Beneficial effects of autologous mesenchymal stem cells (MSC) transplantation in progressive multiple sclerosis: Report of a randomised phase II double blind trial. 
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Abstract
Background/Objective: Mesenchymal stem cells(MSC) induce immune-modulatory and neurotrophic effects and were shown to have an acceptable safety profile. The aim of this study was to evaluate the safety and efficacy of MSC-transplantation in multiple sclerosis(MS)
Methods: This double-blind crossover trial (NCT02166021) enrolled 48 patients with active progressive MS (mean EDSS score:5.60.8). Patients were randomised into three groups and treated intrathecally(IT) or intravenously(IV) with autologous MSCs (1x106/Kg) or placebo. At 6-months, half of the patients from each of the groups was re-treated with MSC and half with placebo. 
Results: No serious, treatment-related adverse events were observed. Significantly fewer patients experienced neurological deterioration in the MSC-IT and MSC-IV groups compared with the placebo-treated patients (6.7 %, 9.7 % and 48.4 %, respectively, p=0.0003 between MSC-IT and placebo, p=0.0008 between MSC-IV and placebo, chi-square test). 58.6% and 40.6% of the patients treated with MSC-IT and MSC-IV, respectively, exhibited no evidence of disease activity-NEDA (no relapses, no EDSS progression, no MRI activity), compared with 9.7% in the placebo groups (p<0.0001 for MSC-IT vs placebo and 0.0048, for MSC-IV vs placebo). Statistically significant benefits following MSC-IT-treatment were also observed in MRI monthly changes of T2 lesion load, 25-foot timed walking, 9-hole peg test, optical coherence tomography(OCT) and in cognitive tests. 
Conclusions/Interpretation: IT and IV administration of autologous MSCs was well-tolerated in progressive MS and induced robust benefits regarding all primary endpoints. IT administration was more efficacious, possibly indicating that not only peripheral immunomodulatory but also neuroprotective/neuroregenerative mechanisms are involved. A phase-III trial is warranted to confirm these findings.
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1. Introduction 
Mesenchymal stem cells (MSC) are non-hematopoietic stromal cells, residing mainly in the bone marrow (BM) compartment but also in fat and other tissues. Their classical role is to support haematopoiesis and to produce cells of the mesodermal lineage 1,2. Studies have described additional MSC properties, and particularly immunomodulatory and neurotrophic ones 3-12. In preclinical studies, intravenous and intrathecal administration of MSC was shown to suppress experimental autoimmune encephalomyelitis (EAE) 6,13,14 and to support remyelination following spinal trauma or induced demyelination 15-17.
Few small, mostly open-label, clinical trials have reported indications of beneficial effects of MSC-treatment in stroke, multi-system atrophy, multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS) 18-29. It remains controversial whether the observed benefits were mediated by immunomodulatory mechanisms or by neurotrophic and neuroprotective effects. 
These studies prompted us to perform a controlled study to examine the therapeutic efficacy of MSC transplantation in progressive MS, where there is a critical unmet need for treatment and to investigate the preferred route of cell delivery. 
We present here the results of this double-blind trial with IV or IT injection of autologous bone marrow (BM)-derived MSCs (1x106/Kg) or placebo in 48 patients with progressive MS. 



