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Abstract

Genotype selection for dry matter yield (DMY) in perennial forage species is based on 

repeated measures over time. Repeated measurements in forage breeding trials generate 

longitudinal datasets that must be properly analyzed giving a useful interpretation in the 

genotype selection process. In this study, we have presented a random regression (RRM) 

approach for selecting genotypes based on longitudinal DMY data generated from ten 

breeding trials and three perennial species, alfalfa (Medicago sativa L.), guineagrass 

(Megathyrsus maximus), and brachiaria  (Urochloa spp.). We also proposed the 

estimation of adaptability based on the area under the curve and stability based on the 

curve coefficient of variation. Our results showed that RRM always approximated the 

(co)variance structure into an autoregressive pattern. Furthermore, RRM can offer useful 

information about longitudinal data in forage breeding trials, where the breeder can select 

genotypes based on their seasonality by interpreting reaction norms. Therefore, we 

recommend using RRM for longitudinal traits in breeding trials for perennial species.

Introduction
Genotype selection in perennial forage species involves multiple assessments 

conducted repeatedly over time, across various seasons and years. Therefore, the 

evaluation of multi-harvest forage breeding trials is time-consuming and expensive. In 

this context, proper statistical methods that accurately predict the true genotypic values is 



crucial [1]. As the genotypes experience different environmental conditions over time, it 

is expected that differential gene expression occurring throughout the growing season. 

Therefore, in a multi-harvest trial, a response variable can be treated as different traits in 

a multivariate framework analysis [2]. In this way, the genetic correlation between the 

same traits in different harvests is a measure of genotype by harvest interaction (G×H) 

[3-5]. Multi-harvest trials can also be described as a special case of multi-environment 

trials, in which the environments represent the different time points when data are 

collected in the same trial. The repeated measurement of the same trait over time 

generates longitudinal datasets and the sequential nature of measurements creates patterns 

of variation [6].

There are several models to deal with longitudinal datasets and the most common 

and simple (co)variance structure is the first-order autoregressive (AR1), where a single 

correlation parameter (𝜌) is estimated. The model postulates a mechanism where the 

correlation between measurements j and k is 𝜌|𝑗―𝑘|, where the genotypic value of the 

genotype is a function of genes acting in a given time plus genes acting on the new 

measurement [3]. The AR1 model is an appealing method for modeling (co)variance 

structure for genotypes measured over time [3, 7, 8]. However, the AR1 model is 

recommended when the period between measurements is equally spaced, and when time 

points are unequally spaced nonlinear restrictions should be imposed for parameter 

estimation [9]. Due to the yield seasonality irregular time series are frequently observed 

in perennial forage yield measurements. The yield seasonality in forages is characterized 

by variation in growth and quality in response to environmental conditions [10]. 

Therefore, plants grow faster under favorable climate conditions and harvests are more 

frequent, whereas harvests are less frequent under unfavorable conditions. Thus, the time 

series for forage yield measures are naturally irregular.

Random regression models (RRM) were introduced by Henderson [11] and Laird 

and Ware [12]. Schaeffer and Dekkers [13] suggested their use in dairy cattle (Bos taurus) 

breeding to analyze day production records. Since then, several studies used RRM to 

predict growth in sheep (Ovis aries) [14], body weight in beef cattle [15], body weight in 

swine (Sus scrofa domesticus) [16], and egg production in layer (Gallus gallus 

domesticus) [17]. Recently RRM was applied to longitudinal data from perennial forage 

breeding trials for dry mater yield (DMY) in elephant grass (Pennisetum purpureum 

Schmach.) [18] and for forage quality in ryegrass (Lolium perenne L.) [19]. The use of 

RRM has also been increasing for annual crops with the advent of high-throughput 



phenotyping, which generates longitudinal datasets [20-22]. RRM can deal with 

longitudinal data (Schaeffer, 2004) as it captures the change of a trait continuously over 

time with few parameters by covariance functions (e.g., orthogonal polynomials and 

splines) [23, 24]. Kirkpatrick et al. [23] reported that RRM deals with unequally time-

spaced measurements, relating that RRM should be the adequate model under this 

condition. Furthermore, there is a possibility to include environmental-dependent 

covariate in RRM, e.g., temperature and humidity to study the genotypes’ response to 

abiotic stress [25-27].

In this study, we investigated the use of RRM for longitudinal data of dry matter 

yield in ten forage breeding trials for three different species (alfalfa, guineagrass and 

brachiaria) for genotype selection and genetic interpretation.

Material and methods
Datasets

We used data from three forage species in  10 trials (T1 to T10) conducted from 

2015 to 2020 in three locations and following different experimental designs (augmented 

row column design – ARCD, alpha-lattice design – ALD, and randomized complete block 

design – RCBD) (Table 1). Total dry matter yield (DMY, kg.ha-1) was assessed in all 

trials. The number of genotypes evaluated varied from eight (T4 and T5) to 182 (T1). The 

dataset is composed of data from early breeding trials (T1, T2, T3, T8, and T10) in which 

many genotypes are tested, and advanced breeding trials with a lower number of 

genotypes (T4, T5, T6, T7, and T9) (Table 1). The number of harvests in each trial varied 

from six (T7, T8, and T10) to 16 (T4 and T5).

Table 1. Description of experimental layout for the three forage species evaluated from 

2015 to 2020.

