
Ben-Gurion University of the Negev

The Faculty of Engineering Sciences

The Department of Industrial Engineering And Management

Distributed Optimization Challenges in
Multi-Agent Applications

Arseni Pertzovskiy

Thesis submitted in partial fulfillment of the requirements

for the Master of Sciences degree

Under the supervision of Prof. Roie Zivan and Prof. Dan Hermelin

February 2021

בנגב בן־גוריון אוניברסיטת

ההנדסה למדעי הפקולטה

וניהול תעשיה למהבנדסת המחלקה

מרובות באפליקציות מבוזרת אופטימיזציה אתגרי
סוכנים

פרצובסקי ארסני

הטבע למדעי בפקולטה ׳׳מגיסטר׳׳ התואר קבלת לשם חיבור

הרמלין דן ופרופ׳ זיוון רועי פרופ׳ מנחה בהנחיית

2021 פברואר

Ben-Gurion University of the Negev

The Faculty of Engineering Sciences

The Department of Industrial Engineering And Management

Distributed Optimization Challenges in
Multi-Agent Applications

Arseni Pertzovskiy

Thesis submitted in partial fulfillment of the requirements

for the Master of Sciences degree

Under the supervision of Prof. Roie Zivan and Prof. Dan Hermelin

Signature of student: Date:

Signature of supervisor: Date:

Signature of chairperson of the

2

committee for graduate studies: Date:

February 2021

Abstract

Coordinating a Mobile Sensor Team (MST) to cover targets is a challeng-

ing problem in many multiagent applications. Such applications are in-

herently dynamic due to changes in the environment, technology failures,

and incomplete knowledge of the agents. Agents must adaptively respond

by changing their locations to continually optimize the coverage of targets.

Distributed Constraint Optimization Problem (DCOP) is a general frame-

work for describing distributed problems including constraints, which can

be represented by a graphical model and solved using message passing

algorithms. Recently, a variation of the DCOP model was adjusted for

representing such problems including Mobile Sensor Teams (DCOP MST)

and incomplete algorithms, such as Max-sum, were enhanced with explo-

ration methods in order to solve them. In DCOP MST, agents maintain

variables for their physical positions, while each target is represented by a

constraint that reflects the quality of coverage of that target. However, the

proposed algorithms did not prevent collisions between mobile sensors.

Hamster is a small, robust and autonomous robot for research and pro-

totype development. The Hamster comes with an onboard Raspberry Pi

3, motor encoder, LIDAR, an IMU and a GPS that enable high precision

mapping, localization and path planning algorithms.

i

User
Sticky Note
Multi-agent applications often include the need for agents to take actions in order to achieve a common goal.

User
Cross-Out

User
Inserted Text
such a challenging multi-agent optimization

User
Cross-Out

User
Cross-Out

User
Cross-Out

User
Cross-Out

User
Inserted Text
In many realistic multi-agent applications, such as the MST coverage problem, some of the problems' properties are not compatible with the abstract DCOP model. Thus there is a need to extend the model and design algorithms for solving this extended model, for DCOP to apply to these realistic scenarios.

User
Cross-Out

User
Inserted Text
For example, recently,

User
Cross-Out

User
Cross-Out

ii

In this work we have developed a simulation environment in Gazebo

framework suited to DCOP MST problems. This simulation allowed us

to test algorithms before execution in the real world, therefore, we could

avoid technical issues in early stages of development. We successfully

formed a robust net of exchanging messages, both in simulation and in

real world conditions.

In addition, we propose a collision avoiding version of the Max-sum al-

gorithm (CAMS), in which function-nodes representing hard constraints

are added to the factor graph generated in each iteration, in order to pre-

vent the selection of a single location by more than one agent. We prove

for small scenarios that the proposed algorithm converges to the optimal

solution, and present empirical evidence that on more complex scenarios,

the proposed algorithm maintains high quality coverage, while avoiding

collisions. Our empirical study included both software simulation and ex-

periments including a team of sensor carrying robots.

Keywords: Robotic systems, Linux, AI, heuristic, embedded systems, DCOP

User
Cross-Out

User
Cross-Out

User
Inserted Text
In our first attempt to extend DCOP models and algorithms to include realistic features,

User
Inserted Text
 We further present our intentions for future work within this research.

User
Cross-Out

User
Inserted Text
Multi-agent optimization, Real world applications, Incomplete distributed algorithms.

Acknowledgements

To Prof. Roie Zivan and Prof. Dan Hermelin, who have helped and taught

me a lot. Thank you for the dedicated guidance, patience and encourage-

ment. I would like to thank my family for all support they gave me. And

special thanks goes to the faculty and to the university, who gave me an

opportunity to make this research.

iii

Contents

1 Introduction 1

2 Previous Work & Background 5

2.1 The Distributed Constraint Optimization Problem (DCOP) . 5

2.2 DCOP for Mobile Sensing Teams (DCOP MST) 6

2.3 Standard Max-sum . 11

2.4 Adjusting Max-sum algorithm to DCOP MST 13

2.4.1 Handling Runtime . 14

2.4.2 Handling Exploration - FMR 15

2.4.3 Handling Tie Breaking 17

2.5 ROS . 17

2.6 Necessity For A New Hardware 19

2.7 Hamster Robots . 20

3 Creating Simulations & Setting Robots 21

3.1 Packages . 21

3.2 Setting up Gazebo simulation 22

iv

CONTENTS v

3.3 Example of the full setting . 24

3.4 Setting up 2D PyGame Simulation 25

4 Collision Avoiding Max-sum

(CAMS) 26

4.1 Analyzing Specific Scenarios 30

4.2 Experimental Evaluation . 37

5 Summary & Conclusions 43

6 Future Work 45

6.1 Research Objectives . 45

6.1.1 Improving CAMS . 45

6.1.2 RL in DCOP and DCOP MST 46

6.1.3 Dynamic DCOP Problems 47

6.1.4 Competing Groups of Agents 47

6.1.5 Implementation - House IOT 48

6.1.6 Implementation - Allocating Police Units 48

6.2 Expected Advancement . 49

7 Declaration 51

List of Figures

2.1 Example with three agents. Dashed outer rings around each

agent depict the mobility range. Dark inner rings show the

sensing range with the numeric agent credibilities. Stars

represent the targets with their coverage requirement. “X”s

depict possible locations where the agents can position them-

selves. 8

2.2 Example of a ROS graph – nodes in the graph represent in-

dividual programs; edges represent message streams com-

municating sensor data, actuator commands, planner states,

intermediate representations and so on 18

2.3 Hamsters . 20

3.1 Example of different objects existing in simulation 23

3.2 Robots in simulation . 23

3.3 (a) . 24

3.4 (b) . 24

3.5 (c) . 24

3.6 (d) . 24

vi

LIST OF FIGURES vii

3.7 (a) sr and mr of the robots (b) A big field (c) A small field . . 25

4.1 Path a4 → b4 intersects with c1 → b1 and path b5 → a5

intersects with c3 → b3, enabling collisions between robots . 27

4.2 A factor graph generated in CAMS. 29

4.3 Scenarios with convergence guarantees. 30

4.4 target, two robots, one common cell 32

4.5 target, two robots, two common cells 35

4.6 Scenarios with no convergence guarantees. 38

4.7 Remaining coverage (a) and accumulated collisions (b) as a

function of the number of iterations. 39

4.8 The set of the experiment. 40

4.9 Time as a function of the number of iterations. 41

List of Tables

viii

1 Introduction

Diverse applications of multi-agent systems have extraordinarily high com-

plexity of a solution, therefore, there is a demand for a distributed opti-

mization approach. Some abstract models and algorithms were developed

to represent and solve them. Unfortunately, in numerous real-world cases

they are not applicable due to inconsistencies with the theoretical assump-

tions. Thus, there is a plain need to design some new extensions to those

models and algorithms in order to be able to solve such scenarios.

Some of the most laborious multi-agent systems involve teams of mobile

sensing agents that are required to acquire information in a given area.

Examples include networks of sensors [12, 45] and rescue teams in disaster

areas [16]. A crucial, common feature of these applications is that agents

select physical locations to move to, and that this selection affects their

future interactions, e.g., if a mobile sensor decides to sense a given area, it

will then coordinate its actions with nearby sensors.

Such scenarios have been previously modeled using the Distributed Con-

straint Optimization Problem (DCOP) framework by representing mobile

sensors as agents and their tasks/targets as constraints [31]. However, if

all possible future moves of dynamic agents are considered, the problem

becomes dense. Thus, previous work suggested an iterative process in

1

User
Cross-Out

User
Inserted Text

User
Cross-Out

User
Cross-Out

User
Inserted Text
distributed models

User
Cross-Out

User
Inserted Text
these abstract models and algorithms

User
Cross-Out

User
Inserted Text
application properties

User
Cross-Out

User
Cross-Out

User
Cross-Out

User
Inserted Text
adapt them to

User
Cross-Out

User
Inserted Text
challenging

CHAPTER 1. INTRODUCTION 2

which, in each iteration a DCOP instance is built representing the current

situation (e.g., sensor positions) and in which only limited movements of

the agents are considered. Agents run a distributed algorithm (that might

involve several communication cycles) to select the best next joint move,

and after they execute it, they build a new DCOP instance considering

their new positions [31].

Zivan et al. proposed an extension of the DCOP model and corresponding

local search algorithms for representing and solving such scenarios, par-

ticularly focusing on teams of mobile sensing agents that need to select a

deployment for the sensors in order to cover a partially unknown environ-

ment - DCOP MST. DCOP MST allows agents to adjust their location in

order to adapt to dynamically changing environments [45].