2. Methods
2.1 Patients and study design
The study (NIH registration: NCT02166021) was initiated in February 2015 and completed in June 2018. The study was approved by the local ethics committee and Ministry of Health (MOH), and monitored by an external CRO (BRD, Israel) and an external safety committee.
Over two hundred (200) patients from the Hadassah MS Centre and Unit of Neuroimmunology were pre-screened for inclusion in the trial. Patients meeting the following inclusion criteria, were enrolled: age <65 years, diagnosis of active and progressive MS (according to the 2013 revised criteria by Lublin et al, 30), treatment failure to at least one line of MS therapy and EDSS between 3·0 and 6·5. In total, 48 patients were included (20 female, 28 male), with a mean EDSS at inclusion of 5.540.9, mean age of 47.39.3, and mean disease duration of 12.07.4 years (Figure 1-flow chart of the study, Table 1). The higher proportion of male vs female patients in our group (which is not in line with the gender distribution of MS) may be explained by the “biased” inclusion of patients with progressive forms of MS, non-responders to conventional MS treatments. Thirty nine of the patients had secondary progressive MS (SPMS), including ten with superimposed relapses (“relapsing-progressive”), and 9 had primary progressive MS (PPMS). Most of the patients (77 %) had been previously treated with at least two or more of the accepted immunotherapeutic drugs for MS. All immunomodulatory treatments were stopped 3-6 months before the screening visit. Detailed demographic data of each individual patient are presented in supplementary Table 1. Patients gave a written informed consent and were randomised by an external contract research organisation (CRO) (BRD, Israel) into three groups of 16 patients each, after stratification according to EDSS. One group was assigned to receive an IT injection of 1x106/kg of body weight, MSCs (MSC-IT) and an IV injection of normal saline (NS). The second group was treated with an IT injection of NS and an IV injection of 1x106/kg MSCs (MSC-IV) and the third group (placebo) with NS (IV and IT), only. At baseline, the three groups did not differ significantly in EDSS score, gender, or disease duration (Table 1). 
The patients were followed up in the outpatient MS-clinic by the assigned “examining physicians” and underwent neurological examination (including EDSS/FS scoring), 9-hole peg test, timed 25-foot walking, MRI (including resting fMRI), VEP, OCT, cognitive, immunological, and visual dynamic tests, at pre-determined time-points as displayed in study flowchart (Figure 1).  All physicians, clinic personnel and the patients were blinded to the treatment assignment. One patient (005) withdrew his consent at 3 weeks after the first treatment. The compliance to the trial was excellent, and only nine out of the scheduled 528 visits were missed. 


2.2 MSC preparation and administration
[bookmark: _GoBack]MSCs were obtained from each patient’s bone marrow and prepared using a previously described protocol with slight modification 22 (see supplementary Methods section). The treating physician received two sealed syringes (covered by black adhesive), which were prepared by the laboratory investigator according to the randomisation number received from the CRO. The syringes contained MSCs (1x106/kg of body weight) resuspended in 3 ml of normal saline (NS) or NS alone. The treating physician injected the full 3ml content of the sealed syringe to the CSF by a lumbar puncture at the L4-5 lumbar level using a 20-gauge needle and a 3-way cannula;  the 3ml of the second syringe were injected into an aluminium-covered 500-ml sac with NS and infused to the patient over 30 minutes, using a 20-gauge vein catheter., and 3 ml of cerebrospinal fluid were removed for future testing.

2.3 Primary and secondary endpoints
The two predetermined primary endpoints of the trial were: (a) the safety of the MSC-IV and -IT treatments (incidence of adverse events vs those in the placebo group), and (b) the differences between the 3 groups in EDSS score changes and in the proportion of patients with treatment failure, as evidenced by an increase in EDSS or deterioration in any of the functional systems, at 6 and 12 months. Secondary endpoints included the differences between the placebo and the MSC-IT or MSC-IV treated groups, in: a. the number of relapses and the relapse rate; b. the number of MRI gadolinium-enhancing lesions; c. the annualized rate of change of MRI T2 lesion load, of total normalised brain volume (PBVC), and of fMRI network connectivity strength vs the rates during the run-in period; d. the timed 25-foot walking and 9-hole peg test; e. the cognitive functions and, f. the retinal nerve fibre layer (pRNFL) thickness and macular thickness and volume, evaluated by optical coherence tomography (OCT). 

2.4 MRI lesion load and brain volumetric changes
For conventional 3T MRI, raw data were sent to the NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Germany and evaluated in a blinded way. 
The methods of evaluation are described in supplementary Methods section.

2.5 fMRI, VEP, OCT and cognitive tests
Resting-state blood oxygenation level-dependent fMRI, VEP, OCT and a battery of cognitive tests that are sensitive form MS (Paced Auditory Serial Addition Test:PASAT, Brief Visuospatial Memory Test-Revised: BVMT-R, Symbol Digit Modalities Test:SDMT, Owatonna cognitive behavioral test:OWAT, KAVE-naming and fluency test:KAVE, Rey Auditory Verbal Learning Test:RAVLT, and Trail Making Test:TMT), were performed by standard techniques described in supplementary Methods section. 

