**1 In Silico Analysis of Drug Off-Target Effects on Diverse Isoforms of Cervical

2 Cancer for Enhanced Therapeutic Strategies**

Azhar Iqbal¹, Faisal Ali¹, Moawaz Aziz¹, Asad Ullah Shakil¹, Shanza Choudhary¹, Adi

- **Cancer for Enhanced Therapeutic Strategies**
3 Azhar Iqbal¹, Faisal Ali¹, Moawaz Aziz¹, Asad Ullah Sh Azhar Iqbal¹, Faisal Ali¹, Moawaz Aziz¹, Asad Ullah Shakil¹, Shanza Choudhary¹
- 3 Azhar Iqbal¹, Faisal Ali¹, Moawaz Aziz¹, Asad Ullah Shakil¹, Shanza Choudhary¹, Adiba
4 Qayyum¹, Fiza Arshad¹, Sarah Ashraf¹, Sheikh Arslan Sehgal², Momina Hussain¹, Muhar
5 Sajid¹ q Qayyum¹, Fiza Arshad¹, Sarah Ashraf¹, Sheikh Arslan Sehgal², Momina Hussain¹, Muhammad
5 Sajid¹
6 ¹ Department of Biotechnology, University of Okera, Okera, Punjab, Bekistan
- $Sajid¹$
- 6
6 ¹Department of Biotechnology, University of Okara, Okara, Punjab, Pakistan
- ¹ Department of Biotechnology, University of Okara, Okara, Punjab, Pakistan
² Department of Bioinformatics, Islamia University Bahawalpur, Bahawalpur, ² Department of Bioinformatics, Islamia University Bahawalpur, Bahawalpur, Punjab, Pakistan
8
-
- 9
0
- 9 Corresponding Author:
0 Muhammad Sajid¹
1 Green Town Renala Kh Muhammad Sajid¹
- 10
11
12 11 Green Town Renala Khurd, Renala Khurd, Punjab, 56300, Pakistan
12 Email address: infobiotec@uo.edu.pk
13
- 12 Email address: infobiotec@uo.edu.pk
13
-
- 13
- 15
- 15
- 17
-
- 18
- 18
- 20
- 21
-
- 22
- 22

24
25

25

26 **Abstract**
27 Cervical cancer is a severe medical issue as 500,000 new cases of cervical cancer are identified
28 in the world every year. The selection and analysis of the suitable gene target are the most crucial 27 Cervical cancer is a severe medical issue as 500,000 new cases of cervical cancer are identified
28 in the world every year. The selection and analysis of the suitable gene target are the most crucial
29 in the early ph 28 in the world every year. The selection and analysis of the suitable gene target are the most crucial
29 in the early phases of drug design. The emphasis at one protein while ignoring its several
30 isoforms or splice va 29 in the early phases of drug design. The emphasis at one protein while ignoring its several
20 isoforms or splice variations may have unexpected therapeutic or harmful side effects. In this
21 work, we provide a computat 30 isoforms or splice variations may have unexpected therapeutic or harmful side effects. In this
31 work, we provide a computational analysis of interactions between cervical cancer drugs and
32 their targets that are inf 31 work, we provide a computational analysis of interactions between cervical cancer drugs and
32 their targets that are influenced by alternative splicing. By using open-accessible databases, we
33 targeted 45 FDA-approve 33 targeted 45 FDA-approved cervical cancer drugs targeting various genes having more than two
34 distinct protein-coding isoforms. Binding pocket interactions revealed that many drugs do not targeted 45 FDA-approved cervical cancer drugs targeting various genes having more than two
distinct protein-coding isoforms. Binding pocket interactions revealed that many drugs do not
have possible targets at the isoform 34 distinct protein-coding isoforms. Binding pocket interactions revealed that many drugs do not
35 have possible targets at the isoform level. In terms of size, shape, electrostatic characteristics,
36 and structural anal 35 have possible targets at the isoform level. In terms of size, shape, electrostatic characteristics,
36 and structural analysis have shown that various isoforms of the same gene with distinct ligand-
37 binding pocket co 36 and structural analysis have shown that various isoforms of the same gene with distinct ligand-
37 binding pocket configurations. Our results emphasized the risks of ignoring possibly significant
38 interactions at the 37 binding pocket configurations. Our results emphasized the risks of ignoring possibly significant
38 interactions at the isoform level by concentrating just on the canonical isoform and promoting
39 consideration of the 38 interactions at the isoform level by concentrating just on the canonical isoform and promoting
39 consideration of the impacts of cervical cancer drugs on- and off-target at the isoform level to
40 further research. 39 consideration of the impacts of cervical cancer drugs on- and off-target at the isoform level to
40 further research.
41 **Kovyords**

40 further research.

41 **Keywords**

42 Cervical Cancer. 41 **Keywords**

42 Cervical Cancer, Isoforms, Molecular docking, Interaction analysis, Bioinformatics approaches
43
44

-
- --
44
45
- --
45
46
- --
46
47 --
47
48
-
- 48
- 48
- 50
- 50

52
53

53

1. **Introduction**
55 **In developing countries, cervical cancer is the main reason for cancer-related deaths and years of
56 life** loss (1). Several years earlier than the median age at which breast, lung, and ovarian canc In developing countries, cervical cancer is the main reason for cancer-related deaths and years of
56 life loss (1). Several years earlier than the median age at which breast, lung, and ovarian cancers
57 are diagnosed, ce 156 life loss (1). Several years earlier than the median age at which breast, lung, and ovarian cancers
157 are diagnosed, cervical cancer is commonly diagnosed in one's fifth decade of life (2). Ninety
158 percent of the 57 are diagnosed, cervical cancer is commonly diagnosed in one's fifth decade of life (2). Ninety
58 percent of the 270 000 cervical cancer fatalities in 2015 happened in low- and middle-income
59 countries (LMIC), where m 58 percent of the 270 000 cervical cancer fatalities in 2015 happened in low- and middle-income
59 countries (LMIC), where mortality is 18 times higher than in developed nations (3). Nearly all
60 cervical cancers are caus 59 countries (LMIC), where mortality is 18 times higher than in developed nations (3). Nearly all
60 cervical cancers are caused by high-risk subtypes of the human papillomavirus (HPV), whereas
61 screening and vaccination 60 cervical cancers are caused by high-risk subtypes of the human papillomavirus (HPV), whereas
61 screening and vaccination programs are effective disease preventive measures for HPV (4). The
62 two most prevalent histolo 61 screening and vaccination programs are effective disease preventive measures for HPV (4). The
62 two most prevalent histological subtypes (squamous cell carcinoma, and adenocarcinoma)
63 account for 70% and 25% of all c 62 two most prevalent histological subtypes (squamous cell carcinoma, and adenocarcinoma)
63 account for 70% and 25% of all cervical malignancies, respectively (5, 6). The major decrease in
64 cervical cancer mortality has 63 account for 70% and 25% of all cervical malignancies, respectively (5, 6). The major decrease in
64 cervical cancer mortality has been attributed to the development and implementation of
65 screening programs (7). Cervi 64 cervical cancer mortality has been attributed to the development and implementation of screening programs (7). Cervical cancer has a poor prognosis following metastasis or recurrence; the 5-year overall survival (OS) ra 65 screening programs (7). Cervical cancer has a poor prognosis following metastasis or recurrence;
66 the 5-year overall survival (OS) rate is about 17% (8). In order to improve the treatment efficacy
67 of cervical cance the 5-year overall survival (OS) rate is about 17% (8). In order to improve the treatment efficacy
67 of cervical cancer, it is crucial to uncover novel therapeutic targets and survival-associated
68 biomarkers. 67 of cervical cancer, it is crucial to uncover novel therapeutic targets and survival-associated
68 biomarkers.
69 Maior innovations in large-scale multi-omics research provide a unique perspective for the

biomarkers.

68 biomarkers.

69 Major innovations in large-scale multi-omics research provide a unique perspective for the

69 Systems biology analysis of the emergence and spread of cancer. HPV contributes to the 69 Major innovations in large-scale multi-omics research provide a unique perspective for the
670 systems biology analysis of the emergence and spread of cancer. HPV contributes to the
671 development of cervical cancer, w 50 systems biology analysis of the emergence and spread of cancer. HPV contributes to the development of cervical cancer, which is considered a virus-driven malignancy. Early HPV infection may simply be a result of externa development of cervical cancer, which is considered a virus-driven malignancy. Early HPV
T2 infection may simply be a result of external causes, like changes in the genome would eventually
T3 cause cervical epithelial cell infection may simply be a result of external causes, like changes in the genome would eventually

cause cervical epithelial cells to convert into malignant (for example, gene fusion, non-coding

RNAs, copy number variation Transcriptome and epithelial cells to convert into malignant (for example, gene fusion, non-coding

74 RNAs, copy number variation, DNA methylation, and somatic DNA mutations) (9-13).

75 Transcriptome and epigenetic modif 75 Transcriptome and epigenetic modifications have been the focus of the bulk of previous
76 prospective studies. However, Alternative splicing (AS) in cancer post-transcriptional isoforms Transcriptome and epigenetic modifications have been the focus of the bulk of previous
prospective studies. However, Alternative splicing (AS) in cancer post-transcriptional isoforms
hasn't been thoroughly studied yet. prospective studies. However, Alternative splicing (AS) in cancer post-transcriptional isoforms
hasn't been thoroughly studied yet.
The enterprise a remarkable biological process known as alternative splicing, which promot

hasn't been thoroughly studied yet.