Trial Species Year Location Design Genotypes Harvests Columns Rows Plots

T1 Alfalfa
2018 - 
2019

Citra - FL - 
USA ARCD 182 11 32 14 405

T2
M. 

maximus
2016 - 
2019

Campo 
Grande - 
MS - BR ALD 110 9 22 20 330

T3
M. 

maximus
2016 - 
2019

Campo 
Grande - 
MS - BR ALD 110 9 22 20 330

T4
U. 

brizantha
2009 - 
2011

Campo 
Grande - 
MS - BR RCBD 8 16  -  - 32



T5
U. 

brizantha
2009 - 
2011

Terenos- 
MS - BR RCBD 8 16  -  - 32

T6
U. 

decumbens
2018 - 
2019

Campo 
Grande - 
MS - BR RCBD 9 13 9 4 36

T7
U. 

decumbens
2018 - 
2019

Brasilia - 
DF - BR RCBD 12 6 12 4 48

T8 U. (Inter)
2015 - 
2016

Campo 
Grande - 
MS - BR RCBD 99 6 8 50 396

T9 U. (Inter)
2019 - 
2020

Campo 
Grande - 
MS - BR RCBD 15 10 6 11 60

T10
U. 

decumbens
2015 - 
2016

Campo 
Grande - 
MS - BR RCBD 36 6 3 50 144

Statistical analysis

Analyzes for each multi-harvest trial (same trial over time) were performed based 

on a two-stage analysis using the weighting method proposed by Smith et al. [28]. In a 

two-stage analysis, genotypes’ best linear unbiased estimates (BLUEs) from each harvest 

in stage one were combined in a weighted multi-harvest mixed model analysis in stage 

two, where the weights provide a measure of relative uncertainty of the estimated 

genotypes’ BLUES from each harvest [28-30]. All the analyses were done by using 

ASREML-R [31] and SpATS [32] R packages, and the data summarization through 

graphs was done by ggplot2 [33] R package. The scripts for the analysis can be found at 

github (https://github.com/claudiocff/RRM-and-FAMM-asreml-two-step).

First stage: estimating BLUEs and weights accounting for spatial 
variation

We obtained the BLUEs and weights of the genotypes at each harvest by trial, 

using the SpATS R package [32] in a mixed model framework:

𝑦 = 𝑋𝛽 + 𝑋𝑠𝛽𝑠 + 𝑍𝑠𝑢𝑠 + 𝑍𝑐𝑢𝑐 + 𝑍𝑟𝑢𝑟 +𝑒 (1);

𝑦 = 𝑋𝛽 + 𝑋𝑠𝛽𝑠 + 𝑍𝑠𝑢𝑠 + 𝑍𝑏𝑢𝑏 +𝑒 (2);

where, y is the vector from measured DMY from each plot; 𝛽 is the vector of the fixed 

effects of genotypes and replication; 𝑢𝑟 and 𝑢𝑐 are the vectors of random effects of rows 

and columns, respectively in the augmented row column design (T1 - Table 1), where 𝑢𝑟

~𝑁(0,𝐼𝑟𝜎2
𝑟) and 𝑢𝑐~𝑁(0,𝐼𝑐𝜎2

𝑐); 𝑢𝑏is the vector of random effects of block effects in a 



randomized complete block design (T4, T5, T6, T7, T8, T9 and T10 - Table 1), or the 

vector of the random effects of incomplete blocks within replication in the alpha-lattice 

design (T2 and T3 - Table 1), in which 𝑢𝑏~𝑁(0,𝐼𝑏𝜎2
𝑏); 𝛽𝑠is the vector of fixed effects of 

the smooth spatial surface (unpenalized); 𝑢𝑠is the vector of random effects of the 

penalized part of the smooth surface (penalized). The fixed term (𝑋𝑠𝛽𝑠- unpenalized) and 

random term (𝑍𝑠𝑢𝑠- penalized) describe the mixed model expression of the smooth spatial 

surface (𝑓(𝑟,𝑐) = 𝑋𝑠𝛽𝑠 + 𝑍𝑠𝑢𝑠), where the random spatial vector 𝑢𝑠has (co)variance matrix 

S. The SpATS model uses the P-spline ANOVA [PS-ANOVA, 34] to describe the 2D-

splines in the mixed model framework. The 𝑋𝑠, 𝑍𝑠incidence matrices, and the (co)variance 

matrix S are described by Lee et al [34] and Rodríguez-Álvarez et al. [32]. The PS-

ANOVA parametrization can be decomposed as a linear sum of the univariate and 

bivariate smooth functions [35]; e is the vector of random errors, 𝑒~𝑁(0,𝐼𝑒𝜎2
𝑒); 𝜎2

𝑟, 𝜎2
𝑐, 𝜎2

𝑏

and 𝜎2
𝑒are the variance components associated to the random effects of rows, columns, 

blocks and errors.𝑋, 𝑍𝑟, 𝑍𝑐 and 𝑍𝑏are incidence matrices for the fixed effects, the random 

effects of rows, columns and blocks, respectively. 𝐼𝑟, 𝐼𝑐, 𝐼𝑏, and 𝐼𝑒are identity matrices.

