
Ben-Gurion University of the Negev

The Faculty of Engineering Sciences

The Department of Industrial Engineering And Management

Distributed Optimization Challenges in Mobile
Sensor Team Applications

Arseni Pertzovskiy

Thesis submitted in partial fulfillment of the requirements

for the Master of Sciences degree

Under the supervision of Prof. Roie Zivan and Prof. Dan Hermelin

February 2021

בנגב בן־גוריון אוניברסיטת

ההנדסה למדעי הפקולטה

וניהול תעשיה למהבנדסת המחלקה

הכוללות באפליקציות מבוזרת אופטימיזציה אתגרי
ניידים סנסורים קבוצת

פרצובסקי ארסני

הטבע למדעי בפקולטה ׳׳מגיסטר׳׳ התואר קבלת לשם חיבור

הרמלין דן ופרופ׳ זיוון רועי פרופ׳ מנחה בהנחיית

2021 פברואר

Ben-Gurion University of the Negev

The Faculty of Engineering Sciences

The Department of Industrial Engineering And Management

Distributed Optimization Challenges in Mobile
Sensor Team Applications

Arseni Pertzovskiy

Thesis submitted in partial fulfillment of the requirements

for the Master of Sciences degree

Under the supervision of Prof. Roie Zivan and Prof. Dan Hermelin

Signature of student: Date:

Signature of supervisor: Date:

Signature of chairperson of the

committee for graduate studies: Date:

February 2021

Abstract

Multi-agent applications often require agents to take actions to achieve

a common goal. Coordinating a mobile sensor team (MST) to cover tar-

gets exemplifies a challenging multi-agent optimization problem. The dis-

tributed constraint optimization problem (DCOP) is a general framework

for describing distributed problems that include constraints, which can be

represented by a graphical model and solved by using message-passing

algorithms. In many realistic multi-agent applications, such as the MST

coverage problem, various properties of the problem are not compatible

with the abstract DCOP model. For DCOP to apply to realistic scenar-

ios, the model must be extended and the algorithms designed to solve the

extended model. For example, a variation of the DCOP model was re-

cently adjusted to represent problems including MSTs (DCOP MSTs), and

incomplete algorithms such as Max-sum were enhanced with exploration

methods to solve these problems. In DCOP MST, agents maintain vari-

ables for their physical positions, whereas each target is represented by a

constraint that reflects the quality of coverage of the given target. Unfortu-

nately, the proposed algorithms do not prevent collisions between mobile

sensors. In this first attempt to extend DCOP models and algorithms to

include realistic features, we propose a collision-avoiding version of the

i

ii

Max-sum algorithm (CAMS), in which function nodes representing hard

constraints are added to the factor graph generated in each iteration to pre-

vent the selection of a single location by more than one agent. For small

scenarios, we prove that the proposed algorithm converges to the optimal

solution and present empirical evidence that, in more complex scenarios,

the proposed algorithm maintains high-quality coverage while avoiding

collisions. Our empirical study includes both software simulations and

experiments involving a team of sensor-carrying robots. Finally, we out-

line additional realistic properties of such applications that we intend to

address in future research.

Keywords: Multi-agent optimization, Real-world applications, Incomplete

distributed algorithms

Acknowledgments

I am indebted to Professor Roie Zivan and Professor Dan Hermelin, who

have helped me and taught me so much. Thank you for the dedicated

guidance, patience, and encouragement. I would like to thank my family

for all the support they gave me. A special thanks goes to the faculty and

to the university, who gave me the opportunity to conduct this research.

iii

Contents

1 Introduction 1

2 Previous Work & Background 5

2.1 The Distributed Constraint Optimization Problem 5

2.2 DCOP for Mobile Sensing Teams 6

2.3 Standard Max-sum . 11

2.4 Adjusting Max-sum Algorithm to DCOP MST 13

2.4.1 Handling Runtime . 14

2.4.2 Handling Exploration: Function Meta Reasoning . . 15

2.4.3 Handling Tie Breaking 17

2.5 Robot Operating System . 17

2.6 Necessity for New Hardware 19

2.7 Hamster Robots . 20

2.8 Creating Simulations & Setting Robots 21

2.8.1 Packages . 21

2.8.2 Setting up the Gazebo simulation 22

iv

CONTENTS v

2.8.3 Example of the full setting 24

2.8.4 Setting up a Two-Dimensional PyGame Simulation . 25

3 Collision-Avoiding Max-sum Algorithm 26

3.1 Analyzing Specific Scenarios 30

3.2 Experimental Evaluation . 37

4 Conclusions 43

5 Future Work 44

5.1 Research Objectives . 44

5.1.1 Collisions in MST . 44

5.1.2 Communication Awareness in MST 46

5.1.3 Learning Targets Importance in MST 46

5.1.4 Breakdowns in MST 47

5.2 Expected Advancement . 48

6 Declaration 49

List of Figures

2.1 Example with three agents. Dashed outer rings around each

agent depict the agent’s mobility range. Dark inner rings

show the sensing range with the numeric credibility of the

agent. Stars represent the targets with their coverage re-

quirement. X depicts possible locations where agents may

position themselves. 8

2.2 Example ROS graph: nodes in the graph represent individ-

ual programs; edges represent message streams that com-

municate sensor data, actuator commands, planner states,

intermediate representations, etc. 18

2.3 Hamster autonomous robots. 20

2.4 Examples of objects in a simulation. 22

2.5 Robots in simulations. 23

2.6 (a) . 24

2.7 (b) . 24

2.8 (c) . 24

2.9 (d) . 24

vi

LIST OF FIGURES vii

2.10 (a) sr and mr of the robots. (b) Robots in a large field and (c)

in a small field. 25

3.1 Path a4 → b4 intersects with c1 → b1 and path b5 → a5 in-

tersects with c3 → b3, indicating possible collisions between

robots. 27

3.2 A factor graph generated in CAMS. 29

3.3 Scenarios with convergence guarantees. 30

3.4 Target, two robots, and one common cell. 32

3.5 Target, two robots, and two common cells. 35

3.6 Scenarios with no convergence guarantees. 38

3.7 (a) Remaining coverage and (b) accumulated collisions as a

function of number of iterations. 39

3.8 Experimental setup. 40

3.9 Remaining coverage requirement as a function of experi-

ment execution time for Max-sum MST and CAMS algo-

rithms. 41

List of Tables

viii

1 Introduction

Multi-agent systems often include a combinatorial decision to be made by

the agents, and thus they must be modeled and solved as a distributed

optimization problem. Abstract models, e.g., the distributed constraint

optimization problem (DCOP), for representing such scenarios, and algo-

rithms for solving them, were proposed in the last two decades. Unfor-

tunately, in numerous real-world cases, these abstract models and algo-

rithms are not applicable due to inconsistencies with aspects of the appli-

cation. Thus, extensions and adjustments to these models and algorithms

must be developed to adapt them to such real-world scenarios.

Some of the most challenging multi-agent systems involve teams of mo-

bile sensing agents whose job is to acquire information in a given area.

Examples include networks of sensors [7, 32] and rescue teams in disaster

areas [11]. A crucial, common feature of these applications is that agents

select physical locations to move to, and this selection affects their future

interactions. For example, if a mobile sensor decides to sense a given area,

it will coordinate its actions with nearby sensors.

Such scenarios have been previously modeled using the DCOP frame-

work by having mobile sensors represented as agents and their tasks or

targets as constraints [24]. However, if all possible future moves of dy-

1

CHAPTER 1. INTRODUCTION 2

namic agents are considered, the problem becomes dense. To deal with

this difficulty, previous work has suggested an iterative process in which

a DCOP instance is built into each iteration to represent the current situ-

ation (e.g., sensor positions) and in which only limited agent movements

are considered. Agents run a distributed algorithm (which might involve

several communication cycles) to select the best next joint move and, after

executing it, they build a new DCOP instance that takes into account their

new position [24].

Zivan et al. proposed an extension of the DCOP model and the corre-

sponding local search algorithms for representing and solving such sce-

narios, particularly focusing on teams of mobile sensing agents that need

to select a deployment for the sensors to cover a partially unknown envi-

ronment. This is denoted DCOP MST. DCOP MST allows agents to adjust

their location to adapt to dynamically changing environments [32].

The Max-sum algorithm [1, 3, 5] has been the subject of intensive study

for solving the DCOP and has been applied to many realistic applica-

tions, including sensor networks [4], smart homes [20], and teams of res-

cue agents [19]. In contrast with standard local-search algorithms, agents

in Max-sum do not propagate assignments but instead calculate utilities

(or costs) for each variable, considering all possible values of the variables

of their neighboring agents. The general structure of the algorithm is ex-

ploitative; in other words, the agents attempt to compute the best costs

or utilities for possible value assignments according to their own problem

data and recent information received via messages from their neighbors.