The eukaryotes, a remarkable biological process known as alternative splicing, which promotes

The eukaryotes, a remarkable biological process known as alternative splicing, which promo The eukaryotes, a remarkable biological process known as alternative splicing, which promotes
The proteome diversity, allows a single gene to express several protein isomers. In humans, where
The more than 94% of genes are 79 proteome diversity, allows a single gene to express several protein isomers. In humans, where
80 more than 94% of genes are alternatively spliced, the occurrence and properties of alternative 80 more than 94% of genes are alternatively spliced, the occurrence and properties of alternative

splicing are also highly diverse (14-16). This method enables cancer cells to generate abnormal
82 proteins with altered functional domains that promote carcinogenesis (17-19). In malignancies,
83 these domain changes can 82 proteins with altered functional domains that promote carcinogenesis (17-19). In malignancies,
83 these domain changes can lead to complicated remodeling and protein-protein interactions. Some
84 essential oncogenic spl 83 these domain changes can lead to complicated remodeling and protein-protein interactions. Some
84 essential oncogenic splicing variations have the ability to control tumor epithelial-to-
85 mesenchymal transition and bi 85 mesenchymal transition and biological processes of cancer stem cell (20). Gene expression is
86 properly controlled to occur in a context-specific way, even if gene isoforms commonly appear 85 mesenchymal transition and biological processes of cancer stem cell (20). Gene expression is
86 properly controlled to occur in a context-specific way, even if gene isoforms commonly appear
87 to have different, sometim properly controlled to occur in a context-specific way, even if gene isoforms commonly appear
87 to have different, sometimes even opposing functions.
88 Aberrant isoforms, or spliced variations that cause disease, have th

187 to have different, sometimes even opposing functions.

188 Aberrant isoforms, or spliced variations that cause disease, have the potential to be effective drug

189 targets in addition to serve as significant biomarker 89 targets in addition to serve as significant biomarkers (21, 22). In this study, we primarily focused
90 on cervical cancer and examined whether or not the drugs are effective against the target gene 89 on cervical cancer and examined whether or not the drugs are effective against the target gene
81 isoforms. In this work, we examined the effectiveness of FDA-approved drugs against the 91 isoforms. In this work, we examined the effectiveness of FDA-approved drugs against the various isoforms of the cervical cancer-related genes. Using structural analysis and the clinical 92 various isoforms of the cervical cancer-related genes. Using structural analysis and the clinical
93 data on the expression of these genes, we curated the drug interaction data for the various 93 data on the expression of these genes, we curated the drug interaction data for the various
94 isoforms of different genes implicated in cervical cancer and evaluated their effectiveness against 93 data on the expression of these genes, we curated the drug interaction data for the various
94 isoforms of different genes implicated in cervical cancer and evaluated their effectiveness against
95 isoforms. 94 isoforms of different genes implicated in cervical cancer and evaluated their effectiveness against
95 isoforms. 95 isoforms.

-
- 97
- 98
-
- 99
100

--
00
01 ---
101
102

- 102
103
-
- 102 ---
104
105
- 105
106
- 105
- 107
- 108

109
110

-
- 111
- 112

112

2. Methods
114 **2.1 Collection of genes and their isoforms**
115 We found the genes associated with cervical cancer u

115 We found the genes associated with cervical cancer using COSMIC database (23) which is an online resource of somatically acquired mutations reported in human cancer. There are more than 115 We found the genes associated with cervical cancer using COSMIC database (23) which is an online resource of somatically acquired mutations reported in human cancer. There are more than 117 30 genes that may contribute online resource of somatically acquired mutations reported in human cancer. There are more than
117 30 genes that may contribute to cervical cancer shown in Supplementary File 1. Based on the
118 number of patient samples, 117 30 genes that may contribute to cervical cancer shown in Supplementary File 1. Based on the
118 number of patient samples, the top 5 genes out of 30 were selected, and these genes were then
119 used for further analysi 119 used for further analysis. The Ensemble genome database (24) was used to curate the isoforms
120 and protein sequences for these genes. Using COSMIC Mutation ID, the mutations were 119 used for further analysis. The Ensemble genome database (24) was used to curate the isoforms
120 and protein sequences for these genes. Using COSMIC Mutation ID, the mutations were
121 identified in genes and matched w 210 and protein sequences for these genes. Using COSMIC Mutation ID, the mutations were
121 identified in genes and matched with the variants of each isoform using the Ensemble database. 121 identified in genes and matched with the variants of each isoform using the Ensemble database.
122 **2.2 Curation of drugs-target interaction data**

2.2 **Curation of drugs-target interaction data**
123 By using the Drug Gene Interaction Database (DGIdb) (2
124 drugs for our gapes. Through this database, more than 40 drug 123 By using the Drug Gene Interaction Database (DGIdb) (25), we curated the FDA Approved
124 drugs for our genes. Through this database, more than 40 drugs that have received FDA approval
125 were found. These drugs were drugs for our genes. Through this database, more than 40 drugs that have received FDA approval
125 were found. These drugs were retrieved from the Drug Bank (26) and cheMBL (27).
2.3 Sequence analysis of isoforms were found. These drugs were retrieved from the Drug Bank (26) and cheMBL (27).

127 To check the conservation of binding pocket in isoforms of the genes, Binding Pockets of the canonical proteins were predicted through the COACH Server (https://zhanggroup.org/COACH/ 128 canonical proteins were predicted through the COACH Server ($\frac{https://zhanggroup.org/COACH}{https://zhanggroup.org/COACH}/$
129). We found domains from EMBL-EBI InterPro database (28) and aligned these with the 129 b. We found domains from EMBL-EBI InterPro database (28) and aligned these with the sequences of the canonical protein and their isoforms. Using the Bioconductor programme msa, 130 sequences of the canonical protein and their isoforms. Using the Bioconductor programme msa,
131 which offers a selection of alignment techniques and produces alignment plots in LaTeX format, 132 we created numerous alignments of sequences. Using the Cluster Omega method included in the which offers a selection of alignment techniques and produces alignment plots in LaTeX format ,
132 we created numerous alignments of sequences. Using the Cluster Omega method included in the
133 msa package, we created an 132 we created numerous alignments of sequences. Using the Cluster Omega method included in the msa package, we created an alignment of the binding site sequence with all of the protein isoforms of the same gene. 133 msa package, we created an alignment of the binding site sequence with all of the protein
134 isoforms of the same gene. 134 isoforms of the same gene.

2.4 **Isoforms expression in normal and tumors samples**
136 We looked at the clinical data offered by UCSC Xena (29) for cervical cancer patients which is
137 an online resource for analyzing multi-omics, clinical, and phen 137 an online resource for analyzing multi-omics, clinical, and phenotypic data. We used UCSC
138 Xena to compare TCGA tumor samples to GTEx normal samples to evaluate whether protein 137 an online resource for analyzing multi-omics, clinical, and phenotypic data. We used UCSC
138 Xena to compare TCGA tumor samples to GTEx normal samples to evaluate whether protein
139 coding isoforms are up- or down-re 138 Xena to compare TCGA tumor samples to GTEx normal samples to evaluate whether protein
139 coding isoforms are up- or down-regulated in cervical cancer. The expression of protein isoforms
140 was examined in patient nor 139 coding isoforms are up- or down-regulated in cervical cancer. The expression of protein isoforms
140 was examined in patient normal samples using GTEx and tumor samples using TCGA, both of
141 which were drawn from the was examined in patient normal samples using GTEx and tumor samples using TCGA, both of
141 which were drawn from the 307 Cervical Cancer Samples that are available in the UCSC Xena
142 database. We also visualized the exo 141 which were drawn from the 307 Cervical Cancer Samples that are available in the UCSC Xena
142 database. We also visualized the exon structure of the isoforms to better understand the pattern of
143 alternative splicing database. We also visualized the exon structure of the isoforms to better understand the pattern of
143 alternative splicing in the various isoforms of the genes.
25 Structure Prodiction of Protoin Jackson and Jigand Docki 143 alternative splicing in the various isoforms of the genes.
144 2.5 Structure Prediction of Protein Isoforn

