the regres-
sion function can be calculated by using the method of least squares with given kind of
function (linear or non-linear). In this example, for the size 1300 square feet the linear
regression function predicts price 252.000 euros and the non-linear regression function
292.000 euros.

118

only black text!!

euros

classification
Classification predicts
discrete valued outputs
and has the goal to sepa-
rate data points.

features
Feature is a measurable
property or observed
characteristic.

Figure 30: Figure 6.2: Classification - Malware in Mail Prediction (One Feature)

After regression, the classification will be introduced. Therefore, a simplified scenario for
classifying mails by size in malicious or not malicious is used. Figure 6.2 shows a data set
referring to mails that are malicious (x) or not malicious (o). In this example these two
classes are used. Generally, classification is not limited to two classes but for simplifica-
tion two are appropriate for now. In this scenario regression not works because the output
values are discrete (0 or 1). Thus, classification is used for predicting the output. For a
given mail size (*) the prediction results in malicious or not.

In that case the correct prediction is not easily recognizable. Thus, more features (e.g.
daytime) are used to classify the mail in malicious or not, cf. figure 6.3.

119

labeled
Labeling of data gives the

data informative tags.

Figure 31: Figure 6.3: Classification - Malware in Mail Prediction (Two Feature)

In figure 6.3, the black line separates data of classes not malicious (lefthand side) with
data points o from malicious (right-hand side) mails x.

The outliers at both classes are “accepted” in linear classification. Linear means it is sepa-
rated by a straight line. In the example, a new mail with specific size and daytime (*) is
predicted as not malicious because the data point is in this mentioned class. Similar to the
regression, in classification are also used non-linear classifiers.

In summary, it can be stated that regression predicts continuous valued outputs from one
or more features. The goal for regression is to fit the data points. In contrast, classification
predicts discrete valued outputs (“classes”) from one or more features and tries to sepa-
rate the data points, different classes, as much as possible. For both - regression and clas-
sification - the prediction function can be linear or non-linear. Additionally, supervised
learning deals with labeled data. This means that for given data the correct answers are
known. For example, a mail is classified by human if it is malicious or not. This information
is used for building the prediction function.

In unsupervised learning, the given data is not labeled (“right answers are not given”) and
no structure is available. Therefore, methods like cluster analysis are used. In cluster anal-
ysis given data will be grouped by commonalities. Thus, the structure can be derived by
clustering the data points by their relations. An example is the network traffic monitored
at the mirror port of a switch. The grouping into sets of network traffic can be used to find
out anomalies e.g. communication with an attackers Command and Control Server,
abnormal routes resp. computers or protocols.

120

Figure 32: Figure 6.4: Unsupervised Learning - Data Points

Figures 6.4 and 6.5 illustrate the general concept of unsupervised learning.

The collected data points (.) in conjunction with two features are represented in figure 6.4.
There are given no labels for the output values and no structure, only the raw data is plot-
ted. After using a cluster algorithm, the data points are structured into clusters. In figure
6.5 are represented eight clusters in different colors (cf. legend 1 to 8). For example, cluster
8 (top left) represents communication to Command and Control Servers, cluster 3 (right
side) the usage of abnormal protocols and cluster 5 (light blue) communication to abnor-
mal computers.

121

Figure 33: Figure 6.5: Unsupervised Learning - Cluster Analysis

In summary, it can be stated that unsupervised learning gives the possibility to derive
structure from unlabeled data. The structure can be accomplished e.g. by cluster analysis
using relations of features of the data points. The resulting groups can be analyzed to
know what is represented by a specific group.

6.2 Linear and non-linear Regression
At the beginning the univariate linear regression/regression with one variable (feature) will
be explained. Therefore, the known regression problem house prices is reused. The data
points in figure 6.1 can be also represented in table format, cf. table 6.1.

The table is used to establish notation for developing the model representation.

Table 7: Table 6.1: Training Set of House Prices

Size in feet2 x Price in k euros y
450 100

600 150

610 210

122

hypothesis
Hypothesis in general is
used for predict values or
separate classes.

cost function
Cost function gives an
overall difference value
comparing the hypothesis
with inputs x and actual
outputs y.

820 220

... ...

The variable x denotes the input variable/feature, y is the output variable and m the size
of the training set of data. Thus, a tuple x i , y i is called i-th training sample out of the
training data set with m samples.

Hint: i is no exponentiation, it is only an index. The X and Y denotes the set of input and
output variables with X = Y = ℝ.

