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Abstract 26 

Cervical cancer is a severe medical issue as 500,000 new cases of cervical cancer are identified 27 

in the world every year. The selection and analysis of the suitable gene target are the most crucial 28 

in the early phases of drug design. The emphasis at one protein while ignoring its several 29 

isoforms or splice variations may have unexpected therapeutic or harmful side effects. In this 30 

work, we provide a computational analysis of interactions between cervical cancer drugs and 31 

their targets that are influenced by alternative splicing. By using open-accessible databases, we 32 

targeted 45 FDA-approved cervical cancer drugs targeting various genes having more than two 33 

distinct protein-coding isoforms. Binding pocket interactions revealed that many drugs do not 34 

have possible targets at the isoform level. In terms of size, shape, electrostatic characteristics, 35 

and structural analysis have shown that various isoforms of the same gene with distinct ligand-36 

binding pocket configurations. Our results emphasized the risks of ignoring possibly significant 37 

interactions at the isoform level by concentrating just on the canonical isoform and promoting 38 

consideration of the impacts of cervical cancer drugs on- and off-target at the isoform level to 39 

further research. 40 
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1. Introduction 54 

In developing countries, cervical cancer is the main reason for cancer-related deaths and years of 55 

life loss (1). Several years earlier than the median age at which breast, lung, and ovarian cancers 56 

are diagnosed, cervical cancer is commonly diagnosed in one's fifth decade of life (2). Ninety 57 

percent of the 270 000 cervical cancer fatalities in 2015 happened in low- and middle-income 58 

countries (LMIC), where mortality is 18 times higher than in developed nations (3). Nearly all 59 

cervical cancers are caused by high-risk subtypes of the human papillomavirus (HPV), whereas 60 

screening and vaccination programs are effective disease preventive measures for HPV (4). The 61 

two most prevalent histological subtypes (squamous cell carcinoma, and adenocarcinoma) 62 

account for 70% and 25% of all cervical malignancies, respectively (5, 6). The major decrease in 63 

cervical cancer mortality has been attributed to the development and implementation of 64 

screening programs (7). Cervical cancer has a poor prognosis following metastasis or recurrence; 65 

the 5-year overall survival (OS) rate is about 17% (8). In order to improve the treatment efficacy 66 

of cervical cancer, it is crucial to uncover novel therapeutic targets and survival-associated 67 

biomarkers. 68 

Major innovations in large-scale multi-omics research provide a unique perspective for the 69 

systems biology analysis of the emergence and spread of cancer. HPV contributes to the 70 

development of cervical cancer, which is considered a virus-driven malignancy. Early HPV 71 

infection may simply be a result of external causes, like changes in the genome would eventually 72 

cause cervical epithelial cells to convert into malignant (for example, gene fusion, non-coding 73 

RNAs, copy number variation, DNA methylation, and somatic DNA mutations) (9-13). 74 

Transcriptome and epigenetic modifications have been the focus of the bulk of previous 75 

prospective studies.  However, Alternative splicing (AS) in cancer post-transcriptional isoforms 76 

hasn't been thoroughly studied yet. 77 

In eukaryotes, a remarkable biological process known as alternative splicing, which promotes 78 

proteome diversity, allows a single gene to express several protein isomers. In humans, where 79 

more than 94% of genes are alternatively spliced, the occurrence and properties of alternative 80 



splicing are also highly diverse (14-16). This method enables cancer cells to generate abnormal 81 

proteins with altered functional domains that promote carcinogenesis (17-19). In malignancies, 82 

these domain changes can lead to complicated remodeling and protein-protein interactions. Some 83 

essential oncogenic splicing variations have the ability to control tumor epithelial-to-84 

mesenchymal transition and biological processes of cancer stem cell (20). Gene expression is 85 

properly controlled to occur in a context-specific way, even if gene isoforms commonly appear 86 

to have different, sometimes even opposing functions.  87 

Aberrant isoforms, or spliced variations that cause disease, have the potential to be effective drug 88 

targets in addition to serve as significant biomarkers (21, 22). In this study, we primarily focused 89 

on cervical cancer and examined whether or not the drugs are effective against the target gene 90 

isoforms. In this work, we examined the effectiveness of FDA-approved drugs against the 91 

various isoforms of the cervical cancer-related genes. Using structural analysis and the clinical 92 

data on the expression of these genes, we curated the drug interaction data for the various 93 

isoforms of different genes implicated in cervical cancer and evaluated their effectiveness against 94 

isoforms. 95 

 96 
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2. Methods 113 

2.1 Collection of genes and their isoforms 114 

We found the genes associated with cervical cancer using COSMIC database (23) which is an 115 

online resource of somatically acquired mutations reported in human cancer. There are more than 116 