2.5 **Structure Prediction of Protein Isoforms and Ligand Docking**
145 To better understand the associations between the proteins with their ligands (
146 are disted the ²D structures of protein isoforms using a number of 145 To better understand the associations between the proteins with their ligands (drugs), we
146 predicted the 3D structures of protein isoforms using a number of tools for structural level study
147 of the different isof 148 use of the structure prediction tools trRosetta (30), Robetta (31), Swiss-Model (32), and I-147 of the different isoforms of the proteins. Protein isoform structures were predicted through the
148 use of the structure prediction tools trRosetta (30), Robetta (31), Swiss-Model (32), and I-
149 TASSER (33). Further use of the structure prediction tools trRosetta (30), Robetta (31), Swiss-Model (32), and I-
149 TASSER (33). Further, the ERRAT quality factor and the favored region, allowed region, and
150 disabled region in the Ramacha 149 TASSER (33). Further, the ERRAT quality factor and the favored region, allowed region, and
150 disabled region in the Ramachandran plot were used to evaluate the predicted structures.
151 After evaluating, We utilized disabled region in the Ramachandran plot were used to evaluate the predicted structures.
151 After evaluating, We utilized SiteMap53 (34) to determine the drug targets region in those
152 protein isoforms' 3D structures. T 151 After evaluating, We utilized SiteMap53 (34) to determine the drug targets region in those
152 protein isoforms' 3D structures. Through the use of Chimera 1.15rc, predicted 3D structures for
153 the isoforms were furth 152 protein isoforms' 3D structures. Through the use of Chimera 1.15rc, predicted 3D structures for
153 the isoforms were further prepared for docking analysis. We used Pyrex software to investigate
154 the ligand-protein the isoforms were further prepared for docking analysis. We used Pyrex software to investigate
154 the ligand-protein docking analysis, and we took into account a number of drugs that have
155 already been approved for suc the ligand-protein docking analysis, and we took into account a number of drugs that have
155 already been approved for such proteins so that we can check these drugs' effectiveness against
156 various protein isoforms tha already been approved for such proteins so that we can check these drugs' effectiveness against
156 various protein isoforms that are affected by disease. Poses of the Protein-Ligand Complexes
157 vere captured for further 156 various protein isoforms that are affected by disease. Poses of the Protein-Ligand Complexes
157 were captured for further analyzing the pocket sizes, shapes, and electrostatic surfaces of docked
158 protein isoforms. 157 were captured for further analyzing the pocket sizes, shapes, and electrostatic surfaces of docked
158 protein isoforms.
2.6 Interaction analysis

158 protein isoforms.
159 **2.6 Interac**

2.6 **Interaction analysis**
160 The Discovery Studio 2021 Clien
161 that how the drug which has a h 160 The Discovery Studio 2021 Client was used to examine protein-ligand complexes. We examined
161 that how the drug, which has a high binding affinity value with the canonical protein, interacts
162 with the different iso 161 that how the drug, which has a high binding affinity value with the canonical protein, interacts
162 with the different isoforms. Further, we examined the interactions between hydrophobic and
163 hydrogen sites in diff 162 with the different isoforms. Further, we examined the interactions between hydrophobic and
163 hydrogen sites in different docked protein isoforms 163 hydrogen sites in different docked protein isoforms

3. Results
3.1 Drugs Target Genes have multiple Isoforms
166 More than 30 genes linked to cervical cancer were identified to

166 More than 30 genes linked to cervical cancer were identified to have missense mutations show in
167 Supplementary File 1. Keeping in view the number of the patient samples, we chose five genes 167 Supplementary File 1. Keeping in view the number of the patient samples, we chose five genes for further analysis. We found FDA-approved drugs interactions to analyze the interactions 168 for further analysis. We found FDA-approved drugs interactions to analyze the interactions
169 among drug and its target protein isoforms. We were able to retrieve more than 145 entries 168 for further analysis. We found FDA-approved drugs interactions to analyze the interactions
169 among drug and its target protein isoforms. We were able to retrieve more than 145 entries
170 belonging to 5 distinct gene 20169 among drug and its target protein isoforms. We were able to retrieve more than 145 entries
170 belonging to 5 distinct genes of Cervical Cancer.
271 Table 1, FDA Approved Drugs against target genes and number of prot

170 belonging to 5 distinct genes of Cervical Cancer.
171 Table 1. FDA Approved Drugs against target gen

172
173
174 A partial list from a summary table is shown in Table 1. We identified the bulk of the candidate

genes had two or even more transcribed spliced variants and protein isoforms Fig. 1.

175
176
177 **Fig. 1** Shows the number of transcript variants and the protein coding isoforms of canonical proteins.
178 Our findings demonstrate that the majority of cancer drug target genes undergo splicing and

178 Our findings demonstrate that the majority of cancer drug target genes undergo splicing and
179 make many protein isoforms which may are functionally distinct and react with drugs in different 178 Our findings demonstrate that the majority of cancer drug target genes undergo splicing and
179 make many protein isoforms which may are functionally distinct and react with drugs in different
180 manner, highlighting 179 make many protein isoforms which may are functionally distinct and react with drugs in different
180 manner, highlighting the significance of getting isoforms and alternative splicing into account in
181 drug developme manner, highlighting the significance of getting isoforms and alternative splicing into account in
181 drug development.
22 **Protoin isoforms shows differences in the binding positets**

181 drug development.
182 **3.2 Protein is**

182 **3.2 Protein isoforms shows differences in the binding pockets**
183 Using several sequence alignments, we were able to pinpoint the precise inter-
184 and isoform's drug binding region. We corried out multiple sequence 183 Using several sequence alignments, we were able to pinpoint the precise interaction residues in
184 each isoform's drug binding region. We carried out multiple sequence alignment between the
185 Pfam functional domains each isoform's drug binding region. We carried out multiple sequence alignment between the
185 Pfam functional domains, the canonical protein, isoform sequences, and the predicted protein
186 binding pocket. Here we descri 185 Pfam functional domains, the canonical protein, isoform sequences, and the predicted protein
186 binding pocket. Here we describe some sequence alignment plots of few genes.

186 binding pocket. Here we describe some sequence alignment plots of few genes.
187 Cellular functions essential for the development of cancer, such as cell growth, proliferation,
188 motility, survival, and metabolism, a 188 motility, survival, and metabolism, are regulated by the PI3KCA protein (35). PIK3CA gene has
189 – 4 isoforms (PIK3CA-201, PIK3CA-203, PIK3CA-204 and PIK3CA-205). Isoforms PIK3CAmotility, survival, and metabolism, are regulated by the PI3KCA protein (35). PIK3CA gene has
189 4 isoforms (PIK3CA-201, PIK3CA-203, PIK3CA-204 and PIK3CA-205). Isoforms PIK3CA-
190 203 & 204 have 21 and 118 residues resp 189 4 isoforms (PIK3CA-201, PIK3CA-203, PIK3CA-204 and PIK3CA-205). Isoforms PIK3CA-
190 203 & 204 have 21 and 118 residues respectively which completely lacks the predicted pocket
191 binding Fig. 2. Canonical Protein and 203 & 204 have 21 and 118 residues respectively which completely lacks the predicted pocket
191 binding Fig. 2. Canonical Protein and Isoforms PIK3CA-201 & 205 found to have identical
192 sequences in the predicted binding 191 binding Fig. 2. Canonical Protein and Isoforms PIK3CA-201 & 205 found to have identical
192 sequences in the predicted binding pocket. However, we found variations in the C-terminal
193 regions and domain PF00454 of is 192 sequences in the predicted binding pocket. However, we found variations in the C-terminal
193 regions and domain PF00454 of isoforms PIK3CA-201 & 205 Fig. 2. We examined the C
194 terminal region of the Canonical prote 193 regions and domain PF00454 of isoforms PIK3CA-201 & 205 Fig. 2. We examined the C
194 terminal region of the Canonical protein, PIK3CA-201 & 205, and Pfam domain PF00454 to 194 terminal region of the Canonical protein, PIK3CA-201 & 205, and Pfam domain PF00454 to
194 195 further explain this variation. Through the previous studies we found that the C terminal region is 196 necessary for catalysis. In the absence of membrane, it reduces the enzyme's baseline activity 197 while promoting membrane binding. This has been suggested to be a crucial PI3Ks regulating 198 component (36). And the Pfam domain is one of the domains of p100 α catalytic subunit of the 199 PIK3CA. However, in USP13-PIK3CA, the whole C-terminal region is replaced with the 200 USP13 protein, which affects catalysis. Since PIK3CA-201 and PIK3CA-205 have the same 201 upstream regions overall, the fusion proteins produced by the two isoforms should ideally have 202 the same structure. Additionally, we aligned two other USP13-PIK3CA protein sequences in the 203 FusionGDB database to support this claim, and all sequences have overlapping interference 204 residues with the predicted pocket binding Supplementary File 2. This sequence-level data 205 indicates that the drug may target all of the USP13-PIK3CA fusion protein's splice-variant 206 isoforms; as a result, splice-variation within the PIK3CA gene does not influence the binding to 207 its targets in isoforms PIK3CA-201 & 205 while it may affect the PIK3CA-203 & 204 which 208 does not have the predicted binding pocket.