The formal description for supervised learning problems isℎ:X Y
with the goal to learn a function ℎ x with given training data to predict as good as possi-
ble the output value y. The function ℎ x is therefore called the hypothesis. In linear
regression, the hypothesis is a straight lineℎθ x = θ0 + θ1 · x
with input variable x and parameters θ0, θ1. The parameters determine the line with the
gradient θ1 and the y-axis intercept θ0.

The question is how to choose these parameters to get the best results.

Therefore, the idea is to choose θ0, θ1 such that the hypothesis ℎθ x is close to y for all
training samples xi, yi with i = 1, . . . , m. The accuracy of the hypothesis can be
measured by using the cost function J θ0, θ1 .

This is calculated by using the mean squared deviations. The cost function is defined asJ θ0, θ1 = 12m∑i = 1m xi − yi 2
with the sum over the squared errors between the predicted value ℎθ x i and the actual
value y i .

The overall goal is to minimize the cost function so that the hypothesis is as close as possi-
ble to the data points (cf. fig. 6.1, linear regression function). Thus, the goal can be formal-
ized with min

minθ0, θ1J θ0, θ1
to calculate the minimum of the cost function and so the values for parameters θ0, θ1.

123

Table 8: Table 6.2: Training Set of House Prices

Size in feet2 x Price in k euros y
x 1 = 450 y 1 = 100x 2 = 600 y 2 = 150x 3 = 610 y 3 = 210x 4 = 820 y 4 = 220

Table 6.2 helps to explain the mathematics behind that. For simplification, only four data
points of table 6.1 are used and the hypothesis is ℎθ x = θ1 · x. This means that the
hypothesis starts in the center point of the coordinate system, here 0, 0 . Thus, the axis

intercept θ0 = 0 and the goal is simplified to minθ1 J θ1
with J θ1 = 12m∑i = 1m ℎθ x i − y i 2 = 12m∑i = 1m θ1 · xi − yi 2
The number of training samples x i , y i equals m = 4. To calculate the cost functionJ θ1 , the parameter is fixed to θ1 = 1 for the first try.J θ1 = 12m∑i = 1m ℎθ x i − y i 2 = 18 3502 + 4502 + 4002 + 6002= 105 . 625
In second try, the parameter is fixed to θ1 = 2.J θ1 = 12m∑i = 1m 2 · x i − y i 2 = 18 8002 + 10502 + 10102 + 14202= 4 . 779 . 000
Thus, the hypothesis with θ1 = 1 has more accuracy in reference to the training data
because the cost value is less than with θ1 = 2. If the line would fit to all given training
data, the value of the cost function is 0, meaning there is no difference between the
hypothesis and the actual output values y. That is not every time possible with linear
hypothesis.

For finding the best fitting hypothesis, the parameters can be calculated by minimizing the
cost function J θ0, θ1 . Before starting with the minimizing step, the notation so far is sum-
marized in table 6.3.

124

gradient descent
Gradient Descent Algo-
rithm searches a mini-
mum by stepwise descent
the curve in derivative
direction.

Table 9: Table 6.3: Summary of Univariate Linear Regression Model

Hypothesis: ℎθ x = θ0 + θ1 · x
Parameters: θ0, θ1
Cost function: J θ0, θ1 = 12m∑i = 1m ℎθ x i − y i 2
Goal: minθ0, θ1J θ0, θ1

Lets dive into methods for minimizing the cost function J θ0, θ1 . The general process with
gradient descent is to start with some random values for θ0 and θ1 and keep changing
them to reduce the cost function J θ0, θ1 til ending up at a minimum. The found mini-
mum can be the global as well as a local minimum.

Figure 6.6 shows a cost function J θ0, θ1 in conjunction with the contour plot showing
different altitude. Depending on the starting assignment of θ0 and θ1, the algorithm can
end up in different minima. For example, two start configurations are located at the hill
(orange area) near to each other. The more left point ends up in the local minimum (blue
area at the left) whereas the more right point ends up in the global minimum (dark blue
area at the right). Of course, the global minimum with determined θ0, θ1 has the lowest
cost value and thereby the higher accuracy for the hypothesis.

Figure 34: Figure 6.6: Gradient Descent for Cost Function J θ0, θ1

125

need to ask for sources for all pictures in order to add that information...

The gradient descent algorithm consists of the partial derivative of the cost function and a
learning rate. The algorithm is defined asrepeat until convergence { θj = θj − α ∂∂θjJ θ0, θ1 , with j = 0, 1 }
with a learning rate α (“step length for descent”). If α is too small, the algorithm can be
slow because of only small steps. If α is too large, the algorithm can fail to converge or
even diverge (“overshooting”).

