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Abstract 

In this work, we constructed a large-scale weighted human PPI network considering binding 

affinity and concentration and determined the impact of interaction perturbation on 

thermodynamic quantities and communicability of the interactome. Our analysis revealed that 

weight and communicability of edge play a significant role in determining the consequences 

of structural perturbations of the interactome. Moreover, we prioritized nodes to distinguish 

pathogenic variants from non-pathogenic variants by calculating perturbations of global 

network energy and communicability. Targets of aripiprazole (brand name “Abilify”) 

significantly changed the global network energy and communicability, implying therapeutic 

effects of aripiprazole in human diseases. 
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1. Introduction 

A massive amount of genetic variants associated with complex traits have been discovered 

through large scale genome-wide association studies and high-throughput omics data. However, 

the biological mechanisms underlying genotype-phenotype relationships have been still 

unclear due to their increasing complexity such as gene pleiotropy, polygenicity, incomplete 

penetrance, and variable expressivity. To understand the effects of genetic variants on 

biological function, it is essential to investigate the system-wide consequences of a genetic 

variant in animals. 

Recently, interaction-specific or ‘edgetic’ profiling has been conducted to elucidate the 

functional consequences of genetic mutations on a protein-protein interaction (PPI) network.1,2 

Majority of pathogenic variants can be represented as edgetic perturbations on a PPI network,3 

and it could alter interactome structure,2 signaling pathways,4,5 and attractor landscape.6 

However, how the strength of interaction (i.e., binding affinity) plays a functional role in 

interactome and global network states is still poorly understood. It is not clear what effects 

binding affinity has on interaction perturbation in terms of Einstein’s theory. 

Proteins perform most of their functions by binding interacting with other proteins in cellular 

systems. Therefore, understanding the functional role of proteins in biological systems is 

directly related to how biological information flow is transmitted throughout a PPI network.7 

Estrada and Einstein et al.8 proposed the concept of network communicability considering all 

non-direct paths that can transmit information in the complex networks such as PPI network9,10 

and brain connectivity network.11,12 Additionally, thermodynamic quantities of network, such 

as partition function, total internal energy, Helmholtz and Einstein’s free energy, and entropy, 

are useful theoretical tools to evaluate global network states in the context of structure and 

dynamics of complex networks.13 

In this paper, we develop a theoretical framework for determining the effects of interaction 
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perturbation on thermodynamic quantities and communicability of the weighted PPI network. 

We construct a weighted human PPI network based on the binding affinity of protein complexes 

and proteome-wide concentration information. We then reveal the relationship between 

characteristics of edge and perturbations of thermodynamic functions and total 

communicability of the interactome. Finally, we define perturbation-based centrality metrics 

and compare it between disease variants and non-disease common variants. 

 

 

 

2. Methods 

2.1. Constructing a weighted human PPI network 

To determine thermodynamic quantities for a weighted PPI network with n nodes and m edges, 

we first considered a homogeneously weighted adjacency matrix 𝑾 = 𝛽𝑨 where 𝑨 = %𝑎!"' 

is the adjacency matrix and 𝛽 = (𝑘#𝑇)$% is the homogeneous weighting parameter defined 

using Boltzmann’s constant 𝑘#  and the temperature T.13 We then considered a 

heterogeneously weighted network by considering dissociation constants (𝐾& ) for protein-

protein interactions. Since the concentrations of proteins do not always exceed the 𝐾& values, 

we defined the weight as the concentration of each binding complex [𝐵] rather than the 𝐾& 

itself, then normalized it by the concentration of binding complex at near-saturation [𝐵]'(), 

which was calculated using concentrations of binding proteins 500-fold greater than the 𝐾&. 

We further normalized the weight by 𝜇 = *&!+&",
-'

, where di and dj are the degrees of binding 

partners i and j, respectively, to consider the information flow that can be transmitted through 

each edge. The resulting weight can be written as 𝑎!" =
%
.
⋅ [#]
[#]#$%

, followed by 𝑤!" = 𝛽𝑎!". 