Second stage: modeling genotype by harvest interaction
For the statistical model described below, the BLUEs obtained for each genotype 

in each harvest by trial were regressed on a time gradient (days), where the first harvest 

of each trial were considered as day zero and the other harvest times were the days after 

the first harvest. Therefore, random coefficients were computed for each genotype to 

describe the ‘genotypes’ DMY trajectory over time. Polynomial functions were used to 

model the longitudinal dimensions by using orthogonal Legendre polynomials [23]. The 

orthogonal polynomials were obtained by rescaling the time points from -1 to 1 using the 

expression:

𝑡𝑖 = ―1 + 2( 𝑡𝑖 ― 𝑡𝑚𝑖𝑛

𝑡𝑚𝑎𝑥 ― 𝑡𝑚𝑖𝑛
) (3)

the Legendre polynomials are denoted by 𝑃𝑛(𝑡). Defining  𝑃0(𝑡) = 1, the polynomial n+1 

is described by the recursive equation:

𝑃𝑛+1(𝑡) =
1

𝑛 + 1
[(2𝑛 + 1)𝑡𝑃𝑛(𝑡) ― 𝑛𝑃𝑛―1(𝑡)] (4)

on the normalized form the Legendre polynomial can be described:

𝜑𝑛(𝑡) = (2𝑛 + 1
2

)0.5𝑃𝑛(𝑡) (5)



therefore, for a polynomial of order two we can obtain the following equations:

𝜑0(𝑡) = (1
2)0.5

𝑃0(𝑡) = 0.7071𝜑1(𝑡) = (3
2)0.5

𝑃1(𝑡) = 1.22467𝑡

𝜑2(𝑡) = (5
2
)0.5(3

2
𝑡2 ― 1

2
) = ―0.7906 + 2.3717𝑡2     (6)

considering m = 2 as the order of the covariance function to be used, the Legendre 

coefficient matrix Λ will have dimensions of (𝑚 + 1) × (𝑚 + 1) can be defined as:

𝛬 = [0.7071 0 ―0.7906
0 1.2247 0
0 0 2.3717 ] (7)

considering four different time points and an order two polynomial, the incidence matrix 

of time points (M) can be defined as:

𝑀 = [1 𝑡0 𝑡2
0

1 𝑡1 𝑡2
1

1 𝑡2 𝑡2
2

1 𝑡3 𝑡2
3
] (8)

where ti is the time point scaled by the equation (3). 

Finally, the Legendre polynomials can be computed as 𝛷 = 𝑀𝛬, where 𝛷 is a 

matrix containing the normalized polynomials for harvest time; M store polynomials of 

standardized harvest times; Λ is the matrix of Legendre polynomial coefficients of order 

m+1, where m is the degree of fit [36]. The random regression model can be defined as:

𝑦 = 𝛷1𝛽 + 𝛷2𝑢𝑔 +𝑒 (9)

where y is the vector of BLUEs estimated by the models (1) or (2); β is the vector of the 

fixed regression coefficients; 𝑢𝑔is the vector of random regression coefficients of 

genotypes, in which 𝑢𝑔~𝑁(0,𝐾𝑔 ⊗ 𝐼𝑔𝜎2
𝑔); e is the vector of the errors, where 𝑒~𝑁(0,𝑅𝜎2

𝑒

). Kg is an unstructured (co)variance matrix associated to the random regression 

coefficients; the matrix Kg can be described as:

𝐾𝑔 = [ 𝜎2
𝑔0 𝜎𝑔0𝑔1 ⋯ 𝜎𝑔0𝑔𝑚

𝜎2
𝑔1 ⋯ 𝜎𝑔1𝑔𝑚

⋱ ⋮
𝑆𝑦𝑚. 𝜎2

𝑔𝑚

] (10)



where, 𝜎2
𝑔𝑚is the variance component associated to the coefficient of order m; 𝜎𝑔𝑛𝑔𝑚is the 

covariance between the coefficient of order m and n.

R is the variance matrix of the errors, where 𝑅 = 𝑑𝑖𝑎𝑔(𝑅1 ⋅⋅⋅ 𝑅𝑗), in which j is the 

harvest by trial. In practice, 𝑅𝑗 are unknown and replaced by an estimate 𝑅𝑗 from each 

harvest. It is sometimes not feasible to store and use the full matrix 𝑅𝑗 from each harvest, 

and so a vector of approximate weights is required. We used the weights proposed by 

Smith et al. [28], where the weights are based on the diagonal elements of 𝑅―1
𝑗  designated 

as 𝛱, in which:

𝛱 = 𝑑𝑖𝑎𝑔(𝜋𝑇
1 ⋅⋅⋅ 𝜋𝑇

𝑗 ) (11)

𝜋𝑗consists of the diagonal elements of 𝑅―1
𝑗 . This simple approximation reflects the 

uncertainty in each estimated BLUE, accounting for within-trial heterogeneity, differing 

replication and spatial trends.

Based on Kirkpatrick et al. [23], the following estimator was used to obtain the 

genetic variance and covariance components across harvest times (𝛴𝑔) on original scale:

𝛴𝑔 = 𝛷2𝐾𝑔𝛷𝑇
2 (12)

where, 𝛷2is the incidence matrix of the Legendre polynomials associated to the random 

effects of genotypes; Kg is the (co)variance matrix associated to the random genotypes’ 

coefficients, defined in (10).

The genotypic values for each genotype across harvest time can be estimated by the 

equation:

𝐺𝑉 = 𝐽𝛽𝑇𝛷𝑇
1 + 𝑈𝑔𝛷𝑇

2 (13)

where 𝐺𝑉 is a i x j matrix of the genotypic values on the original scale, where i is the 

number of genotypes and j the number of harvest time points; J is a column vector of 1’s 

size equal the number of genotypes (i); 𝛽𝑇is the transposed vector of the fixed regression 

coefficients of size 1 x (d+1), in which d is the degree of the polynomial fitted for the 

fixed regression; 𝛷𝑇
1is the transposed incidence matrix of the Legendre polynomials for 

each harvest time for the fixed regression with size (d+1) x j; 𝑈𝑔is the genotypes’s random 

coefficients matrix, size i x (m+1); 𝛷𝑇
2 is the transposed incidence matrix of the Legendre 

polynomials for each harvest time for the random regression with size (d+1) x j.