A version of Max-sum was also proposed for solving DCOP MST [32].

The main challenge in applying Max-sum to such problems is to overcome

the inherent symmetry generated by the algorithm, which is done either

CHAPTER 1. INTRODUCTION 3

by attracting all neighboring sensors to cover a target, resulting in ineffi-

cient use of sensors, or by encouraging all neighboring sensors to explore

the area instead of covering the target. A previous study [28] proposed

methods for breaking this symmetry and finding an equilibrium between

exploration and exploitation.

In this work, we address a different limitation on teams of mobile sensing

agents residing on hardware robots, namely, the need to avoid collisions.

This requirement has been ignored by all previous studies of DCOP MST.

To allow mobile sensors to explore an area, search for targets, and select a

deployment that maximizes team coverage without having robots collide,

we propose the collision-avoidance Max-sum (CAMS) algorithm. As in

the standard Max-sum algorithm, the problem in CAMS is represented by

a factor graph, which is a bipartite graph containing nodes that represent

variables and functions (i.e., constraints) such that nodes from one type

only have neighbors of the other type. As in previous attempts to use

Max-sum to solve problems including dynamic agents, in every iteration

(before each movement of the agents), a factor graph is constructed, the

algorithm is executed for a limited number of steps,1 and then the agents

select the next location to which to move. The novelty in the present work

is the new type of function-nodes added to these factor graphs and that

represent locations to which agents can move, which contrasts with factor

graphs generated by agents in Max-sum MST that only include function-

nodes representing targets [28]. A function node representing a location

to which more than one agent can move excludes this option by assigning

1To avoid confusion, we use the term iteration for each phase in Max-sum MST in

which agents select their next location, and steps for iterations of the Max-sum algorithm

used to solve the factor graph generated in the given phase.

CHAPTER 1. INTRODUCTION 4

it a utility of −∞.

This work is structured as follows: Chapter 2 provides background; Chap-

ter 3 describes the CAMS algorithm and its advantage over state-of-the-

art methods; Chapter 4 summarizes this part of the research; and, finally,

Chapter 5 discusses its next stages.

2 Previous Work & Background

This chapter presents DCOP, the extended DCOP MST model, distributed

incomplete algorithms, and their adjustments for the DCOP MST model.

In addition, the robot operating system (ROS) and Hamster robot hard-

ware are introduced.

2.1 The Distributed Constraint Optimization Prob-

lem

Distributed constraint optimization is a general formulation of multi-agent

coordination problems that have previously been used for static sensor

networks and many other applications. A distributed constraint optimiza-

tion problem (DCOP) is a tuple 〈A,X ,D, C〉, where A = {A1, A2, . . . , An}

is a finite set of agents, X = {X1, X2, . . . , Xm} is a finite set of variables,

D = {D1, D2, . . . , Dm} is the set of finite domains for the variables, and

C is a finite set of constraints.1 Each variable Xi is controlled (or owned)

by an agent who assigns it a value from the finite set of values Di; each

1Constraints are typically partitioned into hard constraints represented by relations

and soft constraints represented by cost functions. Here, we do not consider hard con-

straints and use only cost functions.

5

CHAPTER 2. PREVIOUS WORK & BACKGROUND 6

agent may control multiple variables. Each constraint C ∈ C is a function

C : Di1 × Di2 × · · · × Dik → R+ ∪ {0} that maps assignments of a subset

of the variables (called the scope of the constraint) to a non-negative cost.

The cost of a complete assignment of values to all variables is computed by

summing the costs of all constraints. A solution of a DCOP is a complete

assignment (i.e., each variable in X is assigned a value). The optimal so-

lution is the solution with minimum cost (or with maximal utility, in the

case of a maximization problem).

Control in DCOPs is distributed, with agents only able to assign values

to variables that they possess. Furthermore, agents have knowledge only

of the constraints involving their own variables. Coordination is achieved

by passing messages. A standard assumption is that agents exchange mes-

sages only with a subset of the other agents, called their neighbors. Agent

Ai and agent Aj are neighbors if and only if at least one constraint exists

whose scope includes a variable controlled by Ai and a variable controlled

by Aj. While message transmission may be delayed, it is assumed that

messages sent from one agent to another are received in the order that

they were sent [13] [31].

2.2 DCOP for Mobile Sensing Teams

The DCOP model makes several assumptions that do not hold in MST

applications. For example, it assumes that the neighbor set of agents is

constant. It also assumes that the constraints (i.e., the utilities or costs in-

curred by each partial assignment) are known a priori and are constant.

Mobile sensors, in contrast, are dynamic by nature. The movement of

agents constantly changes the neighbor set. A realistic environment un-

CHAPTER 2. PREVIOUS WORK & BACKGROUND 7

dergoing changes modifies the set of constraints and, consequently, mod-

ifies the utilities for deployment decisions. Consequently, dynamic ele-

ments must be formalized and integrated into the DCOP model for it to

apply to MSTs.

The DCOP for MSTs (DCOP MST) is a dynamic DCOP formulation that

models the MST coordination problem [32]. The agents A = {A1, A2, . . . , An}

in a MST are physically situated in the environment and are modeled as

a metric space with distance function d. The current position of agent Ai

is denoted cpi; we assume that this position is accurately known by the

agent. Locations (or positions) that can be occupied by agents constitute

a finite set of discrete points that form a subset of the total environment.

These points can either be (i) a discretization of the underlying space or

(ii) locations that dominate other nearby points in terms of the sensing

quality they afford agents located there. In Figure 2.1, the environment is

a Euclidean plane, agents are depicted as small robots, and possible loca-

tions are represented by X. Time is discretized so that agents can compute

movements between possible positions. The maximum distance that Ai

can travel in a single time step is its mobility range mri. The mobility range

of each agent is represented in Figure 2.1 by the dashed, outer circle cen-

tered on each agent. All X within the circle are locations to which the agent

can move from its current position in a single time step.

Agents can effectively sense targets only within a limited sensing range sri.

Given the sensing-range constraint, each agent Ai can observe all targets

within a distance sri from cpi but cannot observe any more distant tar-

get. The sensing range is depicted in Figure 2.1 by the darker, inner circle

centered on each agent.

CHAPTER 2. PREVIOUS WORK & BACKGROUND 8

Figure 2.1: Example with three agents. Dashed outer rings around each

agent depict the agent’s mobility range. Dark inner rings show the sens-

ing range with the numeric credibility of the agent. Stars represent the tar-

gets with their coverage requirement. X depicts possible locations where

agents may position themselves.

Agents may also differ in the quality of their sensing abilities, which is

called their “credibility.” The credibility of agent Ai is denoted by the

positive real number cred(i), with greater values indicating better sens-

ing ability. cred(i) is exogenously provided (for instance, calculated by

a reputation model) and accurately represents the agent’s sensing ability.

In Figure 2.1, the credibility of each agent is presented as a number in a

square on the agent’s sensing-range circle [32].

The credibility of individual agents sensing the same target are combined

by using a joint credibility function F : 2A → R, where 2A denotes the

power set of A. F must be monotonic so that additional sensing agents

can only improve the joint credibility. Formally, for two sets S′ ⊆ S ⊆ A,

we require that F(S) ≤ F(S0).

CHAPTER 2. PREVIOUS WORK & BACKGROUND 9

Targets T = {T1, T2, . . . , Tm} are represented implicitly by the environmen-

tal requirement function ER, which maps each point in the environment to

a non-negative real number representing the degree of coverage (which

we define shortly) required for that point to be adequately sensed. In this

representation, targets are the points p with ER(p) > 0. Because targets

may arise, move, or disappear, ER changes dynamically. Moreover, ER

can change as the agent team becomes aware of new targets. A major as-

pect of the MST problem is to explore the environment sufficiently to be

aware of targets. In the example presented in Figure 2.1, seven targets

are shown as serrated circles and their numbers represent their ER values.

Agents within the sensing range of a target p are said to cover the target.

Given a target p, the set of agents within sensing range of p is

srp = {Ai ∈ A|d(p, cpi) ≤ sri}.

The remaining coverage requirement of target p is the environmental re-

quirement of p diminished by the joint credibility of the covering agents,

down to a minimum value of zero:

cur req(p) = max{0, ER(p)	 F(srp)},

where 	 : R × R → R is a binary operator (written in infix notation)

that decreases the environmental requirement by the joint credibility. For

x, y, z ∈ R with y > z, we require that x	 y < x	 z, so that decreasing the

environmental requirement by a higher joint credibility lowers the remain-

ing coverage requirement. In this work,	will be the standard subtraction

operator [32].

The constraint CT for a target T only involves those agents Ai whose do-

main of variables includes a location within the sensing range sri of T.