30 genes that may contribute to cervical cancer shown in Supplementary File 1. Based on the 117 

number of patient samples, the top 5 genes out of 30 were selected, and these genes were then 118 

used for further analysis. The Ensemble genome database (24) was used to curate the isoforms 119 

and protein sequences for these genes. Using COSMIC Mutation ID, the mutations were 120 

identified in genes and matched with the variants of each isoform using the Ensemble database. 121 

2.2  Curation of drugs-target interaction data 122 

By using the Drug Gene Interaction Database (DGIdb) (25), we curated the FDA Approved 123 

drugs for our genes. Through this database, more than 40 drugs that have received FDA approval 124 

were found. These drugs were retrieved from the Drug Bank (26) and cheMBL (27).  125 

2.3  Sequence analysis of isoforms 126 

To check the conservation of binding pocket in isoforms of the genes, Binding Pockets of the 127 

canonical proteins were predicted through the COACH Server ( https://zhanggroup.org/COACH/ 128 

). We found domains from EMBL-EBI InterPro database (28) and aligned these with the 129 

sequences of the canonical protein and their isoforms. Using the Bioconductor programme msa, 130 

which offers a selection of alignment techniques and produces alignment plots in LaTeX format , 131 

we created numerous alignments of sequences. Using the Cluster Omega method included in the 132 

msa package, we created an alignment of the binding site sequence with all of the protein 133 

isoforms of the same gene. 134 



2.4  Isoforms expression in normal and tumors samples 135 

We looked at the clinical data offered by UCSC Xena (29) for cervical cancer patients which is 136 

an online resource for analyzing multi-omics, clinical, and phenotypic data. We used UCSC 137 

Xena to compare TCGA tumor samples to GTEx normal samples to evaluate whether protein 138 

coding isoforms are up- or down-regulated in cervical cancer. The expression of protein isoforms 139 

was examined in patient normal samples using GTEx and tumor samples using TCGA, both of 140 

which were drawn from the 307 Cervical Cancer Samples that are available in the UCSC Xena 141 

database. We also visualized the exon structure of the isoforms to better understand the pattern of 142 

alternative splicing in the various isoforms of the genes. 143 

2.5  Structure Prediction of Protein Isoforms and Ligand Docking 144 

To better understand the associations between the proteins with their ligands (drugs), we 145 

predicted the 3D structures of protein isoforms using a number of tools for structural level study 146 

of the different isoforms of the proteins. Protein isoform structures were predicted through the 147 

use of the structure prediction tools trRosetta (30) , Robetta (31), Swiss-Model (32) , and I-148 

TASSER (33). Further, the ERRAT quality factor and the favored region, allowed region, and 149 

disabled region in the Ramachandran plot were used to evaluate the predicted structures. 150 

After evaluating, We utilized SiteMap53 (34) to determine the drug targets region in those 151 

protein isoforms' 3D structures. Through the use of Chimera 1.15rc, predicted 3D structures for 152 

the isoforms were further prepared for docking analysis. We used Pyrex software to investigate 153 

the ligand-protein docking analysis, and we took into account a number of drugs that have 154 

already been approved for such proteins so that we can check these drugs' effectiveness against 155 

various protein isoforms that are affected by disease. Poses of the Protein-Ligand Complexes 156 

were captured for further analyzing the pocket sizes, shapes, and electrostatic surfaces of docked 157 

protein isoforms.  158 

2.6  Interaction analysis 159 

The Discovery Studio 2021 Client was used to examine protein-ligand complexes. We examined 160 

that how the drug, which has a high binding affinity value with the canonical protein, interacts 161 

with the different isoforms. Further, we examined the interactions between hydrophobic and 162 

hydrogen sites in different docked protein isoforms 163 



3. Results 164 

3.1  Drugs Target Genes have multiple Isoforms 165 

More than 30 genes linked to cervical cancer were identified to have missense mutations show in 166 