The Max-sum algorithm [4, 6, 10] has been the subject of the intensive

study in DCOP problem solving research, and has been applied to many

realistic applications including sensor networks [9], smart homes [27] and

teams of rescue agents [25]. In contrast to standard local search algo-

rithms, agents in Max-sum do not propagate assignments but rather cal-

culate utilities (or costs) for each variable, considering all possible value

assignments of their neighboring agents’ variables. The general struc-

ture of the algorithm is exploitive, i.e., the agents attempt to compute the

best costs/utilities for possible value assignments according to their own

problem data and recent information they received via messages from

their neighbors. A version of Max-sum was also proposed for solving

DCOP MST [45]. The main challenge in applying Max-sum to such prob-

lems was to overcome the inherent symmetry that the algorithm gener-

ates, i.e., either attracting all neighboring sensors to cover a target, which

results in a waste, or encouraging all neighboring sensors to explore the

CHAPTER 1. INTRODUCTION 3

area and not to cover the target. Methods for breaking this symmetry and

balancing between exploration and exploitation were proposed in [37].

In this work we address a different limitation of teams of mobile sensing

agents, residing on hardware robots: the need to avoid collisions. This

requirement was ignored by all previous studies of DCOP MST. In order

to allow the mobile sensors to explore the area, searching for targets and

selecting a deployment that maximizes the team coverage, without hav-

ing collisions of robots, we propose Collision Avoiding Max-sum (CAMS).

As in standard Max-sum, the problem in CAMS is represented by a fac-

tor graph, which is a bipartite graph including nodes representing vari-

ables and functions(constraints), such that nodes from one type only have

neighbors of the other type. As in previous attempts to solve problems

including dynamic agents with Max-sum, in every iteration (before ev-

ery movement of the agents), a factor graph is constructed, the algorithm

is performed for a limited number of steps1, and then the agents select

the location they move to. The novelty in our work is in the addition of

a new type of function-nodes to these factor graphs, which represent lo-

cations that agents can choose to move to. This is in contrast to the factor

graphs generated by agents in Max-sum MST that only included function-

nodes representing targets [37]. A function-node representing a location

to which more than one agent can move, excludes this option by assigning

it a utility of −∞.

This work is structured as follows: in chapter 2 we describe background;

within chapters 3 we go through the preparation and an implementation;

1In order to avoid confusion, we will use the term iteration for each phase in Max-

sum MST in which agents select their next location, and steps for the iterations of the

Max-sum algorithm, used to solve the factor graph generated in this phase.

User
Sticky Note
use Chapter 2, with a capital letter)fix the others too).

CHAPTER 1. INTRODUCTION 4

in chapter 4 we describe the CAMS algorithm and demonstrate gained

results; in chapter 5 we summarize this work; at the end, in chapter 6 we

discuss the following stages of this research.

2 Previous Work & Background

This chapter presents DCOP, the extended DCOP MST model, distributed

incomplete algorithms and their adjustments to DCOP MST. In addition,

ROS software and Hamster robot hardware are introduced.

2.1 The Distributed Constraint Optimization Prob-

lem (DCOP)

Distributed constraint optimization is a general formulation of multi-agent

coordination problems that has previously been used for static sensor net-

works and many other applications. A distributed constraint optimiza-

tion problem (DCOP) is a tuple 〈A,X ,D, C〉 where A = {A1, A2, . . . , An}

is a finite set of agents , X = {X1, X2, . . . , Xm} is a finite set of variables,

D = {D1, D2, . . . , Dm} is the set of finite domains for the variables, and

C is a finite set of constraints 1. Each variable Xi is controlled (or owned)

by an agent who chooses a value to assign it from the finite set of values

Di; each agent may control multiple variables. Each constraint C ∈ C is a

1Constraints are typically partitioned into hard constraints that are represented by

relations, and soft constraints that are represented by cost functions. Here we do not

consider hard constraints and use only cost functions.

5

User
Cross-Out

User
Inserted Text
and

CHAPTER 2. PREVIOUS WORK & BACKGROUND 6

function C : Di1 × Di2 × . . .× Dik → R+ ∪ {0} that maps assignments of a

subset of the variables (called the scope of the constraint) to a non-negative

cost. The cost of a complete assignment of values to all variables is computed

by summing the costs of all constraints. A solution of a DCOP is a com-

plete assignment (a value assignment to each variable in X). The optimal

solution is the solution with minimum cost (or with maximal utility in the

case of a maximization problem).

Control in DCOPs is distributed, with agents only able to assign values

to variables that they possess. Furthermore, agents have knowledge only

of the constraints involving their own variables. Coordination is achieved

through message passing. A standard assumption is that agents exchange

messages only with a subset of the other agents, called their neighbors.

Agent Ai and agent Aj are neighbors if and only if there exists at least one

constraint that its scope includes a variable controlled by Ai and a vari-

able controlled by Aj. While transmission of messages may be delayed, it

is assumed that messages sent from one agent to another are received in

the order that they were sent. [17] [43]

2.2 DCOP for Mobile Sensing Teams (DCOP MST)

The DCOP model makes several assumptions which do not hold in mobile

sensor team applications. It assumes that the neighbor set of agents is con-

stant. It also assumes that the constraints, i.e., the utilities/costs incurred

by each partial assignment are known a-priori and are constant. Mobile

sensors on the other hand are dynamic by nature. The movement of the

agents constantly changes the neighbor set. The realistic changing envi-

ronment results in changing the set of constraints and as a consequence

CHAPTER 2. PREVIOUS WORK & BACKGROUND 7

the utilities for deployment decisions. Consequently, dynamic elements

must be formalized and integrated into the DCOP model in order for it to

apply to mobile sensor teams (MST).

The DCOP MST is a dynamic DCOP formulation that models the mobile

sensor team coordination problem [45]. The agents A = {A1, A2, ..., An} in

a mobile sensor team are physically situated in the environment, modeled

as a metric space with distance function d. The current position of agent Ai

is denoted by cpi; we assume that this position is accurately known by the

agent. Locations (or positions) that can be occupied by agents are a finite

set of discrete points that form a subset of the total environment. These

points can either be a discretization of the underlying space or locations

that dominate other nearby points in terms of the sensing quality they af-

ford agents located there. In Figure 2.1, the environment is the Euclidean

plane, agents are depicted by small robots, and possible locations are rep-

resented by ”X”s. Time is discretized so that agents compute movements

between possible positions. The maximum distance that Ai can travel in

a single time step is its mobility range (mri). The mobility range of each

agent is shown in Figure 2.1 by the dashed, outer circle centered on the

agent. All ”X”s within the circle are locations that the agent can move to

in a single time step from its current position.

Agents are only able to effectively sense targets within a limited sensing

range (sri). Because of the sensing range constraint, each agent Ai can ob-

serve all targets within a distance sri from cpi, and cannot observe any

target that is farther away. The sensing ranges are depicted in Figure 2.1

by the darker, inner circle centered at each agent.

Agents may also differ in the quality of their sensing abilities, a property

User
Cross-Out

User
Inserted Text
represented

CHAPTER 2. PREVIOUS WORK & BACKGROUND 8

Figure 2.1: Example with three agents. Dashed outer rings around each

agent depict the mobility range. Dark inner rings show the sensing range

with the numeric agent credibilities. Stars represent the targets with their

coverage requirement. “X”s depict possible locations where the agents

can position themselves.

termed their credibility. The credibility of agent Ai is denoted by the posi-

tive real number cred(i) , with higher values indicating better sensing abil-

ity. cred(i) is exogenously provided (for instance, calculated by a reputa-

tion model) and accurately represents the agent’s sensing ability. In Figure

2.1, the credibility of each agent is presented as a number in a square on

the agent’s sensing range circle [35].

The individual credibilities of agents sensing the same target are combined

using a joint credibility function F : 2A → R, where 2A denotes the power

set of A. There is a requirement that F has to be monotonic so that addi-

tional sensing agents can only improve the joint credibility. Formally, for

two sets S′ ⊆ S ⊆ A, we require that F(S) ≤ F(S0).

Targets T = {T1, T2, ..., Tm} are represented implicitly by the environmental

CHAPTER 2. PREVIOUS WORK & BACKGROUND 9

requirement function ER, which maps each point in the environment to

a non-negative real number representing the degree of coverage (as we

define shortly) required for that point to be adequately sensed. In this

representation, targets are the points p with ER(p) > 0. Because targets

may arise, move or disappear, ER changes dynamically. Moreover, ER can

change as the agent team becomes aware of new targets. A major aspect of

the mobile sensing team problem is to explore the environment sufficiently

to be aware of the presence of targets. In the example presented in Figure

2.1 there are seven targets shown as serrated circles and their numbers

represent their ER values. Agents within sensing range of a target p are

said to cover the target. Given a target p, the set of agents within sensing

range of p is

srp = {Ai ∈ A|d(p, cpi) ≤ sri}.

The remaining coverage requirement of target p is the environmental re-

quirement of p diminished by the joint credibility of the covering agents,

down to a minimum value of 0:

cur req(p) = max{0, ER(p)	 F(srp)}

Where 	 : R × R → R is a binary operator (written in infix notation)

that decreases the environmental requirement by the joint credibility. For

x, y, z ∈ R with y > z, we require that x	 y < x	 z, so that decreasing the

environmental requirement by a higher joint credibility results in a lower

remaining coverage requirement. In this work: 	 will be the standard

subtraction operator [44].

This constraint CT for a target T, only involves those agents Ai, whose

variable’s domain includes a location within the sensing range (sri) of T.

Therefore, as the domains change, the constraints change as well. As a

CHAPTER 2. PREVIOUS WORK & BACKGROUND 10

consequence, the set of neighbors for each agent changes over time as the

agents move. In DCOP MST two agents are neighbors if their sensing

areas overlap after they both move as much as possible in a single time

step towards each other. This encodes the fact that such two agents might

directly influence each other (e.g., by observing the same target in the next

time step).

The local environment of agent Ai is the joint area within sri from all posi-

tions within mri from cpi. Specifically, denoting the set of neighbors of Ai

by curr neii, we formalize this by:

cur neii = {Aj|d(cpi, cpj) ≤ mri + mrj + sri + srj}

Because agents can only communicate with their neighbors, agents in DCOP MST

can only communicate with other agents who are physically nearby.

