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Abstract. In this paper, we present our deep attention-based classi-
fication (DABC) network for robust single image depth prediction, in
the context of the Robust Vision Challenge 2018 (ROB 2018)1. Unlike
conventional depth prediction, our goal is to design a model that can
perform well in both indoor and outdoor scenes with a single parameter
set. However, robust depth prediction suffers from two challenging prob-
lems: a) How to extract more discriminative features for different scenes
(compared to a single scene)? b) How to handle the large differences of
depth ranges between indoor and outdoor datasets? To address these
two problems, we first formulate depth prediction as a multi-class classi-
fication task and apply a softmax classifier to classify the depth label of
each pixel. We then introduce a global pooling layer and a channel-wise
attention mechanism to adaptively select the discriminative channels of
features and to update the original features by assigning important chan-
nels with higher weights. Further, to reduce the influence of quantization
errors, we employ a soft-weighted sum inference strategy for the final pre-
diction.
Experimental results on both indoor and outdoor datasets demonstrate
the effectiveness of our method. It is worth mentioning that we won
the 2-nd place in single image depth prediction entry of ROB 2018, in
conjunction with IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) 2018.

? The first two authors contributed equally.
1 http://www.robustvision.net/index.php
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1 Introduction

Single image depth prediction is a challenging task that aims to recover pixel-
wise depth from monocular images, which plays an important role in many ap-
plications, such as 3D modeling, autonomous driving, and 2D-to-3D conversion.
With the prosperity of deep convolutional neural networks (CNNs), many deep
learning-based methods [1,2,3] have achieved state-of-the-art performance on
various RGB-D datasets, such as NYUv2 [4], ScanNet [5], and KITTI [6]. How-
ever, all these methods are trained individually on each dataset, which makes
models be specific to certain domains. For example, ScanNet only focuses on
indoor scenes, while KITTI considers outdoor views. The large differences be-
tween indoor and outdoor patterns limit the generalization ability of the model.
That is, a model achieves remarkable performance on one dataset but performs
poorly on the other one, as shown in Fig. 1. In this paper, we study how to make
the model robust so that it can perform well on diverse datasets.

（a） （b） （c） （d）

（e） （f）

（g） （h）

Fig. 1. Some examples on robust depth prediction. (a) and (e) are the input
images from ScanNet and KITTI, respectively. (b) and (f) are corresponding
ground truth depth maps. (c) is a depth map predicted by a model trained on
KITTI. (g) is a depth map predicted by another model trained on ScanNet. (d)
and (h) are the results predicted by our DABC model.

One challenge for robust depth prediction is how to extract discriminative
features from diverse scenes. Compared with conventional depth prediction, ro-
bust depth prediction requires one single model to perform well in both indoor
and outdoor scenes. Thus, the model should adapt to diverse scene layouts and
can tackle complex depth patterns. Another challenge is the large difference of
depth ranges between indoor and outdoor. For example, the depth range of Scan-
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Net is from 0m to 10m, while the depth range of KITTI is between 2.5m and
80m. It is worth noting that two datasets exist an overlapped depth range from
2.5m to 10m. In this range, different layouts belonging to indoor or outdoor
scenes may correspond to the same depth value, which increases the difficulty of
training models.

In this paper, we present a deep attention-based classification network (DABC)
to address these problems. In order to tackle diverse scenes, our model learns a
universal RGB-to-depth mapping from both the ScanNet and KITTI datasets.
Our model is based on a U-shape [3,7,8] structure, where skip-connections fuse
multi-scale depth cues to generate accurate and high-resolution results. To ex-
tract discriminative features, we employ a global average pooling layer and a
channel-wise attention mechanism to our model. Through the global average
pooling layer, the model can capture the channel-wise statistics of features that
represent the global information and visual characteristics of a scene. Accord-
ing to the channel-wise statistics, the attention mechanism assigns important
channels with higher weights and updates the original features. In addition, to
tolerate the significant difference of depth ranges, we formulate depth prediction
as a multi-class classification problem. By discretizing continuous depth values
into several intervals, we choose a softmax layer as the predictor. In this way,
each neuron in the last layer only needs to activate for a specific depth interval
rather than to predict the depth value in the whole depth range, which makes the
model easy to train. Further, to reduce the influence of quantization error caused
by depth discretization, we employ a soft-weighted sum inference method [9] to
obtain the final continuous predictions.