Supplementary File 1. Keeping in view the number of the patient samples, we chose five genes 167 

for further analysis. We found FDA-approved drugs interactions to analyze the interactions 168 

among drug and its target protein isoforms. We were able to retrieve more than 145 entries 169 

belonging to 5 distinct genes of Cervical Cancer.  170 

Table 1. FDA Approved Drugs against target genes and number of protein-coding isoforms. 171 

Genes FDA Approved Drugs Number of 

Transcript 

Number of 

Isoforms 

KRAS Cetuximab, AZD-4785, Selumetinib, CC-223, AZD-

8835, PD-0325901, Trametinib, Ridaforolimus 

14 9 

SMAD4 Lysine, Sapanisertib, Fluorouracil, Alectinib, 

Crizotinib, Cetuximab, Gemcitabine, Irionotecan, 

Carboplatin, Placlitaxel 

10 4 

PIK3CA Trastuzumab, Temsirolimus, Serabelisib, Taselisib, 

CC-223, INK-1117, Alpelisib, Buparlisib, 

Capivasertib 

 

16 10 

ERBB3 Pertuzumab, Trastuzumab, MM-121, AV-203, 

AMG-888, Patritumab, Duligotuzumab, Sapitinib, 

MM-111 

33 12 

FBXW7 Temsirolimus, Sirolimus, Regorafenib, Vorinostat 

Belinostat, Entinostat, Docetaxel, Vorinostat, AR-42 

24 8 

 172 

A partial list from a summary table is shown in Table 1. We identified the bulk of the candidate 173 

genes had two or even more transcribed spliced variants and protein isoforms Fig. 1.  174 



 175 

Fig. 1 Shows the number of transcript variants and the protein coding isoforms of canonical 176 

proteins. 177 

Our findings demonstrate that the majority of cancer drug target genes undergo splicing and 178 

make many protein isoforms which may are functionally distinct and react with drugs in different 179 

manner, highlighting the significance of getting isoforms and alternative splicing into account in 180 

drug development. 181 

3.2 Protein isoforms shows differences in the binding pockets 182 

Using several sequence alignments, we were able to pinpoint the precise interaction residues in 183 

each isoform's drug binding region. We carried out multiple sequence alignment between the 184 

Pfam functional domains, the canonical protein, isoform sequences, and the predicted protein 185 

binding pocket. Here we describe some sequence alignment plots of few genes. 186 

Cellular functions essential for the development of cancer, such as cell growth, proliferation, 187 

motility, survival, and metabolism, are regulated by the PI3KCA protein (35). PIK3CA gene has 188 

4 isoforms (PIK3CA-201, PIK3CA-203, PIK3CA-204 and PIK3CA-205). Isoforms PIK3CA-189 

203 & 204 have 21 and 118 residues respectively which completely lacks the predicted pocket 190 

binding Fig. 2. Canonical Protein and Isoforms PIK3CA-201 & 205 found to have identical 191 

sequences in the predicted binding pocket. However, we found variations in the C-terminal 192 

regions and domain PF00454 of isoforms PIK3CA-201 & 205 Fig. 2. We examined the C 193 

terminal region of the Canonical protein, PIK3CA-201 & 205, and Pfam domain PF00454 to 194 



further explain this variation. Through the previous studies we found that the C terminal region is195 

necessary for catalysis. In the absence of membrane, it reduces the enzyme's baseline activity196 

while promoting membrane binding. This has been suggested to be a crucial PI3Ks regulating197 

component (36). And the Pfam domain is one of the domains of p100α catalytic subunit of the198 

PIK3CA. However, in USP13-PIK3CA, the whole C-terminal region is replaced with the199 

USP13 protein, which affects catalysis. Since PIK3CA-201 and PIK3CA-205 have the same200 

upstream regions overall, the fusion proteins produced by the two isoforms should ideally have201 

the same structure. Additionally, we aligned two other USP13-PIK3CA protein sequences in the202 