Lets come back to the example depicted in table 6.2. The hypothesis is ℎθ x = θ0 + θ1 · x
and the cost function J θ0, θ1 = 12m∑i = 1m x i − y i 2

.

The partial derivatives of the cost function are

∂∂θjJ θ0, θ1 = ∂∂θj 12m ℎθ x i − y i 2 = ∂∂θj 12m∑i = 1m θ0 + θ1 ·x i − y i 2
Thus, the partial derivative for θ0 (j = 0) is

∂∂θ0J θ0, θ1 = 1m∑i = 1m ℎθ x i − y i
and for θ1 (j = 1) ∂∂θ1J θ0, θ1 = 1m∑i = 1m ℎθ x i − y i · x i
Thus, the algorithm calculates the minimum by simultaneously updating θ0 and θ1
repeat until convergence {θ0 = θ0 − α 1m∑i = 1m ℎθ x i − y iθ1 = θ1 − α 1m∑i = 1m ℎθ x i − y i · x i
}

The resulting values for parameter θ0 and θ1 are used in the hypothesis ℎθ x to fit the data
points of the training data.

126

Multivariate regression
Multivariate Regression is
a regression with two or
more features.

Multivariate Linear Regression

Multivariate regression uses multiple features instead of one feature (x).

The mentioned example (house prices) is extended as shown in table 6.4.

More features like number of bedrooms (x2) and floors (x3) are included.

Furthermore, the following notation is introduced: the number of features is n = 3, the
input of the i-th training sample is x i and the value of feature j in the i-th training sample
is xji . For example, x 2 is the n-dimensional

vector x 2 = 60041 andx22 = 4 .
Table 23

Size in feet2 x1 Bedrooms (x2) Floors (x3) Price in k euros (y)

450 2 1 100

600 4 1 150

610 2 2 210

820 3 2 220

...

Source: Table 6.4: Training Set of House Prices - Multiple Features

The hypothesis in this example is that ℎθ x = θ0 + θ1 · x1 + θ2 · x2 + θ3 · x3.

A trick is used to generally define it: Adding an “not present” feature x0 with x0 = 1
(∀i:x0i = 1) the hypothesis can be written asℎθ x = θ0 · x0 + θ1 · x1 + θ2 · x2 + . . . + θn · xn = θT · x
with x = x0x1. . .xn ∈ ℝn + 1 and θ = θ0θ1. . .θn ∈ ℝn + 1
The additional feature x0 is the cause for the +1 in the dimension of x and θ.

The notation for multivariate linear regression is summarized in table 6.5.

127

Table 10: Table 6.5: Summary of Multivariate Linear Regression Model and Gradient
Descent

Hypothesis: ℎθ x = θT · x = θ0 · x0 + θ1 · x1 + . . . + θn · xn
Parameters: θ = θ0θ1. . .θn
Cost function: J θ = J θ0, θ1, . . . , θn = 12m∑i = 1m ℎθ x i− y i 2
Goal: minθ J θ
Gradient Descent: repeat til conv. { θj = θj − α ∂∂θjJ θ , j = 0, . .. , n }

Looking into the details, the cost function except the hypothesis is the same in compari-
son to linear regression with one feature. The hypothesis includes all features (x1, . . . , xn)
and the artificial feature (x0 = 1).

The gradient descent algorithm for multiple features (n > 1) is similar. In detail, the algo-
rithm uses the partial derivativesθj = θj − α 1m∑i = 1m ℎθ x i − y i · xji , with j = 0, . . . , n
repeat until convergence {θ0 = θ0 − α 1m∑i = 1m ℎθ x i − y i · x0iθ1 = θ1 − α 1m∑i = 1m ℎθ x i − y i · x1iθ2 = θ2 − α 1m∑i = 1m ℎθ x i − y i · x2i. . . }
Keep in mind that x0i = 1 for all i. Thus, x0i in partial derivative θ0 is only for generaliza-
tion reasons.

128

Non-linear Regression

In the example house prices, figure 6.1 shows a green non-linear line for the hypothesis.
Let us assume that the hypothesis is defined as ℎθ x = θ0 + θ1 · x + θ2 · x with x is the
size of the house. The hypothesis can be reduced to ℎθ x = θ0 + θ1 · x1 + θ2 · x2 where x1
represents values of x and x2 values of x. Thus, this problem is reduced to an already
known linear regression problem.