CHAPTER 2. PREVIOUS WORK & BACKGROUND 10

Therefore, as the domains change, the constraints change as well, so the

set of neighbors for each agent changes over time as the agents move. In

DCOP MST, two agents are neighbors if their sensing areas overlap after

the agents both move toward each other and cover the greatest distance

possible in a single time step. This encodes the fact that two such agents

might directly influence each other (e.g., by observing the same target in

the next time step).

The local environment of agent Ai is the joint area within sri from all posi-

tions within mri from cpi. Specifically, denoting the set of neighbors of Ai

by curr neii, we formalize this by

cur neii = {Aj|d(cpi, cpj) ≤ mri + mrj + sri + srj}.

Because agents can only communicate with their neighbors, agents in DCOP MST

can only communicate with other agents who are physically nearby.

The global goal of agents is to position themselves to minimize

Fsum(T) = ∑
Ti∈T

cur req(Tj).

In some cases, the values of cur req may be reduced to zero for all tar-

gets, indicating perfect coverage. However, in other cases, this may not

be possible (e.g., because of insufficient numbers or quality of agents). In

these cases, we strive to minimize the sum of the remaining coverage re-

quirements for all targets. Such a minimization problem is NP-hard [26].

Another possible objective would be to minimize the maximum remaining

coverage requirement over all targets. Note that the model and the tech-

niques presented here could be applied to achieve this objective; however,

to simplify the presentation, we do not discuss this here.

CHAPTER 2. PREVIOUS WORK & BACKGROUND 11

2.3 Standard Max-sum

Max-sum [5] operates on a factor graph, which is a bipartite graph that

includes nodes representing variables and constraints [8]. Each variable-

node representing a DCOP variable is connected to all function-nodes that

represent constraints in which the node is involved. Variable-nodes and

function-nodes are considered “agents” in Max-sum; that is, they can send

and receive messages and compute.

A message sent to or from variable-node X (for simplicity, we use the same

notation for the variable and the variable-node representing it) is a vector

of size |DX| (the size of X’s domain, DX) including a cost (belief) for each

value in DX. Before the first iteration, all nodes assume that all messages

they previously received (in iteration 0) include vectors of zeros. A mes-

sage sent from variable-node X to function-node F in iteration i ≥ 1 is

formalized as follows:

Qi
X→F = ∑

F′∈FX ,F′ 6=F
Ri−1

F′→X − α,

where Qi
X→F is the message that variable-node X intends to send to function-

node F in iteration i, FX is the set of function-node neighbors of variable-

node X, and Ri−1
F′→X is the message sent to variable-node X by function-

node F′ in iteration i − 1. α is a constant that is reduced from all costs

included in the message (i.e., the beliefs intended for each x ∈ DX) to

prevent the costs carried by messages throughout the algorithm run from

growing arbitrarily large.

A message Ri
F→X sent from a function-node F to variable-node X in iter-

ation i includes for each value x ∈ DX minPA−X cost(〈X, x〉, PA−X), where

PA−X is a possible combination of value assignments to variables involved

CHAPTER 2. PREVIOUS WORK & BACKGROUND 12

in F, not including X. The term cost(〈X, x〉, PA−X) represents the cost of a

partial assignment a = {〈X, x〉, PA−X}, which is f (a)+∑X′∈XF,X′ 6=X,〈X′,x′〉∈a(Q
i−1
X′→F)x′ ,

where f (a) is the original cost in the constraint represented by F for the

partial assignment a, XF is the set of variable-node neighbors of F, and

(Qi−1
X′→F)x′ is the cost that was received in the message sent from variable-

node X′ in iteration i − 1 for the value x′ that is assigned to X′ in a. X

selects its value assignment x̂ ∈ DX after iteration k as follows:

x̂ = arg min
x∈DX

∑
F∈FX

(Rk
F→X)x.

Assuming that no tied beliefs exist, Max-sum converges in linear time to

the optimal solution when solving problems represented by a tree-structured

factor graph [15].2 When Max-sum operates on a single-cycle factor graph,

it will reach a state in which it repeatedly follows a maximal (or minimal

for minimization problems) path of assignments in the cycle. The algo-

rithm converges to the optimal solution if and only if this path is consis-

tent (i.e., includes a single value assignment for each variable [6]). Another

reference includes a more detailed description of the standard Max-sum

algorithm [31]. The Max-sum algorithm has been the subject of intense

study in DCOPs and has been applied to numerous realistic applications,

including mobile sensor networks [4, 5, 12, 23–25] and teams of rescue

agents [11, 19].

2Ties can be avoided by adding for each variable-node a unary constraint with ex-

tremely small random utilities [5].

CHAPTER 2. PREVIOUS WORK & BACKGROUND 13

2.4 Adjusting Max-sum Algorithm to DCOP MST

Although other work [32] proposed the Max-sum algorithm for solving

DCOP MST, it was only in its basic form and made no effort to explore

methods to improve the runtime. In contrast with standard local search

algorithms, agents in Max-sum do not propagate assignments but instead

calculate utilities (or costs) for each variable, taking into account all possi-

ble value assignments for the variables of their neighboring agents. Since

the computation performed by Max-sum is exponential in the number of

agents involved in a constraint, constraints that involve many agents (k-

ary) represent a computational bottleneck. Thus, increasing the number

of agents that can be assigned to a task would prevent the Max-sum al-

gorithm from solving such problems. Clearly, extending the local envi-

ronment of agents results in agents being effective for more tasks or tar-

gets and in a larger constraint arity. Therefore, in dynamic scenarios with

limited time to reach decisions, Max-sum is effective either for problems

that do not require exponential computations by targets or for problems

with limited constraint arity (i.e., where the local environment of agents

is limited). Yedidsion et al. proposed a novel exploration method specif-

ically designed for Max-sum and based on meta-reasoning: for each tar-

get, agents select a subset of the sensors that can be effective for cover-

ing it [28]. The proposed function meta-reasoning (FMR, discussed later

in this section) method breaks the relation between the size of the local

environment of agents and the arity of the constraints. In other words,

the arity of the constraint is not defined by the number of sensors within

the sensing range of target t after the next assignment selection (i.e., the

“neighbors” of t), but rather by the number of sensors required for cover-

CHAPTER 2. PREVIOUS WORK & BACKGROUND 14

ing t. Although assignment selections are not a part of an original Max-

sum algorithm, assignment selections determine the local environments

in DCOP MST and directly affect the structure of the constraint network

(and, consequentially, the factor graph).

Agents in Max-sum MST perform as follows:

1. Select a random assignment.

2. Generate a factor graph according to the current assignment where

each sensor is a variable-node and each target is a function-node.

Variable-node i is connected by an edge to a function-node if and

only if the distance between them is less than or equal to the sum

mri + sri (i.e., the sensor can cover the target after a single move).

3. The agents execute the Max-sum algorithm for a predefined number

of iterations.

4. The sensors move to the best position (value assignment) as calcu-

lated by the algorithm.

5. A new factor graph is generated according to the new assignment

selection, and then the process repeats itself.

We now discuss how we solve the challenges that arise upon applying

Max-sum MST to the DCOP MST model.

2.4.1 Handling Runtime

In our case, agents select the locations from which they derive the highest

utility (i.e., from which they are most effective). The next factor graph is

generated considering the new locations of the agents.

CHAPTER 2. PREVIOUS WORK & BACKGROUND 15

The number of message cycles executed before an assignment (position)

selection must be chosen with care. On the one hand, we want the in-

formation regarding the coverage capabilities of sensors to propagate to

other sensors. On the other hand, these Max-sum message cycles result

in a single movement for the sensors, so we want to avoid unnecessary

delays. The results of Yedidsion’s experiments show that a small number

of message cycles (five iterations) suffices to maximize performance. Our

results indicate that more cycles are needed to get good performance. We

used 30 iterations in our experimental setup.

Regarding the messages of the function-nodes, the only information re-

quired by the function to compute the utility is whether a sensor covers

the target (i.e., calculations can be executed for only two types of posi-

tions). We can thus apply here the method known as “fast Max-sum” [24],

which reduces the complexity for a function-node to generate a message

to O(D ∗ 2K−1).

2.4.2 Handling Exploration: Function Meta Reasoning

The FMR method tackles a common property of DCOP MST whereby tar-

gets have more neighbors than required for covering them. Consider an

iteration i in which the factor graph FGi is generated based on the locations

of sensors selected in iteration i− 1. Denoted by n(t)i is the set of neigh-

boring sensors of target t in FGi and by credn(t)i
is the total credibility of

n(t)i. Furthermore, denoted by r(t)i is a subset of n(t)i and by credr(t)i
is

the total credibility of r(t)i. When there exists a subset r(t)i for which the

importance of target t is less than credr(t)i
, t can select r(t)i neighbors to

cover it and allow the other n(t)i − r(t)i neighbors to explore. We imple-

CHAPTER 2. PREVIOUS WORK & BACKGROUND 16

ment this by generating a new factor graph F̂Gi in which each target t has

at most r(t)i neighbors. This can be done distributively by having each

target t remove the edges between it and n(t)i − r(t)i of its neighbors. For

homogeneous agents and targets, where r(t) is the required number of

sensors to cover target t, r(t) is constant.