The polynomial function for the fixed regression was defined graphically by using 

a loess function, where the function order was determined by the number of curves (c) +1 



in the mean DMY trajectory across harvest time (Fig 1). For example, for the trials T1 

and T5 a polynomial of degree three were fitted, since two curves were observed on the 

mean DMY trajectory. The random polynomial regression degree was determined by the 

Bayesian information criteria (BIC).

 

Fig 1. Mean dry matter yield (kg.ha-1) trajectory over time for trials T1 (Alfalfa – A) and 

T5 (Brachiaria – B)

Heritability, broad adaptability, and stability
The heritability over harvest times was estimated by the expression:

𝐻2
𝑗 =

𝑑𝑖𝑎𝑔(𝛴𝑔)

𝑑𝑖𝑎𝑔(𝛴𝑔) +
𝜎2

𝑒
𝑟

 (14)

where 𝐻2
𝑗 is the genotype mean-based heritability estimated at each harvest time; 𝛴𝑔is the 

genetic variance-covariance matrix estimated by the equation (12); 𝜎2
𝑒is the mean error 

variance component across harvests; r is the number of replications in the trial.



The broad adaptability for each genotype was estimated based on the area under 

the DMY trajectory curve, in which reflects the total DMY accumulation over harvest 

time:

𝐴𝑖 = ∫1
―1 𝑏0 + 𝑏1𝑡 + 𝑏2𝑡2 + ... + 𝑏𝑑𝑡𝑑

𝐹𝑖𝑥𝑒𝑑

+ 𝑔𝑖0 + 𝑔𝑖1𝑡 + 𝑔𝑖2𝑡2 + ... + 𝑔𝑖𝑚𝑡𝑚

𝑅𝑎𝑛𝑑𝑜𝑚

𝑑(𝑡)(15)

where Ai is the area under the trajectory curve of the genotype i; b0 is the fixed regression 

intercept; gi0 is the random regression intercept of the genotype i; t is the harvest time 

point; d and m are the polynomial fitted degree for the fixed and random regression, 

respectively; bd is the fixed regression coefficient of degree d; 𝑔𝑖𝑚is the random regression 

coefficient of degree m for genotype i.

The genotypes’ stability was calculated based on the trajectory curve’s coefficient 

of variation (CVc), in which reflect the genotypes’ Type I stability, where the genotype is 

stable if present small variance between environments (harvests), also called biological 

stability (Lin et al., 1986):

𝐶𝑉𝑐𝑖 =
𝜎𝑐𝑖

𝑏0 + 𝑔𝑖0
 (16)

where, 𝜎𝑐𝑖is the standard trajectory curve deviation for genotype i; 𝑏0 + 𝑔𝑖0is the overall 

performance for genotype i.

Genetic interpretation on random regression models
One of the advantages of random regression models is the use of eigenfunction (𝛹𝑘) 

of the genetic coefficient (co)variance matrix (10), in which can provide genetic insights 

about the studied trait based on Kirkpatrick et al. [23]:

𝛹𝑘 = ∑𝑀
𝑚=0(𝑣𝛹𝑘)𝑚𝛷𝑚 (17)

where (𝑣𝛹𝑘)𝑚is the mth element of the kth eigenvector of Kg, and 𝛷𝑚 is the normalized 

value of the mth Legendre polynomial.

Results
Overall description of RRM across trials

The degree of the polynomial used to fit the fixed part of the RRM varied from 2 

(in T10) to 5 (in T2 and T3) (Table 2). However, there was no clear trend between the 

number of harvests evaluated in each trial and the order of the polynomial used (Table 1 

and Table 2). The choice of polynomial degree for the fixed part of the model was based 

on the number of contrasting seasons evaluated in each trial. These contrasting seasons 



resulted in pits and peaks that had to be modeled by the fixed polynomial. On the other 

hand, for the random part of the RRM, lower-order polynomials were mostly preferred. 

In most trials, a first-order polynomial was sufficient to model the genotype by harvest 

interaction (G×H). A second-order polynomial was used in trials T4 and T8, and a third-

order polynomial was employed in trial T1 (Table 2).

Heritability varied across harvests, ranging from low (0.16 in T6) to median 

estimates (0.69 in T8) as shown in Table 2. Generally, there was little variation in 

heritability estimates across harvests, and high genetic correlations were observed 

between harvests, which suggests a higher predominance of non-crossover genotype by 

harvest interaction, except for trials T4 and T7 (Table 2).

Table 2. Genetic parameters estimated using random regression models for alfalfa (T1), 

guineagrass (T2 and T3), and brachiaria (T4 to T10).

Trial Degree (F) Degree (R) H2 𝜌𝑔 
T1 3 3 0.36 (0.11) 0.78 (0.19)
T2 5 1 0.63 (0.02) 0.98 (0.02)
T3 5 1 0.51 (0.01) 0.90 (0.10)
T4 3 2 0.34 (0.20) 0.26 (0.54)
T5 3 1 0.52 (0.10) 0.67 (0.33)
T6 3 1 0.16 (0.08) 0.75 (0.28)
T7 4 1 0.42 (0.18) 0.29 (0.61)
T8 4 2 0.69 (0.02) 0.82 (0.18)
T9 3 1 0.31 (0.03) 0.89 (0.11)

T10 2 1       0.55 (0.07) 0.88 (0.11)
Fitted polynomial order for fixed (F) and random (R) regression, mean heritability (H2) 

and genetic correlation between harvests (𝜌𝑔)  for each trial estimated by RRM. The 

values between parenthesis represent the standard deviations across harvests for H2 and 

among pair of harvests in case of 𝜌𝑔.