2.6 Statistical analysis
The sizes of the groups in our study were calculated based on an expected efficacy of at least 50% vs placebo to provide 80% power, assuming a standard deviation of differences of <75%, using a paired t-test with a 0.050 two-sided significance level. The locked database was transferred from the CRO (BRD, Israel) to the external expertise company for medical statistics (MedStat, Israel). All measured variables and derived parameters were assessed individually and tabulated by descriptive statistics. For categorical variables, summary tables were provided giving the sample size and absolute and relative frequency by study group. For continuous variables, summary tables were provided giving the sample size, arithmetic mean, standard deviation, median, minimum, and maximum by study group. Within-group changes from baseline or from the run-in period were analysed using paired t-tests. 
The two-sample non-parametric Wilcoxon-Mann-Whitney rank sum test was used to analyse differences in quantitative parameters between the MSC-IT or MSC-IV and placebo groups. The chi-square test was used to analyse differences in binary parameters between the MSC-IT or MSC-IV and placebo groups. For fMRI, a single functional z score was calculated per scan for each subject, reflecting network connectivity. For cognitive functions, The values were expressed as z-scores, which were calculated using normative data from the literature adjusted for age, gender, and educational level. All tests were two-tailed, and results with a p value of 0·05 or less were considered statistically significant. The data were analysed using SAS ® version 9·3 (SAS Institute, Cary, NC, USA).


3. Results
3.1 Primary endpoints
3.1.1 Safety
Three serious adverse events occurred during the study resulting in patient hospitalisation. Two of them were related to relapses of MS, and one was due to an upper respiratory infection (not related to the treatment) that resolved after a course of antibiotics. No other serious adverse events were observed during the 14 months of the trial or throughout the 
The full list of adverse events is presented in Table 2.

3.1.2 Clinical efficacy
A per-protocol analysis of the pre-determined primary efficacy endpoint, showed that the percentage of patients with treatment failure (any deterioration in EDSS) was significantly lower in the MSC-IT and MSC-IV groups compared with the placebo-treated patients (6.7 % and 9.7 % vs 48.4 %, respectively, p=0.0003 between MSC-IT and placebo, p=0.0008 between MSC-IV and placebo, chi-square test for pooled data from both 6-month periods of the trial). 75% of the placebo treated patients experienced a deterioration in at least one FS and only 28% in the MSC-IT and MSC-IV group (p=0,0002, Chi-square test) (Table3). 
The mean EDSS score deteriorated in the placebo group and improved in the MSC-IT and MSC-IV groups during both treatment cycles (p=0.0002 and p=0.007, respectively vs. placebo; Mann-Whitney test) (Figure 2, Table 3). A total of 12 patients improved in the MSC-IT group, 10 in the MSC-IV group and only 1 in the placebo group. 
The changes in ambulation scores and in the sum of all functional systems scores (sFS), followed the same trend, strongly favoring MSC-IT and MSC-IV treatment over placebo (Table 3). For both EDSS and FS changes, MSC-IT treatment was superior to MSC-IV (Table 3). Repeated intrathecal treatment (MSC-IT at both treatment cycles) produced significantly better clinical outcomes at 12 months (Table 3).
In the group of patients treated twice with MSC-IT half had a confirmed disability improvement (CDI) at the end of the whole trial (1 year), verified by two consecutive examinations 3-months apart) and no one exhibited confirmed disability progression.
Fifteen out of 32 patients in the placebo-treated arms experienced at least one relapse during both 6-month periods of the study, compared with only seven in the MSC-IV group and two out of 32 in the MSC-IT group (46.9%,. 21.9%, and 6.3%, respectively, p=0.0002 for MSC-IT and p=0.035 for MSC-IV vs. placebo) (Table 3 and Figure 2). The mean annual relapse rates in both cycles of treatment were 0.060.25, 0.280.57, and 0.560.67 in the MSC-IT, MSC-IV, and placebo groups, respectively (p=0.0005, for MSC-IT vs. placebo; p=0.052, for MSC-IV vs. placebo, Wilcoxon test). 