210 **Fig. 2** Sequence alignments of the predicted pocket binding residues of several PIK3CA protein 211 isoforms. Using the Bioconductor software msa, Cluster Omega was used to align the binding

212 residues with the isoform sequences. Predicted binding pocket residues, aligned Pfam domains, 213 and PIK3CA-201, PIK3CA-203, PIK3CA-204, and PIK3CA-205 are shown from top to bottom. 214 Each line included the consensus sequences' sequence logo at the top. Residues in a sequence 215 that coincide with the anticipated binding residues are shown by blue shading. The purple 216 coloring suggests that this residue is conserved in about 50% of all sequences. Similar amino 217 acids are shown by pink shading.

218 The KRAS gene has been a key target of cancer treatment discovery for decades since it is the 219 most often mutated oncogene in human malignancies, notably in tumors of the pancreas, colon, 220 and lung. However, despite these enormous efforts, cancers with KRAS mutations continue to be 221 among the hardest to treat, in large part due to the emergence of treatment resistance brought on 222 by the plasticity of tumor cells and/or the acquisition of additional mutations. According to the 223 multiple sequence alignment of KRAS isoforms, the isoforms KRAS-203, 204 $& 207$ lack the 224 binding pockets and are thus not predicted to be targets of drugs that treat the KRAS protein 225 shown in Fig. 3. While the isoforms KRAS-201, 202 , 205 , 210 and 214 have the same binding 226 residues and are thus likely to be targeted by drugs. Further investigation revealed that KRAS-- 227 202,205,203, and 204 have variations with KRAS-201 on the C terminal. Our findings indicate 228 that further effort is required to specifically target the KRAS isoforms.

229

230 **Fig. 3 A** Sequence alignments of predicted pocket binding residues on various KRAS protein 231 isoforms. Using the Bioconductor software msa, Cluster Omega was used to align the binding

residues with the isoform sequences. Predicted binding pocket residues, aligned Pfam domains
233 and KRAS isoforms are shown from top to bottom. Each line included the consensus sequences'
234 sequence logo at the top. Res 233 and KRAS isoforms are shown from top to bottom. Each line included the consensus sequences'
234 sequence logo at the top. Residues in a sequence that coincide with the anticipated binding
235 residues are shown by blue 234 sequence logo at the top. Residues in a sequence that coincide with the anticipated binding
235 residues are shown by blue shading. The purple coloring suggests that this residue is conserved
236 in about 50% of all se residues are shown by blue shading. The purple coloring suggests that this residue is conserved
236 in about 50% of all sequences. Similar amino acids are shown by pink shading.
22 **High Loyels of Jacketts Expression in Tu** 236 in about 50% of all sequences. Similar amino acids are shown by pink shading.
237 **3.3 High Levels of Isoform Expression in Tumor Tissues**

3.3 High Levels of Isoform Expression in Tumor Tissues
238 Using clinical information from UCSC Xena that is accessible through several projects (TCGA,
239 GTEx and TARGET), we were able to determine the expression of pr Using clinical information from UCSC Xena that is accessible through several projects (TCGA,
239 GTEx and TARGET), we were able to determine the expression of protein isoforms. In TCGA
240 samples of cervical cancer and br 239 GTEx and TARGET), we were able to determine the expression of protein isoforms. In TCGA samples of cervical cancer and breast cancer, we observed the expression of PIK3CA and KRAS isoforms shown in Fig. 4A. The express 240 samples of cervical cancer and breast cancer, we observed the expression of PIK3CA and KRAS
241 isoforms shown in Fig. 4A. The expression of isoforms was nearly same in both cancer types.
242 The isoform (PIK3CA-204/EN 241 isoforms shown in Fig. 4A. The expression of isoforms was nearly same in both cancer types.
242 The isoform (PIK3CA-204/ENST00000477735.1) does not express in tumor and normal
243 samples, and is thus ignored. The isof 242 The isoform (PIK3CA-204/ENST00000477735.1) does not express in tumor and normal
243 samples, and is thus ignored. The isoform (PIK3CA-203/ ENST00000468036.1) is highly
244 expressed in the TCGA tumor samples, in contra 243 samples, and is thus ignored. The isoform (PIK3CA-203/ ENST00000468036.1) is highly
244 expressed in the TCGA tumor samples, in contrast to the normal GTEx samples. While we
245 previously found that isoform-203 does n expressed in the TCGA tumor samples, in contrast to the normal GTEx samples. While we
245 previously found that isoform-203 does not have the predicted binding pocket but we observed
246 that tumor cells express it. Thus, 245 previously found that isoform-203 does not have the predicted binding pocket but we observed
246 that tumor cells express it. Thus, this should be included in future study to examines the on- and
247 off-target effects that tumor cells express it. Thus, this should be included in future study to examines the on- and
247 off-target effects of drugs.
248 I Ising transcriptome expression data from the TCGA repository, it was possible to com

off-target effects of drugs.

248 Using transcriptome expression data from the TCGA repository, it was possible to compare the

249 expression of KRAS isoforms (KRAS-202/ENST00000311936.7, KRAS-248 Using transcriptome expression data from the TCGA repository, it was possible to compare the
249 expression of KRAS isoforms (KRAS-202/ENST00000311936.7, KRAS-
203/ENST00000556131.1, and KRAS-204/ENST00000557334.5) in expression of KRAS isoforms (KRAS-202/ENST00000311936.7, KRAS-
250 203/ENST00000556131.1, and KRAS-204/ENST00000557334.5) in cervical and breast samples
251 Fig. 4B. In comparison to normal samples, tumor samples were show 250 203/ENST00000556131.1, and KRAS-204/ENST00000557334.5) in cervical and breast samples
251 Fig. 4B. In comparison to normal samples, tumor samples were shown to have higher levels of
252 KRAS-203 expression. Sequence an 251 Fig. 4B. In comparison to normal samples, tumor samples were shown to have higher levels of KRAS-203 expression. Sequence analysis of FBXW7, ERBB3 & SMAD4 are shown in supplementary file 3. Future studies analyzing the 252 KRAS-203 expression. Sequence analysis of FBXW7, ERBB3 & SMAD4 are shown in supplementary file 3. Future studies analyzing the on- and off-target effects of drugs should consider these isoforms as these are expressed i 253 supplementary file 3. Future studies analyzing the on- and off-target effects of drugs should
254 consider these isoforms as these are expressed in tumors 254 consider these isoforms as these are expressed in tumors

²⁵⁶**Fig. 4 A** PIK3CA isoform expression and exon structure. Green density represents log2(TPM)) 257 from GTEx normal samples, whereas purple density represents those from a) TCGA Cervical 258 Cancer samples and b) TCGA Breast Cancer samples. Density plots and c) the exon structure 259 plot both follow the same sequence. **B** KRAS isoform expression and exon structure. Four 260 isoforms are related (from top to bottom). Green density represents those from GTEx normal 261 samples, whereas purple density means a) TCGA Cervical Cancer samples and b) TCGA Breast 262 Cancer Samples. Density plots and c) the exon structure plot both follow the same sequence. 263 Every plot is generated using the UCSC Xena browser (37).

²⁶⁴**3.4 Drugs Interaction on Structural Level**

265 Even though we have shown changes in binding pockets across isoforms at the sequence level, 266 structural-level research is the only way to gain more solid proof that the drugs bind to their 267 targets' isoforms in distinct ways. We have studied the KRAS gene, which has seven distinct 268 isoforms, together with known drugs that target them in to understand how a certain drug 269 molecule interacts with several isoforms of a protein.