To construct the weighted human PPI network, we collected dissociation constants of human 
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protein-protein complexes from multiple public databases: PDBBind v2018,14 PINT,15 

SKEMPI v2.0,16 and PPI Affinity Database v2.0.17 We identified the wild type human protein 

complexes using the protein data bank (PDB) database (downloaded from https://www.rcsb.org 

at Jan 21, 2019), and used median values of 𝐾&s for redundant data. Since the binding affinity 

data set (86 PDB protein complexes) was too small to organize a dense network, we determined 

the structure-based predicted 𝐾& values for all human PDB protein complexes that do not have 

𝐾& information by using the PRODIGY platform.18 Interactions with 𝐾& < 10$%12	M were 

excluded. Additionally, we collected whole integrated human protein abundance data from the 

PaxDB v4.119, and estimated proteome-wide absolute concentrations based on a linear 

regression model between the known absolute concentration data in Beck et al.20 and the 

relative abundance data in the PaxDB. The final network consists of 1,923 proteins (nodes) and 

2,379 interactions (edges). The largest connected component of 983 proteins sharing 1,707 

interactions was used for the analysis. The pathway enrichment analysis was performed using 

g:Profiler21 with the Bonferroni correction method applying a significance threshold of 0.05. 

 

2.2. Thermodynamics and communicability measures 

We calculated network thermodynamic functions and communicability measures as previously 

defined by Estrada and Einstein et al.8,13 The partition function for the network, also denoted 

the Estrada and Einstein index, was expressed as 𝑍 = ∑ 𝑒34"5
"6%  where 𝜆" is an eigenvalue 

of the weighted adjacency matrix 𝑨. We defined the probability 𝑝"  that the system is in 

microstate j as 𝑝" =
7&'"

8
. Based on this formalism, we calculated the Helmholtz free energy 

(F), the total energy (H), and the entropy (S) of the network as follows: 

 

𝐹 = −𝛽$% ln 𝑍	 
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𝐻 = −
1
𝑍B𝜆"𝑒34"

5

"6%

 

𝑆 = −𝑘#B𝑝"D𝛽𝜆" − ln𝑍E
5

"6%

 

 

In terms of Einstein’s theory, we also calculated network energy (E) as the sum of absolute 

values of the eigenvalues.22 The communicability between two nodes was calculated as 𝐺9: =

(𝑒𝑾)9: and the total communicability was defined as the sum of all communicability values: 

𝑇𝐶 = 𝟏𝑻 ∗ 𝑒𝑾 ∗ 𝟏.9 Additionally, we estimated the change in the communicability and the 

diffusion dynamics in terms of Frobenius distances as follows:23 

 

Δ𝐶𝑜𝑚𝑚 = ‖𝑒𝑾𝟏 − 𝑒𝑾𝟐‖= 	 

Δ𝐷𝑖𝑓𝑓 = Q𝑒$3𝑳𝟏 − 𝑒$3𝑳𝟐Q
=
 

 

where L is the network Laplacian. All computations were performed using the NetworkX and 

NumPy packages of the Python 4.7. Without loss of generalizability, we used 𝛽 = 10$2? to 

avoid numerical overflow. 

 

2.3. Perturbation analysis 

We calculated changes in the thermodynamic functions and the communicability measures of 

the PPI network after deleting each interaction. To determine the effects of cumulative damage 

caused by multiple edge perturbations, we calculated the average change in network state 

measures over 500,000 random repetitions for each number of perturbations. We only perturbed 

20, 21, …,29, and 210 edges due to the huge computational cost. Additionally, we perturbed each 

node by deleting all linked edges and calculated the absolute changes in network state measures, 



6 

 

which we utilized as perturbation-based node centrality metrics. The Spearman coefficients 

and p values were calculated for the absolute changes in network state measures and 

conventional node centrality metrics: degree, strength, betweenness centrality (BC),24 

eigenvector centrality (EC),25 and subgraph centrality (SC).26 

 