The global goal of the agents is to position themselves so to minimize:

Fsum(T) = ∑
Ti∈T

cur req(Tj)

In some cases it may be possible to reduce the values of cur req to zero for

all targets indicating perfect coverage. However, in other cases this may

not be possible (e.g., because of insufficient numbers or quality of agents).

In these cases, we aim at minimizing the sum of remaining coverage re-

quirements for all targets. Such a minimization problem is NP-hard [33].

Another possible objective would be to minimize the maximum remain-

ing coverage requirement over all targets. We note that the model and

the techniques presented here could be applied to achieve this objective,

however, for ease of presentation we do not discuss this here.

CHAPTER 2. PREVIOUS WORK & BACKGROUND 11

2.3 Standard Max-sum

Max-sum [10] operates on a factor graph, which is a bipartite graph includ-

ing nodes that represent variables and constraints [14]. Each variable-node

representing a DCOP variable is connected to all function-nodes that rep-

resent constraints, which it is involved in. Variable-nodes and function-

nodes are considered “agents” in Max-sum, i.e., they can send and receive

messages, and compute.

A message sent to or from variable-node X (for simplicity, we use the same

notation for a variable and the variable-node representing it) is a vector of

size |DX| (the size of X’s domain, DX) including a cost (belief) for each

value in DX. Before the first iteration, all nodes assume that all messages

they previously received (in iteration 0) include vectors of zeros. A mes-

sage sent from a variable-node X to a function-node F in iteration i ≥ 1 is

formalized as follows:

Qi
X→F = ∑

F′∈FX ,F′ 6=F
Ri−1

F′→X − α

Where Qi
X→F is the message variable-node X intends to send to function-

node F in iteration i, FX is the set of function-node neighbors of variable-

node X and Ri−1
F′→X is the message sent to variable-node X by function-

node F′ in iteration i − 1. α is a constant that is reduced from all costs

included in the message (i.e., the beliefs intended for each x ∈ DX) in

order to prevent the costs carried by messages throughout the algorithm

run from growing arbitrarily large.

A message Ri
F→X sent from a function-node F to a variable-node X in

iteration i, includes for each value x ∈ DX: minPA−X cost(〈X, x〉, PA−X)

where PA−X is a possible combination of value assignments to variables

CHAPTER 2. PREVIOUS WORK & BACKGROUND 12

involved in F not including X. The term cost(〈X, x〉, PA−X) represents

the cost of a partial assignment a = {〈X, x〉, PA−X}, which is: f (a) +

∑X′∈XF,X′ 6=X,〈X′,x′〉∈a(Q
i−1
X′→F)x′ , where f (a) is the original cost in the con-

straint represented by F for the partial assignment a, XF is the set of variable-

node neighbors of F, and (Qi−1
X′→F)x′ is the cost that was received in the

message sent from variable-node X′ in iteration i− 1, for the value x′ that

is assigned to X′ in a. X selects its value assignment x̂ ∈ DX following

iteration k as follows:

x̂ = arg min
x∈DX

∑
F∈FX

(Rk
F→X)x

Assuming there are no tied beliefs, Max-sum converges in linear time to

the optimal solution when solving problems represented by a tree-structured

factor graph [20].2 When it operates on a single cycle factor graph, it will

reach a state in which it repeatedly follows a maximal (or minimal for

minimization problems) path of assignments in the cycle. The algorithm

converges to the optimal solution if and only if this path is consistent, i.e.,

includes a single value assignment for each variable [11]. For a more de-

tailed description of the standard Max-sum algorithm please refer to [42].

The Max-sum algorithm has been the subject of intensive study in DCOP

problems and has been applied to many realistic applications including

mobile sensor networks [7, 8, 22, 26, 30–32] and teams of rescue agents

[16, 25].
2Ties can be avoided by adding for each variable-node an unary constraint with ex-

tremely small random utilities [10]

CHAPTER 2. PREVIOUS WORK & BACKGROUND 13

2.4 Adjusting Max-sum algorithm to DCOP MST

The Max-sum algorithm was proposed for solving DCOP MST in [45] but

only in its basic form without any exploration methods or runtime im-

proving techniques. In contrast to standard local search algorithms, agents

in Max-sum do not propagate assignments but rather calculate utilities (or

costs) for each variable, considering all possible value assignments of their

neighboring agents’ variables. Since the computation performed by Max-

sum is exponential in the number of agents involved in a constraint, con-

straints that involve many agents (k-ary) represent a computational bot-

tleneck. Thus, an increase in the number of agents that can be assigned to

tasks would prevent the use of Max-sum for solving such problems. Obvi-

ously, extending the local environment of agents results in agents being ef-

fective for more tasks/targets and in a larger constraint arity. Therefore, in

dynamic scenarios where the time to reach a decision is limited, Max-sum

is effective either for problems that do not require exponential computa-

tions by targets, or for problems with limited constraint arity (i.e., where

the local environment of agents is limited). Yedidsion et al. proposed a

novel exploration method, specifically designed for Max-sum, based on

meta-reasoning: agents select for each target a subset of the sensors that

can be effective for covering it [38]. The proposed function meta reasoning

method (FMR) breaks the relation between the size of the local environ-

ment of agents and the arity of the constraints, i.e., the arity of the con-

straint is not defined by the number of sensors that can be within sensing

range of a target t after the next assignment selection (i.e., the “neighbors”

of t), but rather by the required number of sensors for covering t. We

will discuss FMR further in this section. This version of Max-sum (Max-

User
Cross-Out

CHAPTER 2. PREVIOUS WORK & BACKGROUND 14

sum FMR-Rand) outperforms the explorative local search algorithms, and

other proposed Max-sum approaches to solve DCOP MST [38].

Max-sum MST applied as follows:

1. Select a random assignment.

2. Generate a factor graph according to the current assignment where

each sensor is a variable-node and each target is a function-node.

Variable-node i is connected by an edge to a function-node if and

only if the distance between them is less than or equal to the sum of

mri + sri, i.e., the sensor can cover the target after a single move.

3. The agents execute the Max-sum algorithm for a predefined number

of iterations.

4. The sensors move to the best position (value assignment) as calcu-

lated by the algorithm.

5. A new factor graph is generated according to the new assignment

selection and the process repeats itself.

We further address the challenges that were arisen when applying Max-

sum MST to the DCOP MST model and how they were solved.

2.4.1 Handling Runtime

While assignment selections are not a part of an original Max-sum algo-

rithm, assignment selections determine the local environments in DCOP MST

and directly affect the structure of the constraint network (and consequen-

tially, the factor graph).

User
Cross-Out

User
Cross-Out

User
Inserted Text
Agents in Max-sum_MST perform

User
Sticky Note
this does not seem to relate to runtime. Maybe you should move it to the previous subsection

CHAPTER 2. PREVIOUS WORK & BACKGROUND 15

In our case, agents select the locations from which they derive the highest

utility, i.e., from which they are most effective. The next factor graph is

generated considering the new locations of the agents.

The number of message cycles that are performed before an assignment

(position) selection must be selected with care. On one hand, we would

like to allow the information regarding the coverage capabilities of sensors

to propagate to other sensors. On the other hand, these message cycles

of Max-sum result in a single movement for the sensors; thus, we want

to avoid unnecessary delays. In experiments of the present research we

found that small number of message cycles (30 in our experimental set-

up) was enough to get the best performance.

Regarding the messages of the function-nodes, the only information re-

quired to compute the utility by the function is whether a sensor covers

the target or not, i.e. there are only two types of positions to execute calcu-

lations for. This method reduces the complexity for generating a message

by a function-node to O(D ∗ 2K−1).

2.4.2 Handling Exploration - FMR

Function Meta Reasoning method takes advantage of a property that is

quite common in DCOP MST, that targets have more neighbors than re-

quired for covering them. Consider an iteration i in which the factor graph

FGi was generated based on the locations of sensors selected in iteration

i− 1. Denote by n(t)i the set of neighboring sensors of target t in FGi, and

by credn(t)i
the total credibility of n(t)i. Denote by r(t)i a subset of n(t)i

and by credr(t)i
the total credibility of r(t)i. When there exists a subset

r(t)i for which target t’s importance is smaller than credr(t)i
, t can select

User
Cross-Out

User
Inserted Text
a

User
Sticky Note
I believe that you are talking about experiments from Harel's research an not you own...

User
Cross-Out

User
Inserted Text
Thus we can apply here the method known as Fast Max-sum [add reference].

User
Cross-Out

User
Inserted Text
The Function

User
Cross-Out

User
Inserted Text
tackles

CHAPTER 2. PREVIOUS WORK & BACKGROUND 16

r(t)i neighbors for covering it and allow the other n(t)i − r(t)i neighbors

to perform exploration. We implement this by generating a new factor

graph F̂Gi in which each target t has at most r(t)i neighbors. This can be

done distributively by having each target t remove the edges between it

and n(t)i − r(t)i of its neighbors. For homogeneous agents and targets,

where r(t) is the required number of sensors for covering target t, r(t) is a

constant number.

Yedidsion et al. propose the following greedy heuristic for selecting the

|r(t)| neighbors by a function-node t for which |n(t)i| > |r(t)|. The heuris-

tic is tuned with respect to the type of joint credibility function used:

1. Each of the n(t)i sensor neighbors sends to t its degree in FGi (i.e.,

the number of function-node neighbors it has in FGi).

2. t divides its n(t)i neighbors into two subsets: n̂(t)i and n̄(t)i. n̂(t)i

includes all neighbors that are currently located within sensing range

from t and n̄(t)i includes the rest of the neighbors.

3. While (|n(t)i| > |r(t)|)

(1) If (n̄(t)i 6= ∅), remove the neighbor in n̄(t)i that has the highest

degree from n(t).

(2) Else, remove the neighbor in n̂(t)i that has the lowest degree

from n(t).