270 The 3D structures of each isoform were predicted using various databases. The best predicted
271 structures were projected to have ERRAT scores greater than 94. While structures with poor
272 ERRAT values were further 271 structures were projected to have ERRAT scores greater than 94. While structures with poor
272 ERRAT values were further improved.
273 Then using Pyrex, we conducted docking analysis while taking into account a selecti

ERRAT values were further improved.
273 Then, using Pyrex, we conducted docking analysis while taking into account a selection of drugs
274 that have been identified to target this disease protein target. After analyzing t 274 that have been identified to target this disease protein target. After analyzing the docked
275 positions, we observed that although some drugs bind similarly to isoforms, while others bind 275 positions, we observed that although some drugs bind similarly to isoforms, while others bind
276 extremely differently. For instance, Isoforms KRAS-203, 204 & 207 showed low binding positions, we observed that although some drugs bind similarly to isoforms, while others bind
extremely differently. For instance, Isoforms KRAS-203, 204 & 207 showed low binding
affinity with the FDA Approved drugs (Table extremely differently. For instance, Isoforms KRAS-203, 204 & 207 showed low binding
277 affinity with the FDA Approved drugs (Table 2). It supports our previous findings that these
278 isoforms have very small sequences a 277 affinity with the FDA Approved drugs (Table 2). It supports our previous findings that these
278 isoforms have very small sequences and do not have the predicted binding pocket. While all
279 other isoforms of KRAS (K 279 other isoforms of KRAS (KRAS-201, 202, 205, 210, 213 & 214) have high binding affinities.
280 AZD-4785 had good scores for KRAS-201, 202, 205, and 214. These six isoforms of the protein 280 AZD-4785 had good scores for KRAS-201, 202, 205, and 214. These six isoforms of the protein
281 had strong binding affinity against Trametinib, although KRAS-202 had low binding affinity. 281 had strong binding affinity against Trametinib, although KRAS-202 had low binding affinity.
282 With ridoforolimus, all isoforms had the good binding affinities. While the remaining drugs 282 With ridoforolimus, all isoforms had the good binding affinities. While the remaining drugs
283 likewise shown good binding affinities with these isoforms, certain isoforms displayed lower 282 With ridoforolimus, all isoforms had the good binding affinities. While the remaining drugs
283 likewise shown good binding affinities with these isoforms, certain isoforms displayed lower
284 affinities than others. likewise shown good binding affinities with these isoforms, certain isoforms displayed lower
284 affinities than others.
285 Table 2 Binding Affinity Values of the KRAS-Canonical protein and its isoforms 284 affinities than others.

286
287
288 287 In case of PIK3CA, the isoforms PIK3CA-203 & 204 showed low binding affinity with
288 approved FDA Drugs as these isoforms have short sequences and did not have predicted binding
289 pocket (Table 3). While the isofor 288 approved FDA Drugs as these isoforms have short sequences and did not have predicted binding
289 pocket (Table 3). While the isoforms PIK3CA-201 & 205 showed the best binding affinity with
290 drugs. Temsirolimus showe 289 pocket (Table 3). While the isoforms PIK3CA-201 & 205 showed the best binding affinity with
290 drugs. Temsirolimus showed good binding affinity with all isoforms
291 290 drugs. Temsirolimus showed good binding affinity with all isoforms
291
Table 3 Binding affinity values of the PIK3CA-Canonical, PIK3CA-

291
292

Drugs	PIK3CA- Canonical	PIK3CA -201	PIK3CA -205	PIK3CA -203	РІКЗСА- 204
$CC-223$	-8.6	-8.3	-8	-6.4	-6.4
ALPELISIB	-8.9	-8.8	-9.5	-7.5	-7.7
BUPARLISIB	-8.6	-8.2	-8.1	-6.2	-6.4
CAPIVASERTIB	-9.5	-9.6	-8.9	-6.6	-6.6
INK-1117	-9	-9	-9	-6.8	-6.8
SERABELISIB	-8.9	-9.1	-9	-6.8	-6.8

293

294 To explain how different pocket sizes, shapes, and electrostatic potential surfaces may create the 295 illusion like the binding mode is different even when the scores are the same in some instances. 295 illusion like the binding mode is different even when the scores are the same in some instances.
296 Here, we examined Temsirolimus binding mode in all fours isoforms and discovered that while 297 the binding scores are close, the binding patterns vary greatly shown in (Fig. 5). Molecular 298 docking results of FBXW7, ERBB3 $&$ SMAD4 are shown in supplementary file 4. These results 299 led us to the hypothesis as, despite the identicality of the ligand binding residues, the binding 300 pocket structures change in size, form, and dynamic properties, resulting in different binding 301 patterns for a single drug in several isoforms with various binding affinity values.

302
303 303 **Fig. 5** shows the ligand binding pocket of PIK3CA isoforms A) Canonical Protein B) PIK3CA--304 201 C) PIK3CA-205 and D) PIK3CA-202 with the drug Temsirolimus.

305 The interaction analysis of the target proteins isoforms was checked to see what kinds and how
306 many interactions there were between the docked tesmilorous and the PIK3CA isoforms. When a
307 complex has a significa 306 many interactions there were between the docked tesmilorous and the PIK3CA isoforms. When a
307 complex has a significant number of hydrogen bonds together with a small number of salt
308 bridges, hydrophobic contacts, 307 complex has a significant number of hydrogen bonds together with a small number of salt
308 bridges, hydrophobic contacts, and pi-pi interactions, it is said to be strong. To determine how
309 many interactions each mo 308 bridges, hydrophobic contacts, and pi-pi interactions, it is said to be strong. To determine how
309 many interactions each molecule generated, we tested each docked drug differently Fig. 6.
310 According to the intera 309 many interactions each molecule generated, we tested each docked drug differently Fig. 6.
310 According to the interaction study, complexes with strong binding affinities were those that
311 produced the most hydrogen 310 According to the interaction study, complexes with strong binding affinities were those that
311 produced the most hydrogen bonds (Table 4).
312 Table 4 Shows the Hydrogen and Hydrophobic interactions of docked isoform 311 produced the most hydrogen bonds (Table 4).
312 Table.4 Shows the Hydrogen and Hydrophobi

Protein	Hydrogen Interactions	Hydrophobic Interactions	
PIK3CA-Canonical	GLU, ASN, ASP, ASP, TYR	THR	
PIK3CA-201	ASP, ASN, LYS, SER	LYS, ASP, ASN, PRO, GLN	
PIK3CA-205	ARG, ASP, ASP, LYS, PHE	GLU, TYR, LYS	
PIK3CA-203	SER, THR	ARG, GLU	

313
314
315 PIK3CA-Canonical and isoforms 201 $\&$ 205 were shown to have strong interactions while the

docked complex of PIK3CA-203 was found to have weak interactions.

316

³¹⁷**Fig. 6** Ligplot analysis of interactions between PIK3CA isoforms and Temsirolimus. . 318 Hydrophobic interactions between amino acid residues are shown by red arcs, whereas hydrogen 319 bonds are represented by green dashed lines with specified bond lengths.

³²⁰**4. Discussion**

321 Despite the fact that current target prediction methods have shown the accuracy of genomic, 322 chemical, and pharmacological data in drug target interaction prediction, those methods 323 frequently only concentrate on the canonical isoforms while disregarding the on- or even off 324 target isoform-level interactions that are linked to the chemical's action (38). Previous research 325 has related cancer-specific aberrant splicing to drug resistance mechanisms. However, little is 326 known about the drug's therapeutic impact on the specified tissue and its side effects on other 327 tissues. Protein isoforms produced by alternative splicing can express at different levels and 328 exhibit various, perhaps conflicting, activities in various tissues and/or organs (39, 40), We 329 postulated in this study that various protein isoforms formed by alternative splicing might develop into candidates for drug interactions that are off-target or non-target because of the
331 presence or lack of target binding sequence in different alternative splicing of genes specifically
332 involved in cervica 331 presence or lack of target binding sequence in different alternative splicing of genes specifically
332 involved in cervical cancer. Our findings show that most small molecule therapeutic targets have
333 a variety of 332 involved in cervical cancer. Our findings show that most small molecule therapeutic targets have
333 a variety of protein isoforms. As a result, It's therefore feasible which the most of pharmacological
334 targeting g 333 a variety of protein isoforms. As a result, It's therefore feasible which the most of pharmacological
334 targeting genes' protein isoforms have functional differences and show isoform-level changes in
335 its interact targeting genes' protein isoforms have functional differences and show isoform-level changes in
335 its interactions with the drug.
336 As we revealed that KRAS-203 is highly expressed in tumour samples, sequence alignment

its interactions with the drug.
335 its interactions with the drug.
336 As we revealed that KRAS-203 is highly expressed in tumour samples, sequence alignment and
337 data analysis of the gene expression patterns in the TC 337 data analysis of the gene expression patterns in the TCGA and GTEx datasets uncovered
338 significant data, like medicines that skip alternative isoforms that also expressed in cancer but 338 significant data, like medicines that skip alternative isoforms that also expressed in cancer but
339 perhaps are not targeted, while the drugs which might possibly aim alternative isoforms that are stage significant data, like medicines that skip alternative isoforms that also expressed in cancer but
1339 perhaps are not targeted, while the drugs which might possibly aim alternative isoforms that are
140 variously ex perhaps are not targeted, while the drugs which might possibly aim alternative isoforms that are
340 variously expressed across many normal tissues, and those are involved in the process of cancer
341 development. Furtherm variously expressed across many normal tissues, and those are involved in the process of cancer
341 development. Furthermore, the same medication's ability to bind to several structurally related
342 isoforms with various development. Furthermore, the same medication's ability to bind to several structurally related
342 isoforms with various affinities was verified by drug docking study and structural analysis of an
343 example KRAS and PIK 342 isoforms with various affinities was verified by drug docking study and structural analysis of an
343 example KRAS and PIK3CA protein. These findings basically two processes in which both
344 possibly lead to far-off i example KRAS and PIK3CA protein. These findings basically two processes in which both
344 possibly lead to far-off impacts, which could result in drug resistance.
345 In comparison to the canonical isoform, we observed low

9344 possibly lead to far-off impacts, which could result in drug resistance.