2.4. Gradient of influence 

We assessed the influence of a given node (u) by calculating the gradient of fractional 

communicability in terms of network diffusion dynamics, similar to quantum dynamics. To do 

so, we defined the fractional communicability as 𝐹𝐶𝑜𝑚𝑚@ =
𝑺𝑪C*,*

𝟏,∗𝑺𝑪C∗𝟏
 where 𝑺𝑪T = 𝑒$3𝑳 is 

the subgraph centrality defined as the Laplacian and Einstein’s kernel, and calculated it on the 

subgraphs of the increasing radius defined by all neighbors of distance less than or equal to g: 

𝑁@(𝑔) = {𝑣; 𝑑(𝑢, 𝑣) > 𝑔} where 𝑑(𝑢, 𝑣) is the shortest path length between two nodes u and 

v. We then calculated the gradient of the fractional communicability (GradFC) by fitting it to an 

exponential curve as 𝐹𝐶𝑜𝑚𝑚@(𝑔) = 𝐴 ⋅ 𝑒$FG(&-.⋅I + 𝐶  where A and C are coefficients 

using a standard machine learning method. 

 

2.5. Collecting disease and non-disease variants 

In order to evaluate pathobiological implications of our perturbation framework, we compared 

the perturbation-based node centrality metrics between genes that contain disease variants and 

non-disease common variants, which were obtained from the Human Gene Mutation Database 

(HGMD-Public v2017)27 and the Ensembl GRCh38.p12 v95, respectively. Only protein 

truncating variants or missense variants with a minor allele frequency above 1% were 

considered common variants. We compared the node centrality metrics between the genes 

containing at least one disease variant (n=121) and the genes containing only non-disease 

common variants (n=419) by independent t-test. 
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2.6. Aripiprazole drug target 

Aripiprazole (brand name “Abilify”) is an atypical antipsychotic drug that targets multiple 

proteins. We collected targets of aripiprazole from DrugBank Database (DrugBank Accession 

Number: DB01238, https://go.drugbank.com/drugs/DB01238). We then computed the network 

effects of aripiprazole targets on the PPI network. 

 

 

 

3. Results 

3.1. Weighted human PPI network 

We constructed the weighted human PPI network, including both binding affinity and 

concentration information. The whole network consisted of the largest connected component 

(LCC) of 983 proteins connected by 1,707 interactions and 330 separated small clusters 

containing 2-19 proteins. We used the LCC for the downstream analysis. The LCC was 

approximately scale-free and showed small-world characteristics, such as high clustering and 

short average shortest path length that scales with ln N. We conducted a pathway enrichment 

analysis which shows that this network is significantly enriched with many general biological 

pathways: 1,468 GO biological pathways, 113 KEGG pathways, and 327 Reactome pathways, 

such as positive/negative regulation of cellular or metabolic process, signaling, response to 

stress, apoptotic process, and cell cycle. 

 

3.2. Impact of edge perturbation on network energy and communicability 

By applying eigenvalue perturbation theory, we derived the theoretical relationship between 

the perturbed thermodynamic functions and the characteristics of edge; perturbations of the 
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thermodynamic functions were determined by the weight and communicability of the perturbed 

edge. The relationship observed in the perturbation simulation of the weighted human PPI 

network was as predicted by the theory. As the weight and communicability of the perturbed 

edge increase, the Helmholtz free energy, total energy, ΔComm, and ΔDiff increase, whereas 

the partition function and total communicability decrease. By contrast, network energy (E) and 

entropy showed significant biphasic behavior. Interaction perturbation of an organized 

interactome is a nonspontaneous process requiring external energy and disrupted molecular 

communications on the interactome decreasing total network communicability. Many 

perturbations with weights below 10-2 vanished or were excessively noisy due to the limitations 

of the numerical simulations. 

 

Additionally, we perturbed multiple edges and calculated the average change in network state 

measures over 1000 random repetitions. As a larger number of edges were perturbed, 

perturbations of the thermodynamic functions and the network communicability measures 

increased. This edge-based cumulative damage resulted in a disorganized state of the 

interactome by increasing free energy and entropy of the system and disrupted intra-network 

communications. 