This is also possible if values are combined. Imagine, e.g. length (x1) and width (x2) are
features and they are combined to the house area by x1 · x2.

Thus, the non-linear hypothesis is e.g. ℎθ x = θ0 + θ1 · x1 + θ2 · x1 · x2. This can be
reduced to ℎθ x = θ0 + θ1 · x1 + θ2 · x2 with new x2 representing values of x1 · x2. The
introduction of a new variable x3 was intentionally avoided that the algorithms work as
introduced before. In general, every non-linear regression problem can be reduced by
using the mentioned mechanism.

6.3 Logistic Regression
For introducing classification, the example from figure 6.2 (malware in mail) is used again.
The classification example has two classes for malicious mails. The discrete output value y
denotes whether a mail is in class “malicious” y = 1 or in “not malicious” y = 0. The con-
cept of the hypothesis can not be assigned one-to-one to classification. The predicted val-
ues of the hypothesis ℎθ x in regression are not limited to 0 ≤ ℎθ x ≤ 1. The idea is to
formalize the hypothesis in such a way thatif ℎθ x ≥ 0 . 5, predict “y = 1”

if ℎθ x < 0 . 5, predict “y = 0”
Thus, logistic regression for classification is used that 0 ≤ ℎθ x ≤ 1. For logistic regres-
sion, the regression hypothesis ℎθ x = θTx is embedded into the sigmoid function (cf. fig.

6.7) g z = 11 + e−z resulting in

ℎθ x = g θTx = 11 + e−θTx

129

decision boundary
Decision Boundary sepa-

rates different classes and
is also called hypothesis.

Figure 35: Figure 6.7: Sigmoid Function g(z) = 1 1+e−z

How to interpret the predicted output value of the ℎθ x Lets take a look at an example
with a concrete input value x (new mail to be classified).

The input value is x = x0x1 = 1Mail Size results e.g. in predicted value ℎθ x = 0 . 8. This

value gives a probability of 80% that this mail is malicious or from the other perspective
20% that the mail is not malicious. Thus, the value represents the “probability for input
value x, parameterized by θthaty = 1”.

The decision boundary ℎθ x (hypothesis in classification) is explained using the sigmoid
function in figure 6.7. Thus, the resulting class is decided byy = 1, if ℎθ x ≥ 0 . 5 θTx ≥ 0y = 0, if ℎθ x < 0 . 5 θTx < 0
The decision between class y = 1 and y = 0 is explained by using example from figure 6.3,
taking into account the classification of malicious mails with two features. The decision
boundary (black line) is already calculated. Lets assume a linear decision boundaryℎθ x = θ0 + θ1x1 + θ2x2 = − 20 + 2x1 + x2.

Thus, predict class y = 1 if −20 + 2x1 + x2 ≥ 0 or in other words 2x1 + x2 ≥ 20.

130

If 2x1 + x2 < 20 the prediction is the other class y = 0.

The usage of non-linear hypothesis is also possible. A little change to the mail example,
the decision boundary is then a circle ℎθ x = θ0 + θ1x1 + + θ2x2 + θ3x12 + + θ4x22 as
depicted in figure 6.8. As before, the red data points represent the malicious and the blue
ones the not malicious mails.

For simplification, the boundary is ℎθ x = − 1 + x12 + x22 (θ1 = 0, θ2 = 0). As with linear
boundary function, the prediction is y = 1 if −1 + x12 + x22 ≥ 0.

Thus, predicted values fulfilling x12 + x22 ≥ 1 (outside of the circle) mean the input is classi-
fied as malicious (y = 1).

Figure 36: Figure 6.8: Non-linear Decision Boundary

After the definition of the hypothesis respectively decision boundary the cost function is
explained for classification. As in regression, the question is: how to choose parameters θ?

In logistic regression, the cost function is J θ = 12m∑i = 1m ℎθ x i − y i 2
 whereas the

main part of the equation is substituted by∑i = 1m ℎθ x i − y i 2 = ∑i = 1m cost ℎθ x i − y i . Thus, the logistic regression cost
function is defined as

cost ℎθ x , y = −log ℎθ x if y = 1−log 1 − ℎθ x if y = 0 .

131

Lets take a look at the first part of the cost function −log ℎθ x if y = 1.

During the calculation with the learning algorithm, if y = 1, ℎθ x = 1 thecost ℎθ x , y = 0 because the logarithm of 1 is equal to 0. If ℎθ x 0 thencost ℎθ x , y ∞. Thus, the learning algorithm is penalized by high cost if the predic-
tion ℎθ x = 0 but y = 1. The part −log 1 − ℎθ x if y = 0 has the characteristic that ify = 0, ℎθ x = 0 the cost ℎθ x , y = 0 because the algorithm of 1 is again 0.