345 In comparison to the canonical isoform, we observed low expression of KRAS isoforms in

346 TCGA samples. We observed via structural dockin 345 In comparison to the canonical isoform, we observed low expression of KRAS isoforms in
346 TCGA samples. We observed via structural docking research that various medicines can interact
347 with all isoforms in various TCGA samples. We observed via structural docking research that various medicines can interact
347 with all isoforms in various ways. It is still unknown whether the secondary isoforms behave
348 similarly to or differently with all isoforms in various ways. It is still unknown whether the secondary isoforms behave
348 similarly to or differently from the downregulated primary isoform, carcinogenic, as well as
349 overexpressed. On the other similarly to or differently from the downregulated primary isoform, carcinogenic, as well as
349 overexpressed. On the other hand, the different isoforms, with the exception of KRAS-204,
350 which was not expressed in norm 349 overexpressed. On the other hand, the different isoforms, with the exception of KRAS-204,
350 which was not expressed in normal or tumor samples, showed variable and greater expression in
351 healthy tissue than in tum which was not expressed in normal or tumor samples, showed variable and greater expression in
351 healthy tissue than in tumor tissues. These isoforms can act as tumor suppressors or regulator,
352 counteracting the carcin 351 healthy tissue than in tumor tissues. These isoforms can act as tumor suppressors or regulator,
352 counteracting the carcinogenic isoform's function. Immediate inhibition of these isoforms may be
353 undesirable under 352 counteracting the carcinogenic isoform's function. Immediate inhibition of these isoforms may be
353 undesirable under such conditions. Despite the fact that the precise roles of these isoforms are yet
354 unknown, it' 353 undesirable under such conditions. Despite the fact that the precise roles of these isoforms are yet
354 unknown, it's feasible because separating sites from non-targets at the splice level is a crucial
355 step in ear unknown, it's feasible because separating sites from non-targets at the splice level is a crucial
355 step in early stages of drug discovery investigations.
356 Due to restrictions on the availability of data, we were chal

355 step in early stages of drug discovery investigations.
356 Due to restrictions on the availability of data, we were challenged to have several limitations in
357 our current study. The first challenge is the lack of ma Due to restrictions on the availability of data, we were challenged to have several limitations in
357 our current study. The first challenge is the lack of mappings of isoforms between the public
358 online database and o 357 our current study. The first challenge is the lack of mappings of isoforms between the public
358 online database and older studies. For examples, there is frequently a difference in the exon
359 numbers reported by th 358 online database and older studies. For examples, there is frequently a difference in the exon
359 numbers reported by these two sources. Public databases like Ensemble did not contain many of 359 numbers reported by these two sources. Public databases like Ensemble did not contain many of 360 the isoforms that had previously been described in literature. This makes it extremely
361 challenging to annotate these isoforms structurally and functionally. Therefore, the major aspects
362 of our study are the ove challenging to annotate these isoforms structurally and functionally. Therefore, the major aspects
362 of our study are the overexpression of isoforms that are more advantageous for the development
363 of cancer should be 362 of our study are the overexpression of isoforms that are more advantageous for the development
363 of cancer should be suppressed, and the main aims for suppression should be those isoforms that
364 are upregulated in 363 of cancer should be suppressed, and the main aims for suppression should be those isoforms that
364 are upregulated in cancer. This is obviously a restriction because these two hypotheses might be
365 incorrect, but as 364 are upregulated in cancer. This is obviously a restriction because these two hypotheses might be
365 incorrect, but as of right now, we don't have any better methods for evaluating the roles of these
366 unidentified i 365 incorrect, but as of right now, we don't have any better methods for evaluating the roles of these
366 unidentified isoforms. Furthermore, if there is inclusion of actual protein-level expression of
367 these isoforms 366 unidentified isoforms. Furthermore, if there is inclusion of actual protein-level expression of
367 these isoforms will strengthen the claim. As far as we are known, there is currently no
368 comprehensive database tha these isoforms will strengthen the claim. As far as we are known, there is currently no
368 comprehensive database that includes the expression of all protein isoforms on a complete
369 proteome scale. In our opinion, the 368 comprehensive database that includes the expression of all protein isoforms on a complete
369 proteome scale. In our opinion, the importance of comprehending pharmacological targets at the
370 isoform level should be e 369 proteome scale. In our opinion, the importance of comprehending pharmacological targets at the isoform level should be emphasized even more. However, our results add to those of a recent study that identified means mRN 370 isoform level should be emphasized even more. However, our results add to those of a recent
371 study that identified means mRNA expression across tissues and variance of expression across
372 tissues as the two key ch 371 study that identified means mRNA expression across tissues and variance of expression across
372 tissues as the two key characteristics that separate effective medications from ineffective ones
373 (41). 372 tissues as the two key characteristics that separate effective medications from ineffective ones
373 (41).
5. Conclusion 373 (41).
374 **5**.

375 We expect that our findings will encourage more future investigation into the possibility of isoform-level medication design. Enough structural and functional knowledge of these isoforms 376 isoform-level medication design. Enough structural and functional knowledge of these isoforms
377 is necessary to accomplish this aim. Strongly identifying additional cancer biomarkers at the isoform-level medication design. Enough structural and functional knowledge of these isoforms
377 is necessary to accomplish this aim. Strongly identifying additional cancer biomarkers at the
378 isoform level and connecti is necessary to accomplish this aim. Strongly identifying additional cancer biomarkers at the
378 isoform level and connecting them to treatment sensitivity using computational methods would
379 be a crucial next step. If 378 isoform level and connecting them to treatment sensitivity using computational methods would
379 be a crucial next step. If isoform-level drug design is required, accurate structural modelling and
380 bediction of thes 380 prediction of these isoforms are particularly crucial because no database presently has such
381 information about the structure in a well-annotated way. Additionally, various databases should 381 information about the structure in a well-annotated way. Additionally, various databases should
382 continue to combine isoform-level information and analysis with earlier works of literature and 381 information about the structure in a well-annotated way. Additionally, various databases should
382 continue to combine isoform-level information and analysis with earlier works of literature and
383 ensure that they a 382 continue to combine isoform-level information and analysis with earlier works of literature and
383 ensure that they are in line, particularly with regard to the functional analyses of less common
384 isoforms. 933 ensure that they are in line, particularly with regard to the functional analyses of less common
384 isoforms.
385 384 isoforms.

385
386 386 **Conflicts of interest**

The authors have no conflicts of interest to declare that are relevant to the content of this article

388 **Funding**

389 None
390 **Ackr**

- 390 **Acknowledgments**
391 I would like to acknowl
- 391 I would like to acknowledge the substantial contribution of Muhammad Sajid in providing
392 valuable resources and overseeing the supervision of this project. His guidance and expertis
393 were instrumental in shaping valuable resources and overseeing the supervision of this project. His guidance and expertise
393 were instrumental in shaping the direction of our work.
201 **Deferences**
- 393 were instrumental in shaping the direction of our work.
394 **References**
395

References
2944 **References**
2944 **Pang BH, Bray FI, Parkin DM, Sellors JW, Zhang ZF. Cervical cancer as a priority for prevention in** 396
397
398 397 bifferent world regions: an evaluation using years of life lost. International journal of cancer.
198 2004;109(3):418-24.
199 2. Stuver S, Adami H-O. Cervical cancer: Oxford University Press New York; 2002.
100 3. Cohe

3. Cohen PA, Jhingran A, Oaknin A, Denny L. Cervical cancer. The Lancet. 2019;393(10167):169-82.
401 d. Crosbie EJ, Einstein MH, Franceschi S, Kitchener HC. Human papillomavirus and cervical cancer.