FusionGDB database to support this claim, and all sequences have overlapping interference203 

residues with the predicted pocket binding Supplementary File 2. This sequence-level data204 

indicates that the drug may target all of the USP13-PIK3CA fusion protein's splice-variant205 

isoforms; as a result, splice-variation within the PIK3CA gene does not influence the binding to206 

its targets in isoforms PIK3CA-201 &205 while it may affect the PIK3CA-203 & 204 which207 

does not have the predicted binding pocket.  208 

209 

Fig. 2 Sequence alignments of the predicted pocket binding residues of several PIK3CA protein210 

isoforms. Using the Bioconductor software msa, Cluster Omega was used to align the binding211 
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residues with the isoform sequences. Predicted binding pocket residues, aligned Pfam domains,212 

and PIK3CA-201, PIK3CA-203, PIK3CA-204, and PIK3CA-205 are shown from top to bottom.213 

Each line included the consensus sequences' sequence logo at the top. Residues in a sequence214 

that coincide with the anticipated binding residues are shown by blue shading. The purple215 

coloring suggests that this residue is conserved in about 50% of all sequences. Similar amino216 

acids are shown by pink shading.  217 

The KRAS gene has been a key target of cancer treatment discovery for decades since it is the218 

most often mutated oncogene in human malignancies, notably in tumors of the pancreas, colon,219 

and lung. However, despite these enormous efforts, cancers with KRAS mutations continue to be220 

among the hardest to treat, in large part due to the emergence of treatment resistance brought on221 

by the plasticity of tumor cells and/or the acquisition of additional mutations. According to the222 

multiple sequence alignment of KRAS isoforms, the isoforms KRAS-203, 204 & 207 lack the223 

binding pockets and are thus not predicted to be targets of drugs that treat the KRAS protein224 

shown in Fig. 3. While the isoforms KRAS-201,202, 205, 210 and 214 have the same binding225 

residues and are thus likely to be targeted by drugs. Further investigation revealed that KRAS-226 

202,205,203, and 204 have variations with KRAS-201 on the C terminal. Our findings indicate227 

that further effort is required to specifically target the KRAS isoforms. 228 

229 

Fig. 3 A Sequence alignments of predicted pocket binding residues on various KRAS protein230 

isoforms. Using the Bioconductor software msa, Cluster Omega was used to align the binding231 
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residues with the isoform sequences. Predicted binding pocket residues, aligned Pfam domains 232 

and KRAS isoforms are shown from top to bottom. Each line included the consensus sequences' 233 

sequence logo at the top. Residues in a sequence that coincide with the anticipated binding 234 

residues are shown by blue shading. The purple coloring suggests that this residue is conserved 235 

in about 50% of all sequences. Similar amino acids are shown by pink shading. 236 

3.3  High Levels of Isoform Expression in Tumor Tissues 237 

Using clinical information from UCSC Xena that is accessible through several projects (TCGA, 238 

GTEx and TARGET), we were able to determine the expression of protein isoforms. In TCGA 239 

samples of cervical cancer and breast cancer, we observed the expression of PIK3CA and KRAS 240 

isoforms shown in Fig. 4A. The expression of isoforms was nearly same in both cancer types. 241 

The isoform (PIK3CA-204/ENST00000477735.1) does not express in tumor and normal 242 

samples, and is thus ignored. The isoform (PIK3CA-203/ ENST00000468036.1) is highly 243 

expressed in the TCGA tumor samples, in contrast to the normal GTEx samples. While we 244 

previously found that isoform-203 does not have the predicted binding pocket but we observed 245 

that tumor cells express it. Thus, this should be included in future study to examines the on- and 246 

off-target effects of drugs. 247 

Using transcriptome expression data from the TCGA repository, it was possible to compare the 248 

expression of KRAS isoforms (KRAS-202/ENST00000311936.7, KRAS-249 

203/ENST00000556131.1, and KRAS-204/ENST00000557334.5) in cervical and breast samples 250 

Fig. 4B. In comparison to normal samples, tumor samples were shown to have higher levels of 251 