3.2 Secondary endpoints
3.2.1 MRI
The mean number of gadolinium-enhancing lesions per patient during the two cycles of treatment, were: 0.551.03 in the placebo group, 0.170.47 in the MSC-IT group and, 0.971.93 in the MSC-IV group (p=0.062 for MSC-IT vs placebo, p=0.90 for MSC-IV vs placebo, p=0.077 for MSC-IT vs MSC-IV, Wilcoxon test) (Figure 2 and Table 3). The mean monthly rate of T2-flair lesion volume change compared to the run-in period rate was –0.024±0.053 in the pooled group of patients treated with MSC-IT, –0.016±0.036 in the MSC-IV group, and +0.003±0.029 in the placebo group (p=0.029, for MSC-IT vs. placebo; p=0.123, for MSC-IV vs. placebo) (Table 3).

3.2.2 fMRI
Testing of motor networks revealed a significant annual increase of the mean z-score in the MSC-IT group (+0.1081.06 and +0.1560.68 at 3 and 6 months, respectively; pooled data), and a decrease/deterioration (-0.5041.06 and -0.2880.61 at 3 and 6 months, respectively) in the placebo group. The changes in the MSC-IV group were +0.0360.88 at 3 months and   -0.060.816 at 6 months (p=0.0675 and p=0.042 for MSC-IT vs placebo at 3 and 6 months, respectively; p=0.031 and p=0.077 for MSC-IV vs placebo at 3 and 6 months, respectively) (Figure 2 and Table 3).

3.2.3 No evidence of disease activity (NEDA)
Seventeen out of the 29 (58.6 %) MSC-IT-treated patients (for whom there were data for all the parameters of NEDA) were NEDA-3 during the two pooled 6-month treatment periods, as compared with 40.6% (13/32) in the MSC-IV group and 9.7% (3/31) in the placebo group, (p<0.0001 for MSC-IT vs placebo and 0.0048 for MSC-IV vs placebo). The percentages for NEDA-432 (i.e., including annual brain volume loss of <0.4% according to MRI) were 44.8% in the MSC-IT, 28.1% in the MSC-IV, and 9.7% in the placebo groups (p=0.005 for MSC-IT vs placebo and p=0.12 for MSC-IV vs placebo) (Table 3). 


3.2.4 Other parameters
Statistically significant benefits were observed in the MSC-IT group in 25-feet timed walking, in 9-hole peg test, in OCT-RNFL, in PASAT and KAWE/OWAT cognitive tests.
Trends of beneficial effects were also seen in VEP, SDMT and in the proportion of T-regulatory cells (increase) (Table 3).


Discussion

Our study, aiming to evaluate the safety and clinical efficacy of autologous MSC-transplantation in progressive MS, revealed positive results in all its predefined primary endpoints. No serious, treatment related adverse effects were observed and significantly fewer patients in the MSC-IT and MSC-IV groups experienced treatment failure as compared to the placebo-treated group (Table 3). Significant changes favoring MSC-IT treatment over placebo, were also observed in the rate of EDSS progression, ambulation index, sum of functional scores, 25-foot timed walking, 9-hole peg test, PASAT and OWAT/KAVE cognitive tests, and the rate of change of MRI T2 lesion load, as well as in newer biomarkers such as OCT (RNFL) and fMRI (motor network). Repeated IT injection of MSC at month 6 significantly boosted the effects observed in the first cycle of treatment. Beneficial (but less significant) effects were also observed in the MSC-IV group. Overall, the robust effects of MSC transplantation on various parameters that reflect neurological dysfunction and MS activity, may possibly indicate induction and/or enhancement of neuroprotective mechanisms. These benefits seem to be of particular clinical significance, as they were observed in patients suffering from progressive active MS unresponsive to conventional immunotherapies and for which no other proven treatment options exist. 