The contributions of this work can be summarized as follows:
• We present one of the first explorations on the task of robust depth pre-

diction and propose a deep attention-based classification network (DABC).
• For the task of depth prediction, we are the first to employ the channel-

wise attention mechanism, and verify the effectiveness of the attention module
on choosing scene-specific features.
• Our method achieves state-of-the-art performance on both the ScanNet and

KITTI datasets, and won the 2-nd place in the single image depth prediction
entry of ROB 2018.

2 Related Work

Metric depth prediction. Recently, many methods have achieved impressive
performance by employing CNNs to monocular depth prediction. In order to
regress the depth map from a RGB image, Eigen et al. [1] proposed a multi-
scale architecture which consists of two CNNs: the first one predicts the coarse
depth map based on global context, the second one refines the coarse prediction
using local information. Laina et al. [10] applied the residual learning [11] to
the depth prediction task and presented an encoder-decoder model with a novel
up-sampling module. In order to encourage spatial consistency in the predicted
depth map, some researchers tried to formulate a structured regression problem
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by combining CNNs with Conditional Random Fields (CRFs). For instance, Liu
et al. [2] proposed an end-to-end network by incorporating a CRF loss layer into
a generic superpixel-wise CNN. The spatial relation of adjacent superpixels can
be modeled by a CRF, and the parameters of CNN and CRF can be jointly
optimized. Instead of just refining the coarse predictions, Xu et al. [12] designed
a novel continuous CRF framework to merge multi-scale features derived from
CNN inner layers.

Aside from regressing the exact depth values from a RGB image, Cao et
al. [13] recast depth estimation as a pixel-wise classification problem to classify
the depth range for each pixel. Further, Li et al. [9] proposed a soft-weighted-
sum inference strategy to replace the hard-max inference used in [13] to obtain
continuous depth predictions. However, the above models are only trained on
indoor and outdoor datasets individually, which greatly limits the application
of these models. In contrast, we propose an attention-based classification net-
work which is adaptive for a variety of scenes and achieves the state-of-the-art
performance on the ScanNet and KITTI datasets with a single parameter set.

Relative depth prediction. Some recent works [3,14] focus on recovering
depth ordering from unconstrained monocular images instead of predicting the
metric depth value directly. The idea behind relative depth prediction is sim-
ilar to robust depth prediction, because they all need models to be applicable
to diverse unconstrained natural scenes. However, when using a model trained
on relative depth data to predict metric depth, a transformation function that
converts relative depth values to metric depth values should be provided for
each dataset separately, which reduces the practicality of the model. Thus, a
model that can directly estimate metric depth from unconstrained images is
more practical and effective.

Attention mechanism. Recently, attention mechanism has been successfully
applied to various tasks, such as image classification [15,16], monocular depth
prediction [17,18], and semantic segmentation [19,20]. Kong et al. [18] presented
a pixel-wise attentional gating unit to learn spatial allocation of computation in
dense labeling tasks. Xu et al. [17] proposed an attention-based CRF where a
structured attention model [21] is applied to regulate the feature fusion across
different scales. Unlike above methods, we focus on how to extract more discrim-
inative features for diverse scenes with a channel-wise attention mechanism.

3 Method

In order to use a single model to estimate the depth map from an unconstrained
image, we present a deep attention-based classification network (DABC) for
robust depth prediction. As illustrated in Fig. 2, we reformulate robust depth
prediction as a classification task and learn a universal RGB-to-depth mapping
that is suitable for both indoor and outdoor scenes. In the following, we first
describe the architecture of our DABC model. Then we discuss our discretization
strategy and explain the technical details of learning and inference stages.



Attention-based classification networks for depth prediction 5

3.1 Network Architecture

As shown in Fig. 2, our deep attention-based classification model consists of
three parts: feature extraction module, multi-scale feature fusion module, and
prediction module. The feature extraction module is built upon ResNeXt-101
(64×4d) [22]. To make it suitable for the task of depth prediction, we first re-
move the last pooling layer, fully-connected layer and softmax layer. We divide
ResNeXt into 4 blocks according to the size of the output feature maps. To
capture global information, we attach a 1×1 convolution layer, global average
pooling layer and unpooling layer to the top of the modified ResNeXt. Specifi-
cally, the 1×1 convolution layer is used to reduce the dimension of the feature
maps from block4, and the global pooling layer is used to encode the global
context features. The unpooling layer is used to restore the spatial resolution of
the global features.