KRAS-203 expression. Sequence analysis of FBXW7, ERBB3 & SMAD4 are shown in 252 

supplementary file 3. Future studies analyzing the on- and off-target effects of drugs should 253 

consider these isoforms as these are expressed in tumors 254 



255 

Fig. 4 A PIK3CA isoform expression and exon structure. Green density represents log2(TPM)256 

from GTEx normal samples, whereas purple density represents those from a) TCGA Cervical257 

Cancer samples and b) TCGA Breast Cancer samples. Density plots and c) the exon structure258 

plot both follow the same sequence. B KRAS isoform expression and exon structure. Four259 

isoforms are related (from top to bottom). Green density represents those from GTEx normal260 

samples, whereas purple density means a) TCGA Cervical Cancer samples and b) TCGA Breast261 

Cancer Samples. Density plots and c) the exon structure plot both follow the same sequence.262 

Every plot is generated using the UCSC Xena browser (37). 263 

3.4  Drugs Interaction on Structural Level 264 

Even though we have shown changes in binding pockets across isoforms at the sequence level,265 

structural-level research is the only way to gain more solid proof that the drugs bind to their266 

targets' isoforms in distinct ways. We have studied the KRAS gene, which has seven distinct267 

isoforms, together with known drugs that target them in to understand how a certain drug268 

molecule interacts with several isoforms of a protein. 269 
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The 3D structures of each isoform were predicted using various databases. The best predicted 270 

structures were projected to have ERRAT scores greater than 94. While structures with poor 271 

ERRAT values were further improved. 272 

Then, using Pyrex, we conducted docking analysis while taking into account a selection of drugs 273 

that have been identified to target this disease protein target. After analyzing the docked 274 

positions, we observed that although some drugs bind similarly to isoforms, while others bind 275 

extremely differently. For instance, Isoforms KRAS-203, 204 & 207 showed low binding 276 

affinity with the FDA Approved drugs (Table 2). It supports our previous findings that these 277 

isoforms have very small sequences and do not have the predicted binding pocket. While all 278 

other isoforms of KRAS (KRAS-201, 202, 205, 210, 213 & 214) have high binding affinities. 279 

AZD-4785 had good scores for KRAS-201, 202, 205, and 214. These six isoforms of the protein 280 

had strong binding affinity against Trametinib, although KRAS-202 had low binding affinity. 281 

With ridoforolimus, all isoforms had the good binding affinities. While the remaining drugs 282 

likewise shown good binding affinities with these isoforms, certain isoforms displayed lower 283 

affinities than others. 284 

Table 2 Binding Affinity Values of the KRAS-Canonical protein and its isoforms. 285 

Drugs KRAS-
Canonical 

KRAS
-201 

KRAS
-202 

KRAS 
205 

 

KRAS
-214 

KRAS
-213 

KRAS- 
210 

 

KRAS-
203 

 

KRAS-
204 

 

AZD-4785 -6.9 -7.3 -7.2 -7 -7.2 -6.4 -7.9 -5.7 -4 

AZD-8835 -8.3 -8.2 -8.2 -8.7 -7.9 -7.7 -8.5 -6.3 -4.9 

CC-223 -7.2 -7.7 -7.5 -7.5 -7.7 -7.3 -7.7 -6.1 -4.5 

PD-0325901 -7.7 -7.3 -6.9 -6.9 -7.4 -6.3 -6.8 -5.4 -4.3 



Ridaforolimu
s 

-10.1 -10.2 -9.7 -9.6 -10.6 -10.7 -9.6 -8.8 -5.3 

Selumetinib -7.2 -7.2 -7.6 -7.7 -7.1 -6.6 -7.4 -5.9 -4.8 

Trametinib -8.2 -9 -7.9 -9.6 -9 -8.6 -8.9 -6.9 -5.5 

  286 

In case of PIK3CA, the isoforms PIK3CA-203 & 204 showed low binding affinity with 287 

approved FDA Drugs as these isoforms have short sequences and did not have predicted binding 288 

pocket (Table 3). While the isoforms PIK3CA-201 & 205 showed the best binding affinity with 289 

drugs. Temsirolimus showed good binding affinity with all isoforms 290 

 291 

Table 3 Binding affinity values of the PIK3CA-Canonical, PIK3CA-201,205,203 & 204. 292 