The logistic regression cost function defined in sections can be written ascost ℎθ x , y = − y · log ℎθ x − 1 − y · log 1 − ℎθ x
If y = 1, the cost function costcost ℎθ x , y = − log ℎθ x and if y = 0, the cost func-
tion cost ℎθ x , y = − log 1 − ℎθ x . By that equation the cost function J θ is defined
after back substitution asJ θ = 1m∑i = 1m cost ℎθ x i − y i = − 1m ∑i = 1m y i · log ℎθ x i + 1 − y i · log 1 − ℎθ x i
Same as in regression, to find the best fitting hypothesis, the parameters θ are calculated

by minimizing this cost function J θ . By gradient descent, minθ J θ is solved by the algo-

rithm

repeat until convergence {θj = θj − α ∂∂θjJ θ= θj − α 1m∑i = 1m ℎθ x i − y i · xji , with j = 0, . . . ,n
}

The gradient descent algorithm is identical to the algorithm in regression.

The derivation is dispensed due to longer calculation. The difference is the hypothesis

with ℎθ x i = 11 + e−θT · x . Thus, table 6.6 summarizes the elements of logistic regres-

sion.

132

Table 11: Table 6.6: Summary of Linear Logistic Regression with two Classes

Hypothesis: ℎθ x = g θT · x = 11 + e−θT · x , with g z
= 11 + e−z

Parameters: θ = θ0θ1. . .θn
Cost function: J θ = − 1m ∑i = 1m y i · log ℎθ x i + 1− y i · log 1 − ℎθ x i
Goal: minθ J θ
Gradient Descent: repeat til conv. { θj = θj − α 1m∑i = 1m ℎθ x i− y i · xji , with j = 0, . . . , n}

Multi-class Classification

After classification with two classes, the question arises: how to deal with more than two
classes? This is called multi-class classification. Therefore, the example with malicious
mails is updated. The classes are not only malicious or not but instead the type of mal-
ware is introduced. The example is adapted to virus (y = 1), ransomware (y = 2) and not
malicious (y = 3).

Figure 6.9 illustrates the mentioned classes and decision boundaries. The colors depict
the labeled data points with virus (red), ransomware (blue) and not malicious mails
(green). The decision boundaries are calculated by reducing the problem from multi-class
back to binary (two classes) classification.

133

Figure 37: Figure 6.9: Multi-class Classification - Malware in Mail

The method one-vs-all uses the already known algorithm. The reduction to one-vs-all is
not dependent on the amount of classes. For every calculation of a decision boundary,
one class is chosen and all others are “labeled” as the other class. Thus, the problem is a
binary classification.

The goal is to train a logistic regression classifier ℎθc x for each class c to predict the
probability that y = c.

For example, choose the class virus. Thus, the red data points are separated from the
“green + blue” data points. Using a linear hypothesis, the result is the almost horizontal
straight line. The next step is to choose e.g. the class not malicious. Thus, the green data
points are separated from the remaining “red + blue” data points. The result is the straight
line from top left to bottom right. In the figure, it looks as the algorithm is finished because
of the separation by the two decision boundaries. This is a “false friend”. So far, only two
decision boundaries are calculated. Hint: The number of decision boundaries are equal to
number of classes. Therefore, the third straight line is resulting with choosing class ran-
somware. Thus, the blue data points are separated from the “green + red” data points. The
result is the vertical straight line on the left.

134

On a new input x, the prediction for the right class is made by selecting the class c that

maximizes the hypothesis ℎθc x . Thus, the formally written maxc ℎθc x . In the example,

the prediction can be written for the classes as vector
virusransomwarenot malicious with e.g. predicted

values for input x ℎθc x = 0 . 70 . 10 . 2 . Thus, the probability for a virus is 70%, for ransomware

is 10% and not malicious is 20%. In total, the sum has to be 100%. The prediction will
result to virus because of the maximal value ℎθ1 x = 0 . 7 with the probability of 70%.

6.4 Artificial Neural Networks
Artificial neural networks try to imitate the human brain. Many interconnected neurons
form the neural network. Figure 6.10 illustrates a single neuron of the human brain. Such a
neuron consists of input wires (dendrites) and output wires (axons). Thus, a neuron gets
electrical impulse over the dendrites, processes it internally and axons can give another
impulse to next dendrites of another neuron.