Due to max pooling and convolutional strides in ResNeXt, the size of final
feature map is 1/32 of the original input image. Inspired by [3,20,23], we use a
progressive refinement strategy, which aggregates high-level semantic features
and low-level fine-grained features layer-by-layer, to generate high-resolution
predictions. In each feature fusion block, we first use a feature transfer block
(FTB) [20] to transfer the features from ResNeXt suitable for the task of depth
prediction. The 1×1 Convolution layer in FTB is used to unify the dimension
of features. Then, two groups of features with different information are merged
via an attention-based feature aggregation block (AFA) [20]. At the beginning of
each AFA block, two groups of features are concatenated to produce a channel-
wise attention vector that represents the importance of each channel in low-level
features. Based on the attention vector, the low-level features are selectively
summed to the high-level features to generate final outputs at the current scale.
Thus, the channel-wise attention mechanism is encompassed by the AFA block.
After the AFA, another FTB and a bilinear upsampling operation are stacked to
enlarge the spatial resolution of the fused features. More specifically, the chan-
nel number of AFA connected to Block4 is 512 and the others are 256. In order
to produce final score maps, we attach a prediction module to the end of the
fusion module, which consists of a dropout layer, a 3×3 convolution layer and a
softmax-loss layer.

3.2 Depth Discretization Strategy

To formulate depth prediction as a classification task, we discretize continuous
depth values into several discrete bins in the log space. Assuming that the depth
range is [α, β], the discretization strategy can be defined as

l = round ((log10 (d)− log10 (α))/q) ,
q = (log10 (β)− log10 (α))/K,

(1)

where l is the quantized label, d is the original continuous depth value, K is the
number of sub-intervals and q is the width of the quantization bin. Specifically,
[α, β] and K are set to [0.25, 80] and 150, respectively.
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(e)  AFA: Attention-based Feature Aggregation

(d)  FTB: Feature Transfer Block
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(a)  Proposed network
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Fig. 2. Illustration of our DABC model for robust depth prediction.
(a) is our proposed network. (b) shows the process of multi-scale feature fusion.
(c) is a prediction module to generate score maps. (d) is a feature transfer block.
(e) is an attention-based feature aggregation block to fuse multi-scale features.
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3.3 Learning and Inference

At the training stage, we use the pixel-wise multinomial logistic loss function to
train our DABC network:

L = − 1

N

N∑
i=1

K∑
D=1

1
{
y(i) = D

}
log (P (D|ci)), (2)

where N is the number of valid training pixels in a mini-batch and y(i) is the

ground truth label of pixel i. P (D|ci) = eci,D
/∑K

d eci,d represents the probabil-

ity of pixel i labelled with D, and ci,d is the output from the last 3×3 convolution
layer.

At the inference stage, we use a soft-weighted sum inference strategy [9] to
compute final predictions after obtaining the score maps from the softmax layer.
For clarity, we use pi to denote the score vector of pixel i. The depth value of
pixel i can be calculated as:

d̂i = 10w
Tpi , wj = log10 (α) + q ∗ j, (3)

where d̂i is the predicted depth value of pixel i, w is the weight vector of bins,
and wj is j-th element of w.

4 Experiments

In this section, we evaluate our DABC model on two publicly available RGB-D
datasets: ScanNet [5] and KITTI [24]. We first introduce the two datasets and the
evaluation metrics in this challenge. Then we give the details about our experi-
mental setting. Finally, we compare our DABC model with the official baseline
method and other outstanding methods that participate in this challenge.

4.1 Datasets and Metrics

Datasets. The ScanNet [5] is a large-scale RGB-D dataset for indoor scene
reconstruction, which contains 2.5M RGB-D images in 1513 scenes. Original
RGB images are captured at a resolution of 1296×968 and depth at 640×480
pixels. Specially, the resized RGB images of the resolution 640×480 are also
officially provided for the robust depth prediction task.