Drugs 
 

PIK3CA-
Canonical 

 

PIK3CA
-201 

 
 

PIK3CA
-205 

 

PIK3CA
-203 

 

PIK3CA-
204 

 

 
CC-223 

 

-8.6 -8.3 -8 -6.4 -6.4 

ALPELISIB -8.9 -8.8 -9.5 -7.5 -7.7 

BUPARLISIB -8.6 -8.2 -8.1 -6.2 -6.4 

CAPIVASERTIB -9.5 -9.6 -8.9 -6.6 -6.6 

INK-1117 -9 -9 -9 -6.8 -6.8 

SERABELISIB -8.9 -9.1 -9 -6.8 -6.8 



TASELISIB -9.7 -9.7 -8.2 -7.2 -6.9 

 
TEMSIROLIMUS 

 

-9.5 -11.6 -10.2 -9 -9 

 
TRASTUZUMAB -10.5 -9.6 -9.6 -6.8 -7.7 

 293 

To explain how different pocket sizes, shapes, and electrostatic potential surfaces may create the294 

illusion like the binding mode is different even when the scores are the same in some instances.295 

Here, we examined Temsirolimus binding mode in all fours isoforms and discovered that while296 

the binding scores are close, the binding patterns vary greatly shown in (Fig. 5). Molecular297 

docking results of FBXW7, ERBB3 & SMAD4 are shown in supplementary file 4. These results298 

led us to the hypothesis as, despite the identicality of the ligand binding residues, the binding299 

pocket structures change in size, form, and dynamic properties, resulting in different binding300 

patterns for a single drug in several isoforms with various binding affinity values. 301 

 302 

Fig. 5 shows the ligand binding pocket of PIK3CA isoforms A) Canonical Protein  B) PIK3CA-303 

201 C) PIK3CA-205 and D)  PIK3CA-202 with the drug Temsirolimus. 304 
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The interaction analysis of the target proteins isoforms was checked to see what kinds and how 305 

many interactions there were between the docked tesmilorous and the PIK3CA isoforms. When a 306 

complex has a significant number of hydrogen bonds together with a small number of salt 307 

bridges, hydrophobic contacts, and pi-pi interactions, it is said to be strong. To determine how 308 

many interactions each molecule generated, we tested each docked drug differently Fig. 6. 309 

According to the interaction study, complexes with strong binding affinities were those that 310 

produced the most hydrogen bonds (Table 4). 311 

Table.4 Shows the Hydrogen and Hydrophobic interactions of docked isoforms with drugs.  312 

Protein Hydrogen Interactions Hydrophobic Interactions 

PIK3CA-Canonical GLU, ASN, ASP, ASP, TYR THR 

PIK3CA-201 ASP, ASN, LYS, SER LYS, ASP, ASN, PRO, GLN 

PIK3CA-205 ARG, ASP, ASP, LYS, PHE GLU, TYR, LYS 

PIK3CA-203 SER,THR ARG, GLU 

 313 

PIK3CA-Canonical and isoforms 201 & 205 were shown to have strong interactions while the 314 

docked complex of PIK3CA-203 was found to have weak interactions. 315 



 316 

Fig. 6 Ligplot analysis of interactions between PIK3CA isoforms and Temsirolimus.317 

Hydrophobic interactions between amino acid residues are shown by red arcs, whereas hydrogen318 

bonds are represented by green dashed lines with specified bond lengths.  319 

4. Discussion 320 

Despite the fact that current target prediction methods have shown the accuracy of genomic,321 

chemical, and pharmacological data in drug target interaction prediction, those methods322 

frequently only concentrate on the canonical isoforms while disregarding the on- or even off323 

target isoform-level interactions that are linked to the chemical's action (38). Previous research324 

has related cancer-specific aberrant splicing to drug resistance mechanisms. However, little is325 

known about the drug's therapeutic impact on the specified tissue and its side effects on other326 

tissues. Protein isoforms produced by alternative splicing can express at different levels and327 

exhibit various, perhaps conflicting, activities in various tissues and/or organs (39, 40), We328 

postulated in this study that various protein isoforms formed by alternative splicing might329 