Despite the development of highly efficient and more targeted immunotherapies, there are still two major unmet needs in the treatment of MS: i. the need for a treatment to suppress compartmentalised and meningeal inflammation in the CNS, that seems to drive tissue injury and progression of disability 31-35. These compartmentalised  inflammatory and degenerative activities seem to be less responsive (amendable by?) to the majority of immunomodulatory drugs, accounting for the poor efficacy of most MS therapies in progressive MS, with the minor exception of ocrelizumab36,37. 
ii. the need for a treatment that may substantially promote regeneration-remyelination. Generally, our CNS loses its capacity for efficient regeneration and remyelination over time and this is especially pronounced in chronic neuroinflammatory and neurodegenerative diseases such as MS, possibly due to insufficiency of growth factors or defective mobilisation of intrinsic CNS stem cells/oligodendrocyte progenitors 38-41. 
Based on their well described properties (reviewed by 38,41-44), stem cells may represent a “logical” treatment approach to achieve those unmet needs and induce neuroprotection and enhance endogenous remyelination. Moreover, stem cells were shown to be strong immunomodulators and they may potentially downregulate upon their migration to CNS, the localised and compartmentalised inflammation 32-34. Several animal studies have shown that embryonic, neuronal, and other adult stem cells can induce beneficial clinicopathological effects in animal models of neurological diseases, including MS 6,13,14,45-49. MSCs are commonly used for such therapies as they have practical advantages over other types of stem cells, for clinical use: i. they can be easily cultured and expanded in large quantities;  ii. they can be obtained from the patient, eliminating  thus the need for a donor and the risk of rejection or the necessity for chemotherapy to prevent it, and iii. they seem to be safe and carry low risks for malignant transformation. During the last decade, MSC treatments have been applied to various neurological diseases in small or pilot open trials 18,19,22-27,29,50, with promising indications. 
Controversy exists as to the putative mechanism of action of MSCs in neurological diseases. Some investigators claim that their most prominent effects are mediated through peripheral immunomodulation 7,10,11,40,47,51,52. Our group has long advocated that a neuroprotective and neurotrophic mechanism is at work, as supported by our findings in animal models and in pilot trials of MS and ALS 22,26. We speculate that IT injection, which brings a higher proportion of the injected cells into close proximity with damaged central nervous system (CNS) areas, may induce more robust effects than IV injection. In the current study, indeed IT transplantation of MSCs was shown superior to IV administration, in several efficacy parameters (Table 3). If peripheral immunomodulation were the dominant mechanism, we would expect the opposite to be true. The improvements in OCT and fMRI motor networks and the trend towards increase of brain volume may support the involvement of neurotrophic or neuroregenerative mechanisms, induced or accelerated by the injected MSCs. In contrast, the less pronounced effects of the treatment on gadolinium-enhancing lesions in MRI, advocate against a major contribution of peripheral immunomodulatory mechanisms in our setting.

The strengths of our trial include: (i) the inclusion of patients with active progressive MS for which existing immunotherapies are usually ineffective; (ii) the double-blind design, making this the first randomised controlled trial comparing the IT versus IV methods of MSC-administration and single vs repeated treatment; and (iii) the robust clinical benefits observed in several disease activity parameters, that included newer biomarkers such as fMRI-network connectivity, OCT and cognitive testing. The limitations of our study include the small number of patients in each group and the crossover design (in the second cycle), which may have introduced a “carry-over” effect from the first cycle of treatment. 
In summary, our results provide clear signals of clinical efficacy and indications of neuroprotection, induced by injection of autologous MSCs in progressive MS patients and suggest the superiority of IT over IV administration and of a repeated vs a single injection of the cells. These data may contribute to the design of future trials with cell therapies and the use of objective biomarkers for evaluation of neurodegeneration and neuronal regeneration. A larger, phase III study is warranted to confirm these observations and further evaluate the therapeutic potential of cellular therapy in neuroinflammatory and neurodegenerative diseases such as MS.
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Table1
Demographics

	
	Gender
	Age at inclusion
	Disease course
	EDSS increase at last year
	EDSS at inclusion
	EDSS at Baseline

	MSC IT
(n=16)
	9M
7F
	49.05±7.2
	5 PPMS
11 SPMS
(2 with relapses)
	0.72±0.51
	5.75±0.77
	6.19±0.31

	MSC IV
(n=16)
	6M
10F
	47.42±10.4
	1 PPMS
15 SPMS
(2 with relapses)
	0.78±0.75
	5.63±0.83
	5.84±0.77

	Placebo
(n=16)
	11M
5F
	45.89±10.9
	3 PPMS
13 SPMS
(5 with relapses)
	0.69±0.57
	5.44±1.05
	5.66±1.08

	p Value

(Kruskal–Wallis test)

	
0.312
	
0.566
	
0.480
	
0.641
	
0.819
	
0.583






Table 2
Adverse Events 

	Adverse Event:
	No.
	Related to Procedure 
	Related to Treatment

	
	Run-in
N=48
	IT
N=16+16
	IV
N=16+16
	PL
N=16+16
	
	