The KITTI [24] contains street scene RGB-D videos captured by cameras
and a LiDAR scanner. The resolution of RGB-D pairs is about 376×1242. In
the KITTI dataset, less than 5% pixels of the raw depth map is valid, thus we
fill in the missing pixels to produce dense ground truth depth maps for training
via the “colorization” algorithm [25].
Evaluation Metrics. In order to measure the performance of our model, we
introduce several evaluation metrics used in this robust vision challenge:

• The mean relative absolute error (absRel): 1
Q

∑Q
i=1
|di−d̂i|

di
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• The mean relative squared error (sqRel): 1
Q

∑Q
i=1

(di−d̂i)
2

d2
i

• The mean absolute error of the inverse depth (imae): 1
Q

∑Q
i=1 |pi − p̂i|

• The root mean squared error of the inverse depth (irmse):√
1
Q

∑Q
i=1 (pi − p̂i)

• Scale invariant error (SI):

1
Q

∑Q
i=1

(
di − d̂i + α

(
d, d̂
))2

,

α
(
d, d̂
)

= 1
|Si|

∑
j∈Si

(
d̂j − dj

)
• Scale invariant logarithmic error (SILog):

1
Q

∑Q
i=1

(
log di − log d̂i + α′

(
d, d̂
))2

,

α′
(
d, d̂
)

= 1
|Si|

∑
j∈Si

(
log d̂j − log dj

)
where di and d̂i denote the ground truth and estimated depth for pixel i, Q is the
total number of valid pixels in the test images, pi and p̂i represent the inverse of
di and d̂i, respectively. Si is a set of pixels that belong to the same image with
pixel i.

4.2 Experimental Setting

We implement our model using the public available MatConvNet [26] Library on
a single Nvidia GTX 1080 GPU. The feature extraction module is initialized
using ResNeXt-101 (64×4d), and the others are initialized with simple random
Gaussian initialization. Data augmentation is performed on-the-fly during train-
ing. Specifically, horizontal flipping and randomly scaling are applied, and the
default input resolution of our model is 256×320. We train our model using SGD
with a mini-batch size of 8. The momentum and weight decay are set to 0.9 and
0.0005, respectively. We train our model with an initial learning rate of 0.001 for
30 epochs, and divide it by 10 for another 20 epochs.

During training, for ScanNet, we first downsample images to 240×320, and
then pad the downsampled images to 256×320 with zeros. For KITTI, we first
downsample images to 182×612 to make the spatial resolution of images consis-
tent with that of the ScanNet. We then randomly crop the images to the size of
182×320 by keeping the height constant, followed by padding the cropped im-
ages to 256×320 with zeros. To train our model, we use 37K officially provided
training data. More specifically, the number of images from KITTI and ScanNet
are 17K and 20K, respectively.

At the testing phase, we first downsample the input image to half. If the
width of the image is larger than 320, we split it to two parts by keeping the
height constant and the width of 320. Then, the image or image slices are padded
with zeros to form the inputs of our model. After inference, we discard the invalid
regions of the output depth maps and perform a bilinear interpolation to get our
final predictions. Noted that, for image slices, the depth values of overlapped
regions are obtained by averaging the predictions of depth slices.
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4.3 Experiment Results

In this section, our DABC model is compared with the official baseline method
and the other three outstanding methods that participate in this challenge. Ta-
ble 1 and Table 2 show the results of the five models: 1) Baseline: an official
baseline model based on GoogLeNetV1 [27]; 2) DORN : a deep ordinal regres-
sion network proposed by Fu et al. [28]; 3) CSWS : a classification model with
soft-weighted-sum inference strategy trained by Li et al. [9]; 4) APMOE : a CNN
model with pixel-wise attentional gating units proposed by Kong et al. [18]; 5)
DABC : our proposed deep attention-based classification network. As shown in
Table 1 and Table 2, the errors of our DABC model are significantly lower than
that of the official baseline model about by 40% ∼ 70% on both the KITTI and
ScanNet. Compared with other methods, our DABC model achieves the first
place on the ScanNet and the third place on the KITTI. Finally, our DABC
model won the 2-nd place in single image depth prediction of ROB 2018. Some
qualitative results are shown in Figure 3 and Figure 4, we observe our model
well captures local image details and yields predictions of high visual quality in
both outdoor and indoor scenes.