Yedidsion et al. proposed the following greedy heuristic for function-node

t to select |r(t)| neighbors for which |n(t)i| > |r(t)| [32]. The heuristic is

tuned as follows with respect to the type of joint credibility function used:

1. Each of the n(t)i sensor neighbors sends to t its degree in FGi (i.e.,

the number of function-node neighbors it has in FGi).

2. t divides its n(t)i neighbors into two subsets: n̂(t)i and n̄(t)i. n̂(t)i

includes all neighbors that are currently within sensing range of t

and n̄(t)i includes the remaining neighbors.

3. While |n(t)i| > |r(t)|:

(1) If n̄(t)i 6= ∅, remove from n(t) the neighbor in n̄(t)i with the

highest degree.

(2) Else, remove from n(t) the neighbor in n̂(t)i with the lowest

degree.

Note that, when using this method, the complexity for producing each of

the messages to be sent by the function-node to its neighbors is no longer

exponential in |n(t)i| − 1 as in standard Max-sum; instead, it is exponential

in |r(t)i| − 1. Thus, the complexity of computing function-nodes no longer

depends on the sensing and mobility ranges of the sensors.

CHAPTER 2. PREVIOUS WORK & BACKGROUND 17

2.4.3 Handling Tie Breaking

The FMR method breaks the connections between targets and agents in a

position that allows them to sense the target (although there is no need for

the agents to do so). The objective of this rupture is to encourage these

agents to search for other targets where their sensing is required. How-

ever, the agents may equally well stay in their current location or select a

new location.

Thus, to stimulate exploration, agents select assignments randomly from

among the values that offer the highest utility. This method is denoted

Rand and allows agents to continuously explore new positions and the

targets that may be covered from these positions. In standard Max-sum

(solving standard DCOPs), the objective of tie-breaking is simply to en-

sure that agents select the same solution. In DCOP MST, on the other

hand, agents are incentivized to seek locations from which they are more

effective via the tie-breaking method. Although it enhances exploration,

the Rand method has a dichotomous effect in terms of the overall perfor-

mance of the team.

In the following chapters we denote Max-sum FMR-Rand as Max-sum MST.

2.5 Robot Operating System

The Robot Operating System (ROS) is an open-source framework designed

to serve as a common software platform for building and using robots.

This common platform permits code and ideas to be more readily shared

between contributors. The ROS has been remarkably successful: it con-

CHAPTER 2. PREVIOUS WORK & BACKGROUND 18

tains over 2000 software packages and is written and maintained by al-

most 600 people [17]. The main advantage the ROS brings to the present

research is its structured communication. The topics and messages ex-

changed between users allows the message flows in the system to be se-

curely maintained. Agents are represented as nodes in the ROS commu-

nication system. Each node (called a ”topic”) can read (listen) and write

(publish) over different network connections in the ROS. Figure 2.2 shows

an example of a wide ROS graph.

Figure 2.2: Example ROS graph: nodes in the graph represent individ-

ual programs; edges represent message streams that communicate sensor

data, actuator commands, planner states, intermediate representations,

etc.

Another advantage of the ROS is its worldwide community of users, which

provides open-source code and sustainable updates for its members. Python

CHAPTER 2. PREVIOUS WORK & BACKGROUND 19

is one of the main ROS client libraries and is strongly supported by the

community and relatively simple to use. The community provides a vari-

ety of helpful programs that are used herein. For example, Gazebo creates

virtual environments for robots that enforce the laws of physics, and Rviz

provides graphical user interfaces.

Linux (especially Linux Ubuntu) is the main operating system that sup-

ports the ROS. The present work uses the ROS ”Indigo” version and Ubuntu

version 16.04.

2.6 Necessity for New Hardware

Previous implementations of algorithms to solve DCOP MST were reported

by Yedidsion and suffered from numerous hardware limitations [27]. To

address real-world application properties and obstacles, several adjust-

ments were made to the original DCOP MST model. One of these adjust-

ments resulted in a model called DCOP MSTR [32] in which robots have

their sensors directed strictly forward (unlike in the original model where

agents have a 360◦ sensing range). An example of such a sensor is the

robot front camera, which has a limited field of vision. The iRobots used

by Yedidsion proved to be very difficult to work with; for example, they

had no on-board computer, so a laptop had to be mounted on each robot.

The robots also had no localization or communication capabilities. Ad-

dressing these issues clearly required better hardware to simulate realistic

DCOP MST scenarios.

CHAPTER 2. PREVIOUS WORK & BACKGROUND 20

2.7 Hamster Robots

Hamsters (Figure 2.3) are small, robust autonomous robots for research

and prototype development. Hamsters can create indoor maps and local-

ize themselves indoors by using 360◦ LIDAR (LiDar A2M8) and other on-

board sensors to provide accurate position information while in motion.

They have WiFi ew-7811uac EDIMAX AC600 hardware for wireless com-

munication, a Camera raspberry Pi module v2 located at the front of the

robot, and use the ROS. Hamsters include inherent communication and

localization features that eliminate localization and communication limi-

tations when positioning these robots. Their on-board Raspberry Pi 3 also

dispenses with the requirement for mounted laptops, making the work-

flow much easier because only a single computer is required for coding

and execution.

Figure 2.3: Hamster autonomous robots.

CHAPTER 2. PREVIOUS WORK & BACKGROUND 21

2.8 Creating Simulations & Setting Robots

We next describe the setup of the simulation environments we used to

compare the algorithm we proposed with state of the art. In this work, the

words ”agent” and ”robot” are used interchangeably.

2.8.1 Packages

The following libraries and packages were used for robot control:

1. The actionlib library allows movement commands to be sent via

MoveBaseGoal messages from the move base msgs.msg library.

These messages give the final robot position at the end of movement.

2. We use the SLAM algorithm to create a map of the environment. The

algorithm is part of built-in packages in Hamster.

3. We use tools from the map server library to save the maps.

4. To localize itself, Hamster uses the augmented Monte Carlo localiza-

tion algorithm, which is part of the amcl package.

5. To create paths in a given environment Hamster uses the move base

package to build global and local costmaps of the surrounding area.

Costmaps are special maps used to emphasize obstacles around the

robot, thereby helping the robots to avoid the obstacles and creating

the shortest and safest path possible.

CHAPTER 2. PREVIOUS WORK & BACKGROUND 22

2.8.2 Setting up the Gazebo simulation

Software simulation is a safe way to verify the primary code while avoid-

ing the technical complications of real robots. In simulations, the connec-

tion to the robot is stable, and problems with the battery and/or physical

damage are avoided. We used the Gazebo framework. To create a new

world in Gazebo, we described objects (stored in .stl and .dae files),

physical characteristics such as gravity (stored in .urdf files), and world

properties describing the location of each object (stored in .world files).

Figure 2.4: Examples of objects in a simulation.

Figure 2.4 shows the variety of shapes, materials, and mechanisms avail-

able in this framework. We use a small fraction of these capabilities: robot

models, walls, and simple cylinders.

In Gazebo, the Hamster robot model is provided by Cogniteam [2]. Figure

2.5 shows the robot model in a simulation. The model reads and writes to

the ROS topics exactly the same way as does a real robot. ROS is indiffer-

ent to who is behind the topics, a simulation or a real robot. In both cases

ROS network provides messages regarding relevant topics. This property

CHAPTER 2. PREVIOUS WORK & BACKGROUND 23

of the ROS significantly facilitates development and further adjusts simu-

lations to real conditions.

Figure 2.5: Robots in simulations.

CHAPTER 2. PREVIOUS WORK & BACKGROUND 24

2.8.3 Example of the full setting

Figure 2.6: (a) Figure 2.7: (b)

Figure 2.8: (c) Figure 2.9: (d)

Figure 2.6 shows a Gazebo simulation of a simple experiment. Blue cylin-

ders are the targets and cubes represent the walls. Figures 2.7 and 2.8

show maps of the same experiment made by the map server library for

the simulation and in the real world, respectively. Figure 2.9 shows a pho-

tograph of the actual robots in the laboratory.

CHAPTER 2. PREVIOUS WORK & BACKGROUND 25

2.8.4 Setting up a Two-Dimensional PyGame Simulation

Rapid testing of new ideas and their verification on a large scale with

dozens of robots and targets on the same field requires a simple, small-

footprint program. For this purpose, we introduce the DCOP MST 2D

simulator. Figure 2.10 shows several screenshots of experiments running

on this simulator.

(a) (b) (c)

Figure 2.10: (a) sr and mr of the robots. (b) Robots in a large field and (c)

in a small field.