Figure 38: Figure 6.10: Neuron in Human Brain (Dhp1080, 2019)

For artificial neural networks, this concept is used to model artificial neurons.

Figure 6.11 represents the model for artificial neurons. An artificial neuron has as electrical
impulse the input values xj with j = 1, . . . , n (all features) depicted as nodes and the
dashed bias node x0 (x0 = 1). The input wires are represented as weighted edges con-
nected to the “empty” node.

135

activation function
Activation function deter-
mines if a neuron fires or

not.

The values of weights are represented by θj, also called parameters as before.

The output wire is an edge with activation function ℎθ x . The activation function in neu-
rons is the same logistic function (hypothesis) as in classification.

Figure 39: Figure 6.11: Artificial Neuron as Graph

In the example, the artificial neuron consists of

input values x = x0x1x2x3
,

weights θ = θ0θ1θ2θ3 and
activation function ℎθ x = 11 + e−θTx

Artificial neural networks are built by neurons. They are introduced by abstract example.
The first layer is called the input layer, followed by zero to many hidden layer and finally
an output layer. In figure 6.12 the layer 1 is the input layer x (x0, . . . , x3), layer 2 is a hid-
den layer (a02 , . . . , a32) and layer 3 the output layer with one node referring to ℎΘ x .
The weights are omitted in the figure for clarity.

136

matrix of weights
Matrix of weights is the
adjacency matrix of
weighted sub-graph of
the network.

Figure 40: Figure 6.12: Artificial Neural Network

In general, aij represents the activation function of neuron i at layer j of an artificial neu-

ral network. Thus, aij can be recognized as function ℎθ x in each node. The nodesa0j = 1 are the added bias nodes at each layer j. The output of the network is depicted byℎΘ x . Be aware of the difference between θ (vector) and Θ. Θ j is a matrix of weights
controlling function mapping from layer j to layer j + 1. Additionally, the input layer withxi can be written as ai1 of course without an activation function in place.

Let us take a look in detail at the example depicted in figure 6.12. At training stage, in layer
1 the input values are the training data sets with here x1, . . . , x3. In hidden layer (layer 2),
the nodes a12 , . . . , a32 are defined asa12 = ℎΘ Θ101 x0 + Θ111 x1 + Θ121 x2 + Θ131 x3a22 = ℎΘ Θ201 x0 + Θ211 x1 + Θ221 x2 + Θ231 x3a32 = ℎΘ Θ301 x0 + Θ311 x1 + Θ321 x2 + Θ331 x3
Hint: The bias node a02 = 1 is not listed.

The output node a13 is defined asℎΘ x = a13 = ℎΘ Θ102 a02 + Θ112 a12 + Θ122 a22 + Θ132 a32

137

If the artificial neural network consist of sj nodes in layer j and sj + 1 nodes in layer j + 1
then matrix Θ j is of dimension sj + 1 × sj + 1. In the example, Θ 1 is of dimension 3 × 4
with three nodes (x1, . . . ,x3) in layer 1 and three nodes (a12 , . . . , a32) in layer 2. Addi-
tionally, in layer 1 is a bias node. Thus layer 1 has 3 + 1 nodes. The schema of matrixΘ 1 can be depicted in definition of a a12 , . . . , a32 .

Reusing the example in figure 6.12, the forward propagation with concrete values is
shown. It is explained using one input data set for the input layer.

The data can be summarized by

input values x = x0x1x2x3
= 1323 ,

weight matrices Θ 1 = −10 2 3 42 2 −5 4−1 −1 4 −2 , Θ 2 = 4 −2 −3 4
The activation function for hidden and output layers is ℎΘ Θ · aij = 11 + e−Θaij . The

activation function has a matrix-vector multiplication Θ · aij as parameter value.

Let us start with the forward propagation. Input layer x respectively a 1 equals the input
vector and so needs no calculation. The hidden layer (layer 2) is calculated by using
weight matrix Θ 1 and input values xa12 = ℎΘ − 10 · 1 + 2 · 3 + 3 · 2 + 4 · 3 = 11 + e−14 = 0 . 99a22 = ℎΘ 2 · 1 + 2 · 3 − 5 · 2 + 4 · 3 = 11 + e−10 = 0 . 99a32 = ℎΘ − 1 · 1 − 1 · 3 + 4 · 2 − 2 · 3 = 11 + e2 = 0 . 12
The output node a13 is calculated by using weight matrix Θ 2 and values ai2 withi = 0, . . . , 3ℎΘ x = a13 = ℎΘ 4 · 1 − 2 · 0 . 99 − 3 · 0 . 99 + 4 · 0 . 12 = 11 + e0 . 47 = 0 . 38
Further deep dive into the topic is omitted because of required advanced mathematics.
Just for imagination and further reading the cost function J Θ for multi-class classifica-
tion problems is defined

138

Forward propagation
Forward propagation is
the calculation from input
layer to output layer.

back propagation
Back propagation is an
algorithm to train neural
networks using gradient
descent and the cost
function.