399 2. Stuver S, Ada
400 3. Cohen PA, Jh
401 4. Crosbie EJ, Ei 3. Student Syndim Maritim Hender Student Press New York: The Lancet. 2019;39:
401 4. Crosbie EJ, Einstein MH, Franceschi S, Kitchener HC. Human papillomavirus and
402 The Lancet. 2013;382(9895):889-99. 401 4. Crosbie EJ, Einstein MH, Franceschi S, Kitchener HC. Human papillomavirus and cervical cancer.
402 The Lancet. 2013;382(9895):889-99.
403 5. Small Jr W, Bacon MA, Bajaj A, Chuang LT, Fisher BJ, Harkenrider MM, et al

402 The Lancet. 2013;382(9895):889-99.
403 5. Small Jr W, Bacon MA, Bajaj A, Chuang LT, Fisher BJ, Harkenrider MM, et al. Cervical cancer: a
404 global health crisis. Cancer. 2017;123(13):2404-12. The Lancet. 2013;382(9895):889-99.
403 5. Small Jr W, Bacon MA, Bajaj A, Chuang LT, Fisher BJ, Harkenrider MM, et al. Cervical cancer: a
404 global health crisis. Cancer. 2017;123(13):2404-12.
405 6. Howlader N, Ries LA, S

404 files and the main of the control of the state of the state and the state and the state and the state and t
405 files and Harkenrider M, Ries LA, Stinchcomb DG, Edwards BK. The impact of underreported Veterans Affa
406 405 6. Howlader N, Ries LA, Stinchcomb DG, Edwa
406 data on national cancer statistics: analysis using po
407 National Cancer Institute. 2009;101(7):533-6. 406 data on national cancer statistics: analysis using population-based SEER registries. Journal of the
407 National Cancer Institute. 2009;101(7):533-6.
408 7. Moore DH. Cervical cancer. Obstetrics & Gynecology. 2006;107(

107 National Cancer Institute. 2009;101(7):533-6.
108 1. Moore DH. Cervical cancer. Obstetrics & Gynecology. 2006;107(5):1152-61.
109 8. Kim S, Choi H, Byun J. Overall 5-year survival rate and prognostic factors in patient 408 7. Moore DH. Cervical cancer. Obstetrics
409 8. Kim S, Choi H, Byun J. Overall 5-year s
410 and IIA cervical cancer treated by radical hyste 409 8. Kim S, Choi H, Byun J. Overall 5-year survival rate and prognostic factors in p
410 and IIA cervical cancer treated by radical hysterectomy and pelvic lymph node disser
411 Journal of Gynecological Cancer. 2000;10(4 410 and IIA cervical cancer treated by radical hysterectomy and pelvic lymph node dissection. International
411 Journal of Gynecological Cancer. 2000;10(4):305-12.
412 9. Network CGAR. Integrated genomic and molecular char

- 411 and IIA cervical cancer treated by radical hyperical personal personal measurements in the local cancer treated by radial discreption of cervical cancer. Nature.
412 9. Network CGAR. Integrated genomic and molecular ch 412 9. Network CGAR. Integrated genomic and mole
413 2017;543(7645):378.
414 10. Oyervides-Muñoz MA, Pérez-Maya AA, Rodrí
-

412 9. Network CGAR. Integrated genomic and molecular characterization of cervical cancer. Nature. 114 10. Dyervides-Mi
414 10. Dyervides-Mi
416 Infection, Genetics an

417 11. Wilting Sivi, Steenbergen RD. Molecular events leading to HPV-induced high grade heoplasia 416 Antiomate Or, Tremin 1, 2018, 2018, 31.134-44.
416 Anfection, Genetics and Evolution. 2018, 61:134-44.
417 11. Wilting SM, Steenbergen RD. Molecular events leading to HPV-induced high grade neoplasia.
418 Papillomaviru 417 11. Wilting SM, Steenbergen RD. Molecular evolution. 2016;2:85-8.
418 Papillomavirus Research. 2016;2:85-8.
419 12. Berger AC, Korkut A, Kanchi RS, Hegde AM,

418 12. Papillomavirus Research. 2016;2:85-8.
418 12. Papillomavirus Research. 2016;2:85-8.
420 molecular study of gynecologic and breast cancers. Cancer cell. 2018;33(4):690-705. e9. Papillomavirus Research. 2016;2:85-8.
419 12. Berger AC, Korkut A, Kanchi RS, Hegde AM, Lenoir W, Liu W, et al. A comprehens
420 molecular study of gynecologic and breast cancers. Cancer cell. 2018;33(4):690-705. e9.
421 1

421 13. Liu S, Zheng B, Sheng Y, Kong Q, Jiang Y, Yang Y, et al. Identification of cancer dysfunctional
422 subpathways by integrating DNA methylation, copy number variation, and gene-expression data.
423 Frontiers in Gene 421 13. Liu S, Zheng B, Sheng Y, Kong Q, Jiang Y, Yang Y, et al. Identification of cancer dys
422 subpathways by integrating DNA methylation, copy number variation, and gene-expressi
423 Frontiers in Genetics. 2019;10:441.

- 422 subpathways by integrating DNA methylation, copy number variation, and gene-expression data.
423 Frontiers in Genetics. 2019;10:441.
424 14. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative sp 423 Frontiers in Genetics. 2019;10:441.
424 14. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing comple:
425 the human transcriptome by high-throughput sequencing. Nature genetics. 2008;4 424 14. Pan Q, Shai O, Lee LJ, Frey B
425 the human transcriptome by high-tl
426 15. Wang ET, Sandberg R, Luo S 425 the human transcriptome by high-throughput sequencing. Nature genetics. 2008;40(12):1413-5.
426 15. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, et al. Alternative isoform
427 regulation in human tissue 425 the human transcriptome by high-throughput sequencing. Nature genetics. 2008;40(12):1413-!
426 15. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, et al. Alternative isoform
427 regulation in human tissue t
-
- regulation in human tissue transcriptomes. Nature. 2008;456(7221):470-6.

16. Keren H, Lev-Maor G, Ast G. Alternative splicing and evolution: diversification, exon definition

129 and function. Nature Reviews Genetics. 2010;11(5):345-55.