It is important to notice that when using this method, the complexity for

producing each of the messages to be sent by the function-node to its

neighbors is no longer exponential in |n(t)i| − 1 as in standard Max-sum,

User
Cross-Out

User
Inserted Text
proposed

User
Sticky Note
add the reference

CHAPTER 2. PREVIOUS WORK & BACKGROUND 17

rather it is exponential in |r(t)i| − 1. Thus, the complexity of the computa-

tion of function-nodes is no longer dependent on the sensing and mobility

ranges of the sensors.

2.4.3 Handling Tie Breaking

The FMR method detaches the connections between targets and agents

that are located in a position that allows them to sense the target, yet there

is no need for them to do so. The objective of this detachment is to en-

courage these agents to explore for other targets, where their sensing is

required. However, the agents are indifferent between staying in their

current location and selecting new locations.

Thus, in order to stimulate exploration, an agent selects an assignment

randomly among the tied values that offer the highest utility. This method,

denoted as Rand, allows the agents to continuously explore new positions

and the targets that may be covered from these positions. The objective

of tie breaking is simply to coordinate the selection of the same solution

among agents. In DCOP MST on the other hand, agents are incentivized

to seek for locations from which they are more effective via the tie breaking

method. While it enhances exploration, the Rand method has a dichoto-

mous effect in terms of the overall performance of the team.

Onwards, we denote Max-sum FMR-Rand as Max-sum MST.

2.5 ROS

ROS, the Robot Operating System, is an open source framework. ROS is

meant to serve as a common software platform for people who are build-

User
Cross-Out

User
Inserted Text
In standard Max-sum (solving standard DCOPs)

User
Cross-Out

User
Inserted Text
In the following chapters we will

CHAPTER 2. PREVIOUS WORK & BACKGROUND 18

ing and using robots. This common platform lets people share code and

ideas more readily. ROS has been remarkably successful. There are over

2,000 software packages, written and maintained by almost 600 people

[23]. The main advantage ROS brings to our research is the structure of

communication that it provides. It is based on topics and message ex-

changing between them that allows us to maintain accurately all message

flows in the system. Agents can be represented as nodes in the ROS com-

munication system. Each node is able to read (listen) and write (publish)

over different net connections in ROS called topics. An example of a wide

ROS graph is depicted in Figure 2.2.

Figure 2.2: Example of a ROS graph – nodes in the graph represent indi-

vidual programs; edges represent message streams communicating sen-

sor data, actuator commands, planner states, intermediate representations

and so on

CHAPTER 2. PREVIOUS WORK & BACKGROUND 19

Another advantage of ROS is the worldwide community of people that

provides open source code and sustainable updates. Python is one of

the main ROS client libraries, strongly supported by community and rel-

atively simple to use. The community provides a variety of helpful pro-

grams we used. For example, Gazebo - creates virtual environments to

robots taking into consideration physics laws, Rviz - relieves usage of con-

trollers with graphical interfaces and so on.

The main operating system ROS works with is Linux and more specifically

Linux Ubuntu. In our work the version of ROS is ”Indigo” and the version

of Ubuntu is 16.04.

2.6 Necessity For A New Hardware

In previous implementations of algorithms in DCOP MST problems car-

ried by Yedidsion, many hardware limitations were raised [36]. Several

adjustments were made to the original DCOP MST model in order to face

better with real world physics and obstacles. The new model was named

DCOP MSTR [35]. In DCOP MSTR robots have their Sensing Range di-

rected only to the front of the robot (unlike in the original model where

agents have a 360 degree Sensing Range). This is to cope with the robot’s

front camera and its limited field of vision. The iRobots used proved to

be very difficult to work with. The robots did not have an onboard com-

puter, resulting in a laptop being mounted on every robot. The robots also

had no localization capabilities and no communication capabilities. In or-

der to face these issues, it was clear that better hardware was needed that

matches specifically this kind of experiments.

User
Cross-Out

User
Inserted Text
that use it, which

User
Cross-Out

User
Inserted Text
for its members.

User
Cross-Out

User
Inserted Text
the

User
Cross-Out

User
Inserted Text
for solving

User
Cross-Out

User
Cross-Out

User
Inserted Text
address

User
Cross-Out

User
Inserted Text
application properties

User
Cross-Out

User
Inserted Text
One of these adjustments resulted in a new model

User
Cross-Out

User
Cross-Out

User
Inserted Text
sensors

User
Cross-Out

User
Inserted Text
An example of such a sensor is

User
Cross-Out

User
Inserted Text
by Yedidsion were

User
Cross-Out

User
Inserted Text
In order to simulate realistic DCOP_MST scenarios.

CHAPTER 2. PREVIOUS WORK & BACKGROUND 20

2.7 Hamster Robots

Hamster (Figure 2.3) is a small robust autonomous robot for research and

prototype development. Hamster can create indoor maps and localize in-

doors using the 360◦ LIDAR (LiDar A2M8) and other on-board sensors to

provide accurate position information while in motion. It has WiFi ew-

7811uac EDIMAX AC600 hardware for a wireless communication. It also

has a Camera raspberry Pi module v2 located in front of the robot and it

is ROS based. Localization and communication issues are major limita-

tion factor while implementing positioning task with robots. By using the

Hamster we can overcome these issues. Its onboard Raspberry Pi 3 also re-

moves the requirement for mounted laptops, making the workflow much

easier as now only one computer is needed just for coding and executing.

It is then becomes clear that by using the Hamster robots, we can have a

much more fruitful experimental environment for testing the DCOP MST

model and its algorithms in the real world.

Figure 2.3: Hamsters

User
Cross-Out

User
Cross-Out

User
Cross-Out

User
Inserted Text
Hamster includes inherent communication and localization features, which can eliminate these major limitations.

User
Cross-Out

3 Creating Simulations & Setting

Robots

In this work the words ”agent” and ”robot” are used interchangeably.

3.1 Packages

It is necessary to understand basic libraries and packages allowing robot

control. Here are some usage cases:

1. actionlib library enables to send movement commands using

MoveBaseGoalmessages from move base msgs.msg library. Those

messages describe final position of robot in the end of movement.

2. We used SLAM algorithm to create a map of an environment. The

algorithm is part of built-in packages inside Hamster.

3. We saved those new maps with tools of map server library.

4. To localize itself Hamster uses Augmented Monte-Carlo Localisation

algorithm as part of amcl package.

21

User
Cross-Out

User
Inserted Text
2.8

User
Sticky Note
This is not

CHAPTER 3. CREATING SIMULATIONS & SETTING ROBOTS 22

5. To create paths in a given environment Hamster builds global and lo-

cal costmaps of surrounding area using move base package. Costmaps

are special maps used to emphasize obstacles around the robot and

thus help to avoid them and to create the shortest and safest path as

possible.

We started from very simple tasks like straightforward driving to much

more complicated tasks like building maps and creating paths in those

maps.

After successful implementation of those tasks we can start to program

actual algorithms.

3.2 Setting up Gazebo simulation

Simulation is a safe way to check primary code avoiding technical com-

plications of real robots. In simulation the connection to robot is stable,

no battery issues and we do not care about physical damages. That is

why it is very convenient to use accurate simulation environment. We

used Gazebo framework. In order to create a new world inside Gazebo

we need to define descriptions of objects (stored in .stl and .dae files),

physical characteristics like gravity (stored in .urdf files) and properties

of the world itself describing where each object is located (stored in .world

file).

As you can see in Figure 3.1 there is a variety of different shapes, materials

and mechanisms available in this framework. We use a small fraction of

these capabilities: robot-models, walls and simple cylinders.

Fortunately, robot-model in gazebo already provided by ”Cogniteam” [5]

CHAPTER 3. CREATING SIMULATIONS & SETTING ROBOTS 23

Figure 3.1: Example of different objects existing in simulation

company itself, so we did not need to create it from a scratch. In Figure 3.2

shown the robot-model in a simulation. The model can read and write to

ROS topics exactly the same way as it does a real robot. From ROS point of

view it does not matter who is standing behind the topics, a simulation or

a real robot. In both cases ROS network just provides messages to relevant

topics. This property of ROS hugely facilitate development and helps to

close gaps between simulation and real conditions.

Figure 3.2: Robots in simulation

CHAPTER 3. CREATING SIMULATIONS & SETTING ROBOTS 24

3.3 Example of the full setting

Figure 3.3: (a) Figure 3.4: (b)

Figure 3.5: (c) Figure 3.6: (d)

The Gazebo simulation of a simple experiment depicted in Figure 3.3.

Blue cylinders are the targets and cubes represent the walls. Figures 3.4

and 3.5 demonstrate maps of the same experiment that were made by

map server library in a simulation and in a real world. Figure 3.6 is a

snapshot of a real robots setting in a laboratory.

CHAPTER 3. CREATING SIMULATIONS & SETTING ROBOTS 25

3.4 Setting up 2D PyGame Simulation

In order to test rapidly new ideas and be able to check them on a big scale

with dozens of robots and targets on the same field, a simple and light

program was needed. We introduce DCOP MST 2D simulator. In figure

3.7 represented some screenshots of the running experiments.

(a) (b) (c)

Figure 3.7: (a) sr and mr of the robots (b) A big field (c) A small field

Inside the simulator it is possible to run several algorithms simultane-

ously. The user can define the size of the filed, amount of robots and

targets, mr and sr of the robots, number of problems to solve per each

algorithm and how many iterations it needed to finish. We can play with

requirements of the targets and credibilities of the robots, to set them iden-

tical or unique values among all. The ranges, robots’ cred values and tar-

gets’ ER are allowed to change during the run as well. Those capabilities

will help US to model better dynamic realistic scenarios in a future re-

search.

As an output the simulator returns: the coverage rate of the algorithms

and how many collisions they produced during the run in each iteration.