. 

en 

ic, 

ds 

off 

ch 

 is 

er 

nd 

e 

ht 



develop into candidates for drug interactions that are off-target or non-target because of the 330 

presence or lack of target binding sequence in different alternative splicing of genes specifically 331 

involved in cervical cancer. Our findings show that most small molecule therapeutic targets have 332 

a variety of protein isoforms. As a result, It's therefore feasible which the most of pharmacological 333 

targeting genes' protein isoforms have functional differences and show isoform-level changes in 334 

its interactions with the drug.  335 

As we revealed that KRAS-203 is highly expressed in tumour samples, sequence alignment and 336 

data analysis of the gene expression patterns in the TCGA and GTEx datasets uncovered 337 

significant data, like medicines that skip alternative isoforms that also expressed in cancer but 338 

perhaps are not targeted, while the drugs which might possibly aim alternative isoforms that are 339 

variously expressed across many normal tissues, and those are involved in the process of cancer 340 

development. Furthermore, the same medication's ability to bind to several structurally related 341 

isoforms with various affinities was verified by drug docking study and structural analysis of an 342 

example KRAS and PIK3CA protein. These findings basically two processes in which both 343 

possibly lead to far-off impacts, which could result in drug resistance. 344 

In comparison to the canonical isoform, we observed low expression of KRAS isoforms in 345 

TCGA samples. We observed via structural docking research that various medicines can interact 346 

with all isoforms in various ways. It is still unknown whether the secondary isoforms behave 347 

similarly to or differently from the downregulated primary isoform, carcinogenic, as well as 348 

overexpressed. On the other hand, the different isoforms, with the exception of KRAS-204, 349 

which was not expressed in normal or tumor samples, showed variable and greater expression in 350 

healthy tissue than in tumor tissues. These isoforms can act as tumor suppressors or regulator, 351 

counteracting the carcinogenic isoform's function. Immediate inhibition of these isoforms may be 352 

undesirable under such conditions. Despite the fact that the precise roles of these isoforms are yet 353 

unknown, it’s feasible because separating sites from non-targets at the splice level is a crucial 354 

step in early stages of drug discovery investigations. 355 

Due to restrictions on the availability of data, we were challenged to have several limitations in 356 

our current study. The first challenge is the lack of mappings of isoforms between the public 357 

online database and older studies. For examples, there is frequently a difference in the exon 358 

numbers reported by these two sources. Public databases like Ensemble did not contain many of 359 



the isoforms that had previously been described in literature. This makes it extremely 360 

challenging to annotate these isoforms structurally and functionally. Therefore, the major aspects 361 

of our study are the overexpression of isoforms that are more advantageous for the development 362 

of cancer should be suppressed, and the main aims for suppression should be those isoforms that 363 

are upregulated in cancer. This is obviously a restriction because these two hypotheses might be 364 

incorrect, but as of right now, we don't have any better methods for evaluating the roles of these 365 

unidentified isoforms. Furthermore, if there is inclusion of actual protein-level expression of 366 

these isoforms will strengthen the claim. As far as we are known, there is currently no 367 

comprehensive database that includes the expression of all protein isoforms on a complete 368 

proteome scale. In our opinion, the importance of comprehending pharmacological targets at the 369 

isoform level should be emphasized even more. However, our results add to those of a recent 370 

study that identified means mRNA expression across tissues and variance of expression across 371 

tissues as the two key characteristics that separate effective medications from ineffective ones 372 

(41).  373 

5. Conclusion 374 

We expect that our findings will encourage more future investigation into the possibility of 375 

isoform-level medication design. Enough structural and functional knowledge of these isoforms 376 

is necessary to accomplish this aim. Strongly identifying additional cancer biomarkers at the 377 

isoform level and connecting them to treatment sensitivity using computational methods would 378 

be a crucial next step. If isoform-level drug design is required, accurate structural modelling and 379 

prediction of these isoforms are particularly crucial because no database presently has such 380 

information about the structure in a well-annotated way. Additionally, various databases should 381 

continue to combine isoform-level information and analysis with earlier works of literature and 382 

ensure that they are in line, particularly with regard to the functional analyses of less common 383 

isoforms. 384 
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