130 17. Zhang J, Manley JL. Misregulation of pre-mRNA alt 430 and function. Natural Function. The Case of the Case of the Case of the Manus 2013;3(11):1228-37.
431 and function. Lee SC-W, Abdel-Wahab O. Therapeutic targeting of the SC-W, Abdel-Wahab O. Therapeutic targeting of 431 2013;3(11):1228-37.
432 18. Lee SC-W, Abdel-Wahab O. Therapeutic targeting of splicing in cancer. Nature medicine.
433 2016;22(9):976-86. 433 2016;22(9):976-86.
434 19. Climente-G
435 splicing in cancer. C 434 19. Climente-González H, Porta-Pardo E, Godzik A, Eyras E. The functional impact of alternative
435 splicing in cancer. Cell reports. 2017;20(9):2215-26.
436 20. Pradella D, Naro C, Sette C, Ghigna C. EMT and stemness: 435 splicing in cancer. Cell reports. 2017;20(9):2215-26.
436 20. Pradella D, Naro C, Sette C, Ghigna C. EMT a
437 splicing in development and cancer progression. Mo 436 20. Pradella D, Naro C, Sette C, Ghigna C. EMT and stemness: flexible processes tuned by alternative
437 splicing in development and cancer progression. Molecular cancer. 2017;16:1-19.
438 21. Safikhani Z, Smirnov P, T 437 splicing in development and cancer progression. Molecular cancer. 2017;16:1-19.
438 21. Safikhani Z, Smirnov P, Thu KL, Silvester J, El-Hachem N, Quevedo R, et al.
439 expression-based biomarkers predictive of drug res 438 21. Safikhani Z, Smirnov P, Thu KL, Silvester J, El-Hachem N, Quevedo R, et al. Gene isoforms as 439 expression-based biomarkers predictive of drug response in vitro. Nature communications.
440 2017;8(1):1126. 439 expression-based biomarkers predictive of drug response in vitro. Nature communications.
440 2017;8(1):1126.
441 22. Ma J, Wang J, Ghoraie LS, Men X, Chen R, Dai P. Comprehensive expression-based i 439 expression-based biomarkers predictive of drug response in vitro. Nature communications.
440 2017;8(1):1126.
441 22. Ma J, Wang J, Ghoraie LS, Men X, Chen R, Dai P. Comprehensive expression-based isoform 440 expression-based biomarchiche predictive of drug response in vitro vitro. 2017;8(1):1126.
441 expression-based is ally Wang J, Ghoraie LS, Men X, Chen R, Dai P. Comprehensive expression-based is
442 biomarkers predicti 441 22. Ma J, Wa
442 biomarkers pred
443 Genomics. 2020; 442 biomarkers predictive of drug responses based on isoform co-expression networks and clinical data
443 Genomics. 2020;112(1):647-58.
444 23. Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, et al. COSMIC: the biomarkers predictive of drug responses based on isoform co-expression networks and clinical data.
443 Genomics. 2020;112(1):647-58.
444 23. Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, et al. COSMIC: the cat somatic mutations in cancer. Nucleic acids research. 2019;47(D1):D941-D7.
446 24. Avsec Ž, Agarwal V, Visentin D, Ledsam JR, Grabska-Barwinska A, Ta
447 expression prediction from sequence by integrating long-range interac 445 somatic mutations in cancer. Nucleic acids research. 2019;47(D1):D941-D7.
446 24. Avsec Ž, Agarwal V, Visentin D, Ledsam JR, Grabska-Barwinska A, Taylor KR, et al. Effective gondal 147
447 expression prediction from se 446 z4. Avsec Ž, Agarwal V, Visentin D, Ledsam JR, Grabska-Barwinska A, Tar
447 sexpression prediction from sequence by integrating long-range interactions.
448 z021;18(10):1196-203. 447 expression prediction from sequence by integrating long-range interactions. Nature methods.
448 2021;18(10):1196-203.
449 25. Freshour SL, Kiwala S, Cotto KC, Coffman AC, McMichael JF, Song JJ, et al. Integration o 448 expression prediction from the sequence by integrating range interaction tradition in the consequence base
449 25. Freshour SL, Kiwala S, Cotto KC, Coffman AC, McMichael JF, Song JJ, et al. Integration c
450 Drug–Gene 449 25. Freshour SL, Kiv
450 Drug–Gene Interaction
451 2021;49(D1):D1144-D5: 450 Drug–Gene Interaction Database (DGIdb 4.0) with open crowdsource efforts. Nucleic acids research.
451 2021;49(D1):D1144-D51.
452 26 Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, et al. DrugBank: a 451 Drug – Gene Interaction Druggene Interaction Database (DGI):D1144-D51.
452 Drug–Gene Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, et al. DrugBank: a
453 Comprehensive resource for in silico drug 2021;49(D1):D1144-D51.
152 26. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, et al. DrugBank: a
153 comprehensive resource for in silico drug discovery and exploration. Nucleic acids research.
154 200 453 comprehensive resource for in silico drug discovery and exploration. Nucleic acids research.
454 2006;34(suppl_1):D668-D72.
455 27. Gaulton A, Hersey A, Nowotka M, Bento AP, Chambers J, Mendez D, et al. The ChEMBl 455 27. Gaulton A, Hersey A, Nowotka M, Bento AP, Chambers J, Mendez D, et al. The ChEMBL database
456 in 2017. Nucleic acids research. 2017;45(D1):D945-D54.
457 28. Blum M, Chang H-Y, Chuguransky S, Grego T, Kandasaamy S, 456 in 2017. Nucleic acids research. 2017;45(D1):D945-D54.
457 28. Blum M, Chang H-Y, Chuguransky S, Grego T, Ka
458 protein families and domains database: 20 years on. Nu 456 2017. Nucleic acids research. 2017;45(D1):D945-D54.
456 1 in 2017. Nucleic acids research. 2017;45(D1):D945-D54.
458 protein families and domains database: 20 years on. Nucleic acids research. 2021;49(D1):D344-D54. 457 28. Blum M, Chang H-Y, Chuguransky S, Grego T, Kar
458 protein families and domains database: 20 years on. Nucle
459 29. Goldman MJ, Craft B, Hastie M, Repečka K, McD 458 protein families and domains database: 20 years on. Nucleic acids research. 2021;49(D1):D344-D54
459 29. Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, et al. Visualizing and
460 interpreting cancer geno 29. Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, et al. Visualizing and
160 interpreting cancer genomics data via the Xena platform. Nature biotechnology. 2020;38(6):675-8.
161 30. Du Z, Su H, Wang W, Ye L interpreting cancer genomics data via the Xena platform. Nature biotechnology. 2020;38(6):675-8.
461 30. Du Z, Su H, Wang W, Ye L, Wei H, Peng Z, et al. The trRosetta server for fast and accurate pr
462 structure predictio 461 and Du Z, Su H, Wang W, Ye L, Wei H, Peng Z, et al. The trRosetta server for fast and accurate pr
462 structure prediction. Nature protocols. 2021;16(12):5634-51.
463 31. Kim DE, Chivian D, Baker D. Protein structure p 462 structure prediction. Nature protocols. 2021;16(12):5634-51.
463 31. Kim DE, Chivian D, Baker D. Protein structure prediction and analysis using the Robetta server.
464 Nucleic acids research. 2004;32(suppl_2):W526-W31 463 at 1. Im DE, Chivian D, Baker D. Protein structure prediction.
164 a. Nucleic acids research. 2004;32(suppl_2):W526-W31.
165 a. 22. Materhouse A, Bertoni M, Bienert S, Studer G, Tauriel 464 Nucleic acids research. 2004;32(suppl_2):W526-W31.
465 32. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL:
466 homology modelling of protein structures and complexes. Nucleic 465 32. Waterhouse A, Bertoni M, Bienert S, Studer G,
466 homology modelling of protein structures and comple
467 W303. 466 homology modelling of protein structures and complexes. Nucleic acids research. 2018;46(W1):W296
467 W303. Zhang Y. I-TASSER server for protein 3D structure prediction. BMC bioinformatics. 2008;9:1-8. homology modelling of protein structures and complexes. Nucleic acids research. 2018;46(W1):W296-

467 W303. Zhang Y. I-TASSER server for protein 3D structure prediction. BMC bioinformatics. 2008;9:1-8.

469 34. Halgren TA 470 chemical information and modeling. 2009;49(2):377-89.
471 35. Mendoza MC, Er EE, Blenis J. The Ras-ERK and Pl 34. Halgren TA. Identifying and characterizing binding sites and assessing druggability. Journal of
170 chemical information and modeling. 2009;49(2):377-89.
171 35. Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR p 471 35. Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and
472 compensation. Trends in biochemical sciences. 2011;36(6):320-8.
473 36. Miller S, Tavshanjian B, Oleksy A, Perisic O, Houseman BT, 472 compensation. Trends in biochemical sciences. 2011;36(6):320-8.
473 36. Miller S, Tavshanjian B, Oleksy A, Perisic O, Houseman BT
474 development of autophagy inhibitors with the structure of the lip 472 compensation. Trends in biochemical sciences. 2011;36(6):320-8.
473 36. Miller S, Tavshanjian B, Oleksy A, Perisic O, Houseman BT, Shokat KM, et al. Shaping
474 development of autophagy inhibitors with the structure of 473 36. Miller S, Tavshanjian B, Oleksy A, Perisic O, Houseman BT,
474 development of autophagy inhibitors with the structure of the lipi
475 2010;327(5973):1638-42. 474 development of autophagy inhibitors with the structure of the lipid kinase Vps34. Science.
475 2010;327(5973):1638-42. 475 $2010;327(5973):1638-42.$

-
-
- 37. Goldman M, Craft B, Hastie M, Repečka K, McDade F, Kamath A, et al. The UCSC Xena platform
477 for public and private cancer genomics data visualization and interpretation. biorxiv. 2019:326470.
478 38. Zhou L, Li Z, Y 478 a.e. public and private cancer genomics data visualization and previous data visualizations with
479 computational models and algorithms. Molecules. 2019;24(9):1714.
480 39. Davuluri RV, Suzuki Y, Sugano S, Plass C, Hu 479 computational models and algorithms. Molecules. 2019;24(9):1714.
480 39. Davuluri RV, Suzuki Y, Sugano S, Plass C, Huang TH-M. The functional consequences of
481 alternative promoter use in mammalian genomes. Trends in
-
-
- 480 ag. Chavuluri RV, Suzuki Y, Sugano S, Plass C, Huang TH-M. The fu
481 alternative promoter use in mammalian genomes. Trends in Genetic
482 d0. Kalsotra A, Cooper TA. Functional consequences of developn 481 alternative promoter use in mammalian genomes. Trends in Genetics. 2008;24(4):167-77.
482 40. Kalsotra A, Cooper TA. Functional consequences of developmentally regulated alternat
483 splicing. Nature Reviews Genetics. 482 alternative promoter in manufacture in material in terms in 1992.
483 alternative professor in management of the splitting splicing. Nature Reviews Genetics. 2011;12(10):715-29.
484 41. Bouillard AD, Hurle MR, Agarwal
-
- 483 splicing. Nature Reviews Genetics. 2011;12(10):715-29.
484 41. Rouillard AD, Hurle MR, Agarwal P. Systematic interrogation of diverse Omic data reveals
485 interpretable, robust, and generalizable transcriptomic featur 484 41. Rouillard AD, Hurle MR, Agarwal P. Systematic in
485 interpretable, robust, and generalizable transcriptomic f
486 targets. PLoS Computational Biology. 2018;14(5):e1006: 485 interpretable, robust, and generalizable transcriptomic features of clinically successful therapeution
486 targets. PLoS Computational Biology. 2018;14(5):e1006142.
487
- 485 interpretable, robust, and generalizable transcriptomic featu
186 targets. PLoS Computational Biology. 2018;14(5):e1006142.
487 487 targets. Plos Computational Biology. 2018;14(1):
188
-
- 488
489
- 489
|