The RRM models estimated an autoregressive covariance pattern for all datasets, 

indicating that closer harvests had higher correlations, while harvests that were further 

apart had smaller correlations (Fig 2). Trials T4, T5, T6, and T7 exhibited higher cross-

over interactions, as evidenced by the negative correlations between harvests observed in 

these trials (Fig 2). The negative correlations could be attributed to the small number of 

genotypes evaluated in these trials (Table 1).

In the upcoming sections of this study, we will provide an interpretation of the 

models for genotype selection. To ensure that the trials discussed have a high level of 



complexity in terms of genotype-environment interaction, we selected trials with low to 

median genetic correlation between harvests. Specifically, we chose trials T1, T5, and T7 

for further interpretation (as shown in Table 2 and Fig 2).

Fig 2. Heatmap of the genetic correlations between harvests estimated by RRM alfalfa 

(T1), guineagrass (T2 and T3), and brachiaria (T4 to T10). 

Genotype selection and G×H interpretation

Alfalfa breeding trial – T1
In this trial, 182 genotypes were evaluated over 11 harvests. To fit the model G×H 

for this trial, we used a Legendre polynomial of degree three for both the fixed and 

random effects (as shown in Table 2), which resulted in the estimation of 12 parameters.

Variance components, heritability, and genetic behavior
The polynomial genetic variances varied from 2,930 to 343,654 for g3 and g0, 

respectively. The genotypes’ intercept (g0) retained most of the genetic variance, 

explaining 74% of the genetic variance, and the components related to the genotype’s 

curve shape (g1, g2 and g3) accounted to 26% of the genetic variance (Table 3). The most 

important correlation between the polynomial coefficients and the easiest to interpret is 

the correlation between g0 and g1, it shows the genetic variance behavior over time. In 



this trial, the correlation between g0 and g1 was negative (-0.22, Table 3), indicating lower 

genetic variance can be observed over time.

Table 3. Summary of genetic and non-genetic parameters estimated by RRM for alfalfa 

trial (T1).

 
𝑔0 𝑔1 𝑔2 𝑔3

𝑔0
343,654 -0.22 0.76 0.03

𝑔1
101,118 -0.61 -0.07

𝑔2
19,627 -0.63

𝑔3
2,930

Importance (%) 74 21 4 1
𝜎2

𝑒
365,436

𝑔0, 𝑔1, 𝑔2 and 𝑔3 are the random regression intercept and first, second and third order 

coefficient, respectively. 𝜎2
𝑒is the mean error variance across harvests. The diagonal 

elements of the table are the genetic variances associated with the intercept and 

polynomial coefficients (𝜎2
𝑔0

,𝜎2
𝑔1,𝜎

2
𝑔2,𝜎

2
𝑔3); the off diagonal of the table are the correlations 

between intercept and polynomial coefficients (𝜌𝑔0𝑔1,𝜌𝑔0𝑔2,𝜌𝑔0𝑔3,𝜌𝑔1𝑔2,𝜌𝑔1𝑔3,𝜌𝑔2𝑔3).

One advantage of RRM is the heritability estimation in function of time, as well 

as pointed out above by the negative estimate of 𝜌𝑔0𝑔1the heritability tended to decrease 

over time as the genetic variance also decreased. The lower heritability estimates (H2 < 

0.30) ocurred between 120 and 220 days after the first harvest (Fig 3). It is noteworthy 

that the harvest with lower heritability occurred during the late summer to late fall period 

when alfalfa genotypes are exposed to various stress factors such as high temperatures, 

cloudy days, and high humidity, along with biotic stress mainly caused by fungal diseases 

(see Fig. 3).



Fig 3. Heritability trajectory over harvests time (days) for alfalfa trial (T1).

The genetic correlation varied from 0.43 to 1.00 (Fig 4A). The genetic correlation 

between harvests followed an autoregressive pattern, where harvest closer to each other 

tend to have higher genetic correlation and those harvests far apart from each other had 

lower genetic correlation (Fig 4A). The eigen functions can be used in RRM to infer about 

gene expression over time (Fig 4B). Where the first eigenfunction had a nearly constant 

behavior and explained 74% of the genetic variation, this variation represents a common 

gene poll that is being expressed over time, and explain the simple G×H interaction, since 

non differential expression was observed (Fig 4B). The second eigenfunction represents 

another gene pool, in which explained 21% of the genetic variation that shows differences 

in gene expression under different environment conditions, explaining most of the 

complex G×H interaction (Fig 4B). The third and fourth eigenfunctions explained only 4 

and 1% of the genetic variation, also representing complex G×H interactions, where 

differences on gene expression can be observed over time (Figure 4B).



Fig 4.  Heat map (A) and Eigenfunction smooth curves (B) illustrating genetic 
correlations between alfalfa harvests (T1).