	No AE's
	-
	5
	4
	3
	
	

	Headache
	0
	9
	10
	8
	Yes
	No

	Back Pain
	1
	2
	2
	3
	Yes
	No

	Viral infection
	3
	0
	2
	1
	No
	No

	Upper respiratory infection
	1
	1
	0
	0
	No
	No

	Fever
	1
	1
	1
	2
	
	

	Urinary Tract Infection
	2
	1
	0
	0
	No
	No

	Sinusitis
	0
	2
	0
	0
	No
	No

	Fall
	1
	1
	2
	1
	No
	No

	Fracture (leg/ hand)
	2
	1
	0
	0
	No
	No

	Dizziness
	0
	2
	1
	0
	No
	No

	Hematoma
	1
	1
	0
	0
	No
	No

	Nausea
	0
	0
	2
	0
	No
	No

	Melanoma (in situ)
	1
	0
	0
	0
	No
	No

	Infection of Scabies
	0
	1
	0
	0
	No
	No

	Peripheral facial nerve palsy
	0
	1
	0
	0
	No
	No

	Toothache
	0
	0
	1
	0
	No
	No

	Anorexia
	0
	0
	1
	0
	No
	No

	Gout
	1
	0
	0
	0
	No
	No

	Facial Rash
	0
	1
	0
	0
	No
	No

	Cervical Pain
	0
	0
	1
	0
	Possible
	No

	Infection distal arm
	0
	0
	0
	1
	No
	No





Three serious adverse events occurred during the experiment resulting of the patients' hospitalization. Two of them were related to relapses of MS, and one was due to upper respiratory infection, that resolved after treatment with antibiotics.


Table 3 
Efficacy parameters analysis (pooled data from both cycles of treatment)


	Primary endpoints
	IT-MSC
	IV-MSC
	Placebo
	P value IT vs placebo
	P value IV vs placebo
	P value IT vs IV

	Treatment failure (increase in EDSS) at 6 months (pooled analysis of both cycles of treatment)
	6.7 % (2 of 30)
	9.7 % (3 of 31)
	48.4 % (15 of 31)
	0.0003 (chi-square)
	0.0008 (chi-square)
	NS

	Treatment failure (increase in at least one FS) at 6 months (pooled analysis of both cycles of treatment)
	28.1 % (9 of 32)
	28.1 % (9 of 32)
	75.0 % (24 of 32)
	0.0002 (chi-square)
	0.0002 (chi-square)
	NS

	Change in EDSS at 3M
	-0.30.3
(median:-0.5)
	-0.10.4
(median:0)
	+0.20.4
(median:0)
	<.0001
	0.0010
	0.0624

	Change in EDSS at 6M
	-0.20.3
(median:0)
	-0.10.4
(median:0)
	+0.30.4
(median:0)
	<.0001
	0.0002
	0.3280

	Change in ambulation score at 3M
	-0.91.1
(median:-1)
	-0.31.2
(median:0)
	+1.01.2
(median:+1)
	<.0001
	0.1938
	0.0375

	Change in ambulation score at 6M
	-0.81.2
(median:-1)
	-0.41.1
(median:0)
	+1.31.3
(median:1)
	0.0009
	0.0938
	0.1239

	Change in sum of functional scores at 3M
	-2.82.4
(median:-3)
	-1.52.1
(median:-1)
	+0.51.7
(median:+1)
	<.0001
	0.0009
	0.0177

	Change in sum of functional scores at 6M
	-2.92.4
(median:-3)
	-1.42.3
(median:-1)
	+0.82.2
(median:+1)
	<.0001
	0.0006
	0.0127

	Mean number of relapses per patient
	0.060.25
	0.280.58
	0.560.67
	0.0005
	0.052
	0.074

	Proportion of patients relapse-free
	93.8 %
(n=32)
	78.1 %
(n=32)
	53.1 %
(n=32)
	0.001
	0.1
	

	Secondary endpoints
	
	
	
	
	
	

	25-feet walking time % changes over 6M
	-5.316.3
	-6.417.7
	+14.025.4
	0.0017
	0.0009
	0.81

	9-peg hole test % changes over 6M (dominant hand)
	-3.010.1
	-2.15.1
	+0.58.9
	0.129
	0.300
	0.43