4 Collision Avoiding Max-sum

(CAMS)

According to Yedidsion et al. the Max-sum MST exploration algorithm

greatly improved the solution quality while limiting the exponential run-

time associated with message computation in Max-sum. Their empirical

study revealed that the benefits of Max-sum MST enabled it to outper-

form all competing algorithms including the DSA MST and MGM MST

versions of the local search [35]. However, this version of Max-sum does

not prevent collisions among mobile sensors, which may result in dam-

aging the sensors, execution delay, or even the inability to perform the

coverage task. An example of such problems depicted in Figure 4.1. Thus,

we propose Collision Avoiding Max-sum (CAMS) that allows the agents

to select the deployment that maximizes coverage, while avoiding colli-

sions. This is achieved by adding to the factor graphs that are generated

in each iteration of the algorithm (before each movement of the agents),

function-nodes representing locations that the agents can move to. Each

such function-node can either represent a location to which only one agent

can decide to move, or locations to which two agents can move.

The function-node representing the first assigns zero utility for the option

26

User
Sticky Note
reference

User
Cross-Out

User
Inserted Text
in comparison with MST distributed local search algorithms,

User
Cross-Out

User
Cross-Out

User
Sticky Note
add a description of what you present in Figure 1.

User
Cross-Out

User
Inserted Text
scenario in which collisions affect the performance of an MST is

User
Cross-Out

User
Inserted Text
, a version of the Max-sum algorithm that

CHAPTER 4. COLLISION AVOIDING MAX-SUM (CAMS) 27

Figure 4.1: Path a4 → b4 intersects with c1 → b1 and path b5 → a5 inter-

sects with c3 → b3, enabling collisions between robots

that the agent does not chose to move to the location it represents and a

positive utility for the option that it does.

The second type represents a hard constraint that prevents two agents

from selecting the same location. In this case, its utility function includes

zero utility for the option that both agents do not move to the represented

location, positive utilities for the combinations in which only one agent

selects to move to this location, and minus infinity for the option that the

two agents move to this location.

In case more than two agents can select a location, the agents generate

function-nodes that represent the binary constraint between each pair among

them.

More formally, in a factor graph generated by agents in CAMS there are

three types of function-nodes:

CHAPTER 4. COLLISION AVOIDING MAX-SUM (CAMS) 28

1. FTj, a function-node representing a target Tj. As in Max-sum MST,

the utility an agent Ai derives for covering Tj is min{ERFTj , credi}.

However, in non-degenerate cases where multiple sensors are re-

quired for coverage, the utility derived is credi.

2. FL(i,e), a function-node representing a location l to which agents Ai

and Ae can move in this iteration. The utility for both agents not se-

lecting location l is zero, for both agents selecting l is −∞ and for

both options in which only one of them selects l, a random util-

ity is selected from a range of numbers that is much smaller than

ERFTj
1. We emphasize that, although there may exist scenarios in

which more than two agents can move to the same location, FL is

defined as a binary constraint, and thus, if there are k > 2 agents that

can select the same location, there will be an FL for each pair of these

k agents.

3. FL(i), a function-node representing a location to which only one agent

can move to. In this case the corresponding constraint is unary. A

random positive number is selected for the option that Ai selects this

location (selected from the same range as the random positive utili-

ties selected for the binary constraints) and zero for not selecting this

location.

Figure 4.2 presents an example of a factor graph generated in some iter-

ation of CAMS. It includes two mobile sensors, each with four possible

locations to move to (up, down, left and right) and the option to stay in its

current location. All function-nodes representing locations to which only

one mobile sensor can move are of the third type. While the domain of

1Random numbers are selected to avoid ties between desired options, as in [10]

CHAPTER 4. COLLISION AVOIDING MAX-SUM (CAMS) 29

05
02

04

7

2 01

05

0

6

0

3
3
∞-

0

0

070

70 70

200

Figure 4.2: A factor graph generated in CAMS.

each agent includes five values (representing the possible locations it can

select), only for the selection of the location represented by the function-

node the utility is positive and for all other locations it is zero. The mid-

dle location to which both mobile sensors can move, is represented by a

function-node of the second type. It includes four options, one for both

agents not selecting this location (zero utility), one for both agents select-

ing this location (minus infinity) and two with positive utilities for the

cases that only one agent selects this location. The target is represented by

a function-node of the first type. Its coverage requirement is 200, while the

credibility of each mobile sensor is 70, which is the utility they derive for

covering the target. In this example, covering the target is only possible

from the middle location that both mobile sensors can move to. However,

if they both move to this location they collide.

The overhead run-time complexity of CAMS (Compared to Max-sum MST)

is negligible, since the additional function-nodes representing unary and

binary constraints require at most 22 utility comparisons for each mes-

sage produced. On the other hand, the comparisons required for gen-

erating a message by each target representing function-node FT (in both

algorithms) is 2k, where k is number of neighbors of FT. However, one

may expect that the addition of location representing function-nodes will

CHAPTER 4. COLLISION AVOIDING MAX-SUM (CAMS) 30

(a) (b)

(c) (d)

Figure 4.3: Scenarios with convergence guarantees.

result in more cycles and consequentially, reduce the probability for con-

vergence. We demonstrate in the following sections that this is not the case

in CAMS.

4.1 Analyzing Specific Scenarios

Next we present a set of scenarios for which we prove the convergence of

CAMS to a non colliding (optimal) state. A second set including scenarios

for which our empirical results demonstrated such convergence, will be

presented in the following section.

The scenarios for which we established convergence guarantees are de-

picted in Figure 4.3. Sketch proofs for these cases are listed next.

Proposition 1 Max-sum converges to a collision free optimal solution, in a lin-

ear number of steps, when solving the scenario depicted in Figure 4.3 (a).

Proof: The factor graph representation of this scenario has a tree structure

and thus, the algorithm will converge in a linear number of steps to an

User
Cross-Out

User
Inserted Text
,

User
Cross-Out

User
Inserted Text
Proofs

User
Cross-Out

User
Inserted Text
the convergence of the algorithm on these scenarios, to collision free optimal solutions

User
Cross-Out

CHAPTER 4. COLLISION AVOIDING MAX-SUM (CAMS) 31

optimal solution [41]. This optimal solution cannot include the selection

of the mutual location M by both agents, since its cost is −∞. �

Proposition 2 Max-sum converges to a collision free optimal solution in a pseudo

linear number of steps, when solving the scenario depicted in Figure 4.3 (b).

Proof: The factor graph representation of this scenario includes a single

cycle with two function-nodes. Each of these function-nodes has four en-

tries in their utility table. According to [11], when belief propagation is

applied to a single cycle graph, it converges to the optimal solution if and

only if the optimal repeated path is consistent. The only way to generate

an inconsistent path in such a two function-node four entry utility table

cycle is when it includes opposing directed diagonals in the utility tables.

However, in our case, one of these diagonals must include the −∞ entry.

Thus, the maximal path must be consistent. The number of steps is depen-

dent on the constant utilities sent by the unary function-node neighbors,

which are not included in the cycle. If the difference between these utili-

ties is negligible, the time for convergence is linear, i.e., in the order of the

size of the cycle. �

The following Lemma will be relevant to scenarios (as depicted in Fig-

ure 4.2), which their representing factor graph includes a single target

function-node and a single location from which the target can be covered

and both agents can move to.

Lemma 1 When Max-sum operates on factor graphs as described above, in every

step, the target function-node FT will send the same messages to its two neighbors

MS1 and MS2, including zero for not covering the target and cred1 or cred2

respectively, for covering locations (assuming ERFT > max(cred1, cred2)).2

2A Previous indication that hard constraints reduce the complexity of a factor graph

CHAPTER 4. COLLISION AVOIDING MAX-SUM (CAMS) 32

Proof: We will follow the path of messages in a cycle including one target

function-node FT, two mobile sensors MS1 and MS2 and one mutual lo-

cation ML to which both sensors can move. We will denote by c1 and c2

the utilities included in FLML (besides zero and −∞), for the options that

only MS1 or only MS2 move to ML. We recall that by construction, cred1

and cred2 are much larger than c1 and c2. A factor graph that applies to

this description is depicted in Figure 4.4.

Figure 4.4: target, two robots, one common cell

Without loss of generality, we will follow the cyclic message path starting

at FT, then MS1, ML, MS2 and back to FT:

1. The first message FT → MS1 includes the pair 〈0, cred1〉 (the left and

right entries of the pair represent the beliefs for not covering and

covering the target, respectively).

2. The second message MS1 → FLML includes the same pair 〈0, cred1〉,

because the message from FT is the only message to pass further.

representation of a realistic application (although very different from the case this Lemma

analyzes) can be found in [21]

CHAPTER 4. COLLISION AVOIDING MAX-SUM (CAMS) 33

3. The third message FLML → MS2 includes:

〈max{c2,−∞}, max{0, cred1 + c1}〉

Thus, the message includes 〈c2, cred1 + c1〉.

4. The forth message MS2 → FT passes forward the same 〈c2, cred1 +

c1〉.

5. The next FL→ MS1 message includes:

〈max{cred2 + c2, cred1 + c1}, max{cred1 + cred2 + c2, 2cred1 + c1}〉

In both cases, whether cred2 + c2 > cred1 + c1 or not, the message we

be normalized down to 〈0, cred1〉.

Now we will follow the cyclic message in the opposite order of nodes start-

ing at FT, then MS2, ML, MS1 and back to FT:

1. The first message FT → MS2 includes the pair 〈0, cred2〉 (the left and

right entries of the pair represent the beliefs for not covering and

covering the target, respectively).

2. The second message MS2 → FLML includes the same pair 〈0, cred2〉,

because the message from FT is the only message to pass further.

3. The third message FLML → MS1 includes:

〈max{c1,−∞}, max{cred2 + c2, 0}〉

Thus, the message includes 〈c1, cred2 + c2〉.

4. The forth message MS1 → FT passes forward the same 〈c1, cred2 +

c2〉.

User
Cross-Out

User
Inserted Text
will

CHAPTER 4. COLLISION AVOIDING MAX-SUM (CAMS) 34

5. The next FL→ MS2 message includes:

〈max{cred1 + c1, cred2 + c2}, max{cred1 + cred2 + c1, 2cred2 + c2}〉

In both cases here as well, whether cred2 + c2 > cred1 + c1 or smaller,

the message we be normalized down to 〈0, cred2〉.