The simulator can run several algorithms simultaneously and allows us to

define the size of the field, the number of robots and targets, mr and sr for

the robots, the number of problems to solve per algorithm, and the number

of iterations allowed. The user can also play with target requirements and

robot credibilities (e.g., making them identical for all robots or giving them

unique values). Ranges, the robots’ cred values, and the targets’ ER are

also allowed to change during the simulation. These capabilities help us

better model dynamic, realistic scenarios.

As output, the simulator returns the coverage rate of the algorithms and

the number of collisions produced in each iteration.

3 Collision-Avoiding Max-sum Al-

gorithm

Yedidsion et al. obtained a much better solution quality with the Max-

sum MST exploration algorithm than with the MST distributed local search

algorithms, all while limiting the exponential runtime associated with mes-

sage computation in Max-sum [32]. Their empirical study reveals that

Max-sum MST outperforms all competing algorithms, including DSA MST

and MGM MST [32]. However, Max-sum MST does not prevent collisions

between mobile sensors, which may result in damage to the sensors, exe-

cution delay, or even the inability to perform the coverage task. Figure 3.1

presents an example scenario in which collisions affect MST performance.

In this example: red dots are targets, colored crosses are the locations

available to the robots, and highlighted circles show possible collisions

due to the intersection of robot paths. To avoid collisions, we propose

the Collision-Avoiding Max-sum (CAMS) algorithm, a version of the Max-

sum algorithm that allows agents to select the deployment that maximizes

coverage and yet avoids collisions. This is achieved by adding function-

nodes representing locations to which the agents can move to the factor

graphs generated in each iteration of the algorithm (before each move-

26

CHAPTER 3. COLLISION-AVOIDING MAX-SUM ALGORITHM 27

Figure 3.1: Path a4 → b4 intersects with c1 → b1 and path b5 → a5 inter-

sects with c3 → b3, indicating possible collisions between robots.

ment of the agents). Each function-node can represent either locations to

which only a single agent can move or locations to which two agents can

move.

The first type of function-node assigns zero (positive) utility to the option

in which the agent chooses not to move to the given location.

The second type of function-node represents a hard constraint that pre-

vents two agents from selecting the same location. In this case, its utility

function imposes zero utility for when neither agent moves to the given

location, positive utility when only one agent moves to the location, and

−∞ utility when both agents move to the location.

If more than two agents can select a location, the agents generate function-

nodes that represent the binary constraint between each pair of agents.

More formally, a factor graph generated by agents in CAMS contains three

CHAPTER 3. COLLISION-AVOIDING MAX-SUM ALGORITHM 28

types of function-nodes:

I. FTj: This type of function-node represents a target Tj. As in Max-

sum MST, the utility that agent Ai derives for covering Tj is min{ERFTj , credi}.

However, in nondegenerate cases where multiple sensors are required

for coverage, the utility derived is credi.

II. FL(i,e): This type of function-node represents a location l to which

agents Ai and Ae can move in the given iteration. The utility is zero

if neither agent selects location l, −∞ if both agents select l, and a

random utility is selected from a range of numbers all much smaller

than ERFTj if only one of them selects l,1 Although scenarios may

exist in which more than two agents can move to the same location,

FL is a binary constraint, so, if k > 2 agents can select the same

location, a function-node FL is assigned to each pair of the k agents.

III. FL(i): This type of function-node represents a location to which only

a single agent can move. In this case, the corresponding constraint

is unary. The utility is a random positive number if Ai selects this

location (the utility is selected from the same range as the random

positive utilities selected for the binary constraints) and zero if Ai

does not select this location.

Figure 3.2 presents an example of a factor graph generated in an arbitrary

iteration of CAMS. It includes two mobile sensors, each with four possi-

ble locations to which to move (up, down, left, and right) and the option

to stay in its current location. All function-nodes representing locations

to which only one mobile sensor can move are of type III. Although the

1Random numbers are selected to avoid ties between desired options, as per Ref. [5].

CHAPTER 3. COLLISION-AVOIDING MAX-SUM ALGORITHM 29

05
02

04

7

2 01

05

0

6

0

3
3
∞-

0

0

070

70 70

200

Figure 3.2: A factor graph generated in CAMS.

domain of each agent includes five values (representing the possible loca-

tions the agent can select), the utility is positive only if the agent selects the

location represented by the function-node; for all other locations the util-

ity is zero. The middle location (to which both mobile sensors can move)

is represented by a type-II function-node. It includes four options: nei-

ther agent selects this location (zero utility), both agents select this loca-

tion (−∞ utility), and one or the other agent selects this location (positive

utility). The target is represented by a type-I function-node. Its coverage

requirement is 200, whereas the credibility of each mobile sensor is 70,

which is the utility derived for covering the target. In this example, cov-

ering the target is only possible from the middle location (to which both

mobile sensors can move). However, the agents collide if they both move

to this location.

Compared with Max-sum MST, the overhead runtime complexity of CAMS

is negligible because the additional function-nodes representing unary and

binary constraints require at most 22 utility comparisons for each message

produced. Conversely, the comparisons required for generating a message

by each function-node FT that represents a target (in both algorithms) is

2k, where k is the number of neighbors of FT. However, we expect that

adding function-nodes representing locations will result in more cycles

CHAPTER 3. COLLISION-AVOIDING MAX-SUM ALGORITHM 30

(a) (b)

(c) (d)

Figure 3.3: Scenarios with convergence guarantees.

and thereby reduce the probability for convergence. We demonstrate in

the following sections that this is not the case for the CAMS algorithm.

3.1 Analyzing Specific Scenarios

We next present a set of scenarios for which we prove the convergence of

CAMS to a noncolliding (optimal) state. The following section presents

a second set containing scenarios for which our empirical results demon-

strate such convergence.

Figure 3.3 shows scenarios for which we have established convergence

guarantees. Below, we prove that the CAMS algorithm converges to collision-

free optimal solutions when applied to these scenarios.

Proposition 1 Max-sum converges in a linear number of steps to a collision-free

optimal solution when solving the scenario depicted in Figure 3.3(a).

Proof: The factor-graph representation of this scenario has a tree structure

so the algorithm will converge in a linear number of steps to an optimal

CHAPTER 3. COLLISION-AVOIDING MAX-SUM ALGORITHM 31

solution [30]. This optimal solution cannot include the selection by both

agents of the mutual location M since its cost is −∞. �

Proposition 2 When solving the scenario depicted in Figure 3.3(b), Max-sum

converges to a collision-free optimal solution in a pseudo-linear number of steps.

Proof: The factor-graph representation of this scenario includes a single

cycle with two function-nodes. Each function-node has four entries in its

utility table. According to Ref. [6], when belief propagation is applied to

a single cycle graph, Max-sum converges to the optimal solution if and

only if the optimal repeated path is consistent. The only way to generate

an inconsistent path in such a cycle with two function-nodes and a four-

entry utility table is if the cycle includes opposing directed diagonals in the

utility tables. However, in our case, one of these diagonals must include

the −∞ entry. Thus, the maximal path must be consistent. The number of

steps depends on the constant utilities sent by the neighbors of the unary

function-node, which are not included in the cycle. If these utilities differ

only negligibly, the convergence time is linear (i.e., on the order of the

cycle size). �

The next lemma is relevant to scenarios (as depicted in Figure 3.2) in which

their representing factor graph includes a single-target function-node and

a single location from which the target can be covered and to which both

agents can move.

Lemma 1 When Max-sum operates on factor graphs as described above, the tar-

get function-node FT sends the same messages to its two neighbors MS1 and

MS2 in every step, including zero for not covering the target and cred1 or cred2,

respectively, for covering the locations (assuming ERFT > max(cred1, cred2)).2

2A previous indication that hard constraints reduce the complexity of a factor-graph

CHAPTER 3. COLLISION-AVOIDING MAX-SUM ALGORITHM 32

Proof: We follow the path of messages over a cycle, including one tar-

get function-node FT, two mobile sensors MS1 and MS2, and one mu-

tual location ML to which both sensors can move. We denote by c1 and

c2 the utilities included in FLML (besides zero and −∞) for the options

that only MS1 or only MS2 move to ML. Recall that, by construction,

cred1, cred2 � c1, c2. Figure 3.4 shows a factor graph that applies to this

description.

Figure 3.4: Target, two robots, and one common cell.

Without loss of generality, we follow the cyclic message path starting at

FT, then proceed to MS1, ML, MS2, and then back to FT:

1. The first message FT → MS1 includes the pair 〈0, cred1〉 (the left

and right entries of the pair represent the belief in not covering and

covering the target, respectively).

2. The second message MS1 → FLML includes the same pair 〈0, cred1〉

because the message from FT is the only message requiring further

transmission.

representation of a realistic application (although very different from the case this lemma

analyzes) is available in Ref. [16].