Genotypes’ adaptability, stability, and yield trajectory over time
Forage breeders are interest in the genotype’s behavior over time, a good genotype 

should have higher yield over time. Therefore, RRM can be a useful tool where 

genotypes’ reaction norms can be plotted (Fig 5). There was great variability on the 

genotypes’ reaction norm, and the main changes on ranking occurred between harvests 

performed between 39 to 220 days. On Fig 5, we highlighted seven genotypes that 

presented higher area under the curve (A), i.e., higher broad adaptability, the trial’s checks 

(UF2015, FL99 and B_805), and the mean yield trajectory curve. It can be inferred from 

Fig 5 that genotypes 15F, 103F, 33_H, and 42F exhibited superior performance during 

the stress period (from day 150 to day 265) and can therefore be considered as more 



tolerant genotypes. All seven genotypes with higher A performed better than the checks 

for most of the harvest evaluated (Fig 5).

Fig 5. Genotypes’ dry matter yield (kg.ha-1) trajectory over harvest time for alfalfa trial 

(T1). The Highlighted genotypes represents the better genotypes based on the area under 

the curve, the checks (B_805, UF2015 and FL99) and the mean DMY trajectory.

Although, genotype selection based only on RRM is not feasible when large 

breeding populations are evaluated and complex G×H interactions are significant. To 

overcome this difficulty, we proposed the genotype selection based on the area under the 

curve (A) and in the curve coefficient of variation (CVc), which represent genotypes’ 

adaptability and stability for DMY, respectively. It was observed high variability for A 

and CVc between genotypes (Figs. 6A and 6B), and the correlation between the two 

parameters was of median magnitude (-0.55, Fig. 6A), thus it is possible to select 

genotypes with higher A and lower CVc, i.e., genotypes presenting high adaptability and 

stability. For selection purposes we did a scatter plot showing the genotype’s A and CVc 

values, where the genotypes to be selected are on the superior left quadrant of the graph 

(Fig. 6A). The 10% genotypes with higher A are highlighted on Fig. 6A.



Fig 6. Scatter plot of Stability versus Adaptability (A) with solid black lines indicating 

mean values of A and CVc for the alfalfa trial (T1); Histogram of Adaptability (B); 

Histogram of Stability (C).

Urochola brizanta advanced breeding trial – T5
In this trial, 9 genotypes were evaluated for DMY across 16 harvests. The degree 

of Legendre polynomial fitted for this trial was three for fixed and one for random part of 

the model (Table 2). Seven parameters were estimated for RRM.

Variance components, heritability, and genetic behavior
For this trial only the intercept and first order polynomial coefficient were needed 

to model the G×H interaction. The intercept (g0) and slope (g1) explained 69 and 31% of 

the genetic variance (Table 4). The negative correlation (𝜌𝑔0𝑔1 = ―0.41) between g1 and 



g0 indicated that genetic variances decreased over time. The highest heritability estimates 

occurred between harvests performed between 0 to 71 days (H2 > 0.70), and the lowest 

estimates between 450 and 619 days (H2< 0.43) (Fig 7). The first drought season (71 to 

238 days – May to October/2009) had heritability estimates varying from 0.57 to 0.69 , 

whereas the second drought season (450 to 619 – May to October/2010) presented the 

lower heritabilities varying from 0.40 to 0.43 (Fig 7). 

Table 4. Summary of genetic and non-genetic parameters estimated by RRM for trial T5.

 
𝑔0 𝑔1

𝑔0
117,153 -0.41

𝑔1
53,359

Importance (%) 69 31
𝜎2

𝑒
282,442

𝑔0 and 𝑔1 are the random polynomial intercept and first order coefficient. The diagonal 

elements of the table are the variance components associated with the polynomial 

intercept and coefficient; and the off diagonal is the correlation between intercept and 

regression coefficient ( 𝜌𝑔0𝑔1). 𝜎2
𝑒 is the mean error variance through harvests.

Fig 7. Heritability trajectory over harvests time (days) for brachiaria trial (T5).

The genetic correlation across harvests varied from -0.17 to 1.00 (Fig. 9A). Like 

T1 (Fig 4A), the genetic correlations on T5 followed an autoregressive structure (Fig 8A), 

but there was no common factor explaining the G×H interaction for all harvests as 



negative genetic correlations occurred in this trial (Fig 8A). This fact can also be 

explained by the eigenfunctions, where the two eigenfunctions varied over time (Fig 8B). 

First and second eigenfunctions explained the complex G×H interaction, where the gene 

expression varied over time for the two eigenfunction (Fig 8B).

Fig 8. Heat map (A) and Eigenfunction smooth curves (B) illustrating genetic correlations 

between brachiaria harvests (T5).

Genotypes’ adaptability, stability, and yield trajectory over time 
The genotypes’ reaction norms (Fig 9) showed that most changes in genotypes 

raking occurred between days 238 and 664. The maximum DMY was reached between 

the first drought season (154 days) and beginning of the second rainy season (238 days) 

(Fig 9). This is an atypical behavior and can be explained by the time interval between 

harvests, reflecting on a longer period of dry matter accumulation (Fig 9). Another factor 



is the number of harvests realized before this period where only three harvests were done 

until the first drought season (Fig 9). Furthermore, atypical climate conditions could 

happen in this season. As expected, the lowest DMY occurred at the end of the second 

drought season (619 days) (Fig 9). By the atypical behavior of the genotypes on first 

drought season, the selection of tolerant genotypes to this condition should be done by 

looking at genotypic values in the period from 450 to 619 days (Fig 9). Under drought 

conditions the genotypes BRS Ybapé, Xaraés and Mulato had the greatest DMY (Fig 9). 