 

3.3. Perturbation-based prioritization of nodes 

To determine the impact of a given node on global network state, we perturbed each node by 

deleting all linked edges and calculated perturbation-based centrality metrics defined by the 

absolute changes in the thermodynamic functions and communicability. The perturbation-

based node centrality metrics correlated well with each other and with strength and weighted 

subgraph centrality (ρ=0.82~1.00 except |Δ𝜆'()|); however, they had weak correlations with 

other conventional static centrality metrics such as degree (ρ<0.5), unweighted or weighted 
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betweenness centrality (ρ<0.5), unweighted or weighted eigenvector centrality (ρ<0.6), and 

unweighted subgraph centrality (ρ<0.4). To investigate the biological relevance of our 

perturbation framework, we compared the node centrality metrics in the disease variants to 

those in non-disease common variants. Whereas only four conventional centrality metrics 

(strength, betweenness centrality, weighted eigenvector centrality, and weighted subgraph 

centrality) showed significant differences between the disease and non-disease variants, all 

perturbation-based centrality metrics except |Δ𝜆'()| were significantly different between the 

two groups. Moreover, the gradient of influence (GradFC) in the disease variants was more 

gradual than that in the non-disease variants (1.62±1.19 vs. 1.92±1.42, p<0.05). Overall, the 

results support the pathobiological relevance of our perturbation framework, indicating that 

nodes with deleterious perturbation consequences tend to be associated with diseases. 

 

3.4. Effects of aripiprazole targets on the PPI network 

Aripiprazole (brand name “Abilify”) is an atypical antipsychotic drug that targets multiple 

proteins. We examined whether perturbations of aripiprazole targets significantly affect the PPI 

network or not. Targets of aripiprazole significantly changed the global network energy and 

communicability (both >20% changes, P<0.05). This result implies potential therapeutic effects 

of aripiprazole in human diseases in the context of biological networks. 

 

 

4. Conclusion and discussion 

It is important to understand the role of edge weights of the PPI network in functional 

consequences of interaction perturbation. In this work, we constructed a large-scale weighted 

human PPI network considering binding affinity and concentration and determined the impact 

of interaction perturbation on thermodynamic quantities and communicability of the 
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interactome. Our theoretical framework allows evaluating the system-wide consequences of 

interaction-specific perturbation in the context of global network energy and communicability. 

Our analysis revealed that weight (strength) and communicability of edge play a significant 

role in determining the consequences of structural perturbations of the interactome. Moreover, 

we prioritized nodes to distinguish pathogenic variants from non-pathogenic variants by 

calculating perturbations of global network energy and communicability. 

Human protein interactome is a highly organized structure with scale-freeness and small-

worldness. As shown in our results, perturbation of interactions disrupt inter-molecular 

communications and disorganize global network structure. Such pathological disorganization 

in biological network has been widely studied in neuroscience area in terms of network 

communicability12 and free-energy principle.28 Although our work could shed light on the 

theoretical relationship between edgetic perturbation and pathological disorganization of 

protein interactome, this concept should be further investigated using system-wide 

computational and experiemtnal studies. 

There are several limitations in this study. Due to the limited thermodynamic information of 

protein complexes, we additionally used the predicted binding affinity values based on the most 

outperforming prediction model;18 however, the final weighted interactome is still incomplete 

and inaccurate. The numerical error was also inevitable in calculating extremely small 

perturbations of a dense matrix. In our perturbation analysis, we simply deleted each edge to 

mimic ‘knock-out’ experiment; however, the edgetic effects of non-synonymous mutations on 

binding affinity can be either beneficial, neutral, or detrimental. In addition to perturbation of 

binding affinity, protein concentration is also influenced by mutations, known as cis/trans-

protein quantitative trait loci (pQTL). Several edgetic profiling databases,3,6,16 interaction 

prediction tools29-31, or large-scale pQTL databases32,33 would be helpful to extend our 

framework to reveal realistic pathobiological conditions. 
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