CHAPTER 3. COLLISION-AVOIDING MAX-SUM ALGORITHM 33

3. The third message FLML → MS2 includes

〈max{c2,−∞}, max{0, cred1 + c1}〉.

Thus, the message includes 〈c2, cred1 + c1〉.

4. The fourth message MS2 → FT passes the same 〈c2, cred1 + c1〉.

5. The next FL→ MS1 message includes

〈max{cred2 + c2, cred1 + c1}, max{cred1 + cred2 + c2, 2cred1 + c1}〉.

In both cases, regardless of whether cred2 + c2 > cred1 + c1, the mes-

sage will be normalized down to 〈0, cred1〉.

We now follow the cyclic message in the opposite order of nodes starting

at FT, then MS2, ML, MS1, and then back to FT:

1. The first message FT → MS2 includes the pair 〈0, cred2〉 (the left

and right entries of the pair represent the beliefs in not covering and

covering the target, respectively).

2. The second message MS2 → FLML includes the same pair 〈0, cred2〉

because the message from FT is the only message requiring further

transmission.

3. The third message FLML → MS1 includes

〈max{c1,−∞}, max{cred2 + c2, 0}〉.

Thus, the message includes 〈c1, cred2 + c2〉.

4. The fourth message MS1 → FT passes the same beliefs 〈c1, cred2 +

c2〉.

CHAPTER 3. COLLISION-AVOIDING MAX-SUM ALGORITHM 34

5. The next message FL→ MS2 includes

〈max{cred1 + c1, cred2 + c2}, max{cred1 + cred2 + c1, 2cred2 + c2}〉.

In both cases here as well, regardless of whether cred2 + c2 > cred1 +

c1, the message will be normalized down to 〈0, cred2〉.

A similar analysis applies to any case where cred1, cred2 � c1, c2. �

Intuitively, this happens because the −∞ utility in ML prevents the utility

calculation including credi from being sent to MSj for the covering option,

where i 6= j. Thus, credi in the message from MSj to FT shifts from the

covering option to the non-covering option, which offsets the utility added

by FT in each cycle.

Proposition 3 When solving the scenario depicted in Figure 3.3(c), Max-sum

converges to a collision-free optimal solution after a linear number of steps.

Proof: According to Lemma 1, the target representing the function-node

in this scenario consistently sends the same messages. Thus, although this

scenario includes a single cycle, in practice, the algorithm behaves as if it

were solving a tree. �

An immediate corollary is that Max-sum converges in scenarios similar

to that depicted in Figure 3.3(c), in which the target can be covered from

additional locations because the graph retains a single degenerate cycle

(i.e., the algorithm performs as if it were solving a tree-structured factor

graph).

To analyze the convergence of the scenario represented by the factor graph

depicted in Figure 3.3(d), we need the following lemma:

CHAPTER 3. COLLISION-AVOIDING MAX-SUM ALGORITHM 35

Lemma 2 When Max-sum operates on factor graphs as depicted in Figure 3.3(d),

the target function-node FT sends the same messages to its two neighbors MS1

and MS2 in every step, including zero for not covering the target and cred1 or

cred2, respectively, for covering locations [assuming ERFT > max(cred1, cred2)].

Proof: The proof is similar to that of Lemma 1. We follow the path of

messages in a cycle, including one target function-node FT, two mobile

sensors MS1 and MS2, and two mutual locations ML1 and ML2 to which

both mobile sensors can move. We denote by c1 and c2 the utilities in-

cluded in FLML1 and by c3 and c4 the utilities included in FLML2 (besides

zero and −∞), for the options that only MS1 moves to ML1 or only MS2

moves to ML2. Recall that, by construction, cred1, cred2 � c1, c2, c3, c4.

Figure 3.5 shows a factor graph that applies to this description.

Figure 3.5: Target, two robots, and two common cells.

Without loss of generality, we follow the cyclic message path starting at

FT, then MS1, ML1 and ML2, MS2, and then back to FT (the left and right

entries of the pair represent the beliefs that ML1 covers the target and that

ML2 does not cover the target, respectively):

1. Step 1:

CHAPTER 3. COLLISION-AVOIDING MAX-SUM ALGORITHM 36

FT → MS1 includes the pair 〈cred1, 0〉.

ML1 → MS1 includes the pair 〈c1, c2〉.

ML2 → MS1 includes the pair 〈c3, c4〉.

2. Step 2:

MS1 → ML1 includes the pair 〈cred1 + c3, c4〉.

MS1 → ML2 includes the pair 〈cred1 + c1, c2〉.

3. Step 3:

ML1 → MS2 includes 〈c2 + c4, cred1 + c1 + c3〉.

ML2 → MS2 includes 〈0, c4〉.

4. Step 4:

MS2 → FT includes 〈c2, cred1 + c1 + c3〉.

We denote c2 as α and c1 + c3 as β.

5. The next message FL→ MS1 includes

〈max{cred1 + cred2 + α, 2cred1 + β}, max{cred2 + α, cred1 + β}〉.

In both cases, regardless of whether cred2 + α > cred1 + β, the mes-

sage is normalized to 〈cred1, 0〉.

A similar analysis applies to the opposite order of nodes, where cred1, cred2 �

c1, c2, c3, c4. �

Proposition 4 When solving the scenario depicted in Figure 3.3(d), Max-sum

converges to a collision-free optimal solution in a pseudo-linear number of steps.

CHAPTER 3. COLLISION-AVOIDING MAX-SUM ALGORITHM 37

Proof: This proof is similar to that of Proposition 3. According to Lemma 2,

the target representing the function-node in this scenario consistently sends

the same messages. Thus, although this scenario includes two cycles, in

practice, the algorithm behaves as if it were solving a single-cycle factor

graph. This cycle cannot include an inconsistent optimal path (for the

same reason as given in Proposition 2), so the algorithm converges to the

optimal solution, which cannot include collisions. We omit the similar

argument proving that a pseudo-linear number of steps is required for

convergence. �

3.2 Experimental Evaluation

To evaluate the performance of CAMS, we designed two types of simu-

lation environments. The first was a software simulation implemented in

Python (see Chapter 2.8) and the second was a simulation involving Ham-

ster robots [2]. We start by evaluating the performance of Max-sum on

small scenarios, including at most two targets for which we were unable

to establish guaranteed convergence (see Figure 3.6).

For each scenario we produced 50 instances. In each scenario, the tar-

get’s ER was 120 and the credibility of each sensor was 30. The positive

utilities of the location function-nodes were selected randomly between

1 and 1M and divided by 10 000M, resulting in random numbers in the

range [0.000 000 000 01, 0.0001). An empirical evaluation reveals that Max-

sum always converges to an optimal collision-free solution when solving

these scenarios. Beneath each scenario, the average number of iterations

required for convergence (on the left) and to obtain the standard deviation

(on the right) are given in brackets.

CHAPTER 3. COLLISION-AVOIDING MAX-SUM ALGORITHM 38

(5.14, 9.07) (6.14, 17.79)

(0.18, 0.57) (4.74, 12.58)

(6.58, 12.2) (3.5, 5.5)

Figure 3.6: Scenarios with no convergence guarantees.

Next, we generate larger scenarios in which 20 targets were randomly po-

sitioned on a grid with dimensions 50× 50. Eighty mobile sensors are also

positioned randomly on this grid, such that every cell of the grid includes

at most one mobile sensor. The targets’ ER, the credibility of mobile sen-

sors, and the utilities for the cell representing function-nodes are selected

in the same way as done for the small scenarios described above. In each

iteration of the algorithm, each mobile sensor can either move to one of

the four adjacent cells (up, down left or right) or stay in its location. We

CHAPTER 3. COLLISION-AVOIDING MAX-SUM ALGORITHM 39

assumed that a mobile sensor can cover a target located in the cells closest

to it in each direction, including row, column, and diagonals (one step in

each direction).

We compare CAMS with Max-sum MST and with a random walk algo-

rithm. Each algorithm performs 100 iterations in which the mobile sen-

sors select locations. CAMS and Max-sum MST perform 30 steps of the

algorithm in each iteration before the agents select their locations. The re-

maining coverage in each iteration is calculated by using ∑Tj∈T cr(Tj). The

group goal is thus to minimize the remaining coverage requirement.

(a) (b)

Figure 3.7: (a) Remaining coverage and (b) accumulated collisions as a

function of number of iterations.

Figure 3.7(a) presents the remaining coverage requirements for the three

algorithms as a function of number of iterations (colors represent the stan-

dard deviation). For Max-sum MST we included the results of two ex-

periments. In the first experiment, the mobile sensor movements are not

affected by collisions. In the second experiment, colliding sensors break

CHAPTER 3. COLLISION-AVOIDING MAX-SUM ALGORITHM 40

down and stop moving. CAMS clearly maintains a level of coverage simi-

lar to that of Max-sum MST and both have a large advantage over the ran-

dom walk algorithm. However, since the mobile senors in Max-sum MST

do not avoid collisions, the agents performing it are less restricted, so the

resulting coverage is slightly better than the coverage achieved by CAMS

(the differences are insignificant with p = 0.01). Conversely, CAMS sig-

nificantly outperforms Max-sum MST in scenarios that include coverage

breakdowns. Figure 3.7(b) shows the number of accumulated collisions

for each algorithm as a function of number of iterations. CAMS is colli-

sion free whereas random walk and Max-sum MST experience collisions

at a similar rate.