We emphasize that a similar analysis applies for any case where cred1 and

cred2 are much larger than c1 and c2. �

Intuitively, this happens because the −∞ utility in ML eliminates the util-

ity calculation including credi from being sent to MSj for the covering op-

tion where i 6= j. Thus, credi in the message from MSj to FT has shifted

from the covering option to the non-covering option and this offsets the

utility added by FT in each cycle.

Proposition 3 Max-sum converges to a collision free optimal solution, when

solving the scenario depicted in Figure 4.3 (c), after a linear number of steps.

Proof: According to Lemma 1 the target representing function-node in

this scenario consistently sends the same messages. Thus, although this

scenario includes a single cycle, in practice, the algorithm behaves as if it

is solving a tree. �

An immediate corollary is that Max-sum will converge in scenarios sim-

ilar to the scenario depicted in Figure 4.3 (c), in which the target can be

covered from additional locations, since the graph will still have a single

degenerate cycle, i.e., the algorithm will perform as if it was solving a tree-

structured factor graph.

For analyzing the convergence of the scenario represented by the factor

graph depicted in Figure 4.3 (d) we state the following Lemma:

User
Cross-Out

User
Inserted Text
will

CHAPTER 4. COLLISION AVOIDING MAX-SUM (CAMS) 35

Lemma 2 When Max-sum operates on factor graphs as depicted in Figure 4.3

(d), in every step, the target function-node FT will send the same messages to its

two neighbors MS1 and MS2, including zero for not covering the target and cred1

or cred2 respectively, for covering locations ((assuming ERFT > max(cred1, cred2)).

Proof: The proof is similar to the proof of Lemma 1. We will follow the

path of messages in a cycle including one target function-node FT, two

mobile sensors MS1 and MS2 and two mutual location ML1 and ML2 to

which both sensors can move. We will denote by c1 and c2 the utilities

included in FLML1 and by c3 and c4 the utilities included in FLML2 (besides

zero and −∞), for the options that only MS1 or only MS2 move to ML1 or

ML2 respectively. We recall that by construction, cred1 and cred2 are much

larger than c1, c2, c3 and c4. A factor graph that applies to this description

is depicted in Figure 4.5.

Figure 4.5: target, two robots, two common cells

Without loss of generality, we will follow the cyclic message path starting

at FT, then MS1, ML1 and ML2, MS2 and back to FT (the left and right

entries of the pair represent the beliefs for ML1 that covers the target and

ML2 that not covers the target, respectively):

CHAPTER 4. COLLISION AVOIDING MAX-SUM (CAMS) 36

1. The first step:

FT → MS1 includes the pair 〈cred1, 0〉

ML1 → MS1 includes the pair 〈c1, c2〉

ML2 → MS1 includes the pair 〈c3, c4〉

2. The second step:

MS1 → ML1 includes the pair 〈cred1 + c3, c4〉

MS1 → ML2 includes the pair 〈cred1 + c1, c2〉

3. The third step:

ML1 → MS2 includes: 〈c2 + c4, cred1 + c1 + c3〉

ML2 → MS2 includes: 〈0, c4〉

4. The forth step:

MS2 → FT includes: 〈c2, cred1 + c1 + c3〉

We will denote c2 as α and c1 + c3 as β.

5. The next FL→ MS1 message includes:

〈max{cred1 + cred2 + α, 2cred1 + β}, max{cred2 + α, cred1 + β}〉

In both cases, whether cred2 + α is bigger than cred1 + β or smaller,

the message we be normalized down to 〈cred1, 0〉.

We emphasize that a similar analysis applies for the opposite order of

nodes, where cred1 and cred2 are much larger than c1, c2, c3 and c4. �

Proposition 4 Max-sum converges to a collision free optimal solution, in a pseudo-

linear number of steps, when solving the scenario depicted in Figure 4.3 (d).

CHAPTER 4. COLLISION AVOIDING MAX-SUM (CAMS) 37

Proof: Similar to the proof of Proposition 3. According to Lemma 2 the

target representing function-node in this scenario consistently sends the

same messages. Thus, although this scenario includes two cycles, in prac-

tice, the algorithm behaves as if it is solving a single cycle factor graph.

This cycle cannot include an inconsistent optimal path (same argument

as stated for Proposition 2) and thus, the algorithm will converge to the

optimal solution, which cannot include collisions. We omit the similar ar-

gument for the pseudo-linear number of steps required for convergence.

�

4.2 Experimental Evaluation

In order to evaluate the performance of CAMS we designed two types of

simulation environments. The first was software simulation, implemented

in Python (Chapter 3) and the second was a simulation that included Ham-

ster robots [5]. We started by evaluating the performance of Max-sum on

small scenarios including at most two targets, on which we were not able

to establish guaranteed convergence (depicted in Figure 4.6).

For each scenario we produced 50 instances. In all of them the target’s ER

values were 120 and the credibility of each sensor was 30. The positive

utilities of location function-nodes were selected randomly between 1 and

1M, and divided by 10, 000M (resulting in random numbers in the range

[0.00000000001, 0.0001)). Our empirical evaluation revealed that Max-sum

always converged to an optimal collision free solution when solving these

scenarios. Beneath each scenario the average number of iterations re-

quired for convergence (on the left) and the standard deviation (on the

right) are depicted in brackets.

CHAPTER 4. COLLISION AVOIDING MAX-SUM (CAMS) 38

(5.14, 9.07) (6.14, 17.79)

(0.18, 0.57) (4.74, 12.58)

(6.58, 12.2) (3.5, 5.5)

Figure 4.6: Scenarios with no convergence guarantees.

Next, we generated larger scenarios in which 20 targets were randomly

positioned on a grid with dimensions 50× 50. 80 mobile sensors were also

positioned randomly on this grid, such that every cell of the grid included

at most one mobile sensor. The targets’ ER values, the credibility of mo-

bile sensors and the utilities for the cell representing function-nodes, were

selected as for the small scenarios described above. In each iteration of the

algorithm, each mobile sensor could either move to one of the four adja-

cent cells (up, down left or right) or stay in its location. We assumed that a

CHAPTER 4. COLLISION AVOIDING MAX-SUM (CAMS) 39

mobile sensor can cover a target that is located in the cells closest to its lo-

cation in each direction, including the row, the column and the diagonals

(one step in each direction).

We compared CAMS with Max-sum MST and a random walk algorithm.

Each algorithm performed 100 iterations, in which the mobile sensors se-

lected locations. CAMS and Max-sum MST performed 30 steps of the al-

gorithm in each iteration, before the agents selected their locations. The re-

maining coverage in each iteration was calculated as follows ∑Tj∈T cr(Tj)

(thus, the group goal was to minimize the remaining coverage require-

ment).

(a) (b)

Figure 4.7: Remaining coverage (a) and accumulated collisions (b) as a

function of the number of iterations.

Figure 4.7 (a) presents the remaining coverage requirement for the three

algorithms as a function of the number of iterations (colors represent stan-

dard deviation). For Max-sum MST we included the results of two ex-

periments. In the first, the mobile sensor movements were not affected

CHAPTER 4. COLLISION AVOIDING MAX-SUM (CAMS) 40

by collisions. In the second, colliding sensors exhibited a breakdown and

stopped moving. It is clear that CAMS maintains a similar level of cover-

age to Max-sum MST and both have a large advantage over the random

walk algorithm. However, since the mobile senors in Max-sum MST do

not avoid collisions, the agents performing it are less restricted and there-

fore the resulting coverage is slightly better than the coverage achieved

when performing CAMS (differences were found to be insignificant with

p = 0.01). On the other hand, CAMS significantly outperformed Max-

sum MST in the scenarios including breakdowns in terms of coverage.

Figure 4.7 (b) presents the number of accumulated collisions of the algo-

rithms. CAMS is collision free while random walk and Max-sum MST

perform collisions in a similar rate.

Figure 4.8: The set of the experiment.

In the next set of experiments, our goal was to examine the delay caused

by collisions between robots in realistic settings. Thus, they included a

mobile sensing team composed of three Hamster robots [5] and two tar-

gets, placed in a 4× 4 grid, where the size of each cell was a square meter.

The targets’ ER was set to 60. They were placed randomly in non adja-

CHAPTER 4. COLLISION AVOIDING MAX-SUM (CAMS) 41

cent cells of the grid. The sensors’ credibility and the number of steps the

Max-sum algorithm was performed in each iteration were identical to all

experiments presented in this section. The number of iterations the al-

gorithms performed was 10. We selected four different positions for the

targets and for each of them, five different positions for the robots, result-

ing in 20 experiments for each algorithm.3 The start position of one of the

experiments is depicted in Figure 4.8.

Figure 4.9: Time as a function of the number of iterations.

Figure 4.9 presents the remaining coverage requirement as a function of

the experiment execution time. Both algorithms produce the same level

of coverage after completing ten iterations. However, CAMS avoids colli-

3A video presenting the highlights of this set of experiments is included in the sup-

plementary material.

CHAPTER 4. COLLISION AVOIDING MAX-SUM (CAMS) 42

sions, and thus, reaches this coverage state faster.

5 Summary & Conclusions

Mobile Sensor Team (MST) is a scenario where a team of robots has to

detect targets and keep a track on them. DCOP MST is a dynamic DCOP

formulation. Using the DCOP MST model, we model the MST scenario

and use various algorithms to solve it. The DCOP MST has been tested in

a real world environment through a team of iRobot robots. The robots had

many hardware limitations which made it very difficult to produce high

quality results.

In this work we took an attempt at testing DCOP MST in a real world

environment with a team of a new type of robots, called Hamster. The

Hamster robots feature better localization and communication capabilities

which makes them much more suitable for this research.

Operation and implementation of the DCOP MST algorithms into the Ham-

ster robots proved to be a challenging task, as the initial configuration of

these robots was very basic. We created several useful instruments, such

as: simulations, mapping tools, robust network for exchanging messages

between robots, navigation and localization tools.