J Θ = − 1m∑i = 1m ∑k = 1K yki log ℎΘ x i k + 1 − yki log 1 − ℎΘx i k+ λ2m∑l = 1L − 1∑i = 1sl ∑j = 1sl + 1 Θj, il 2
with number of layers L, number of nodes in layer sl and number of output nodes (possi-
ble classes) K. The regularization parameter λ is used to reduce overfitting of the hypoth-
esis. Hint: regularization parameter can also be used in regression and classification. Addi-
tionally, the details of forward and back propagation in neural networks are omitted.
Forward propagation is described above. From input values x to output neuron(s) withℎΘ x , neurons in each layer process and forward regarding their activation function.

In back propagation, gradient descent is used for optimizing the weights/ parameters θj at
the edges in the neural network (or via using the weight matrices Θ j). Therefore, the
neuron(s) at the output layer are the starting point and processed through all layers
towards the input layer. In back propagation an excerpt of required elements is the cost
function J Θ , the weight matrices Θ j at layer j and the activation functions of each
neuron aij of node i at layer j. Thereafter, the neural network is ready to predict outputs y
for new entries at the input layer. In reference to sections before, the predicted output can
be the prediction for linear or non-linear regression problems or linear or non-linear clas-
sification problems (also multi-class).

After the introduction of artificial neural networks, the question arises: what are “needful”
scenarios for them? Lets take a look at an example from IT security for classifying mails. At
section 6.3 in figure 6.9, the multi-class classification problem implies two features - mail
size and daytime. The classes for predicted output are virus, ransomware or not malicious.
An adapted artificial neural network for this problem is illustrated in figure 6.13.

Figure 41: Figure 6.13: Multi-class Classification with Artificial Neural Network

139

The exemplary neural network consists of the input layer with two features x1, x2, two hid-
den layers with a12 , . . . , a32 at layer 2 and a13 , . . . , a33 at layer 3, and the output layer
with a14 , . . . , a34 representing the classes virus, ransomware and not malicious. The

bias nodes are not explicitly mentioned. Vector ℎΘ x ∈ ℝ3 with probabilities for the men-
tioned classes is used to determine which class is predicted. Therefore, the maximal value

in ℎΘ x gives the class. ℎΘ x = 010 would predict with probability of 100% the mail as

ransomware. Keep in mind that also intermediate results are possible like ℎΘ x = 0 . 30 . 10 . 6
predicting a mail as not malicious with probability 60%.

In real world scenarios, more features could be required for correct predictions.

In the example, features are e.g. mail size, daytime, sender, geographical location, and so
on. Lets assume 100 features (x1, . . . , x100) are involved and non-linear classification is
needed. Remember, non-linear classification means a non-linear classifier is used. The

used part θTx in ℎθ x = g θTx = 11 + e−θTx could be

θ0 + θ1x1 + θ2x2 + θ3x1x2 + θ4x1x3 + . . .
Thus, in non-linear logistic regression (classification), the features (n = 100) with the com-
bination of each feature with each other results to n n − 12 = 4950 features. If the combi-

nations of features are extended like x1x2x3, x12x3, x143 with “power of 3”, the resulting fea-
tures are 170.000 features.

So much combinations result in a better fitting classifier (or hypothesis in regression).
Overfitting will not be addressed. Thus, in such a scenario a neural network reduces the
effort by connecting features as needed in a graph-based neural network.

Another impressive example is image recognition in computer vision. From security point
of view, captchas are used to avoid automated brute forcing of passwords at websites. An
attacker could use automated tools to crack the password with billions of requests per
second. Captchas are used so that users have to provide user, password and solve the
captcha to avoid this attack. Captchas contain a random image with e.g. letters and num-
bers involved. Figure 6.14 depicts the randomly produced string “r49T861”. An attacker
wants to automatically recognize captchas so that the brute force attack will work again.