	9-peg hole test % changes over 6M (non dominant hand)
	-5.57.9
	-1.67.5
	+1.311.2
	0.0136
	0.391
	0.043

	MRI: % monthly changes in flair T2 lesion volume at 6M
	-0.0240.053
(median:-0.004)
	-0.0160.036
(median:-0.004)
	+0.0030.029
(median:-0.0)
	0.029
	0.123
	0.50

	MRI: mean number of gadolinium enhancing lesions during the two cycles of treatment (pooled)
	0.170.47 
(total number of lesions=9)
	0.971.93 
(total number of lesions=49)
	0.551.03
(total number of lesions=30)
	0.0636
	0.9086
	0.0776

	MRI: total brain volume changes over 6M (in ml)
	+6.8 (first cycle)
+7.8 (2nd cycle)
	-10.5 (1st cycle)
+18.7 (2nd cycle)
	-5.5 (1st cycle)
+1.0 (2nd cycle)
	0.14 (3M), 0.53 (6M)
	0.62 (3M), 0.37 (6M)
	0.02 (3M), 0.3 (6M)

	PASAT cognitive test % change at 3M
	+69.9204.4
	+37.8320.0
	-36.1143.7
	0.0007
	0.240
	0.014

	PASAT cognitive test % change at 6M
	+11.9166.2
	+129.5545.0
	-6.5203.2
	0.327
	0.939
	0.334

	OWAT (KAVE) cognitive test change at 3M (Z scores)
	+0.4740.83
	+0.1220.80
	-0.2820.60
	0.013
	0.12
	

	SDMT cognitive test change at 3M (Z scores)
	+0.10.7
	-0.30.9
	-0.10.6
	0.18
	0.20
	0.02

	OCT RNFL (G) right eye % changes over 6M
	-0.23.2
(median: 0)
	+0.12.4
(median: 0)
	-0.32.7
(median:-0.4)
	0.844
	0.429
	0.57

	OCT RNFL (G) left eye % changes over 6M
	+1.02.6
	+0.13.2
	-0.73.1
	0.038
	0.417
	0.273

	% VEP latency changes at 6 months (left eye)
	0.46.6
	0.76.3
	3.615.9
	0.36
	0.26
	

	% VEP latency changes at 6 months (right eye)
	0.85.2
	-1.86.9
	1.85.8
	0.63
	0.034
	

	fMRI annual changes in motor network (over 3 months) (Z scores)
	+0.1081.06
	+0.0360.88
	-0.5041.06
	0.0675
	0.0312
	0.74

	fMRI annual changes in motor network (over 6 months) (Z scores)
	+0.1560.684
	-0.060.816
	-0.2880.612
	0.0425
	0.0774
	0.80

	Immunology: CD4+/CD25+ T regs % change at 6 months vs baseline
	307.2487.5
	249.5382.8
	123.6281.9
	0.05
	0.11
	0.62

	NEDA over 6M
	58.6 %
(17 of 29)
	40.6 %
(13 of 32)
	9.7 %
(3 of 31)
	<.0001
	0.0048
	0.160

	NEDA-4 (including <0.4 % annual change in total brain volume)
	44.8 %
(13 of 29)
	28.1 %
(9 of 32)
	9.7 %
(3 of 31)
	0.005
	0.12
	0.17




Table 4
Comparison of last visit at 12 months vs baseline between single and repeated IT-MSC or IV-MSC treatment

	
	IT-MSC (x1) (n=8)
	IT-MSC  (x2) (n=8)
	IV-MSC (x1) (n=8)
	IV-MSC (x2) (n=8)
	P value of comparison

	Change from baseline to 12 months in EDSS
	0.250±0.27

	-0.188±0.26
	0.063±0.32
	-0.063±0.18
	IT: 0.0238
IV: 0.4965

	Change from baseline to 12 months in ambulation score
	1.250±1.16
	-1.250±1.28
	1.000±1.31
	-0.250±0.89
	IT: 0.0045
IV: 0.0836

	Change from baseline to 12 months in sum of functional systems 
	0.250±2.96
	-4.464±3.34
	-0.375±1.77
	-1.625±2.56
	IT: 0.0183
IV: 0.2263