An important feature of applications that include mobile sensors, is that

they should avoid collisions, while optimizing coverage. In order to achieve

this challenging combination, we proposed CAMS, a version of Max-sum MST

43

User
Cross-Out

User
Cross-Out

User
Inserted Text
Realistic multi-agent applications often include scenarios in which a Mobile

User
Cross-Out

User
Cross-Out

User
Cross-Out

User
Inserted Text
and monitor targets

User
Cross-Out

User
Inserted Text
, which we use to

User
Cross-Out

User
Inserted Text
such MST scenarios

User
Cross-Out

User
Inserted Text
allows us to

User
Cross-Out

User
Inserted Text
in order to

User
Cross-Out

User
Inserted Text
algorithms have

User
Cross-Out

User
Inserted Text
including

User
Cross-Out

User
Inserted Text
Prior to our work

User
Sticky Note
reference

User
Cross-Out

User
Cross-Out

User
Cross-Out

User
Cross-Out

CHAPTER 5. SUMMARY & CONCLUSIONS 44

that avoids collisions by adding to the factor graph representation of the

problem, besides target representing function-nodes, hard constraint function-

nodes, representing the locations that agents may choose to move to. In

contrast to what one might expect, this addition did not prevent the al-

gorithm from converging. Our analysis of simple scenarios proposed ex-

planations for this phenomenon and our empirical results revealed that

the desired properties are maintained when the problem scales. Small

scenario experiments with hardware robots revealed the actual delay in

execution caused by collisions.

6 Future Work

Our work prepared platform for future research and development in a

multi-agent world, more specifically in DCOP and DCOP MST. We out-

line several options for future research. It will include theoretical and

practical algorithmic analysis and design, which takes into consideration

applications’ peculiarities. We intend to investigate whether existing al-

gorithms maintain their properties in those different environments that

include message latency and losses, changes in search space, diverse be-

havioral characteristics of agents, etc. In addition, the design will address

the robustness of the algorithms with respect to existing approaches.

6.1 Research Objectives

6.1.1 Improving CAMS

Some additional exploration techniques of exploration were proposed in

[35] in order to improve performance of the algorithms. We are willing to

apply those techniques and run real robot experiments in a greater scale.

For now, robots move one cell at each iteration. Although there are no

collisions during the run, it takes more time to get to the final positions.

45

User
Cross-Out

User
Inserted Text
The work presented in the previous chapter was a first step in our journey towards our research goal, which is to identify and address challenges in applying distributed optimization models and algorithms to real world applications.

User
Cross-Out

User
Inserted Text
properties

User
Cross-Out

User
Inserted Text
distributed optimization

User
Cross-Out

User
Cross-Out

User
Inserted Text
message

User
Cross-Out

User
Cross-Out

User
Inserted Text
dynamic

User
Cross-Out

User
Inserted Text
and more

CHAPTER 6. FUTURE WORK 46

Allowing robots to move in a greater range expose chances for more col-

lisions. Several algorithms were developed to prevent collisions in multi-

agent path planning [2, 15, 24, 28, 34]. We are willing to apply those under

DCOP MST formulation.

We also plan to make better usage of the sensors installed in the Hamster

and may add image processing combined with distance measuring for tar-

get detection.

6.1.2 RL in DCOP and DCOP MST

We discussed DCOP formulation to model dynamically changing multi-

agent coordination problems, where a dynamic DCOP is a sequence of

static DCOPs, each partially different from the DCOP preceding it. We as-

sume that the problem in each time step is decoupled from the problems

in other time steps, which might be false assumption in some applications.

Moreover, running DCOP algorithms for each action selection through the

whole system results in significant communication among agents, which

is not practical for most applications with limited communication band-

width. Coordinated multi-agent reinforcement learning (MARL) provides

a promising approach to scaling learning in large cooperative multi-agent

systems. DCOP techniques can be used to coordinate action selection

among agents during both the learning phase and the policy execution

phase to ensure good overall system performance. [39]

Researchers have introduced the following contributions: (i) Introduction

of a new model, called Markovian Dynamic DCOPs (MD-DCOPs), where

the DCOP in the next time step is a function of the value assignments in

the current time step[18]. (ii) Introduction of distributed reinforcement

CHAPTER 6. FUTURE WORK 47

learning algorithms, that balance exploration and exploitation to solve

MD-DCOPs in an online manner. [18, 40] (iii) Development of a learning

approach that generalizes previous coordinated MARL approaches that

use DCOP algorithms and enables MARL to be conducted over a spectrum

from independent learning (without communication) to fully coordinated

learning depending on agents’ communication bandwidth. [39]

DCOP MST formulation have a great similarities to those contributions.

We are willing to adopt some MARL approaches to increase performance

in robot allocation problems.

6.1.3 Dynamic DCOP Problems

In this work we made an assumption that target’s demand and position

are static during the run of algorithms. However, many real world scenar-

ios have highly dynamic nature [16, 19, 29, 36]. Moreover, Our DCOP MST

model works in 2D plane. Drones, however, position themselves in a 3D

space, which makes a search space at list an order of magnitude more

complex [1]. The targets can move in space, they can appear in different

times and their demand can change dramatically as well. We are willing to

explore the performance of existing DCOP MST algorithms in such chal-

lenging environments. For instance, we can use previous iRobot robots as

mobile targets, we can use drones as agents.

6.1.4 Competing Groups of Agents

Another assumption we took in this work is that a group of agents works

as a cooperative team. In many real world examples there are competing

CHAPTER 6. FUTURE WORK 48

teams of agents trying to solve similar task, such as parlor games, com-

petitive economic situations, and some social choice settings [3]. It leads

to game-theoretic approach in DCOP. We are willing to model those sce-

narios in DCOP formulations and transform existing algorithms to solve

those kind of problems.

6.1.5 Implementation - House IOT

Recently, a realistic dataset for the smart home device scheduling problem

for DCOPs was published [13], and several attempts to solve this prob-

lem were taken [27]. Smart house problem creates supplementary chal-

lenges such as, more sophisticated factor-graph, great number of variables

and agents (each smart property in house can be associated to a separate

agent), creating a proper DCOP formulation to this problem, etc. We are

aiming to adapt new algorithms such as new versions of Max-sum to this

implementation.

6.1.6 Implementation - Allocating Police Units

Another DCOP implementation was proposed in [25]. They looked at de-

centralized coordination in RoboCup rescue challenge. Emergency agents

are faced with a number of significant challenges while managing major

disasters. First, the number of rescue tasks posed is usually larger than

the number of agents and the resources available to them. Second, each

task is likely to require a different level of effort in order to be completed

by time. Third, new tasks may continually appear or disappear from the

environment, thus requiring the agents to quickly recompute their alloca-

tion of resources. Fourth, forming teams or coalitions of multiple agents

CHAPTER 6. FUTURE WORK 49

from different agencies is vital since no single agency will have all the re-

sources needed to save victims, unblock roads, and extinguish the fires

which might erupt in the disaster space.

In their results they came with some open questions such as, how the pro-

posed algorithms scale with increasing numbers of agents and different

profiles of deadlines and workloads, how to evaluate the performance

of those algorithms under more general settings of variable and factor

degrees and how to extend the algorithms to consider the addition and

removal of agents from the environment and to achieve convergence on

cyclic graphs. We see that our knowledge in solving cyclic graphs can

help to approach this problem.

6.2 Expected Advancement

The main statement of this research proposition is the formalization of

communication architectures in different domains inside multi agent op-

timization models and the design of algorithms for solving them. To fos-

ter the acceptance of a new model within the scientific community, we

will provide algorithmic approaches, proof-of-concept implementations

in simulations and in real-world scenarios, and rigid evaluations of sig-

nificant benchmark instances. We will conduct theoretical evaluations for

all the proposed models and algorithms (e.g. time complexity of the pro-

posed model, quality and convergence guarantee of the proposed algo-

rithms, communication costs, etc.) to better characterize and explore their

applicability.

We anticipate that the advances we will make in the the research and its

CHAPTER 6. FUTURE WORK 50

associated application areas will have a significant impact on the devel-

opment of distributed algorithms for more realistic distributed systems.

To this end we intend to implement and examine the knowledge acquired

in this research on a realistic task allocation application. In addition, we

intend to make a set of DCOP MST benchmark problems available to the

public, to foster future research in the direction of the proposed work.

7 Declaration

I hereby confirm that this thesis is entirely my own work. I confirm that

no part of the document has been copied from either a book or any other

source – including the internet – except where such sections are clearly

and correctly identified within the text or in the list of references.

51

Bibliography

[1] F. Al-Turjman. A novel approach for drones positioning in mission

critical applications. Transactions on Emerging Telecommunications Tech-

nologies, n/a(n/a):e3603. e3603 ETT-18-0435.R1.

[2] Z. Bnaya, R. Stern, A. Felner, R. Zivan, and S. Okamoto. Multi-agent

path finding for self interested agents. 01 2013.

[3] F. Brandt, F. Fischer, P. Harrenstein, and Y. Shoham. A game-theoretic

analysis of strictly competitive multiagent scenarios. In IJCAI 07, Hy-

derabad, India, January 2007.

[4] Z. Chen, Y. Deng, T. Wu, and Z. He. A class of iterative refined

max-sum algorithms via non-consecutive value propagation strate-

gies. Journal of Autonomous Agents and Multi-Agent Systems (JAA-

MAS), 32(6):822–860, 2018.

[5] Cogniteam. Hamster V7 Smart ROS Autonomous Ground Vehicles for

Industry and Academic R&D, 2020.

[6] Y. Deng and B. An. Speeding up incomplete gdl-based algorithms for

multi-agent optimization with dense local utilities. In Proceedings of

the 29th International Joint Conference on Artificial Intelligence, (IJCAI),

pages 31–38, 2020.

52

BIBLIOGRAPHY 53

[7] Farinelli, Rogers, Petcu, and Jennings. Decentralised coordination

of low-power embedded devices using the max-sum algorithm. In

AAMAS, 2008.