140

Figure 42: Figure 6.14: Captcha used in Websites at Authentication Step

Therefore, an artificial neural network can be used to recognize the written text. Let us
assume that the attacker wants to recognize fictitious numbers and letters in images
(captchas). The image e.g. is displayed in low quality with 100 × 40 pixels. Thus, 4000 fea-

tures are the input values x = pixel 1 intensitypixel 2 intensity. . .pixel 4.000 intensity . If the hypothesis consists of fea-

tures “power of 2” (e.g. x1x4, x3x189), the number of features is n = 7 . 998 . 000 ≈ 8 mil-
lion.

A neural network will be trained with different captchas using supervised learning. After
finished training step, the neural network can predict the captcha so that the text in the
image can be automatically inserted at the website for each single brute force attempt.
This example shows that machine learning is not restricted to avoid and find attacks or
attempts.

For example, intrusion detection or intrusion prevention systems look at network traffic or
behavior of computers to prevent successful attacks. The captcha example shows that
also attackers can use these techniques to successfully attack.

SUMMARY
Nowadays, artificial intelligence and machine learning are key factors to
detect or prevent cyber attacks. The shortcomings of e.g.

signature-based antivirus are overcame by such approaches. The static
comparison of known signatures of malware is reconditioned using
regression and classification. Therefore, the determination is not pro-
grammed by hand. Machine learning is the learning of a specific task by
experience (training data). Thus, arbitrary malware can be found by pre-
diction.

Supervised and unsupervised learning are different basic approaches of
machine learning. Supervised learning uses labeled data sets consisting
of input features and output values. Regression predicts continuous out-
put values whereas classification predicts discrete output values. For

141

both, linear as well as non-linear hypothesis functions are used. In
regression, the hypothesis returns a predicted output value for a given
input by using the input as parameter for the function. Classification
predicts with given input the appropriate class as output value. The
hypothesis is the decision boundary to determine the “right” class. The
returned class is predicted with a probability for all possible classes and
the most fitting (maximal probability) is chosen. In contrast to super-
vised learning, unsupervised learning learns with not labeled and
unstructured data. Data is grouped/clustered by commonalities.

Linear and non-linear regression or classification (logistic regression),
including univariate and multivariate regression, have main constituents
the hypothesis with their parameters, the cost function and a goal. In
regression, the hypothesis is constructed linear or non-linear and the
related parameters are calculated by minimizing the cost function. Thus,
the error between the prediction (hypothesis) and the actual training
output is minimal. A method for minimizing the cost function and find-
ing the parameters of the hypothesis is gradient descent. In classifica-
tion, the procedure to find the parameters of the hypothesis is the same.
There the hypothesis uses the sigmoid function to predict a probability
between 0 and 1. The goal is to find parameters for hypothesis that the
classes are separated as distinct as possible. Multi-class

classification deals with more than two classes. The only difference is
that the prediction has more classes involved, with each class having
their own probability for a specific input.

Artificial neural networks consist of neurons building a directed
weighted graph. The network has different layers reaching from one
input to arbitrary hidden til one output layer. The nodes in the graph are
the neurons with their activation function (hypothesis).

The edges represent interconnections of neurons with parameters for
neurons as weights. The neurons at the input layer represent the input
values of a network and the “last” neuron(s) the output values.

In forward propagation, the output is calculated following the directed
edges. Thus, the prediction is at the output layer differing between con-
tinuous output value (regression) and discrete value (probability of
class(es) in classification). In back propagation, the parameters
(weights) of the activation functions are optimized by minimizing the
cost function e.g. with gradient descent. The term “back” indicates the
process starts at the output layer and finishes at the input layer.

142

	Table of Contents
	Introduction
	Signposts Throughout the Course Book
	Learning Objectives

	Algorithms and Data Structures
	Algorithms, Programming Languages and Data Structures
	Graphs and Trees
	Sorting and Searching
	Algorithm Analysis

	Formal Languages and Automata Theory
	Languages and Grammars
	Regular Languages and Finite State Machines
	Context-free Languages and Pushdown Automata
	Context-sensitive Languages and Turing Machines

	Computability, Decidability and Complexity
	Computability
	Decidability and Decision Problems
	Complexity Theory
	Quantum Computing

	Logic
	Propositional Logic
	Predicate Logic
	Resolution Calculus
	Tableau Calculus

	Algorithm and Program Verification
	Program Analysis
	Algebraic, Operational and Denotational Semantics
	Abstract Interpretation

	Artificial Intelligence and Machine Learning
	Supervised vs. Unsupervised Learning
	Linear and non-linear Regression
	Logistic Regression
	Artificial Neural Networks

	Backmatter
	List of References
	List of Tables and Figures