	Change from baseline to 12 months in 25-feet timed walking
	5.288±7.74
	-5.936±8.35
	4.519±5.69
	-1.169±8.12
	IT: 0.0128
IV: 0.0455







Legends for figures

Figure 1
Study design and flowchart

Figure 2
Beneficial effect of MSC treatment on the progression of MS as evidenced by the changes in EDSS.
Number of patients in each treatment subgroup (MSC-IT, MSC-IC and placebo) who deteriorated in EDSS score or were stable or improved in EDSS, during each 3 or 6 months period (pooled data from the two cycles of treatment). 
P= <0.0001 (3 months) and p=0.0003 (6 months) for MSC-IT vs placebo (chi-square)
P= 0.0085 (3 months), p=0.0008 (6 months) for MSC-IV vs placebo (chi-square)

Figure 3
Slopes of progression in EDSS score in the 6 subgroups of the trial
Follow up of the mean EDSS score in each treatment subgroup during the run-in period and the two cycles of the study. A projection of the expected disease progression based on the run-in period, is presented in the graphs as a line that follows the run-in period. 
A. Group 1A: treatment with MSC-IT both in first and second cycle
B. Group 1B: treatment with MSC-IT in the first cycle and with placebo in the second
C. Group 2A: treatment with MSC-IV both in first and second cycle; 
D. group 2B: treatment with MSC-IV in the first cycle and with placebo in the second
E. Group 3A: treatment with placebo in the first cycle and with MSC-IT in the second 
F. Group 3B: treatment with placebo in the first cycle and with MSC-IV in the second

Figure 4
Treatment with MSC induces beneficial effects on the progression of MS, as evidenced by the changes in EDSS score
Longitudinal follow up of the mean EDSS scores in each treatment subgroup (MSC-IT, MSC-IC and placebo), during the run-in pre-treatment period and at 3 and 6 months post each cycle of treatment. each 3 or 6 months period (pooled data from the two cycles of treatment). 
in the group of patients who were treated once with MSC vs the group that received double treatment, during the whole 12 months duration of the study. Comparison was made between the EDSS at month 12 (visit 3) vs the baseline value of visit 3.
P= <0.0001 (3M) and p=0.0003 (6M) for IT vs placebo (chi-square)
P= 0.0085 (3M), p=0.0008 (6M) for IV vs placebo (chi-square)


Figure 5
Incidence of clinical relapses and gadolinium-enhancing lesions in MRI
Number of relapses and of gadolinium enhancing lesions (presented as black dots for placebo, black squares for MSC-IV and triangles for MSC-IT) in each one of the patients in the three treatment subgroups (MSC-IT, MSC-IC and placebo) during both cycles (two 6-months periods). (pooled data from the two cycles of treatment). 
Cyc-1=first cycle
Cyc-2=second cycle
P= <0.0005 for relapses in the MSC-IT group vs placebo 
P= 0.052 for relapses in the MSC-IV group vs placebo 
P= <0.0005 for relapses in the MSC-IT group vs placebo 
P= 0.052 for relapses in the MSC-IV group vs placebo 
Mean number of gadolinium-enhancing lesions in MRI in the two cycles of treatment pooled together: 0.170.47 in the MSC-IT group, 0.971.93 in the MSC-IV group and 0.551.03 in the placebo group (p=0.062 for MSC-IT vs placebo, p=0.90 for MSC-IV vs placebo, p=0.077 for MSC-IT vs MSC-IV, Wilcoxon test).


Figure 6
MSC treatment induces beneficial effects on the motor network in fMRI
Changes in mean z-values of the motor network in fMRI in the group of patients treated with MSC-IT or MSC-IV vs the placebo group, during both cycles of the study.  
There was an annual increase of the mean z-score in the MSC-IT group (+0.1081.06 and +0.1560.68 at 3 and 6 months, respectively; pooled data), and a deterioration (-0.5041.06 and -0.2880.61 at 3 and 6 months, respectively) in the placebo group. The changes in the MSC-IV group were +0.0360.88 at 3 months and -0.060.816 at 6 months (p=0.0675 and p=0.042 for MSC-IT vs placebo at 3 and 6 months, respectively; p=0.031 and p=0.077 for MSC-IV vs placebo at 3 and 6 months, respectively). 
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