[8] A. Farinelli, A. Rogers, and N. Jennings. Agent-based decentralised

coordination for sensor networks using the max-sum algorithm. JAA-

MAS, 2013.

[9] A. Farinelli, A. Rogers, and N. R. Jennings. Agent-based decen-

tralised coordination for sensor networks using the max-sum algo-

rithm. Journal of Autonomous Agents and Multi-Agent Systems (JAA-

MAS), 28(3):337–380, 2014.

[10] A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings. Decentralised

coordination of low-power embedded devices using the max-sum al-

gorithm. In Proceeding of the 7th International Conference on Autonomous

Agents and Multi-Agent Systems (AAMAS), pages 639–646, 2008.

[11] G. D. Forney, F. R. Kschischang, B. Marcus, and S. Tuncel. Iterative

decoding of tail-biting trellises and connections with symbolic dy-

namics. In B. Marcus and J. Rosenthal, editors, Codes, Systems, and

Graphical Models, pages 239–264. Springer, 2001.

[12] M. Jain, M. E. Taylor, M. Yokoo, and M. Tambe. Dcops meet the real

world: Exploring unknown reward matrices with applications to mo-

bile sensor networks. In Proceedings of the 21st International Joint Con-

ference on Artificial Intelligence, (IJCAI), pages 181–186, 2009.

[13] W. Kluegel, M. A. Iqbal, F. Fioretto, W. Yeoh, and E. Pontelli. A realis-

tic dataset for the smart home device scheduling problem for dcops.

CoRR, abs/1702.06970, 2017.

BIBLIOGRAPHY 54

[14] F. R. Kschischang, B. J. Frey, and H. A. Loeliger. Factor graphs and

the sum-product algorithm. IEEE Transactions on Information Theory,

47:2:181–208, February 2001.

[15] R. Luna and K. E. Bekris. Network-guided multi-robot path planning

in discrete representations. In 2010 IEEE/RSJ International Conference

on Intelligent Robots and Systems, pages 4596–4602, 2010.

[16] K. S. Macarthur, R. Stranders, S. D. Ramchurn, and N. R. Jennings. A

distributed anytime algorithm for dynamic task allocation in multi-

agent systems. In Proceedings of the 25th Conference of the American

Association for Artificial Intelligence (AAAI), 2011.

[17] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. Adopt: asynchronous

distributed constraints optimization with quality guarantees. Artifi-

cial Intelligence, 161(1-2):149–180, 2005.

[18] D. T. Nguyen, W. Yeoh, H. C. Lau, S. Zilberstein, and C. Zhang.

Decentralized multi-agent reinforcement learning in average-reward

dynamic dcops. In Proceedings of the Twenty-Eighth AAAI Conference

on Artificial Intelligence, AAAI’14, page 1447–1455. AAAI Press, 2014.

[19] D. T. Nguyen, W. Yeoh, H. C. Lau, S. Zilberstein, and C. Zhang.

Decentralized multi-agent reinforcement learning in average-reward

dynamic DCOPs. In Proceedings of the AAAI Conference on Artificial

Intelligence (AAAI), pages 1447–1455, 2014.

[20] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-

sible Inference. Morgan Kaufmann, 1988.

[21] T. Penya-Alba, M. Vinyals, J. Cerquides, and J. A. Rodrı́guez-Aguilar.

A scalable message-passing algorithm for supply chain formation. In

BIBLIOGRAPHY 55

Proceedings of the 26th Conference of the American Association for Artificial

Intelligence (AAAI), 2012.

[22] M. Pujol-Gonzalez, J. Cerquides, P. Meseguer, J. A. Rodrı́guez-

Aguilar, and M. Tambe. Engineering the decentralized coordination

of uavs with limited communication range. In Advances in Artificial

Intelligence, pages 199–208. Springer, 2013.

[23] M. Quigley, B. Gerkey, and W. D. Smart. Programming Robots with

ROS. O’Reilly Media, 2015.

[24] V. Rahmani and N. Pelechano. Multi-agent parallel hierarchical path

finding in navigation meshes (ma-hna*). Computers & Graphics, 86, 11

2019.

[25] S. D. Ramchurn, A. Farinelli, K. S. Macarthur, and N. R. Jennings.

Decentralized coordination in robocup rescue. Computer Journal,

53(9):1447–1461, 2010.

[26] A. Rogers, A. Farinelli, R. Stranders, and N. R. Jennings. Bounded

approximate decentralised coordination via the max-sum algorithm.

Artificial Intelligence, 2011.

[27] P. Rust, G. Picard, and F. Ramparany. Using message-passing DCOP

algorithms to solve energy-efficient smart environment configuration

problems. In Proceedings of the 25th International Joint Conference on

Artificial Intelligence, (IJCAI), pages 468–474, 2016.

[28] G. Sharon, R. Stern, M. Goldenberg, and A. Felner. The increasing cost

tree search for optimal multi-agent pathfinding. Artificial Intelligence,

195:470 – 495, 2013.

BIBLIOGRAPHY 56

[29] M. C. Silaghi, D. Sam-Haroud, M. Calisti, and B. Faltings. General-

ized english auctions by relaxation in dynamic distributed csps with

private constraints. In IJCAI-01 DCR Workshop, Seattle, 2001.

[30] R. Stranders, F. M. Delle-Fave, A. Rogers, and N. R. Jennings. A de-

centralised coordination algorithm for mobile sensors. In AAAI, 2010.

[31] R. Stranders, A. Farinelli, A. Rogers, and N. R. Jennings. Decen-

tralised coordination of mobile sensors using the max-sum algorithm.

In Proceedings of the 21st International Joint Conference on Artificial Intel-

ligence, (IJCAI), pages 299–304, 2009.

[32] W. T. L. Teacy, A. Farinelli, N. J. Grabham, P. Padhy, A. Rogers, and

N. R. Jennings. Max-sum decentralised coordination for sensor sys-

tems. In AAMAS, pages 1697–1698. International Foundation for Au-

tonomous Agents and Multiagent Systems, 2008.

[33] G. Wang, G. Cao, P. Berman, and T. F. Laporta. A bidding protocol for

deploying mobile sensors. In Proceedings of the 11th IEEE International

Conference on Network Protocols (IEEE ICNP), 2003.

[34] K.-H. C. Wang and A. Botea. Tractable multi-agent path planning

on grid maps. In Proceedings of the 21st International Jont Conference

on Artifical Intelligence, IJCAI’09, page 1870–1875, San Francisco, CA,

USA, 2009. Morgan Kaufmann Publishers Inc.

[35] H. Yedidsion. Distributed Constraint Optimization for Teams of Mobile

Agents. PhD thesis, Ben Gurion University, 2015.

[36] H. Yedidsion and R. Zivan. Applying dcop mst to a team of mobile

robots with directional sensing abilities (extended abstract). In AA-

MAS, 2016.

BIBLIOGRAPHY 57

[37] H. Yedidsion, R. Zivan, and A. Farinelli. Applying max-sum to teams

of mobile sensing agents. Engineering Applications of Artificial Intelli-

gence (EAAI), 71:87–99, 2018.

[38] H. Yedidsion, R. Zivan, and A. Farinelli. Applying max sum to teams

of mobile sensing agents. In EAAI, 2018.

[39] C. Zhang and V. Lesser. Coordinating multi-agent reinforcement

learning with limited communication. volume 2, pages 1101–1108,

05 2013.

[40] Z. Zhang, D. Zhao, J. Gao, D. Wang, and Y. Dai. Fmrq—a multiagent

reinforcement learning algorithm for fully cooperative tasks. IEEE

Transactions on Cybernetics, 47(6):1367–1379, 2017.

[41] R. Zivan, O. Lev, and R. Galiki. Beyond trees: Analysis and conver-

gence of belief propagation in graphs with multiple cycles. In Pro-

ceedings of the 34th International Conference of the Association for the Ad-

vancement of Artificial Intelligence (AAAI), pages 7333–7340, 2020.

[42] R. Zivan, S. Okamoto, T. Parash, L. Cohen, and H. Peled. Balancing

exploration and exploitation in incomplete min/max-sum inference

for distributed constraint optimization. In JAAMAS, 2017.

[43] R. Zivan, T. Parash, L. Cohen, H. Peled, and S. Okamoto. Balancing

exploration and exploitation in incomplete min/max-sum inference

for distributed constraint optimization. Journal of Autonomous Agents

and Multi-Agent Systems (JAAMAS), 31(5):1165–1207, 2017.

[44] R. Zivan, H. Yedidsion, S. Okamoto, R. Glinton, and K. Sycara. Dis-

tributed constraint optimization for teams of mobile sensing agents.

In JAAMAS, 2015.

BIBLIOGRAPHY 58

[45] R. Zivan, H. Yedidsion, S. Okamoto, R. Glinton, and K. P. Sycara. Dis-

tributed constraint optimization for teams of mobile sensing agents.

Journal of Autonomous Agents and Multi-Agent Systems (JAAMAS),

29(3):495–536, 2015.

	Introduction
	Previous Work & Background
	The Distributed Constraint Optimization Problem (DCOP)
	DCOP for Mobile Sensing Teams (DCOP_MST)
	Standard Max-sum
	Adjusting Max-sum algorithm to DCOP_MST
	Handling Runtime
	Handling Exploration - FMR
	Handling Tie Breaking

	ROS
	Necessity For A New Hardware
	Hamster Robots

	Creating Simulations & Setting Robots
	Packages
	Setting up Gazebo simulation
	Example of the full setting
	 Setting up 2D PyGame Simulation

	Collision Avoiding Max-sum (CAMS)
	Analyzing Specific Scenarios
	Experimental Evaluation

	Summary & Conclusions
	Future Work
	Research Objectives
	Improving CAMS
	RL in DCOP and DCOP_MST
	Dynamic DCOP Problems
	Competing Groups of Agents
	Implementation - House IOT
	Implementation - Allocating Police Units

	Expected Advancement

	Declaration