5 Discussion

In this section, we conduct a in-depth analysis of our DACB model. In following
experiments, we use the ResNext-50 (32x4d) to replace the original ResNext-
101 (64x4d) in our DABC model for fast training. Unless otherwise stated, the
models are trained with the mixed ScanNet and KITTI data. First, we compare
the DABC model against a conventional regression network. Second, we evaluate
the effectiveness of the attention module in choosing discriminative features.

Table 1. Performance on the KITTI benchmark.

Method SILog sqRel absRel irmse

Baseline 33.49 24.06 29.72 35.22
CSWS [9] 14.85 3.48 11.84 16.38
APMOE [18] 14.74 3.88 11.74 15.63
DORN [28] 13.53 3.06 10.35 15.96
DABC 14.49 4.08 12.72 15.53

5.1 Effect of multi-class classification

In order to verify the effectiveness of multi-class classification, we compare our
model against a conventional regression network. In this experiment, the regres-
sion network is built upon the same basic structure as our DABC model and
trained with a typical `2 loss function. Note that the attention module of the
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Table 2. Performance on the ScanNet benchmark.

Method SI sqRel absRel irmse imae

Baseline 0.05 0.14 0.25 0.21 0.17
APMOE [18] 0.03 0.10 0.20 0.16 0.13
CSWS [9] 0.02 0.06 0.15 0.13 0.10
DORN [28] 0.02 0.06 0.14 0.13 0.10
DABC 0.02 0.06 0.14 0.13 0.10

original structure is removed in the regression network, because we find this
module hinders the convergence in practice. The experimental results are shown
in Tables 3 and 4. Specially, the all metrics in Table 3 are multiplied by 100
for easy comparison. In particular, “Classification” refers to our DABC model,
“Regression” refers to the regression model, and the symbol “*” indicates that
the marked model is trained and evaluated on the same dataset.

Fig. 3. Qualitative results of our DABC model on the KITTI validation dataset:
original color images (top row), ground truth depth maps (center), and predicted
depth maps (bottom row). Color indicates depth (purple is far, yellow is close).

From Tables 3 and 4, we observe that our DABC model is significantly better
than the regression model on both the KITTI and ScanNet datasets. By com-
paring “Regression” against “Regression*”, we find that training on the mixed
data harms the accuracy of the regression model on each individual dataset.
However, according to the results of “Classification” and “Classification*”, we
do not observe performance degradation, which suggests our DABC model can
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Fig. 4. Qualitative results of our DABC model on the ScanNet validation
dataset: original color images (top row), ground truth depth maps (center), and
predicted depth maps (bottom row). Color indicates depth (red is far, blue is
close). The invalid regions in ground truth depth maps are painted black.

better adapt to the mixed data and avoid the mutual interference of different
datasets.

Further, we draw the confusion matrices of our DABC model and the re-
gression model on both the KITTI and ScanNet datasets. Here, each element
(i, j) in the confusion matrix represents the empirical probability of each pixel
known to be label i but estimated to be label j. In Figure 5, we can observe a
clear diagonal pattern in the matrices of our DABC model, which means that
the accuracy of our DABC is higher than that of the regression model on the
two datasets. Specially, we highlight the performance of each model on the over-
lapped depth ranges of two datasets, i.e. i ∈ [60, 95]. From Figure 5(e)∼(h), we
find that our DABC model performs better than the regression model on this
range. It indicates that our DABC model can tackle the complex depth patterns
well in these easily-confusing depth ranges.

We believe that the outstanding performance of DABC model in robust depth
prediction benefits from recasting depth prediction into a multi-class classifica-
tion problem. When facing the complex depth patterns from indoor and outdoor
scenes, in regression network, the last neuron should produce accurate activa-
tions for the whole depth patterns; but in the classification network, each neuron
in last layer only corresponds to a specified depth interval and activates for some
special depth patterns, which makes the classification network easy to train and
to achieve better performance. Specially, in the overlapped depth range, the clas-
sification network shows stronger robustness. In practice, for each neuron of the
last layer, if the depth value of a sample is far from the specified depth interval
of this neuron, this sample is usually a easy negative example with a negligible
loss contribution to the training of this neuron. Thus, the samples from outdoor
scenes can hardly influence the training of the neurons that correspond to the
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indoor depth range, and vice versa. This is why our model can adapt to the
mixed data and avoid the mutual interference of different datasets.

Table 3. Comparison between classification and regression on the ScanNet
validation dataset.