However, BRS YBAPÉ had the lowest DMY at the first harvest, perhaps due to a poor 

establishment (Fig 9). By the reaction norms the genotype Mulato had the best 

performance across harvests with good establishment as well as good performance under 

the drought season (Fig 9). The correlation between adaptability and stability was -0.54, 

indicating that selection can be done for both parameters (Fig 10). Three genotypes can 

be selected by presenting higher stability and adaptability (Mulato, Xaraés and BRS 

paiaguás, Fig 10).

Fig 9. Genotypes’ dry matter yield (kg.ha-1) trajectory over harvest time (days) for trial 

T5.



Fig 10. Scatter plot depicting the relationship between genotypes' stability (measured by 

coefficient of variation - CVc) and adaptability (measured by area under the curve - A)

Urochola decumbens advanced breeding trial – T7
In this trial, 12 genotypes were evaluated for DMY across six harvests. The degree 

of Legendre polynomial fitted for this trial was four for fixed and one for random part of 

the model (Table 2). 

Variance components, heritability, and genetic behavior
The intercept explained a small amount (35%) of genetic variance than the first 

order polynomial coefficient in which explained 65% of the genetic variance (Table 5). 

Furthermore, the correlation between slope and intercept was positive, indicating that 

genetic variance increased over time (Table 5). The heritability estimates varied from 

0.20 at the third harvest (drought season – August/2018) to 0.82 at the last harvest 

(beginning of drought season – June/2019) (Fig 11).

Table 5. Summary of genetic and non-genetic parameters estimated by RRM for trial T7.

 
𝑔0 𝑔1

𝑔0
165,648 0.68

𝑔1
299,828

Importance (%) 35 65
𝜎2

𝑒
694,316



𝑔0 and 𝑔1 are the random polynomial intercept and first order coefficient. The diagonal 

elements of the table are the variance components associated with the polynomial 

intercept and coefficient; and the off diagonal is the correlation between intercept and 

regression coefficient (𝜌𝑔0𝑔1). 𝜎2
𝑒 is the mean error variance through harvests.

Fig 11. Heritability trajectory over harvests time (days) for brachiaria trial (T7).

The genetic correlations across harvests varied from 0.99 to -0.79, indicating a 

high and complex G×H interaction effects (Fig 12A). As it happen for T1 and T5, the 

RRM approximated the (co)variance structure into an autoregressive structure on T7 (Fig 

12A). The two estimated eigenfunctions varied across time, indicating there was not a 

common gene pool expressing in the same way for all harvests evaluated (Fig 12B). Both 

gene pools represented by the eigenfunctions are expressing differentially across harvest, 

explaining the strong complex G×H interaction occurred for this trial (Fig 12B).



Fig 12. Heat map (A) and Eigenfunction smooth curves (B) illustrating genetic 

correlations between brachiaria harvests (T7).

Genotypes’ adaptability, stability, and yield trajectory over time
The most changes in genotypes raking occurred after the first drought season at 

harvest performed on day 181 (Fig 13). The highest DMY occurred at day 365 (rainy 

season), and the lowest DMY occurred at the first drought season (day 181) (Fig 13). The 

genotype BRS YBATÉ, also evaluated in trial T5, had the same behavior, where it had a 

poor establishment (day 0 to 59) and a good recovery after the first drought season, being 

the best genotype in all harvests after the drought season (Fig 13). The correlation 

between CVc and A was -0.25, indicating the possibility of selecting adaptable and stable 

genotypes (Fig 14). Although the genotype BRS YBATÉ had the best adaptability, it was 

one of the most unstable genotypes with greater variation in DMY across harvests (Fig 



14). Five genotypes were identified having good stability and adaptability (HD1, HD3, 

Basilisk, Paiaguás and HD4) (Fig 14).

Fig 13. Genotypes’ dry matter yield (kg.ha-1) trajectory over harvest time (days) for trial 

T7.



Fig 14. Scatter plot depicting the relationship between genotypes' stability (measured by 

coefficient of variation - CVc) and adaptability (measured by area under the curve - A)

Discussion
Our study focused on the analysis of longitudinal DMY data from ten different 

trials and four perennial forage species, utilizing RRM methodology. Our approach 

included the estimation of variance components and the selection of genotypes based on 

their adaptability and stability for DMY. Through this analysis, we aim to gain deeper 

insights into the performance of different genotypes over time, and to identify the most 

suitable candidates for future breeding programs.

Goodness of fit evaluation
Proper modeling of genetic effects over time is crucial for accurate analysis of 

yield data in forage perennial species [37]. RRM has proven to be an effective method 

for dealing with longitudinal records in animal breeding [38, 39] and can be adapted for 

use in analyzing longitudinal data in plants. As observed in all trials presented in this 

study, DMY records were obtained at unequally spaced intervals due to the seasonality 

inherent in forage growth under tropical and subtropical climates [10]. Infinite-

dimensional methods, such as RRM, offer an advantage in this context, as they can 

effectively handle unequally spaced records. This is because yield trajectories are 

continuous functions of time, meaning that an infinite rather than finite number of 

measurements is required to fully describe a trait in an individual [23,40].