Figure 3.8: Experimental setup.

The goal of the next set of experiments was to examine the delay caused

by collisions between robots in realistic settings. Thus, the experiments in-

cluded a MST composed of three Hamster robots [2] and two targets with

ER = 60 placed in a 4× 4 grid, with each grid cell measuring a square

meter. The targets were placed randomly in nonadjacent cells of the grid.

The Max-sum algorithm executed the same number of steps and had the

CHAPTER 3. COLLISION-AVOIDING MAX-SUM ALGORITHM 41

same credibility in each iteration as all other experiments presented in this

section. The algorithms executed ten iterations. We selected four different

target positions and, for each target position, five different robot positions,

resulting in 20 experiments for each algorithm.3 Figure 3.8 shows the ini-

tial position of the Hamsters for one of the experiments.

Figure 3.9: Remaining coverage requirement as a function of experiment

execution time for Max-sum MST and CAMS algorithms.

Figure 3.9 shows the remaining coverage requirement as a function of ex-

periment execution time for the Max-sum MST and CAMS algorithms. Al-

though both algorithms produce the same level of coverage after complet-

ing ten iterations, CAMS avoids collisions and thus reaches this coverage

3A video presenting the highlights of this set of experiments is included in the sup-

plemental material.

CHAPTER 3. COLLISION-AVOIDING MAX-SUM ALGORITHM 42

state roughly 36% faster.

4 Conclusions

Realistic multi-agent applications often include scenarios in which a mo-

bile sensor team (MST) must detect and monitor targets. DCOP MST is

a dynamic DCOP formulation that we use to model such MST scenarios

and that allows us to use various algorithms to solve them.

An important aspect of applications that include mobile sensors is that the

sensors should avoid collisions while optimizing coverage. To achieve this

challenging combination, we propose the CAMS algorithm, which is an

offshoot of the Max-sum MST algorithm that avoids collisions by adding

to the factor-graph representation of the problem (in addition to function-

nodes representing targets) hard-constraint function-nodes representing

the locations to which agents may choose to move. In contrast with ex-

pectations, this addition does not prevent the algorithm from converging.

The analysis of simple scenarios offers explanations for this phenomenon,

and the empirical results reveal that the desired properties are maintained

upon scaling up the problem. Finally, small scenario experiments with

hardware robots reveal the actual delay in execution caused by collisions.

43

5 Future Work

The work presented in the previous chapters was a first step in our jour-

ney towards our research goal, which is to identify and address challenges

in applying distributed optimization models and algorithms to real world

applications that include mobile sensor teams. We outline several objec-

tives for future research and how we intend to achieve these objectives.

5.1 Research Objectives

5.1.1 Collisions in MST

Previous DCOP MST algorithms did not take into consideration the col-

lisions between robots. In this work, we proposed a collision free Max-

sum based algorithm that allows robots to move a single step (one node

of the graph) at each iteration. Nonetheless, in cases where the amount of

steps agents are required to move in order to achieve high quality cover-

age is large, this approach can be unnecessarily exhaustive and delay the

effective monitoring of targets. We intend to propose an alternative ap-

proach that will allow agents to select entire paths in a single iteration of

the algorithm. Allowing robots to move in an extended range increases

44

CHAPTER 5. FUTURE WORK 45

the probability for collisions.

Several algorithms were developed to prevent collisions in multi-agent

path planning: (i) Building a graph of possible solutions, where each node

in the graph contains a combined cost of all the paths of agents. The algo-

rithm unfolds the graph from the lowest cost nodes to higher until it finds

a solution with no collisions between paths inside a node [21]. (ii) Iterating

through a possible set of paths with the lowest cost set of constraints. If

there is a collision between paths, a new constraint is created and is added

to the set of constraints. Then, the process is repeated until resolved [29].

(iii) Propagating values of possible paths to neighboring agents, picking

one with the lowest cost according to the neighbors’ received messages

and then propagating the final choice [10].

The advantage of these approaches is that they produce optimal or near

optimal solutions. The main drawback is that most of the algorithms

implementing these approaches are centralized. A number of challenges

arise when one tries to apply these methods to DCOP MST. The first is the

requirement for a distributed algorithm. We intend to design distributed

versions of the algorithms proposed in [21, 29] and investigate whether

their properties can be maintained when performed distributively. The

second is the need for efficient calculation. Approximation distributed

versions of the algorithms will be designed and implemented in order to

allow fast convergence to high quality solutions. The third is the require-

ment to adjust quickly to dynamic changes. This challenge was not con-

sidered in the centralized versions presented.

CHAPTER 5. FUTURE WORK 46

5.1.2 Communication Awareness in MST

Previous studies on DCOP MST assumed perfect communication, i.e., that

all messages sent among agents arrive instantly. However, in realistic

MST scenarios communication is expected to be imperfect due to hard-

ware faults, environment obstacles [18] etc. Thus, there is a need to design

robust algorithms that will allow the team of mobile sensors to accomplish

their goal even when messages are delayed or lost.

In our research, we will first focus on latency awareness in DCOP MST.

We will start by examining the properties of communication networks in

MST applications and then design a model that can represent these proper-

ties. Next, we will evaluate the performance of existing DCOP MST algo-

rithms in the presence of message latency and finally, adjust the existing

algorithms and design new algorithms that are robust to these message

latency patterns. We intend to perform a similar design process for repre-

senting scenarios in which messages are lost and to design algorithms that

are robust to message loss.

5.1.3 Learning Targets Importance in MST

DCOP MST includes for each target its exact coverage requirement. How-

ever, in many realistic scenarios this is not the case. In military situations

there are often vague indications of military activities that their magnitude

is resolved only when sensors are allocated to monitor it [9]. Hence, we

intend to extend the DCOP MST model to allow the representation of this

uncertainty in terms of entropy. The coverage requirement of each target

will be represented , instead of by a single constant, by a range of possible

CHAPTER 5. FUTURE WORK 47

discrete importance value. The entropy will be calculated by the probabil-

ity of each of these importance values to be the true coverage requirement

of the target. The model will further include the reduction in entropy as a

result of an allocation of a sensor to a target. The optimization algorithms

will be expected to take into consideration these elements in the model,

while selecting the agents’ deployment.

5.1.4 Breakdowns in MST

In the preliminary work we present in Chapter 3, we made an assump-

tion that the amount of agents is constant during the run of algorithms.

However, this assumption does not hold in many real world scenarios

[11, 14, 22, 27]. In fact, in many realistic applications, mobile sensors can

break down in unpredicted times and their capabilities can change dra-

matically as well. In order for DCOP MST algorithms to be successful in

such challenging environments they must account for the possibility that

agents will fail and will not complete their tasks, and thus other agents

must take over their role in order for the team to accomplish its goals.

When there are enough agents, assigning more agents than required for

each target can be a good solution to the problem. When this is not the

case, there is a need for an ongoing robust distributed optimization algo-

rithms that will allow agents to adjust their deployment and maximize the

remaining group efficiency in the presence of breakdowns.

CHAPTER 5. FUTURE WORK 48

5.2 Expected Advancement

The main contribution of the proposed research is in enhancing multi

agent optimization models and algorithms, so that they will be relevant

for realistic applications that include mobile sensor teams. This requires

the extension of existing models to include realistic features that were ig-

nored in previous work and the adjustment and design of algorithms for

solving them. To foster the acceptance of the extended models within the

scientific community, we will provide algorithmic approaches, proof-of-

concept implementations in simulations and in real-world scenarios, and

rigid evaluations of significant benchmark instances. We will conduct the-

oretical evaluations for all the proposed models and algorithms (e.g. time

complexity of the proposed model, quality and convergence guarantee of

the proposed algorithms, communication costs, etc.) to better characterize

and explore their applicability.

We anticipate that the advances we will make in the the research and its

associated application areas will have a significant impact on the develop-

ment of distributed algorithms for more realistic distributed systems. We

intend to make a set of DCOP MST benchmark problems available to the

public, to foster future research in the direction of the proposed work.

6 Declaration

I hereby confirm that this thesis is entirely my own work. I confirm that

no part of the document has been copied from either a book or any other

source – including the internet – except where such sections are clearly

and correctly identified within the text or in the bibliography.

49

Bibliography

[1] Z. Chen, Y. Deng, T. Wu, and Z. He. A class of iterative refined

max-sum algorithms via non-consecutive value propagation strate-

gies. Journal of Autonomous Agents and Multi-Agent Systems (JAA-

MAS), 32(6):822–860, 2018.