Method sqRel absRel irmse imae

Regression* 5.93 17.05 18.65 11.84
Regression 6.51 17.47 18.65 11.73
Classification* 4.33 12.84 16.05 8.88
Classification 4.34 12.67 15.93 8.71

Table 4. Comparison between classification and regression on the KITTI vali-
dation dataset.

Method SILog sqRel absRel irmse

Regression* 14.55 2.26 9.33 11.45
Regression 14.49 2.28 9.44 11.63
Classification* 13.42 1.92 7.86 9.72
Classification 13.34 1.95 8.01 9.58

5.2 Effect of attention mechanism

In order to reveal the effectiveness of the channel-wise attention mechanism,
we conduct an ablation study. Results are shown in Tables 5 and 6. Specially,
each metric in Table 5 is multiplied by 100 for easy comparison. In these tables,
“DABC w/o attention” represents a DABC model that ignores the attention
vectors and directly sums the multi-scale features in each fusion block. Compared
with “DABC w/o attention”, our DABC model makes a significant improvement
on the ScanNet dataset and achieves comparable performance on the KITTI
dataset.

Table 5. Evaluation of the attention mechanism on the ScanNet validation
dataset.

Method sqRel absRel irmse imae

DABC w/o attention 4.93 13.50 16.37 9.073
DABC 4.34 12.67 15.93 8.71
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(g)

(a) (b)

(c) (d)

(e) (f)

(h)

Fig. 5. Visualization of confusion matrices. (a) is the confusion matrix of our
DABC model on the ScanNet. (b) is the confusion matrix of our DABC model on
the KITTI. (c) is the confusion matrix of the regression network on the ScanNet.
(d) is the confusion matrix of the regression network on the KITTI. (e)∼(h) show
the details of the above four confusion matrices in the label range of 60 to 95,
respectively.
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（a）Scene1

（b）Scene2

（c）Scene3

（d）Scene4

（e）Attention_4 （f）Attention_3

（g）Attention_2 （h）Attention_1

Fig. 6. Activations of different AFA modules. (a) and (b) are the color images
from the ScanNet, (c) and (d) are from the KITTI. (e)∼(h) are the activations
of AFA modules from the high-level to the low-level in sequence.

Table 6. Evaluation for attention mechanism on the KITTI validation dataset.

Method SILog sqRel absRel irmse

DABC w/o attention 13.33 2.00 8.00 9.58
DABC 13.34 1.95 8.01 9.58
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Further, in order to visualize the activations, we choose four images from
the KITTI and ScanNet datasets, and draw the activations of four AFA blocks,
as shown in Figure 6. For clarity, only one hundred activations of each block
are visualized. We make three observations about the attention mechanism in
robust depth prediction. First, we find that the activations of four scenes are more
different in the high-level block than in the low-level one, which suggests that
the values of each channel in the high-level features are scene-specific. Second, as
per Figure 6(e), we observe a significant difference between indoor and outdoor
activations. It indicates that the attention mechanism can give different scenes
with different activations based on the characteristics and the layout of the
scene. Third, by comparing the activations of scene1 and scene2 in Figure 6(e),
we can also observe a non-negligible difference of activations between the two
indoor scenes, which suggests that the attention mechanism still has a strong
discriminating ability when processing the scenes from the same dataset.

Therefore, we believe that the channel-wise attention mechanism plays a
vital role in choosing discriminative features for diverse scenes and improving
the performance in robust depth prediction.

6 Conclusion

In this paper, we study the task of robust depth prediction that requires a
model suitable for both indoor and outdoor scenes with a single parameter set.
Unlike conventional depth prediction tasks, robust depth prediction task needs
the model to extract more discriminative features for diverse scenes and to tackle
the large differences in depth ranges between indoor and outdoor scenes. To
this end, we proposed a deep attention-based classification network to learn a
universal RGB-to-depth mapping which is suitable for both indoor and outdoor
scenes, where a channel-wise attention mechanism is employed to update the
features according to the importance of each channel. Experimental results on
both indoor and outdoor datasets demonstrate the effectiveness of our method.
Specifically, we won the 2nd place in the single image depth prediction entry of
ROB 2018, in conjunction with CVPR 2018. In the future, we plan to extend
our method to other dense prediction tasks.
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