The selection of the random polynomial order in RRM can be achieved by using 

goodness of fit and parsimony criteria, as demonstrated by Corrales et al. [41]. In this 

study, we adopted the Bayesian information criterion (BIC) approach, as suggested by 

Rocha et al. [18], to select the random polynomial order. However, choosing an 

appropriate fixed function to model the phenotypic curve shape can be challenging. In 

cases where the overall trajectory is linear, fitting the fixed part of the model using a 

function can be straightforward. However, due to fluctuations in forage DMY caused by 

changing climate conditions over time, the trajectory will inevitably follow a non-linear 

pattern. In such cases, the fixed part of the model can be treated as factor variables, which 

require more degrees of freedom [38]. To address this issue, we proposed using a smooth 

loess function as the fixed function and selecting the polynomial order graphically (see 



Fig 1). By using a mathematical function instead of factors, we were able to obtain smooth 

trajectories over time regardless of the number of observations (see Figs. 5, 9, and 13).

Exploring genotype by harvest interaction: reaction norms, genetic 
correlations, and autoregressive patterns

In forage breeding trials, the  G×H interaction is a crucial aspect that needs to be 

understood to identify the best performing genotypes under different environmental 

conditions and at different stages of growth. This interaction can be studied using various 

statistical approaches, such as reaction norms, genetic correlations estimated by 

covariance functions and/or eigenfunctions across time [42].

Reaction norms are graphical representations of the relationship between genotypes 

and the environment. When interpretation is done by reaction norms (Figs 4, 10 and 16), 

it is essential to look for deviations from parallelism, such as intersections, divergences, 

or convergences [5]. Divergence and convergence occur when simple G×H is acting over 

time, meaning that the genetic variance is increasing (diverging) or decreasing 

(converging) [4]. The complex G×H interaction occur when the reaction norms intersect, 

meaning that is a lack of genetic correlation between measurements [43, 5]. In all trials 

analyzed, the estimated genetic correlations tended to follow an autoregressive pattern, 

where harvests closer to each other had higher correlations, whereas harvests far apart 

had lower genetic correlation (Figs. 4A, 8A and 12A). This autoregressive pattern is very 

common in longitudinal data in perennial species [3, 7, 19, 44, 45, 46] and have a 

satisfactory biological explanation, indicating that genes are expressing differently 

according to the environmental conditions and genotypes’ age [2, 47].

Another way to interpreting the G×H interaction in RRM is through eigenfunctions. 

Eigen functions are analogous to eigenvectors (principal components). Each 

eigenfunction is a continuous function that represents a possible evolutionary deformation 

of the mean yield trajectory [23]. When the eigenfunction is nearly constant, it means that 

the eigenfunction captured a gene pool that was equally expressed over time [23, 18, 45]. 

On trial T1, the first eigenfunction had a constant behavior and it is explaining the general 

adaptability gene pool equally expressed over time and the positive genetic correlation 

(Fig. 4B). The other eigenfunctions from trial T1 are explaining the lack of genetic 

correlation, where the gene pools had differential expression over time (Fig. 4B). For 

trials T5 and T7, there was negative genetic correlation over time indicating that there 



was not a common gene pool expressing equally through the harvests, therefore none 

eigenfunctions had a constant behavior (Figs. 8B and 12B). As demonstrated in this study, 

eigenfunctions can explain the G×H interaction as introduced by Falconer and Mackay 

[2], where genotype by environment interaction can be considered a pleiotropic effect of 

a trait evaluated across environments.

Genotypes’ reaction norm, adaptability, and stability
A reaction norm defines a genotype-specific function that translates 

environmental inputs into a phenotype [5]. The differential genotypes’ response to the 

environment (genotype plasticity) generates the genotype by environment interaction. In 

this study, it was observed a higher variation for genotypes’ reaction norms for all trials 

interpreted (Figs 5, 9 and 13), indicating strong complex G×H interaction. Reaction 

norms are very informative for analyzing perennial forage over time, it allowed us to 

observe the behavior of each genotype, identify periods where seasonality occurred, and 

identify those genotypes which respond better to environmental stress. However, 

interpreting reaction norms for each genotype can be difficult in large breeding 

populations. Therefore, breeders usually use specific-genotype parameters, such as 

intercepts, slopes, curvatures, and variances. 

These specific-genotype parameters are called sensitivity, adaptability and stability 

parameters in plant breeding literature and they facilitate the modeling of complex 

genotype by environment interactions [48-50]. Another way to select genotypes based on 

adaptability and stability is computing an index regarding the predicted genotypic values 

across all environments [18, 37, 51]. In this study, we proposed an adaptability measure 

the genotype’s area under the curve, which has a closer meaning to the total DMY across 

all harvest (A) and overall genotype’s performance. For stability parameter we proposed 

the use of the curve coefficient of variation (CVc). Stability can also be referred as risk in 

variety adoption, where the most stable genotype should have lower variance across 

environments, meaning that the genotype is more predictable [49, 50]. The coefficient of 

variation is a broad used and easy to interpret parameter in different disciplines. In time 

series, mainly in economics it is frequently used to infer about the risk and uncertainty in 

shares on the stock market exchange [52]. Therefore, we used this concept to infer about 

DMY stability in genotype selection, in which genotypes having lower CVc will have 

higher stability and will also have lower variation across harvests. 

Conclusion



This study demonstrated the effective application of RRM for analyzing 

longitudinal data in various forage breeding trials. Our findings highlighted the 

importance of RRM in identifying G×H interactions and estimating adaptability and 

stability, using measures such as the area under the reaction norm curve and the curve 

coefficient of variation. By utilizing RRM in longitudinal datasets, we were able to better 

understand genotype seasonality through predicted reaction norms. Based on these 

results, we recommend the use of RRM for analyzing longitudinal traits in forage 

breeding trials, as it provides valuable insights and enhances our ability to interpret and 

evaluate genetic performance over time.
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