[2] Cogniteam. Hamster V7 Smart ROS Autonomous Ground Vehicles for

Industry and Academic R&D, 2020.

[3] Y. Deng and B. An. Speeding up incomplete gdl-based algorithms

for multi-agent optimization with dense local utilities. In Proceedings

of the 29th International Joint Conference on Artificial Intelligence (IJCAI),

pages 31–38, 2020.

[4] A. Farinelli, A. Rogers, and N. R. Jennings. Agent-based decen-

tralised coordination for sensor networks using the max-sum algo-

rithm. Journal of Autonomous Agents and Multi-Agent Systems (JAA-

MAS), 28(3):337–380, 2014.

[5] A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings. Decentralised

coordination of low-power embedded devices using the max-sum al-

gorithm. In Proceeding of the 7th International Conference on Autonomous

Agents and Multi-Agent Systems (AAMAS), pages 639–646, 2008.

50

BIBLIOGRAPHY 51

[6] G. D. Forney, F. R. Kschischang, B. Marcus, and S. Tuncel. Iterative

decoding of tail-biting trellises and connections with symbolic dy-

namics. In B. Marcus and J. Rosenthal, editors, Codes, Systems, and

Graphical Models, pages 239–264. Springer, 2001.

[7] M. Jain, M. E. Taylor, M. Yokoo, and M. Tambe. Dcops meet the real

world: Exploring unknown reward matrices with applications to mo-

bile sensor networks. In Proceedings of the 21st International Joint Con-

ference on Artificial Intelligence (IJCAI), pages 181–186, 2009.

[8] F. R. Kschischang, B. J. Frey, and H. A. Loeliger. Factor graphs and

the sum-product algorithm. IEEE Transactions on Information Theory,

47:2:181–208, February 2001.

[9] V. Lisý, R. Zivan, K. P. Sycara, and M. Pechoucek. Deception in net-

works of mobile sensing agents. In Proceeding of the 9th International

Foundation for Autonomous Agents and Multiagent Systems (AAMAS),

pages 1031–1038, 2010.

[10] R. Luna and K. E. Bekris. Network-guided multi-robot path planning

in discrete representations. In Proceedings of IEEE International Work-

shop on Intelligent Robots and Systems (IROS), pages 4596–4602, 2010.

[11] K. S. Macarthur, R. Stranders, S. D. Ramchurn, and N. R. Jennings. A

distributed anytime algorithm for dynamic task allocation in multi-

agent systems. In Proceedings of the 25th Conference of the American

Association for Artificial Intelligence (AAAI), pages 701–706, 2011.

[12] P.-G. Marc, C. Jesús, M. Pedro, R.-A. J. Antonio, and T. Milind. En-

gineering the decentralized coordination of uavs with limited com-

BIBLIOGRAPHY 52

munication range. Advances in Artificial Intelligence, pages 199–208,

2013.

[13] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. Adopt: asynchronous

distributed constraints optimization with quality guarantees. Artifi-

cial Intelligence, 161(1-2):149–180, 2005.

[14] D. T. Nguyen, W. Yeoh, H. C. Lau, S. Zilberstein, and C. Zhang.

Decentralized multi-agent reinforcement learning in average-reward

dynamic DCOPs. In Proceedings of the AAAI Conference on Artificial

Intelligence (AAAI), pages 1447–1455, 2014.

[15] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-

sible Inference. Morgan Kaufmann, 1988.

[16] T. Penya-Alba, M. Vinyals, J. Cerquides, and J. A. Rodrı́guez-Aguilar.

A scalable message-passing algorithm for supply chain formation. In

Proceedings of the 26th Conference of the American Association for Artificial

Intelligence (AAAI), pages 1436–1442, 2012.

[17] M. Quigley, B. Gerkey, and W. D. Smart. Programming Robots with

ROS. O’Reilly Media, 2015.

[18] B. Rachmut, R. Zivan, and W. Yeoh. Latency-aware localsearch for

distributed constraint optimization. In Proceedings of the 20th Interna-

tional Conference on Autonomous Agents and Multiagent Systems (AA-

MAS), Online, 2021.

[19] S. D. Ramchurn, A. Farinelli, K. S. Macarthur, and N. R. Jennings.

Decentralized coordination in robocup rescue. Computer Journal,

53(9):1447–1461, 2010.

BIBLIOGRAPHY 53

[20] P. Rust, G. Picard, and F. Ramparany. Using message-passing DCOP

algorithms to solve energy-efficient smart environment configuration

problems. In Proceedings of the 25th International Joint Conference on

Artificial Intelligence (IJCAI), pages 468–474, 2016.

[21] G. Sharon, R. Stern, M. Goldenberg, and A. Felner. The increasing cost

tree search for optimal multi-agent pathfinding. Artificial Intelligence,

195:470 – 495, 2013.

[22] M. C. Silaghi, D. Sam-Haroud, M. Calisti, and B. Faltings. General-

ized english auctions by relaxation in dynamic distributed csps with

private constraints. In the Distributed Constraint Reasoning workshop

(DCR) at IJCAI, 2001.

[23] R. Stranders, F. M. Delle-Fave, A. Rogers, and N. R. Jennings. A de-

centralised coordination algorithm for mobile sensors. In Proceedings

of the 24th Conference of the American Association for Artificial Intelligence

(AAAI), pages 874–880, 2010.

[24] R. Stranders, A. Farinelli, A. Rogers, and N. R. Jennings. Decen-

tralised coordination of mobile sensors using the max-sum algorithm.

In Proceedings of the 21st International Joint Conference on Artificial Intel-

ligence (IJCAI), pages 299–304, 2009.

[25] W. T. L. Teacy, A. Farinelli, N. J. Grabham, P. Padhy, A. Rogers, and

N. R. Jennings. Max-sum decentralised coordination for sensor sys-

tems. In Proceedings of 7th International Conference on Autonomous

Agents and Multiagent Systems (AAMAS), pages 1697–1698, 2008.

[26] G. Wang, G. Cao, P. Berman, and T. F. Laporta. A bidding protocol for

BIBLIOGRAPHY 54

deploying mobile sensors. In Proceedings of the 11th IEEE International

Conference on Network Protocols (IEEE ICNP), pages 315–324, 2003.

[27] H. Yedidsion and R. Zivan. Applying dcop mst to a team of mobile

robots with directional sensing abilities. In Proceedings of the 2016 Con-

ference on Autonomous Agents and Multiagent Systems (AAMAS), page

1357–1358, 2016.

[28] H. Yedidsion, R. Zivan, and A. Farinelli. Applying max-sum to teams

of mobile sensing agents. Engineering Applications of Artificial Intelli-

gence (EAAI), 71:87–99, 2018.

[29] B. Zahy, S. Roni, F. Ariel, Z. Roie, and O. Steven. Multi-agent path

finding for self interested agents. Proceedings of the 6th Annual Sympo-

sium on Combinatorial Search (SoCS), 01 2013.

[30] R. Zivan, O. Lev, and R. Galiki. Beyond trees: Analysis and conver-

gence of belief propagation in graphs with multiple cycles. In Pro-

ceedings of the 34th International Conference of the Association for the Ad-

vancement of Artificial Intelligence (AAAI), pages 7333–7340, 2020.

[31] R. Zivan, T. Parash, L. Cohen, H. Peled, and S. Okamoto. Balancing

exploration and exploitation in incomplete min/max-sum inference

for distributed constraint optimization. Journal of Autonomous Agents

and Multi-Agent Systems (JAAMAS), 31(5):1165–1207, 2017.

[32] R. Zivan, H. Yedidsion, S. Okamoto, R. Glinton, and K. P. Sycara. Dis-

tributed constraint optimization for teams of mobile sensing agents.

Journal of Autonomous Agents and Multi-Agent Systems (JAAMAS),

29(3):495–536, 2015.

	Introduction
	Previous Work & Background
	The Distributed Constraint Optimization Problem
	DCOP for Mobile Sensing Teams
	Standard Max-sum
	Adjusting Max-sum Algorithm to DCOP_MST
	Handling Runtime
	Handling Exploration: Function Meta Reasoning
	Handling Tie Breaking

	Robot Operating System
	Necessity for New Hardware
	Hamster Robots
	Creating Simulations & Setting Robots
	Packages
	Setting up the Gazebo simulation
	Example of the full setting
	Setting up a Two-Dimensional PyGame Simulation

	Collision-Avoiding Max-sum Algorithm
	Analyzing Specific Scenarios
	Experimental Evaluation

	Conclusions
	Future Work
	Research Objectives
	Collisions in MST
	Communication Awareness in MST
	Learning Targets Importance in MST
	Breakdowns in MST

	Expected Advancement

	Declaration

